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ABSTRACT
An Onsager Machlup functional limit is derived for a class of SPDE's whose principal part is not
trace class. The proof uses FKG type inequalities.

1 Introduction

Let u denote the solution to the SPDE (in a bounded domain D C IRd, with zero Dirichlet boundary
conditions)

Pu + F(u) = n, (1.1)

where P is an elliptic operator of order 2k, F is a "nice" operator (for example, a smooth point
function of u) and n is a white noise process. An exact definition of what is meant by a solution of
(1.1) and the various objects and function spaces involved is given in Section 2.

We are interested in computing limits of the form

Prob (II u - 4$ lIB< E) alim u IB< c) exp JB(q) (1.2)
6-+0 Prob (11 u lIB< E)

where II lJB denotes an appropriate norm and 0 is a deterministic function satisfying some regu-
larity conditions. The functional JB(/) is called the Onsager-Machlup functional associated with
the solution of (1.1).

It is well known that under mild restrictions (which are imposed below), P : Wo2k'2(D)
L 2 (D) possesses a bounded inverse Go. By Maurin's theorem ([1, Theorem 6.35]) the imbedding
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of W 2k,2 (D) into L 2(D) is Hilbert-Schmidt, so that Go is actually a Hilbert-Schmidt operator in
L 2 (D). By pushing Maurin's result the full extent of its validity the same may (and will in the
Appendix) be concluded for Go : L 2 (D) -- Wm' 2(D) as long as m < 2k - d/2.

In [3], it was shown that if 2k > d (which now implies that the operator P-1 L 2 (D) -* L 2(D)
is trace class ), if F is a pointwise smooth function and if 11 I[B is taken as the Sobolev norm in
W2k- d+6, some appropriate 6, then the limit in the R.H.S. of (1.2) exists and is given by

JB() =2 /D(P, + F(qPl))2dx - logdet ((DlF- DoF)(P + DoF)-) . (1.3)

On the other hand, in [2] the linear case F _ 0 was treated. It was shown there that (1.3) holds
true even in the domain d > 2k > d/2 (in which case p-1 is only Hilbert-Schmidt but not trace
class) and further (1.3) simplifies to

JB() =-2 J(Po, + F(ql))2dx. (1.4)

In this paper, we attempt to bridge this gap. Namely, for the case where d > 2k > d/2,
and F is nonlinear, we compute the limit in (1.2). Surprisingly, it turns out (unlike in all other
known computations) that the limit (1.2) may become 0 or oo even for nice smooth O's and smooth
point-functions F. Due to this phenomenon, we turn our attention, instead of (1.2), to the limit

lim Prob (I]u - 01112 < e) Ax (15)
&-+o Prob (Ilu - 02112 < ) expJ(q, 2 ),

where 11 112 denotes throughout the L 2 (D) norm. The main result of this paper is roughly as
follows:

Let 2k > d/2. If the operator K1,42 - [D4,F - D0 2F](P + D02 F)- 1 is trace class and satisfies
some regularity conditions, then the limit in (1.5) exists and is given by (4.36) (the exact statement
is given in Theorem 4.1 below).

A few differences between the results of this paper and the results of [3] seem worth emphasizing.
First, note that even in the case of trace class operators p-l, the results presented here are under
an L2 norm (and in general, by a similar technique, under appropriate L2 type Sobolev norms)
which differs from the norm used in [3]. Next, we allow here for non trace class operators. Finally,
the basic estimates in this paper, which are motivated by [9], make use of FKG type inequalities
and thus are different in nature from the estimates in [3]. We believe that these estimates may be
of independent interest.

The organization of the paper is as follows: In Section 2, we define, following [3], our basic
SPDE and state the appropriate preliminary results (existence, uniqueness, regularity and some
Radon-Nykodim derivative computations), and prove a conditional expectation lemma which serves
us well in the sequel. In Section 3, we compute the Onsager Machlup functional for a linearized
version of the equation and prove the non existence of non trivial limits when the operators involved
are not trace class. Finally, in Section 4, we prove the positive result (Theorem 4.1) referred to
above, by showing that the linearized equation has the same limiting behaviour as the original
equation.

Acknowledgements: We thank Moshe Zakai for a suggestion related to the proof of Theorem
2.2.
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2 Preliminaries

We closely follow the notations of [2,3]. Let D denote a bounded domain in IRd possessing a smooth
boundary, with 0 E D. Wm' 2 (D) and WOm2 (D) denote the usual Sobolev spaces equipped with
the norm 11 .lm,2. The inner product in L 2(D) is denoted (., .). For any real z, let LzJ denote the
largest integer strictly smaller than z. Let P be a strongly elliptic differential operator of order 2k
with smooth coefficients and F: Wl 2 k-d/2 J' 2 (D) -- L 2(D) a (possibly) nonlinear transformation.
Throughout this paper the following two assumptions will always be implicitly made.

(Al) 2k > d/2.

(A2) F possesses a Frechet derivative D,F, bounded and continuous in u C WL2 k-d/2J'2(D) and
moreover,

IIDFll sup IIDuFII < inf IIP1I12
uEWL2k-d/2J,2 (D) OEf EW 2 k,2(D) 1101 2k,2'

Next, let Wx,,...,xd be a standard Brownian sheet in D with respect to the probability space
(Q, ,F, Pw). Without loss of generality we shall assume that

Q = Co(D) {f E C(D) f(x) = 0 if i= xi = 0 }. It is known that the linear functional (white
noise) n : fD q(x)dWx defines almost surely an element in W-r' 2(D) for any r > d/2 (cf. [10, p.
335]), thus in particular in W-2 k,2(D). For f E Co(D) denote by Of the distributional derivative

aX .. fXd, and let H(D) = {w E Co(D) : Ow E L 2 (D)}. In what follows O's inverse will only be
applied to elements of L 2(D) so that we have the representation 0 -1 f(x) = fDnRx f(~)d<, where
Rx is the "rectangle" determined by the 2d vertices (aji)4 1 , ai = 0 or xi.

Given a Banach space X, we say that a mapping g: Co(D) -- X possesses an H(D) Fr6chet
derivative at w C Co(D) if there exists a bounded linear operator Dwg : H(D) -~ X such that as
I[hIIH(D) - 0, [[g(w + h) - g(w) - Dwgh|lx = o(Ijhl[H(D))-

Fix v C W- 2 k'2 (D). We shall say that u E WL2k-d/ 2J' 2 (D) is a solution to the equation

Pu + F(u) = v (2.6)

with zero Dirichlet boundary conditions if VS E Wo2k'2(D),

ID [uP*q + ± F(u)q] (x)dx = v(q$) (2.7)

(with P* denoting P's adjoint).

The following existence and uniqueness result was proved in [3, Theorem 2.1].

Theorem 2.1 The equation (2.6) possesses a unique solution in WoL2k-d/2]'2(D). Furthermore,
u C C+L2k- d/ 2J (D) for some a > 0 which depends on k and d but not on v.

We shall denote this solution by GF(v). In particular the stochastic PDE

Pu + F(u) = n (2.8)
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should be viewed in this sense w by w, and u(w) -GF(n) is its unique solution. Note that by this
construction there is also uniqueness in law for (2.8).

We now turn to a representation of the ratio Pr°b(I[-{f 12<•e. Actually, for i = 1, 2, (u - Xi)Prob (Ilu-0b2 2<e)'

itself satisfies (2.8) if F is replaced by a suitable Fi (which still satisfies (A2)). For this reason -
and also because it will be later convenient to compare (2.8) to its linearized version - the next
result, which is based on Kusuoka's theorem ([7, Theorem 6.4]) and whose proof we defer to the
Appendix, is stated in terms of F1 and F2 instead of 01 and 02.

Theorem 2.2 For i = 1,2 let Fi : WL2k-d/2J'2(D) - L 2 (D) satisfy (A2) and ui = GFi(n) (i.e the
unique solution to the SPDE (2.8) for F = Fi). Then for any Borel set B C W2k'2(D),

Prob(u 1 E B)
Prob (u E (A1 ,2 I U2 E B) (2.9)

Prob (u2 E B)

where

A1,2 (w) = det2 (I + Du2(F 1 - F2)GD,, 2F2 ) (2.10)

exp {D [(F2 - F1)(u 2 )] (x)eWx-2 J [(F 2 - F1)(u2 )] 2 (x)dx}

with det2(I+Q) denoting the Carleman-Fredholm determinant of Q, i.e. if Ai are the eigenvalues of
(Q*Q)2 then det2 (I+ Q) = l c(1 + Ai)e - Ai, (see [4, XI.9.22]), and the differential 6Wx indicating

Skorohod integration ([7,8]) with respect to the Brownian sheet W over D.

For our purposes it suffices to recall that given a map a : Co(D) -+ L 2 (D) which possesses an
H(D)-Frechet derivative Dwa : H(D) -- L 2 (D) at lPw almost every w C Co(D), its Skorohod
integral with respect to the Brownian sheet W is defined (in the sense of L 2(Q) convergence) by

Ja(w)6Wx = Z((a, ei)n(ei)- (Doaei, ei)) (2.11)

where {ei}i=1 is a CONS in L 2 (D), n(ei) is the usual Wiener integral of ei with respect to the
Brownian sheet W, and e^i is ei's identification in H(D), namely ei = 0-lei.

We remark that in the case 2k > d which was treated in [3], the Skorohod integral in (2.10)
could be decomposed into an Ogawa integral and a correction term of the trace form, each existing
separately. Here, since the trace is not finite in general, one has to use the Skorohod integral.

We conclude this section with the following lemma, which will turn out to be crucial in the
evaluation of exponential estimates. Here and throughout, a non trace class operator T: K --4 K
(where K is a separable Hilbert space) will be said to have infinite trace (denoted: tr T = oo) if
Ei(Tei, ei) = oo for any CONS {ei} in K. A similar definition holds for tr T = -oo. Note that if
tr T = oo then ZiEI(Tei, ei) > -c for some positive c and any I C KN.

Lemma 2.3 a) Let T : £2 -- £2 be a deterministic trace class operator, and let Tij denote its
canonical (i,j) element. Let rii be a deterministic sequence, with >i . < oo. Let ai be a

sequence of unit variance, independent Gaussian random variables with 'i E(a2) < oo. Then

E(exp( aiajTij) II. < e) -*O 1, (2.12)

4



and, for any deterministic sequence ci with Pi ci < oo,

E(exp(E(ai + ci)ajTxij)lE 'i < e) >eo 1. (2.13)
2ii

b) Let T: £2 _ £2 be a deterministic, Hilbert-Schmidt operator, and let Ti,j denote its canonical
(i,j) element. Assume that trT = oo. Let rli be a deterministic sequence, with Pi - < 0c.

Let {ai) be a sequence of independent Gaussian random variables as above. Then

lim E(exp(Z aiajTij + (a - 1)Tii)l a i e) = 0. (2.14)
isj i · ?li

Similarly, under the same assumptions but trT = -oo,

lim E(exp(E aiajTij + (ai - 1)-Ti)T) a2 < E) = e. (2.15)

Remark: All infinite sums involving ai above are to be interpreted in the sense of L2 convergence,
which is ensured since T is Hilbert-Schmidt.

Proof of Lemma 2.3: a) Note first that, since under the conditioning, N= aajTij - O 0
uniformly in w for each fixed deterministic N, the proof of part a) follows once the following
estimates are proved for each deterministic (not necessarily positive) constant c:

00 2

E(exp c Tijai a2 < e) - 1 (2.16)
71,2 .---. 0

for each 1 < j < N, and

E(exp c E aiajTijl i. < e) < expC(c,N) (2.17)
i,j=N i - i

where C(c, N) N o O. Note that since Ei Ti < oo, (2.16) is proved like Theorem 1 in [9]. To

see (2.17), let Tij denote the operator with Tij = Tij if i $ j and Tii = 7ITij. Since Tij is trace class,
so is Tij, and it is clearly enough to prove (2.17) with T replacing T. Denote by ~Fal the sigma
algebra generated by the sequence {laiI, i = 1,...), and define

oo

A = E(exp Icl E aiajTij I Fal). (2.18)
ij=N

We claim that A is a nondecreasing function of laii for each i. Indeed, by symmetry, it is enough
to check that A increases in laNl, and that follows from the equality

00oo

A = E(B exp(IcIa TNN)cosh(IcIaN E ajTNj)l FN+,) (2.19)
j=N+1
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where B depends only on ai, i > N + 1 and FiN+l denotes the sigma field generated by {lail, i >

N + 1}. One concludes that A is a nondecreasing function of ]aNt, and by symmetry this implies
that A is nondecreasing as a function of each of the random variables Jlai. On the other hand,
the function 1 ,2 is also clearly nondecreasing in each of the Jail. Since Jail are independent

random variables, they are associated [5], and hence, by the FKG inequality,

E(A1 a )> E(A)E(1 a2 ) (2.20)

which implies that

E(AI i a < e) < E(A) = E(exp Icl aiajj) < exp C(c, N) (2.21)
7i ij=N

where C(c, N) is a constant which depends on the trace of cTN, where TN denotes the truncation
of the operator T such that TNv(i,j) = 0 if either i or j are smaller than N, and C(c, N) -- 0 as
N -- oo. The proof of (2.12) follows by noting that

0 - 2 2

E(expc Ej aiajTijl-E e) = E(AI - < -e). (2.22)
i,j=N i 1772 = 77I,

(2.13) follows from (2.12) by combining the proof in [9] with the fact (see [6], pg. 536-537)
that, if for all constants c, limsupE(exp(cAk)Ea?/7 < e) < 1 k 1, 2, then limE(exp(A 1 +

E--*O C-+0

A2)1 Ea?/2 < e)= 1.

b) We prove (2.14), the proof of (2.15), being similar, is ommitted. Towards this end, note first
that, for each N < oo, if j,i,j<N aiajTij + Zi=l(a? - 1)T/ii H o -E- N= Tii, uniformly in ai in
the conditioning set. Further note that, by Theorem 1 in [9], for each constant 0 < 1 < N, and any
constant k,

lim E(exp kcj E aiTj/I .a < e) 1
i=N i

because ZE?:N T 2J < oo. It therefore suffices to show that there exists a constant k, independent of
N and e, such that

oo a2

E(exp aiajTj -+ E (a2- 1)Tii E-i < e)< k
i:Aj, i,j>N i=N i 'h

By taking N large enough, one may assume that all eigenvalues of (T*T)1/ 2 are bounded by 1/2.
Repeating now the argument used in the proof of part a) of this lemma, one concludes that

E(exp aiajT0j + 0(?-1. a_ < c) <
iAj, i,j>N i=N i

oo 2

E(exp ii aa (a T -) <
ifj, i,j>N i=N i r]2

eCE(exp 5 aiajTij + (alTiil - Tii)), (2.23)
iij, i,j>N i=N
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where the last inequality follows from the assumption on the negative part of Tii. Let now T denote
the operator with Tij = Tij if i A j and Tii = ITiij. Clearly, T is also a Hilbert-Schmidt operator,
and

oo 2 00oo

E(exp aiajTij + (a - 1)Tii Z a < e) < eCE(exp > aiajTij + (a- i)
ifj, i,j>N i=N i ij, i,>N i=N

(2.24)
Let Ai denote the eigenvalues of (T* + T)/2, and note that AE ? A2 < oo, and that, by the remark
above, Ai < 1/2. Therefore, using (2.24), it follows that for some constants kl, k 2, k3,

oo 2 00

E(exp aajTij + E (a? - 1)TiI >1 < E) < kl exp(k2 (Eai)2 ) l(1 - 2Ai)-l/ 2e-A
ioj,i,j>N i=N i-2 i i=1

< k3 , (2.25)

which completes the proof of the lemma. [1

3 Probability ratios for linearized equations

Let ui, i = 1, 2 denote the solutions to the equations

Pui + F(Qi) + Do+ F(ui - 0i) = n (3.26)

where ji E W 4 k ,2 . In this section, we derive a modified Onsager Machlup functional for solutions
of (3.26), namely

Theorem 3.1 a) Assume that (Dp 1F- Dk 2F)P-1 : L 2 (D) -- L 2 (D) is a trace class operator.
Then,

J(4 1,4 2 ) - loglim Prob (I lu l -1 112 < e)
,ob Prob(I11u 2 - q2112 < E)

-- 12 /D((P1 + F( 1)) 2
-(P42 + F(0 2 )) 2 )dx

+ log det[I + (DO4 F - D0 F)(P + Dm2 F)- 1 ] (3.27)

b) Assume that tr[(DO1F - D02 F)P - 1] = oo (respectively, = -oo). Then J(q 1, 2) = oo (re-
spectively, J(0Q1, 02) = -00).

Proof: The theorem follows from theorem 3.2 below by the substitution Ai = DOiF, Ti =
F(Oi) + Pbi. []

Theorem 3.2 For i = 1, 2, let Ai: WL2k-d/ 2J' 2 (D) - L 2 (D) be a bounded linear operator, let

i G WO2k2 (D) such that the operator F(u) = Aiu + Ti satisfies (A2). Let v 1, i = 1, 2, denote the
unique solutions to

Pvi + Aivi + Ti = n. (3.28)

Let Q = (A 1 - A 2)(P + A 2 )- 1
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a) If Q is trace class then

lim Prob(vii2 < = det(I + Q)exp 1 2 22 (3.29) 
e Prob (Qv2112 < e) 2( 2 112 

b) If tr Q = oo (respectively, -oo) in the sense that Z=l(Qei, ei) = oo (respectively, --c) for
any CONS {ei} E L 2 (D), then the limit above is oo (respectively, 0).

Remark: Note that Q is trace class if and only if the operator Q = (A 1 - A 2 )P- 1 is trace class.

Proof: By Theorem 2.2,

Prob(IIvl212 < e) = E (det2 (I + Q)exp( D(A 2 -,A1)v 2 W (330)

+ (T2 - q1 )6WS - |II(A 2 - A1)v 2 + t2 - 2 1112 ))

where here and henceforth, E, denotes the expectation E(.lI Iv 2 112 < e). Since the integrand in

fD(XF2 - XT1)6WSW is deterministic, the latter may be integrated by parts, resulting in

JD ( 2 - F1 )6W = J (F 1 - FI2 )tF 2 dx + f ((Fi2 - IF1)A 2 v2 + v2P*(l2 - llF)) dx.

Therefore, the expression in the exponent of (3.30) differs from JD(A2 - A1)v26Wx + (lIP2l112 -
I IT,112) by a term which converges to zero with Itv2 112, uniformly in w. It remains therefore only to
show that

lim E, exp J(A 2 - Al)v 26W = exp(-trQ) E [0, oo].

Let (ei, Ai) denote the eigenfunctions and eigenvalues associated with the Karhunen-Loeve expan-
sion of v2, namely v2 = TEi 'iei/Ai where (i are independent Gaussian random variables with means
bi = -(Ai(P + A 2 )-1F 2, ei) and unit variance, and Ei 1/AI < 00, which implies that Ei b2 < c0.

Note that, by (2.11),

JD(A2 - Al)v 2 5W = (j - bj)i((A2 - Al)ei/Ai, (P + A 2)ej/Aj)

-_ (2 _- 1 - tibi)((A2 - Ai)ei/Ai, (P + A 2 )ei/Ai). (3.31)
i

To see part a), it therefore suffices to prove that

E,(exp E (i (j - b3)Tij - s-+o 1 (3.32)
ij

where Tij = ((A 2 -A1)ei/Ai, (P +A 2 )ej/Aj)). Since Ei E(/i)2 < co, (3.32) follows from (2.13) once
we prove that Tij = (Tei, ej) for some trace class operator T. Towards this end, define the operators

At: W 2k' 2 (D) - L 2 (D) and U: L 2 (D) -- L 2 (D) by AOd = E Ai)q(q, ei)ei and U = (P+A 2 )A- 1 . It is
easy to verify that Tij = (U*QUei, ej), and moreover T = U*QU is trace class since U is bounded
and Q is trace class by assumption. The proof of part a) is completed.



To see part b) of the theorem, note that by the same proof as above, the claim follows once we
show that if tr (T) = oo then

lim E exp < =O.
e--+O expi(i i 

This however follows from the assumptions of the theorem and part b) of Lemma 2.3 once one
notes that T is Hilbert-Schmidt and Ei b2 < o. El

4 Onsager-Machlup functional for comparable functions

We prove here the following theorem:

Theorem 4.1 Let P and F satisfy conditions (Al) and (A2). Let 0 1,q 2 E CO (D) and assume
that the operator

Kq.,2= [D,, F - D 2F]P- 1 : L 2 (D) -- L 2 (D) (4.33)

is trace class. Further, assume that

lim 11 DUFP- 1 - DkiFP- 1 IIHS= 0 (4.34)

where 11 IIHs denotes the Hilbert-Schmidt norm of an operator. Finally, assume that there exists a
deterministic trace class operator T : L 2 (D) -- L 2 (D) such that for any u E L 2 such that 1I u-qi 112
is small enough,

I((DuFP- 1 - Di FP-1')V, ) I < (T1p, V)) (4.35)

for any 0b E L2 (D).

Then

J(01 q 2 ) = 2 JD((PO2 + F( 2)) 2 - (P1 + F(01))2) dx

+log det[I + (Dk, F - D, 2 F)(P + D,2 F)-1 ] (4.36)

where det(A) denotes the Fredholm determinant of A.

Remark Note that (4.35) implies that, for any sequence ai, i = 1,...,

| E (akaj(DuFP- 1 - D iFP-1)ek,ej)l < E akaj(Tek, ej) (4.37)
j,k j,k

in the sense that the inequality holds whenever the RHS is smaller than oo.

Proof of Theorem 4.1

In view of Theorem 3.1, Theorem 2.2 and an analysis similar to the one done in Section 3, it suffices
to check that, for i = 1,2,

lim lim E(Al I[u4i - OiI12 < E) 1 (4.38)
e-o Prob (IIU4i - OiII2 < e) e-,o



where

A = exp ( (F(uI) - F(qii) - DF(u - ))W. - IF(u,) - F(O)- D ( - i)1d

det2 (I + D,,i F- DDF)(P + D+ F)- 1 (4.39)

is the Radon-Nykodim derivative between the measures defined by u - Oi and u¢i - hi. Note
however that, denoting by qb either q1 or 02,

/ (F(u -)- F()- DF(uk- 5 )) 2 dx 'fluo-02 -o 0

uniformly. Moreover, by our assumptions, the Hilbert-Schmidt norm of (DuOF-DqkF)(P+ DF) - 1

converges to zero uniformly with Ilu 4 - q112, and hence

det2 (1 + D,,F - DOF)(P + DkF)- 1 -ll-IU_-ll12-o 0 1

Note next that by Taylor's generalized theorem (see [11], pg. 148) F(uqp)-F(Oq)- DOF(uo -q$) =

fol(Dtu,,+(l-t)O - DF)(uk - o)dt. Combining the above, it follows that it suffices to prove that

E(exp J j(Dtu,(m,+ (l1- )F - DF)(uo - O)dt6WzI Ilu~ - 112 < e) -H-o 1

where the expectation is with respect to the Gaussian measure associated with u4 . By using the
same Karhunen-Loeve expansion as in Section 3, it follows that it is enough to prove that

E (exp j(1(/j -Tt -- T)(ai +bi)(aj + bj)-Z(Tli -T'))I (a bi)2 < e o1 (4.40)
\t i i

where Titj denotes the i,j element of Dtu,,+(l_t)4 F(P + DOF)- l . Since Ei Ii - TjOi -- e-,o 0
uniformly, it is enough to show that for any constant c,

E(exp CT 1 ( (ai + b )2

E(exp c j (^Tfj - ,T)(ai + bi)(aj + bj)dt i + < E) -)y-o 1

By our assumption,

E(expc/ (Tij - i)(ai + bi)(aj i+ b)dt ( i)2 < ) <

iii 

E(exp Icl I Z7 j (ai + bi)(aj + bj)I Z (a i) < E). (4.41)

The proof is concluded by an application of part a) of Lemma 2.3. 0

Examples
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a) The following particular case is of interest: let p- 1 be a positive, self adjoint Hilbert-Schmidt
operator, let Al denote its maximal eigenvalue. Let F(u) = f(P-lu), where f : IR --
IR is a C2k+l function with Jf'J < 1/A1. We check that F(.) satisfies the assumptions of
Theorem 4.1. Indeed, note that DkF = f'(P-10)P-1. It follows that KI1,d 2 = (f'(P-1 1l)-

f'(P-1052))P-2 is trace class being the product of a bounded (in L 2 (D)) operator and a trace
class operator there. By exactly the same argument, (4.34) holds true. Finally, to see (4.37)
for an appropriate operator T, note that

(P(f'(P-lu)- f'(P-l))P-10, ) < [IP112k0oll(f'(P - 1 u)- f'(P-10))112k2k lP -1 10-2kl'll12

_< c(lU - 0112)11ill2 (4.42)

where 11- Ila -b denotes the operator norm from Wa' 2(D) to Wb'2 (D) and c(llu - l112) denotes
a constant which depends only on llu - 0112. In particular, for smooth q such that tb = Po E
L 2(D), it follows that

((f'(P-lU)-f'(P-l0))P-2', b) < c(11lu-12)(P-'1, p-l') = C(jlu-q112)(b, P-2b). (4.43)

It follows that by taking T = c(llu- 11l2)P - 2 , (4.37) holds.

b) To see a truly nonlinear situation in which J(01, 02) is degenerate, let p-1 be Hilbert-Schmidt
but not trace class on L 2(D), and let F(.) be a smooth function such that F(u) = clul for
lul > 1/2, where Icl < 1/A1. Let 01 = 1, 02 = -1. It is easy to check that, due to the local
nature of the conditions in Theorem 4.1, (4.33,4.34,4.37) are satisfied, and hence by following
the argument in the proof of the theorem, it follows that (4.38) holds true. On the other
hand, part b) of Theorem 3.1 applies in this situation, and combining the two one concludes
that the Onsager-Machlup functional is trivial.

5 Appendix

Lemma 5.1 In addition to (A2) assume that F is linear. Then GF : L 2 (D) > WL2 k-d/2J12(D)
is Hilbert-Schmidt.

Proof: Assumption (A2) implies that FGo : L 2 (D) --* L 2(D) is bounded with IIFGoii < 1,
from which it may be concluded that I + FGo has a bounded inverse in L 2(D). Since GF -

Go(I + FGo)- 1, we may assume with no loss of generality that F - 0, in which case the result has
already been shown to hold as a result of Maurin's theorem (cf. the introduction). [1

Proof of Theorem 2.2: Recall that Pw is the probability measure associated with the Brownian
sheet. Denote Eo = {w E Co(D) : Ow E W-2 k' 2 (D)} and recall that 1Pw(Eo) = 1. Next, define
T, S: Co(D) -- Co(D) by

Tw = w + -'(Fi -F 2)(GF209) = '-1(P + Fl)(GF2 0w) w E Eo
T { W w E Co(D)\Eo

S -- w+ 9-1(F 2 - F1)(GF1 O0w ) = 0-1(P + F2 )(GF 1 ,9w) w E Eo



It follows by inspection (use the second definition of S and T) that TSw = STw = w, Vw E
Co(D), i.e. T is a bijection. We now define a new probability measure on (Q~, F), P = Pw o T.
An expression for the Radon Nikodym derivative d-P will be provided by Kusuoka's theorem ([7,
Theorem 6.4]) as long as the following conditions hold:

(a) To _ T- I : Co(D) -- H(D) and possesses a Hilbert-Schmidt H(D)-Frechet derivative
DTo : H(D) -- H(D) at every w C Co(D)

(b) h E H(D) --- D+hTo is continuous in the Hilbert-Schmidt norm Vw E Co(D).

(c) IH(D) + DTo : H(D) -- H(D) is invertible Vw E Co(D).

In verifying (a)-(c) note first that both Eo and Co(D)\Eo are closed under perturbations by
elements of H(D) so that each row in (5.44) and (5.45) may be considered separately. Moreover
when w E Co(D)\Eo everything becomes trivial so it will be assumed that w G E0.

Concerning (a), the range of To = 8-1(Fl - F2)GF20 is clearly in H(D) since the range of
(F 1 - F2 ) is in L 2(D). We obtain the H(D)-Frechet derivative by the standard chain and inverse
differentiation rules:

Do,Toh = 0-1 D(GFow)(F1 - F2 )GD(Ga,,)F 2 0h h E H(D). (5.46)

This operator may be described by the graph

B, G (2) ( 2)

H(D) > L2(D) W2k-d/,2(D) A L2(D) H(D)

where

AW' = D(GF2aw)Fi i = 1,2.

Clearly 0 and 0-1 are isometries, so we may actually restrict our attention to the operator ABw.
Now, Aw is bounded by assumption and B, is Hilbert-Schmidt by lemma 5.1, from which it may
be concluded that the composition is Hilbert-Schmidt. Moreover

IIDwTollHs < lAwl11 IIBwlIHs. (5.47)

As for (b),

IIAw+hBw+h - AWBWIIHS < IIAw+hll IIBw+h - BwIIHS + IIAw+h - AW11 IIBwflHs. (5.48)

When h -- O, GF2 0(W + h) - (GF20w) in WL2 k-d/ 2J,2(D) so that

A('Ah j -- -)l 0 (5.49)

by the continuity property of the Fr6chet derivative assumed in (A2); this takes care of the second
term in the right hand side of (5.48), while the first term can be seen to converge to 0 as h -O 0
by writing B+h - = B+h(A) - A(2 )

- A+h)B,, by noting that IIAw+hll and IIBW+hll are uniformly
bounded in h (which follows from assumption (A2)) and by applying (5.49) once again.
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Finally, property (c) follows by applying the chain rule to the identity STw = w. Namely one
has DTS DwT = IHD (where D always stands for the H(D)-Fr6chet derivative operator), which
shows that DWT = IH(D) + DWTo is invertible. Here we have made use of the fact S is H(D)-Fr6chet
differentiable just as T was previously shown to be, since both transformations are of the same form
differing only in that the roles of F1 and F2 are interchanged.

We may now conclude from [7, Theorem 6.4] that << Pw and ' = A1,2 (defined in (2.10)).
By definition,

Wl(w) W(Tw) = (W + a-1 (Fl - F 2 )(u 2 )) (W)

is a Brownian sheet with respect to P. Since Vq E W2k'2(D)

ID [U2P*+ ±F 2(u2)] dx = D qdW. = J [dVx - (F - F2)(u 2 )dx]

we obtain Vq E Wok 2(D)

D [u2 P* q + F1 (u 2 )] dx = JD WdIWT.

By the uniqueness in law, u2 solves (2.8) with respect to P for F = F1. Thus, for any Borel set
2k,2(D

P(ul E B) _ P(u2 E B) _ A1,2(w)1{u 2(W)EB)(w)dP(w)

P(u 2 C B) P(u2 e B) P(u2 E B)
E(A1, 2 1 U2 EB).

References

[1] Adams, R., Sobolev Spaces, Academic Press (1975).

[2] Dembo, A. and Zeitouni, O., "Maximum a-posteriori estimation of elliptic Gaussian fields ob-
served via a nonlinear channel", J. Multivariate Analysis, 35 (1990), pp. 411-425.

[3] Dembo, A. and Zeitouni, O., "Onsager Machlup functionals and maximum a posteriori esti-
mation for a class of non Gaussian random fields", J. Multivariate Analysis, 36 (1991), pp.
243-262.

[4] Dunford, E. and Shwartz, J.T., Linear Operators, Interscience publishers, 1957.

[5] Esary, J.D., Proschan, F. and Walkup, D.W., " Association of random variables, with applica-
tions", Ann. Math. Stat. 38 (1967), pp. 1466-1474.

[6] Ikeda, N. and Watanabe, S., Stochastic Diferential Equations and Diffusion Processes, 2nd
edition, North-Holland, 1989.

[7] Kusuoka, S., " The nonlinear transformation of Gaussian measure on Banach space and its
absolute continuity", J. Fac. Sci. Tokyo Univ., Sec I.A. (1985), pp. 567-597.

13



[8] Nualart, D. and Zakai, M., "Generalized stochastic integrals and the Malliavin calculus", Prob.
Theory and Related Fields, 73 (1986), pp. 255-280.

[9] Shepp, L.A. and Zeitouni, O., "A note on conditional exponential moments and the Onsager
Machlup functional", to appear, Annals of Probability.

[10] Walsh, J.B., "An introduction to stochastic partial differential equations", in Lecture Notes in
Mathematics # 1180, (1986), pp. 266-437. Springer-Verlag, Berlin- New-York.

[11] Zeidler, E., Nonlinear Functional Analysis and its Applications, Vol. I, Springer, 1986.

14


