
January 1992 LIDS-P-2090

SOME SIMPLE DESIGN PROBLEMS FOR DISTRIBUTED ORGANIZATIONS'

Daniel C. Lee 2

John N. Tsitsildis2

Abstract

We consider the problem of designing an organization that can support the execution of certain

decision-making activities. We model an organization by a graph that describes its communica-

tion capabilities, and we assume that the desired decision-making activity defines another graph

describing the required communication. We then formulate a number of variants of the problem of

optimally choosing the organizational graph so as to satisfy the communication requirements. For

some of these variants we provide algorithms that solve the organizational design problem, while

for some others we show that they are computationally intractable.

1. Research supported by the ONR under grant N00014-85-K-0519 (NR 649-003) and by the NSF

under grant ECS-8552419

2. Laboratory for Information and Decision Systems and the Operations Research Center, Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts 02139.

1



1. INTRODUCTION

A divisionalized organization, designed to perform a certain task, often accomplishes its objec-

tives by partitioning that task into subtasks, and by assigning subtasks to its divisions. Generically,

some of these subtasks interact, that is, they cannot be carried out by the corresponding divisions

in isolation. This introduces the need for communication between certain pairs of divisions. In this

paper, we focus on such communicational aspects of organizations. In particular, we describe an

organizational structure by specifying "who talks to whom" or, mathematically, by means of an

undirected graph Go = (Vo, Ao), called the organizational graph, that specifies the communication

capabilities available to the organization. In particular, the nodes of Go correspond to the divisions

and the presence of an arc (i, j) e Ao signifies that divisions i and j can communicate with each

other. We will be always assuming that (i, i) E Ao for all i E Vo, which expresses the natural fact

that any division can communicate with itself. Note that (i, k) 0 Ao indicates that division i and

k cannot communicate, even if (i, j) E Ao and (j, k) E Ao for some i.

Certain tasks might require communication between all divisions of the organization, in which

case the most suitable organization would corrrespond to a complete graph. On the other hand,

there are numerous situations in which the task to be executed has a special structure, in which

case fewer communication links suffice. This paper deals with the problem of designing the "best"

(in a sense to be defined later) organizational structure that can accomodate the communication

requirements.

For our problem to be well-defined, we need a mathematical representation of the communication

requirements of the task to be executed. This is done in terms of another undirected graph GT =

(VT, AT), called the task graph. The nodes of GT correspond to subtasks, while the presence of

an arc (i,j) e AT signifies that subtasks i and j are interdependent. Each subtask i E VT is to

be assigned to a division ai E Vo, the division primarily responsible for that task. In our model,

the interdependence between two subtasks i and j is handled by assigning to a particular division,

denoted by aij, the responsibility of keeping track of this interdependence. It is then natural to

require that aij can communicate to both oa and aj.

Formally, we have the following definition. Given a task graph GT, a valid organizational struc-

ture is defined as a graph Go, together with a mapping a : VT U AT '-4 VO such that (aii, ai) E Ao

and (aii,aj) E Ao for every (i,j) E AT. 3

The organizational design problems to be considered will all be of the following form: given the

task graph GT, find a valid organizational structure (Go, a), subject to some additional constraints

that remain to be specified, so as to optimize a given performance measure. The following are some

possible additional constraints on (Go, a):

a) We can impose a constraint on the cardinality of Vo, that is, on the number of available divisions.

3. We will mostly use the notation ai and aij instead of the more standard functional notation

a(i) and u(i,j).

2



b) We could assume that the graph Go is given, which would correspond to the case where we are

dealing with a preexisting organization. In this case, all that remains to do is to design the mapping

U in some desirable way. This would resemble to an assignment problem whereby subtasks, and

their interactions, are to be assigned to divisions. An implicit assumption here is that all divisions of

the preexisting organization are equally capable and versatile so that any subtask could be assigned

to any division.

c) Going one step further, we could assume that the graph Go is given and that the division ai in

charge of subtask i is also prespecified for each i. In this case, we only have to choose which division

would be responsible for the handling of each subtask interaction. That is, we only need to choose

the values of oii, for every (i, j) E AT. Such a problem would correspond to a situation where each

subtask is of a specific nature, intimately linked to a particular division of the organization which

is the only division capable of handling it. On the other hand, the implicit assumption is that the

handling of the interactions between subtasks i and j does not involve any particular expertise and

can by handled by any division, as long as the necessary communication links are in place.

Next, we have to specify some relevant performance criteria. Our first criterion pertains to load

balancing. The divisions of any organization have limited resources and there is a limit on the

number of their responsibilities. It is plausible that the division assigned the largest number of

responsibilities could be a bottleneck, and that its load should be minimized. Formally, we define

the load i of division i E Vo to be the cardinality of the set r- '(i). This is equal to the number of

subtasks plus the number of interactions that this division is responsible for. By defining the load

this way, we are implicitly assuming that handling a subtask takes the same amount of resources

with the handling of an interaction. The maximum load L is defined by L = maxiEVo 4/.

Another performance criterion relates to the amount of communication resources employed by

the organization. This is a natural measure given that communication is often a constrained

resource. In fact, we will be considering two alternative ways of measuring communication resources.

A. Given an organization Go, let C1 be the number of arcs (i,j) E Ao for which i : j. Thus,

C1 measures the number of communication links that have to be in place when setting up the

organization.

B. In an alternative method of measuring communication, we can measure the total amount of

communication traffic in the organization. In particular, for every (i,j) E AT, division aii has to

exchange messages with divisions ai and ry, which leads, in general, to 2 units of communication

traffic. However, if oij coincides with ai, then we shouldn't "charge" for communication between

aii and oi. Thus, the total communication traffic between all pairs of (distinct) divisions, to be

denoted by C 2, can be defined as being equal to 21AT I minus the number of elements (i,j) of AT

for which oij E J{i,j)}-

It should be clear that the objectives of load balancing and low communication requirements

compete with each other. For example, communication requirements are lowest if all subtasks are

3



assigned to a single division, resulting to a most unbalanced load. In our problem formulations,

we will deal with this tradeoff by attempting to optimize one of the performance measures while

constraining the other. So, for example, we might wish to minimize C1 subject to a constraint that

L be bounded by some given L*.

Let us close by noting that the design problems that we have formulated are reminiscent of the

"mapping" problem [B] that arises when subroutines are to be mapped to a parallel processing

architecture. However, our problems have some distinctive features of their own, which make them

different from the mapping problems that have been considered in the computer science literature.

Also, while there is some literature on mathematical formulations of the organizational design

problem [BT, SL], our formulation appears to be new.

A Motivating Example

We will now describe, in some detail, an example that provides a more concrete illustration of

the general framework we have introduced.

Consider an organization whose objective is to come up with an n-dimensional decision vector

z = (x1, .. ,N). Let ai denote the division of the organization that will be responsible for

the decision xi. We assume that the performance of a decision vector x is judged according to

a cost function J : MN '-_ R and that the organization's aim is to choose a decision vector x

that minimizes J. Let us further assume that the organization strives towards this objective by

mimicking a gradient algorithm. That is, a preliminary decision vector x is chosen, which is then

updated by making a correction along a direction of cost improvement, as in the gradient algorithm

z:= x:- -YVJ(x).

Let us now assume that the cost function J has the structure

N

J(X)= EJi(X)+ E J(xi,) )
i=l (i,j)EAT

Here, J' captures the immediate cost to division ai due to its own decision, whereas JPi reflects

the coupling of the decisions of divisions ai and aj.4 The set AT indicates the set of all pairs of

interacting divisions. We assume that for every pair of interacting divisions (ai, aj), with (i,j) E

AT, there is some division, denoted by aij, that will have the responsibility of measuring and

suitably communicating the effects of these interactions. This can be done most conveniently by

using the following distributed implementation of the gradient algorithm [T]:

Assuming that the current value of xi is stored at division ai:

1. Each division ai evaluates Ai = (aji/xi)(xi).

2. The values of xi and xi are communicated to division aii.

4. In this example, we are assuming only pairwise interactions between divisions. The example

goes through with more general interactions as well, at the expense of havier notation.

4



3. For each (i,j) E AT, division aij evaluates A'i = (aJ'i/Ozxi)(xi, z ) and A i = (aJii/axz)(xz,, ),l
and transmits the result to divisions ai and ay, respectively.

4. Each division ai uses the received messages to compute (0J/azi)(z) and update xz.

Clearly, the communication requirements of this algorithm are that aii should be able to com-

municate to divisions ai and uj, in conformance to our general model. Note that C1 measures the

number of pairs of divisions that need to communicate with each other. On the other hand, C2 is

proportional to the number of partial derivatives that would have to be communicated during each

iteration; both are equally meaningful measures of communication. Furthermore, according to our

general definition, the load ti of a division i reflects the number of partial derivatives that have to

be evaluated by that division during a typical iteration. In many optimization problems, derivative

evaluation can be the most time consuming step, so this definition of the load makes sense.

The remainder of this paper is organized as follows. Each one of Sections 2, 3, and 4 considers

the problem under different assumptions on "how much" of Go and of the mapping o is assumed to

be predetermined. For each choice of assumptions, we consider a few different problems depending

on the particular choice of performance measure (L, C 1, or C 2).

2. THE CASE WHERE THE ORGANIZATIONAL STRUCTURE IS FIXED

Let there be given a task graph GT. In this section, we consider the organizational design problem

under the assumption that the organizational graph Go is also given, has the same number n of

nodes as the task graph GT, and we also have the constraint ai = i for all i. Thus, it only remains

to choose the value of aij for every (i,j) E AT.

Note that it is easy to determine whether a valid organization exists. In particular, we only need

to check whether for every (i,j) E AT there exists some k for which (i, k) E Ao and (j, k) E Ao.

Minimizing the maximum load L

The first problem we consider is the following. We wish to find a valid organization which

minimizes the maximum load L, subject to the constraints mentioned in the introduction to this

section. This is equivalent to minimizing the maximum, over all divisions k, of the number of

pairs (i,j) E AT assigned to that division; equivalently, the number of pairs (i,j) E AT for which

ij = k.

Theorem 2.1: The above defined problem can be solved in polynomial time by solving a sequence

of linear network flow problems.

Proof: We start by considering the following related problem: given a value L*, does there exist

a valid organization, satisfying all of our constraints and such that L < L*? This problem is

equivalent to determining the feasibility of a network flow problem defined on bipartite graph, as

we now proceed to show.

For each element (i,j) of AT, we create a "supply" node sij, and for each element of Vo, we

create a "demand" node di. We introduce a variable xij,k which is equal to 1 if aij = k, and

5



which is equal to 0 otherwise. We have the constraints ;=,1 xij,k = 1, reflecting the fact that

each interacting pair (i,j) must be assigned to some division k. (Thus, the supply at each supply

node is equal to 1.) Furthermore, since aij must be able to communicate to i and j, we have the

following additional constraint: if either (i,k) V Ao or (j, k) Ao, then xij,k = 0. We finally

have the constraint 1 + C(ij,)EAT Xij,k < L*, for all k. The question of the existence of a valid

organization satisfying all of our constraints is equivalent to choosing the variables xij,k so as to

satisfy the above introduced constraints. The latter is easily seen to be equivalent to the question

of existence of an integer feasible solution in a network flow problem with integer coefficients, and

can be solved in polynomial time [PS].

In order to find the optimal value of L, we could solve the above network flow problem for all

values of L* from 1 to n2 and this would be a polynomial time algorithm for the original problem.

In fact a faster algorithm is obtained if we perform binary search for the optimal value of L; in

particular, it would suffice to solve O(log n) network flow problems. Q.E.D.

Minimizing a communication measure

The problem of minimizing the number C1 of arcs is vacuous because Go is assumed to be given

and therefore C1 is predetermined. The problem of minimizing C2 is also very simple, as we now

discuss. If (i,j) E AT and (i,j) E Ao, then we should let aid be equal to either as or ij; if on the

other hand, (i,j) V Ao, then we have to let aij be equal to an arbitrary element k of Vo such that

(i, k) E Ao and (j, k) E AT. It should be clear that this method results in the minimal possible

value of C 2.

A more interesting problem is dealt with in the following result.

Theorem 2.2: Consider the problem of minimizing C2 subject to an upper bound L* on the

maximum load L. This problem can be formulated as a linear network flow problem and can be

therefore solved in polynomial time.

Proof: The main ideas are similar to the proof of Theorem 2.1. For each element (i,j) E AT, we

create a supply node si,, and for each element of Vo, we create a demand node di. We introduce

a variable xij,k which is equal to 1 if aij = k and is 0 otherwise. As in the proof of Theorem

2.1, we have the constraint zij,k = 0 if either (i,k) V Ao or (j,k) V Ao and the constraint

E(i,j)EAT Xij,k < L*. The objective is to minimize the cost function Ciik Cij,kZij,k, where cij,k

is equal to 1 if k is equal to i or j, and cij,k = 2, otherwise. It is clear that, for any choice of the

variables xyj,k, the value of the cost function is equal to the value of C2 in the resulting organization.

The optimization problem we have just defined is a min-cost linear network flow problem and can

be solved in polynomial time. Q.E.D.

3. THE CASE WHERE THE STRUCTURE OF THE ORGANIZATION IS GIVEN

UP TO ISOMORPHISM

Let there be given a task graph GT. In this section we also assume that the graph Go is given

6



and has the same number of nodes as GT. However, in contrast to the preceding section, we do

not impose the requirement that vi = i for all i. Instead, we impose the milder requirement that

each division is assigned exactly one subtask, that is, the mapping i i-+ oi is a permutation. Our

main result states that even the problem of existence of a valid organization is difficult.

Theorem 3.1: The problem of deciding whether there exists a mapping u such that the organiza-

tion (Go, a) is valid with respect to a given task graph GT is NP-complete.

Proof: That the problem belongs to NP is evident: if we have a YES instance, the mapping u

provides a certificate.

We now note that the problem of interest is equivalent to the following:

Problem P: Does there exist a permutation i i-* oi such that whenever (i,j) E AT, then the

distance of oi and oi (in the graph Go) is at most 2.

For any graph G, let T(G) be a graph with the same set of nodes and such that (i,j) is an arc

of T(G) if and only if the distance of i and j in the graph G is at most two. We then see that we

are dealing with the following problem:

Problem P': Given two graphs GT and Go with the same number of nodes, is GT isomorphic with

a subgraph of T(Go)?

We recall the problem CLIQUE which is known to be NP-complete [GJ] and which is the

following: Given a graph G, and an integer k, does G have a clique of size k?

Lemma 1: CLIQUE remains NP-complete even if we restrict to instances for which k > n/2 + 2

and for which the degree of each node is at least n/2 + 1, where n is the number of nodes in the

graph G.

Proof: Let there be given an instance (G, k) of the CLIQUE problem and let m be the number

of nodes of G. We construct a new graph G', as follows. The graph G' consists of the graph G

together with m + 4 additional nodes. All of these additional nodes are connected by means of an

arc to every other node in G'. Note that G' has n = 2m + 4 nodes. It is clear that G has a clique

of size k if and only if G' has a clique of size Ic = m + 4 + k. Note that k' > m + 4 = n/2 + 2.

Also, the degree of each node in G' is at least m + 4 > n/2 + 1. We have thus reduced the general

CLIQUE problem to the special case for which k > n/2 + 2 and the degree of each node is at least

n/2 + 1, thus establishing the desired result. Q.E.D.

Recall now the SUBGRAPH ISOMORPHISM problem: given two graphs G and G', is G iso-

morphic to a subgraph of G'? Since CLIQUE is a special case of SUBGRAPH ISOMORPHISM,

and in view of Lemma 1, we see that SUBGRAPH ISOMORPHISM is NP-complete even if we

restrict to graphs for which the degree of each node is at least n/2 + 1.

We will be needing another graph transformation. Given a graph G, we denote by Q(G) the

graph which is the same as G except that each arc of G is replaced by a sequence of 3 arcs, as

shown in Fig. 1.

7



0 0

a) b) c)

Figure 1: a) A graph G; b) the graph Q(G); c) the graph T(Q(G)).

We introduce some more notation. If G is a graph and i is a node of that graph, we use T(Q(i))

to denote the image of node i when the transformations Q and T are applied in succession.

Lemma 2: Let G be a graph in which all nodes have degree at least d.

a) If i is a node of G, then T(Q(i)) has degree at least 2d; all nodes of T(Q(G)), not of the form

T(Q(i)) for some i, have degree bounded by n + 1.

b) If (i,j) is an arc of G, then the distance [in the graph T(Q(G))] between T(Q(i)) and T(Q(j))

is equal to 2; if (i,j) is not an arc of G, then the distance between T(Q(i)) and T(Q(j)) is larger

than 2.

Proof: a) If a node in G has degree 6 > d, then the corresponding node in T(Q(G)) is connected

to its neighbors in Q(G) (there are 6 of them) and to the neighbors of these neighbors (there are

8 of them as well, for a total of 26 > 2d.

If a node in T(Q(G)) is not of the form T(Q(i)), then it has only 2 neighbors in the graph Q(G).

One of these neighbors has a single extra neighbor; the other one corresponds to a node of the

original graph G and has at most n - 2 extra neighbors. Thus, the degree of the node of T(Q(G))

under consideration is at most 2+ + 1n - 2 = n + 1.

b) Evident from Figure 1. Q.E.D.

Note that if all nodes of G have degree at least n/2 + 1, then nodes, of the form T(Q(i)) will

8



have degree at least n + 2. All other nodes of T(Q(G)) will have degree at most n + 1. Thus, for

each node of T(Q(G)), it can be immediately determined whether it is of the form T(Q(i)) or not.

Lemma 3: Let G and G' be graphs in which all nodes have degree at least n/2 + 1. Then, G is

isomorphic to a subgraph of G' if and only if T(Q(G)) is isomorphic to a subgraph of T(Q(G')).

Proof: If G is isomorphic to a subgraph of G', it is evident that T(Q(G)) is isomorphic to a

subgraph of T(Q(G')). It only remains to prove the reverse implication.

Suppose that T(Q(G)) is isomorphic to a subgraph of T(Q(G')). Consider any node of T(Q(G))

which has degree larger than n + 1. Such a node is of the form T(Q(i)) for some node i of G, by

the preceding discussion. Since T(Q(G)) is isomorphic to a subgraph of T(Q(G')), node T(Q(i))

is mapped to some node of T(Q(G')) that has also degree larger than n + 1, and is therefore of the

form T(Q(i')), where i' is a node of G'.

Suppose that (i,j) is an arc of G. Then, T(Q(i)) and T(Q(j)) have both degree larger than

n + 1 and their distance in T(Q(G)) is equal to 2 (Lemma 2). Since T(Q(G)) is a subgraph of

T(Q(G')), the nodes T(Q(i)) and T(Q(j)) are mapped to some (distinct) nodes in T(Q(G')) which

are of degree larger than n + 1. In particular, these latter nodes of T(Q(G')) must be of the form

T(Q(i')) and T(Q(j')), for some nodes i' and j' of G'. Since the distance of T(Q(i)) and T(Q(j))

is equal to 2, the distance of T(Q(i')) and T(Q(j')) must be at most 2. Using Lemma 2(b), we

conclude that (i',j') is an arc of G' (Lemma 1). So, by mapping i and j to i' and j', respectively,

and by mapping similarly all other nodes of G to nodes of G', we see that G is isomorphic to a

subgraph of G', which concludes the proof of the lemma. Q.E.D.

We notice that Lemma 3 reduces a special case of SUBGRAPH ISOMORPHISM (shown earlier

to be NP-complete) to problem P', with the identification Go = Q(G') and GT = T(Q(G)),

except that we have not enforced the requirement that the two graphs in an instance of problem

P' have the same number of nodes. This is easily taken care of, by adding a number of zero-degree

nodes, and we conclude that problem P' is NP-complete, and the proof of Theorem 3.1 has been

completed. Q.E.D.

We have shown that it is difficult to even determine whether a valid organization does exist. It

follows that the problem of determining an optimal valid organization is also difficult (NP-hard),

for any nontrivial choice of the performance criterion.

4. THE CASE WHERE ONLY THE NUMBER OF NODES OF Go IS FIXED

We now consider the case where GT is given and we require that Go has the same number of

nodes as GT; no other constraints are imposed on Go. We also impose the requirement that each

node i of GT is mapped to a different node oi of GT.

Under the above constraints, the problem of designing a valid organization that minimizes C1 is

trivial: assuming that GT is connected with n nodes, let Go = ({1,...,n}, {(1,2),...,(1, n)}) (a

"star" graph), and let aij = 1 for all (i,j) E AT. We then have C1 = n- 1. Since GT is connected,

.'~IL------- ---- '--------~-----·II ~ 9



it is clear that Go must also be connected and therefore no valid organization could have less than

n- 1 arcs.

If we impose a load balancing constraint L < L* and attempt to minimize C1 subject to that

constraint, we obtain an apparently more difficult problem. We conjecture that this problem is

NP-hard, although we have not been able to establish this result.

The last problem to be considered is dealt with by the following result.

Theorem 4.1: Under the assumptions of this section, the problem of designing a valid organization

in which C2 is minimized subject to the constraint L < L*, can be formulated as a min-cost linear

network flow problem and can be solved in polynomial time.

Proof: Instead of assuming that nothing is given about the graph Go, let us assume instead that

Go is a complete graph, and minimize C2 subject to the constraint L < L*. By noting that the

criterion C2 penalizes only those arcs that are "used", we realize that this is the same problem.

However, this problem is a special case of the problem considered in Theorem 2.2, and the result

follows from Theorem 2.2. Q.E.D.

5. CONCLUSIONS

We have formulated a new class of design problems for decentralized organizations. We have

derived solution procedures for some of these design problems, and we have showed that another

variation leads to NP-hard problems. We believe that our formulation captures some generic

features of organizational design problems.

REFERENCES

[B] Bokhari, S. H., "On the mapping problem," IEEE Trans, on Computers, Vol. 30, pp. 550-557,

1981.

[BT] Boettcher, K. L. and Tenney, R.R., "On the analysis and design of human information processing

organizations," Proceedings of the 8th MIT/ONR Workshop on C3 Systems, M. Athans and A.

Levis, Editors, pp. 69-74, December 1985.

[GJ] Garey, M.R., and Johnson, D.S., Computers and Intractability: a Guide to the Theory of NP-

completeness, W.H. Freeman, New York, 1979.

[PS] Papadimitriou, C.H., and Steiglitz, K., Combinatorial Optimization: Algorithms and Complexity,

Prentice Hall, New Jersey, 1982.

[SL] Stabile, D.A., and Levis, A.H., "The design of information structures: basic allocation strategies

for organizations", Proceedings of the 6th MIT/ONR Workshop on C3 Systems, M. Athans, E.

Ducot, A. Levis, and R.R. Tenney, Editors, pp. 219-225, December 1983.

[T] Tsitsiklis, J.N., "Problems in Decentralized Decision Making and Computation", Ph.D. thesis,

Dept. of EECS, MIT, Cambridge, MA, 1984.

10


