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Abstract

In this thesis we study different combinatorial optimization problems. These problems arise
in many practical settings where there is a need for finding good solutions fast. The first
class of problems we study are vehicle routing problems, and the second type of problems
are sequencing problems. We study approximation algorithms and local search heuristics for
these problems.

First, we analyze the Vehicle Routing Problem (VRP) with and without split deliveries.
In this problem, we have to route vehicles from the depot to deliver the demand to the
customers while minimizing the total traveling cost. We present a lower bound for this
problem, improving a previous bound of Haimovich and Rinnooy Kan. This bound is then
utilized to improve the worst-case approximation algorithm of the Iterated Tour Partitioning
(ITP) heuristic when the capacity of the vehicles is constant.

Second, we analyze a particular case of the VRP, when the customers are uniformly
distributed i.i.d. points on the unit square of the plane, and have unit demand. We prove that
there exists a constant c > 0 such that the ITP heuristic is a 2 - c approximation algorithm
with probability arbitrarily close to one as the number of customers goes to infinity. This
result improves the approximation factor of the ITP heuristic under the worst-case analysis,
which is 2. We also generalize this result and previous ones to the multi-depot case.

Third, we study a language to generate Very Large Scale Neighborhoods for sequenc-
ing problems. Local search heuristics are among the most popular approaches to solve
hard optimization problems. Among them, Very Large Scale Neighborhood Search tech-
niques present a good balance between the quality of local optima and the time to search
a neighborhood. We develop a language to generate exponentially large neighborhoods for
sequencing problems using grammars. We develop efficient generic dynamic programming
solvers that determine the optimal neighbor in a neighborhood generated by a grammar for
a list of sequencing problems, including the Traveling Salesman Problem and the Linear Or-
dering Problem. This framework unifies a variety of previous results on exponentially large
neighborhoods for the Traveling Salesman Problem.
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Chapter 1

Introduction

In this thesis we study approximation algorithms and heuristics for different combinatorial

optimization problems. The first class of problems we study are vehicle routing problems.

For these problems, we present new lower bounds for the cost of the optimal solutions, and

we perform a worst-case and a probabilistic analysis of algorithms.

The second class of problems we study are sequencing problems. We analyze local search

heuristics for these problems. In particular, we develop a modeling language based on gram-

mars to generate Very Large Scale Neighborhood (VLSN) for sequencing problems.

1.1 Worst-Case Analysis of Vehicle Routing Problems

In the Vehicle Routing Problem (VRP), there are n customers with demand to be satisfied

by a fleet of unlimited and identical vehicles, which are located at a depot. The route of

each vehicle starts and ends at the depot, and each vehicle cannot deliver more than its

capacity Q. The cost of a solution is the sum of the travel cost of each vehicle. The problem

considered is to route vehicles to deliver the demand of every customer while minimizing the

overall cost.

A number of variations of the VRP have been studied in the literature. Dror and Trudeau

[25] analyzed the Split Delivery Vehicle Routing Problem (SDVRP), where the demand of

15



a customer can be delivered by more than one vehicle (split delivery). Since a customer i

with demand q can be considered as qi customers with unit demand and zero interdistance,

the SDVRP can be reduced to a unit demand vehicle routing problem, which is also known

as the Capacitated Vehicle Routing Problem with equal demand (ECVRP). However, we

observe that this reduction is pseudopolynomial.

When split demand is not allowed the problem is known as the Capacitated Vehicle

Routing Problem (CVRP). We use the term "Vehicle Routing Problem" when we do not

want to distinguish among these specific problems.

The complexity of solving the VRP depends on the capacity of the vehicles, and on the

distance metric. For example, when the capacity of every vehicle is 2, the VRPs can be

solved in polynomial time by transforming it to a minimum weight matching problem (see

Asano et al. [9]). However, the ECVRP is APX-complete for any Q > 3 (see Asano et al.

[8]), that is, there exists > 0 such that no 1 + 6 approximation algorithm exists unless

P = NP. The VRPs are closely related to the traveling salesman problem (TSP), and

therefore many results for the TSP have been extended or adapted for the VRPs.

If the capacity is fixed, the Euclidean ECVRP admits a PTAS (polynomial time approx-

imation scheme). That is, for every > 0 there exists a polynomial-time algorithm with

approximation guarantee at most 1 + e. Haimovich and Rinnooy Kan [35] presented the first

PTAS for the Euclidean ECVRP. The running time of their PTAS is (doubly) exponential

in Q. In particular, it does not lead to a PTAS for the TSP. Later, Asano et al. [9] presented

a faster PTAS, using the PTAS developed by Arora [7] for the Euclidean TSP.

In this paper, we study the VRPs in the metric case, when the capacity Q is fixed. We

improve previous approximation results for the VRPs in this case. Improving the approxi-

mation ratio for fixed Q has a practical interest since some problems that arise in practice

have small Q (see e.g. Bell et al. [14]).

Haimovich and Rinnooy Kan [35] started the worst-case and the probabilistic analysis

of VRP. They presented a simple and very useful lower bound of the optimal cost of the

VRP. They also presented the Iterated Tour Partitioning (ITP) heuristic for the ECVRP.

16



This heuristics was later improved and generalized to the CVRP by Altinkemer and Gavish

[4, 5]. The primary contributions we present on Chapter 2 are the following. We provide

nonlinear valid lower bounds for the optimal cost of VRP problems. For the VRPs mentioned

before, we modify the two heuristics of Altinkemer and Gavish [4, 4] and we obtain better

approximation algorithms for the SDVRP, the ECVRP and the CVRP, when the capacity Q

is fixed. For the case when Q is not fixed, we also present an implementation of the Iterated

Tour Partitioning (ITP) heuristic by Altinkemer and Gavish [5] for the SDVRP that runs in

polynomial time. The previous implementation runs in pseudopolynomial time.

1.2 Probabilistic Analysis of Unit Demand Euclidean

Vehicle Routing Problems

In Chapter 3, we perform a probabilistic analysis of the Euclidean ECVRP. In this problem,

all customers have unit demand and are modeled as points in the unit square. The customers

are independent identically distributed points. The ITP heuristic, described in Chapter 2,

is analyzed in this setting. We also analyze the multi-depot VRP, where a number of depots

are fixed in advance. Two papers that deal with the multi-depot VRP are the ones by Li and

Simchi-Levi [44], and Stougie [55]. Li and Simchi-Levi [44] performed a worst-case analysis

of the multi-depot vehicle routing problem when the distance satisfy the triangle inequality,

and showed how to reduce it to a single-depot case with triangle inequality. Their analysis

is general, and does not take special advantage of particular cases (e.g., the Euclidean case).

Stougie [55] studied a two-stage multi-depot problem, where on the first stage we decide

how many depots to build (and where), and on the second stage we deal with a multi-depot

VRP. His analysis is probabilistic, since the customers of the second stage are i.i.d. points

in the unit square. The objective in his problem is to minimize the sum of the costs of both

stages.

Not only Haimovich and Rinnooy Kan [35] proposed the ITP heuristic and perfomed

a worst-case analysis, but they also analyzed it in the probabilistic setting as well. They

17



show that, under technical conditions on Q and the number of customers, the ITP heuristic

is asymptotically optimal. However, under no extra assumptions on Q, the ITP is still a

2-approximation algorithm.

The primary contributions of Chapter 3 are as follows. We present a probabilistic analysis

of a lower bound proposed in Chapter 2, and we show that it improves upon the lower bound

of Haimovich and Rinnooy Kan [35]. Based on this analysis, we improve the approximation

bound of the ITP heuristic, showing that it is a 2- c approximation algorithm (for a constant

> 0). for the VRP. In the second part of the chapter we extend these results to the multi-

depot case.

1.3 Using Grammars to Generate Very Large Scale

Neighborhood Search for Sequencing Problems

In Chapter 4, we study how to use grammar to define local search algorithms for a list of

sequencing problems.

The traveling salesman problem and the linear ordering problem are examples of sequenc-

ing problems. Both problems are NP-hard, and thus there is a need of algorithms that find

a good solution fast. Local search algorithms (see e.g., the book by Aarts and Lenstra [1]),

and in particular Very Large Scale Neighborhood (VLSN) search, have been proposed and

tested on a number of combinatorial optimization problems such as the sequencing problems

studied in this chapter. Good sources on VLSN search are the papers by Ahuja et al. [3],

Deineko and Woeginger [47], and Gutin et al. [34]. The former two papers are devoted to

VLSN for the TSP, and thus they are closely related to the problems and techniques studied

in this chapter.

Many of the VLSN defined for the TSP, that are surveyed in [47], rely on dynamic pro-

gramming recursions to find the optimal solution in an neighborhood efficiently. In Chapter

4, we define the sequence grammars for sequencing problems, and show that this framework

that unifies all these results. This approach is also useful for a list of sequencing problems

18



such as the linear ordering problem, the minimum latency problem, and a bipartite matching

problem with side constraints. We also provide a generic dynamic programming algorithm

for finding the best tour in a grammar induced neighborhood for each of these sequenc-

ing problems. For the TSP, when specialized to the neighborhoods given in Deineko and

Woeginger [47], our generic algorithm achieves the same running time as the special purpose

dynamic programs, except for the twisted sequence neighborhood. In that case, our generic

DP improves upon the previous best bound by a factor of n.

The description of a variety of VLSN for sequencing problems using grammars we provide

in Chapter 4 is a first step towards the development of a modeling language for VLSN search.

We also provide efficient algorithms for enumerating the size of neighborhoods and for

deciding whether two neighborhoods are distinct in the case that the generating grammars are

context free and unambiguous. We prove a number of theoretical results about the hierarchy

of sequence grammars. In particular, we prove that a context free sequence grammar that

generates the complete neighborhood must have an exponential number of production rules.

19
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Chapter 2

Improved Bounds for Vehicle Routing

Solutions

2.1 Introduction

2.1.1 Capacitated Routing Problems

Let G = (V, E) be an undirected graph, where each edge (i,j) has a travel cost cij > 0. We

assume that the cost matrix satisfies the triangle inequality. Node 1 is the depot node and

the rest of the nodes 2, . .. , n are customers. Each node i different from 1 has demand qj E N.

There are identical vehicles with capacity Q E N which are going to deliver the demand of

each customer i. The route of each vehicle starts and ends at node 1, and each vehicle cannot

deliver more than its capacity Q. The cost of a solution is the sum of the travel cost of each

vehicle. The problem considered is to route vehicles to deliver the demand of every customer

while minimizing the overall cost. If the demand of a customer can be delivered by more

than one vehicle (split delivery), the problem is known as the Split Delivery Vehicle Routing

Problem (SDVRP) (see Dror and Trudeau [25]). Since a customer i with demand q can

be considered as q customers with unit demand and zero interdistance, the SDVRP can be

reduced to a unit demand vehicle routing problem (this reduction is pseudopolynomial but

it can be done implicitly), which is also known as the Capacitated Vehicle Routing Problem

21



with equal demand (ECVRP). When split demand is not allowed the problem is known as

the Capacitated Vehicle Routing Problem (CVRP). When we do not want to distinguish

between these variations, we talk about a Vehicle Routing Problem (VRP).

The complexity of solving the VRP depends on Q and on the travel cost. When Q = 2,

the VRP can be solved in polynomial time by transforming it to a minimum weight matching

problem (see Asano et al. [9]). However, the problem is NP-hard for any Q > 3. If Q is

fixed, the Euclidean ECVRP admits a PTAS (polynomial time approximation scheme). The

first PTAS for this case appeared in Haimovich and Rinnooy Kan [35]. The running time

of this PTAS is (doubly) exponential in Q. In particular, it does not lead to a PTAS for

the TSP. Subsequently, Asano et al. [9] improved the running time using the PTAS for

the Euclidean TSP. The general metric case is APX-complete for any Q > 3 (see Asano

et al. [8]), that is, there exists > 0 such that no 1 + 6 approximation algorithm exists

unless P = NP. Improving the approximation ratio for fixed Q has a practical interest since

some problems that arise in practice have small Q (see Bell et al. [14]). Moreover, as Anily

and Bramel [6] point out, the transportation of cars, industrial machinery or handicapped

children are some examples where the capacity of the vehicles is small.

The worst case analysis and the probabilistic analysis of the VRP started with the work

by Haimovich and Rinnooy Kan [35]. In their paper, a lower bound on the cost of the VRP

is presented. Based on this bound, they derived approximation results. Subsequent papers

(e.g., Altinkemer and Gavish [4, 5], Li and Simchi-Levi [44]) rely on this bound to improve or

generalize approximation results for the VRP. Anily and Bramel [6] present approximation

algorithms for a related problem, the capacitated TSP with pickups and deliveries. When

applied to the SDVRP, its algorithm MATCHk has a worse case bound than the algorithm

by Altinkemer and Gavish [5] for any capacity Q but Q = 4. The primary contributions of

this chapter are as follows:

1. We provide nonlinear valid inequalities that are useful for improving bounds for VRP

problems.
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2. We improve the approximation results of Altinkemer and Gavish [4, 5] for the VRP

with triangle inequality, with and without split deliveries. This improvement, though slight,

does resolve a long standing open question of whether any improvement was possible.

3. We present an implementation of the Iterated Tour Partitioning (ITP) heuristic by

Altinkemer and Gavish [5] for SDVRP that runs in polynomial time (the previous imple-

mentation runs in pseudopolynomial time when the capacity Q is part of the input).

When customers have unit demand (i.e., ECVRP), the ITP) heuristic by Altinkemer

and Gavish [5] receives an -optimal traveling salesman tour as part of the input and

outputs a solution with cost at most 1 + (1 - ))a times the optimal solution. In particular,

its approximation ratio depends on the approximability of the TSP. With respect to the

approximability of the TSP with triangle inequality, the current best ratio is a = 3, obtained

by Christofides' algorithm (see [20]). When the nodes are points on the plane and the travel

cost is the Euclidean distance, a can be 1 + for any > 0 (see Arora [7] or Mitchell

[46]). When customers have unequal demand and split deliveries are not allowed (CVRP),

the Unequal-weight Iterated Tour Partitioning (UITP) heuristic by Altinkemer and Gavish

[4] is a 2 + ( -- )c approximation algorithm assuming that Q is even and an a-optimal

traveling salesman tour is part of the input. The survey by Haimovich and Rinnooy Kan

[36] analyzes these algorithms from a worst case and from a probabilistic perspectives. An

implementation of ITP for SDVRP runs in O(S(n, Q)) time, where S(n, Q) is the time to

sort n integers in the range [1, Q], as we show in Section 2.3. In particular, this implies that

UITP also runs in O(S(n, Q)) time. In the previous literature the SDVRP is reduced to the

ECVRP via a pseudopolynomial transformation before using ITP.

We present the Quadratic Iterated Tour Partitioning (QITP) heuristics for the SDVRP

and the Quadratic Unequal Iterated Tour Partitioning (QUITP) heuristics for the CVRP.

The approximation ratio of the former is 1 -a(a, Q) + (1 - )ca and the approximation ratio
2~~~~~

of the latter is 2 - b(, Q) + (1 - ) (Q even in this case). The functions a(a,Q),b(a,Q)

are the improvements over the approximation ratio of ITP and UITP respectively. They
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satisfy that a(,Q),b(Q) > for any a > 1, any Q > 3. When a = and Q > 3,

they satisfy that a(3, Q) > , b(, Q) > . The running time of these algorithms is

O(n2 log n). The increase on the running time with respect to the running times of ITP and

UITP is not the bottleneck operation when we consider that all these algorithms receive an

a-optimal tour as part of their input and that the current best approximation algorithm

for TSP runs in O(n3 ) time. The mechanics of QITP (QUITP respectively) are as follows:

if the new quadratic lower bound is significantly larger than the old lower bound, then ITP

(UITP respectively) improves its approximation guarantee ratio since we found a stronger

lower bound. If the new quadratic lower bound is not substantially larger than the old one,

we still gather some information to construct a solution of less cost.

The rest of the chapter is organized as follows: in Subsection 2.1.2 we introduce the

notation to use throughout the chapter. In Section 2.2, we present some known and some

new lower bounds on the optimal cost of the VRP. In Section 2.3, we present the QITP

for the SDVRP, and we also present an implementation of ITP for SDVRP that runs in

O(S(n, Q)) time. In Section 2.4, we present the QITP for the CVRP. Finally, we summarize

our conclusions in Section 2.5.

2.1.2 Notation

A solution of a VRP is denoted by (K, Vk, dk) where K is the number of vehicles used, Vk

denotes the routing of the kth vehicle and d denotes the demand delivered by vehicle k to

customer i. When split deliveries are not allowed, d is either 0 or qk. The routing cost of

vehicle k is denoted by c(vk). We assign to the terms routing and subtour the same meaning.

We let R i=2 2c1iq denote the radial distance as per Haimovich and Rinnooy Kan [35].

We let c(TSP) denote the cost of an optimal tour on G.

When we transform a Split Delivery Vehicle Routing Problem into a unit-demand prob-

lem, we replace each customer i with demand q by a clique of qi customers with unit demand

each and zero interdistance. Then we say that these q nodes represent the same original

customer.
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2.2 Lower bounds on the optimal cost of the VRP

In this section we present some known lower bounds and new lower bounds on the optimal

cost of the VRP. To simplify notation, some of the bounds are presented for the unit-demand

VRP. The bounds also hold for SDVRP and CVRP since we can transform (relax) a SDVRP

(CVRP) into a unit-demand VRP. The main result of this section is the lower bound given

in Theorem 2.2.14 which improves the lower bound given by Haimovich and Rinnooy Kan

[351. In the next Sections, we make use of this bound to improve the approximation ratio of

the algorithms for SDVRP and CVRP by Altinkemer and Gavish [5] and [4] respectively.

The following lemma gives a lower bound on the cost of routing a vehicle.

Lemma 2.2.1. Let W be any subtour that passes through the depot. Then,

2cli
cij > E W - 1

(ij)EW iEW\l

Proof. By triangular inequality, (ij)EW Cij > max{2ci i W\1}. Moreover, max{2cli

i E W\1} > EiEW\ l- since the maximum cli among i E W\1 is at least the average cli

among i E W\1. 0

This lemma implies the following lemma from Haimovich and Rinnooy Kan [35].

Lemma 2.2.2. ([35]) The cost c(vk) of routing a vehicle Vk with capacity Q that delivers dk

units to customer i is at least Z= 2 2cli -.

Proof. Replace each customer i by dk customers with zero interdistance. Therefore, the

routing of vehicle k can be viewed as a subtour W that passes through the depot and

through E- 2 dk < Q customers. By applying Lemma 2.2.1 to subtour W, we obtain the

desired inequality. [

Lemma 2.2.3. ([35]) The cost c(TSP) of an optimal tour is a lower bound on the cost of

the VRP.
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Proof. Given an optimal solution of the VRP, we can construct a tour with lesser or equal

cost by merging all subtours into a single tour by avoiding nodes already visited. The cost

of the resulting tour is at most the cost of the VRP because of the triangle inequality. E

From the previous two lemmas we obtain the following lower bound on the VRP (see

Haimovich and Rinnooy Kan [35] or [36]).

Lemma 2.2.4. ([35]) The cost of the optimal solution of the VRP is at least

n

max{E 2cf c(TSP)}
i=2

For customers i and j, let W(i, j) be the subtour that passes through customers i, j and

the depot only. If i = j then W(i, j) is the subtour including i and the depot only. Its cost

is c(W(i, j)). The following lemma is key to our analysis.

Lemma 2.2.5. Let W be any subtour that passes through the depot. Then,

ci, Ž E c(W(i,j)) (2.1)
CE > F-(IW - 2

(i,j)EW i,jeW\l

Proof. The proof is similar to the one of Lemma 2.2.1. By triangular inequality, Z(ij)eW cij >
max{c(W(i,j)): i,j E W\1}. Moreover, max{c(W(i,j)) i j E W\1} > ijeW\l ((ij))

ijEW (IWI-1)2

since the maximum c(W(i,j)) among i,j W\1 is at least the average c(W(i,j)) among

i,j E W\1. C1

The lower bound obtained in this lemma can be expressed as follows.

Corollary 2.2.6. Let W be any subtour that passes through the depot. Then,

ci > (Wcj -l) + (Wcij 1)2 (2.2)

(i,j)EW iEW\l i,jEW\l

Proof. Since the cost of subtour W(i, j) is equal to cli + cij + clj, the lower bound (2.1) can
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be rewritten as follows.
c(W(i, Aj))
(JWI - 1)2

i,jEW\1

ci Cij l ____
E (Iwl~- 1)2 + E (IWl - 1)2 + (IWl - 1)2

i,jEW\l i,jEW\l i,jEW\l

E 2cli + cii

iEW\l (lW - 1) i jEW\l (lW - 1) -

This corollary implies the following bound on the cost of the VRP.

Corollary 2.2.7. Given a solution (K, vk, dik) of the VRP, its cost is at least

K n k~ K k kk
En_2Cli_ dd (23)

k= i=2 t=2 dt k= i,jE{2,...,n} (Et= 2 )

Proof. It is enough to prove that the cost of vehicle vk is at least

n

n= Ze= d~jkZ2cj k + (En dt)2
i,jE{2 n...,} ( )'

We can view each customer i as de customers with zero interdistance and unit demand.

Thus, the routing of vehicle vk can be viewed as a subtour W that passes through the depot

and through IWI-1 = En 2 dk unit-demand customers. Expressing inequality (2.2) in terms

of the original customers, we obtain that

d2Cl i did
E 2c1 IEn d + E C (En d) 2

i=2 t=2 t ijE{2,...,n} 0=2 t )2

In the rest of the Section we develop a lower bound on c(VRP) that can be computed

efficiently for any Q. Moreover, it will be used on the following Sections to improve the

approximation ratio of the algorithms by Altinkemer and Gavish when Q is constant.
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We give some definitions first. The following definition is valid for the unit-demand

VRP. It also applies to the SDVRP (CVRP) after we transform (relax) the instance into a

unit-demand VRP. Alternatively, Definition 2.2.9 generalizes Definition 2.2.8 to the unequal-

demand case without the need of transforming the instance into a unit-demand VRP.

Definition 2.2.8. Given customer i, let i(1),... ,i(n- 1) be the customers ordered by its

proximity to i that is, i(1) = i and ci,i(s) ci,i(s+l) for all 1 < s < n- 1. Assuming

qi = 1 for each customer i, let g(i) = minl<t<min{Q,n- 1 l}{2cli + l<j<tCii(j) } and let

F(i) = {i(1),i(2),.. ., i(si)} where si is the argument integer number 1 < t < min{Q,n- 1}

that minimizes 2c14 + l<j< cii(j).

Informally, g(i) tries to capture the radial cost and the interdistance cost associated to

customer i, and the nodes of F(i) are the customers that i would select to share a vehicle

with in order to minimize g(i). The sum of g(i) for all customers i is a relaxation of the

quadratic cost (2.3) that is at least the radial cost, as Lemma 2.2.11 will show. The cost g(i)

can be seen as a way of distributing a lower bound on the routing solution cost. There is

a more natural way of distributing a lower bound on the vehicle routing cost to customers.

(again we assume unit-demand VRP). Let p(i) be

p(i) = min{ (W ) : W is a subtour that contains i and 1, and WI < Q + 1}.
(l - 1)

Then, E= 2 u(i) is a lower bound on the cost of the unit-demand VRP. This bound also

applies to SDVRP and CVRP after we transform (relax) the problem into a unit-demand

VRP. This bound can be computed in polynomial time when Q is constant. Interestingly,

the bounds Z.i=2 p(i) and Ei=2 g(i) are not comparable. That is, there are instances where

ZEi=2 (i) is greater than - 2g(i), and vice versa.

The concept of associating to each customer i a radial cost plus a cost related to the aver-

age distance to its closest neighbors appeared in Dror and Ball [24]. When customers don't

have unit demand, we can transform the problem to an equal demand problem and define

g(i) of an original customer as the sum of g(j) of the unit demand customers that replace
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it. Alternatively, we can generalize the definition of g(i) in order to avoid the pseudopoly-

nomial transformation to the unit demand case. For each customer i, let i(1),... ,i(n- 1)

be the customers ordered by its proximity to i, that is, i(1) = i and Ci,i(s) < Ci,i(s+l) for all

1 s < n- 1. Let T(i) be the integer such that -T(i?- 1 qi(l) < Q and El(il ) qi(l) > Q. If

Q > El=, qi(l) we define T(i) = n. For each 1 < t < T(i), let

qi if t = 1,

qi(t) = qi(t) if 1 < t < T(i),

Q- I_- qi(l) if 1 < t = T(i).

Let Qi(t) = min{Q; Et=l qi(1)}. The following definition generalizes g(i) for the unequal-

demand case.

Definition 2.2.9. Given a customer i, let i(1),...,i(n- 1) be the customers ordered by

its proximity to i, that is, i(1) = i and ci,i(8) • ci,i(8+l) for all 1 s n- 1. Let

g(i) = minij<t<n-1{22cjj Qii(() Q+Z jt C j(t) (f} and let F(i) = {i(1), i(2),. . .,i(si)} where

si is the argument integer number 1 t T(i) that minimizes minlt<T(i){2Cl q2() +
-Qi(t)

qi( ! )ei(j)}
El<j<t Ci-i(J) Q(t) 2'

This definition is equivalent to the previous one after we transform the problem into

a unit demand problem. More precisely, the following proposition holds. Its proof easily

follows from Definitions 2.2.8 and 2.2.9.

Proposition 2.2.10. Let I be an instance of a VRP. For each customer i, let g(i) be defined

as in Definition 2.2.9. We define an instance I' of a unit demand VRP by replacing each

customer i with demand qi by qj customers il... , iq with unit demand and zero interdistance.

For each customer it in the transformed problem, let g(it) be defined as in Definition 2.2.8.

Then, for each original customer i in I, g(i) = EZtl g(it).

Sorting the customers with respect to the distance to i takes O(n log n) time. For each

customer i, the computation of g(i), F(i) can be done in O(n) time. Therefore, the compu-
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tation of g(i), F(i) for all i takes O(n2 log n) time. The term Ei 1 g(i) is at least the radial

cost and is at most the cost of the VRP as the next lemma shows.

Lemma 2.2.11.
n

R <, g(i) < c(VRP).
i=2

Proof. To simplify the proof we assume unit demand. It is clear from the definition of g(i)

that c1li < g(i), and therefore Eoil 2c1 = R < Ejil g(i).

Since we assume unit demand, each customer is visited by exactly one vehicle. In order

to prove the inequality E= 2 g(i) < C( VRP), it is enough to prove that for each vehicle v,

the routing cost of v is at least the sum of the cost g(i) for every customer i visited by v. In

other words, it is enough to prove that for every subtour W that visits at most Q customers,

the inequality c(W) > EiEW\1 g(i) holds. By Corollary 2.2.6,

c(W)= E cij E (W-1) + E (W-1) 2 (2.4)
(i,j)EW iEW\l i,jEW\l

The following inequalities hold by definition of g(i).

2ci cij > 2cli + ci'i(i) > g(i) (2 5)
(IWI - 1) (W - 1)2- (WI - 1) (IWI - 1)2E1<j<W-1

Combining equations (2.4) and (2.5) we prove that c(W) > EiEW\1 g(i) holds. Q

Lemma 2.2.11 shows that EiZ1i g(i) is at least the radial cost. The next two examples give

a sense of how big the difference between these two lower bounds can be. The first example

shows a family of instances where Ei1 g(i) = R, whereas the second example shows that

Ei 1 g(i) can be 50% better than the radial cost.

Example 2.2.12. For each Q > 0 we consider the following instance on the plane. Let the

depot be the origin point (0, 0) in the plane, and for each 1 < r < Q let customer ir be located

n the point (cos 2r, sin 2r). Each customer has demand Q. It is easy to see that R = 2Q
and that (ir) 2 Therefore, R = g(i) = 2Q in this example.

and that g(i,)-== 2Q. Therefore, R = g(i) = 2Q in this example.
Q-
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Example 2.2.13. For each Q > 0 we consider the following instance on the real line. Let

the depot be the origin point 0, for each 1 r < Q - 1 let customer ir be also located in

the origin point 0, and let customer iQ be located in the point Q. Each customer has unit

Qdemand. In this case, the radial cost is equal to -Q = 2. For each 1 <_ r <_ Q- 1, g(ir) =-O.(,)=2Q (Q-Q
It s easy to see that g(iQ) = Q + Q, and therefore g(i) -* 3 = 1.5R as Q - oo.

We summarize the result of this section with a lower bound of the cost of the VRP that

is at least as good as the one derived in Lemma 2.2.4.

Theorem 2.2.14. The cost of the optimal solution of the VRP is at least

max{Z g(i); c(TSP)}.
i$1

In the next sections we will work with the following auxiliary undirected graph.

Definition 2.2.15. For each customer i, let F(i) be the set defined in Definition 2.2.9. Let

= (V - {1}, E) be the undirected graph formed by customers {2,... ,n} connected with

edges E = {(i,j) i E V- {1},j E F(i)}

The set F(i) is set of customers which customer i would like to share a vehicle with in

order to minimize its cost g(i). That is, the graph G connects customers i,j whenever j

belongs to F(i) or i belongs to F(j). We define the following quantities.

Definition 2.2.16. Let Cr be a connected component of G. We denote by q(Cr) = iEcr qi

its cumulative demand. We denote by R(Cr) = J-jc, 2cig its modified radial cost.min{Q;q(Cr)}

We define G(Cr) = Ejcr g(i), and H(Cr) = -Ecr ZjEF(i) min{Q 2 q(Cr) 2 Let C1, .. Cm be= EiE, EjF~i)min{Q2;q(Cr)')',
the connected components of G and let F = 'r l H(Cr).

These quantities satisfy the following properties, which are elementary and stated without

proof.

Proposition 2.2.17. Let C1, . . , Cm be the connected components of G. Let R be the radial

cost. Then,
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1. R(Cr) + H(Cr) < G(Cr) for all 1 < r < m.

2. Z2l1 G(Cr) = Zij 1 g(i)

3. Let /3 > 0 be a number such that Eji 1 g(i) < (1 +/)R. Then, F = Em1 H(Cr) < 3R.

2.3 Approximation Algorithms for SDVRP

2.3.1 Iterated Tour Partitioning (ITP) heuristic

We start by presenting the ITP heuristic by Altinkemer and Gavish [5] for the SDVRP.

The original version runs in O(Qn) time. Therefore, it runs in linear time when Q is fixed.

However, it is a pseudopolynomial algorithm when Q is part of the input. We later improve

the running time to S(n, Q), which is the minimum time to sort n integers in the range

[1, Q]. For example, the running time of a sorting algorithm like heapsort is O(n log n), so

S(n, Q) = O(n log n). If Q = O(nP) for some fixed p, S(n, Q) is O(n) since radix sort runs

in O(n) time in this case (see the book by Cormen et al. [23] for a description of sorting

algorithms).

The ITP heuristic receives a tour 1 - il- -i2 ... in-1 - of cost at most ac(TSP)

as part of the input and outputs a solution of the SDVRP within 1 + (1 - )a the optimal

solution. On the original implementation of ITP, we replace each customer i with demand

qi by q customers with unit demand and zero interdistance. In the transfomed graph the

number of customers is m = Ein2 qi. Let 1 - .- jm - 1 be the tour on the transformed

graph that results from replacing in the original tour 1 -i - -i2 -in_ - 1 each

customer i by qi consecutive customers with unit demand and zero interdistance. For each

1 < t < Q, we define the solution routet on the transformed graph, as follows: routet

is the union of the subtours v = 1-jl - ..-jt -1,v = - jt+ - '-jt+Q - 1,
1 2 Jtt

3 = 1jtQ - t2Q - j ... . = 1 ([ -l)Q+t+l jm - 1.jt+2Q~~~ -- 1..Q[_~]l+
That is, routet transforms the tour 1 - jl m - 1 into subtours with Q customers

each (except possibly the first and the last subtour). The solution routet+1 is different from
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routet in that the beginning and/or ending customers visited by each vehicle are shifted one

position. With some abuse of notation, we also denote by routet the induced solution in the

original graph.

Denoting depot node 1 as jo = jm+l, the sum of the cost of these solutions is

Q m-1 mrn-1

E c(routet) = (Q + 1)(clj, + Cljm) + 2 E cjjp + (Q - 1) cjpjp+l =
t=1 p=2 p=l

m m

2 E cljp + (Q -) E cjpjp+l <
p=1 p=o
n

E 2cljqi + (Q - 1)ac(TSP).
i=2

The average cost of these solutions is at most R + (1 - )oac(TSP). At least one of these

solutions considered has cost at most the average. Since max{R; c(TSP)} is a lower bound

on the optimal cost of the SDVRP, one of the solutions considered is within 1 + (1 - )a

the optimal cost.

A straightforward implementation of ITP runs in O(Qn) time. When the capacity Q is

part of the input, this running time is pseudopolynomial. In what follows, we present an

implementation of ITP that runs in polynomial time. The following lemma implies that we

need to compute the cost of O(n) solutions out of the Q solutions route,,..., routeQ.

Lemma 2.3.1. The set of costs of solutions {c(routel),... ,c(routeQ)} has O(n) elements.

Proof. We observe that v +1 = 1 -jt+(k-2)Q+2-,.., -t+(k-1)Q+2 - 1, the routing of the

kth vehicle in solution routet+l, is the same as = 1 -jt+(k-2)Q+l-, * ,--Jt+(k-)Q+l- 1,

except for t+(A:-2)Q+l and t+(k-1)Q+2, the first and last customers visited by vt and v+l

respectively. However, if jt+(k-2)Q+1 and jt+(k-2)Q+2 represent the same original customer,

and if jt+(k-)Q+l and jt+(k-1)Q+2 also represent the same original customer, the costs of the

two vehicles are the same. In this case A and v+l visit the same original customers in the

same order (what changes is the amount of demand delivered by these vehicles).

For each original customer ip, we say that a number 1 < t < Q is a starting number of
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customer ip when the first vehicle that visits customer ip in solution router does not visit the

previous (original) customer ip-1. That is, 1 < t < Q is a starting number of ip if EsPl qs -t

is divisible by Q. It is easy to see that for each fixed customer i, there is exactly one starting

number. Therefore, the number of different starting numbers is at most n.

We say that a number 1 = t Q is a breaking point if either t = 1, or the costs

of solutions routet 1_l, routet are different. It is clear that the total number of different costs

c(route1), . ., c(routeQ) is at most the total number of breaking points. A necessary condition

for t ~ 1 to be a breaking point, is that the cost of vt - 1 is different from the cost of vt for

some k. This happens only if vk-, v have different starting or ending original customers.

In other words, t is a breaking point only if either t or t - 1 is the starting number of some

original customer ip. This implies that the total number of breaking points is also O(n). 

The next lemma says that we can compute efficiently the best solution router.

Lemma 2.3.2. The solution of the ITP heuristics can be computed in O(S(n, Q)) time,

where S(n, Q) is the time to sort n integers in the range [1, Q].

Proof. We use the same terminology as in the proof of Lemma 2.3.1. As it is proven in

that lemma, it is enough to compute the costs of solutions routet for t a breaking point. A

necessary condition for t ~ 1 to be a breaking point is that, either t or t- 1 is a starting

or ending number of some original customer ip. Therefore, we compute the starting and

ending number of every original customer ip. Overall, this operation takes O(n) time. We

sort these numbers and we store them on a list L. This operation takes O(S(n, Q)) time.

For each t L, let St be the set of original customers ip with either t or t- 1 as starting

number. Since each customer belongs to at most two sets St, the computation of the sets

St takes O(n) time. The sum ZtEL Stl is also O(n). It is easy to see that the computation

of c(routetp+1) can be done in O(n) time. Given tp,tp+l two consecutive numbers in the

sequence L, we claim that the cost of routetp+, can be computed from the cost of routetp in

O(IStpl). First, we can express c(routetp+) as

c(routetp+l) = c(routetp) + (c(vp+') - (vp)) (2.6)
k

34



Second, the number of pairs of vehicles v p, vkP+" with different costs is O(IStp ). Finally, for

each k, the difference c(v kp+') - c(vk p ) can be computed in 0(1) time since these routings

differ in the first and the last customer they visit, at most. Therefore, we can compute the

cost of routet for all t in the sequence L in O(ZtEL DSt[) = O(n) time. a

We summarize our presentation of the ITP heuristic with the following theorem.

Theorem 2.3.3. Given a tour T of cost CT as part of the input, the ITP heuristic outputs

a solution for the SDVRP of cost at most

R+ (1 - ~)CT.

Given an a- optimal tour as part of the input, the ITP heuristic is a 1 + (1 - )a approxi-

mation algorithm for the SDVRP. The ITP heuristic runs in O(S(n, Q)) time.

2.3.2 Quadratic Iterated Tour Partitioning heuristics

The approximation ratio of the ITP heuristic for SDVRP is based on the lower bound of the

optimal cost given in Lemma 2.2.4. In what follows we describe the Quadratic Iterated Tour

Partitioning (QITP) heuristics. Its approximation ratio relies on the lower bound given in

Theorem 2.2.14. It uses the ITP heuristics as a subroutine that receives a tour of cost CT

and outputs a valid solution for the SDVRP with cost at most R + (1 - )CT. Let /3 be a

threshold value to be fixed afterwards. The QITP for the SDVRP described in this Section

is as follows.

We divide the analysis of QITP into two cases; when Ej]1 g(i) > (1 + /3)R, and when

Ei 1 g(i) < (1 + )R.

Let y be

/3 1 -1 + (1-Q) (2.7)

If ZY1 g(i) > (1 + 3)R, then the ITP heuristic improves its approximation ratio since the
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Figure 2-1: Quadratic Iterated Tour Partitioning heuristic

lower bound of Theorem 2.2.14 is sharper than the one of Lemma 2.2.4. To be more precise,

the ITP heuristic, which outputs a solution with cost at most R + (1 - )ac(TSP), is now

a y-approximation algorithm since

R + (1 - )ac(TSP) R (1 - )ac(TSP)
max{-i¢1 g(i); c(TSP)} - Eii g(i) c(TSP) -7

If EiZ1 g(i) < (1 + 3)R, let us consider the graph G = (V- {1}, E) formed by the

customers connected with edges E = {(i, j): i e V-{depot node 1},j e F(i)} as defined in

Definition 2.2.15. The following lemma shows how to construct subtours for each connected

component of (C.

Lemma 2.3.4. Let C, be a connected component of G with cumulative demand q(Cr). Let

H(C,) be defined as in Definition 2.2.16. There exists a subtour through the depot and all

customers of C of cost at most

qj ~1 2
E2c,i (C)+ 2(1 - q(C) )Q2 H(Cr). (2.8)

iEC, q(Cr) Q

Proof. To simplify notation we assume that each customer has unit demand. As mentioned

before, we can replace each customer i with demand q by q customers with unit demand.
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INPUT: Instance I of SDVRP, an a-optimal tour for I.
OUTPUT: A solution of the SDVRP.
1) Compute the radial cost R, and F(i), g(i) for all customer i;
2) If Eio g(,i) > (1 + )R then output solution by the ITP heuristic

else begin
3) Compute graph G; (see Definition 2.2.15)
4) Compute the connected components C1,, Cm of graph G;
5) For each 1 < r < m

Compute a subtour Tr for Cr; (see Lemma 2.3.4)
6) For each 1 < r < m such that q(Cr) > Q +1

Use the ITP heuristic to transform the subtour Tr into a routing for Cr;
7) Output the solution generated in steps 5) and 6);

end



Let s = q(Cr) be the number of customers of Cr. We relabel the customers of Cr as il,. .. ,is

following the appearance order in a depth first search in Cr. The arcs of the depth first

search tree are of the form (i, j) with i,j Cr and j E F(i) or i E F(j). Therefore the

cost of the depth first search tree is at most iECjEF(i) Ci,j • Q2 H(Cr). If we duplicate all

arcs of the depth first search tree we can construct an Eulerian subtour that visits customers

il,. . is (in this order) of cost at most 2Q2 H(Cr). By triangular inequality, the subtour

il . - il constructed from this subtour has cost at most 2Q2H(C,). For 1 < t < s,

we consider the subtour 1 - it i - - i t+s - (where indices are cyclic). The sum of

the cost of these subtours is 2 ~=1 Clij + (s - 1) Z=1 cijij+l, where i+l = il. Therefore,

the average cost is at most

1 s _ 12Zclij -+ (1--) E cijij+ < E 2ci + 2(1- C)Q2H(Ci).
j=1 s S j=1 iECs q(Cr) q(Cr)

At least one of the s = q(C,) solutions considered has cost at most the average cost. O

The following two lemmas show how to transform the subtour obtained in Lemma 2.3.4

into a valid set of routings.

Lemma 2.3.5. Let Cr be a connected component of G with cumulative demand q(Cr) at

most Q. There exists a routing that meets the demand of customers of Cr of cost at most

R(CT) + 2(1 - )Q2H(Cr).

Proof. Since the cumulative demand of Cr is less than the capacity Q, the subtour obtained

in Lemma 2.3.4 is a valid routing for Cr. The cost of this routing is at most R(Cr) + 2(1 -

1)Q 2H(Cr) since R(Cr) = iEcr 2Cliq(C), and (1- q(1 )Q2H(Cr) < (1 )Q2H(Cr) when

the cumulative demand q(Cr) is at most Q. O

Lemma 2.3.6. Let Cr be a connected component of G with cumulative demand q(Cr) at

least Q + 1. There exists a routing that meets the demand of customers of Cr of cost at most

(2 -+1)R(CT) + 2(1-Q )Q2H(Cr)
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Proof. By Lemma 2.3.4, there exists a subtour through the depot and customers of C of

cost at most Ziecr 2cl, iq(-) + 2(1 - q(C ))Q2H(Cr). Applying the ITP heuristics to this

subtour, we construct a routing for the customers of C, of cost at most

E 2Cl,i + (1 - )( E 2cli ( + 2(1 - 1 )Q H(Cr)) (2.9)
EC, iECr q(C,)

Since q(Cr) > Q + 1, the inequality EiEcr 2clqj) < (1- l+)R(Cr) holds. Therefore, the

cost of the routing obtained from ITP is at most

21(2-Q + 1)R(Cr) + 2(1 - i)Q2H(Cr).

Lemmas 2.3.5 and 2.3.6 imply that for each component Cr of G there exists a routing

that delivers the demand of all its customers (and does not visit any customer outside Cr)

with cost at most

(2Q + )R(Cr) + 2(1 - )Q2H(C). (2.10)
Q ± + 2(1 Q

Therefore, the total cost of the routings for all connected components C1, . . ., Cm is at most

(2- )Q2F. (2.11)

If Eiol g(i) < (1 + )R the inequality F < fiR holds (see Proposition 2.2.17). In this

case, The ratio of this upper bound with the lower bound Ei g(i) is at most

2 1 2(2 Q + -) + 2(1 -)Q (2.12)Q±+1 Q

To summarize, if E~j- g(i) > (1 + f)R the algorithm outputs the solution given by ITP

heuristics with approximation ratio given by equation (2.7). If Ei g(i) < (1 + f)R the al-

gorithm constructs a solution with approximation ratio given by equation (2.12). Combining

38



Capacity Q 3 4 5 6

Approximation ratio of ITP(1) [5] 1.6667 1.7500 1.800 1.8333
Approximation ratio of QITP(1) 1.6540 1.7440 1.7968 1.8314

Table 2.1: Approximation ratio for SDVRP for small Q when a = 1.

Capacity Q 3 4 5 6

Approximation ratio of ITP( ) [5] 2.0000 2.1250 2.2000 2.2500
Approximation ratio of QITP(3) 1.9629 2.1044 2.1872 2.2413

3Talble 2.2: Approximation ratio for SDVRP for small Q when a = 3.

both ratios, the algorithm has an approximation guaranteed ratio of

max{(2- l) + 22( _ _)Q2.;1 - + (1- )aj-max(2Q+)+2/3(1 - 12; _/_1Q + Q J ,' /+ 1 Q

It remains to select /3 optimally. The term (2.7) is a decreasing function of 3 and the term

(2.12) is an increasing function of . When 3 = 0, the term (2.7) is smaller than the term

(2.12) whereas when is large enough the converse is true. Therefore, the value of /3 that

gives the best ratio is the one that equalizes both terms, that is, the positive root of the

polynomial

a 2 a 2
p(/) = (2Q 2 -2Q)i 2 + (2 -a + - + 2Q 2 - 2Q)/3 + (1 -a +-t - - ).

Q Q+1 Q Q+1

Let /3*(a,Q) be the optimal and let a(a, Q) = )Q Then, the algorithm has an

approximation ratio of 1 - a(a, Q) + (1 - )a.

Tables (2.1) and (2.2) depict the approximation ratio for small values of Q when a = 1

and a= 2 respectively.

The following theorem summarizes the main result of this Section.

Theorem 2.3.7. Given an c-optimal tour as part of the input, the Quadratic Iterated Tour

Partitioning heuristics is a 1 -a(ac, Q) + (1 - ))a approximation algorithm for the SDVRP.

The value a(a, Q) s at least for anya > 1 and any Q > 3. For a = 3 the value of

a(3, Q) is at least for any Q > 3. The running time of this algorithm is O(n2 log n).2 Q2-- -
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Proof. We start by showing that a(a, Q) > 'i for any a > 1 and Q sufficiently large. Let

us select a (suboptimal) value - 31. The algorithm has an approximation ratio which

is the maximum between the bounds (2.7) and (2.12). With it is easy to see thata_,itis easy to see that

the bound (2.7) is at most

2 (12 V 2 22- +2,3(1- )Q < 2- . (2.13)
Q+1 Q Q+1 + 3Q '

With -= 3Q ' bound (2.12) is at least

~~~~3Q3-.1

~~~~~~~~~~~~1~~~~~1 113Q (1 - )L = 1--+ (1- Q)a (2.14)1-aQ lQ 3Qa
> 2 3Q Q. (2.15)

3Q3 Q'

It is easy to see that the lower bound (2.15) dominates the upper bound (2.13) for Q

sufficiently large. More precisely, the lower bound (2.15) is bigger than the upper bound

(2.13) when Q > 6. Therefore the approximation ratio of the algorithm is at most equation

(2.14)forany > 1, any Q > 6 andthusa(a,Q) > forany >1,anyQ>6.

When a = , a similar argument shows that the value a(3, Q) is at least for Q
2 2 Q~~~~~~~~~~~~~~~2

sufficiently large. In this case we select / = 4Q Then, bound (2.7) is at most 2 - 2 l+ 4Q2-1'Q+

and bound (2.12) is at least 5- 3 - . It is easy to see that bound (2.12) is at least
2 2Q >4Q

bound (2.7) when Q > 4 and therefore a(3, Q) > for Q > 4.

It remains to show that a(a,Q) > a- for any a > 1, any 3 < Q < 6 and that a(3, Q) >

for a = , any 3 < Q < 6. Table 2.2 shows the approximation ratio of QITP when

3 is selected optimally. It follows from Table 2.2 that a(3, Q) > _ for 3 < Q < 6. In
-24Q

2

order to show that a(a, Q) > 1 for any a > 1, any 3 < < 6, we claim that the function

a(a, Q) = is nondecreasing in a. In order to prove this claim, is enough to prove that

the optimal value 3*(a, Q) is a nondecreasing function of a. That is, /3*(a', Q) > *(a, Q)

when a < a'. To prove that *(a', Q) > *(a, Q) when a < a', we remind that 3*(a, Q) is

defined so that the bounds (2.7) and (2.12) are equal. If we change a by a bigger value a'
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(while we keep Q and 3 fixed), the term (2.12) increases whereas the term (2.7) does not

change. In order to recover the equality between bounds (2.7) and (2.12), we must increase

3 since term (2.7) decreases and (2.12) increases when /3 increases. Therefore, the optimal

parameter 3*(a', Q) must be greater than the optimal parameter /3*(a, Q) when a < a'.

It follows from Table 2.1 that a(1, Q) > r for 3 < Q < 6. Since the function a(a, Q) =

'3 (Q)1 is nondecreasing in a, a(a, Q) > for any > 1 and 3 Q < 6. This completes0*(c,,Q)+i ...
the proof of the approximation ratio of QITP.

With respect to the running time of the algorithm, computing F(i) and g(i) for all

customer i takes O(n21logn). The ITP heuristic runs in O(S(n,Q)) = O(nlogn) as we

showed in Subsection 2.3.1. The auxiliary graph C has n nodes and O(n2) edges. Computing

0 and its connected components takes O(n2) time. Computing a subtour for each connected

component using depth first search takes O(n2) time. Computing the heuristic solution in 0

takes O(S(n, Q)) = O(n log n) since we run the ITP heuristics on each connected component

of G. Therefore, the total running time is O(n2 log n). []

We observe that Christofides' algorithm for the TSP has an approximation ratio of 3 and

runs in O(n 3 ). Therefore, it dominates the running time of our algorithm.

When Q is fixed, the QITP heuristic uniformly improves upon the worst case analysis

of the ITP heuristic. It is currently the best approximation algorithm for the SDVRP with

triangle inequality, except when Q = 4. In this case, the algorithm MATCHk by Anily

and Bramel [6] has a better approximation ratio. When Q = 4, MATCHk has a 1.75

approximation ratio.

2.4 Approximation Algorithm for CVRP

When split delivery of customer's demand is not allowed, the UITP heuristic by Altinkemer

and Gavish [4] has an approximation guarantee ratio of 2 + (1 - )a, assuming that Q is

even. This is not restrictive since we can always scale Q and q to make Q even. We state

the result of UITP heuristic.
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Theorem 2.4.1. ([4]) Assume the capacity Q of vehicles is even. Given a tour T of cost

CT as part of the input, the UITP heuristic outputs a solution for the CVRP of cost at most

2R + (1 - 2)CT.

In particular, given an a- optimal tour as part of the input, the UITP heuristic is a 2 + (1 -

')a approximation algorithm for the CVRP.

The UITP heuristics uses ITP heuristics as a subroutine. The call to ITP is the most

expensive operation performed by UITP and therefore its running time is also O(S(n, Q)) =

O(nlogn). In this Section we present the Quadratic Unequal Iterated Tour Partitioning

(QUITP), which is an adaptation of the algorithm from the previous Section to solve the

CVRP using UITP as a subroutine. We will use UITP as a black box that receives a tour of

cost CT and outputs a valid routing for the CVRP with cost at most 2R + (1 - )CT. For

each customer i we compute g(i), F(i), as defined in Definition 2.2.9.

Let ' be a threshold value to be fixed afterwards. The QUITP heuristics for the CVRP

is as follows.

Figure 2-2: Quadratic Unequal Iterated Tour Partitioning heuristic
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INPUT: Instance I of CVRP, an a-optimal tour for I.
OUTPUT: A solution of the CVRP.
1) Compute the radial cost R, and F(i), g(i) for all customer i;
2) If Ei' 1 g(i) (1 + 0')R then output solution by the UITP heuristic

else begin
3) Compute graph G; (see Definition 2.2.15)
4) Compute the connected components C,.. , Cm of graph ;
5) For each 1 < r < m

Compute a subtour Tr for Cr; (see Lemma 2.3.4)
6) For each 1 < r < m such that q(Cr) > Q + 1

Use the UITP heuristic to transform the subtour Tr into a routing for Cr;
7) Output the solution generated in steps 5) and 6);

end



Let -y' be

02 ±123 +(1 - Q )l.(2.16)

If EYo g(i) > (1 + 3')R, then the UITP heuristic becomes a '-approximation algorithm

because the lower bound of Theorem 2.2.14 is sharper than the one of Lemma 2.2.4.

If Ejol g(i) < (1 + i')R, we proceed in a similar way as in the previous Section,

except that a solution constructed must not split demand. Let G = (V - {1}, F) be

the undirected graph formed by the customers connected with edges E = (i,j) i E

V- depot node 1},j E F(i)}. Let C,..., Cm be its connected components. By Lemma

2.3.5, we can use one vehicle to deliver the demand of customers of a connected component

Cr with cumulative demand q(Cr) < Q with cost at most

R(Cr) + 2(1 - i)Q2H(Cr). (2.17)
Q

If a connected component Cr has cumulative demand q(C,) > Q+ 1, the following lemma

holds.

Lemma 2.4.2. Let Cr be a connected component of G with cumulative demand q(C) at

least Q + 1. There exists a routing that meets the demand of customers of Cr without split

of cost at most

2 1 2 2 2

(3 Q - 1 + Q(Q l))R(Cr) + 2(1 - )Q2H(Cr).

Proof. By Lemma 2.3.4 there exists a subtour through the depot and customers of C of

cost at most ~iEc 2cl,iq(C) + 2(1-q(r))Q 2H(Cr). Applying the UITP heuristics to this

subtour (see Theorem 2.4.1) we construct a routing for the customers of Cr of cost at most

S 4c,iq + (1 - )( 2ci q ) + 2(1- 1 )Q2 H(Cr)) (2.18)
ZiE ' q(C q(C)
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Since q(Cr) > Q+ 1, the inequality EiEC 2c1 ,iq(C) < (1- Q+l)R(Cr) holds. Therefore the

cost of the routing obtained from UITP for C, is at most

2 I 2 2 Q2

(3 -Q + 1 + Q(Q 1))R(Cr) + 2(1 - )Q2H(C).

[]

Given a connected component C, Lemmas 2.3.5 and 2.4.2 imply that we can construct a

routing for all it customers with cost at most (3 Q-Q Q(Q+ )R(C)+2(1- )Q2H(C).

Therefore, the total cost of the routings for all connected components Cl,... , Cm of G

constructed following Lemmas 2.3.5 and 2.4.2 is at most

2 1 2
(3 -Q -Q+ + Q(Q ))R+2(1 )QF. (2.19)

If jiol g(i) < (1 + ,/3')R, the ratio of this upper bound with i,1l g(i) is at most

2 1 2 12,
3 - + Q+ 2(1 - )Q2 (2.20)

Q Q±+1 Q(Q +1) Q

Combining equations (2.16) and (2.20), the algorithm has an approximation guaranteed

ratio of

2 1 2 Q 1 23
max{(3- ) + 2(1 Q ;2 O + + (1-Q Q + 1 Q(Q + 1) Q Q

As in the previous Section, the optimal /3' is the positive root of a quadratic function.

Tables (2.3) and (2.4) depict the approximation ratio for small values of Q when oa = 1 and

= respectively.

The following theorem has a similar proof as Theorem 2.3.7 of the previous Section.

Theorem 2.4.3. Assume Q is even. Given an -optimal tour, the Quadratic Unequal

Iterated Tour Partitioning heuristics is a 2 - b(a, Q) + (1 - )O)a approximation algorithm

for the CVRP. The value b(oa, Q) is at least 1 for any ae > 1, any Q > 4. For a = 3 and
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Capacity Q 4 6 8 10

Approximation ratio of UITP(1) [4] 2.5000 2.6667 2.7500 2.8000
Approximation ratio of QUITP(1) 2.4923 2.6636 2.7485 2.7992

Table 2.3: Approximation ratio for CVRP for small Q when a = 1.

Capacity Q 4 6 8 10

Approximation ratio of UITP( ) [4] 2.7500 3.0000 3.1250 3.2000
Approximation ratio of QUITP() 2.7234 2.9863 3.1170 3.1948

3Table 2.4: Approximation ratio for CVRP for small Q when = 3.

any Q > 4, the value b(3, Q) is at least 32. Its running time is O(n2 log n).

2.5 Conclusions

We present a new quadratic lower bound on the cost of a solution of the VRP which im-

proves the radial cost lower bound. We also present a relaxation of this lower bound that

improves the bound by Haimovich and Rinnooy Kan [35] and can be computed in polyno-

mial time. Based on this lower bound we develop the Quadratic Iterated Tour Partitioning

and the Quadratic Unequal Iterated Tour Partitioning heuristics for the SDVRP and CVRP

respectively that improve the approximation ratio of the algorithms by Altinkemer and Gav-

ish when the capacity Q is fixed. The running time of the new algorithms is O(n 2 log n),

which is not a bottleneck operation. To be more precise, we observe that all the mentioned

algorithms for VRP receive an o-optimal traveling tour as part of the input and that the

current best approximation algorithm for the TSP with triangle inequality runs in O(n3 )

time.

We show that an implementation of ITP for the SDVRP runs in O(S(n,Q)) where

O(S(n,Q)) is the time to sort n integers in the range [1,Q]. The original implementa-

tion of ITP runs in O((Qn)) time and therefore it is pseudopolynomial when Q is part of

the input.

With respect to open problems, we observe that the lower bound we use in our analysis

(Lemma 2.2.11) is a relaxation of the bound given in Corollary 2.2.7. A more straightforward
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quadratic relaxation of Corollary 2.2.7 may not be easily computable. It would be interesting

to find a stronger relaxation of this bound that can also be computed in polynomial time

since it could lead to better approximation algorithms.
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Chapter 3

Probabilistic Analysis of Unit

Demand Vehicle Routing Problems

3.1 Introduction

3.1.1 Unit Demand Vehicle Routing Problem

We study the Euclidean VRP where customers xi,..., x, and depot yl are points in the

plane, and the distance between points is the Euclidean distance. Each customer has unit

demand. The vehicles are identical, and with capacity Q E N. The route of each vehicle

starts and ends at the depot yi. Each vehicle cannot deliver more than its capacity Q. The

cost of a solution is the sum of the traversing cost of each vehicle. In the problems we

consider the objective is to route vehicles to deliver the demand of every customer while

minimizing the overall cost.

Except for some special cases, the VRP is an NP-hard problem. In their seminal paper

[35], Haimovich and Rinnooy Kan provided a worst case and a probabilistic analyses of the

VRP (see also [36]). In [35], a lower bound on the cost of VRP with metric distance is proved

which is the maximum between the cost of a TSP and the so-called radial cost. When Q

is fixed, the Euclidean VRP admits a polynomial time approximation scheme (PTAS). This

means that for any > 0 there exists a + e-approximation algorithm. The first PTAS for
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this case appeared in [35]. Subsequently, [9] improved its running time using the PTAS for

the Euclidean TSP (see [7] or [46]).

In [35], the authors also analyzed the problem from a probabilistic point of view when

the locations of customers are i.i.d. points and Q is a function of the number of customers.

The analysis showed that the lower bound is asymptotically optimal when Q = o(N/i) or

n2 = o(Q). As a result, the Iterated Tour Partitioning heuristic (ITP) by Haimovich and

Rinnooy Kan 35] becomes asymptotically optimal in both cases. For the rest of the cases,

the ITP heuristic is within a factor of 2 of the optimal cost.

The primary contributions of this chapter are as follows:

1. We improve the approximation bound of Haimovich and Rinnooy Kan [35] for the VRP.

This improvement, though slight, does resolve a long standing open question of whether any

improvement was possible.

2. We provide nonlinear valid inequalities (Lemma 3.2.3) that are useful for improving

bounds for VRP problems.

3. We show that for n points uniformly distributed in the unit square and for every p

with 0 < p < 1, there is a constant c(p) such that

lim P(at least pn points have a neighbor at distance < (p) = 0.n- "
c (X)

4. We extend the probabilistic analysis of VRP to the multi-depot case.

To be more precise, we show that when customers are uniformly distributed points in the

square [0, 1]2 and the distance is the Euclidean distance, there exits a constant > 0 such

that the lower bound we give is within a factor of 2 - of the optimal cost for any Q with

probability arbitrarily close to 1 as the number of customers goes to infinity. In this way, the

ITP heuristic is asymptotically a 2- a approximation algorithm for any Q. Our analysis also

shows a further improvement on the approximation ratio when Q = e(v¶/). These results

are generalized in the second part of the chapter to the multi-depot case, where the location

of the depots is fixed in advance. Related papers are Li and Simchi-Levi [44] and Stougie
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[55]. We introduce a natural generalization of the Iterated Tour Partitioning heuristic (ITP)

to the multi-depot case and we show that the results proved for the single-depot case carry

through.

The rest of the chapter is organized as follows: in Section 3.2, we present lower bounds

on the optimal cost of the VRP. In Section 3.3, we analyze the value of the lower bound in

a probabilistic setting, and we prove our main results about the approximation ratio of ITP.

We introduce the Multi-Depot Vehicle Routing Problem (MDVRP) in Section 3.4. In Section

3.5 we present an algorithm for the MDVRP that generalizes the ITP heuristic. In Section

3.6 we present lower bounds for the MDVRP. In Section 3.7 we analyze the lower bounds

and the algorithm for MDVRP in a probabilistic setting. We summarize our conclusions in

Section 3.8.

3.1.2 Notation

Unless otherwise stated, customers and depot are points in the plane. The location of ith

customer is denoted by xi for any 1 i < n. The depot is located at yl. The set of

customers is denoted by Xn) . The distance between customers i, j is denoted by cij or

by cxj, the distance between a customer i and depot is cyli. A solution of a VRP is

denoted by (K, vk, dk) where K is the number of vehicles used, k denotes the routing of the

kth vehicle and d E 0, 1 denotes whether the kth vehicle visits customer i or not. The

routing cost of vehicle k is denoted by C(vk). R = 1 2cy,i/Q is the so-called radial cost.

We denote by c(VRP) or by c(VRP(X(n))) the cost of an optimal VRP. We let c(TSP) or

c(TSP(X(n))) denote the cost of an optimal travelling salesman tour. Given a probability

space and a probability measure, the probability that event A occurs is denoted by P(A).

The probability of event A conditioned on event B is P(AIB). The complement of event A

is A. We use upper case letters (e.g., X) to denote random variables and lower case letters

(e.g., x) to denote a realization of a random variable.
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3.2 Lower bounds on the optimal cost of the VRP

We assume in this section that all distances satisfy the triangle inequality. We refer to such

problems as metric. The Iterated Tour Partitioning heuristic ITP(a) for the unit demand

VRP defined in [35] (see also [5]) receives an ac-optimal TSP as part of the input and

outputs a solution with cost at most R + a(1 - )c(TSP). Lemma 2.2.4 also implies that

the ITP(a) heuristic is a 1 + a(1- ) approximation algorithm for the unit demand VRP. In

the Euclidean setting there exists a PTAS for the TSP (see [7], [46]). Therefore the ITP is a

2- approximation algorithm in this case. We denote by c(VRPITP) the cost of the solution

generated by the Iterated Tour Partitioning heuristic when it receives an optimal TSP as

part of the input. When Q is not fixed, namely it is part of the input, the approximation

ratio is asymptotically 2. We state this as a lemma.

Lemma 3.2.1. The Iterated Tour Partitioning heuristic ITP(1) is a 2-approximation algo-

rithm.

The following lemma is similar to Corollary 2.2.7. We introduce some notation first.

Definition 3.2.2. Given a routing Vk = - i - -y that starts and ends at-- g ....Vk - 1- Yl tha st r t a nedsa

lk~~~~ ik _h leg t ofkdepot Yi, we associate to it the sequence of customers lk = -2 -z. The length of a

sequence is the number of customers visited. For any customers i, j, let li0 be the length of the

path in 1k from i to j if both i and j are visited by Vk. Otherwise, l = 0 . Given a solution

(K, vk, d) of the VRP, its associated sequences 11,...,1K are the associated sequences of

V1 , . , VK.

Since the distance matrix is symmetric, lik - lki

Lemma 3.2.3. Given a solution (K, Vk, dik ) of the metric VRP, its cost is at least

K n k K kk
di k dMd

E2Zcyii E.n_ dktk + E (Z d)(3.1)
k=l i= t= k=l i,jE{1,...,n} 

Proof. To simplify notation, let us define zk = 
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Since Ejn- z k = 1 we can rewrite (3.1) as

K

+E
k=l

K n

E E 2cylz i
k=l i=1

K n n K

y (E Zj) + ES:E 2cy,iz( ~ 
k=l i=1 j=l k=l,

K K

E 2Cyl,iZi Zj + Y
k=l ij{,...,n} k=l1

K

E( E (cY,i +
k=1 ijE{1,.,n}

1 ~k Zi Zjk

i,je{1,.,n}

E 1 ijZi Zj
i,jE{1 ... ,n}

1 k k Zk
E ij Zi Zj

i,jE{1...,n}

k k klij c C )Z i Zj )

C(Vk)ZiZj

K

k: Z
k-1 ijE{1,...,n}

The last inequality holds because of the following reasoning: if zik = then (cy1 ,i + l +

cylj)ZikZj = c(Vk)zikzjk = 0; otherwise k starts and ends at depot yl, and visits customers

i, j and thus (cY1,i + l + cy1,j)zZikZ < c(vk)zikz because of the triangle inequality. We use

the equality Enl z1 = 1 again to simplify the last expression:

K

_ z C(Vk)Zk Z
k=l ijE{1,...,n}

K n n

E C(Vki1)( Zi)( Zjk)
k=1 i=1 j=1

K

= E c(vk ).
k=l

Since any vehicle vk delivers 1t= dk < Q units of demand, the following observation

holds.

Observation 3.2.4. Given a solution (K, vk, di) of the metric VRP,

Kthe term 2cyid is at least the radial cost R = =1the term E k 1ii 2cyl,iyj./: 't s at least the radial cost R = Ei i 2Cy,,i.
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Definition 3.2.5. Given a solution (K, Vk, dik), a vehicle k is called half-full if it visits at

least Q customers. Let A C V be the set of customers visited by half-full vehicles. A solution

satisfies the fullness property if AI > n- Q
- 2'

The following lemma says that there always exists an optimal solution that satisfies the

fullness property.

Lemma 3.2.6. There exists an optimal solution (K, k, dik ) such that AI > n- Q
- 2'

Proof. Let (K, vk, dk ) be an optimal solution such that the associated set A has maximal

cardinality. Either there is at most one vehicle that visits at most Q of the customers or

there are at least two. On the first case, AI > n- Q. On the second case, we can replace

two vehicles that visit at most of the customers by one vehicle without increasing the

routing cost. In this case we found an optimal solution with an associated set A' bigger than

A, contradicting the maximality of A. [

We give a name to the quadratic term on the expression (3.1).

Definition 3.2.7. Given a solution (K, Vk,dik), let

K k k

QC(K, k, d) = En E d k ) (3.2)
k=1l i,jE{1,. ,n (= 

Let QC be the minimum value of QC(K, Vk, dik) among all optimal solutions (K, Vk, dik ) that

satisfy the fullness property of Definition 3.2.5.

It is apparent that the radial cost plus the quadratic term QC is a lower bound on the

cost of a solution (K, Vk, dk) that satisfies the fullness property. Therefore, the following

lemma holds.

Lemma 3.2.8. The cost of VRP is at least max{R + QC; c(TSP)}.
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3.3 Probabilistic analysis

We start giving the result by Beardwood, Halton and Hammersley [13] concerning the asymp-

totic behavior of the TSP. Let X1,X2 ,... be a sequence of i.i.d. points on [0, 1]2. With

probability one, the cost of an optimal subtour through the first n points satisfies that

li c(TSP(X(n)) )Jfl/ 2 dx (3.3)lim dx(3o3

where f is the absolutely continuous density of the Xi and 3 > 0 is a constant that doesn't

depend on the distribution.

From now on, we assume that the customers Xl,...,Xn are independent random vari-

ables with distribution U[O, 1]2. Although the results proven in this chapter also hold for

more general random variables, the restriction to uniform random variables is made in order

to simplify proofs. In this case, the ratio between the cost of TSP and /E converges a.s. to

a constant i > 0 (see [13]). The following theorem is proved in [35]. Informally, the result

says that the radial cost dominates the TSP when the capacity Q = o(/-) and the reverse

holds when n2 = o(Q).

Theorem 3.3.1. Let X1 , X2 ,... be a sequence of i.i.d. uniform random points in [0, 1]2 with

expected distance Iz from the depot, and let X (n) denote the first n points of the sequence.

* If limn,D r 0,° then

If lim-_, = , then

lim c(VRP(X(-)))Q= a.s.
n-oo n

fwhere > is the constant of 13.lmc(VRP(X (n)))

where >i; 0 is the constant of [13].
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In particular, the ITP heuristic is asymptotically optimal whenever limn-_ B = 0 or

limnn 00 = °-

Corollary 3.3.2. If limn $ = 0 or if limn- O = oo then (VRPTP) = 1 a.s.-M ,,Fn Vn ~~~~c(VRP)

Informally, the quadratic term (3.2) captures part of the interdistance between customers

that is neglected by the radial cost. This cost is related to the distance from a generic

customer i to its closest neighbor j ~= i. Let p be a parameter. If we define a threshold value

and we consider a customer an isolated customer whenever its distance to its closest neighbor

is at least the threshold, then the following lemma says that we can define the threshold as

a function of p in order to guarantee that the proportion of isolated customers is at least p.

Lemma 3.3.3. For any 0 < p < 1 there exists a value c(p) > 0 such that

c(p)]lim P(at least pn customers have a neighbor at distance < (p) -= 0. (3.4)n-oo 6

Proof. First divide the unit square into K2 = apn subsquares, each with a side whose length

is 1. We assume that apn is the square of an integer. This assumption is used to simplify

the proof. This proof carries through even if apn is not a square by defining K as the

(unique) integer such that K2 < pn < (K + 1)2. We will soon choose as a function of p.

Suppose that n points are dropped at random, corresponding to the selection of n squares

at random (with replacement). We will call a selected square isolated if no other selected

square is a neighbor. (Neighbors include the square and its 8 adjacent squares.) Otherwise,

we call it non-isolated. Then,

P(at least pn customers have a neighbor at distance < ) <

P(at least pn selected squares have a selected neighbor) = (3.5)

P(at least pn selected squares are non-isolated).

Suppose that we select points randomly one at a time. As the k-th point is randomly

selected, the probability that it is adjacent to a point that already has been randomly selected

is at most 9 ,which is bounded above by 9n 9 - This upper bound is independent of

rpn a~ '54
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the locations of the first k - 1 points. Therefore, the total number of non-isolated points is

bounded by 2X where X is the number of successes in Bernoulli distribution where n events

occur, and each event has a probability of of success. The factor of 2 comes from the factap

that if point k is adjacent to point i < k, then i is also adjacent to k. Then,

P(at least pn selected squares are non-isolated) < (3.6)

P(at least successes out of n with probability of success of 9).2 cap

Therefore, if we choose a so that 18 < p (that is, > 18), then by the law of large
ap p

numbers, limnMOO P(at least pn selected squares are non-isolated) = 0. Therefore, any value

of c(p) smaller than -~ - satisfies equation (3.4). 0
sv~

This lemma provides non-trivial lower bounds on the cost of combinatorial optimization

problems such as minimum weighted matching, travelling salesman problem and minimum

latency problem as the next corollary shows. The minimum latency problem (see [15]) is to

find a tour of minimum latency through all customers. The latency of a tour is the sum of

waiting times of each customers. We observe that the lower bounds we obtain for minimum

weighted matching and travelling salesman problem are of the same order of magnitude

as the results from [49] and [13] for these problems respectively. We are not aware of an

asymptotic result for the minimum latency problem.

Corollary 3.3.4. The cost of minimum weighted matching and the cost of TSP when points

are uniformly distributed in [0, 1]2 are Q(V/n) with probability 1. The cost of minimum

latency problem when points are uniformly distributed in [0, 1]2 is Q(n1 5) with probability 1.

Proof. For a fixed 0 < p < 1 and for c(p) such that equation (3.4) holds, minimum weighted

matching has cost at least C(P)1 - p)n = Q(v/f) with probability 1. Selecting p = 1/3 and

c(p) smaller than imply that minimum weighted matching has cost at least 0.04Vfi with

probability 1. This bound also holds for the TSP too since minimum weighted matching is

a lower bound of TSP.
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Given a solution Y - i - i2 - .. ,-in - Y of the minimum latency problem, its cost is

n-1 n-1

E Cik = -(n k)Cik,ik+l -
k=l k=O

For a fixed 0 < p < 1 and for c(p) such that equation (3.4) holds, this cost is at least

(n- k)ckik+ > c(p) (1 - p) 2n2 (nl.5).

k=(l-p)n

Selecting p = 1/5 and c(p) smaller than imply that minimum latency problem has

cost at least 0.11n'1 5 with probability 1. 

Definition 3.3.5. Given a parameter c, we say that a customer i is non-isolated with respect

to c if it has a neighbor at distance at most .

Proposition 3.3.6. Given a sequence 1 = i - i2 . -is with s > 1 customers where b of

them are non-isolated w.r.t. c, the following inequality holds.

l.- c E 5 > (6 2b).E 2-
i,jE{il,..*.,is} - -2

Iij aZ s-1 ~ e2t(s-t )0Proof. We can express the sum ijE{ a t ... s- Citit+ Let (t) = whenever

it and it+, are both non-isolated customers w.r.t. c and 1 otherwise. Then Citit+ 1 > 6 and

therefore

S ij s-1 2t(s - t)
E t 2 E 2 2 Cit'it+l >

ijE{il,...,is } t=1

s-1 2t~s - t) (t)c 8 - - cs-i
_______2 _ 2t(s - ) 2

2 =~~ (Z~ 2 t(s -t))t=l t=l t:6(t)=O S

To bound the right hand side of this inequality we will use the identities y]=i t = s(s-1) and2
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]-1 t2 (s-1)s(2s-1) < 2(s-1) The sum s- 2t(s-t) is thenEt5=1 6 - 3 't1S

s-1 2tS-1 2t2 i 21 (
E _ _ E 2 > (S - 1)= (3.8)
t=l t=l

In order to bound the sum Et:b(t)=0 2t(st) we observe that among all possible distribution

of b non-isolated customers in a sequence with s customers, this sum reaches its maximum

value when the non-isolated customers are located in the center of the sequence 1. The

reason is that the weight -; is a quadratic convex function of t that reaches its maximum

at t = s/2. That is, this sum reaches its maximum when the non-isolated customers in the

sequence are ia, ia+l,... ,i i+b-1 where a is either ['J or ['J + 1. (In particular, a is at
2t(s-t)most 2b + 1.) Therefore, the sum Et:6(t)=o 82 is at most

a+b- 2t(s - t) a<E 2ts _ 2b(2a+ b-1) < <2b. (39)
-~~ z < b (39)82 -- 2 $ - 8 

t=a t=a

Inequalities (3.8) and (3.9) imply that the right hand side of inequality (3.7) is at least

(-2b). El

When Q > 2, the quadratic term QC defined in (3.2) is Q(V/~) with probability 1 as the

next lemma shows.

Lemma 3.3.7. Assuming that Q > 2, there exists > 0 such that

lim P(QC > 6v'-) = 1.
n---C¢

Proof. Let (K, vk, dik) be any optimal solution that satisfies the fullness property. By Lemma

3.2.6 there is always an optimal solution that satisfies the fullness property. This implies

that at most one vehicle vk of this solution visits only one customer. We will prove that

there exists > 0 such that limnlooP(QC(K, vk, dik ) > EV/n) = 1 for any such (K,vk,dik),

which implies that limnlo P(QC > 6/V) = 1 holds. Let 0 < p < 1, c > 0 be parameters

to be fixed afterwards. Each vehicle k of (K, Vk, dk) has associated a sequence k with Sk
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customers and bk of them are non-isolated customers w.r.t. c. Proposition 3.3.6 implies that

Z~ lij (Zjnl dk)2 > - - 2bk)
k=1 i,jE{1,...,n} (= k=l 6

(~i- 2{non isolated customers w.r.t. c}I).

If we choose p, c such that Lemma 3.4 holds, then

lim P(I{non-isolated customers w.r.t. c} < pn) = 1
n-oo

and therefore

Klim P( E
n oo

k=1 ijEj1,...,n}

k k
k didj

Theorem 3.3.8. There exists a constant > 0 such that

lim P(c(VRPTP) < 2- = 1n-oo c(VRP) 2-e)=1

Proof. We know that c(VRPITP) < R + c(TSP).

max{R + QC, c(TSP)}. Therefore,

c(VRPITP)
c(VRP)

Lemma 3.2.8 says that c(VRP) >

(3.11)

We know that the ratio between the cost of TSP and v~ converges a.s. to a constant 3.

By Lemma 3.3.7 we know that limnT P(QC >_ Evr-) = 1. By setting c = < V() the3/3
following limit holds.

QO
lim P( QC > ) = 1
n-oo c(TSP) 

Equations (3.11) and (3.12) prove the theorem.

(3.12)
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R + c(TSP) 2 QC
-max{R + QC, c(TSP)} - c(TSP)

c (n _ pn)) = .
V/n_ 6



What is c? In the uniform [0, 1]2 setting, the constant fi > 0 is at most VX (see [30]).

By fixing p = 1, the value (-2p) (and therefore ) is at least 0.0028. A more careful

derivation of bounds for constants c(p) in Lemma 3.3.3 and for c in Proposition 3.3.6 show

that c can be 0.01.

A generalization Let , = E(cy%,x) be the expected distance of a customer X to the

depot. If limQ._,M k exists and is equal to a finite value w > 0, the strong law of large
R _numbers implies that limnn - = 1 a.s. The approximation ratio of the ITP heuristic

satisfies the following.

Q

Theorem 3.3.9. Let c be the constant defined on Lemma 3.3.7. Assume that limn_ O

exists and is equal to 0 < w < o. The approximation ratio of the ITP heuristic satisfies

that

* If 2 + < ,
li p(c(VRP ) < 1 1 +_____ C =1

*·If +e fi,W 1 ~c(VRP •l ±+~ _ = 1.
lmP(VR PITP) 

c(VRP) -max{R + QO, c(TSP)}

and the limits T '+ lim QC = a lin R - . LIR+R c(VRP) 1+ W mfl c

3.4 Multi-Depot Vehicle Routing Problem·If + <fi

In this Section we generalize the VRP to a multi-depot scenario. There are n customersand m depots. Each vehicle starts and ends atmat e at is no

c(restriction on the number of vehicles available at each depot.c(VRP) -max{ R + QC, c(TSP)}I

and he lmitsli~n c(TSP) i C R 2_pand he imit li-_. R+QR - +e limn-o, QC c im_. = [
' R+R6~~ c(TSP) wi

3.4 Multi-Depot Vehicle Routing Problem

In this Section we generalize the VRP to a multi-depot scenario. There are n customers

and m depots. Each vehicle starts and ends at the same depot. We assume that there is no

restriction on the number of vehicles available at each depot.

59



3.4.1 Notation

We extend the notation from the previous sections. Unless otherwise stated, customers

and depots are points in the plane. The location of ith customer is denoted by xi for any

1 < i n. The location of jth depot is denoted by yi for any 1 j < m. The set of

customers is denoted by X (n ). The set of depots is denoted by y(m). A solution of a multi-

depot vehicle routing problem (MDVRP) is denoted by (K, Vk, dk ) where K is the number

of vehicles used, k denotes the routing of the kth vehicle and dk C {0, 1} denotes whether

kth vehicle visits customer i or not. For each customer i, let ci = min{ci,y : y G y(m)} be its

minimum distance to a depot. RID = i= 2ci/Q is the multi-depot radial cost. We denote

by c(MIDVRP) or by c(MIDVRP(X(n))) the cost of an optimal MDVRP and by c(TSP) or

by c(TSP(X(n) Y(m))) the cost of an optimal travelling salesman tour through all customers

and depots. Let co(MDVRP) denote the cost of the MDVRP when the capacity of vehicles

is infinity. Given a vehicle k that starts and ends at depot y, and customers i,j, let Vk - y

be the path obtained by deleting the depot y from the tour k. Let lk be the length of the

path in k - y from i to j if both i and j are visited by Vk. Otherwise, lk = 0.

3.5 An algorithm for the Multi-Depot VRP

We generalize the Iterated Tour Partitioning to the multi-depot case. The Multi-Depot It-

erated Tour Partitioning (MDITP(o)) heuristic we propose uses the ITP() heuristic as a

subroutine. We assign each customer to its closest depot and solve m independent VRP

problems. More formally, the MDITP heuristic is as follows:

0) S = 0 for all 1 < j < m;

1) For each customer x find yj, its closest depot, and let Sj = Sj U {xi};

2) For each 1 < j < m run the ITP(ca) heuristic to approximately solve the VRP problem

VRPj where yj is the only depot and the set of customers is Sj;

The cost of the solution produced by this heuristic is the sum of the cost of the solutions
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produced by ITP(a) on each VRPj which is at most RMD + a ZE71 c(TSPj). In what

follows, we denote by c(MDVRPMDITP) the cost of this heuristic when we use ITP(1) as a

ssubroutine. This analysis implies the following.

Lemma 3.5.1. The cost of MDVRP is at most RMD + jm=L1 c(TSPj).

Figure 3-1: Assigning customers to their closest depot.

3.6 Lower bounds on the optimal cost of Multi-Depot

VRP

]In this Section we generalize the results from Section 3.2 to the multi-depot case. The

following lemma generalizes Lemma 2.2.4.
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Lemma 3.6.1. The cost of MDVRP is at least

max{RMD; co(MDVRP)} .

Proof. Let Xk be the set of customers visited by vehicle vk and let y be the depot from where

vk starts and ends. Then,

c(vk) > 2max{ci,y} > 2max{ci} > 2 C > - E ci
%E~~k i(=-Xk j~~~kj iEXk

Summing for all vehicles we obtain that c(MDVRP) > RMD.

Inequality c(MDVRP) > co(MDVRP) holds since any feasible solution of the MDVRP

with vehicles with capacity Q is also feasible for the infinite-capacity MDVRP. [

The next lemma relates c(MDVRP) with the cost of a TSP.

Lemma 3.6.2. Let c(TSP(Y(m))) denote the cost of an optimal subtour through the depots.

Then,

coo,(MDVRP) > c(TSP(X(n) U y(m))) c(TSP(y(m))).

Proof. We observe that co(MDVRP)+c(TSP(Y(m))) is the cost of the walking tour formed

by the union of the routes of an optimal solution of the infinite-capacity MDVRP plus a

subtour through all the depots. This walking tour can be transformed into a TSP through

all customers and depots of lesser cost by shortcutting nodes already visited. Therefore,

co(MDVRP) + c(TSP(Y(m))) > c(TSP(X(n) U y(m))) holds. E

The following lemma is a generalization of Lemma 3.2.3.

Lemma 3.6.3. Given a solution (K, Vk, di) of the MDVRP, its cost is at least

K n dk K k ddk

2cin dk +I t lij _ y 2 * (3.13)
k=1 i~l Et~l t k=l i,j{1 .,n} (tl )
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A solution of the MDVRP satisfies the fullness property if Al > n- m Q. The following

lemma says that there always exists an optimal solution that satisfies the fullness property.

Lemma 3.6.4. There exists an optimal solution (K, Vk, dik ) such that Al n- mQ.

Proof. Given an optimal solution (K, Vk,dk), each depot has at most one vehicle that is

not half-full. Otherwise, we can merge the routings of two not half full vehicles and obtain

another optimal solution that satisfies the fullness property. L

We give a name to the quadratic term on the expression (3.13).

Definition 3.6.5. Given a solution (K, Vk, dk), let

K dk k

QC(~KK, kd) = kE iE 2 (Z,=2 dl:) (3.14)
k=l i,jE{2,...,n} j=2

Let QC be the minimum value of QC(K, Vk, d) among all optimal solutions (K, Vk, dk) that

satisfy the fullness property of Definition 3.2.5.

It is apparent that the multi-depot radial cost plus the quadratic term QC is a lower

bound on the cost of any solution (K, vk, de) that satisfies the fullness property. Since there

is at least one optimal solution that satisfies the fullness property, the following lemma holds.

Lemma 3.6.6. The cost of MDVRP is at least

max{RMD + QC; c(TSP(X( n) U y(m))) _ c(TSP(Y(m)))}.

Lemma 3.3.7 also holds for the multi-depot case. The constant c of this lemma is the

same as the one in Lemma 3.3.7.

Lemma 3.6.7. Assuming that limnTO Q = oo and Q = o(n), there exists > 0 such that

lim P(QC > v/-) = 1.
n-*oo
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3.7 Probabilistic analysis of MDVRP

3.7.1 Probabilistic analysis of lower bounds

We analyze the Unit Demand Euclidean MDVRP where the depots and customers are points

in the plane. The customers have unit demand. The m depots are fixed in advance whereas

the location of the n customers are i.i.d. uniform random variables on [0, 1]2.

Let U1, . . ., U be a disjoint partition of the square [0, 1]2 such that each Uj contains

exactly one depot, namely yj. For each 1 < j < m, let nj 0 be the number of customers

that belong to UJ and let X(nJ) be the set of customers that belong to Uj. Let c(TSPj) :=

c(TSP(X( ni) U {yj})) be the cost of an optimal subtour that visits all customers of X (nj)

and depot yj. The following result holds.

Lemma 3.7.1.

mj-l c(TSPj)lim L = 1 (a.s.)
n-o c(TSP)

Proof. For each 1 < j < m, let fi be the restriction of the uniform density to the set U,.

That is,

fh() lifxEUj,
0 otherwise.

The function ,,- is the density function of a customer conditional that it belongs to Uj. We

will prove that

lim c(TSP) = ff/2dx (a.s.) (3.15)
n-oo f

for each 1 < j < m. Let us fix j. In order to prove equation (3.15) we would like to restrict

the experiment; to the customers that fell inside Uj and apply the result by Beardwood et

al. [13]. However, this has to be done with some care since the number of customers that

fell inside Uj is random. We observe that the distribution of customers that fell outside Uj

does not affect c(TSPj). Therefore, the cost of the optimal TSP of the following experiment
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is probabilistically the same random variable as c(TSPj). Let the n customers be i.i.d.

points with the following distribution: with probability pj = IUj I customer i is located in Uj

according to density h, with probability 1 -pj customer i is located in depot yj. The mainpi

properties of the new experiment are

1. All the points fell inside Uj.

2. The cost of an optimal tour through all points and depot yj in the new experiment has

the same distribution as the cost c(TSPj) in the original experiment.

Since the absolutely continuous density part of the distribution of a customer in the new

experiment is fj, the result by Beardwood et al. [13] implies that equation (3.15) holds for

each j.

Since for each j, equation (3.15) holds almost surely, altogether they imply that

limY~'j~lc(TSP) /
lim - 1 c(TSPj) dx / f l/2dx (a.s.). (3.16)

j=1

The last equality holds since f = E = 1 fj and the support of functions fj are mutually

disjoint. Finally, (3.16) and (3.3) imply that

lim m c(TSPj) . Ej= c(TSPj)/
lim (TP = lim = 1 (a.s.)

no c(Tsp) no c(TSP)/vrn

The following theorem generalizes Theorem 3.3.1 to the multi-depot case.

Theorem 3.7.2. Let X1, X 2 , ... be a sequence of i.i.d. uniform random points in [0, 1]2 with

expected distance to its closest depot, and let X(n) denote the first n points of the sequence.

1. If lim,_ 1 O Q = 0, then

li c(MDVRP(X(n)))Q 
ln= 2p a.s.n-oc n
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2. If limno, , = oo, then

lic(MDVRP(X(n))) = a.s.
n -oo n

where 0 > 0 is the constant in [13].

Proof. Lemmas 3.5.1, 3.6.1, 3.6.2 imply that

max{RMD; c(TSP)(X(n) U y(m)) _ c(TSP(y(m)))} < c(MDVRP(X(n)))

and that
m

c(MDVRP(X(n))) < RMD + E c(TSP).
j=l1

The ratio between RMD and n/Q is equal to RMDQ = n 2cQ = 1i2ci The law of largen Ei~l nQ i n

numbers implies that this ratio converges a.s. to 2. If X 1, X2,... are uniformly bounded
E' I c(TS~)Q En (TSPj) Qsicand limn_ Q = 0, then limn o Ej= c(TSPj)Q lim j=C(TSP) = 0 since- - .= limn_~,/

limn_ y =L c(T'sPj) = 1im c(TSP)(X(n)uY(m)) is a constant. Therefore,
V'~ = l i m _

2/ = lim maX{RMD; c(TSP)(X(n) U y(m)) _ c(TSP(Y(m)))} <
n=-oo n/Q

lim c(MDVRP(X(n))) < liRMD + Em 1 c(TSP;)lim < lim =2.
n-oo n/Q n-00 n/Q

in this case.

When limn+oo Qf = oo, then RMQ = En 2c Q _, i-. When n goes to infin-

ity, this ratio converges to 0 a.s. The ratio between c(TSP)((X(n) uY(m))) and \/ converges

to 3 a.s. The ratio between c(TSP)(Y(m)) and r/n converges to 0 since c(TSP)(Y(m)) is

a constant. The ratio between Ej=l c(TSPj) and also converges to /3 a.s. because of

Lemma 3.7.1. Therefore,

3 = m max{RMD; c(TSP)(X(n) U y(m)) _ c(TSP(y(m)))} <
n-oo Vn
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c( MDVRP(X (n)))

Vn
< lim

n-oo
RAID + I1 c(TSPj)

n

in this case.

3.7.2 Probabilistic analysis of an algorithm for MDVRP

The following theorem is an extension of Theorems 3.3.8 and 3.3.9.

Theorem 3.7.3. There exists a constant > 0 such that

c(MDVRpMDITP)
c(MDVRP)

lim c(MDVRPMDITP)
noo0 C( MDVRP)

< 2-) = 1.

= (a.s.)

2. If limn- o Q = w > 0 and 2 + < 3,W

-11111 1n-- NO0

5'. If lifln o:, / = w > O and 2 + < 3,V//
lim P(

n-oc

= , then
4. If lImn-l:, - =COc, then

c(MDVRPAIDITP)
= 1 (a.s.)c(MDVRP)

lim
n- 0o

=3

lim P(
n- 00o

Moreover,

1. If limn,, Q = 0, then

(3.17)

MDVRPMDITP)
c(MDVRP)

< + 
--%1 .ew

c(MDVRPMDITP)
c(MDVRP)

lim
n-oo
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where 3 is the constant from 13], / is the expected distance of a customer to its closest depot

and is the constant of Lemma 3.6.7.

Prof. The proofs of these results go along the same lines as the proofs of Theorems 3.3.8

and 3.3.9. The proofs of equation 3.17 and 2 follow from Lemmas 3.5.1, 3.6.6, 3.6.7 and

3.7.1. The proofs of 1, 3 and 4 follow from Lemma 3.5.1 and Theorem 3.7.2. 

3.8 Conclusions

We present a lower bound for the metric VRP and show that is at least the radial cost plus

a term of the same order of magnitude as the cost of TSP when the location of customers

are i.i.d. uniform random points in the plane and the distance is the Euclidean distance.

This lower bound improves on the previous work by [35]. We show that for the Euclidean

VRP there exits a constant > 0 such that this lower bound is within a factor of 2 - of

the optimal cost for any Q with probability arbitrarily close to 1 as the number of customers

goes to infinity This is an improvement over the result proved in [35], which is a 2 factor

approximation. As a result, the ITP heuristic is asymptotically a 2- approximation

algorithm for any Q. In the second part of this chapter we analyze the multi-depot vehicle

routing problem. We give a natural generalization of the ITP heuristic for this problem.

The lower bounds presented on the first part are extended to this problem. The asymptotic

results of the single-depot case from the first part are generalized to the multi-depot case.
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Chapter 4

Using Grammars to Generate Very

Large Scale Neighborhoods for

Sequencing Problems

4.1 Introduction

Very large scale neighborhood search has been used in a variety of contexts and employs a

variety of techniques. For survey papers, see Ahuja et al. [3] and Deineko and Woeginger

[47]. Deineko and Woeginger [47] described a variety of techniques used to search exponential

neighborhoods for the TSP in polynomial time. Other closely related papers include Gutin

et al. [34], Ergun and Orlin [26], and Burkard et al. [17].

As a type of local search algorithm, the time to find a local optimum using VLSN search

may not be polynomial. For example, Krentel [40] showed that the TSP under the k-Opt

neighborhood is PLS-complete for some constant k, giving relative evidence that finding a

local optimum is a hard task. For definition and properties of the class of problems PLS, see

the book by Aarts and Lenstra [1]. On the bright side, Orlin et al. [48] shows that, as long

the neighborhood can be searched in polynomial time (e.g., VLSN), it is possible to find an

E-local optimum in polynomial time.
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Many of the efficient search techniques for VLSN rely on dynamic programming recur-

sions. In this chapter, we unify these disparate results into a unifying framework based

on context free grammars. We also provide a generic dynamic programming algorithm for

finding the best tour in a grammar-induced neighborhood. When specialized to the neigh-

borhoods given in Deineko and Woeginger [47], our generic algorithm achieves the same

running time as the special purpose dynamic programs, except for the twisted sequence

neighborhood. In that case, our generic DP improves upon the previous best bound by a

factor of n. The framework developed for generating neighborhoods for the TSP and the dy-

namic programming solver applies to other sequencing problems including the linear ordering

problem.

For successful development of VLSN search, it will become increasingly important to find

effective ways of describing the exponentially large neighborhood efficiently via a computer

language. Here we have made substantial progress towards that goal in the case of sequencing

problems.

1. We develop the first language for compactly generating exponentially large neighbor-

hoods for sequencing problems. In fact, it is the first language for compactly generating

exponentially large neighborhoods.

2. We develop the mathematical foundation for using regular grammars and context free

grammars to describe very large neighborhoods for sequencing problems.

3. We develop a dynamic programming solver for the TSP that determines an optimum

neighbor in time polynomial in the size of the problem and the number of rules. The

solver uses the rules of the grammar as input as well as the TSP instance and current

solution.

4. We develop dynamic programming solvers for a list of other sequencing problems, such

as the Linear Ordering Problem, scheduling problems that determine an optimum

neighbor in time polynomial in the size of the problem and the number of rules. The

solver uses the rules of the grammar as part of its input.
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5. We provide efficient algorithms for enumerating the size of neighborhoods and for decid-

ing whether two neighborhoods are distinct in the case that the generating grammars

are context-free and unambiguous.

The rest of the chapter is organized as follows. In Section 4.2, we describe a list of problems

that can be expressed as sequencing problems. We establish the notation and terminology

for sequencing problems, local search algorithms and grammars that we use throughout the

chapter. In Section 4.3, we present neighborhoods defined in the literature and their de-

scription using grammars. In Section 4.4, we state the generic dynamic programming solvers

for finding the best tour in a grammar-induced neighborhood, for each of the sequencing

problems described in Section 4.2. We also present algorithms to solve other problems for

grammar-based neighborhoods. We study more theoretical questions in Section 4.5. Pa-

padimitriou and Steiglitz [50] proved that, unless P = NP, if we can search a neighborhood

for the TSP in polynomial time, then this neighborhood cannot be exact, namely it must

have local optima which are not global optima. We show a stronger result for a restricted

case in our context: a sequence grammar that generates the complete neighborhood must

have an exponential number of production rules.

We also present algorithms for counting the size of a neighborhood, and for deciding

whether two sequence grammars generate the same language. In Section 4.6 we study prob-

lems related to the inverse of sequence grammars. We present an algorithm for optimizing

over an inverse neighborhood. Finally, we present our conclusions in Section 4.7.

4.2 Notation and terminology

4.2.1 Sequencing Problems

We start by giving the general definitions associated to sequencing problems. In the next

subsections, we give a list of particular sequencing problems, all of them being NP-hard

problems.

Let {1,...,n} be a set of objects. A sequence or permutation = (r(1),...,7r(n)) is
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a bijective function 7r {1,. . . ,n} {1, ... ,n}. A subsequence a,... , ak is an injective

function of {1... , k} onto {1,...,n}. The set of all permutations is denoted by Sn. Let

P, (_ S, be the set of feasible solutions. Let c be a cost function, where c P Z. The

sequencing problem is to find a sequence 7w C P, of minimum cost c(Tr).

rlaveling Salesman Problem

The Asymmetric Traveling Salesman Problem (ATSP) is to find the minimum distance tour

on nl cities 1,...,n. The distance from city i to city j is cij, and we let C denote the

matrix of distances. We represent a tour using a permutation 7r E Sn, where Sn is the set

of permutations of {1,..., n}. The permutation 7r = (ir(1),...,r(n)) refers to the tour in

which the first city visited is 7(1), the next city visited is 7r(2), and so on. We will also refer

to 7r as a tour. The cost of the tour 7r is denoted as c(7r) = i__Cr(i)w(i+l) +C C(n)7r(1)- We will

refer to two consecutive cities of r (that is, 7r(i), r(i + 1) for 1 < i < n- 1 and 7r(n), r(1))

as edges of the tour 7r. We note that n distinct permutations correspond to the same tour.

Both symmetric and asymmetric versions of the Traveling Salesman Problem are NP-hard;

a book devoted to different aspects of the traveling salesman problem is [42].

Linear Ordering Problem

We associate with each pair (i, j) a cost cij. The cost of a permutation r = ((1),... 7r(n)) E

S,, is (T) = Yi<j C7r(i)(j). The Linear Ordering Problem (LOP) is to find the permutation

r C S, with minimum cost. The Linear Ordering Problem is NP-hard (see Karp [38]).

Minimum Latency Problem

We associate with each pair (i, j) a cost cij. A permutation ir E S, represents a tour visiting

all the customers. Each customer 7r(i) experience a cost c(T(i)) = C(k)(k) The cost

of a permutation 7r S of customers is the sum of costs that each customer experiences:

C(7)r = n-4 c(7r(k)) = n-(n - k)(k>(k+1) The Minimum Latency Problem (MLP) is

to find a permutation 7r E Sn with minimum cost (see Blum et al. [15]).
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Single Machine Scheduling Problem

Let 1,...,n} be a set of jobs to be processed by a single machine. Each job i has a

processing time pi. Each job may also have a due date di and/or a ready time ri. There

may be precedence constraints among jobs, i.e., job i has to be processed before job j. Each

schedule (sequence) of jobs has a cost. Given a sequence of jobs 7r E Sn, the completion time

of job 7r(i) is C(i) = Zk=lPr(k). The tardiness of job 7r(i) is T,(i) = max{C,(i)- d,(i), O};

the lateness of job r(i) is Lr(i) = C,(i) - d(i). A single machine scheduling problem is to

find a sequence of jobs r E Sn of minimum cost, where the cost function can be the sum of

completion times E C,(i, the weighted sum of completion times E wr(i)C(i), the maximum

tardiness max{Tr(i)}, the maximum lateness max{L7r(i)}, the makespan Cr(n), or the sum of

weighted tardinesses E wr(i)Tr(i)

All these single machine scheduling problems are NP-hard. See the survey chapter by

Lawler et al. [43].

Weighted Bipartite Matching Problem with side constraints

Let L = {1,..., n} be a set of lessons. For each I C L, let b be the number of consecutive

time slots lesson needs. Let T = {tl,..., tm} be the set of time slots, let E C L x T give

the possible time slots for each lesson. That is, if (1, t) belongs to E then it is valid to teach

1 on the block of time slots that goes from t to t + bl. A time slot can be used by at most

one lesson. In the optimization version of the Bipartite Matching Problem with Relations,

each pair (1, t) E E has a cost ct. We assume that invalid pairs (1, t) E have large cost.

The Weighted Bipartite Matching Problem with side constraints (WBMPSC) is to find a

feasible matching with minimum cost. If b = 1 for all lesson 1 then the problem is a (regular)

matching and thus is solvable in polynomial time. However, even if b < 2 the problem is

NP-hard (see ten Eikelder and Willemen [56]).
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Shortest Hyperpath Problem

We give some definitions first. These definitions are taken from Gallo et al. [31]. A directed

hyperpath 1- = (V, A) is a generalization of a directed graph in the following sense. V is the

set of nodes of 7-, and A is the set of hyperarcs. A hyperarc is a pair e = (T(e), h(e)), where

T(e) C V is the tail of e. and h(e) E V\T(e) is the head of e. When IT(e)l = 1, the hyperarc

is an arc in the normal sense of the word. Each hyperarc e has a cost Ce. A path from node s

to node t is a sequence of alternating nodes and hyperarcs (s = v1, el, v2, e2, .. ., vq = t) that

starts at node s, ends at node t, such that each node vi in the sequence is the head h(ei)

of the previous hyperarc, and belongs to the tail T(ei+l) of the next hyperarc. A hyperpath

from node s to node t is a sub-hypergraph that contains a path from node s to node t, and

it contains all the heads and tails of its hyperarcs, and it is minimal with respect to deletion

of nodes and hyperarcs. The cost of a hyperpath is the sum of the costs of its hyperarcs.

Given a directed hypergraph 7H = (V, A), nodes s, t and a cost function c: A ) R, the

task is to find a hyperpath of minimum cost that contains a directed path from node s to

node t.

4.2.2 Neighborhoods

We describe neighborhoods for sequencing problems with n objects. For sequence r =

(7r(1), . . ., 7r(n)), and permutation a = ((1), . . , a(n)), we associate another sequence 7ra =

(7r(a(1)),.. , (u(n))), which is formed by composing permutations r and a. For example,

if 7r = (3,2,4,1,5) and if a = (2,1,3,5,4) then ra = (2,3,4,5,1). We may view a as an

operator in this case since it transforms one sequence 7r into another sequence 7ra.

We associate a set of operators Nr for each sequence r that induces the neighborhood

Nr(7r) = {7ra: a E Nr}. We refer to N' as the neighborhood set for r.

In the case that Nr = N" for all sequences 7r and -y, we say that the neighborhood is

sequence-invariant. In the case that the neighborhood is sequence-invariant, the neighbor-

hood of all sequences is entirely determined by the neighborhood set N. In this case, the

neighborhood of r is denoted as N(7r). In this thesis, every neighborhood that we consider
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will be sequence-invariant. This is a common assumption for neighborhoods for the traveling

salesman problem, and was used implicitly by Deineko and Woeginger [47].

In the case that we are treating neighborhoods for different sized sequencing problems,

let Nn denote the neighborhood set for problems with n objects. In the case that the number

of objects is obvious from context, we drop the index, and denote the neighborhood set as

N.

For example, in the case that n = 5, the 2-exchange neighborhood consists of all per-

mutations that can be obtained from the sequence (1, 2, 3, 4, 5) by flipping the order of one

set of consecutively labeled objects. So, the following some elements of the 2-exchange

neighborhood sV5: (1,2,3,4,5),(1,2,5,4,3),(1,4,3,2,5),(1,2,4,3,5) and (5,4,3,2,1).

In general, we assume that the identity permutation is in Nn, that is (1, 2, .. , n) E Nn.

We define the inverse of a neigbhorhood N, as the neighborhood inv(N) = {u-1: C

N}.

4.2.3 Very Large Scale Neighborhood Search

A neighborhood search algorithm starts with a feasible solution of the optimization problem

and successively improves it by replacing it by an improved neighbor until it obtains a

locally optimal solution. For many neighborhoods, an improving neighbor is determined by

exhaustively enumerating all of the neighbors. We refer to a neighborhood as very large

scale if the neighborhood is too large to be searched exhaustively and is searched using some

more efficient search procedure.

In this thesis, we are primarily (but not entirely) focused on neighborhoods with the

following two properties, also given in Deineko and Woeginger [47].

1. Exponential Size Property. The neighborhood set Nn is exponentially large in n. That

is, there is no polynomial function f(n) such that INnl = O(f(n)).

2. Polynomially Searchable Property. The neighborhood Nn may be searched in polyno-

mial time. That is, there is Algorithm A and a polynomial f() such that for every
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sequence r E Sn, Algorithm A can find the neighbor of minimum cost in Nn(Tr) with

respect to any cost function in time O(f(n)).

Any neighborhood with the first property is referred to as an exponential neighborhood.

Any neighborhood with the second property is said to be searchable in polynomial time.

Very large scale neighborhood search has been used for a wide type of problems, and

uses different search techniques. For survey papers, see Ahuja et al. [3] and Deineko and

Woeginger [47]. Deineko and Woeginger [47] described a variety of techniques used to search

exponential neighborhoods for the TSP in polynomial time. Many of these relied on dynamic

programming recursions. In this chapter, we unify the disparate results of those solvable by

dynamic programming into a unifying framework based on context-free grammars. More-

over, we provide a generic dynamic programming algorithm for finding the best tour in a

grammar-induced neighborhood that has the same running time for these special cases as

those described by Deineko and Woeginger [47]. It is worth mentioning that it solves the

twisted neighborhood faster than the algorithm given in [47].

4.2.4 Grammar terminology

Roughly speaking, a grammar is a set of rules for how to compose strings in a language.

In this subsection we define the concepts from the theory of languages that are relevant

in our work. We refer to the books by Hopcroft and Ullman [37] and Sipser [54] for more

information on languages and grammars. The primitive symbols are either terminals or

non-terminals. VNT is the set of variables or non-terminals, and VT is the set of terminals.

We assume that VNTandVT are disjoint. We let V = VNT U VT. S E VNT is the start symbol.

A string a E V* is a finite sequence of terminals and non-terminals. In what follows, lower-

case letters a, b, c denote terminals. Capital letters A, B, C denote non-terminals. Capital

letters R, X, Z denote either terminals or non-terminals. Greek letters a, 3 denote strings of

terminals and non-terminals.

P is the set of production rules. We first consider production rules p E P of the following
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form:

A -*a1...ak forsome k > 1, (4.1)

A -al ... akB1 for some k > 1, or (4.2)

A -*Blal ... ak for some k > 1, or (4.3)

with A, B1 E VNT, a,.. , ak E VT. We denote by G = (VNT, VT, P, S) a grammar. A

grammar with production rules of the form 4.1 and 4.2 (4.1 and 4.3) is a right (left) regular

grammar.

Example 4.2.1 ([37]). Let G = (VNT, VT, P, S) be the grammar where VNT = {S, B},

VT = {a, b} and P = {S - aB, S--+ ab, B - bS}. Then G is a right regular grammar and

the language it generates is L(G) = {ab, abab, ababab,.. . } = {(ab)n : n > 1}.

A more general type of grammars are the context-free grammars. In a context-free gram-

mar we allow production rules of the form (4.1) to (4.3) and

A -- BB 2 ... Bk for some k > 1, (4.4)

with A, B 1 ,..., Bk E VNT. Sometimes we write a production rule like A -- B1 B2 ... Bk as

A - B 1, B 2 ,..., Bk. The commas are used to separate symbols more clearly and they do

not have any additional interpretation.

The following example from [37] shows a context-free grammar and the language it gen-

erates. It is worth mentioning that the so-called pumping lemma, a theoretical result from

grammar theory, implies that there is no left-regular grammar that generates the same lan-

guage.

Example 4.2.2 ([37]). Let G = (VNT,VT,P,S) be the grammar where VNT = {S,B},

VT = {a, b} and P = {S - aB, S--+ ab, B -- Sb}. Then G is a context-free grammar and

the language it generates is L(G) = {ab, aabb, aaabbb,.. . } = {anb : n > 1}.

A context-free grammar with at most two nonterminals on the right hand side is in
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normal form. A grammar with production rules of the form 1, 2, 3 is in extended normal

form.

Finally, in a context-sensitive grammar we allow rules of the form a1 Aa 2 -+ al/3 a2 for

a,, a 2,/3 E V. A regular grammar is also a context-free grammar, and a context-free

grammar is also a context-sensitive grammar. All these inclusions are strict (see Hopcroft

and Ullman [37]). That is, there are languages generated by a context-sensitive grammar

that cannot be generated by a context-free grammar. And there are languages generated by

a context-free grammar that cannot be generated by a regular grammar. In this chapter, we

will define sequencing grammars, which are a subset of regular grammars. In most of this

thesis we will not use context-sensitive grammars since they are too powerful (see Section

4.3.5).

For a production rule A - /3 E P, we say that the string A-y directly derives a0/ in

grammar G for all strings ca, y E V*. String a E V* derives string E V* in G if there exist

strings O, . , ak E V* for some k > 1 such that a0 = a, ak = and ai directly derives ai+l

in G for 0 < i < k - 1. The language generated by G, denoted L(G), is the set of strings,

consisting solely of terminals, that can be derived from S.

For each non-terminal A we denote by L(GA) the language generated by the grammar

GA = (VNT, VT, P, A), that is, using non-terminal A as the start symbol.

A tree is a derivation (or parse) tree for G if

1. every vertex of the tree has a label which is a terminal or a non-terminal,

2. the label of the root of the tree is the start non-terminal S,

3. all the interior vertices of the trees have non-terminals as labels,

4. if vertex i has label A and its sons are vertices i1.. . , ir from left to right with labels

R1,.. , Rr, then A -- R,. .. , Rr must be a production rule in P.

The set of leaves of a derivation tree, ordered from left to right, form a string in V*. We

say that the derivation tree generates this string. A grammar is ambiguous if there exist two

parse trees that generate the same string. It is unambiguous otherwise.

78



Given a production rule p A -- R ... Rr we denote by L(Gp) the set of strings o

generated by the grammar GA = (VNT, VT, P, A) such that p belongs to the parse tree of a.

4.2.5 Sequence Grammar

Let C = (VNT, VT, P, S) be a regular or context-free grammar that generates a finite language.

We refer to G as a sequence grammar on n objects if (i) the set of terminals contains n symbols

(i.e., VT = {al,... , an}), (ii) each nonterminal on the right-hand side of a production rule

appears on the left-hand side of some production rule, and (iii) there exists a function

Objects : VNT U VT - 2{ 'n} that assigns a subset of objects to each element of V with the

following properties:

1. Objects(S) = {1,. . .n,

2. Objects(A) = Uk Objects(Rj) for each production rule A - R 1 R2 ... Rk,

3. Objects(]iT) n Objects(Rj) = 0 for each production rule A - R 1 R2 ... Rk, for 1 < i <

j < k,

4. Objects(aj) = {j} for every terminal aj E VT.

We extend the definition of Objects to strings generated by G. We observe that Objects(o)

is uniquely defined for any string a. A unique subsequence (il, i2, ... , ir) is associated to

each string of terminals = a . . .a, generated by G. The next proposition shows that a

Sequence Grammar of n objects generates a subset of permutations of the n objects.

Proposition 4.2.3. A Sequence Grammar generates a non-empty language. Every element

of the language is a permutation on n objects.

Proof. Since every nonterminal that appears on a RHS of a production rule also appears on

the LHS of another production rule, a derivation cannot end on a string with non-terminals.

Thus, a sequence grammar generates a non-empty language.

Property 2 of function Objects implies that the sets of objects associated to the RHS and

tlo the LHS of a production rule are the same. That is, all the objects on the RHS are also on
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the LHS and viceversa. Property 3 implies that an object does not belong to more than one

R in the RHS of a production rule. Therefore any string a generated by the grammar must

be a subsequence through the objects of S, the start symbol. Since Objects(S) = {1, . . ., n},

a string a generated by the grammar is a sequence on n objects. L

The neighborhood set N generated by G is the language L(G). Following Subsection

4.2.2, the neighborhood set of sequence 7r generated by G, is the set N(r) = {ra: ca C L(G)}.

Alternatively, N(r) is the language generated by the sequence grammar (G, Objects,) where

Objects,(R) = 7r(Objects(R)) for all R E V.

4.3 Neighborhoods Generated by Sequence Grammars

In this section. we describe neighborhoods for sequencing problems that can be defined

using sequence grammars. Most of these neighborhoods were initially defined for the TSP.

However, they are also valid neighborhoods for the list of sequencing problems given in

Subsection 4.2.1. The running time to optimize over a neighborhood depends on the specific

sequencing problem.

4.3.1 Polynomial Neighborhoods

Each neighborhood with K neighbors can be generated by a regular grammar with K pro-

duction rules.

The following sequence grammar defines the neighborhood in which adjacent objects may

be swapped. The set of terminals and non-terminals are VNT = {S}, VT = {1,.. ,n}. Its

production rules are
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The Adjacent Interchange Neighborhood Grammar

The value of the function Objects on each terminal and non-terminal is Objects(S) =

{1,...,n}, Objects(j) = {j} for 1 < j < n.

The following traveling salesman sequence grammar is the 2-exchange neighborhood. The

set of terminals and non-terminals are VNT = {S}, VT = 1, ... , nI}. Its production rules are

The value of the function Objects on each terminal and non-terminal is Objects(S) =

{1,...,n}, Objects(j) = {j} for 1 < j < n.

In both simple grammars, the only non-terminal corresponded to the set {1,.. , n}. Such

would normally be the case for polynomially sized neighborhoods that are used in local search

algorithms for sequencing problems.

4.3.2 Exponential Neighborhoods

We describe a number of Exponential Neighborhoods for sequencing problems. Most of them

where originally described for the TSP and are covered in the survey paper by Deineko and
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S- 1,... ,n,

S -- 2 , 1,3,... ,n,

S 1,...,i,i+2, i+ 1,i+3,...,n for 1 i < n-3,
S 1,..., n- 2, n, n- 1,

S - 2, ... ,n- 1, 1, n.

The 2-exchange Neighborhood Grammar

S -- 1,...,n,
S 1,...,i,j,j-1,...,i+2, i + 1,j+1,...,nfor 1 < i < j-2 < n-3,
S-- 1,...,i,n,n- 1,...,i+2, i + 1 for 1 < i < n-3,

S-i,i-1,...,1,i+ 1,...,n for 2 < i < n- 1.



Woeginger [47]. Their common feature is that they can be optimized efficiently using a

Dynamic Programming approach. These neighborhoods are valid for any sequencing prob-

lem described in Section 4.2.1. However, the running time for optimizing over a particular

sequence grammar neighborhood is problem-specific.

Pyramidal neighborhood

The pyramidal neighborhood consists of pyramidal permutations, where the object labels

increase monotonically to n and then decrease. That is,

Np = : a(1) < (2) < ... < (k) = n, (k+1) > a(k+2) >- > u(n) for some k > 1}.

For example, (1, 3, 4, 7, 6, 5, 2) is a pyramidal permutation whereas (7, 1, 2, 3, 4, 5, 6) is not.

Klyaus [39] gave an O(n2) dynamic programming algorithm for finding the best pyrami-

dal tour for the TSP. See also Gilmore, Lawler, and Shmoys [32]. Sarvanov and Doroshko

[52] employed the concept of pyramidal tours for use in very large scale neighborhood search.

Carlier and Villon [19] combined the pyramidal tour neighborhood with a cyclic shift neigh-

borhood in very large scale neighborhood search. They determined empirically that this

composite neighborhood performed far better than 2-opt.

Ergun and Orlin [26] defined the pyramidal neighborhood recursively, by means of pyra-

midal subsequences. A subsequence o is pyramidal if it is a sequence of objects j, j + 1,. ., n

for some 1< j < n, and the object labels increase monotonically to n and then decrease.

Then, the pyramidal neighborhood Np consists of all the pyramidal subsequences of objects

1, . . ., n. A pyramidal subsequence u of objects j, j 1, . . ., n satisfies the recursive equation

or= j, or r = ',j, (4.5)

for some pyramidal subsequence ' of objects j + 1, j + 2,...., n.
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Permutation Tree neighborhood

We give the description by Deineko and Woeginger [47]. A permutation tree T over

{1, . . , n} is a rooted, ordered tree that satisfies the following.

1. There is a bijective mapping between leaves of T and objects.

2. An interior node has at least two sons.

3. An interior node i with d sons has associated a set of permutations i C Sd

A permutation tree T defines a set of permutations NT as follows. For each node i E T, let

Ti be the subtree of T rooted at i. We associate the set NTi of sequences of objects to each

subtree Ti. If i is a leaf of T then NT, = {i}. If i is an interior node of T with d sons i,..., id

then NTi = U.EiNT(1), NT (d) The set of permutations NT is the set NTr defined by

the root node E T.

Booth and Lueker [16] analyzed a special case of permutation trees that they called PQ-

trees. Burkard, Deineko, and Woeginger [18] investigated finding the best tour in the PQ-

tree neighborhood, which was later generalized by Deineko and Woeginger [47] to include

all permutation trees. They also pointed out that pyramidal tours are a special case of

permutation trees.

Twisted Sequences

Aurenhammer [10] described permutations in terms of possible derivations from permu-

tation trees. A permutation tree T is a twisted tree if it satisfies the following conditions.

1. The identity sequence id, = (1, . . , n) E NT.

2. Every interior node i with d sons has associated a set of permutations 1 i = {idd, idd-},

where id-} =(n,n-1,..., 1).
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A permutation a is a twisted sequence if it is generated by a twisted tree. That is,

NTwisted = {a: a E NT for some twisted tree T}.

For example, (3, 2, 4, 1) is a twisted sequence whereas (1,3, 5, 2, 4, 6) is not. An alternative

way of describing twisted sequences is provided by Delneko and Woeginger [47]. They write

on page 528:

"Another, equivalent way of defining twisted sequences is as follows: Start with the

identity permutation (1,2,..., n) and choose a set of intervals (of cities) over {1,2,..., n}

such that for every pair of intervals either one of them contains the other one, or the two

intervals are disjoint. Then reverse (= twist) for every interval the order of its elements.

A permutation is a twisted sequence if and only if it can be derived from the identity

permutation via such a reversal process." We observe that the reverse operation is defined

over intervals of objects and not over places. In this sense, the twisted sequence obtained

does not depend on the order on which we perform the reverse operations over the intervals.

Congram [21] showed that the number of twisted sequences on n objects is e((3+2V2)n).

Dynasearch neighborhood

Potts and van de Velde [51] defined this class of neighborhoods (see also Congram et

al. [22]). A Dynasearch Neighborhood is obtained by combining a set of independent simple

moves such as 2-exchanges, swaps, or insertions. Two moves for the TSP are said to be

independent if the subpaths they are modifying contain no common edges. For example,

consider two 2-exchange moves affecting sub-paths i, i+ 1, . . , j and k, k+, .. , 1 by breaking

edges (i,i + 1). (j- 1,j) and (k,k + 1), ( - 1,1) and adding edges (i,j - 1), (i + 1,j) and

(k,1 - 1), (k + 1,1). These two moves are independent if and only if either j < k or 1 < i.

For scheduling problems, two moves are independent if the subsequences they modify do not

share any job.

The size of the compounded independent moves neighborhood is Q(1.7548n), see Con-
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gram [21] and Ergun [26] for two derivations. For the TSP, these neighborhoods can be

searched in O(n 2) by dynamic programs as in Potts and van de Velde [51], Congram [21],

Ergun and Orlin [27] and Congram et al. [22], and by network flows techniques as in Agarwal

et al. [2], Ergun [26], and Ergun et al. [28].

Balas-Simonetti neighborhood

Balas and Simonetti [12] investigated a very large scale neighborhood for the TSP which

we denote by Nks. In their paper, they define a solution of the TSP as a permutation of

places instead of a permutation of cities (objects). We give the definition of Nks in terms of

a permutation of cities (objects). Let k be a parameter. They consider all tours such that

object 1 is visited first and that object i precedes object j whenever i + k < j for some fixed

parameter k. That is,

NS = {o: a(1) = 1 and r-(i) < a-l(j) for i + k < j}.

For example, when n = 6 and k = 3, the sequence (1, 4, 2, 5, 3, 6) belongs to NBs whereas

(1,4,5,2,3,6) does not.

4.3.3 Exponential Neighborhoods as Sequencing Neighborhood

Grammars

In this section, we show how to represent the neighborhoods in the previous section using

grammars.

Pyramidal sequences

The following sequence grammar generates the Pyramidal Neighborhood.

VNT = {S} U {Aj,n: 1 j < n}, VT = {1,..., n}. Its production rules are
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The Pyramidal Neighborhood Grammar

The value of the function Objects on each terminal and non-terminal is Objects(S) =

{1,.n}, Objects(Aj,n) = {j, ... ,n} for 1 < j < n, Objects(j) {j} for 1 < j < n.

The Pyramidal neighborhood is not symmetric, that is, NPyramid Z inV(NPyramid)

In Subsections 4.4.3 and 4.6.2 we show that, in the context of the TSP, we can optimize over

neighbors NPyramid and inv(Npyramid) in O(n2) time. The next proposition shows that

Npyramid is indeed the pyramidal neighborhood.

Proposition 4.3.1. The pyramidal neighborhood grammar generates the pyramidal neigh-

borhood.

Proof. We will prove that, for any 1 < j < n, the language L(GAj,,) generated by the

nonterminal A, ~ as the starting symbol, is the set of all pyramidal subsequences of objects

j,.., n. When j = 1, this claim is equivalent to the proposition. We prove the claim by

induction in Objects(Aj,)l = n-j+ 1. When Objects(Aj,,) = 1, the nonterminal Aj,n is in

fact A,, and the language L(GAj,n) is equal to the set of of all pyramidal subsequences of

object n, namely the singleton set {n}. Given Aj,n, and assume the claim is true for Aj+l,.

There are two possible production rules that can be applied to Ajn, namely Ajn -- j, Aj+1 ,n

and Aj - A 3+ln,j. Therefore, the language L(GA 3j,) are the subsequences u of objects

j,..., n that can be written as j, ' or a',j where a' E L(GAj+,,n). By inductive hypothesis,

L(GAj+±,) is the set of all the pyramidal subsequences of objects j + 1,..., n. Therefore,

L(GAj,,,) satisfies the recursion (4.5), and thus it is the set of all the pyramidal subsequences

of objects j ... , n. O
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S - Al,,

Aj, n j, ,4j+,n, for 1 < j < n- 

Aj,71 -- A+i,n , j, for 1 < j < n-1

An,n -+ n.



Permutation Trees and their Grammars

Definition 4.3.2. A sequencing neighborhood grammar G is tree-based if for any non-

terminals A, B then either

* Objects(A) n Objects(B) = 0, or

* Objects(A) c Objects(B), or

* Objects(B) c Objects(A).

We can represent any tree-based structure as a tree, where each non-terminal is an

internal node of the tree; each terminal is a leaf of the tree. Also, there is an arc from R

to R' if Objects(R) C Objects(R') and there is no other non-terminal R" with Objects(R) C

Objects(R") C Objects(R'). Such a tree is called a permutation tree, as per Deineko and

Woeginger [47].

It is easy to see that there is a correspondence between the neighborhoods generated by

a permutation tree and neighborhoods defined by a tree-based grammar. A neighborhood

generated by a permutation tree T is also generated by the tree-based grammar with non-

terminals being the interior nodes of T, and with production rules that correspond to the

permutations associated to each interior node of T. The tree associated with this tree-based

grammar is precisely T. The converse is also true, and thus the following proposition holds.

Proposition 4.3.3. A neighborhood generated by a permutation tree T can be generated by

a tree-based grammar G, and vice versa. There is a one-to-one correspondence between the

non-terminals of G and the interior nodes of T, and the number of production rules assciated

to each non-terminal of G is the number of permutations associated to the corresponding

interior node of T

Twisted Sequence Neighborhood

We describe a simply stated grammar that generates all twisted sequences. Let the set of non-

terminals and the set of terminals be VNT = {S} U {Aij: I < i < j < n}, VT = {1,. ,n}

respectively.
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Its production rules are

The value of the function Objects on each terminal and non-terminal is Objects(S) =

{1,... ,n}, Objects(Ai,j) = i,. .. ,j} for 1 i j < n, Objects(j) = {j} for 1 < j < n.

The following proposition holds.

Proposition 4.3.4. The twisted neighborhood grammar generates the twisted neighborhood.

Proof. By definition, the twisted neighborhood is the set of all sequences generated by all

twisted trees. Fixed a twisted tree T, its correspondent tree-based grammar has non-

terminals R with consecutive labeled objects, namely Objects(R) = {i,...,j} for some

1 i j n, and production rules as the ones of the twisted neighborhood grammar.

Therefore, the twisted neighborhood grammar generates a neighborhood that includes the

twisted neighborhood.

The converse is also true. Given a sequence a generated by the twisted neighborhood, it

is easy to construct a twisted tree T from its parse tree that generates a. []

Congram [21] shows that the number of twisted sequences on n objects is 0((3+ 2V,)n).

The number of production rules of this grammar is K = O(n3). The generic DP algorithm

runs in time O(Kn 3) on a TSP grammar with K production rules and n cities (see Section

4.4.1). Therefore, it runs in time O(n6 ) when specialized to the Twisted Sequence Neigh-

borhood, which is a factor of n smaller than the time obtained by Deineko and Woeginger

[47].

The Twisted Sequence Neighborhood is symmetric as the next proposition shows.
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Twisted Sequence Neighborhood Grammar

S - Aln
Aij -i, .... j for 1 < i < j n,
Ai,j -* Ai,k,Ak+l, for 1 < i k < j n,

Ai, - Ak,J A i, k for I i < k < j n,



Proposition 4.3.5. The Twisted Sequence Neighborhood is symmetric. That is, - 1 is a

twisted sequence if a is a twisted sequence.

Proof. Let a = ((1),... , a(n)) be a twisted sequence and let T be its parse tree. The label

R of a node of T is either a terminal j or a non-terminal S or Aij. To simplify notation,

we write S as A1,n and j as Aj,j. If Aij is a label of T, the objects {i,... ,j} are placed

consecutively by a (although they may not follow this order). For each label Ai,j of T, let

t- 1 be the number of objects placed by a before placing any of the objects {i,..., j}. We

claim that if we replace each label Aij of the parse tree T by At,t+j-i we obtain a new parse

tree T' which is the parse tree of a - in the Twisted Sequence Neighborhood Grammar.

First, we have to prove that T' is a valid parse tree of the Twisted Sequence Neighborhood

Grammar. We observe that a production rule of the parse tree T, say Ai,j - Ak+l,jAi,k for

some i k j, becomes At,t+j-i At+j-k,t+jiAt,t+j-k-1 in T' for some t. The latter is

a valid production rule of the Twisted Sequence Neighborhood Grammar. Since S remains

the same and each terminal goes to a terminal after the transformation, T' is a valid parse

tree of the Twisted Sequence Neighborhood Grammar.

It remains to prove that w, the sequence generated by T', is a - . We will prove that, given

a transformed symbol Att+j-i in T' that corresponds to the symbol Ai,j in T, the number

of objects placed before placing any of the objects {t, . . , t + j -i} by the permutation w

generated by T' is i -1. We will prove this by induction on the level of At,t+j-i in T'. For the

start symbol S, it is clear that there are no objects placed by w before the objects {1,. . , n}

in T'. Therefore the inductive hypothesis holds for S. Let p be a production rule of T,

say Aij -+Ak+1l,jAi,k. This production rule becomes At, t+j-i -- At+j-k,t+jiAt,t+j-k-1 for

some t in T'. Assume by inductive hypothesis that the number of objects placed by w before

{t, .. .,t+j-i} is i-1. Then, the number of objects placed before {t + j-k,...,t+j -i}

is also i - and the number of objects placed before {t + j - k,.. .,t + j -i} is (i - 1) +

(t + j - i - t - j + k) = k - 1. Therefore the inductive hypothesis holds.

Let j be the label of a leaf node in T. This label says that a(t) = j for some t. The label

j in T is replaced by t in T', and we proved that the number of objects placed before object
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t by w is j - 1. Therefore, w(t) = j, which means that w is the inverse of a. E

Semi-Twisted Sequence Neighborhood

In this subsection we present a smaller neighborhood, which is very similar to the twisted

neighborhood. It has fewer rules and is written in extended normal form. Therefore, we can

optimize faster than in the Twisted Sequence Neighborhood.

The number of production rules of this grammar is K = O(n2 ). For the TSP, we can

optimize in 0(n 3) time as Proposition 4.4.10 in Subsection 4.4.3 shows. It includes the

Pyramidal neighborhood and has 0((2 + V) n ) sequences as the next proposition shows.

Proposition 4.3.6. The Semi-Twisted Sequence Neighborhood has 0((2 + -) n ) sequences.

Proof. Let f(n) be the number of sequences of the Semi-Twisted Sequence Neighborhood

with n objects. It is easy to check that f(1) = 1 and f(2) = 2. The following recursive

relation holds.

f(n) =4f(n-1) - 2f(n-2) for n > 3. (4.6)

To see why, it is easy to see from the production rules that a sequence in this neighborhood

either starts or ends at object 1 or object n.

The number of sequences in this neighborhood that starts at object (object n) is

f(n - 1). Similarly, the number of sequences that ends at object (object n) is f(n - 1).

We have to subtract the sequences that are counted twice. That is, the sequences that start

at object 1 and end at object n or vice versa. The number of such sequences is 2f(n- 2).

90

Semi-Twisted Sequence Neighborhood Grammar

S - Al,,

Ai,j - i, Ai+l,j for 1 < i j n,

Ai, - Ai+l,j, i for 1 i < j n,

Ai,j -*Ai,j-1, j for 1 < i < j < n,

Ai,j - j, Ai,j-1 for 1 < i < j n.

-



Thus equation (4.6) holds. This equation implies that the size of the Semi-Twisted Sequence

Neighborhood is asymptotically c n , where ~ = 2 + vX/ is the largest root of the polynomial

X 2 -4X + 2, and c > 0 is a constant (see the book by Graham, Knuth and Patashnik [33]

for results about recursion formulas). B

The Semi-Twisted Sequence Neighborhood is symmetric.

Proposition 41.3.7. The Semi-Twisted Sequence Neighborhood is symmetric.

Proof. It has a similar proof to Proposition 4.3.5. B1

Restricted Dynamic Programs

We first describe a sequencing neighborhood grammar for generating all the permutations

whose initial object is object 1, which we refer to as the "complete sequencing neighborhood

grammar". This particular grammar has n2n-1 different production rules, and generates

(n - 1)! permutations. We then give related grammars in which the number of production

rules is polynomial, and the neighborhood is exponential.

Complete sequencing Neighborhood Grammar

S - A,...,n),

AR - AR\{j},j for each j E R\{1}, and for each subset R C {1,. . , n} with 1 E R,

A{1} -- 1.

The value of the function Objects on each terminal and non-terminal is Objects(S) =

{1,... ,r}, Objects(AR) = R for each subset R C {1,... ,n} with e R, Objects(j) = {j}

for 1 < < n.

In the following, let S be any collection of subsets of {1,. . . , n} with the property that

for each R S, 1 R. We now create a subset of the complete sequence grammar, by

restricting production rules to involve only non-terminals corresponding to sets in S.
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Restricted sequencing Neighborhood Grammar

Balas and Simonetti [12] investigated a very large scale neighborhood for the TSP which

we denote by NBS. They consider all tours such that city 1 is visited first and that city i

precedes city j whenever i + k < j for some fixed parameter k. That is, the neigborhood NBS

contains all permutations cr such that r(1) = 1 and that object r-l(i) < o-l(j) whenever

i + k < j. We note that in their paper, a permutation represents a permutation of places

instead of a permutation of objects. Their definition is different from, but equivalent to, the

one we give. The Balas-Simonetti neighborhood can be searched in time O(k22kn) (see [11]

or [12]). Its running time is linear in n for fixed k. We will show that this neighborhood

can be represented as a restricted sequence grammar. In Section 4.4.3 we show that, when

used to find the best neighbor in NBS, the running time of the generic DP algorithm is also

O(k2 2kn).

Let SBS := {R c {1,... , n} such that for i R,j R: i- k < j}. Then the Balas-

Simonetti neighborhood corresponds to the restricted sequencing Neighborhood grammar

with S replaced by SBS.

If we consider R E SBS such that the highest index object in Objects(R) is object j*,

then we note that i R for i < j* - k, and i R for i > j*. We conclude that there are

O( 2k) elements of SBS with a highest index object of j*, and thus ISBsI = O(2kn). Moreover,

we will show in Proposition 4.3.9 implies that the number of production rules that can be

applied to a particular non-terminal R is O(k). Therefore the total number of production

rules is KBS = O(k2kn).

The inverse neighborhood of NBS is the set of permutations a E Sn such that a - C NBS.

A priori, there is no reason to prefer one over the other since both neighborhoods have the
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S -A{,..,n}

AR AR--j, j for each R E S, and for each j R such that R - j E S,

A{1} 1.



same number of elements. The inverse neighborhood of NBS can be expressed as a restricted

sequencing Neighborhood grammar as well as a context-sensitive sequencing neighborhood

grammar.

As the next proposition shows, the inverse neighborhood of NBS is the set of all per-

mutations a such that a(1) = 1 and that for two positions i,j such that i + k < j, then

a(i) < a(j).

Proposition 4.3.8. The neighborhood

NIBS := {C E Sn a(1) = 1 and i + k < j implies a(i) < (j)}

is the inverse neighborhood of NBS. That is, NIBS = {f - 1 a E NBS}.

Proof. A permutation or E Sn belongs to NBS if and only if

1. (1)= 1.

2. If i + k <j then cra-1 (i) < ar-1(j).

If w = a,- 1 then

1. w(l) = 1.

2. If i + k <: j then w(i) < (j).

By definition of NIBS, this is equivalent to say that w E NIBS. [1

The Balas-Simonetti neighborhood and its inverse neighborhood are included in a neigh-

borhood which we call the Enlarged Balas-Simonetti Neighborhood as the following proposi-

tion shows.

Proposition 4.3.9. The Balas-Simonetti neighborhood NBS and its inverse neighborhood

NIBS are included in the Enlarged Balas-Simonetti neighborhood

NEBS := { E Sn :a(1) = 1 and Ia(i)-i < k for all i}.
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Proof. We will first prove that NIBS is symmetric. That is, we will prove that if a E NEBS

then a- l E NEBS. If a permutation a E Sn belongs to NEBS then

1. (1) = 1.

2. Ia(i)-il < k for all i.

It is clear that c(1) 1 implies a- (1) = 1. To see why the second condition holds for a - l, let

us fix i and let j = ca(i). Then, a(i) - i = j - a-l 1 (j). Therefore, la(i) - i < k is equivalent

to j - -1 (j) < k for j = a(i). Since the restriction la(i) - iI k holds for all i, the

restriction IJ - -1 (j)l < k also holds for j such that j = a(i) for some i. The permutation

a is a bijective function and therefore the last restriction is equivalent to the restriction that

j-a-x(j) < k holds for all j. Therefore, a-1 satisfies the second restriction and thus NEBS

is symmetric. Thus, in order to prove that Balas-Simonetti neighborhood and its inverse

neighborhood are included in NEBS, it is enough to prove that NIBS is included in NEBS.

Given a permutation a E NIBS, we prove that Ia(i)- i < k for all 1 < i < n by

contradiction. Assume that there exist a E NIBS, and a position i such that Ia(i) - i > k.

Then either a(i) < i-k or a(i) > i+k. Assume that a(i) < i-k (the case where a(i) > i+k

is similar). By definition of NIBS, any permutation a in NIBS satisfies that if i + k < j then

a(i) < a(j). The set Li = {j j + k i has i - k elements. Its image {a(j) j + k i}

also has i - k elements. Any j E Li satisfies that

y(j) < a(i) < i-k

and therefore the set {a(j) j + k < i} C {: 1 + k < i} has at most i- k- 1 elements,

which contradicts the fact that it has i - k elements. []

The Enlarged Balas-Simonetti neighborhood can be expressed as a restricted sequencing

neighborhood grammar as follows. Let SEBS be a collection of subsets R of 1,. . ., n} such

that E R, any i such that i < Objects(R) - k belongs to R, and that any i such that

i > I Objects(R) I + k does not belong to R. Then the Enlarged Balas-Simonetti neighborhood
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corresponds to the restricted sequencing Neighborhood grammar with S replaced by SEBS.

If we consider R SEBS such that Objects(R) = m, then we note that i E R for i <

m-k, and i 0 R for i > m + k. We conclude that there are ( ) = O(A) elements
k v-

of SEBS with m objects. The last bound holds because of Stirling's bound of factorials:

Vnn+l/2e - n--+1/(12n+ l) < n! < v/-irnn+/2e-n+1/(12n) (see e.g. Feller [29]). Thus, ISEBSI =

O( n). Moreover, Proposition 4.3.9 implies that the number of production rules that can

be applied to a particular non-terminal R is O(k). Therefore the total number of production

rules is KEBS = O(ko 5'4kn). In Section 4.4.3 we show that, when used to find the best

neighbor in the TSP neighborhood NKBS, the running time of the generic DP algorithm is

O(kl 54kn), which is linear for fixed values of k. This running time matches the running time

of the algorithm developed by Balas in [11].

Dynasearch Neighborhoods

We now describe several Dynasearch neighborhood grammars. The following Dynasearch

neighborhood is based on combining independent swap moves. Given a sequence r =

(7r(1),. . ., r(n)), the swap neighborhood generates solutions by interchanging the positions

of objects r(i) and 7r(j) for 1 < i < j < n. For example let 7r = (1, 2, 3, 4, 5, 6), let i = 2 and

j = 5. Then ir' = (1,5,3,4,2,6) is obtained from 7r after we swap i,j. The set of terminals

and non-terminals are VNT = {S} U {Ai,j: 1 < i < j < n}, VT = {1, ... , n}. Its production

rules are

The value of the function Objects on each terminal and non-terminal is Objects(S) =
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The Dynasearch swap Neighborhood Grammar

S - Aln,

Ai,j - Ali_1, Aij for 2 < i < j < n,

Aij -i, j...,j for 1 <i< j- < n-1,
Aij -4 i,j - ,i + 2,...,j - 2,i + 1,j for 1 _<i < j-3<n-3.



{1,...,n}, Objects(Ai,j) = {i,. . . ,j} for 1 < i < j < n, Objects(j) = {j} for 1 < j < n.

The following Dynasearch neighborhood is based on 2-opt.

The following Dynasearch neighborhood is based on combining independent insertion

moves. Without compounding independent moves, we are permitted to take object i and

insert it immediately before object j for i < j - 1. If we are permitted to compound inde-

pendent moves. we obtain the following grammar.

In addition, one can obtain larger neighborhoods by making composite neighborhoods.

For example, if one permits exchanges, swaps or insertions, one obtains the following Dy-

nasearch neighborhood.
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The Dynasearch 2-exchange Neighborhood Grammar

S - Al,,

A1, - A1,i-17lAi, for 2 < i < j < n,

Ai,j- i,...,j for 1 <i < j- 1 < n-1,

Aij -i,j- 1,j-2,...,i + 2,i+ 1,j for 1 < i j-3 < n-3.

The Dynasearch Insertion Neighborhood Grammar

S - Al,n,

Alj - Ali-, Aij for 2 < i < j < n,

Aij ---i,..., j for 1 < i < j-1 < n- 1,

Aij - i,i + 2,. .. , - 1, i + 1,j for 1 < i < j-3 < n-3.



The Dynasearch Exchange/Swap/Insertion Neighborhood Grammar

We will show in Section 4.4.3 that the generic algorithm for searching the TSP grammar

neighborhood runs in O(n2) time on these Dynasearch neighborhoods.

It is also possible to weaken the notion of independence as in Ergun and Orlin [27]. For

example, one can define that i, i + 1, ... , j and k, k + 1,.. . , are weakly independent if i < j

or < i. In the case of weak independence, we obtain a larger neighborhood that is referred

to as the weak Dynasearch neighborhood. At the same time, it takes longer for the generic

dynamic programming algorithm to search the neighborhood, as pointed out in Section 4.4.3.

Similarly, one can create weak Dynasearch neighborhoods for a variety of other neigh-

borhoods based on compounding weakly independent moves.

4.3.4 Compound Neighborhoods

Two grammars G = (VNT, VT, P, S) and G' = (VNT, VT, P', S) can be combined to generate

a compound grammar G U G' := (VNT U VkT, VT U VT, P U P', S). The number of production
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S - l,n

Aij - Al,i_1 , Aij for 2 i j < n,

Aij - j,i + 1,.. .,j - 1,i for 1 < i < j < n,

Ai,j -- i, ... ,j for 1 < i < j-1 < n- 1,

Aij - i,i + 2,...,j- ,i + l,j for 1 < i < j < n,

The Weak Dynasearch 2-exchange Neighborhood Grammar

S - Al,n,

Aij -+ Al,i_, Aij for 2 < i < j < n,

Aij ....,j for 1 i j-1 <n-1,

Aij j,j-1,..., i + 1,i for 1 < i < j- 1 < n- 1,



rules of the compound grammar is at most the sum of the number of production rules of

G, G'. The neighborhood generated by the compound grammar includes the neighborhood

generated by G and G', and can be searched efficiently, as Theorem 4.4.3 shows.

Pyramidal and Dynasearch Compound Neighborhoods

The following neighborhood is obtained by compounding the pyramidal and the Dynasearch

2-exchange grammars. The value of the function Objects on each terminal and non-terminal is

Objects(S) = {1,... ,n}, Objects(Ai,j) = {i,... ,j} for 1 i < j-1 < n-1, Objects(j) = {j}

for 1 <j <n.

4.3.5 Context-Sensitive sequence grammars

In this section we work with context-sensitive sequence grammars. We show that the com-

plete neighborhood can be generated by a Context-Sensitive sequence grammar of polyno-

mial size. This shows that the Context-Sensitive sequence grammars are very powerful.

As a tradeoff, we cannot expect to find the best neighbor in a Context-Sensitive sequence

grammar in polynomial time unless P = NP.

98

The Pyramidal and Dynasearch 2-exchange

Neighborhood Compound Grammar

S - Al,.,

Aj, j, Aj+,n, for 1 < j < n- 1

Aj,n -Aj+ln, j, for 1 < j < n- 1

A1,j -- A,i-l,Aij for 2 < i < j < n,

Ai,j -i, -... , for 1 < i_ j--1 < n-1,
Aij -i,j -l,j - 2,...,i + 2,i + lj for 1 <i< j-3<n-3.



The Complete Neighborhood Context-Sensitive Grammar

Applying Rules (2ij) to (5ij) swaps non-terminals Ai and A, and so every permutation

can be obtained. Also, there are no other strings that can be derived from the grammar. To

see this, note the following. If Rule (2ij) is performed, the only way of get rid of Bij is to

have Rule (4ij) performed. In order to perform Rule (4ij), we have to had performed Rule

(3ij) so as to generate the non-terminal Cij. Then, the only way of get rid of Cij is to have

rule (5ij) performed. Moreover, non of these rules can be applied twice.

The number of production rules is O(n2 ). Therefore, this context sensitive sequence gram-

mar generates all permutations of S (and no other string of terminals) with a polynomial

number of production rules.

A more restrictive class of context-sensitive grammar define permutation neighborhoods

which can be optimized efficiently. This class will be discussed in Section 4.4.10.

4.4 Algorithms

4.4.1 A generic solution procedure for TSP grammars using dy-

namic programming

The primary result of this subsection is a dynamic programming algorithm for finding the

best tour in a neighborhood that is generated by a sequence grammar G. The initial tour is

r = (ir(1), . . , r(n)). We denote by f(i,j) the arc cost c(i), 7r(j). In what follows, we associate
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(1) S i, .. ,A,,

(2) AAj --- AiBij for all 1 i < j < n,

(3) AiBij - CjBij for all 1 < i < j n,

(4) CijBij -* CijAi for all 1 i < j < n,

(5) CjAi -+ AjAi for all 1 i < j < n,

(6) Ai - i for 1 < i < n.



to a terminal, non-terminal or a production rule a number of sets which are going to be used

later in the DP optimizer. For a given terminal or non-terminal R, let States(R) be the set of

pairs of cities (i, j) such that there is a path generated by the grammar GR from city i to city

j that passes through all the cities of Objects(R). We also define the sets InitObjects(R) =

{i: (i,j) States(R) for some j}, EndObjects(R) = {j: (i,j) E States(R) for some i}.

We define States(p), InitObjects(p) and EndObjects(p) for a production rule p in the same

manner. For each terminal R, the set States(R) has one element. These sets satisfy the

following recursive relations.

1. If a is a terminal with Objects(a) = {k}, then

States(a) = {(k, k)}InitObjects(a) = {k}, and EndObjects(a) = {k}.

2. Suppose p is the production rule A - R 1, R 2 ,..., R. Then,

States(p) = {(i,j): i E InitObjects(Rx),j E EndObjects(Rr)};

InitObjects(p) = InitObjects(Rj ); EndObjects(p) = EndObjects(R ).

3. If R is a non-terminal, then

States(R) = U{p:p applies to R}States(p);

InitObjects(R) = U{p:p applies to R}InitObjects(p);

EndObjects(R) = U{p:p applies to R}EndObjects(p).

These sets do not change from iteration to iteration of the local search algorithm. There-

fore, they are computed once. We can assume that the time to compute them is amortized

by the time spent by the local search algorithm. The complexity of their computation is as

follows.

Proposition 4.4.1. Given a sequence grammar with K production rules for a problem with n

cities, the sets States, InitCities, EndCities, corresponding to all terminals and non-terminals

R and all production rules p, can be computed in O(Kn2 ) time using the recursion formulas

given above.

Proof. It is easy to see that, for each terminal a, the sets States(a), InitObjects(a), and

EndObjects(a) are computed in 0(1) time, for a total of O(n) time. The computation of
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States(p), InitObjects(p), EndObjects(p) for each production rule p A -- R1, R 2, ... RR

from the values InitObjects(Ri) and EndObjects(Rr) take O(n2) time, for a total O(n 2)

time. The computation of States(R), InitObjects(R), EndObjects(R) for all non-terminal R

take O(Kn2) time. [

Given a terminal or non-terminal R and cities i, j E Objects(R), we denote by V(i, R,j)

the minimum cost path from v(i) to 7r(j) passing through all the cities of 7r(Objects(R)) =

{r(i) i C Objects(R)} as generated by the grammar. Given a terminal or non-terminal

R, city i C Objects(R) and city j , Objects(R), we denote by V(i, R, j) the minimum cost

pat:h from ir(i) to r(j), passing through all the cities of r(Objects(R)) as generated by the

grammar. We note that the difference between V(i, R, j) and V(i, R, j) is that, in the latter,

the city j does not belong to Objects(R).

Similarly, given a production rule p: A -- R 1R 2 ... Rr and cities i, j Objects(A), we

denote by V(i,p, j) the minimum cost path from 7r(i) to 7r(j) passing through all the cities

of (Objects(A)) as generated by p.

We refer to a triple i - R - j as a state of the dynamic programming recursion. The

best tour generated by the grammar has value minij{V(i,S,j) + f(j, i)}. The following

is a dynamic programming recursion for computing the best tour in a TSP Neighborhood

grammar.

1. If a is a terminal with Objects(a) = {k}, then

V(k, a, k = 0.

2. Suppose p is the production rule A a1a2 . . .arB. Let Objects(ak) = {ik} for 1 <

k < r. Then,

For (i1 ,j) C States(p)

V(i1,p,j) = min{k- f(ik,ik+l) + f(ir,t) + V(t,B,j) t C InitObjects(B)}.

3. Suppose p is the production rule A -/ R1 , R 2 ,... , Rr.

For k = to r- 1 and for i E InitObjects(R),j CE IniObjects(Rk+l):

V(i, R,R 2,.. . , Rk,j) = min{V(i, R1, R2.. , Rk, s) + f(s,j): s C EndObjects(Rk)}.
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For k = 2 to r and for i E InitObjects(RI),j C EndObjects(Rk):

V(i, Rl,R 2,. .. Rk,j) = min{V(i, R1,...,Rk-l, t) + V(t,Rk,j) t E InitObjects(Rk)}.

For (i, j) C States(p)

V(i,p,j) = V(i,R1, . R ,j)

4. If R is a non-terminal, then

For (i,j) E States(R):

V(i, Rj) = min{V(i,p,j) p is a production rule and p applies to R}.

Proposition 4.4.2. Suppose that p is the production rule p: A -- R1R2 ... Rr. Then the

time to compute V(i,p,j) for all (i,j) E States(p) from the values for R, R2,...,Rr is

O(ri3).

Proof. For each i C InitObjects(RI) and each j E EndObjects(Rk),

the value V(i, R1, R2,. , Rk, j) is equal to the cost of the shortest Hamiltonian path from city

r(i) to city 7r(j) and passing through all cities in r(Objects(Ri . . . Rk)), as generated by the

grammar. Similarly, for each i C InitObjects(Ri) and each j c InitObjects(Rk+l), the value

V(i, R1, R2, ... ,Rk, j) is equal to the cost of the shortest Hamiltonian path from city r(i)

to city r(j) and passing through all cities in 7r(Objects(R1 ... Rk)) U {r(j)}. The recursion

formulas given in (3) compute the shortest path from any city i InitObjects(Ri) to any

city j E EndObjects(R,). The running time to compute them is O(n3 ). For each 2 < k < r

and for each i E InitObjects(RI),j C EndObjects(Rk), it takes O(InitObjects(Rk)j) time

to compute V(i,RI,...,Rk,j) from the values V(.) and V(.,Rk,.). For each 2 < k <

r and for each i InitObjects(Ri), it takes O( InitObjects(Rk) x EndObjects(Rk)l) =

O([InitObjects(Rk) x n) time to compute V(i,Ri,...,Rk,j) for all j E EndObjects(Rk).

Finally, for every i InitObjects(R1) and every 2 < k < r, it takes

>1 O(InitObjects(Rk) x n) O(lnitObjects(Rk)I x n2) = (n3 )
iE InitObjects(R1 ),2<k<r 2<k<r

(4.7)

time. Similar bound holds for the computation of V(i, R,... ., Rk, j) for all 1 < k < r -1

and all i InitObjects(R 1),j C InitObjects(Rk+l). O
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In order to use the recursion formulas, we first construct the auxiliary graph G' =

(V', A') where V' = VT U VNT U P. For any production rule p A - R 1 ,..., R, the

arcs (A,p), (p, R1),.. , (p, Rr) belong to A'. This graph has O(Kn) nodes and O(Kn) arcs.

This graph is acyclic; otherwise the language L(G) is infinite. This graph defines an order

among its nodes which is obtained by breadth first search. This order is compatible with the

recursion formulas in the sense that V(i, p, j), V(i, R, j) are constructed using higher order

terms. We then compute the values V(i, p, j), V(i, R, j) following this order.

Theorem 4.4.3. Let K be the number of production rules of a TSP neighborhood grammar

for a problem with n cities. Then the time to compute the best neighbor generated by the

grammar is O(Kn3 ). If the grammar is in extended normal form, the time is O(Kn 2 ). If

the grammar is a left (right) regular grammar such that a(n) = n ((1) = 1), then the time

to compute the best neighbor is O(Kn).

Proof. Compute the order in G' can be done in O(Kn) steps. Each terminal value V(k, a, k)

is computed in 0(1) steps. Now consider a production rule p and consider the result in

Proposition 4.4.2. The time to compute V(i,p,j) for all i - p - j is then O(Kn3 ). In order

to bound the time to compute V(i, R,j) for all R E VNT, (i,j) E States(R), we observe that

States(R) = O(n2), and that each production rule p applies to exactly one non-terminal.

Thus, the time to compute V(i, R, j) for all R and all (i, j) E States(R) is O(Kn 2). Therefore,

the time to compute the best neighbor generated by the grammar is O(Kn3 ).

When the TSP grammar is in extended normal form, all the production rules have at

most one non-terminal on the right hand side. That is, p is either of the form p: A - cB

or p: A - Ba or p: A - a, where a is a string of terminals and B is a non-terminal. We

analyze p: A --+ aB. Since States(or) = 1, the bound

Time(p) = O(IStates(ce) x IStates(B)J) = O(n2)

holds. Therefore, the time to compute the best neighbor generated by a grammar in extended

normal form is O(Kn 2 ).
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When the TSP grammar is a left regular grammar such that a(n) = n, then for any

non-terminal R, States(R)l = O(n), and for any production rule p, States(p)l = O(n). The

same bounds hold when G is a right regular grammar such that (1) = 1. We will prove

the bound O(Kn) for left regular grammars such that a(n) = n. The proof is the same for

right regular grammars such that a(1) = 1. Given a production rule p: A - aa 2 ... arB,

the time to compute V(i,p,n) is O(lStates(B)I) = O(n). Therefore, the time to compute

V(i,p, n) for all p and all (i, n) E States(p) (from previous values V(j, B, n)) is O(Kn).

For all non--terminals R and for all (i,n) E States(R), the time to compute V(i,R,n) is

O(Kn).

Therefore, the DP algorithm runs in O(Kn) time when G is a left (right) regular grammar

such that a(n) = n ((1)= 1). []

The following corollary matches the running time of the algorithm of Deineko and Woeg-

inger ([47], Theorem 4) for permutation trees neighborhoods.

Corollary 4.4.4. The generic dynamic programming algorithm of Section 4.4.1 searches a

Tree-based grammar with at most F production rules per non-terminal in time O(Fn4 ).

Proof. Let T be the permutation tree defined by the grammar. This tree has n leaves, one

per each nonterminal, and it has at most n-1 internal nodes. Therefore, the number of nodes

of T (that is, the number of non-terminals and terminals of G) is at most 2n - 1 = O(n).

Then the number of production rules is K = O(Fn). By Theorem 4.4.3, the running time

of the generic DP in a Tree-Based Grammar is O(Kn 3 ) = O(Fn4 ). []

The following corollary improves the running time of the algorithm of Delneko and Woeg-

inger ([47], Theorem 6) for twisted neighborhoods by a factor of n.

Corollary 4.4.5. The time to compute the best permutation in the Twisted Sequence Neigh-

borhood is O(n6 ).

Proof. The number of production rules of the Twisted Sequence Neighborhood Grammar

is K = O(n3 ). By Theorem 4.4.3, the running time of the generic DP in this grammar is

O(Kn3 ) = O(n6). El
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4.4.2 Incrementality

In neighborhoods for the symmetric TSP such as 2-opt, the neighbors are very similar to the

current solution. In these neighborhoods, the cost of a neighbor can usually be computed

from the cost of the current solution in constant time. Implementations of local search

heuristics take this into account in order to save running time. Michel and Van Hentenryck

[45] implement this idea in the context of a modeling language for local search heuristics.

In this subsection we focus on how to compute efficiently the cost of production rules of the

form A - al . . . ar or A - R1 R 2, where either R1 or R2 are strings of terminals. We restrict

our analysis to the symmetric TSP.

Let 7r be the current solution. For each 2 < i < n, we define

i-1

Ci = E (k)r(k+l)-
k=l

We define co = cl = 0. These numbers can be computed in O(n) time at each iteration.

Two cities a, b are consecutive if b = a + 1 or b = a - 1. Similarly, a sequence al, . . , ar of

cities is consecutive if ak = al + k - 1 for all 2 < k < r. If the distance matrix is symmetric,

we also consider a sequence a,. . ., ar consecutive if ak = al - k + 1 for all 2 < k < r. Let

p be a production rule of the form A - a . . . ar or A - al . . .arB or A -- Ba1 ... ar where

a1,..., ar are terminals and B is a non-terminal. To simplify notation, we assume that p

is of the form A - a ... ar. We associate to this production rule a sequence of integers

0 i<i < .. < i = r so that

1. For any 0 < t < W, the sequence ai+, . . . , ai+ is consecutive.

2. For any 0 < t < W, the cities aif, ajP+l are not consecutive.

For example, the sequence associated with the production rule Al, - 1, n-1, n-2,... ., 3, 2, n

of 2-opt is 0, 1 n - 1, n. The sequence associated to each production rule can be computed

only once, since it does not change at any iteration. The following lemma holds.
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Lemma 4.4.6. Given a production rule p of the form A - a ... ar, the value V(al,p,ar)

as defined in te generic DP algorithm of Section 4.4.1 can be computed from Cel,..., c in

0(W) time, where W + is the length of the sequence 0 = i < ... < i = r associated to

p as defined above.

Proof. The cost V(al,p, ar Cr(k)w(k+l) associated to the path 7r(al),... ,7r(ar) is

equal to Zk=ci c i ) - ci_+ 1) _ C,,)(iP(+l). This last expression can be computed in

0(W) time. []

For example, the length of a sequence associated to any production rule of 2-opt is 4

and therefore the value V(a1 ,p, ar) corresponding to a particular production rule p can be

computed from c(7r) in constant time. The next corollary follows.

Corollary 4.4.7. The value V(al, p, ar) of a production rule p of the Adjacent, 2-opt, Twisted

or Dynasearch TSP Grammar of the form A - a ... ar can be computed in 0(1) time.

4.4.3 Running times for the Generic Algorithm on TSP grammars

In this subsection, we establish the running times for the generic dynamic programming

algorithm when applied to the neighborhoods generated by the grammars in Sections 4.3.1

and 4.3.2. In most cases, the time bound is better than the naive time bound of O(Kn3 ) as

proved in the previous subsection.

Data structures for grammars in normal form

All the grammars defined in Sections 4.3.1 and 4.3.2 are in normal form; that is, all their

production rules replace a non-terminal by at most two non-terminals. In this subsection, we

present some data structures to store information related to the sets States. The recursion

formulas of the DP solver can be computed more efficiently using these data structures.

The following data structures are written for grammars in normal form. For each non-

terminal R, we store the set States(R) as a list L(R). Each (i,j) C L(R) has associated a list

L(i, R, j) with the states {i-p-j: p applies to R and (i, j) C States(p)}. Similarly, for each
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TSP Neighborhood Grammar Running time
Adjacent Interchange Neighborhood O(n)
2-opt Neighborhood O(n2)
Pyramidal Tour Neighborhood O(n 2)
Tree-based grammars
with at most F production rules per non-terminal O(Fn4 )
Twisted Sequence Neighborhood O(n6 )
Semi-Twisted Sequence Neighborhood O(n3 )
Complete Neighborhood O(n22n )

Balas-Simonetti Neighborhood O(k22kn)
Enlarged Balas-Simonetti Neighborhood O(k1 54kn)
Dynasearch Neighborhoods O(n 2)
Extended Dynasearch Neighborhoods O(n3 )

Table 4.1: Running times for the generic dynamic programming algorithm for TSP neigh-
borhoods.

production rule p, we store States(p) as a list L(p). For each production rule p: A -* R1 R 2

with two non-terminals on the right hand side and for each (i, j) E L(p) we associate a list

L(i,p,j) with the elements of {(i,s,t,j) : (i,s) E States(R1), (t,j) E States(R 2)}.

These data structures don't change from iteration to iteration of the local search algo-

rithm. Therefore they are computed once. They can be computed in O(Kn 2), and the proof

of this bound is similar to the proof of Proposition 4.4.1.

Proposition 4.4.8. The running times of the generic dynamic programming algorithm of

Section 4.4.1 in the Adjacent Interchange Neighborhood grammar and in the 2-exchange

Neighborhood grammar defined in Section 4.3.2 is O(n) and O(n2) respectively.

Proof. For both sequence grammars, Corollary 4.4.7 says that V(i,p,j) can be computed in

constant time when p is of the form Al, - a for a string a of terminals. In order to prove

the proposition, it remains to bound the sets States.

We analyze the Adjacent Interchange Neighborhood grammar first. Since States(R) C

{(k,l) : k E {1,2},l E {n- 1,n}} for the Adjacent Interchange Neighborhood grammar, it

follows that IStates(R) < 4 = 0(1) in this case. Therefore, the time to compute V(i, R,j)

for all (i,j) E L(R) is 0(1). The states of the production rule Po : S - A1 ,n are the states

of AX,,., and therefore States(po)l < 4 = 0(1). Except for Po : S -- Al,n, all the production
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rules of the Adjacent Interchange Neighborhood are of the form Al, - a for some string

a of terminals. It follows that IStates(p)l = 0(1) for all the production rules of this TSP

grammar. Therefore, the time to compute V(i,p,j) for all (i,j) C L(p) is 0(1).

The total number of production rules is O(n) and therefore the total time to compute

V(i,p,j) for all p, all (i,j) C L(p) is O(n). There are two nonterminals, S and Al,n. Each

one has associated a list L(R) of length 0(1) Each state i - R- j has associated a list

L(i, R, j) of length O(n). Then, the total time to compute V(i, R, j) for all nonterminal R,

all (i,j) E L(R) is O(n).

We analyze the 2-exchange Neighborhood grammar.

Since States(R) C {(k, 1): either k = 1 or 1 = n}, it follows that States(R)l = O(n) in this

case. The time to compute V(1, A 1,n) is O(n2). The time to compute V(i, Al,, n) for all

i > 1 is O(n). The time to compute V(1,A 1 ,,j) for all j < n is O(n). The states of the

production rule Po: S Al, are the states of Al,, and therefore IStates(po)l = 0(n). The

time to compute V(i,po,j) for all (i,j) E L(p) is O(n 2). Except for po: S - Al,n, all the

production rules of the Adjacent Interchange Neighborhood are of the form Al, - a for

some string a. It follows that States(p)l = 0(1) for all the production rules but po of this

TSP grammar. Therefore, the time to compute V(i,p,j) for all (i,j) E L(p) is 0(1).

The total number of production rules is O(n2) and therefore the total time to compute

V(i,p,j) for all p, all (i,j) G L(p) is O(n 2 ). Then, the total time to compute V(i,R,j) for

all nonterminal R, all (i,j) E L(R) is O(n2 ). Therefore the generic DP algorithm runs in

O(n2) time in the 2-exchange Neighborhood grammar. [

Proposition 4.4.9. The running times of the generic dynamic programming algorithm of

section 44.1 in the Dynasearch Neighborhood grammars defined in Section 4.3.2 is O(n2).

Proof. Given a nonterminal R of the Dynasearch Neighborhood grammars, there is only one

pair of states (i,j) C States(R). For any nonterminal of the form Alj the length of the list

L(1, Aij, j) is O(n). There are O(n) nonterminals of this form and therefore the total time

to compute V(1, Aj, j) for all j is O(n 2 ). For any nonterminal of the form Aij : i 1,

the length of the list L(i, Aij, j) is 0(1). There are O(n2) nonterminals of this form and
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therefore the total time to compute V(i,, Aij,j) for all 1 < < < j is O(n2).

All the production rules of the form Aij -- a for some string a satisfies that States(p)l =

O(1). There are O(n2 ) production rules of this form and therefore the total time to compute

V(i,p,j) for all p of this form, for all (i,j) C L(p) is O(n 2 ).

All the production rules of the form A1,j -+ Al,il, At,j satisfies that IStates(p)l = O(1)

and that L(1,p,j) = {(1,i - 1,i,j)} O(1). There are O(n2) production rules of this form

and therefore the total time to compute V(i,p,j) for all p of this form, for all (i,j) E L(p)

is O(n). °

Proposition 4.4.10. The running time of the generic dynamic programming algorithm of

Section 4.4.1 in the Pyramidal Tour Neighborhood or the Semi-Twisted Sequence Neighbor-

hood given as in Section 4.3.2 is O(n2) and O(n3 ) respectively.

Proof. We prove the proposition for the Pyramidal Tour Neighborhood case since the proof

for the Semi-Twisted Sequence Neighborhood is similar. The difference between the running

times of these two grammars follows from the fact that the number of production rules of

the Semi-Twisted Sequence Neighborhood is O(n2 ) while the number of production rules of

the Pyramidal Tour Neighborhood is O(n).

Given a non-terminal Ajn, we observe that any path generated by the subgrammar GAjn

satisfies that either it starts or it ends in city j. Therefore, States(Aj,n) C {(k, 1): either k =

j or = j}, that is, States(Aj,n) = O(n). The number of production rules that can be

applied to a nonterminal is at most two. Therefore, the time to compute V(i, R, j) for all

(i,j) E L(R) is O(n). Given a production rule p, say p: Aj,n - Aj+ , ,j, the lists L(k,p, l)

which are nonempty are of the form L(k,p,j). When k j + 1, there is only one element

in L(k,p,j), namely (i,j + 1,j,j). Therefore, we can compute V(i,p,j) in 0(1) steps. The

total time to compute L(k,p,j) for all k j + 1 is then O(n). When k = j + 1, the number

of elements of L(j + 1,p,j) is O(n) since L(j + 1,p,j) = {(j + 1, s,j,j) j + 2 < s < n}.

In this case we compute V(j + 1,p,j) in O(n) steps. The total time to compute V(i,p,j)

for all (i, j) E L(p) is O(n) then. The total number of production rules and nonterminals

is O(n) and therefore the total time to run the generic dynamic programming algorithm for
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the Pyramidal Tour Neighborhood grammar of Section 4.3.2 is O(n2).

The following proposition shows that the generic DP solver for TSP grammar neighbor-

hoods has the same running times as the solver proposed for the complete neighborhood,

on this neighborhood, and as the solvers proposed for Balas-Simonetti Neighborhood and

the Enlarged Balas-Simonetti Neighborhood, on these neighborhoods. We also compute the

running time over the inverse Balas-Simonetti neighborhood, as defined in Section 4.6.1.

Proposition 4.4.11. The generic dynamic programming algorithm of Section 4.4.1 searches

the Complete Neighborhood as defined in Section 4.3.2 in time O(2nn2 ). Its running times in

the Balas-Simonetti Neighborhood grammar, in the Enlarged Balas-Simonetti Neighborhood

grammar and in the Inverse Balas-Simonetti Neighborhood grammar as given in Section 4.3.2

is O(k22kn), O(kl'54kn) and O(k24kk!n) respectively.

Proof. All these grammars are right regular grammars and all the tours in the neighborhood

they generate satisfy that (1) = 1. Therefore, the DP solver runs in O(Kn) in all these

neighborhoods, as proven in Theorem 4.4.3. This bound gives the 0(2nn2) time for the

Complete Neighborhood grammar, since the number of production rules of this grammar is

K := 0(2 n).

For the Balas-Simonetti (BS) Neighborhood grammar, the Enlarged Balas-Simonetti

(E3BS) Neighborhood grammar, and the Inverse Balas-Simonetti (IBS) Neighborhood gram-

mar, we apply the following variation of this bound. Let G be a right regular grammar

such that all the tours in the neighborhood its generates satisfy that o(1) = 1. Let

s =: max{lStates(p)l, States(R)I} be the maximum number of states of a production rule or

a non-termina]l of G. Then, the DP solver runs in O(Ks) time.

Given a non-terminal R of the Balas-Simonetti Neighborhood grammar, the Enlarged

Balas-Simonetti Neighborhood grammar, or the Inverse Balas-Simonetti Neighborhood gram-

mar, we claim that States(R)l = (k). This claim easily follows from two properties

shared by these neighborhoods: any sequence x (in any of these neighborhoods) satisfies

that r(1) = 1, and any object placed in the mth place belongs to the set {m-k,...,m+k}.
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A sharper bound holds for the number of states associated with a production rule of these

grammars: IStates(p)l = 1.

Let KBS, KEBS be the number of production rules of the Balas-Simonetti Neighborhood

grammar and the Enlarged Balas-Simonetti Neighborhood grammar respectively. As we

proved in Section 4.3.2, KBS = O(k2kn) and KEBS = O(k°'5 4kn). These bounds on the

number of production rules and the O(Ks) time bound (where s = O(k)) on the running

time of the DP solver prove the claim. [

4.4.4 A generic solution procedure for Linear Ordering Grammars

A sequence grammar defines valid permutations for the Linear Ordering Problem. In this

subsection we present a Dynamic Programming algorithm that finds the best permutation

in a neighborhood generated by a linear ordering grammar.

The initial permutation is 7r = (r(1),ir(2),... ,7r(n)). We introduce some additional

notation. We denote by f(i, j) the cost C,(i),,(j). Given a terminal or non-terminal R, we

denote by V(R) the value min{i< j f(u(i), u(j)) : E L(GR)} that corresponds to the

best ordering of elements in R as generated by the grammar. The cost of the best sequence

in the neighborhood is V(S). Similarly, given a production rule p: A -- R1R 2 . . . R, we

denote by V(p) the cost of the best ordering of elements in R as generated by the grammar

Gp(R). The following is a dynamic programming recursion for computing the best tour in a

Neighborhood grammar.

1. If a is a terminal then V(a) = O.

2. Suppose p is the production rule A -- R 1, R2,, Rr.

Then, V(p) = El~tlt 2 •r EiERtljERt2 f(i, j) + E-=l V(Rk)

3. If R is a non-terminal, then

V(R) = min{V(p): p is a production rule and p applies to R}.
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Theorem 4.4.12. Let K be the number of production rules of a neighborhood grammar

for a linear ordering problem with n elements. Then the time to compute the best neighbor

generated by the grammar is O(Kn 2).

Proof. The time needed to compute c(R) after we compute c(p) for all production rules p

that apply to R is proportional to the number of rules that apply to R. Since each production

rule applies to at most one non-terminal, the total time to compute c(R) for all R is O(K).

For each production rule p: A -- R1, R2 ,. , Rr, the total time needed to compute V(p)

after we compute V(R 1),..., V(Rr) is at most O(A 12) = O(n2). Therefore the total time to

compute V(p) for all p is O(Kn 2). 0

4.4.5 A generic solution procedure for Minimum Latency Gram-

mars

We present a Dynamic Programming algorithm for finding the best solution in a grammar

neighborhood of the Minimum Latency Problem.

The initial tour is 7r = (r(1), 7r(2),... ,r(n)). We denote by f(i,j) the arc cost c7r(i),(j).

We introduce some additional notation. For a given terminal or non-terminal R, let States (R)

be the set of pairs of customers (i, j) such that there is a path generated by the grammar

GR from customer i to customer j that passes through all the customers of Customers(R).

We also define the set InitCustomers(R) = {i: (i, j) E States(R) for some j}, and the set

EndCustomers(R) = {j (i,j) E States(R) for some i}.

We define the sets States(p),InitCustomers(p), EndCustomers(p) for a production rule p in

the same manner. These sets are defined in the same way as the corresponding sets of the

DP algorithm for the TSP. Therefore, they satisfy the same recursive relations, and the time

to compute them is O(Kn2), as Proposition 4.4.1 shows.

Given a subsequence of customers ab, . . , ae located in positions b, b+ 1, . . ., e, we denote

by V(b, ab,.. , ae) = ek=b(n-k+)ak,ak+l the latency cost associated to it. Given a terminal

or non-terminal R, customers i,j E Customers(R), and an initial position 1 < b < n,

we denote by V(b,i,R,j) the minimum latency cost of a path that starts from r(i) in
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position b, to city 7r(j) passing through all the customers of 7r(Customers(R)) as generated

by the grammar. Similarly, given a production rule p: A -- R1R2 ... Rr, customers i, j C

Customers(A), and an initial position 1 < b < n, we denote by V(b,i,p,j) the minimum cost

path, starting from city 7r(i) in position b to city 7r(j), passing through all the customers of

r(Customers(A)) as generated by p.

We refer to a 4-tuple b - - R - j as a state of the dynamic programming recursion.

The best tour generated by the grammar has value min{V(1,i, S,j) i,j C States(S)}. The

following is a dynamic programming recursion for computing the best tour in a Minimum

Latency Problem Neighborhood grammar.

1. If a is a terminal with Customers(a) = k, then for 1 < b < n : V(b, k, a, k) = O.

2. Suppose p is the production rule A -* ala2 ... arB. Then,

For (a,,j) States(p), 1 < b < n:

V(b, a, p,j) =mi{kl(n { (+ 1-b-k)f(ak, ak+l) + (n + 1-b-r)f(ar,t) + V(b +
r,t,Bj) t E InitCustomers(B)}.

3. Suppose p is the production rule A --+ R, R 2,... , Rr.

Then, for 2 < k < r, for i InitCustomers(RI),j C EndCustomers(Rk), and for

1 <b<n:

V(b, i, R, R2, ... , Rk, j) = min{V(b,i,RR2, ... , Rk_l,t) + V(b + Jl1 [Rl 1,t, Rkj)

t E InitCustomers(Rk)}.

For 1 < k < r- 1, for i InitCustomers(R 1 ),j C IniCustomers(Rk+l), and for

1 < b < n,:

V(b, i R, R2, .. , Rk,j) min{V(b, i, R1, R2, ... ,Rk, s)+(n-b-ZEj=l RiI+l)f(s,j)

s EndC(ustomers(Rk)}.

For (i,j) States(p) and for I < b < n:

V(b, i,p,j) = V(b,i, 1, R2,. . . ,Rr, j)

4. If R is a non-terminal, then

For (i,j) States(R) and for I < b < n:
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17(b,i, R, j) = min{V(b,i,p,j) p is a production rule and p applies to R}.

Theorem 4.4.13. Let K be the number of production rules of a Latency Problem neighbor-

hood grammar for a problem with n customers. Then the time to compute the best neighbor

generated by the grammar is O(Kn4 ). The running time on Left Regular Grammars is

O(Kn 2).

Proof. The DP procedure is the same as the one derived for TSP grammars, except for

the extra parameter b in the DP recursion. The running time of the DP procedure for a

context-free MLP grammar is n times the corresponding running time of the DP procedure

for a sequence ontext-free grammar because of this extra parameter.

When G is a Left Regular MLP Grammar we do not need this parameter since b, the

initial position of a subsequence generated by a production rule p or from a non-terminal

R, is always the same. Therefore the running time of the DP procedure for Left Regular

MLP Grammars is the same as the running time of the DP procedure for a Left Regular

Grammars for TSP, which is O(Kn 2). ]

4.4.6 A generic solution procedure for Scheduling Grammars

We analyze the single machine scheduling problem with cost the sum of weighted tardinesses,

although the results also apply for different versions of Single Machine Problems. For this

problem, the DP algorithm we present is pseudopolynomial for sequence context-free gram-

mars, and is polynomial for left regular grammars.

The initial permutation is r = ((1), r(2),... ,r(n)). Let P >= pj be the time to

completion. We introduce some additional notation. Given a terminal or non terminal R,

let t(R) = jE Jobs(R)P,(j). Given a production rule p that applies to R, let t(p) = t(R). For

each terminal or non terminal R, and each time 0 < t < P, let V(t, R) denote the sum of

tardinesses of jobs in Jobs(R), assuming that the first job of R is scheduled to start at time

t, that corresponds to the best ordering of jobs in R as generated by the grammar GR. That
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is,
IJobs(R)I

Vl.t, R) = min{ E max{t P(,(k)) - d(r((k)); 0}' c C L(GR)}. (4.8)
k=l

The optimal sequence c7r E N(Tr) has cost V(O, S). Similarly, given a production rule p, and

a time 0 < t < P, we denote by V(t,p) the cost of the best ordering of elements in R as

generated by the grammar Gp, assuming that the first job of R is scheduled to start at time

t. The following is a dynamic programming recursion for computing the best tour in the

neighborhood of generated by the context free sequence grammar G.

1. If a is a terminal with Jobs(a) = 1, then for each 0 < t < P,

V(t, a) = max{t + P,(l) - da(l); 0}.

2. Suppose p is a production rule of the form A R1 , R2 ,.. , R,. Then, for each 0 <

t < P,

V(t,p) = E-k=l V(t + Em- 1 t(Rm), Rk)

3. If R is a non-terminal, then for each 0 < t < P,

V(t, R) =: min{V(t,p) p is a production rule and p applies to R}.

The following theorem holds.

Theorem 4.4.14. Let K be the number of production rules of a context-free neighborhood

grammar for a single machine problem with n jobs. Let P = pinl pi be the total processing

time. Then the time to compute the best neighbor generated by the context-free grammar is

O(KPn).

Proof. There are O(KP) states of type t-p, and it takes O(n) time to compute each V(t,p).

Therefore, the total time to compute V(t,p) is O(KPn).

'There are O(KP) states of type t- R, and it takes O(KP) time to compute them all.

Therefore, the total time is O(KPn). D

This running time is pseudopolynomial. When G is a left regular grammar, the DP

algorithm described before can be adapted to find the optimal solution in polynomial time.
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The states t - R (or t - p) of the previous DP algorithm have a parameter 0 < t < P,

which corresponds to the earliest time available for schedule a job of Jobs(R). When G is

a left regular grammar, we can restrict the DP algorithm to compute V(P- t(R), R) and

V(PI - t(p),p) for all R and all production rules p. This is so since any sequence a G L(G)

that is derived using a production rule p that applies to R satisfies that the earliest time for

scheduling the jobs of R is ZjJobs(R) P(j) = P - t(R). The following theorem holds

Theorem 4.4.15. Let K be the number of production rules of a left regular neighborhood

grammar for a single machine problem with n jobs. Then the time to compute the best

neighbor generated by the left regular grammar is O(Kn).

Proof. There are O(K) states of type p, and it takes O(n) time to compute each V(p).

Therefore, the total time to compute V(p) is O(Kn).

There are C)(K) states of type R, and it takes O(K) time to compute them all.

Therefore, the total time is O(Kn). El

Lawler's neighborhood for minimizing the total tardiness

Lawler [41] proved that the single machine scheduling problem with cost the sum of weighted

tardinesses can be solved in pseudopolynomial time when the weighting of jobs is agreeable,

in the sense that pi < pj implies wi > wj. Lawler's algorithm runs in O(n4 P) time, where

P P== pi. In this section we restate his algorithm as finding the best solution in a

grammar neighborhood of a particular initial sequence.

Assume the jobs are ordered by increasing order of due dates, that is, di < dj when-

ever i < j. For 1 i k j < n, we define the following subset of jobs S(i, j, k) =

{q i < q < j and Pq < Pk} There are O(n 3) subsets S(i,j,k). We define the set

SL = {S(i,j,k) 1 i k j < n}. Then, ISLI = O(n 3 ). The Lawler's neighbor-

hood grammar is as follows.
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The value f the function Jobs on each terminal and non-terminal is straightforward:

Jobs(S): {1,... , n}, Jobs(As(iJ,k)) = S(i, j, k) for each subset S(i, j, k) E SL.

Lawler [41] proved that there exists an optimal sequence that belongs to Lawler's neigh-

borhood of 7r =: (1, . . ., n), the sequence of jobs ordered by their due dates. That is, the local

optimum in Nz:(7r) is a global optimum.

Let us bound the total number of production rules of Lawler's neighborhood. For each

S(i; j, k) C SL there are O(n) production rules that apply to the nonterminal As(iJk) Since

ISL O(n3 ), the total number of production rules of Lawler's neighborhood is O(n4 ). The

generic DP algorithm for Scheduling Neighborhoods, when applied to Lawler's Neighborhood

Grammar, has the same running time as Lawler's DP algorithm as the next proposition

shows.

Proposition 4.4.16. The generic DP algorithm for optimizing over a Scheduling Neigh-

borhood with n jobs and P = pil pi total processing time runs in O(n4P) time when the

neighborhood is Lawler's neighborhood.

Proof. The bound obtained by applying Theorem 4.4.14 is O(n5P) time. However, by going

over it carefully, it can be improved by a factor of n.

The number of production rules is K = O(n4 ). There are O(KP) = O(n4P) states of

type t-p, and it takes 0(1) time to compute each V(t,p) (this is the main difference with the

bound derived in Theorem 4.4.14). Therefore, the total time to compute V(t,p) is O(n4P).
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Lawler's Neighborhood Grammar

S As(1,k+s,k) k, As(k+s+l,j,k)

for 1 < k < such that Pk = max{pq: 1 q < n}

and for each 0 s < j - k.

As(i,j,k) AS(i.k'+s,k'), k', As(k,+s+l,j,k) for each S(i, j, k) E SL,

fork' CE S(i,j,k) such that Pk' = max{pq: q EC S(i,j,k)}

and for each 0 s < j - k'.

As(i,i,k) -- i for all nonempty S(i, i, k) 6 SL.



There are O(n 4 P) states of type t- R, and it takes O(n4P) time to compute them all.

Therefore, the total time is O(n4P). [

4.4.7 A generic solution procedure for Weighted Bipartite Match-

ing Problem with Side Constraint Grammars

Greedy Solution for the Weighted Bipartite Matching Problem with Side Con-

straints

Let 7r ((1),.., 7r(n)) E Sn be a permutation of the lessons. We assign to this permutation

the optimal matching M, for WBMPSC such that lesson r(i) is assigned to earlier time

spot(s) than lesson 7r(j) whenever i < j. We use a simple DP algorithm to find matching

Mar.

1. For any 1 <i <n, 1 <b < e <m:

V(b, Tr(i), e) = min{c7,(i),t: 1 < t < e - b(i)}

2. For 1 <e < mandfor k = 2 ton:

V(1, r(1),..., r(k), e) = min{V(1, 7r(1),..., r(k- 1), t) + V(t + 1, r(k), e): 1 t < e}

V(1, 7r(1),.. , 7r(n), m) is the cost of the matching assigned to r.

Proposition 4.4.17. Given a weighted matching problem with relations with n lessons and

m time slots, the running time of the DP algorithm is O(nm3 ).

Proof. The number of states b - r(i) - e is O(nm2 ). For each of these states, the time

to compute V(b, r(i), e) is O(m). Therefore, the total time to compute V(b, r(i), e) for all

states b - r(i) - e is O(nm 3 ).

The number of states 1 - 7r(1),..., 7r(k) - e is O(nm). For each of these states, the

time to compute V(1,7r(1),...,7r(k),e) is O(m). Therefore, the total time to compute

V(1, 7r(1), . . ., 7r(k), e) for all states 1 - r(1), . . ., 7r(k) - e is O(nm2 ).

Therefore, the total time of the DP is O(nm3 ). 0
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Every solution associated to a sequence of lessons is a feasible solution for the WBMPSC.

The following proposition shows that the sequencing problem for the WBMPSC is equivalent

to the WBMPSC.

Proposition 4.4.18. There exists a permutation 7r such that its associated matching AlM is

an optimal solution of the WBMPSC.

Proof. Given an optimal solution OPT of the WBMPSC, it defines a sequence of lessons

7rOpT as follows. The first lesson, 7rOPT(1 ), is the lesson assigned to the earliest slot

time(s) (among all lessons) according to OPT, 7OPT( 2 ) is the lesson assigned to the second

earliest slot time(s) according to OPT, and so on. It is easy to see that the solution associated

to ROPT via the greedy DP algorithm is OPT (or a solution with the same cost). Therefore,

the proposition holds. L

Dynamic Programming Procedure for Grammars for WBMPSC

The initial permutation of lessons is 7r = (r(1), 7r(2),... , r(n)). We introduce some addi-

tional notation. Let States = {(b, e) 1 < b < e < m} be the set of ordered pairs of time

slots. Given a terminal or non terminal R, and a pair (b,e) States(R), we denote by

V(b, R, e) the minimum cost that corresponds to the best sub-matching of lessons of r(R)

on the time period [b, e] as generated by the grammar. Similarly, given a production rule

p A -- RR 2 . . .Rr and a pair (b,e) States(R), we denote by V(b,p,e) the minimum

cost that corresponds to the best sub-matching of lessons of 7r(R) on the time period [b, e]

as generated by the grammar.

We refer to a triple b - R - e or b- p- e as a state of the dynamic programming recursion.

The best matching generated by the grammar neighborhood of wr has value {V(1, S, m)}.

The following is a dynamic programming recursion for computing the best tour in a Matching

Neighborhood of 7r.

1. If a is a terminal with Lessons(a) = 1, then

For any < b < e < m:

V(b. a, e) = min{c(l),t : 1 < t < e- bq()}
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2. Suppose p is the production rule A -- R1, R 2 ,..., R,

Then, for k = 2 to r and for (b, e) E States:

V(b, R1,R 2 , .. ,Rk, e) = min{V(b, R1,R 2,... ,Rk-l,t) + V(t + 1, Rk, e) : b < t < e}

Then, V(b,p,e) = V(b,R 1 R2 . . . R, e).

3. If R is a non-terminal, then

V(b, R, e) = min{V(b, p, e) : p is a production rule and p applies to R}.

Theorem 4.4.19. Let K be the number of production rules of a Matching neighborhood

grammar for a weighted matching problem with side constraints, with n lessons and m time

slots. Then the time to compute the best neighbor generated by the grammar is O(Knm 3).

Proof. The number of states b - a - e is O(nm2 ). For each of these states, the time to

compute V(b, a, e) is O(m). Therefore, the total time to compute V(b, a, e) for all states

b - a - e is O(nm 3 ).

For each production rule p: A -- R1 , R2 ,..., R, the The number of states b - p - e is

O(Km 2 ). For each of these states, the time to compute V(b, R.... , Rk, e) for all 1 < k < r

from the values V(b', Ri, e') is O(nm). Therefore, the total time to compute V(b,p, e) for all

states b- p- e is O(Knm 3 ).

For all non-terminals, the total time to compute b- R - e is O(Km 2). Therefore, the

total time of the DP is O(Knm 3 ). C1

4.4.8 The Shortest Hyperpath Problem

We show that the Shortest Hyperpath Problem can be restated as a sequencing problem. In

the next subsection, we assign a hyperpath to a sequence of nodes.

Greedy Solution for the Shortest Hyperpath Problem

Let 7r = (7r(1), . . ., r(n)) E Sn be a permutation of nodes. We use a simple greedy procedure

to assign a hyperpath H, to 7r. Let 7r-l(t) be the placement of node t in the sequence

ir. In some sense, we only care about the first r-l(t) nodes of the sequence. For any
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1 < i < 7r-(t), let e(i) - (T(e , (), h(e, (i))) be an hyperarc with minimum cost among

the hyperarcs e = (T(e),h(e)) such that T(e) C {(1),... ,r(i- 1)} and h(e) = r(i). Let

A, = Ur-2(t)(ev(i). Let V, = {ir(1),... ,t. The hyperpath H7, is then (V , ,AH).

Proposition 4.4.20. Given a hypergraph with n nodes and m hyperarcs, and a sequence

7r E Sn, the greedy solution H. can be computed in O(eEA IT(e)I) time.

Proof. We associate to each hyperarc e the number i(e) = max{i r(i) E T(e)}. The com-

putation of these numbers takes O(EeEA T(e)I) = O(mT) time, where T = (ZeEA IT(e)).

We sort the m hyperarcs e according to its number i(e). This operation takes O(mlogm)

time. For each node i, we construct a set of hyperarcs A(i) = {e: i(e) = i}. This takes

O(m) time. Finally, e(j) is the hyperarc in A(i) with minimum cost. This computation also

takes O(m) time. Therefore, the greedy solution can be computed in O(mT) time. [

The following proposition has a similar proof as Proposition 4.4.18.

Proposition 4.4.21. There exists a permutation r such that its associated hyperpath H is

an optimal solution of the minimum hyperpath problem.

DP algorithm for Left Regular Grammars for SHP

We present an efficient DP algorithm for neighborhoods for the SHP defined by left regular

grammars. We observe that context-free-grammar-based neighborhoods may not have an

efficient algorithm. The initial permutation is r = (r(1), r(2),..., 7r(n)). Given a terminal

or non terminal R, we denote by V(R) the minimum cost that corresponds to the best greedy

solution associated to a subsequence r(u), where a is in the language L(R). Similarly, given

a production rule p: A - al ... arB we denote by V(p) the minimum cost that corresponds

to the best sub-matching of lessons of 7r(R) as generated by the grammar using p.

The best hyperpath in the grammar neighborhood of 7r has value V(S). The following is

a dynamic programming recursion for computing the best tour in a Neighborhood of r.

1. If a is a terminal with Nodes(a) = 1, then

V(a) = min{ce : T(e) C N- {l}, h(e) = }.
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2. Suppose p is the production rule A -- ala 2 ... arB.

Then, V(p) = Zr=l min{ce : T(e) C N - ({ak+l, . . ,ar} U Nodes(B)),h(e) = ak} +

V(B).

3. If R is a non-terminal, then

V(R) = min{V(p) p is a production rule and p applies to R}.

Theorem 4.4.22. Let K be the number of production rules of a Left Regular Grammar for

a Shortest Hyperpath Problem with n nodes and m hyperarcs. Then the time to compute the

best neighbor generated by the grammar is O(Knm).

Proof. Step 1 takes O(Km) for all terminals. Step 3 takes O(K) for all non-terminals. Step

2 takes O(Knm) for all production rules. C1

The following table depicts the running times of the DP

grammar neighborhood for different sequencing problems.

algorithms for optimizing over

4.4.9 Determining whether a permutation a is in a sequence gram-

mar

In this subsection, we address the question of whether a permutation is generated by a

sequence grammar. The membership question of a string of length n to a language generated

by a context-free grammar in normal form is solved by the Cocke-Younger-Kasami (CYK)

algorithm (see Hopcroft and Ullman [37]). In their analysis, the size of the string can be

arbitrarily large whereas the size of G is treated as a constant. The running time of the
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Problem n m Greedy DP for CFG DP for LRG

TSP cities - O(n) O(Kn3) O(Kn2)

LO objects - O(n2) O(Kn 2 ) 0(Kn 2)

MLP cities - O(n) O(Kn 4 ) O(Kn 2)

Single Machine Scheduling jobs - O(n) O(KPn) O(Kn)

WBMPSC Lessons Time slots O(nm3 ) O(Knm 3 ) O(Knm 2 )
SHP nodes hyperarcs (nm) - O(Knm).

SHP nodes hyperarcs O (nm) -O (Knm)



CYK algorithm as a function of n and K is O(Kn 3). We give a faster algorithm for the

membership problem for sequence grammars in this subsection.

Given a terminal or non terminal R and a number 0 q < n- 1, we define V(R, q) as 0

if there exists a sequence 0 R C L(GR) such that CTR(t) = o(t+q) for all 1 t < Objects(R)l,

and 1 otherwise. If V(R, q) = 0 for some q, we define Position(R) = q. If V(R, q) = 1 for

all q, then we define Position(R) = 0. We define V(p, q) and Position(p) for a production

rule p in a similar way.

The sequence a belongs to L(G) if and only if V(S, 0) = 0. The following is a dynamic

programming recursion for computing V(S, 0).

1. If a is a terminal with Objects(a) = {k}, then

Position(a) = a-l(k) and V(a, Position(a)) = 0.

2. Suppose p is the production rule A -- R 1, R 2 ,.. , R. Then,

Position(p) = Position(R1) and

V(p, Position(p)) = min{1; El<t<r V(Rt, Position(R1) + Z1 l<u<t-l Objects(Ru)))

3. If R is a non-terminal, then

If there exists a production rule p that applies to R and such that V(p, Position(p)) = 0

then Position(R) = Position(p) and V(R, Position)(R) = 0,

otherwise Position(R) = 0 and V(R, Position(R)) = 1.

The following theorem holds. It has a similar proof as Theorem 4.4.3.

Theorem 4.4.23. This algorithm determines whether a permutation a is generated by a

sequence grammar (G, Objects) with K rules and n objects in O(Kn) time.

4.4.10 Context-Sensitive Sequence Grammars for the TSP

A generic solution procedure using dynamic programming

In this subsection we generalize the generic algorithm for finding the optimal solution on a

grammar-based neighborhood for the TSP developed in Section 4.4.1 to deal with a class of
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context-sensitive sequence grammars, namely when rules of the form alAa 2 --- al/a 2 for

a 1,a2, 3 E V* are restricted to aC1,a2 E V.

The initial tour is 7r = (r(1), 7r(2),..., 7r(n)). We denote by f(i,j) the arc cost c(i),,(j)

The generic algorithm for context-free sequence grammars for the TSP has states of the form

(i, R, j) or (i, p j) for terminals or non-terminals R, production rules p and cities i, j. The

algorithm for context-sensitive grammars needs bigger states since a production rule p can be

applied to a non-terminal R depending on the strings that surround R. Let C be the set of

"contexts" of production rules of G, that is, C = { (a, ) E V x V: 3p E P of the form p:

aA/3 - aR 1 ... Rr0}. The cardinality of C is at most K, the number of production rules.

If G is a context-free grammar, then C = 0. Given a string a E VT, we define InitObject(a)

(EndObject(a)) as the first (last) object in a.

Let W be the set of substrings of either a or /3 for any (a,/3) C. We remark that

the empty substring belongs to W. Given a terminal or non terminal R, strings aE, /3 E E

W,aE, E E WU VT, (the subscripts E and I stand for exterior and interior respectively), we

denote by V(aE, ai, R, 3I, fE) the minimum cost of any subsequence that starts at a,, ends

at I as generated by the context-sensitive sequence grammar GaER3E (that is, the grammar

with R as the starting symbol and with the strings aE, E as the surrounding "context").

In short, aE, E give restrictions on the strings of terminals that appear on the left and on

the right of R, and ai, I3, give restrictions on how the string generated by R (when escorted

by aE, E) starts and ends. Any of the strings aE, E can be the empty set, which means

that we place no restriction on the subsequence that precedes or follows the subsequence

generated by R. The total number of 4-tuples (E, aI, /3I, E) is O((Kn 2 )4 ) = O(K4 n8 ).

Given a nonterminal R, we say that the 4-tuple (E, a, /3, E) is compatible with R if

the last min{I Objects(R)I; IaI }} objects of a, belong to Objects(R); and the first

min{lObjects(R)I; I/I}} objects of I belong to Objects(R). For each nonterminal R, we

define the set ExtStates(R) = {(aE, aI, ', E) compatible with R}. We also define the

sets InitExtStates(R) = {(aE, a,) : (E, a,, R, 3,/3E) ExtStates(R) for some ,/3E},

EndCities(R) = {(/3I,/3E): (aE,aI,/3I,E) ExtStates(R) for some 3I,/3E}.
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Given a production rule p : y7IA7y2 - y1R1, R 2,... , Ry7 2, we define ExtStates(p) and

V(aE, c, p,I ,/ 3E) in a similar way. The set ExtStates(p) contains the 4-tuples

(OE, aI, ,1, ,3 E) E ExtStates(R) such that E = cEv 71Y, and E = 72, E for some strings

a' E E V_

We refer to a 5-tuple of the form (E, ci, RI, ,I ,E) or (E, aI,p, I, E) as a state of

the dynamic programming recursion. The best tour generated by the grammar has value

mini,j{V(0, i, S, j, 0) + f(j, i)}.

We remark that, when G is a context free sequence grammar, the 4-tuples of ExtStates(R)

or ExtStates(p) collapse to 4-tuples of the form (0, i, j, 0) for objects i, j, and we thus recover

the generic DP solver of Section 4.4.1.

The following is a dynamic programming recursion for computing the best tour in a TSP

Neighborhood grammar.

1. If a is a terminal with Objects(a) = k, then

V((E, ia,,/3,3E) = { 0 if Objects(a) = {k} and Objects(,) = {k},

oo otherwise.

2. Suppose p is the production rule 7y1A-y2 ' 1R1, R2 ,.. , Rry2. Then,

for k = 2 to r and for (E, ai) InitExtStates(R 1 ), (k, /E) EndExtStates(Rk):

V (1E),! R, R2, , Rk, ik ,3E) =

min{V(&E, aI, R1, R2, .., Rk-1-, l -1 ) + f(EndObject(3-l), InitObject(kE1)) +
V(I 7 AE ,RkOPk7OE)

(/Ik 1,/ ---1) EndExtStates(Rk-l), (-', 7E1, 7 Ok, ) ExtStates(Rk))},

For (E, I, I,I3E) ExtStates(p):

V(aE, I, I,!3E) = V(aE, I, R1, R2, Rr, /I ,3E)

3. If R is a non-terminal, then for (E, aI, I, E) ExtStates(R):

V(aE, , R, OI,/3 E) = min{

V(aE, ci, f i, ,E): p is a production rule that applies to aERE}.
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Proposition 4.4.24. Suppose that p is the production rule p: Y1AY2 -* -YRR 2 ... Rr"Y2.

Then the time to compute V(aE, aI, p, I, /E) for all (E, eI, /3I, /E) E ExtStates(p) from

the values for R1R2 ... Rr is

r
Time(p) = O(E I ExtStates(R1R2 . . . Rk-1)| x ExtStates(Rk) ))

k=2

Proof. It follows directly from the dynamic programming recursion given in (2) of the generic

algorithm. [

Theorem 4.4.25. Let K be the number of production rules of a restricted context-sensitive

sequence grammar for a problem with n cities. Then the time to compute the best tour

generated by the grammar is O(K 9nl6). If the grammar is in extended normal form, the

time is O(K4 n13 ).

Proof. Consider a production rule p and consider the result in Proposition 4.4.24. For each

k, we can bound IExtStates(R1R 2 ... Rk-1)l by IInitExtStates(R1)l x ExtStates(Rkl)l. The

bounds IInitExtStates(R)I = O(K 2n4 ), EndExtStates(R)l = O(K2 n4 ), and ExtStates(R)l =

O(K4 n8 ) hold for any terminal or non-terminal R. Since Objects(Ri) n Objects(Rj) = 0 for

all 1 i < j _ r, we claim that each 2-tuple (, E) appears in at most one of the sets

EndExtStates(Rk) n InitExtStates(Rk+l) for 1 < k < n. This is so since the string 3, imposes

conditions on how the subsequence generated by Rk has to start, that at most one of the

R 1, .. , Rr satisfy, and similarly, 3 E imposes conditions over Rk+l that at most one of the

R,.. ., Rr satisfy. Thus, the bound E-=- IExtStates(Rk)l < K4 n8 holds. Therefore, we can

bound Time(p) as follows.

r

Time(p) = O(Z- IExtStates(R1 R2 .. . Rk-1)l x IExtStates(Rk )l) =

k=2
r

0(E IInitExtStates(R1) I x IEndExtStates(Rk-1)I x IExtStates(Rk)l) =

k=2
r

O(E K 2n4 x EndExtStates(Rkl) x K4 n8) = O(K 8n16 ).
k=2
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The time to compute V(aE, aI,p, 3I, E) for all p and all (E, aI, PI, DE) E ExtStates(p) is

then O(K9 n16). The time to compute V(aE, ao,R, /3I, 3E) for all terminal or non-terminal

R and any (aE .aI, /I, /3E) E ExtStates(R) is bounded by K times the maximum number of

states in ExtStates(R), that is, O(K5n8 ). Therefore, the time to compute the best neighbor

generated by a context-sensitive grammar in extended normal form is O(K9nl6).

When the sequence grammar is in extended normal form, all the production rules have

at most one non-terminal on the right hand side. That is, p is either of the form p: yrAY2 --+

?l'aBy 2, p: 1Ay 2 --* y1Bay2 or p: y1Ay2 -* 7Y1crY2, where 7Y1, Y2 and a are strings of

terminals, and B is a non-terminal. We analyze p: 7Y1A-y2 -- y1aByl (the other cases are

similar). In this case, the time to compute V(aE, a,p, p,3, E) is O(K4n8). Since there are

K production rules, the time to compute V(OE, aOI, p, I, OE) for all (aE, ai, p, 1i, /E) is then

O(K5n8 ).

This is the same time as the time to compute V(aE, aI, R,O/3I, /E) for all terminal or non-

terminal R and any (aE, a/I, I,@E) E ExtStates(R). Therefore, the time to compute the best

neighbor generated by a context-sensitive grammar in extended normal form is O(K5 n8 ). 

4.5 Complexity questions

In this Section we study some theoretical aspects of sequence grammars. In the next subsec-

tion we show that, form the standpoint of computational complexity, the set of left regular

sequence grammars is strictly contained in the set of context-free sequence grammars. That

is, there are neighborhoods that can be generated by context-free grammars with a poly-

nomial number of production rules, but they cannot be generated by left regular sequence

grammars with a polynomial number of production rules. We also show that any context-

free sequence grammar that generates the complete neighborhood must have an exponential

number of production rules. Furthermore, we show a VLSN that cannot be defined by a

context-free sequence grammar with a polynomial number of production rules.

In subsection 4.5.2, we present sufficient conditions for a sequence grammar to be unam-

biguous. In subsection 4.5.3, we show an algorithm that checks ambiguity and tour ambiguity
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for sequence left regular grammars. We also present algorithms that check whether two left

regular grammars generate a common permutation, and whether the neighborhood generated

by one of them is included in the neighborhood generated by the other.

4.5.1 Hierarchy of Sequence Grammars

Figure 4-1: Hierarchy of sequence grammars

By definition, the set of sequence left regular grammars is included in the set of sequence

extended grammars, which in turn is included in the set of sequence context-free grammars.

Figure 4-1 describes the relations between the different grammars. We observe that any

neighborhood N can be defined by a sequence left regular grammar G: simply define the

production rules of C as p: S -- 7r, for each sequence 7r E N. In particular, the set of

neighborhoods generated by the sequence context-free grammars is the same as the set of

neighborhoods generated by the sequence left regular grammars. However, this reduction is

not polynomial. It turns out that there is no polynomial reduction from sequence extended

grammars to sequence left regular grammars, nor from sequence context-free grammars to

sequence extended grammars, nor from context-sensitive sequence grammars to context-free

sequence grammars. We prove these results in this subsection. We also show that the

ASSIGN neighborhood, a very large scale neighborhood, cannot be defined by a context-free

sequence grammar with a polynomial number of production rules.
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Proposition 4.5.1. Any left regular sequence grammar that generates the pyramidal neigh-

borhood has £(-2n) production rules. In particular, there is no polynomial reduction from

extended sequence grammars to left regular sequence grammars.

Proof. The proof is based on a counting argument. Let Gn be a left regular grammar with

KGn production rules, that generates the pyramidal neighborhood. By Lemma 4.5.11, there

exists a left regular grammar G' such that

1. L(G') L(Gn),

2. G' is a left regular grammar with KG, = O(nKGn) production rules,

3. All its production rules are of the form p: A --+ aB or p: A -- a for some non-terminals

A, B and some terminal a.

We claim that KG, is Q( E). This is so since for each subset W C {1,... , n} with Ln/21

elements, there exists a pyramidal sequence r E Npyramid with its first n/2J objects

being the objects of W in increasing order. Let pW,. . . ,pw be a sequence of production

rules in KG, that derivates rw. We associate to W the n/2J-th production rule in the

sequence, namely Pw /2 This production rule is of the form A --+ aB, where A, B are
PLn/2 '

nonterminals, a is a terminal, and Objects(B) = {1,.. ,n}\W. In particular, two different

subsets W, W' C {1,.. ., n} with Ln/21 elements have associated different production rules
ww'

PLn/2 WPLn/2J Therefore, the number of production rules of G' is at least the number of

different subsets of { 1,... , n} with n/2J elements, which is ( ) = (). This in
Ln/2J

turn implies that the number of production rules of G is at least KG = Q(

Since in Section 4.3.2 we showed a sequence grammar in extended normal form that

generates the pyramidal neighborhood using (n) production rules, we conclude that there

are neighborhoods that can be efficiently generated by a sequence grammar in extended

normal but cannot be efficiently generated by a left regular sequence grammar. C

The proof of the previous proposition implies something stronger. Any left regular gram-

mar that generates a neighborhood that contains the pyramidal neighborhood must have
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-Q( ) production rules. In particular, we have the following corollary.

Corollary 4.5.2. A left regular grammar that generates the complete neighborhood has

Q( 2 ) production rules.

The next proposition shows a similar result regarding context-free sequence grammars

and extended sequence grammars.

Proposition 4.5.3. There is no polynomial reduction from context-free sequence grammars

to extended sequence grammars.

Proof. The proof is similar to the one of Proposition 4.5.1. For each n, let us define the doubly

pyramidal neighborhood with tours of the form r = (r 1 , 7r2) where 7r1 is a pyramidal sequence

on the objects {1, . . ., n/2}, and 7rl is a pyramidal sequence on the objects {n/2 + 1,. , n}.

The context-free grammar Gn that generates such neighborhood is as follows.

The value of the function Objects on each terminal and non-terminal is Objects(S) =

{1,...,n}, Objects(Aj,n/2) = j,...,n/2} for 1 < j < n/2, Objects(Aj,n) = {j,... ,n} for

n/2 < j < n, Objects(j) = {j} for 1 < j < n. Gn is a context free grammar with KGn = E(n)

production rules.

Let G be a sequence grammar in extended normal form with KG' production rules,

that generates the same language as Gn. That is, the production rules of G' are of the form
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S A A,Ln/'2], ALn/2J+l,n

Aj,Ln/2J - j, Aj+,[Ln/2j, for 1 < j < Ln/2J

Aj,Ln/2] - Aj+l,Ln/2J,j, for 1 < j < n/2J

ALn/2jLn/2 I Ln/2J

Aj,n- j, j+ln, for n/2 < j < n- 1

Aj,n - Aj+ln , j, for 1 < j < n-1

Ann - n.



p: A-- al ... arB, orp: A- Ba ... a, orp: A-- a ... ar. Lemma4.5.12 shows that

there exists an extended regular grammar G" such that

1. L(G") = L(G' ),

2. G" is an extended regular grammar with KG, = O(nKG,) production rules,

3. All its production rules are of the form p: A -aB or p: A - Ba or p: A -- a for

some non-terminals A, B and some terminal a.

Since G" is in extended normal form and since all its production rules have at most one

nonterminal, and one terminal on their RHS, any derivation of a string is as follows. It starts

from the starting symbol S, and it ends in a sequence of terminals. At any point of this

derivation, we have a sequence of terminals and nonterminals of the form alRa 2, where ai

are strings of terminals and R is a nonterminal.

Given a (sub)sequence 7r1 E L(Ai,n/2j), we say that G" left weakly derivates rl if there

exists a derivation of a sequence such that, in an intermediate step, it obtains a sequence

7rlRla 2 , where R1 is a nonterminal and a 2 is a (possibly empty) sequence of terminals.

Similarly, we say that G" right weakly derivates 7r2 E L(A[Ln/2j+l,n) if there exists a derivation

such that, in an intermediate step, it obtains a sequence aC1, R1 , 7r2, where R1 is a nonterminal

and al is a (possibly empty) sequence of terminals. We claim that either G" left weakly

derivates all 7r1 e L(A1,Ln/2J), or it right weakly derivates all 7r2 E L(ALn/2j+1,n). The proof is

by contradiction. Assume there exist 7r1 E L(A,Ln/2J), 1r2 E L(ALn/2 +1,n) such that G" does

not left weakly derivate rl and does not right weakly derivate 7r2. Given any derivation of

(T1, 2), it looks like we add one object at a time, either to the right or to the left, until we

add the last object. We start from the starting symbol S with no objects on its side. At

any point of this derivation, we have something of the form alRa 2, where ai are strings of

terminals and R is a nonterminal. At some point of this derivation, we have either Ln/2J

objects at the left of the nonterminal R, or n/21 objects at the right of the nonterminal

R. But the first case would imply that G" left weakly derivate rl, which we assume is not

possible, and the second case would imply that G" right weakly derivate 72 , which we also

131



assume is not possible. Therefore, we reached a contradiction.

WLOG, we can assume that G" left weakly derivates all rl E L(A 1,[n/2J). The rest of the

proof is similar to the proof of Proposition 4.5.1. For each subset W C {1,..., [n/2J} with

[n/4J objects, there exists a sequence 7rw E L(G") such that its first [n/4J objects are the

objects of W in increasing order. Let pw,...,pW be a sequence of production rules in KG,

that derivates rW. We associate to W the n/4J-th production rule of the form A -- aB, and

we call it pw, in the sequence pw,.. ,pw. This production rule satisfies that Objects(B) n

{1,..., n/2J = 1,..., Ln/2J}\W. Thus, two different subsets W,W' C 1,..., Ln/2J}

with [n/4J elements have associated different production rules p, pW' . Therefore, the

number of production rules of G" is at least the number of different subsets of { 1, . . ., Ln/2J }

with [n/4J elements, which is ( [n/2J =f(2- 2 ) This in turn implies that the number
[n/4J / -

of production rules of G' is at least K, = Q( 2/2 0
n n/

The proof of the previous proposition says that any sequence grammar in extended normal

form that generates a language that contains the doubly pyramidal neighborhood has Q(2/2)

production rules. This in turn implies a lower bound on the number of production rules that

a sequence grammar in extended normal form that generates the complete neighborhood has.

However, the next theorem proves a stronger lower bound, which is valid for any context-free

sequence grammar. In order to prove this theorem, we first introduce some notation and we

prove a lemma.

Definition 4.5.4. Let N be a neighborhood generated by a context-free sequence grammar

G. Given 7r E N and a nonterminal A E G, we say that A is compatible with 7r (and vice

versa) if the objects of A appear consecutively in r, i.e., if there exists 1 < i < n such that

Objects(A) = {7r(i), 7r(i + 1), . . ., 7r(i + I Objects(A) - 1)}.

The following lemma holds. It applies to context-free sequence grammar with at most

two terminals/non-terminals on the left hand side of any production rule, not both of them

being terminals.
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Lemma 4.5.5. Let G be a context-free sequence grammar for a problem with n > 3 objects,

with production rules of the form p: A -* a, p: A - aB, p: A -* Ba, p: A -* BC, where

a is a terminal and A, B, C are nonterminals. Let N be the neighborhood generated by this

grammar. For any r C N, there exists a nonterminal A E G, compatible with ir, such that

< Objects(A)[ < 
3 -- ~~~~~~

Proof. Let T be the set of nonterminals A E G such that < IObjects(A)l < 233 - 3

Since G generates 7r E N, there exists a set of production rules pr,... ,pt in G that

derives r. It is easy to see that all the production rules p ,..., p' apply to nonterminals

that are compatible with 7r. Assume that these production rules are ordered by the number

of objects of the nonterminal that are applied to. That is, each p7 applies to nonterminal

A7, and Objects(A)I > Objects(A+ 1 )r. We remind that all production rules of G are of

the form p: A a, p : A -- aB, p A -+ Ba, and p: A BC. In particular, the

first production rule of the sequence p',...,pi applies to the starting symbol S, and the

last applies to a nonterminal with one object. Therefore, for some 1 < j < t, the first

j production rules of this sequence applies to nonterminals with at least objects, while

the last t -j production rules applies to nonterminals with at most 2 - 1 objects. If

IObjects(Ay)l == 2, then we prove the lemma since A7 is the desired nonterminal.

If Objects(A') > , we consider the following cases: p : A - a, pj : A - aBj,

pj : Aj -~ B7rar, and pj : A - BjCj.

The first case is not possible since n > 3.

Since j is the index such that Objects(A7) > and IObjects(Ar )I < , the second

and third cases imply that I Objects(A])[- 1 = Objects(Bjr) = and therefore we prove

the lemma since B7 is the desired nonterminal.

Finally, in the fourth case, either B or C (say B) has at least half of the ob-

jects of nonterminal A. Then, Objects(B7+l)) > . Since j is the index such that

IObjects(A) > and Objects(A+±)I < , the nonterminal Bj has at most objects.

Therefore, Objects(B+)I < - and thus this case also satisfies the claim. []

The next theorem proves an exponential lower bound on the number of production rules
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of any sequence context-free grammar that generates the complete neighborhood. It proves

something stronger, which is that any context-free sequence grammar G that generates a

neighborhood with a size which is a polynomial fraction of the size of the complete neigh-

borhood must have an exponential number of production rules.

Theorem 4.5.6. A sequence of context-free grammars Gn that generate neighborhoods Nn

with size N,. = Q( ! )) for some polynomial f have Kn = Q (n5/2f(n) ( 3 ) n) production

rules. In particular, a sequence of context-free grammars Gn that generate the complete

neighborhood S7,, have Kn = (n- 5/2(2 /3)n) - Q(n-5 /21.8898n) production rules.

Proof. The proof follows by a counting argument. Lemma 4.5.12 shows that there exists G'n

that generates the same neighborhood as Gn, with Kn' = O(nKn) production rules, and all

of them of the form p: A - a, p: A -- aB, p: A - Ba, p: A -- BC, where a is a terminal

and A, B, C are nonterminals.

Let Tn be the set of nonterminals A E G' with m = Objects(A) such that there exists

a production rule that applies to A and < m < 2. It is clear that 0 < Tnl < Kn

Assuming n > 3, Lemma 4.5.5 says that for any 7r E Nn, there exists a nonterminal

A E Tn that is compatible with r. In other words, the number of sequences 7r E Nn that are

compatible with some A E Tn is exactly NnJ.

Given a fixed nonterminal A E Tn, let EA = {7r E Nn : r is compatible with A} be the

set of sequences 7r E Nn that are compatible with A. The size of EA is at most

nxl Objects(A)! x (n- Objects(A))! < max{n x m!(n-m)! : _< m < -n} < nx ()!( )
3 3 3 3

(4.9)

The inequality max{n x m!(n m)!: < m < <} n x ()!()! holds since

n x m!(n- m)! = n x n! x 
m

and since min{ < m <3 = .
m n/3
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Since every 7r C N is compatible with at least one nonterminal A T, and since

the number of sequences that are compatible with a fixed nonterminal A Tn is at most

n x (3)!(23)!, the following inequalities hold.

3 ~ ~ ~ n 3

Q( - ) = INI < EA| < Kn' x n x (n)! (4.10)
f (n) AcTn 

This implies that

K' n! 1 3 )n) (411)
n- nf (n) (n3 ()! ) = n3/2f (n) (22/3

The last equality holds by Stirling's formula: n! v2nn+/ 2e- n . Since Kn' = O(nKn), the

bound K, Q( 5 /()( 2 3 )n) = ( 1.889 8 l ) holds.
,5/2f~~n) 22/3 n5/2f(n)]

In Section 4.3.5 we showed that the complete neighborhood can be generated by a context-

sensitive sequence grammar with a polynomial number of production rules. This result and

the theorem we just proved imply the following corollary.

Corollary 4.5.7. There is no polynomial reduction from context sensitive sequence gram-

mars to context-free sequence grammars.

The next theorem shows a VLSN for sequencing problems that cannot be efficiently

defined by a sequence grammar. Efficient in this context means "with a polynomial number

of production rules". Its proof is similar to the one of Theorem 4.5.6.

Sarvanov and Doroshko [52] defined the neighborhood ASSIGN as

ASSIGN, = { E Sn :a(2i-1) = 2i-1 for all i= 1,... 2}.
2

This neighborhood has size [n2j!. It can be searched in O(n3 ) since it is equivalent to an

assignment problem with [ objects.

Theorem 4.5.8. For each n, let N, be the neighborhood ASSIGN , . A sequence of context-

free grammars Gn that generate the neighborhood N, have K, = Q ( / ( 3 )n/2) - ( 1.3747)
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production rules.

Proof. By Lemma 4.5.12, there exists Gn that generates the same neighborhood as G, with

K' = O(nKn) production rules, and all of them of the form p A a, p A - aB,

p: A - Ba, p: A --+ BC, where a is a terminal and A, B, C are nonterminals.

Let Tn be the set of nonterminals A C Gi with m Objects(A) such that there exists

a production rule that applies to A and < m < 2. It is clear that 0 < TnI < Kn.

Lemma 4.5.5 says that for any r C N, there exists a nonterminal A E T that is

compatible with 7r. In other words, the number of sequences 7r C Nn that are compatible

with some A E Tn is exactly NnI.

Given a fixed nonterminal A Tn, let EA = {7r E Nn 7r is compatible with A} be the

set of sequences 7r E Nn that are compatible with A. Since all sequences of N , have fixed

their odd numbered objects, the size of EA is at most

E, < n x [Obiects(A)]! x rn- IObjects(A) ! < n x (n)!( 6)! (4.12)-E~4I • ri 2 ![62 6
Since every r N is compatible with at least one nonterminal A E T , and since

the number of sequences that are compatible with a fixed nonterminal A Tn is at most

n x ()!(2)!, the following inequalities hold.

IN1, I • ~~~~ IF' <K' ~~~~ (4.13)6 6 ~ 2 ~ ~- ('n)! = Nn < Ad EA < Kn x n x () 6!.(4.13)AET,

This implies that

K = .2,) Q(_ (,23 )/2) (4.14)

The last equality holds by Stirling's formula: n! Vnn+ 1/ 2e-n. Since Kn' = O(nKn), the

bound Kn = Q( 1 /2(2 /3 )n/ 2 ) = Q(1.374 7 ) holds.
n5~~~~ ~--w/ 22) h olds
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4.5.2 Sufficient condition for a Context-Free grammar to be un-

ambiguous

A context-free grammar G is unambiguous when every sequence in the neighborhood N is

derived by a unique parse tree. Unambiguity is a desirable property for a sequence grammar

from a computational point of view: the number of production rules of G has an impact

on the time needed to optimize over the neighborhood generated by this grammar. In

this subsection, we show a sufficient condition for a context-free sequence grammar to be

unambiguous.

A production rule p: A - R 1R 2 ... Rk defines a partial order <p in Objects(A): we say

that i <v j if i 0 Objects(R), j E Objects(Rt) for some r < t. The following lemma gives a

sufficient condition for a sequence grammar to be unambiguous.

Lemma 4.5.9. Let (G, Objects) be a sequence grammar such that for any non-terminal A,

for any two production rules defined on A, p : A -+ R1R 2 . . . Rk, p' : A --+ RR2 ... R,

there exist objects i, j Objects(A) such that i <p j and j <p, i. Then (G, Objects) is an

unambiguous sequence grammar.

Proof. Assume there exist two parse trees T and T' that derive the same permutation .

Then, there exist two production rules p E T,p' E T' such that p # p' and Objects(p) =

Objects(p'). The permutation a defines a total order on the objects: i <a j if i precedes j in

a. This total order is compatible with the partial order <p defined by p and also with <p,

which contradicts the incompatibility of <p and <pa. [

This condition can be checked in time O(K 2n3 ). Examples of sequence grammars that

satisfy this condition are the 2-exchange Neighborhood Grammar, the Pyramidal Neighbor-

hood Grammar, the complete sequencing Neighborhood, the restricted sequencing Neigh-

borhood as defined in Subsections 4.3.1 and 4.3.2. On the other hand, the Dynasearch and

twisted sequence grammars, as defined in Subsection 4.3.2, are ambiguous.
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4.5.3 Ambiguity, Intersection and Inclusion for regular grammars

In this subsection we give an algorithm that checks whether a left regular sequence grammar

(G, Objects) (i.e., with production rules of the form A - a . . .ak or A -+ Ba . . ak) is am-

biguous. We also present algorithms that check whether two left regular grammars generate

a common permutation and whether the neighborhood generated by one of them is included

in the neighborhood generated by the other.

We first give a necessary and sufficient condition for a sequence grammar (G, Objects)

to be ambiguous for a restricted case, namely when its production rules are of the form

p: A - aB orp: A -+ a.

Proposition 4.5.10. A sequence grammar (G, Objects) with production rules of the form

p: A -- aB or p: A -- a is ambiguous if and only if there exists a stage R reachable from

initial stage S and production rules P1 : R - aRl,p 2 : R - a2R2 such that a = a2 and

L(GR1) n L(GR 2 ) # 0.

Proof. It follows from the definition of ambiguity of Section 4.2.4, and from the form of the

production rules of G. [

Given a sequence left regular grammar G we can assume that all its non-terminals are

reachable from the initial state S since we can delete the non reachable ones otherwise. We

construct an auxiliary sequence grammar G' as follows. G' has the same set of terminals as G.

For each production rule p: A - al,... ,ar, B of G we construct r nonterminals B, . . ., BP

of G' and r production rules of G': Pi : A - a, Bp,p 2 B p -+ a2 , BP.... , Pr BP - a, B.

We set Objects'(Bp) = {ai+,. . . , ar} U Objects'(B) for 1 < i < r.

We do the same construction with production rules of G of the form p: A - al,. . , ar.

The sequence grammar (G', Objects') has the following properties.

Lemma 4.5.11. Given a sequence left regular grammar (G, Objects) with K rules and n

objects, the auxiliary sequence grammar (G', Objects') constructed above satisfies that

1. G' is a sequence left regular grammar, with O(Kn) rules and n objects,
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2. All its production rules are of the form p: A -- aB or p: A - a for some non-

terminals A, B and some terminal a,

3. L(G)= L('),

4. G is ambiguous if and only if G' is.

Proof. It is clear by construction that G' is a sequence left regular grammar. Since we

replace each production rule of G with O(n) production rules, G' has O(Kn) production

rules. By construction it is clear that all production rules of G' are of the form p: A -- aB

or p: A -+ a. It is also clear by construction that there is a correspondence between parse

trees of G and G'. The corresponding parse trees generate the same string. Therefore, the

equality L(G) = L(G') holds and G is ambiguous if and only if G' is. [

A similar lemma holds for context-free or extended normal form grammars, which is used

in Section 4.5.1. We state it without proof.

Lemma 4.5.12. Given a sequence context-free (extended normalform) grammar (G, Objects)

with K rules and n objects, there exists a sequence context-free (extended normal form) gram-

mar (G', Objects') such that

1. G' has O(Kn) production rules,

2. All its production rules are of the form p: A -+ aB, or p: A -- a, or p: A --+ BC for

some non-terminals A, B, C and some terminal a,

3. L(G) = L(G')

4. G is ambiguous if and only if G' is.

From now on we assume that G is a sequence grammar with production rules of the form

p: A -+ aB or p: A -- a. We allow G to have two non-terminals that represent the same

subset of objects.

We define the following auxiliary undirected graph G = (V, E). The nodes of G are the

terminals and non-terminals of grammar G. For any terminals or non-terminals R, R' of G
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there is an edge (R, R') in E if and only if L(GR) n L(GR') 0. The following recursive

relation allows us to compute A efficiently. (R, R') belongs to A if and only if

1. Objects(R) = Objects(R') = {a} for some object a, or

2. there exist p: R -- aB,p': R' - a'B' such that a = a', and (B, B') belongs to A.

By Proposition 4.5.10, in order to check the unambiguity of G it is enough to run the

following loop

for every production rule P1: A - alB l ,p 2 : A2 - a2B2

if A1 = ,42 and al = a2 and (B1 , B2) E A then G is ambiguous;

end for

The following theorem computes the running time of the algorithm.

Theorem 4.5.13. Given a sequence left regular grammar (G, Objects) with K production

rules and n objects, the algorithm given above checks whether it is ambiguous in O(K2 n2)

steps.

Proof. We remove non-terminals that are not reachable from S and production rules asso-

ciated with these non-terminals. This operation can be done in O(K) steps. We compute

the auxiliary sequence grammar G' as in Lemma 4.5.11. This computation can be done in

O(Kn) steps. This new grammar has K' = O(Kn) production rules. We observe that all

its non-terminals are reachable from the initial state S. Using the recursion formulas we

can compute te auxiliary graph G corresponding to grammar G' in O((K')2 ) = O((K 2n2)

steps. The last checking loop runs in 0((K') 2) = O(K 2n2) steps too. E

A similar algorithm allows us to check whether two sequence left regular grammars

(G1 = (VNT, V, 1 ,S 1 ), Objects1 ) and (G2 = (VNT, VT ,P 2,S 2), Objects2) with K1 and K2

production rules respectively and n objects generate a common permutation. We define the

auxiliary undirected graph G = (V, E). The nodes of G are the terminals and non-terminals
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of grammars G: and G2. For any terminals or non-terminals R E G1 , R' E G2 there is an

edge (R, R') in E if and only if L(GR) n L(GR,) ~ 0. The following recursive relation holds.

(R, R') belongs to A if and only if

1. Objectsl(R) = Objects 2(R') = {a} for some object a, or

2. there exist p: R -- aB E pl , p': R' - a'B' E p 2 such that a = a', and (B, B') belongs

to A.

The sequence grammars G1 , G2 generate a common permutation if and only if the edge

(S1 , S2) belongs to A. The following result holds.

Corollary 4.5.14. Given two sequence left regular grammars (G1 , Objects1 ) and (G2, Objects 2)

with K1 and K2 production rules respectively and n objects, the algorithm given above checks

whether they generate a common permutation in O(K1K2n2) steps.

A similar algorithm allows us to check whether the language generated by a sequence left

regular grammar (G 1 = (VNT, VT, P1 , S1 ), Objects1 ) is included in the generated by another

sequence left regular grammar (G2 = (VNT, VT, p2 , S2), Objects 2) with K, and K2 production

rules respectively and n objects. We define the auxiliary undirected graph G = (V, E). The

nodes of G are the terminals and non-terminals of grammars G1 and G2. For any terminals or

non-terminals R G1 , R' E G2 there is an edge (R, R') in E if and only if L(G1)UL(G ,) 0.

The following recursive relation holds. (R, R') belongs to A if and only if

1. Objects1 (R) = Objects2(R') = {a} for some object a, or

2. For every p: R -+ aB E p1 there exits p': R' - a'B' E p 2 such that a = a', and

(B, B') belongs to A.

The language L(G 1 ) is included in L(G 2 ) if and only if the edge (S 1 , S2) belongs to A. The

following result holds.

Corollary 4.5.15. Given two sequence left regular grammars (G1 , Objects1 ) and (G2, Objects2)

with K1 and K2 production rules respectively and n objects, the algorithm given above checks

whether L(G1 ) C L(G2) in O(K1 K2n2) steps.
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4.5.4 Testing properties of Sequence Grammars

In this Subsection we address the following questions:

1. Given an unambiguous G grammar and a function Objects: VNT U VT - 2{1 .n}, is

the 2-tuple (G, Objects) a sequence grammar?

2. Can we count the number of sequences generated by an unambiguous sequence gram-

mar?

3. Given two unambiguous sequence grammars, do they generate different sequences?

4. Is an unambiguous sequence grammar symmetric (i.e. i7r' E N(r) iff 7r E N(r') )?

We observe that in Section 4.5 we give sufficient conditions for a sequence grammar to be

unambiguous. Moreover, question 3 was addressed in that section for left regular sequence

grammars. That is, Corollary 4.5.15 answers this question for left regular sequence grammars.

In this subsection we do not restrict ourselves to left regular sequence grammars. As a

tradeoff, the algorithms we present for questions 3 and 4 are Monte Carlo algorithms. That

is, they run in polynomial time and answer correctly with probability 1/2.

There is a polynomial time algorithm that checks whether G generates a language with

finite number of strings (see [37]). We have to check whether Objects is correctly defined.

This can be done in time O(Kn).

We remind that we count the sequences generated by the sequence grammar, even if

they represent the same tour. Many of the sequence grammars of Section 4.3.2 avoid this

redundancy by fixing one object to a particular place in the sequence, for example r(1) = 1.

There is a DP algorithm that answers efficiently the second question. There is an efficient

randomized DP algorithm that answers correctly the third question with probability greater

than 1/2. There is an efficient randomized DP algorithm that answers correctly the fourth

question with probability greater than 1/2.

In order to answer these questions we associate two polynomials to each sequence gram-

mar G. We first give the following definitions. For each 1 i,j < n, a variable Yij is
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associated to the placement of object j in the i-th position. The total number of variables

Yij is n2. Let Y denote the vector of variables Yij. Each permutation a = ((1),.. . ,v(n))

has associated a polynomial g(Y) = liJ 1Yi,o(i). The inverse of , denoted by a-1 =

( 1-(1),... -:t(n)), has associated the polynomial g-i(Y) = Ii= Yi,,-1 (i). We give an

example. Let a = (1,4,2,3). Its inverse is a-1 = (1,3,4,2). Then g(Y) = Yl, Y2,4Y3,2Y4,3

and g-i(Y) = Y, 1Y2,3Y3,4Y 4,2. Each sequence grammar G has associated a polynomial

gG(Y) 9= ZL(G) g(Y)' We also define the inverted polynomial hG(Y) = ZCL(G) ga-i (Y)

A tour 7r' belongs to the neighborhood of tour 7r if there exists a permutation a C N such

that 7r' = 7r. Conversely, 7r belongs to the neighborhood of 7r' if there exists a permutation

w N such that r = 7r'w. It turns out that w = a-1 . The polynomials gG(Y), hG(Y) have

the following properties.

Lemma 4.5.16. Let G be an unambiguous sequence grammar. Then,

1. gG(Y), hG(Y) have at most n2 variables and total degree n.

2. G(, ,1) = L(G)|.

3. Let G' be another unambiguous sequence grammar. Then, gG(X) = gG(X) if and only

if L(G) =: L(G').

4. For each 1 < i,j < n, let 1 < Yi,j < M be an integer. Let y be the vector of integers yi,j.

The integers gG(y), hG(y) are at most n!Mn. Their bit representation are O(nlogn +

n log M).

5. G is symmetric if and only if gG(Y) = hG(Y).

Proof. Property 1 is true since it is true for the polynomials g, h, associated to each per-

mutation 7r.

Since gl(1,. .. ,1) = 1 for any 7r, it follows that gG(1,. .. ,1) = EL(G) 1= L(G)I.

Two sequence grammars are different if and only if there exists a tour 7 that is generated

by exactly one of the two grammars. Two tours 7r, 7r' are different if and only if their

associated polynomials g, g,, are different. This implies property 3.
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WVe will prove property 4 for the polynomial gG(y), since the proof for the polynomial

hG(y) is similar. Property 4 follows from the fact that for every tour r, g(y) < M n,

and therefore g(y) < L(G)IMn < n!Mn. By Stirling's formula, n! V/nn+1/2en,

and therefore the number of bits needed to write n! is O(nlogn). This implies the second

statement of property 4.

Assume L(G) is an symmetric grammar. Let us fix a tour 7r. Then, each r' E N(ir)

satisfies that 7r E N(7r'). Written in terms of permutations, the symmetry property is

equivalent to the property that each a E N satisfies that ao-1 N. Let us consider the

function inv :N - N defined by inv(u) = a-'. This function is well defined since G is

invertible. It is injective since different permutations have different inverses. Since it is

injective, the number of elements of its range must be equal to the number of elements of

its domain. The codomain is equal to the domain and therefore it is also surjective. Using

that inv is bijective we derive the following equalities.

g (Y) = E g9,(Y) = E g9,(Y) = E ginv(,)(Y)= hG(Y).
`eL(G) inv(a)EL(G) aEL(G)

The converse is also true. If gG(Y) = h(Y) then both polynomials have the same

monomials. Therefore, each E L(G) has associated a permutation w E L(G) such that

g,(Y) = h,(Y). But this equality implies that w = r- 1. Therefore L(G) is symmetric. [

We present the recursion formulas that allow us to evaluate 9G, hG in a vector y E [1, M]n2

in time polynomial in GI, log n, log M.

For any terminal or non-terminal R, for any 1 q < n, we let (q, R) to represent the

set of tours 7r generated by the sequence grammar such that its parse tree contains R and

such that the first object in the sequence r that belongs to Objects(R) appears in the q-th

position. For any production rule p: A -, R 1,R2 ,. .., Rr, for any 1 < q < n, we let (q,p) to

represent the set of tours 7r such that its parse tree contains p and such that the first object

in the sequence 7r that belongs to Objects(A) appears in the q-th position.

1. If a is a terminal with Objects(a) = {i}, for any 1 < q < n then
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g(q,a)(y) = Yq,i,

h(q, )(y) = Yi,q

2. Suppose p is the production rule p: A R1, R 27,.. . , Rr.

Then, for 1 < q < n,

=1r k-1(q, )(y) = frlg(q + ,- 1-I Objects(Rt), Rk)(y),

h(q,p)(y) = Ir =lh(q + Ekl I Objects(Rt)I,Rk)(y),

3. If R is a non-terminal, then for 1 < q < n,

g(q, R)(y) = {p:p applies to R} g(q,P) (y),

h(q, R)(y) = pp applies to R} h(q,p)(y)

4. 9G(Y) = g(1, S)(y), h(y) = h(1, S)(y).

The randomized algorithm to check whether two unambiguous sequence grammars G, G'

generate the same neighborhood is as follows. We pick a random vector y uniformly in

[1, 2n2]n2 and we compute g9G(y), 9G'(Y). If g9G(Y) = gG'(y), then the algorithm answers that

the neighborhoods are the same; otherwise the algorithm answers that the neighborhoods are

different. The randomized algorithm to check whether L(G) is symmetric is similar. We pick

a random vector y uniformly in [1, 2n2]n2 and we compute gG(y), hG(y). If g9G(Y) = hG(y)

the algorithm answers that G is symmetric, otherwise the algorithm answers that it is not

symmetric. In order to compute 9G(y), hG(y) efficiently from the recursion formulas, we first

construct the auxiliary graph G = (V, A) where V = {p: production rule of G} U VT U VNT.

For any production rule p: A - R, R2 ... R, the arcs (A,p), (p, R1),.. , (p, Rr) belong

to A. This graph has O(Kn) nodes and O(Kn) arcs. This graph is acyclic, otherwise the

language L(G) is infinite. This graph defines an order among its nodes which is obtained

by breadth first search. This order is compatible with the recursion formulas in the sense

that g(q, R)(y), g(q, p)(y), h(q, R)(y), h(q, p)(y) are constructed using higher order terms. We

then compute g(q, R)(y), g(q,p)(y), h(q, R)(y), h(q,p)(y) following this order.
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We analyze the running time of this algorithm. We count each arithmetic operation as

1 unit of time. The construction of C and the breadth first search on G takes O(Kn) time.

For each 1 < q < n and each non-terminal R, the term g(q, R)(y) can be computed in O(K)

time. The computation of g(q, R)(y) for all (q, R) takes O(nAI) = O(Kn2 ) time. For each

1 < q < n and for each production rule p, the term g(q, p)(y) can be computed in O(n) time.

The computation of g(q,p)(y) for all (q,p) takes O(nIAI) = O(Kn 2 ) time.

The following lemma is from Schwartz [53].

Lemma 4.5.17. Let p be a polynomial in F[X1 ,. . ., Xn]. For each 1 < i < n, let di be the

degree of p with respect to variable Xi, let Ii be a set of elements of F. Then, the number of

zeros of p in I 1 x I2 x ... x In is at most I1 x I2 x ... x Inl(E i).

The following theorem analyzes the correctness and the running times of the algorithms

outlined above for questions 2, 3 and 4.

Theorem 4.5.18. Given an unambiguous sequence grammar G with n objects and K pro-

duction rules, we can compute L(G) in O(Kn 2) time. Given two unambiguous sequence

grammars G1 , G2 with n objects and K1, K2 production rules respectively, the algorithm given

above is a Monte Carlo algorithm that checks if L(G1 ) $ L(G 2) in O((K1 + K 2)n2) time.

That is, if L(G ) = L(G2 ) the algorithm answers correctly. If L(G1 ) L(G2) the algorithm

answers correcIty with probability greater than 1/2.

Proof. In order to compute L(G)I we compute gG(1,..., 1) using the DP outlined before.

With respect to the second algorithm, we pick a random vector x in [1, 2n2]n2 and we compute

9G1 (x), g9G2(x) using the DP outlined before. If gG (x) = g9G2(X), the algorithm answers that

G1 and G2 generate the same tours; otherwise the algorithm answers that G1 and G2 generate

different tours. If G1 and G2 generate the same tours, the polynomial g9G1- g9G2 is identically

zero and therefore the numbers gc 1(x),9G 2 (x) are the same. Thus the algorithm answers

correctly in this case. If G1 and G2 generate different tours, the polynomial gG1 - 9G2 is

not zero. It has at most n2 variables, and its degree with respect to any variable Xi j is

at most one. B3y Lemma 4.5.17, the number of zeros of 9G - g 2 in [1, 2n2]n2 is at most
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(2n2)n2( 1 ) = (2n2)n2 x n2 x 1 < (22)n 2 X 2 = (2n2)n 2 X . The probability of
(2n

2
)_2 1x C [1, 2n2]n2 being a zero of gc - gG2 is at most = and therefore the algorithmOf g~~i -9G2 (2n2)n2 2

answers correctly with probability at least 1/2 in this case. L1

Theorem 4.5.19. Given an unambiguous sequence grammar G with n objects and K pro-

duction rules, the algorithm given above is a Monte Carlo algorithm that checks if L(G)

is symmetric. That is, if L(G) is symmetric the algorithm answers correctly. If L(G) is

not symmetric the algorithm answers correctly with probability greater than 1/2. It runs in

O(Kn2 ) time.

Proof. To analyze its correctness, if G is symmetric the polynomial gG(Y) - hG(Y) is iden-

tically zero and therefore the equality 9G(y) = hG(y) holds. Thus the algorithm answers

correctly in this case. If G is not symmetric the polynomial gG(Y) - hG(Y) is not identi-

cally zero. It has at most n2 variables and its degree with respect to any variable Yi is

at most one. By Lemma 4.5.17, the number of zeros of ga - hG in [1, 2n2]n2 is at most

(2n2)n 2 ( ) = (2n2)n2 X n2 X 1 < (2n 2)n2 X 2 = (2n2)n 2 X 2. The probability of

y E [1, 2n2] being a zero of gG - ha is at most (2n2) 2 = 1 and therefore the algorithm
being ~~~~~(2n2)n2 -

answers correctly with probability at least 1/2 in this case. a

4.6 Inverse Neighborhood

Symmetry, the property that r E N(o) if and only if E N(7r), is standard in most

neighborhood search techniques. But symmetry is often not true in the VLSN generated

by grammars. Moreover, the neighborhoods may have very different properties from their

inverse neighborhood. Given a set of permutations N we denote by inv(N) the set of the

inverse of permutations of N. That is, inv(N) = {o- 1 : E N}. Given a set of permutations

N and a tour 7r the inverse neighborhood inv(N)(r) is the set {ira-1: ar E N}. We say that

a neighborhood is symmetric if N = inv(N). The symmetric property is a natural concept

in local search and it is usually assumed in the literature. For example, it is one of the

conditions required by the celebrated convergence theorems of simulated annealing to hold
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(see the book by Aarts and Lenstra [1]). Since not all the sequence grammar neighbors are

symmetric, some natural questions are whether we can express the inverse neighborhood of

a sequence grammar as a sequence grammar and whether we can optimize over the inverse

neighborhood.

4.6.1 Inverse Balas-Simonetti Neighborhood

The Balas-Simonetti neighborhood [12] is as follows. It contains all sequences such that

object 1 is visited first, and that object i precedes object j whenever i + k < j for some fixed

parameter k. That is,

NB = : (1) = 1 and a-'(i) < -l(j) for i + k j}.

Balas and Simonetti [12] showed that, for each value of k, this neighborhood has an expo-

nential size and can be optimized in linear time. This neighborhood can be defined by a left

regular grammar, as we showed in Subsection 4.3.2. NBS is not a symmetric neighborhood.

Since its inverse neighborhood has the same (exponential) size, one may ask if we can use

it to define a VLSN search algorithm. That is, we ask whether we can optimize over it ef-

ficiently. In this subsection, we show that N BS, the inverse Balas-Simonetti neighborhood,

is defined by a left regular sequence grammar too, and we can optimize over it in linear time

too (for a fixed value of k). The inverse Balas-Simonetti neighborhood is

NkBS = {: a(1) = 1 and a(i) < a(j) for i + k < j}.

Every sequence a NIBS satisfy that li- (i) < k for every 1 < i < n, that is, the i-th

object is located within k places from the i-th place (see Proposition 4.3.9). In particular,

any city i such that i - k < m is placed in one of the first m places by a E NIBS. It also

implies that if city j is placed in one of the first m places of any sequence a E NBS, then

j < m+k.
The inverse Balas-Simonetti grammar we present is a restricted sequence grammar (see
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Subsection 4.3.3). Each nonterminal A(R,,) contains two pieces of information: R C {1,. . , n}

is the subset of objects to place next, and a is a string of at most k objects that are going

to be placed in that order by the next production rules. We define 1?, a set of subsets of

{1, . . . ,n}, as follows. It contains the sets R = {1, . . , m - k} U R, where 1 < m < n,

Rm C {m- k, rn + k}, and IRmI = k. For each R E R, we associate a set AR of strings a of

t := min{m,k} terminals, a = al, ... .,at, where Objects(a) C R n {m-2k,. .. , m + k, and

such that the sequence a 0aal with Objects(aoa) = R, and with the objects in the strings

a0 and a1 in increasing order, belongs to NIBS We define VNTB, the set of nonterminals of

the inverse Balas-Simonetti grammar, as VIBS {A(R,) : R E , a AR}.the inverse Balm:,-Simonetti grammar, as NT= A,)'RET.aE,4.

It is easy to see that R < n ( ), and that IARI < k! ( ) for any R E .
k k

Therefore, the number of nonterminals in the inverse Balas-Simonetti TSP Neighborhood

grammar is O(n ( 2) (3k) k!) = O(n25 kk!). The number of production rules that
k k

can be applied to a non-terminal is O(k). Therefore, the total number of production rules

is KIBs = O(nk25 kk!). For fixed k, the number of production rules is linear in n. Therefore,

the inverse Balas-Simonetti neighborhood can be efficiently searched for a list of sequencing

problems, including the TSP.

In particular, it can be shown that the generic DP algorithm for TSP neighborhoods

of Section 4.4.1 runs in O(k x KIB) = (k22 5 kk!n) time in the inverse Balas-Simonetti

TSP Neighborhood. In Subsection 4.6.2 we show another way of optimizing in NiBs when

applied to the TSP, in 0(23kk2k+2n) time. Although these two running times are linear for

fixed k, these bounds are worse than the bound we prove for optimizing over the Enlarged
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Balas-Simonetti Neighborhood, which is also a bigger neighborhood.

4.6.2 Optimizing in the inverse Neighborhood of a Sequence Gram-

mar for the TSP

In Section 4.5.1 we presented an efficient Monte Carlo algorithm for checking whether an

unambiguous grammar generates an invertible neighborhood. In this subsection, we are

interested on finding the best tour in the inverse neighborhood generated by a sequence

grammar (G, Objects). That is, we want to find the best tour in inv(N)(7r) = {ra- '

E N}. In this section we present an optimizer for the inverse neighborhood defined by a

sequence grammar in normal form.

We observe that some of the grammar-induced neighborhoods listed in Section 4.3 are

symmetric, that is, 7r' E N(7r) iff 7r E N(7r'). In those neighborhoods, the inverse neighbor-

hood is the same as the original neighborhood, and therefore there is no need of an optimizer

for the inverse neighborhood. However, some other neighborhoods such as the pyramidal

or the Balas-Simonetti neighborhoods are not symmetric, and therefore their inverse neigh-

borhoods define a different topology on Sn. When applied to the inverse pyramidal or the

inverse Balas-Simonetti neighborhood, the optimizer we present is an efficient algorithm,

namely it runs in polynomial time.

We start by observing that the sequence grammar (G, Objects) also generates the inverse

neighborhood of L(G), if we interpret a permutation -y = (y(1), y(2),.. . , y(n)) generated by

(G, Objects) as a sequence of places instead of cities. That is, 7(i) is the place where city

i goes. The syntaxis of a permutation is the same as before, but the semantic differs. The

cost of a permutation of places - = ((1),f(2),. ., (n)) is c(-y) = _Enl c-(i)-1(i+l) +

cv-1 (n)~-l (1).

To avoid confusion, we use the Greek letters r, a to denote permutations of cities and

the Greek letters y, 6 to denote permutations of places. We rename the function Objects as

Places when we talk about sequences of places instead of sequences of cities. We then say that

the sequence grammar (G, Places) generates inv(N). Although the inverse neighborhood
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grammar (G, Places) is easily defined in terms of (G, Cities), computing the best tour in

inv(N)(-r) is not as easy as in N(Tr). The reason is that the objective function is more

complex. We give some definitions first.

Definition 4.6.1. Given a terminal or non-terminal R of (G, Places), we define the bound-

ary of R as the set OR = {i E Places(R): either i - 1 Places(R) or i 1 Places(R)}

(where numbers are cyclic: 0 = n and n + 1 = 1). We also define the set Filling(R) {h

OR - {1,... ,n}}.

For example, if n = 10 and Places(R) = {2,3,...,7}, then the boundary of R is the

set {2, 7}. We observe that the start symbol S has an empty border. The initial tour is

= ((1), w(2),... ,7 (n)).

Given a string a = a ... ar of places and a number 1 < i < n, we interpret the pair

(a, i) as the decision of placing the i-th city in place a, the i + 1-th city in place a2 ,...,

and the i + r --- 1-th city in place a. For each pair (a,i), we define the function h(,,i)

Places(a) -* {i,...... ,i + r- 1} as h(,,i)(aj) = i + j - 1 for 1 < j < r, and its inverse

(12) {i,... ,i + r - 1} - Places(a) as h(,,i)(j) = aj-i+l for i < j i + r- 1. These

functions relate cities with places according to the pair (, i). We define the cost of a pair

(a, i) as the sum of the cost of the edges determined by (a,i), that is,

c(a, i) (h(. j)(s)),(h(. j)(s+l))
s:{s,s+ 1 }CPlaces(a)

Let us fix a nonterminal R. Given a function h E Filling(R), we say that a pair (,i)

(where a L(GR) and 1 < i < n) is compatible with h if h(j) = h(,oi)(j) for all j E OR.

That is, they are compatible when h and h(,i) agree in the cities placed in each place of AR.

We observe that, given a L(GR) and h Filling(R), there is at most one city i such that

(a, i) is compatible with h. Given a terminal or non terminal R, h C Filling(R) we define

V(h, R) = min{c(a, i) a c E L(GR) and (a, i) compatible with h}.

This cost is infinite whenever there is no pair (a, i) compatible with h. In the case of the
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start symbol S', the set Filling(S) is empty, and therefore V(h, S) = V(S) = min{c(a) 

a E L(G)}. Similarly, given a production rule p: A -- R1 R 2 and h E Filling(A), we denote

by V(h,p) = rnin{c(a,i) : a E L(Gp(A)) and (a,i) compatible with h}. We remind that

L(Gp(A)) is the set of strings a generated by the production rule p. We observe that given

p : A - R1 R 2, the boundary of A is contained in R1 U OR 2. We say that (h1 , h2) 

Filling(Ri) x Filling(R 2) is compatible with h E Filling(A) if they agree on the cities they

place in AA, that is, h(i) = h(i) for all 1 < s < 2, and for all i E OA n ORs. Finally, we

define the joint cost of two 2-tuples (h1 , R 1) and (h2, R 2) as the sum of the costs of the edges

they define jointly, that is,

c(hl, R1 , h2 , R 2 ) = E Cr(hl(k)),r(h 2 (k+1)) + Cr(h2(k)),r(hl(k+1)).

kEdR1 ,k+1EOR2 kEaR 2 ,k+1E8R1

We refer to 2-tuples of the form (h, R) or (h, p) as states of the dynamic programming

recursion. The best tour generated by the grammar has value V(S). The following is a

dynamic programming recursion for computing the best tour in an inverse neighborhood

defined by a grammar in normal form.

1. If a is a terminal with Places(a) = j, then for h E Filling(a):

V(h, a) = 0.

2. Suppose p is the production rule A --+ R1R 2. Then, for h E Filling(A):

V(h,p) = min{V(h 1 , R1 ) + V(h 2 , R2) + c(hl, R1 , h2, R2):

(h1 , h2) E Filling(R1 ) x Filling(R2 ) and compatible with h}.

3. If R is a non-terminal, then for h E Filling(R):

V(h, R) = min{V(h,p): p is a production rule that applies to R}.

The following theorem holds.
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Theorem 4.6.2. Let G be a sequence grammar in normal form with K production rules

and n cities. Let Mi := max{ Filling(R) : R nonterminal of G}. Then the algorithm given

above computes the best neighbor in the neighborhood inv(N)(7r) in time O(KnM 2).

Proof. The number of stages (h, R) and (h,p) of the DP algorithm is O(KM). The total

time to compute V(h, R) for all R and all h E Filling(R) from the values V(h, p) is also

O(KM) since each state (h,p) is associated to a unique state (h, R).

For each production rule of the form A --4R 1 R 2 and for all h Filling(A), the time

to compute V(h,p) from V(h 1 ,R1 ),V(h 2,R 2) is O(M2 n). This is so since the total num-

ber of pairs (h1,h2) Filling(R1) x Filling(R 2) is O(M2 ), and the time to compute

C(hI,Rl,h 2,R 2) is O(n). Therefore the time to compute V(h,p) for all production rules

p and for all h Filling(A) is O(KnM 2).

The total time to compute V(S) is then O(KnM 2). l

A trivial bound in the value of M is n' and thus the bound proved is not polynomial.

However, M is at most n2 for a number of neighborhoods described in Section 4.3: the

Adjacent Interchange, 2-opt, Pyramidal tour, Twisted Sequence, Semi-Twisted, Sequence,

Dynasearch and Weak Dynasearch Neighborhoods. It is bounded by a polynomial in n for

the Balas-Simonetti and the Enlarged Balas-Simonetti Neighborhoods. Among these neigh-

borhoods, the non-symmetric ones (and therefore the interesting cases for this subsection)

are the Pyramidal and the Balas-Simonetti neighborhoods. When applied to compute the

best tour in the inverse pyramidal neighborhood or in the inverse Balas-Simonetti neigh-

borhood, the algorithm has better running times than the bound O(Kn 2 M+l), as the next

subsection shows.

4.6.3 Running times for optimizing on the inverse neighborhood

The following is written for grammars in normal form, i.e. when there are at most two

nonterminals on the right hand side of any production rule. We assume that each nonterminal

R has associated a list L(R) with the elements of Filling(R), and that each h E L(R) has

associated a list; L(h) with the states {(h,p): p applies to R and L(h,p) y~ 0} (where L(h,p)
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is defined in a few lines after). Similarly, we assume that each production rule p has associated

a list L(p) with the elements of Filling(p). For each production rule p: A -- R1 R 2 with

two nonterminals on the right hand side, and for each h E L(p), we associate a list L(h,p)

with the elements {(h1 , h2): (h1, h2) E Filling(R1 ) x Filling(R2 ) and compatible with h}.

These data structures don't change from iteration to iteration of the local search algorithm.

Therefore they are computed once.

The next proposition shows that we can optimize over the inverse pyramidal neighborhood

with the same running time as over the pyramidal neighborhood itself.

Proposition 4.6.3. The running time of the generic dynamic programming algorithm of

Section 4.6.2 in the inverse of the Pyramidal Tour Neighborhood is O(n2).

Proof. The number of production rules of the Pyramidal Tour Neighborhood is K = O(n).

Given a non-terminal Ajn, there are two production rules that apply to it: p: Aj,n -4 j, Aj+,n

or p: Aj,n - A+i,n, j. These particular type of production rules imply that Filling(Aj,~) C

{h: either h(j) = n - j + 1 or h(j) = n}, that is, Filling(Aj,n) = O(n). The number of

production rules that can be applied to a nonterminal is at most two. Therefore, the time to

compute V(h, R) for all h E L(R) is O(n). Given a production rule p, say p: Ajn - Aj+l ,n,j

(the analysis of the production rule p: Aj, - j, Aj+,n is similar), the list L(p) has O(n)

elements. For each (h,p) E L(p), the list L(h,p) has 1 element when h(j) = j,h(n) =A j + 1.

The number of (h,p) such that IL(h,p)l = 1 is O(n). The list L(h,p) has O(n) element when

h(j) = j,h(n) == j + 1. The number of (h,p) such that IL(h,p)l = O(n) is O(n). Therefore,

the total time to compute V(h,p) for all p, all h E Filling(p) from the values V(h,A) is

O(Kn) = 0(n2).

Therefore the total time to run the generic dynamic programming algorithm for the

inverse Pyramidal Tour Neighborhood grammar is O(n 2). O

Balas and Simonetti showed that the Balas-Simonetti neighborhood has exponential size

and can be searched in linear time (for fixed parameter k). In Section 4.4.10 we showed that

we can express the inverse Balas-Simonetti neighborhood as a particular context-sensitive

grammar, and that we can optimize over it in linear time. As an alternative approach, the
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next proposition shows that the optimizer defined in the previous section finds the optimal

solution in the inverse Balas-Simonetti neighborhood in linear time, too.

Proposition 4.6.4. The running time of the generic dynamic programming algorithm of

Section 4.6.2 in the inverse of the Balas-Simonetti Neighborhood is O(23kk2k+2n).

Proof. The number of production rules of the Balas-Simonetti Neighborhood is KBS =

O(k2kn). A sequence of the inverse Balas-Simonetti Neighborhood satisfies that la(i)-ij < k,

and thus Filling(R) C h I: h(i) - i < k for all i E Places(R)} for any non-terminal R.

Therefore, Filling(R)l = 0((2k) 2k). Given h E L(R), the number of elements of the list

L(h, R) is O(k) since at most one production rule p is compatible with (h, R) and at most k

elements of Filling(p) are compatible with h. Therefore, the total time to compute V(h, R)

for all R and for all h E Filling(R) is O(KBs2 2kk 2k+l) - 0(23 kk 2 k+2 n). Given a production

rule p, its list L(p) has O((2k)2k) elements (again because of the fact that 1a(i) - < k for

all E inv(NBs)). For each (h,p) E L(p), the list L(h,p) has O(k) elements. Therefore,

the total time to compute V(h,p) for all p, all h E Filling(p) from the values V(h,A) is

O(KBs2 2kk 2k+l) = 0(23kk 2k+2n).

Therefore the total time to run the generic dynamic programming algorithm for the

inverse Balas-Simonetti Neighborhood grammar is 0(23 kk 2k+2 n). 0

4.7 Conclusions and Open problems

We present a language to generate exponentially large neighborhoods for sequencing prob-

lems using grammars. This is the first language proposed for generating exponentially large

neighborhoods. We develop generic dynamic programming solvers that determine the opti-

mal neighbor in a neighborhood generated by a grammar for the Traveling Salesman Prob-

lem, the Linear Ordering Problem, the Minimum Latency Problem, or a Weighted Bipartite

Matching Problem with Side Constraints, in time polynomial in the size of the problem and

the number of rules of the grammar. Using this framework we unify a variety of previous

results in defining and searching efficiently exponentially large neighborhoods for the trav-
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eling salesman problem. We also present efficient algorithms for enumerating the size of

neighborhoods and for deciding whether two neighborhoods are distinct in the case that the

generating grammars are context-free and unambiguous. We show that regular, context-free,

and context-sensitive sequence grammars generate different neighborhoods. For example, the

Pyramidal neighborhood cannot be efficiently generated by a regular grammar. Moreover,

we show that a sequence grammar that generates the complete neighborhood must have an

exponential number of production rules. Along the way, we find some interesting questions

that we could not answer. Some of them deal with the ambiguity/unambiguity property.

1. Can we check in polynomial time whether a context-free sequence grammar is unam-

biguous?

2. Given an ambiguous sequence grammar, can we transform it into an unambiguous

sequence grammar?

3. Can extend Theorems 4.5.18 and 4.5.19 to the case where grammars are ambiguous?

4. Can we optimize in polynomial time on the inverse neighborhood defined by a gram-

mar?

5. Given a sequence grammar, can we prove/disprove whether any sequence is reachable

from any other sequence?
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