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Abstract

Laser phase noise causes a significant performance degradation of coherent optical

communication systems. In this paper we analyze its effect for a model more general

than usually considered. We evaluate bounds and approximations for the probability of

error of binary orthogonal modulation, such as wide deviation Frequency Shift Keying,

paying particular attention to the effects of frequency feedback stabilization on system

robustness.
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1 Introduction

Phase noise in diode lasers is a major cause of degradation of the performances of optical

coherent communication systems. These phase fluctuations are due to spontaneous pho-

ton emissions within the laser cavity [1]. Numerous papers analyze the effect of phase

noise when it is modeled as a Wiener process, e.g. the phase noise is the integral of white

frequency noise [2], [3], [4], [5], [6], [7], [8], [9]. We consider here a more general model. It

sheds light on the nature of the analytical techniques used previously. It also allows us to

study the influence of frequency stabilization schemes (e.g. [10, 11, 12, 13, 14, 15]) that

reduce the low frequency components of frequency noise. Other important phenomena,

such as the influence of the laser relaxation oscillations, or the effect of the increased

noise at low frequencies, could also be studied by the techniques developed here.

The remainder of this paper is organized in the following manner. In section 2 we

introduce the phase noise model. In section 3 we examine the characteristics of the

signal spectrum and evaluate the error probability by deriving a lower bound, an upper

bound, and an approximation. The key results of the paper are in the section on the

upper bound. Finally in section 4 we apply the results to a simple frequency stabilization

scheme. In section 5 we give the results and conclusions.

2 Signal models

The unmodulated signals have the form R(Aej(2 rfct+e(t))) where f, is either the optical

carrier frequency, or, in the case of coherent reception, the intermediate frequency. In that

expression the phase noise 0(t) is 2ir times the integral of the frequency noise w(t). w(t) is

often mIodeled [16] as a white Gaussian noise process with spectral density ,3/27r, so that

the unmodulated signal has a Lorentzian lineshape with bandwidth 3. In this work w(t)

is still Gaussian, but we allow a general spectral density S,(f) = PS(f)/27r. Explicitly

keeping the parameter /3 allows us to examine the effect of changing the intensity, but not
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the spectral shape, of the frequency noise. The shape S(f) might be used to model the

effect of frequency stabilization', or other phenomena such as the relaxation oscillation.

It will prove convenient to normalize time with respect to the bit duration T and to

scale the phase noise process, so we define the process

w'(t)= -- w(tT).(1)

Its spectral density is S(f/T), and it is independent of /3. Having defined w', we also

define its integral,

i(t) = o w'(u)du

with correlation function

K (t, s) =jfj K(r - -')drdr'. (2)

From these definitions, the phase noise 9(t) can be expressed as

0(t) = 27r w(u)du = 2X27rT ww'(u)d = \v0,(t/T) (3)

where 7 is 27r3rT. From now on we will always express the phase noise process in terms

of y and 6b(t).

We consider the heterodyne receiver shown in figure 1. The signal is a pulse of phase

noisy light of duration T, modulated either by On/Off keying or some binary orthogonal

modulation, such as Frequency Shift Keying (FSK), Polarization modulation, or Binary

Pulse Position Modulation2 (FSK is shown in the figure). Following coherent recep-

tion, the electrical signals are passed through IF matched filters, with impulse response

exp(j27rfit)/T, 0 < t < T, where the fi's are the intermediate frequencies corresponding

to the signals. These matched filters reject the strong shot noise introduced by the co-

herent receiver. The envelopes of the matched filter outputs are sampled and sent to a

decision device.

1In the case coherent receivers, S(f) relates to the difference of the frequency noises of the transmitter
and of the local oscillator. Frequency stabilization greatly affects S(f) at low frequencies.

2 In that case T must be redefined appropriately
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The probability of error achieved with this structure is identical to that of quadrature

homodyne receivers using matched filters and squaring circuits. The results also apply

to a direct detection system using a front end optical matched filter [17] (or filters, in the

case of FSK) when spontaneous noise from in-line optical amplifiers dominates.

If the phase noise is large, it is better [18], [4], [19] to use an IF filter with a wider

passband than a matched filter, and to insert another stage of filtering after envelope

detection. The analysis of such a system under a general phase noise model will not be

attempted here.

3 Performance Analysis

We wish to find the probability of error for the system described in the previous sec-

tion. The coherent reception process introduces noise that can be modeled as white and

Gaussian, with two-sided spectral density No/2.

In the case of orthogonal signals3 if signal 1 is sent the outputs of the envelope

detectors at time kT are

Yo(k) = Into + jn,o02

Y 1(k) = - kT ejV¢(t/T)dt + ncl + jn,2

where - and ~b(t) include the effects of the phase offset between the signal and the local

oscillator, A is the signal amplitude at the output of the detector, n,i and nsi are the

in-phase and quadrature noise samples at the output of the matched filters. The noise

components are zero mean independent Gaussian random variables with variance No/4T.

The decision is made by comparing Y1 and Yl.

It is well known [20], [21], [19] that conditioned on the phase noise process the prob-

3 For FSK we assume a wide deviation system so that a signal component appears only at the output
of the corresponding filter.
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ability of error for the kth bit is given by:

P(error[',) = le-¢Xk/2 -P,(k) (4)

where ( denotes the signal to noise ratio ( = A 2 T/2No and

_ =|1 fkT eJiV,(t/T)dt _ eJV5(t)dt
-T J~k-1)T = J~k-i) e-v/b(t)dt

k- 1c

f= k- k eJiv(f(t)-P(8))dtds (5)

1 cos( (k(t) - (s)))dtds. (6)

The key problem is to evaluate the average of the conditional error probability over +p(t),

or equivalently over Xk.

In the case of On/Off keying, there is only one output. Its value is given by YO above

if no signal is present, and by Yj if there is a signal. The value of the output is compared

to a threshold h to obtain a decision. The conditional probability of error can be found

[20], [21] to be

P(rror) = h + (1 - Q(2 , 2h/N0)) (7)

where Q() denotes the Marcum Q function and Xk, defined above, is again a sufficient

statistics to express the effect of the phase noise.

Note that 4b(t) - p(s) = fJ w'(u)du and that the statistics of this quantity are not

affected by simultaneous shifts of s and t, because w'(t) is stationary. Accordingly the

statistics of Xk are independent of k. From now on we consider only k = 1 and we omit

the subscript. This remark also justifies the fact that we have not added an initial value

to the integrals in equation (3).

In the remainder of this section we examine the spectrum of the unmodulated signal

and use three different methods to bound and approximate the probability of error. To

keep the paper short, we will only provide explicit results for orthogonal modulation,

those for On/Off keying can be obtained by the same method.
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3.1 Unmodulated signal spectrum

The variance v(t - s) of /,(t)- ?b(s) turns out to be a key quantity that determines the

spectrum of the unmodulated signal. It is easy to see that

v(t- .) = Ki(t,t) + Ka(s, s)- 2K:(t,s) (8)

= fj j w(, - r')drdr (9)

= S( f ) (sin(rf(t -))) (10)f - T 7rf df(10)

The last equality follows from the second one by expressing K,, in terms of S(f) and

then integrating.

The low-pass envelope K!,(r) of the correlation function of the unmodulated signal of

unit power can be written as

If,(,) = E coS(O(t + -) - 9(t))

= exp(-.57yv(r)) (11)

where the second equality stems from the characteristics function of the Gaussian random

variable 8(t + r)- 9(t) and from the relation (3) between 8 and b. We can immediately

draw some conclusions about the relationship between S(f) and the linewidth of the

unmodulated signal.

First, when the frequency noise is white, S(f) = 1, v(r) = 17 and IK,(r) = exp(-r/dlI1).

Its Fourier transform is the familiar Lorentzian 27r,3/((7iri)2 + (2rf)2 ).

Second, the sin(7r(t - s)f)2 in (10) can be expressed as .5(1 - cos(27r(t - s)f)). For

large It - s], the cos() term will bring a negligible contribution to the integral and the

limit of v(r) as r grows (if it exists) will be given by

1 _o s( f')v(o) = 2 2 1 1 df'

where we have made the change of variable f' = f T. For the right hand side to be finite

there must be an c > 0 such that S(f) increases more slowly than Ifl1 -E for large If l,
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and more slowly than Ifl l+ for snall If l (the second condition implies that S(O) = 0,

i.e. there is no d.c. frequency error).

If v(oo) exists and is finite, K,(r) in turn converges to exp(-3/(27r) ffoo S(f)/f 2 df)

when r grows, and this quantity is strictly positive. It corresponds to the amplitude

of a discrete "d.c. line" in the spectral density of the of the low pass envelope of the

correlation function of the unmodulated signal, as it is the Fourier transform of K's(r).

3.2 Lowerbound on the Probability of Error

Pe(X), defined in (4), is a convex U function of X in the interval [0, 1], therefore by

Jensen's inequality the probability of error is bounded below by

p > t1 e-C/2

X can be found from the correlation function of the phase noise process as follows. From

(5)

X j

?/(t) - O(s) is a zero mean Gaussian random variable with variance v(t - s) defined above,

so X is just the integral of the characteristic function of that random variable evaluated

at '7i:

X = jj0 e-5'v(t-s)dt d. (12)

3.3 Upperbound on the Probability of error

Foschini and his coworkers [6] derived a lower bound XL on X by applying the inequality

cos(x) > 1-x 2 /2 to (6). A quantity closely related to XL was originally introduced in [5] 4.

Both are first order approximations in y, and we refer to XL as the linear approximation.

They obtain:

XOL = 1->y Jo (re(t)-o(n)) dtds

40ur Xi corresponds to X2 in [4], [5] and [6].
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= i ' f (t)- / (.u)du) dt

= 1 - Y y (t)dt (13)

where

y(t) = (t)- 1 4,(u)du.

Pe(X) < Pe(XL), Pe < Ey(Pe(XL)), and our goal is to evaluate that last quantity.

The process y(t) is key to our analysis. It has a correlation function

IKy(t, s) = E [((t)- j k(u)du) (i(s) - j q,(v)dv)]

= Ki,(t,s) - I(,u)du,-j KIf,(t,v)dv+ j j fK,(u,v)dttdv (14)

To obtain the statistics of XL, we expand the process y(t) in a Karhunen-Loeve series

[20] on [0,1]

y(t):= _Yi,~i(t), t E [0,1] (15)

where the q5i's are orthonormal on [0, 1] and the yi's are independent Gaussian random

variables with zero mean and variance Ai. Ai and Oi satisfy the integral equation

j KI (t, s)qi(s)ds = Aiqi(t), t E [0, 1. (16)

Introducing (15) in (13) and using the orthonormality property yields

00

XL = 1- -y y. (17)
i=l

Thus XL is a sum of squares of independent Gaussian variables, and it is completely

specified by the variances Ai. We will return to it later, but focus first on the integral

equation (16).

This eigenvalue equation is somewhat formidable, as Iy is itself expressed in (14)

as a sum of four terms involving 1i4,. The equation can be simplified by noticing that

fo' y(t)dt = 0. It follows that foJ Ky(t, s)dt is 0 for all s and that the constant function is
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a solution of the equation, with 0 eigenvalue. This makes physical sense, as a constant

phase offset does not affect X. The other eigenfunctions are orthogonal to that constant

eigenfunction, and their integral over [0, 1] is 0. Consequently the last two terms in (14),

which do not depend on s, play no role in the eigenvalue equation for the non-constant

eigenfunctions. Therefore the integral equation simplifies to

Jo K,(tvs)(s)ds - f j KV,(s,ut)O(s)dsdu = A+(t), t E [0,1]. (18)

The integral over t of the left hand side is 0, which implies that solutions to the

simplified equation with non zero eigenvalues also have a 0 integral. Thus they are

solutions of the original Karhunen-Loeve equation, and we have not introduced extra

solutions by omitting terms.

The second term in the left hand side of (18) is independent of t. Thus if one dif-

ferentiates both sides with respect to t one obtains the same differential equation as for

the expansion of Vb(t); only the boundary conditions are different. For example in the

case of white frequency noise where KIf(t,s) = min(t,s), the cosine expansion used in

[4] without explicit reference to Karhunen-Loeve theory, actually solves the eigenvalue

equation (18). It also solves the differential equation (but not the integral equation)

associated with the eigenfunctions of the Wiener process [20].

It is also worth noting that the terms in Ki (if any) that are constant, or functions

of s only, or t only, make no contribution to (18). For example one can write min(t, s) =

.5(s + t - t - s), and equation (18) with Kt = -. 51t - sl yields the same answer as with

the correlation function min(t, s) of the Wiener process.

We now return to examining XL under the form (17). Its mean follows easily:

0o

XL = 1-7 Ai
i=l

1s- (d j 1a (tt)dt- j K n(t,s)dtds). (19)

The second equality can be obtained directly from (13), or by using a theorem [20] about

9



the sum of the eigenvalues.

It is convenient to define IV = 1 y2. Because It is a sum of squares of independent

Gaussian variables, its density function pt(x) is a convolution of an infinite number of

independent chi-squared distributions, with characteristic function

co)EB= 1
P*(v) = E(ej" ) = I /1j2vAi

i=1 2v A

The tail of the p,(x) will be dominated by the largest eigenvalue, say A1, and will behave

like exp(-x/2A1 ) for large x [21]. The tilted density pp,(x)exp(ax/2A1), where a is a

well chosen number such as .8, can be obtained without numerical difficulty from Pt(v)

by Inverse Fourier Transform routines.

Now that we have the density for 4, the probability of error can be bounded. For

FSK the probability of error is

P,e < E[.5exp(-.5((1-7 - ))]

= .5 exp(-.5C)Pp(-j (y/2)

00 1
= .5e-5C H . (20)

This expression first decreases with increasing ¢, but it eventually increases without

bound as C approaches 1/yA1. This is because XL can be negative, even though X lies

in [0, 1].

A better upperbound is obtained by truncating XL at 0, yielding

Pe < .5Pr(T > 1/y) + .5&e f/C p,()e '*d. (21)

The second term decreases with increasing C, but the first term is independent of C.

Because It > y1, that floor is at least as large as (but usually close to) 2Q(1/1yXj),

where Q(x) denotes that the probability that a zero mean, unit variance Gaussian random

variable exceeds x.
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3.4 Exponential approximation

Although it has the virtue to provide a bound, the approximation XL = 1- -7 is inaccu-

rate for large y as it can become negative although the original X lies in [0, 1]. To remedy

this Azizoglu and Humblet [19] have suggested using the exponential approximation

XE = e-Y

which always lies in the desired interval and is also a first order approximation in y. For

the case of the simple Brownian motion phase noise there is some justification for this.

The first, second and fourth moments of XE are known to be in very close agreement

with the actual moments of X for all -y. This is better than the moments of the bound XL

which only agree in the region of small -y. However the moments provide little information

about the correctness of the approximate density for small values of X, although those

values can greatly influence the error probability.

The mean of XE is simply given by

°°=P Y 1
XSE Pc(jy)= H /i + 2i (22)

i=1 V + 2yA7T

which can be compared with the mean of X given in (12) to gain confidence in the

exponential approximation.

The probability of error can be evaluated using the previously calculated statistics

for I.

Pe v EXE [.5e 5(X' ]

= E, [.5exp(-.5Ce-)] (23)

4 Frequency Feedback Stabilization

Our interest in frequency feedback stabilization stems from a number of reasons. The

fact that the white frequency noise model results in plausible performance, despite having



infinite mean "frequency power", suggests that the low frequency components of the

frequency noise most degrade the performance, and that it would be beneficial to reduce

them. This view is reinforced by considering the variance derived in (10). On a more

practical level, in heterodyne systems the local oscillator frequency tracks the transmitter

frequency, matching it best when fluctuations are slow. This leads to a non white S(f).

Also, a number of recent experiments have successfully reduced the frequency noise by

using feedback. The usual method (e.g. [10, 11, 12, 13, 14, 15]) is to pass part of the

laser output through a frequency discriminator, consisting of an optical filter with a steep

translnissivity slope in the nominal frequency region, followed by a photodetector. The

output of the photodetector is filtered and then used to provide electronic feedback to

the laser driving circuits. A diagram of this system, as well as a traditional model of the

linearized frequency loop, appear in fig. 2.

For the sake of mathematical convenience we assume that the open loop frequency

noise spectral density is S,,(f) = //2ir (i.e. the usual white noise model), and that the

loop filter is a simple integrator with gain b and delay d so that H(f) = bexp(-j27rfd)/(j2-rf).

The closed loop system is stable if and only if bd < ir/2. The closed loop output has a

spectral density given by

1 2 (27rf)2

S'(f)| 1 + H(f) = 2ir (27rf)2
- 47rfbsin(2'rfd) + b2

If bd << 7r/2 the delay d can be neglected and we have a first order loop with a 3 dB

cutoff frequency b/27r < .25/d. We assume this situation in the rest of the paper. It is

about the simplest example of a system that tracks low frequencies very well, but cannot

follow high frequencies. Typically this is due to limits on the electronics, or on the laser

frequency response, or on delays in the feedback loop. In practice, these factors will

determine the cutoff frequency.

From the definition and formulas in section 2 the normalized frequency noise w'(t)
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has a spectral density

,(f)= (2rf)2
S(f) - (2rf)2 + (bT) 2

We will find it convenient to define the parameter r = bT. The dimensionless quantity

r/27r expresses the 3 dB cutoff of the frequency noise in terms of the baud rate.

By inverting S,,(f) one finds the correlation function of w' to be

IKi,() = S(r) - .5re-I1I.

From (2) the correlation function of the normalized phase noise process +b(t) is,

KI(t, 3) = 2 (I + e-rit$l - -e-t ) e-r)

From (8) the variance of i,(t + r) - 4(r) is V(r) = (1 - e-rIT)/r. The envelope of the

correlation function of the unmodulated signal is given by (11):

_x(l( -er-,I''/T) irp(1 - e - bIl l )
I,(r) = exp(f ) = exp( )(

and its Fourier transform is

S$(f) = eex(- b (f+ exp- b )-exp( b)) exp(-j2rf)dr

= exp(- ,) ((f) + J (exp( f )- 1)exp(-j27rfr)dr

(1 b ) 6(f) b2+(27rf)2 ), b>>3 (24)

As we have seen, in absence of feedback this spectrum is a Lorentzian of width 13. As b

increases, a discrete d.c. line of power exp(-7r/3/b) appears, with the rest of the power

distributed in a continuous spectrum of increasing width. When b is much larger than 3,

the continuous part approaches a Lorentzian of width b/r'. The d.c. line remains when

the loop delay is significant, but the continuous part has a more complicated structure.
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4.1 Lower Bound

To use Jensen's inequality we use the variance v(r) in (12) to find the mean of X:

X= J J exp (- (1 -e rI-)) dtds. (25)

This is not available in closed form but can be evaluated numerically. Finally using

P, > .5e - '5 ¢C we get a lowerbound for the received probability of error as a function of

¢ for different values of r and y. The resulting bounds for y = 2 and selected values of

r appear in fig. 3. Note that for the sake of clarity not all the figures of the paper show

the same values of r, but that the line types for the values of r are the same in all the

figures.

4.2 Upper Bound

To obtain the upperbound we must solve the key equation (18). KI, was obtained before,

and according to the remark in section 3.3, only the exp(-rIt - sI)/2r term is significant.

Introducing it in (18) and differentiating twice with respect to t leads to a simple equation

in terms of +(t) and A:

d 2 (t) = (r2 _ b +(t) _ Aj e-rul1a-(s)dsdu.

If r = 0 the right-most term disappears.

The general solution is +$(t) = A + B sin(at) + C cos(at), with a = V1/ -r 2 . It

satisfies the integral equation only for a countable set of values ai, i = 1,2,3..., with

corresponding eigenvalues

ai + r2

The algebra to find these values is greatly simplified by noting that +(t) must have either

odd or even symmetry about the point t = .5 5. For the odd symmetry case a must satisfy

5 Working on the interval [-.5, .5] rather than [0, 1] also helps.
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a cot(a/2) = -r. For small 7', the solutions have the form ai = i7r + 2r/i7r, i = 1, 3,5,...

and they approach (i + 1)7r as r grows.

In the case of even symmetry, the equation is tan(a/2) = r2 a/(2r2 + a 2(2 + r)). For

small r, the solutions are ai = i7r + r 2 /i7r, i = 2,4,6,... As r approaches infinity, the

equation becomes tan(c/2) = ac/2 so that act remains below (i + 1)7r. Thus for both the

odd and even cases r does not affect ai by more than 7r.

If r = 0 the previous theory leads to Foschini's cosine expansion with eigenvalues

Ai = 1/(7ri) 2. For small r > 0, the eigenvalues are Ai - 1/((i7r)2 + 4r), i = 1, 3, ... and

Ai 1/((i7r)2 + 3r 2 ), i = 2,4, .... Thus the odd eigenvalues are more affected by r. We

show in fig. 4 the first two eigenvalues as functions of r.

To give an intuitive feel for the effect of frequency feedback on It, we show in fig. 5

a plot of the density function of I for different values of r. Note that the slope of the

tail in figure 5 is about 1/(2A1 ln(10)). The first 240 eigenvalues were used in all our

calculations.

The upperbound on P, obtained from (21) appears in fig. 6, 7 and 8 for 7 = .2, 1

and 2 respectively.

4.3 Exponential Approximation

To gain confidence in the approximation XE we compare in fig. 9 the means X, XrY, and

XE obtained from formulas (25), (19)6 and (22).

The approximate values of P, obtained from (23) appear in fig. 10 and 11 for y = 1

and 2.

5 Results and Conclusions

Comparing figures 3, 8 and 11, or examining the summary in fig. 12 shows that there

is a big gap between the bounds for large y and small values of r. The exponential

6In this case XL = 1 - ((l -e-)/r - 1/r2 + 1/2r).
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approximation falls neatly in the middle. We do not know where the exact expression

lies. To find out one might use a numerical technique as in [8], although it is likely to be

cumbersome for general phase noises.

Yet, one would normally never operate in a region far from the "no phase noise"

curve, as there are receiver structures [18], [4], [19] which permit operation with less than

about ldB penalty for Pe = 10-9 and -y = 2. For values of r large enough for the penalty

to be small, all the bounds and approximations are in excellent agreement. One sees

from figures 6, 7 and 8 that such operation occurs for (a = .2, r = 0), (-y = 1, r = 5)

and (3y = 2, r = 10). This can be explained with the help of fig. 4 showing the largest

eigenvalues. In these three cases the product of -y and AX is about .02, and it is this

product that determines the tail of the distribution of XL.

We can thus conclude that having the 3 dB frequency cutoff of the frequency noise

spectral density about equal to the bit rate (r = 27r) allows the simple receiver considered

here to tolerate -y - 1. This represents a five fold increase in -y over the case without

frequency stabilization. Extending the cutoff to twice the bit rate allows a ten fold

increase. For even larger r one should take into account the higher order eigenvalues as

they become significant compared to Al, and eventually pay more attention to the model

of the frequency noise at high frequencies. It is important to note that the improvement

due to frequency feedback is much less than might be expected on the basis of the spectral

density derived in (24). Commnon definitions of linewidth may not be very significant for

frequency stabilization systems in communication applications.
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