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Abstract

This dissertation has developed a fast and robust algorithm to solve the dense correspon-
dence problem with a good performance in untextured regions by merging Sparse Array
Correlation from the computational fluids community into graph cut from the computer
vision community.

The proposed methodology consists of two independent modules. The first module is

named Compressed Feature Correlation which is originated from Particle Image Velocime-

try (PIV). The algorithm uses an image compression scheme that retains pixel values in

high-intensity gradient areas while eliminating pixels with little correlation information in

smooth surface regions resulting in a highly reduced image datasets. In addition, by utilizing
an error correlation function, pixel comparisons are made through single integer calculations

eliminating time consuming multiplication and floating point arithmetic. Unlike the tradi-
tional fixed window sorting scheme, adaptive correlation window positioning is implemented

by dynamically placing strong features at the center of each correlation window. A confidence

measure is developed to validate correlation outputs. The sparse depth map generated by

this ultra-fast Compressed Feature Correlation may either serve as inputs to global methods
or be interpolated into dense depth map when object boundaries are clearly defined.

The second module enables a modified graph cut algorithm with an improved energy
model that accepts prior information by fixing data energy penalties. The image pixels with
known disparity values stabilize and speed up global optimization. As a result less iterations

are necessary and sensitivity to parameters is reduced.

An efficient hybrid approach is implemented based on the above two modules. By cou-

pling a simpler and much less expensive algorithm, Compressed Feature Correlation, with a

more expensive algorithm, graph cut, the computational expense of the hybrid calculation is

one third of performing the entire calculation using the more expensive of the two algorithms,
while accuracy and robustness are improved at the same time. Qualitative and quantitative

results on both simulated disparities and real stereo images are presented.
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Chapter 1

Introduction

Designing artificial vision to match the sophistication of human vision has been a passionate

dream for computer vision researchers. One possible model for the visual system, either

organic or artificial, divides the "seeing" process into two stages as illustrated in Figure 1-1.

Two tasks are at hand: acquiring high quality image data and analyzing the data. The

second stage of image analysis may be logically divided into three sub-steps.

The human visual system is remarkably fast and robust. The iris automatically dilates

and constricts the pupil to allow more or less light into the eye, enabling us to see an intensity

range greater than 1, 000, 000 : 1 [38]. Our eyes capture images at a amazing speed and with

high fidelity [96]. All is achieved with a simple pair of optical systems and series of detectors,

i.e., the retina [18]. Our single-lensed eye has very little built-in facility for aberrations

correction [38], which are normally corrected in good quality optical instruments. Yet our

perceived images appear perfectly sharp. High quality raw information is important in that

it provides a basis for any further brain or post- processing. Over the past decade, optics and

digital light detectors have advanced dramatically [53], although the average image quality

still cannot match that of the human visual receptors.

Image analysis may be broadly categorized into three steps of processing: pre-processing,

low-level post-processing and high-level post-processing. Pre-processing involves various raw

image filtering tasks such as sharpening, blurring and noise reduction. This portion of the
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Interpretation Classification
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Figure 1-1: The "seeing" process model.

seeing process is bundled with data acquisition for humans because both of them are carried

out by the eyeball. Focus of the lens is automatically adjusted by muscles in the eye. Light

must penetrate several layers of neural cells on the retina surface before reaching the photo-

receptors at the back of the retina. These neural layers are believed to have a function of

sharpening contours [90]. In artificial vision, pre-processing is usually carried out after image

acquisition due to the mechanical nature of cameras. The second step obtains primitive low-

level information. Edge detection and depth perception are sample low-level tasks, which

are the subjects of this dissertation. It is known that the optic nerves from the right and left

eyes intermix at the optic chiasma on their way to the visual cortex [29]. The intermixing has

probably several functions which may include depth perception. Low-level image processing

works very fast and allows for instinctive reactions to potential dangers in vertebrates and

other groups of animals [118]. In contrast, the last step is a high-level but slower approach,

which attempts to interpret the images by compiling them with previous experience and

20



other sensory information. An example of high-level post processing would be remembering

an old acquaintance's face by searching in one's memory. Sample high-level tasks include

tracking, recognition and classification. Understanding of the perceived world from the later

stages is fed back to affect earlier stages, such as opening up iris or refocusing.

Duplicating the visual capabilities that we take for granted may not seem difficult at

first. If only we knew how the human vision carries out its analysis and interpretation, this

might lead to a very efficient way of automatic machine vision. However, we are restricted

to applying established mathematical theories to artificial vision, because we cannot fully

understand the complex mechanism of human vision by probing into the neural networks

of the eyes and brain in vivo without disturbance, due to the limitation of current bio-

engineering technologies.

Computer vision is mainly concerned with image analysis once pictures are taken with

existing optical setups. How to achieve comparable speed and robustness of human visual

processing remains an especially challenging issue. This difficulty stems from both processing

power of hardware and computational algorithms of software.

The human brain is a complex system with more than a hundred billion neurons that

come in different shapes and functions and communicate by means of instant electrochemical

reactions [133]. Among the numerous neural assemblies in human (and primate) body, the

retina of the vertebrate's eye is about the best understood one. Neurons in a human retina

are able to perform a million "edge" and motion detections simultaneously. Their processing

speed is equivalent to ten one-million-pixel images per second with pixel level resolution [91].

Studies show that computer vision programs may take about a hundred computer in-

structions to derive a single edge or motion detection from comparable images [91]. Using

these numbers, to match the capabilities of the retina may require a computer with a com-

putational power of at least 1,000 Million Instructions Per Second (MIPS). Intel's Pentium

runs at about 2,400 MIPS for a 900MHz CPU and the predicted MIPS number for a 4GHz

CPU is 20,000 MIPS [143]. The CPU time is further divided among operating system, im-

age acquisition and processing. It is fair to conclude that state of the art artificial vision
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technologies can match the speed of the retina on low-level tasks.

However, human vision does not stop at the retina. There is a visual center in the brain

to adjust the eyes in real-time and handle high-level tasks. This is where computers fall

short of. If we were to measure the caliber of human brain by only counting the number

of neurons as the computation capability, the brain is capable of thousands of millions

MIPS. In comparison, the most powerful experimental supercomputer nowadays, such as

the Deep Blue, is only capable of performing a few million MIPS [58]. Moreover, studies

have shown that different people with various levels of cognitive experience may present very

different amount of neural synapse connectivity, providing more brainpower by having better

connections. In a word, human vision is arguably much faster than artificial ones.

In another aspect, the human visual system is amazingly reliable and flexible. In com-

parison, the robustness of artificial vision so far heavily relies on controlled experimental

parameters, including contrast, scene luminance, object shape, image quality, random noise,

local image motion and discrete image sampling rate. In order to develop a versatile computer

vision system, we need to know how much blur, histogram equalization, glare reduction, or

refocusing should be applied to pre-process any input images like the human eyes do, which

remains a work in progress for artificial vision. A truly versatile vision system that may

match its human counterpart is one capable of fast optimizing the parameters of image

acquisition and three stages of processing until a reliable judgment can be made based on

feedbacks. Artificial intelligence or machine learning [22] is a potential candidate to help

achieve human vision flexibility by choosing the optimum parameters such as field of view,

blurring and level of exposure.

Vision is a learned art. For example, a child may bump his head on a glass wall the first

time he encounters one, but probably not the following times. Artificial vision should be

able to draw information from previous experience such as recognizing objects using a shape

database. State of the art computers might handle well image capturing and some low-level

tasks real-time using preset parameters on a specific image type. However, their comput-

ing power is not yet capable to achieve video-rate processing when artificial intelligence is
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combined with heuristics to resolve various scenes.

In summary, no existing artificial vision system is comparable to its human counterpart

in terms of complexity and speed, which makes computer vision an exciting yet still young

field.

1.1 Projection

This section reviews the image formation mechanism. Let us consider a world coordinate

system whose origin sits at the optical center of the camera as illustrated in Figure 1-

2. The XY-plane is parallel to the image plane. The Z-axis lies along the optical axis

and points to the image plane. By using this convention, we have a convenient right-hand

coordinate system. The photo-detector is positioned at the image plane outside of the camera

in Figure 1-2 rather than at the back of the camera for the purpose of viewing clarity.

-z

Optical axis
' P2(2X, 2Y, 2Z)

Optical center

Image focal plane

Figure 1-2: Perspective projection.

A simple approximation of the relationship between an object point P1 (X, Y, Z) and its

corresponding image point p(x, y) is given by perspective projections [119]:
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where f' is the camera's focal length. Z is always negative in our coordinate system. As

a result, x and X have different signs, as well as y and Y. For a more sophisticated imaging

model that addresses camera distortions please refer to [37].

There is irreversible information loss when the three-dimensional point P is transformed

to a two-dimensional point p. Every point along line OP in the object space is projected

to the same point p in the image space based on Equation 1.1. For example, the location of

image point p does not uniquely define whether the original object point is P1 (X, Y, Z) or

P2 (2X, 2Y, 2Z). Given a single image, we cannot determine whether there is a small object

in close range or a large object more further away based on the projection model.

However, humans are able to reliably recover depth information from only one image by

covering up one of the eyes. Many high-level visual clues and past knowledge are processed

in the brain to accomplish this seemingly easy task, such as object recognition, contour

detection, shading and perspectives. For instance, a person standing far away should look

smaller. A tilted surface should look darker than a frontal one under head-on point lighting

condition. A variety of techniques have been developed with some success based on these

high-level cues [65, 83, 127]. For example, in carefully controlled lighting environment,

shape from shading is a popular approach to recover 3D shapes from a single image using

surface reflectance [2, 74]. If the object's shape is known, such as a bottle or an architecture

model, its 3D orientation and location can be reliably determined from one image [85, 104].

However, a single image usually is not enough to determine depth when essential calibration

information is unknown such as lighting parameters or rough object shape. A pair, or a

sequence of images separated by a known camera displacement, allow depth estimation by

triangulation.
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Figure 1-3: Parallax effect.

1.2 Triangulation

Intuitively, triangulation may be explained by the well known parallax effects due to sideways

movement. Suppose the object space is composed of a tree in the foreground and a mountain

in the far background as illustrated in Figure 1-3. Two images are taken from two different

viewpoints. The objects undergo a displacement in the two images. The amount of disparity

is inversely proportional to the distance. For instance, the mountain is so far away that it

appears in the exact same location of the two images.

Figure 1-4 illustrates a simple camera setup for one-dimensional depth measurement using

triangulation. The amount of camera displacement between exposures is called baseline b.

Assume the optical axises of two cameras are parallel to each other. The image planes and

x-axises are perpendicular to the optical axis. The image coordinates in the left and right

image, XL and XR, are relative to their respective optical centers. The object space origin

is set at the middle of two optical centers. z-axis is parallel to the optical axis and points

towards the image plane. By comparing two sets of similar right triangles, we have
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Figure 1-4: Simple camera geometry for triangulation.

XL

f /
-X - b/2

-Z
and XR --X +b/2

f' -Z
(1.2)

Solving two equations for two unknowns X and Z [56], we get

(1.3)X = b XL , XR and Z=b .
2(XL - XR) XL - XR

Similarly we can calculate the Y coordinate. The image shifting between frames, XL - XR,

is called the disparity d. From Equation 1.3, depth is uniquely determined by disparity and

is inversely proportional to d.

Thus, measuring object depth is reduced to the problem of finding image disparity. Cal-

culating the disparity value becomes trivial once we find the corresponding pixels in two
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images. Pixel correspondence is the fundamental issue of 3D vision in triangulation-based

approaches. In a sense, a depth map directly relates to a disparity map. These two terms

are interchanged freely in this dissertation.

Focal
Plane Aperture Position #1

Iat time t

CCD Image
Plane

Aperture Position #2 at time
t+At

Focal Aperture Position #1 at

Plane time t

CCD Image
Plane

Aperture Position #2 at time
t+At

Figure 1-5: Schematics of a single 3D camera with a rotating aperture.

Instead of using two cameras, an alternative hardware setup for depth estimation is to

take a sequence of images with a single moving camera. These types of techniques are often

called structure from motion [24, 43, 44, 93, 100]. Another type of single-camera scheme

does not move the entire camera between exposures. Instead, viewpoints are changed by an

optical mask inside the camera with two off-axis apertures [10, 75]. An interesting single-

aperture variation utilizes an off-axis rotating aperture [105, 106, 121, 128], whose schematics

are given in Figure 1-5. Instead of a circular aperture centered on the optical axis as in a

standard lens, a motorized disk has one off-axis aperture. As the aperture rotates around
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the optical axis, the image point also travels in a circular fashion in the image plane. The

diameter D of the circle is reversely proportional to the object point's deviation from the

focal plane. Again, depth estimation is reduced to the problem of calculating the disparity

between corresponding image points.

1.3 Assumptions and limitations

Figure 1-6: Sample image pair with horizontal disparities.

The Vision problem is especially difficult because in most cases it is under-constrained [78].

Triangulation is a mathematical method to uniquely resolve an object point's 3D coordinates

provided that the two corresponding image points can be reliably identified, which is not a

trivial task. In an image pair with little intensity variation but significant sensor noise such

as the one in Figure 1-6, one pixel PL in the first image may correspond to many pixels in

the other image based on single-pixel intensity matching, when no other assumptions such

as smoothness and uniqueness are considered.

Let us suppose an extreme scenario where the object space is consisted of numerous

bees distributed randomly. The image of each bee falls on a single pixel on the sensor

plane. When two snapshots are taken at two different view points, we have two images with

numerous random dots. It is impossible to find each pair of corresponding dots that comes

from the same bee. An comparison between computer vision and a physics field might help

us understand the complexity of vision problem. In material science, metal or fluids are
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comprised of molecules. All neighboring molecules are governed by the same physical laws.

As a result, the material basically exhibits homogeneous properties, which enables reliable

microscopic measurement of a flow field or cantilever beam. While in computer vision, each

image is comprised of thousands of pixels. Each pixel may or may not be connected to its

neighbors in the object space depending on whether the pixel's corresponding object point

is sitting on the object boundary or not. In our bee example, each pixel corresponds to a

different object. Consequently, vision problem is extremely heterogeneous.

Fortunately, computer vision deals with objects larger than bees most of the time. There

are a number of assumptions commonly made when solving the correspondence problem to

make it more tractable. The assumptions used in this dissertation are discussed below. Each

of them has limitations and is not accurate in all cases.

First and most important is the smoothness or continuity assumption. A patch of neigh-

boring image pixels are likely to be formed from the same object of a finite size. Consequently,

"disparity varies smoothly almost anywhere" [89]. Smoothness of a surface patch may be

modeled as either constant or continuous disparities, while continuity can be further divided

into discrete or real numbers [80]. The smoothness assumption usually works well in surface

interiors. However, a natural scene may comprise any number and any kinds of objects. The

smoothness assumption tends to blur object boundaries, or depth discontinuities.

Second is the uniqueness assumption, which states that each pixel from each image may

be assigned at most one disparity value [89]. An one-way uniqueness is implemented in this

dissertation, which means that each location (pixel) in the reference image is assigned exactly

one disparity value. More sophisticated models enforces two-way uniqueness, which accounts

for occlusions by preventing the disparities at multiple locations in one image point to the

same location in the other image [3, 35, 60, 70, 80, 142, 146]. The uniqueness assumption

implicitly assumes that objects are opaque. For example, the depth of a tree sitting outside

a window will probably be detected by triangulation, rather than the transparent window

glass or both. Only a few 3D algorithms attempt to address the challenging transparency

problem [123].
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Third assumption is a Lambertian reflectance model of the world. An ideal Lambertian

surface appears equally bright from all viewing angles [56], which means that a given object

point should look the same in any camera viewpoints. Color constancy or intensity matching

in the case of grayscale images, is the basis for finding pixel correspondence between images.

The Lambertian model holds approximately true for most diffusive surfaces. 3D vision

algorithms commonly have difficulties with specularities. Camera discretization of intensity

values and lighting changes between image frames also invalidate the Lambertian assumption.

The last assumption states that the observed world is stationary in the case of a moving

camera. This way, the disparities between images are a pure result of camera viewpoint

change, not an effect of object motion. In stereo vision where there are two cameras posi-

tioned at different viewpoints, the objects may be dynamic as long as the two cameras are

synchronized.

1.4 Three-dimensional vision techniques

Section 1.1 explained that projective imaging using a single camera view is usually not enough

for depth reconstruction. Section 1.2 concluded that two or more camera views generally

suffice to uniquely determine 3D coordinates based on triangulation. Section 1.3 lists the

assumptions that simplify, to some degree, the pixel correspondence problem, as well as their

limitations. This section motivates and reviews a few 3D vision algorithms that are related

to this dissertation.

Broad adoption of 3D imaging technology is currently limited by speed and robustness.

Applications such as robotic surgery [57] and autonomous navigation or tracking [42], de-

mand real-time processing. For example, a texture-mapped 3D view would greatly aid in

a surgeon's tactile sense. 3D reconstructed views enable better object recognition without

turning the camera and taking more images. 3D object tracking would be much more robust

than its 2D counterpart if reliable depth information were available.

There are numerous possible scene types, which may or may not satisfy the assumptions

in Section 1.3. Correspondingly there are a large number of 3D algorithms using different
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variations of the assumptions [15, 26, 113, 120], which may be successful on certain image

types, but so far not all of them. Image types can be broadly categorized in terms of

textureness and depth discontinuity.

Finding pixel correspondence is relative easy where there is distinctive feature. How to

resolve featureless regions is a classic problem for three-dimensional vision. In the extreme

case of a white wall or other uniformly colored surfaces, either white light or laser pattern

projection is necessary to add surface texture [19, 120]. 3D methods with special illumination

are also called optical sensing for shape measurement because of the projective or scanning

optics involved. Structured illumination profilometry is a popular way to measure 3D shapes

by projecting a known pattern over the surface under test [59]. The projected pattern is then

observed by a single camera. The observed pattern is phase-modulated by the topography of

the object and depth information is retrieved from the observed pattern using a demodulation

process. The projected pattern may take various forms, such as 1D gratings [77, 84, 110, 131,

139, 144], 2D gratings [125, 126], moir6 gratings [63, 136], gray- or color-coded gratings [81,

111] and speckles [66, 124, 128]. On the contrary, natural illumination without projected

patterns poses a vastly different problem. Inherent surface texture becomes a crucial factor

influencing depth estimation accuracy. Many local or global minimization techniques work

well with texture rich objects but fail in untextured areas, such as focus/defocus [30, 82, 95]

and structure from motion [24, 43, 44, 93, 100].

Whether depth discontinuity is present or the abruptness of discontinuity is another

measure for image difficulty. Generally speaking the more abrupt the edges, the harder

the image to be resolved three-dimensionally. Due to the complexity of possible image

types, not a single 3D algorithm can claim versatility in all vision tasks at the moment.

This dissertation addresses images with natural textures and depth discontinuities, but the

proposed concept can be easily introduced to other simpler image types with structured

illumination and smooth surfaces.

Stereo vision generally refers to the class of applications that detect 3D depth information

by comparing images from two different viewpoints [36, 62, 92, 115, 132, 146]. The hardware
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requirement for stereo vision is usually simpler and cheaper than multi-camera setup [31, 94,

99], as well as other categories such as laser scanning. This is the reason why stereo vision

is one of the most popular methods. Compared with multi-image techniques, stereo vision

gains speed by sacrificing the accuracy provided by any additional images. Understanding

the state of art in stereo vision ensures a solid foundation for studying multi-image 3D

techniques.

There are two general approaches to stereo vision, local methods versus global ones.

Local techniques find each pixel's correspondence by computing a cost function in a small

interrogation window around the pixel of interest. With the use of smoothness assumption,

which implies that neighboring image pixels will likely have similar disparities, information

among neighboring pixels are pooled together to reduce ambiguity and false matches. Pop-

ular cost functions include SSD (Sum of Squared Differences), cross correlation [51] and

optical flow [4, 24, 32, 45, 54, 55]. The biggest advantage of local methods is their capability

to obtain a depth estimation for the entire field of view at fast speed. The question is that

whether their estimation is accurate and robust enough for all kinds of images, especially in

untextured or repetitive patterned areas. Also, averaging in a local window tends to blur

any sharp depth discontinuities, where the smoothness assumption fails.

Global energy minimization methods [103, 108] treat the entire reference image as one

single window and search for the best depth estimation for the entire field by computing a

global cost function. Consequently, computational load of global approaches has dramati-

cally increased compared to local methods due to window size. The advantage is that now

ambiguities may be reduced in a spatially smooth global solution. By combining information

from a larger area of neighboring pixels, global methods are able to propagate reliable esti-

mations into untextured regions. There is no block effect like those in local methods related

to small averaging windows.
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1.5 Motivation and contributions

Two objectives of three-dimensional computer vision are high processing speed and robust-

ness. Local window-based methods are able to reach video-rate update speed but more

vulnerable to image noises. Global energy minimization methods such as graph cut can

handle a variety of image types by optimizing over the entire image field at the price of long

processing times. This dissertation presents a method that addresses these challenges and

make it possible to speed up graph cut automatically while at least maintaining accuracy.

In the past couple of decades, graph cut has emerged as a powerful global minimization

technique in computer vision. It consists of two major components. First an energy model

is formulated based on several energy terms, as required by all global energy minimization

techniques. Each term measures how bad a possible global solution is. The closer the solution

is the lower the energy. Total energy is usually calculated as the sum of several energy terms.

The goal is to find the solution with the lowest total energy. The second step is to actually

find the minimum energy. Compared with other global energy minimization schemes such

as simulated annealing [68, 137] or gradient descent [134], graph cut algorithms converge

to local minima very close to the global minima in a relatively short time. Consequently,

graph cut is chosen as the global minimization technique in this dissertation for its speed

advantage.

Current energy models of graph cut in vision have two types of constraints, or energy

terms. The first one is the data energy term which favors solutions that match corresponding

pixel intensity values. The second one is the smoothness energy term which favors solutions

that encourage spatial continuity.

There is no energy term for any prior knowledge in the standard graph cut energy model.

The user may often know the 3D position of some targets in the scenes. For example, a blue

sky backdrop has a depth of infinity or a disparity of zero. Graph cut with standard energy

model may assign a finite depth to the sky due to image noise from frame to frame. Or,

when a 3D model of a patient's body is measured, there are often tracking targets attached

to his body whose positions can be separately and reliably monitored by laser or ultrasonic
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devices [109]. It is very desirable to integrate any prior 3D information of these target points

into global minimization models when solving for a dense 3D map. However, because there

is not an energy term accounting for prior information in the standard energy model, the

valuable target locations are irrelevant to current graph cut approaches.

At first glance, it would appear that this problem can be solved easily by setting correct

initial conditions at the beginning of the energy minimization process, because it is well

known that in continuous minimization, a more accurate initial condition often implies faster

convergence and higher probability to find the global minimum rather than a local minima.

However, graph cut is a combinatorial optimization problem that only computes discrete-

valued disparities [21]. Also, the image surface is not continuous but rather consists of

discrete pixels. As a result, the initial condition behavior in the continuous domain does

not apply in the discrete domain. Graph cut finds a minimum solely based on the energy

model and is not sensitive to initial conditions. Even if ground truth is supplied as initial

conditions, graph cut is bound to deviate from the perfect initial conditions if image noise

is present.

Another disadvantage of standard graph cut is speed. Real-time depth map update is very

essential for robotic navigation, 3D surgery or product line inspection. At the moment, the

fastest graph cut algorithm takes tens of seconds or even minutes to process two real images

of a size around 500x500 pixel, or a quarter of a million pixels each image. One practice

that slows things up is because several graph cut iterations are necessary for convergence.

A third disadvantage of this global minimization technique is its sensitivity to parameter

settings in its energy model. It is desirable that a large range of parameter values is applicable

on various images with different contrast or complexity.

The main goal of this dissertation is to apply graph-based methods to the problem of

reconstructing 3D disparity maps of naturally illuminated scenes from two images taken at

different viewpoints. By addressing the three disadvantages of standard graph cut mentioned

above, speed, accuracy and robustness are improved at the same time.

A new energy model for graph cut is introduced in this dissertation, which takes account
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of prior depth or disparity knowledge. The priored pixels serve as anchor points to stabi-

lize and speed up the minimization process. In addition, a Compressed Feature Correlation

algorithm is proposed to provide reliable priors by generating a sparse depth map, which

is very fast compared to graph cut because only high-intensity gradient regions are used in

cross-correlation. These two building blocks, Compressed Feature Correlation and priored

graph cut, can be independent from each other and be integrated with other techniques.

For instance, priors for graph cut can be obtained by any other means, either user inter-

vention or outputs for other 3D positioning systems. Likewise, the output of Compressed

Feature Correlation can be useful to other high-level vision tasks such as segmentation and

recognition.

1.6 Dissertation outline

The rest of the dissertation is organized as following. In Chapter 2, some background on

image compression are given, coarse and fine correlation are described and two designs,

adaptive window and confidence measure, for improving Compressed Feature Correlation

reliability are explained. In Chapter 3, qualitative and quantitative results using Compressed

Feature Correlation on both simulated and real images are presented. How to use the sparse

depth maps generated by Compressed Feature Correlation as input to segmentation to obtain

dense depth maps is also discussed. Most of the work presented in Chapter 2 and 3 was

previously published in [129]. In Chapter 4, some background on energy minimization and

graph cut are given, difficulties of the standard energy model are listed and finally a new

energy model with priors is proposed. In Chapter 5, experimental results in terms of accuracy

and speed using the hybrid approach based on both Compressed Feature Correlation and

modified graph cut model are demonstrated. Detailed analysis on the entire approach's

limitations are also included. Chapter 6 summarizes contributions of this dissertation and

recommends future work.
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Chapter 2

Compressed Feature Correlation

In this chapter, a fast and robust Compressed Feature Correlation algorithm based on image

compression and cross-correlation is developed for correspondence matching. The output is

a sparse disparity map, which will be used as prior information for graph cut as discussed

in Chapter 4.

Some background on feature-based computer vision algorithms are given in Section 2.1.

Section 2.2 summarizes the major symbols used in Chapter 2 and 3 for easy reference.

Section 2.3 proposes a simple and fast approach of image compression that detects and saves

strong features into a sparse array. Section 2.4 explains how to correlate two images in a

compressed format. Compressed Feature Correlation is introduced into computer vision for

its amazing speed. In order to control the output accuracy, two additional designs, adaptive

window and confidence measure, are developed and detailed in Section 2.5 and 2.6. Most of

the time, coarse correlation is adequate where all pixels in a correlation window are assigned

a uniform disparity value. When a higher spatial resolution is desired, fine correlation can

be performed based on the results of coarse correlation as described in Section 2.7.
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2.1 Introduction

Features such as edges and corners play an important role in human vision. One prominent

message from psychophysical experiments is that, at least for solid objects with low textural

content, it is the first difference of input luminance which predominantly controls visual

performance. The visual cortex is especially responsive to strong features in a scene [1161.

Together with related abilities such as correspondence matching and tracking, humans are

able to react quickly to the environment and focus attention on objects of interest.

The significance of such features is fully recognized in computer vision [40, 117, 135].

For example, one traditional class of techniques applied to facial recognition is based on the

computation of a set of geometrical features from a picture of the face such as the sizes

and relative positions of eyes, mouth, nose and chin [16, 33]. There is even belief that edge

representations may contain all of the information required for the majority of higher-level

tasks [28].

Feature-based 2D tracking is extensively implemented in automated surveillance, robotic

manipulation and navigation. Because real-time processing is a necessity in these appli-

cations, only perceptually- significant information such as contours is retained from video

feeds. If the target's 3D model is known, its detected contours are compared against its

geometrical model to determine the object's current position and orientation [27]. If there is

no a priori knowledge of the target, it is tracked by finding the contours' disparity between

frames using cross-correlation [25] or level sets [88].

Passive 3D imaging can be reduced to the problem of resolving disparities between image

frames from one or several cameras. Some key issues involved are lack of texture, discontinu-

ity and speed. The numerous algorithms that have been proposed to address these issues fall

into three broad categories: feature-based, area-based and volume-based algorithms [113].

Same as in 2D tracking, feature-based 3D imaging techniques are able to process an exten-

sive amount of video data in real time while providing enough latency for high-level tasks

such as object recognition [52, 101]. This group of methods generates sparse but accurate

depth maps at feature points and excels at determining object boundary positions where
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area-based techniques often fail. When a full-field depth map is desirable, the sparse 3D

representation provides a solid foundation for additional area- or volume-based algorithms

to fill in the voids when there is ample surface texture; otherwise, when texture is scarce or

highly repetitive, object segmentation methods and interpolation are preferable [61, 87].

In the emerging field of image-based 3D modeling and editing, which has many applica-

tions in architectural design and entertainment, long and tedious human efforts are required

to manually extract layers and assign depths to a 2D image [97]. Automatic feature-based

depth detection would greatly facilitate this process.

2.1.1 Related work

Current methods of finding feature correspondence can be categorized into global or local

techniques. Global approaches to the sparse correspondence problem handle the entire set

of sparse points by forming a global optimization function. Various constraints such as

color constancy, continuity, uniqueness and epipolar constraints guide the search of a global

solution. [5, 86]. Global techniques are usually robust but relatively slow due to the iteration

and optimization process.

Local methods find each pixel's correspondence by computing a cost function in a small

interrogation window around the pixel of interest. Popular cost functions include SSD (Sum

of Squared Differences) and cross correlation. Sparse Array Image Correlation [46] is com-

monly implemented in the field of Particle Image Velocimetry (PIV), where fluid fields are

seeded with fluorescent tracer particles and illuminated with a laser sheet [1]. Flow motion

is measured by tracking particle displacement [112, 140, 141]. PIV images are comprised of

millions of bright spots over a dark background. Each image is compressed into a subset of

pixels before correlation that only include high-gradient areas [48, 49, 50]. This technique

is especially fast and robust at handling large data sets. The algorithm presented in this

chapter shares the same computational grounds as Sparse Array Image Correlation.

Depth discontinuities have been a major concern in area-based stereo matching. Bound-

ary overreach, where the detected boundary locations deviate from the real boundaries,
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often occurs when the interrogation window contains both the boundary and its adjacent

smooth surfaces. Adaptive window techniques have been developed to solve this prob-

lem [20, 64, 100, 130, 138]. An asymmetrical window is set around the pixel of interest

so that the interrogation window does riot cover the object boundary. A cost function is

calculated for each possible window location around the pixel of interest and the window

with optimal result is chosen. The disadvantage of such adaptive window schemes is that

computational load is increased by an order of magnitude due to traversing through all the

possible windows.

2.1.2 Contribution

Speed and precise recovery of feature locations and disparities are the two main goals of the

algorithm presented here. Ultra-fast speed is achieved by image compression. The nonessen-

tial information to a reliable correlation output is discarded and only strong features are

retained. Edge detection, compression and correlation are carried out at the same time to

achieve maximum efficiency, which distinguishes Compressed Feature Correlation from the

typical correlation or SSD-based techniques. The remaining pixels are stored in sparse for-

mat along with their relative locations encoded into 32-bit words. Compression dramatically

increases speed because only a fraction of the original pixels are retained for correlation.

By introducing the well-established gradient-based compressed image correlation algorithm

from the computational fluids community to the computer vision field, real-time scene re-

construction may gain new momentum.

Coarse correlation is first performed to obtain an integer-pixel disparity estimation using

large adaptive interrogation windows. Then fine correlation with smaller windows resolves

each on-edge pixel's disparity to sub-pixel resolution based on the rough estimation from

coarse correlation. Error correlation is chosen over standard cross-correlation because pixel

comparisons are made through simple integer calculations rather than the computationally

expensive multiplication and floating point arithmetic. In order to avoid the boundary

overreach problem, adaptive window positioning is also utilized. However, in the proposed
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algorithm interrogation window selection is integrated with edge detection. The optimum

window location is explicitly determined at the moment an edge is detected without the need

of testing through a series of possible windows.

In the remaining of this chapter, Section 2.2 presents nomenclature used in Chapter 2

and 3. Section 2.3 describes the intensity gradient compression method and the signifi-

cance of threshold setting. Section 2.4 explains error correlation in a compressed format.

These two sections provide the computational grounds of Compressed Feature Correlation.

Section 2.5 shows how the appropriate window location is adaptively selected and its advan-

tages. Section 2.6 introduces a confidence measure to constrain reliable correlation outputs.

In Section 2.7, fine correlation combined with depth-based segmentation and interpolation

is presented as a possible approach to generate a complete depth map.

2.2 Nomenclature

The major symbols used in Chapter 2 and 3 are listed in Table 2.1 for quick reference.

Table 2.1: Nomenclature used in Chapter 2 and 3.

41

Symbol Explanation

<D Correlation function

A Correlation search length [pixel]

Aj, Ak Indices difference in pixel image [pixel]

V Gradient operator
A Confidence measure fraction

/y Confidence measure threshold
C-threshold Compression threshold [grayscale]

I Pixel intensity [grayscale]

j, k Image coordinates [pixel] of the jth column and kth row

m, n Data array indices [pixel]

M, N Interrogation window width and height [pixel]



2.3 Image compression

Cross-correlation is a time-consuming process especially when the correlation window size is

large. However, not all pixels contribute equally to disparity estimation. Featureless, or low-

gradient regions contain little or even noisy misleading information for correlation. Thus, it

is a waste of computing time to perform correlation in such regions. Image compression is

an essential way to pick out high-gradient areas for correlation and ignore the others.

This dissertation's first contribution is choosing a proper compression scheme for the cor-

respondence problem in 3D vision. Contrary to popular image compression formats such as

JPEG, the goal of compression in correlation is not high fidelity restoration which requires

both low and high spatial frequency information, but only to keep high-intensity-gradient

areas which determines the correlation accuracy. In other words, image compression for cor-

relation is basically an edge detection technique. There are several popular edge detection

schemes such as zero crossing, Laplacian, Sobel, Prewitt, Roberts and Canny methods. They

usually require global filtering as pre-processing which takes time. The biggest advantage of

Compressed Feature Correlation is speed. A local compression scheme is most preferable so

that, as each edge pixel is found, it is correlated while other non-edge pixels are discarded.

For strongly bipolar image types, like the ones in Particle Image Velocimetry of fluids anal-

ysis, two compression intensity thresholds can be set by the user based on a compression

ratio parameter [47]. Any pixel with an intensity value smaller than the lower threshold is

discarded as dark background. Likewise, any pixel larger than the upper threshold is treated

as peak overflow. This way, only high-gradient regions are kept which occupy the middle

range of the intensity histogram. For a general purpose grayscale image, a simple and fast

compression scheme is needed to calculate local gradient.

The first step in compressed image correlation is to generate a data array that contains

just enough information to determine the disparity between two images. From the statistical

cross-correlation function,
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'AjAk -Z$11Z 1I±Aj,n±Ak *m,nl (2.1)
Zr =nl 4 1 'n2,ri TZ i Zni 'm+Aj,n±Ak

where I and I' denote the two corresponding images of a image pair, it is clear that pixels

of low intensity contribute little to the correlation coefficient while pixels with high intensities

have a much more significant weight due to squaring. This is the reason why cross-correlation

produces spurious vectors when there is a flare in one image caused by environmental lighting

fluctuations. Correlation also fails in featureless, low intensity gradient regions where camera

noise becomes significant. Much of the sub-pixel accuracy in image disparity comes from the

pixels residing on edges. Thus, discarding low intensity areas and taking into account only

strong features that are relatively insensitive to noise, improves correlation robustness.

In the Compressed Feature Correlation algorithm presented in this dissertation, local

spatial gradients are calculated for each pixel by comparing the intensities of every other

pixel instead of two neighboring pixels in order to preserve a wider edge. This parameter

can be set to even larger numbers than two. However such large settings may not be a

close approximation of local intensity gradients especially in areas with dense features. For

gradients in both horizontal and vertical directions, the local gradient is approximated as:

V(j, k) ~ 1I(j + 2, k) -I(j, k)I+ II(j, k + 2) - I(j, k)1 (2.2)

If disparities between two images only occur in a known direction, for example, horizon-

tally, the gradient formula is reduced to:

V(j, k) ~ II(j + 2, k) - I(j, k) (2.3)

For the sake of simplicity, this dissertation only deals with the horizontal disparity case.

This algorithm is easily applicable to two-dimensional disparities.

When the local gradient is larger than a preset threshold, e.g., Cithreshold = 20

grayscales, the pixel of interest is retained and saved into a sparse array comprised of 32-bit
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long words along with its relative locations. Each 32-bit long word is divided into three

sections: the last 8 bits store the pixel intensity, the middle 12 bits the y-index k and the

first 12 bits the x-index j. For example, a pixel of intensity I = 60 at location j = 1078

and k = 395 is saved as 00011000101101000011011000111100 binary. Storing data in this

compressed format significantly reduces the number of memory calls that must be made

during correlation. The values of j, k and I can be quickly retrieved in a couple of CPU

clock cycles by bit-shifting which is optimized for speed in most processors.

The above gradient criterion is chosen for its simplicity and small region of support.

The major concern here is extracting high-intensity-gradient pixels for correlation, not a

complete edge map of enclosed contours. Other popular edge-detectors such as Canny, Sobel

and Gaussian are not only computational expensive but also require global filtering before

edge detection [56]. This is impossible for sparse array format where a simple block transfer

cannot be done as in uncompressed format correlation.

A proper threshold is essential to both speed and robustness. The higher the threshold

the faster the algorithm because less pixels are stored in the sparse array for correlation; also

better robustness because only major object boundaries are detected and minor image tex-

tures are omitted. The overall compression ratio is determined by both the image complexity

and Cithreshold. Figure 2-1 illustrates the threshold's role in extracting strong features. At

a lower threshold, not only the object boundaries but also untextured areas such as the wall

and table are detected. At a higher threshold only the clean edges are extracted.

2.4 Cross-correlation in compressed format

For each correlation window in the second image, the local gradient is first checked at each

pixel in the window and qualified pixels are stored in compressed format. If the total number

of pixels retained is small, it is considered an empty region and this window is discarded

without correlating. If the number is large, e.g., 9 pixels in a 32x32 pixel window, then

each pixel in the same correlation window in the first image is immediately compressed and

cross-correlated against the saved sparse array of the second image before the program moves
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(a) (b) (C)

Figure 2-1: Image compression example. (a) The original right image. (b) Cithreshold = 5

grayscales. Data Retained = 24.1%. (c) Cithreshold = 15 grayscales. Data Retained =

2.86%.

on to the next window.

This compressed correlation technique is most efficient when there is a minimum amount

of overlap among interrogation windows. If there is significant overlap, the number of re-

dundant memory calls and arithmetic calculation from repetitive gradient checking and cor-

relation entries greatly slows processing.

Error correlation is implemented rather than the traditional statistical correlation func-

tion because it replaces multiplication with the much faster addition and subtraction. In

addition to being faster, it does not place an unduly significant weight on the high-intensity

pixels as does the statistical correlation function. It is shown that error correlation sig-

nificantly improves processing speed while maintaining the level of accuracy compared to

the statistical correlation function [107]. The 2D error cross-correlation function can be

expressed as:

E=1 EN =[Im,n + Im+Aj,n+Ak - Im ,n - I+Aj,n+Ak
(DAj,Ak = = 'n M EN(24

M=1 Zn=1([Im,n + Im+Aj,n+Ak]

or
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A Ak - m=1 Zn=i[ 0Im,n - 'n+Aj,n+AkI] (2.5)z4M=1  n=~1 [Im,n + IrnlzAj,n±Ak]

The ID error cross-correlation function in the horizontal direction is simplified to:

E=1 n_1 [Im,n + rn+Aj,n - I'm,n - In+Aj,nI1 (2.6)
M=1 Z n-1 [Im,n + Ij+An(,n6

or

= _ - Z=i[jIm,n - I'm+Aj,nll (2.7)
=1  n=_1 [Im,n + In+Aj,n

While the typical statistical correlation function computes one entry at a time, error

correlation is calculated at the same time as the sparse array is being generated. The entire

correlation table is constructed by summing entries as they are found in one interrogation

window while traversing through the sparse image array generated from the other corre-

sponding interrogation window. The resulting disparity is obtained by searching for the

peak in the correlation coefficient plane. Simple bilinear interpolation is used to determine

the correlation maximum within sub-pixel resolution. Compressed error correlation gives a

very steep peak, which is ideal for bilinear interpolation.

Sample pseudo-code for simultaneous compression and cross-correlation is presented as

following:
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1 void CoarseCorr(void) {

/* Compress the second image subwindow in the horizontal direction */

2 for each pixel p in the second window

3 calculate local intensity gradient at p

4 if p is a feature point (gradient > Cithreshold)

5 save p into sparse array

6 end if

7 end for p

8 if the total number of retained pixels is not trivial in second window

/* Compress the first image subwindow and correlate */

9 for each pixel p in the first window

10 calculate local intensity gradient at p

11 if p is a feature point (gradient > Cithreshold)

12 for every q in sparse array

13 compare p and q, and add to correlation table

14 end for q

15 end if

16 end for p

17 find peak position in correlation table

18 end if

19 }

2.5 Adaptive window positioning

In the traditional fixed-window position scheme, the entire image is evenly divided into

uniformly spaced correlation windows, with or without overlapping. Such a window sorting

method is easy to implement. However, it produces more spurious vectors than adaptive win-

dow approaches. Gross errors occur when an edge sits across two fixed correlation windows

as illustrated by Figure 2-2.
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Figure 2-2: Demonstration of a scenario where an edge sits across two fixed neighboring

correlation windows.

First original image Second original image

Edge map of the first image Edge map of the second image

Figure 2-3: Image pair with two fixed neighboring windows cutting the edge in the shifted

image. The top shows the original images and the bottom their corresponding extracted

edge maps.

Figure 2-3 is a real example. The edge in the first image is shifted by 8 pixel to the right.

Both the original images and their corresponding extracted edge maps of two neighboring

fixed correlation windows are shown. The two windows cut the edge in the second image.

As a result, the measured disparity in the left window tends to be smaller than the true

disparity because the edge is fully present in the first image and thus has a higher weight

in the correlation table. Following the same logic, the right window gives a larger disparity

estimate. Correlation result of the left two blocks is 7.23 pixel, and the right two blocks 8.88

pixel.

In contrast, adaptive window positioning technique enhances robustness by intelligently

placing the edges about the center of each correlation window. Each window is dynamically
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First original image Second original image

Edge map of the first image Edge map of the second image

Figure 2-4: Adaptive window positioning is applied to the image pair in Figure 2-3. The top
shows the original images and the bottom their corresponding extracted edge maps.

selected at the time an edge is detected. A searching scheme is devised so that when an

edge pixel is extracted in the second image, a correlation window is immediately placed

around this pixel. All the pixels in this window are now accounted for. The algorithm does

no more searching for additional interrogation windows in this block in order to maximize

speed and minimize window overlap. Thus, the edge in the images shown in Figure 2-3 is

covered by only one correlation window using adaptive window positioning rather than two

as with fixed-windows. Figure 2-4 shows the image pair using adaptive window positioning.

Now one dynamically positioned correlation window holds the complete edge in both images.

Consequently the correlation result of this single window gives the correct 8 pixel.

The pseudo-code that demonstrates how correlation windows are adaptively placed is

shown as follows:
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1 void FindBlock(void) {

/* compress horizontally in the reference image. */

2 for each pixel p in image

3 if p has not been accounted for in any correlation windows

4 calculate local intensity gradient at p

5 if p is a feature point (gradient > Cithreshold)

6 check whether its neighboring pixels are also features

7 if yes

8 place a new window here

9 save window location

10 perform coarse correlation: CoarseCorr()

11 end if

12 end if

13 end if

14 pixel pointer jumps outside this window

15 end for p

16 }

Figure 2-5: Left: the original image of several building blocks. Right: the second image is

artificially shifted to the right by 8 pixel.

The following example demonstrates the effectives of adaptive windows over fixed ones.

The first image in the image pair as illustrated in Figure 2-5 is captured by a camera with
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an image size of 500x500 pixel [17]. The second image is obtained by simulating a uniform

lateral disparity of 8 pixel relative to the first image. Integer disparity simulation is simply

obtained by pixel index shifting. Compression and correlation are only performed in the

X-direction using the proposed edge matching algorithm as there is no vertical shift.

Coarse correlation results. CorrSize = 32, threshold = 20

0
50

100

150

200

250

300

350

400

450

500
0 50 100 150 200 250 300 350 400 450 500

X (pixel)

Figure 2-6: Compressed coarse correlation results of an image pair with a simulated horizon-

tal disparity of 8 pixel using fixed windows. Each block represents a non-empty correlation

window. (Only the edge map of the second image is shown.)

The measured disparity results using fixed correlation windows are illustrated in Figure 2-

6. The interrogation window size is 32 x 32 pixel. Gradient threshold for compression is set

at 20 grayscales. Notice that a number of edges are positioned across neighboring windows

in the second image. The measured sparse disparity field has a mean of 7.67 pixel and a

standard deviation of 1.56 pixel.

The measured disparity results based on adaptively selected correlation windows are

illustrated in Figure 2-7. Interrogation window size is still 32 x 32 pixel. Gradient threshold

for compression is also 20 grayscales. Each cross-correlation window location is determined

based on the edge map of the second image. Note the significantly improved accuracy with

adaptive windows. The measured disparity field of valid vectors has a mean of 7.99 pixel

and a standard deviation of 0.0505 pixel. The number of valid vectors is 50, and the number
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Coarse correlation results. CorrSize =32, threshold = 20

0
FjValid vector
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Figure 2-7: Compressed coarse correlation results of an image pair with a simulated horizon-

tal disparity of 8 pixel using adaptive windows. Correlation window location is determined

based on the edge map of the second image.

of invalid vectors is 1. The time required for both block finding and compressed correlation

is 7.5 ms on a Xeon 2.8GHz desktop using a C++ implementation.

For the purpose of statistical analysis, a stringent vector validation threshold is set at

±0.5 pixel from the true disparity. Any measured disparity that falls outside this tolerance

range is classified as an outlier; otherwise, a valid vector. For example, if the true disparity

8 pixel, the range of valid measured vectors is 7.5-8.5 pixel. If the true disparity = 1

pixel, valid range of measured vectors is 0.5-1.5 pixel. The only invalid vector in Figure 2-7

is due to the image boundary effect. Gross errors occur when some edges are entering or

leaving the field of view between exposures. This issue is probably unsolvable with only

two images. Figure 2-8 shows both the original images and extracted edge maps of the one

invalid correlation window in Figure 2-7. The measured disparity is 5.91 pixel compared to

the true disparity of 8 pixel.

There are two ways to automatically detect and discard such spurious correlation vectors.

The first method only applies to correlation windows sitting across image boundaries by

excluding a pre-defined large boundary area from edge detection. The second method applies
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First original image Second original image

First image, edge map Second image, edge map

11111
Figure 2-8: Demonstration of the image boundary effect. The top shows the original images
and the bottom their corresponding extracted edge maps.

to correlation windows over the entire reference image including boundary area, which is

explained in the following section.

Coarse correlation results. CorrSizeX=32 CorrSizeY=4, threshold=35
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Figure 2-9: Erroneous coarse edge correlation results for the "Sawtooth" image pair.
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2.6 Confidence measure

Adaptive window alone still cannot guarantee reliable cross-correlation vectors. Figure 2-9

shows the correlation outputs of the "Sawtooth" image pair when adaptive window is used.

Blue windows represent valid correlation vectors, while red windows invalid ones. Validity is

determined by whether the vector output is within ±1 pixel range of this reference window's

groundtruth, which is calculated by averaging compressed pixels' true disparities. A less

stringent validity threshold is used here to conform to conventions.

True disparity=15.6 px
Measured=5.5 px

(a)

True disparity=8.0 px
Measured=0.3 px

(b)

True disparity=1 7.0 px
Measured=7.0 px

(c)

True disparity=1 4.3 px
Measured=2.5 px

(d)

Window2, original

Window5, original

Window6. oriainal

Window7. oriainal

Windowi, Edge pixel #: 20

Window2, Edge pixel #: 9

5 10 15 20 25 30

Window3, Edge pixel #: 34

Window4, Edge pixel #: 17

5 10 15 20 25 30

Window5, Edge pixel #: 8

Window6, Edge pixel #: 12

5 10 15 20 25 30

Window7, Edge pixel #: 17

Window8, Edge pixel #: 36

4;
E"
e U

5 10 15 20 25 30

Figure 2-10: Original and compressed images of four sets of erroneous windows.

After studying the erroneous windows, it is noticed that gross errors often occur in

areas with dense features. Figure 2-10 illustrates four of such window pairs. In each set
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of examples, the left column compares the groundtruth and measured disparity values of

this window pair. Middle column is the original images. Window #1 shows the correlation

window in the first reference image chosen by the adaptive window measure. Window #2

shows the contents of the same correlation window in the second image where all pixels

shift to the left. Right column shows the distribution and total number of pixels left after

compression.

We can notice that in Figure 2-10 (a) and (b), the left part of the edges went out of the

correlation window in the second image. As a result, the total number of compressed pixels

is smaller in the second window. In Figure 2-10 (c) and (d), more features enter the second

correlation window from the right. Consequently, the total number of compressed pixels is

larger in the second window. In both scenarios different number of edges are present in the

correlation window pair, which leaves a large discrepancy in the total number of compressed

pixels.

This problem cannot be solved by extending search ranges at the right hand of the first

image or the left hand of the second image, particularly not helpful in densely featured areas.

Increasing window size may lessen the problem to some extent. However more errors will be

generated due to severe averaging effects in depth discontinuity regions.

Thus a confidence measure is introduced to select reliable correlation windows. About

the same number of edges should appear in both cross-correlation windows to produce a

reliable output vector. This requirement is easy to check in compressed format because

the number of compressed pixels is directly proportional to the amount of features. The

following equation defines the confidence measure formula:

inumCorl - numCor2l < min(p, min(numCorl, numCor2) x A)) (2.8)

where numCorl and numCor2 represent the total number of compressed pixels in the

two correlation windows.

Only when the absolute difference between the numbers of compressed pixels is smaller

than a threshold, should this window pair's output be kept and marked as valid. The
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threshold is chosen between a fixed number M and a fraction of the smaller compressed pixel

count, whichever is smaller. The parameter p is selected based on the window size. For

example, p=10 works well for a 32x4 pixel window size. A is usually set to 0.5.

Coarse correlation results. CorrSizeX=32 CorrSizeY=4, threshold=35
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Figure 2-11: Coarse edge correlation results for the "Sawtooth" image pair using the confi-

dence measure.

The four erroneous windows in Figure 2-10 are now discarded under the confidence mea-

sure. The differences of compressed pixels in (a), (b), and (d) are larger than 10 pixels. The

difference in (c) is equal to half of the number of compressed pixels in the first image.

Correlation results with confidence measure on the "Sawtooth" benchmark image are

shown in Figure 2-11. Figure 2-12 compares the error rate histograms before and after

applying the confidence measure. All compressed pixels are assigned the same disparity

value of the interrogation window that they belong to. Validity of one compressed pixel's

disparity is determined by whether its assigned disparity is within ±1 pixel range of its

groundtruth. Total error rate is calculated by dividing the number of invalid pixels over the

total number of compressed pixels, while discontinuity error rate only considers the depth

discontinuity areas. Number of erroneous pixels are shown in logarithmic scale. Invalid

pixels are counted in different buckets based on their deviation from groundtruth. It is

obvious that correlation error rate is significantly reduced by around 10% in both smooth
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Figure 2-12: Coarse edge correlation error rate with and without the confidence measure.

and discontinuous regions with the help of the confidence measure.
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Figure 2-13: Coarse correlation results from the "Box" scene. Left: without confidence
measure; Right: with confidence measure.

The above confidence measure is a very stringent one. From Figure 2-12, we can see the

number of compressed pixels in the remaining windows has dropped by more than one half.

If we compare Figure 2-9 and Figure 2-11, it is obvious that many valid blue windows in

densely featured areas are also discarded because they fail to pass the confidence measure.

Still in order to improve robustness it is more important to weed out gross errors than keep

multiple valid windows in a small area, especially when the output of Compressed Feature

Correlation will be used as prior information to graph cut.
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There are still some invalid red windows left in Figure 2-11. All these errors are caused by

the averaging effects of local windowed approaches. When a correlation window sits across

the foreground and background objects with a large disparity step, the measured disparity

vector is somewhere in the middle. This problem is inherent of local matching methods.

Confidence measure hardly affects the results of sparsely featured images, as illustrated

by Figure 2-13. In this case, p is set to 20 pixel since a window size of 48x8 pixel is much

larger than the "Sawtooth" example.

In summary, adaptive window and confidence measure are both ways to ensure that the

same set of features are present in the two corresponding correlation windows.

2.7 Fine correlation and dense depth map

Coarse compressed correlation provides an averaged disparity estimate for each window.

A large window size is necessary in order to accommodate edges of different shapes and

orientations in both images. As explained in Section 2.4, cross-correlation generates spurious

vectors if an edge is fully present in one correlation window but half missing in the same

correlation window in the other image. Usually, the coarse correlation window size is chosen

to be roughly twice the size of the largest expected output disparity. In general, a larger

window produces fewer errors but it slows processing.

Once a disparity estimate from coarse correlation is known, fine correlation can be per-

formed for each on-edge pixel in the primary correlation window using a much smaller window

size. The location of fine correlation window in the second image is set around the pixel of

interest. The corresponding fine correlation window in the first image is shifted by the integer

amount of the coarse correlation output, as illustrated in Figure 2-14. Here, fine correlation

window size is chosen to be 7 x 7 pixel. As a general rule, fine correlation speed dramatically

improves with reduced fine correlation window size, at a price of reduced accuracy.

Other aspects of the fine compressed correlation are the same as coarse correlation except

a lower gradient threshold. The compression threshold is lowered to avoid the loss of any

useful information in the reduced correlation window. This practice does not compromise
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First image Second image

8 px 7 px

32 px 32 px

Figure 2-14: Example of a fine correlation window selection in a coarse correlation window
with a calculated disparity of 8 pixel. The pixel of interest is at the center of the fine
correlation window in the second image. The corresponding fine correlation window in the
first image is shifted to the left by 8 pixel. Fine correlation window size is 7x7 pixel.

robustness since a valid disparity has been identified using a higher Cithreshold in coarse

correlation. Figure 2-15 illustrates the fine correlation results up to integer-pixel resolution

based on the coarse correlation output shown in Figure 2-7. Fine correlation has an improved

accuracy over coarse correlation because of window shifting. In this simulated disparity case,

the disparity of every on-edge pixel is correctly recovered with a standard deviation of 0 pixel.

In some applications such as 3D feature-based facial recognition [33] and object track-

ing [27], a sparse disparity map of object boundaries provides enough information. In other

applications such as 3D scene reconstruction, a complete disparity map is preferable. There

are two general approaches to fill the regions of unknown disparities among the recovered

edges. If there is sufficient surface texture, compressed cross-correlation at a lower threshold

can be performed in such areas. However, in many real world cases such as the scene in

Figure 2-1, there is a lack of fine texture, which is critical to a reliable correlation. Instead,

depth-driven object segmentation and depth interpolation is necessary to obtain a full field

disparity rendering.

The overall flow of the proposed edge-matching algorithm with complete disparity map

output is shown schematically in Figure 2-16.
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Fine correlation results
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Figure 2-15: Sparse fine correlation results up to single pixel resolution of an image pair with

a simulated disparity of 8 pixel. C-threshold = 15 grayscales. The sparse disparity field has

a mean of 8 pixel with a standard deviation of 0 pixel.
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Figure 2-16: Overall flow of the proposed algorithm.

61



62



Chapter 3

Performance evaluation of

Compressed Feature Correlation

This chapter provides qualitative and quantitative experimental results on both simulated

disparities and real image pairs. The processing speed and quality of the disparity maps

obtained demonstrate the effectiveness of the proposed Compressed Feature Correlation al-

gorithm in Chapter 2. The algorithm's sensitivity to parameters is discussed in Section 3.3.2.

3.1 Simulated disparity

The original image in Figure 2-5 is artificially shifted laterally to the right with a disparity

value from 0.2 to 11 pixel at an interval of 0.2 pixel. Sub-pixel disparity is approximated

using the shift theorem in frequency domain [781. Fine correlation is calculated at each

on-edge pixel. Figure 3-1 shows the standard deviation of fine correlation results throughout

the entire sequence of lateral disparities. The maximum standard deviation among integer

disparities is ±0.0812 pixel. The maximum error among simulated sub-pixel disparities is

±0.147 pixel. Overall mean value of standard deviations is ±0.098 pixel. Given the pixel

intensity rounding error introduced in the sub-pixel shifting simulation, it is fair to conclude

that the proposed algorithm has an accuracy upper limit of ±0.1 pixel, which is consistent
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Figure 3-1: Standard deviation of measured disparities of a sequence of images with a

simulated horizontal disparity from 0.2 to 11 pixel relative to the original image. Coarse

correlation window size = 32x32 pixel. Fine correlation window size = 7x7 pixel and

C-threshold = 15 grayscales.

with the best obtainable accuracy from interpolating a single correlation plane calculated

with only two images. The periodic structure in Figure 2-5 is related to pixel discretization

error during shifting simulation.

3.2 Qualitative results on real images

Real image pairs are better test-beds for stereo vision algorithms because systematic and

random errors are an inevitable reality from frame to frame. Possible error sources include

optical distortion, reflectivity, lighting fluctuation, occlusion and camera dark noise.

The results on the following four image pairs demonstrate the algorithm's effectiveness

at accurately capturing depth discontinuities in addition to other dense intensity features.

Compressed Feature Correlation correctly finds disparity values for the dominant features in

images.
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3.2.1 Coarse correlation

The algorithm's outputs on four different stereo image pairs are presented. The first two

are taken in a typical room with a single Sony digital camera which was translated along a

baseline of 10 mm.
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Figure 3-2: Coarse correlation
CorrSizeX = 64 CorrSizeY = 8,

results of the "MIT" image pair with lateral disparities.
C-threshold = 15.
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Figure 3-3: Side view of the coarse correlation disparity map shown in Figure 3-2.

In the following "MIT" scene shown in Figure 3-12, both images in the image pair are

captured by a moving camera. The image size is 1152x864 pixel. The camera has a lateral

leftward displacement between the two exposures resulting in right-hand disparities in the

image plane. The three objects are placed on various depth planes. The closer the object is
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Left view Right view

Figure 3-4: "Box"
Coarse correlation results. CorrSizeX=48 CorrSizeY=8, threshold=30
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Figure 3-5: 2D and 3D renderings of coarse correlation results from "Box" pair.

to the camera, the larger its disparity between frames. Choosing a proper coarse correlation

window size is critical to the proposed algorithm's performance on speed and accuracy.

Overall, a larger window size produces fewer gross errors but it slows processing because the

correlation load increase with respect to the square of the window size. On the other hand,

a smaller correlation window size results in higher spatial resolution and thus less averaging

effect in areas where a number of objects at different depths are close to each other. In

the "MIT" scene, a rectangular window shape is able to take advantage of both large and

small window sizes since disparities are known to occur in only one direction. The horizontal

correlation window width is chosen to be 64 px, while the vertical window height 8 pixel.

Figure 3-2 shows the vector field of coarse correlation results as well as their adaptively
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selected corresponding windows. Figure 3-3 provides a side view of the coarse correlation

disparity field. Disparities of all major object boundaries are correctly recovered. The

processing time of both block-finding and coarse correlation is 29.0 ms on a Xeon 2.8GHz

desktop for an image pair with a size of 1152x864 pixel.

Figure 3-4 shows the "Box" image pair where the left view is the reference image. Image

size is 640 x 430 pixel. Two boxes sit on a slanted table surface. The background is two tilted

perpendicular walls. This scene has very sparse features except a small area on the wall.

Figure 3-5 gives top and side view of its coarse correlation results. The edges of two boxes

are clearly separated from each other as well as the background and foreground table rim.

The following examples are two standard indoor scenes from [9] where all disparities are

to the left, and left views are the reference images. The level of features is much denser than

the previous two examples and the topology is more complex. Figure 3-6 shows the "Room"

pair, where the foreground table and equipment have a disparity around 13 pixel while the

far background conference a disparity of 1 - 2 pixel. Figure 3-7 gives top and side view of

its coarse correlation results. Major edges' disparities are robustly identified.

Figure 3-8 shows the "Lamp" pair, where the foreground lamp has a disparity around

13 pixel while the background boxes a disparity around 7 pixel. The slanted optical table

surface does not have strong features. Figure 3-9 gives top and side view of its coarse

correlation results. Again, strong features' disparities are reliably recovered in both sparsely

and densely featured regions. Note that in the reference image, left and right boundaries

of half the correlation window width are excluded from edge detection in order to avoid

boundary errors.

3.2.2 Fine correlation and dense depth map

For a special type of scenes where each object's boundary is clearly defined and each object

can be closely approximated as a frontal-parallel, slanted or curved surface, the sparse depth

map could be enough to generate a full field dense disparity map. The "MIT" scene is one

such example. Each of the three letters sits on a slanted surface and disparities of their
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Figure 3-6:
Coarse correlation results. CoSizeX40 CorrSizeY=S, threshold=20
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Figure 3-7: 2D and 3D renderings of coarse correlation results from "Room" pair.

mostly enclosed boundaries can be obtained from fine compressed correlation. Figure 3-10

and Figure 3-11 illustrates both the top and front views of the fine compressed correlation

disparity field comprised of all the detected on-edge pixels.

After a fine disparity map of the object boundaries is computed, there are two general

approaches to generate a dense disparity map. The first method is to fit a surface for each

set of boundaries. For this example affine motion fitting is enough. Higher order quadratic

fitting will be necessary for curved surfaces. The second method is a simple segmentation

and 3D interpolation method, which is faster than the fitting approach since no filtering or
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Left view

Figure 3-8: "Lamp" image pair.
Coarse correlation results. CorrSizeX-32 CorrSizeY=8, threshold=1 5
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Figure 3-9: 2D and 3D renderings of coarse correlation results from "Lamp" pair.

minimization is needed to further improve the accuracy. In this demonstration, one such

algorithm based on the second approach is implemented to fill the voids among the object

boundaries because there is no sufficient texture on their smooth surfaces for a reliable

correlation. Figure 3-12 shows the full disparity field rendering of the "MIT" scene both

with and without texture mapping. The results are encouraging considering only a single

image pair is used as input. A 3D depth map rendering may be obtained using Equation 1.3

after calibrating the moving camera setup.

If there is sufficient texture on smooth surfaces, compressed correlation over the entire
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Figure 3-10: Top view of fine correlation results calculated based on the coarse cor-

relation output shown in Figure 3-2.
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Figure 3-11: Front view of
correlation output shown in

fine correlation results calculated
Figure 3-2.

based on the coarse

image plane can be performed to obtain a complete disparity map. Two different levels of

compression may be implemented. In boundary regions, a strong compression is applied

which results in the precise recovery of edges. In regions of small gradient variations, which

often correspond to smooth surfaces, a mild compression is held, in which case any useful

information for correlation is retained including minor features in surface texture.
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(a) (b)

(c)
(d)

(e) (f)

Figure 3-12: Full disparity map rendering of the "MIT" scene. (a) left image; (b) right
image; (c, d) top view and 3D rendering of the complete disparity map after segmenting and
interpolating the sparse correlation output shown in Figure 3-10 and Figure 3-11; (e, f) two
views of the complete disparity map with texture mapping.

3.3 Quantitative results on benchmark images

Next the Compressed Feature Correlation is tested on four well-known Middlebury bench-

mark images [114]. Figure 3-13 gives the left view reference image of each pair. Three

evaluation masks are also given along with groundtruth: non-occluded, discontinuous and

untextured regions are represented by white areas. Only the non-occluded masks are listed

in Figure 3-13, which are used for calculating total error rates. These four stereo pairs

encompass a variety of situations that are most representative in computer vision, such as

textured or untextured objects or backgrounds, planar or curved surfaces, frontal-parallel or
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Left view (Reference) Ground truth Total error region

Tsukuba

Sawtooth

Venus

Map

Figure 3-13: Four sets of benchmark images.

slanted surfaces, small or dramatic depth discontinuities. Note that compared with "MIT"

and "Box" scenes, these images are much more densely textured.

Figure 3-14 to Figure 3-17 demonstrates the coarse correlation results using Compressed

Feature Correlation. Each background image shows the compressed reference image with

C-threshold = 35 grayscales. Blue and red windows highlight the location of valid and

invalid correlation windows, respectively. Correlation window height is fixed at 4 pixel, while

window width is proportional to disparity search length A. Confidence measure parameter

p is set to 10 for all four image pairs for simplicity.
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Tsukuba coarse correlation results. CorrSizeX=22 CorrSizeY=4, threshold=35
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Figure 3-14: Coarse correlation results
Sawtooth coarse correlation results. CorrSizeX=32
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Figure 3-15:

300 350

from "Tsukuba" pair.
CorrSizeY=4, threshold=35
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Coarse correlation results from "Sawtooth" pair.

Some correlation windows around feature points are invalidated by the confidence mea-

sure, such as the scenerios explained in Figure 2-10. Also, even when the same intensity fea-

ture is present in both corresponding windows, this correlation window might be eliminated

if the contrast of the feature changes significantly from frame to frame and consequently the

window cannot pass the confidence measure. As a result, only strong and constant features

contribute to the correlation outputs. If we take a look at the red invalid windows, they all

occur around depth discontinuities or occluded areas as explained in Chapter 2.
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Venus coarse correlation results. CorrSizeX=32 CorrSizeY=4, threshold=35
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Figure 3-16: Coarse correlation results from "Venus" pair.
Map coarse correlation results. CorrSizeX=56 CorrSizeY=4, threshold=35
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Figure 3-17: Coarse correlation results from "Map" pair.

3.3.1 Computing time

Compressed Feature Correlation is extremely fast in terms of estimating the disparities of

strong features. The processing time in Table 3.1 is tested on a laptop equipped with a 2

GHz Intel Pentium 4 CPU and using VC++ environment. As a general rule, processing

time is proportional to image size, feature density, cross-correlation window size, correlation

search length, and compression threshold. The "Map" pair takes the longest time despite

of its smaller image size because its correlation window size is 75% larger than "Sawtooth"
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Table 3.1: Computational time on four benchmark images.
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Figure 3-18: Left: Compression threshold vs. compression ratio; Right: Compression thresh-
old vs. processing time.

due to its long search range A. 95% of detected windows are discarded under the confidence

measure. These discarded windows do not go through the entire correlation process, but

they still take up compression time.

The compression threshold C-threshold significantly influences processing time as shown

in Figure 3-18. Very few or even no valid windows are detected when Cthreshold < 5

because the compressed features are too dense. Low spatial frequency components are most

dominant in real images. High local gradient areas become sparser as C-threshold goes up

and consequently less pixels to compress and correlate. The number of compressed pixels

decreases when C-threshold > 10 since minor features are ignored and less pixels from a

strong feature are kept. Compression ratio -y is defined as the number of remaining pixels

after compression divided by the total number of pixels in the image. -y starts to drop below

0.5% when Cithreshold > 60. Speed improves by 75 -90% when C-threshold increases from

15 to 60 grayscale.
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Stereo pair Image size (pixel) Search range 0-A (pixel) Window size (pixel) Time (Ms)
Tsukuba 384 x 288 0-15 22x4 5.8
Sawtooth 434 x 380 0-18 32x4 9.5
Venus 434x383 0-20 32x4 9.3
Map 284 x 216 0-28 56x4 21
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3.3.2 Sensitivity to parameters

Table 3.2: Parameter settings of compressed feature correlation.

For all the results presented in Section 3.3, the parameters are set to the same values in

Table 3.2 if not mentioned otherwise. Correlation window width w is chosen according to the

size of search length A. w is set to 22 pixel for "Tsukuba", 32 for "Sawtooth" and "Venus",

and 56 for "Map". In order to evaluate the algorithm's sensitivity to parameter settings,

each parameter is varied in turn while other ones are fixed to their values in Table 3.2.

Figure 3-19 demonstrates how total error rate varies with different compression threshold in

all four benchmark images. Figure 3-20 presents the relationship between normalized 1t and

compression ratio as well as total error rates for the "Tsukuba", "Sawtooth", and "Venus"

image pairs. Figure 3-23 shows the results of normalized window width vs. compression

ratio and total error rate for the above three image pairs. Finally Figure 3-24 illustrates how

the compression ratio and total error rates are affected by the correlation window height.

The algorithm's accuracy is not very sensitive to the choice of C-threshold in a large

grayscale range as illustrated in Figure 3-19. Standard deviation of error rates in the range

of Cithreshold c [15, 85] is between 1.1 - 3%, except for "Map" which is 8.9%. Cthreshold

should be chosen based on application requirements such as speed and compression ratio.

An empirical selection range is Cthrcshold C [15, 85] grayscales.

A depth discontinuity below 10 pixel such as the case in the three benchmark images other

than "Map" is usually suitable for correlation-based methods. "Map" is especially difficult

for correlation-based methods because it exhibits a combined characteristic of both dense

features and significantly large disparity discontinuities. The negative impact is twofold.

First, very few valid correlation windows could pass the confidence measure because different
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Description Symbol Value
Compression threshold Cthreshold 35 grayscale
Confidence measure fraction A 0.5
Confidence measure threshold P 10 px
Correlation window width w 22, 32 or 56 pixel
Correlation window height h 4 pixel
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Figure 3-19: Compression threshold vs. total error rate.

features come in and leave the big correlation window pair. As a result, the compression

ratio for "Map" is well below 1% for various Cithreshold values as shown in Figure 3-18.

Second, the few valid windows that sit across depth discontinuities produce gross errors that

are averages of the close foreground and far background. Consequently, the correct disparity

range is not present in the erroneous correlation outputs, which presents a problem to graph

cut as will be discussed in Chapter 5. In conclusion, Compressed Feature Correlation could

not generate statistically meaningful results on heavily textured images such as the "Map"

pair. Thus we exclude it from the remaining analysis in this section.

Figure 3-20 exhibits the influence of the confidence measure threshold [, where y is

normalized relative to correlation window width w because w is directly related to the number

of features that may be present in one correlation window. The compression ratio rises as y

increases and the confidence measure becomes less stringent. It reaches convergence when /Z

loses significance and the other term in the confidence measure min(numCorl, numCor2) x

A) takes over. The inflection point Q is different for each image composition, for example,

around Q = p/w=0.6 for "Sawtooth", 0.8 for "Tsukuba" and 1.2 for "Venus", where Q is

loosely defined. The relationship between error rates and normalized y is again dependent

on image composition. When normalized p is smaller than 0.2, the error rate might be

especially volatile and the compression ratio is relatively small. The standard deviations of
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error rate in different normalized p ranges are listed in Table 3.3, where £ is set to the values

mentioned above.

Normalized p range [0.2 Q] [0.2 1.4]
Tsukuba 0.90% 0.72%
Sawtooth 0.55% 0.49%
Venus 0.47% 0.46%

Table 3.3: Standard deviation of error rate in different normalized A ranges.

The fraction value A C [0, 1] in the confidence measure Equation 2.8 places a weight on

the variable term over the fixed term p. The larger the value of A, the less the significance

of the variable term. Figure 3-21 illustrates the correlation statistics of "Tsukuba" in three

scenarios, where A is equal to 0.2, 0.5 or 0.8. As A increases, the variable term becomes less

stringent, the inflection point Q shifts to the right and the converging value of compression

ratio increases. If we study the convergence region, higher compression ratio usually leads

to more errors in discontinuous areas. However, a small A is also not preferable because too

few valid windows are left to represent a full disparity range. This is why A is chosen to be

0.5 in this thesis.

Let us consider a simplified version of the confidence measure, where there is no fixed
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Figure 3-22: Influence of A on the correlation results of "Tsukuba". Left: A vs. compression
ratio; Right: A vs. total error rate.

term [t, or M > w x h. Equation 2.8 is then reduced to

inumCorl - numCor2l < min(numCorl, numCor2) x A (3.1)

Figure 3-22 demonstrates the effects of the above simplified confidence measure. Com-

pared to Figure 3-20, the compression ratio rises as A increases without noticeable conver-

gence in a non-trivial A range. Consequently, the error rates tend to climb without an upper

limit, especially for the "Tsukuba" pair where lots of depth discontinuities and occlusions

are present. A robust selection range for A is 0.4 - 0.6.
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Figure 3-23: Left: Normalized window width vs. compression ratio; Right: Normalized
window height vs. total error rate.

By having two terms, fixed and variable, the confidence measure is more robust. A

controls the upper limits of the compression ratio and error rates, while A can be flexibly

customized for different image types to achieve best accuracy. Thus confidence measure is

chosen to be Equation 2.8 in this dissertation.

Figure 3-23 shows how correlation window width w affects accuracy, where w is normalized

relative to the maximum search length A. As a general rule, w should be at least larger than

or equal to A in order to detect the largest possible disparity. A large window size usually

produces more robust correlation results in the presence of random noises. However a large

window size also means more averaging effects around disparity discontinuities and larger

computational cost. As w increases, more pixels per window are kept after compression, and

thus longer correlation time. Total error rates when the normalized w varies from 1 to 2.5

are presented in Figure 3-23. The standard deviations of error rate in different normalized w

ranges are listed in Table 3.4. Empirically, the accuracy is worse when normalized w C [1, 1.5)

because large disparities might not be fully present in the small window pairs. A range of

normalized w C [1.5, 2] is often chosen.

Figure 3-24 shows the influence of the correlation window height on accuracy. h is usually

chosen to be small in order to improve spatial resolution when there is no disparity in this

dimension. h = 1 pixel gives trivial correlation results because few windows satisfy the

80



Normalized w range [1 2.5) [1.5 2]
Tsukuba 1.43% 0.61%
Sawtooth 2.07% 0.99%
Venus 0.63% 0.19%

Table 3.4: Standard deviation of error rate in different normalized w ranges
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Figure 3-24: Left: Correlation window height vs.
window height vs. total error rate.

compression ratio; Right: Correlation

confidence measure due to noise. h c [2, 6] renders stable compression ratio and error rates

due to the averaging effect in the y-dimension. When h > 6 pixel, compression ratio drops

mainly because less valid windows are detected around disparity discontinuities. At the same

time error rates become volatile, whose severity depends on image composition.

In conclusion, the best parameter settings should be chosen considering the combination

of image type, computational cost, compression ratio and error rate.

3.4 Summary

In the previous chapter, a new 3D algorithm, Compressed Feature Correlation, has been

proposed which can recover precise object boundaries at high speed by utilizing compressed

image correlation and adaptive windows. Although the algorithm is relatively simple, the

experimental results demonstrated in this chapter are encouraging. An important feature to

note is that this algorithm does not include any global optimization.
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Compressed Feature Correlation is a technique by which stereo or motion image pairs can

be accurately processed at high speeds. It is based on the compression of images in which

the number of data set entries is reduced to containing only strong features. Very high

correlation speeds are obtained by encrypting the reduced data set into sparse arrays and

correlating the data entries using an error correlation function to eliminate time consuming

multiplication, division and floating point arithmetic.

The speed performance of compressed image correlation, however, is largely dependent

on image complexity. For applications requiring extremely high speeds such as real-time

tracking and video rate stereo vision, the proposed feature-based 3D algorithm appears to

be a viable processing technique.

Future work includes integrating adaptive window shape and size into Compressed Fea-

ture Correlation, as well as multiple image pairs. An extensive analysis of error rate vs.

spatial frequency would fully demonstrate the algorithm's effectiveness and limitations.
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Chapter 4

Graph cut with priors

Compressed Feature Correlation discussed in Chapter 2 and 3 is a local approach and gen-

erates a sparse disparity map. This chapter introduces a new graph cut energy model that

accepts the results of Compressed Feature Correlation as prior information. The final outputs

are dense disparity maps.

This chapter has three parts. First the fundamentals of graph cut are reviewed in Sec-

tion 4.1. Second part gives examples of three major problems with the standard energy

model. Section 4.3 proposes a hybrid graph cut approach based on a modified energy model

that takes prior knowledge into consideration.

4.1 Introduction

For years, vision researchers have computed 3D correspondence by averaging all the dis-

parities in a small local window, which can be done efficiently using cross-correlation when

sufficient amount of surface texture is available either inherently or by pattern projection

during image capture. This is the basic approach taken in Chapter 2 and 3 of this thesis.

Each pair of correlation windows generates a real-valued disparity estimation. Unfortunately,

active projection is impractical when the dimensions of the objects or environment exceed

a certain range due to illumination source energy limitations. Correlation-based methods
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generally perform poorly in untextured regions and tend to blur across depth discontinuities.

Dynamic programming stereo methods address the above two issues by searching over

all the possible disparities along a scanline [98, 122]. Unlike local methods, here disparities

are discretized in order to limit the scope of search. Dynamic programming in stereo is a

type of intermediate approach between local and global methods. A scanline may be viewed

as a "window" with the height of one pixel and width of the image in the case of rectified

images. Rather than assigning an averaged disparity for the whole window, each pixel

has its own disparity value. "Snake" methods are based on active couture models using

modified dynamic programming [41, 76]. Although very efficient, dynamic programming

cannot propagate information among scanlines. Extensive post-processing is necessary to

clean up noisy outputs [8]. Recent progress in two-pass dynamic programming reduces inter-

scanline inconsistencies by performing optimizations both along and across scanlines [67].

Unlike dynamic programming techniques, global optimization methods are able to opti-

mize correspondence over the entire 2D image rather than only along individual ID scanlines,

which enables information propagation from textured to untextured regions and thus solves

the aperture problem to some extent. Global approaches use an energy framework to assess

possible pixel correspondence of the entire image. What differentiates one global approach

from another is mainly the way of finding the global minimum. Traditional approaches based

on Markov Random Fields include simulated annealing [102], continuation methods [11] and

mean field annealing [34]. Speed and robustness are the main concerns with these techniques.

More recently, graph cut based on the max-flow/min-cut theorem has been proposed to

solve global optimization problems. It was first introduced to computer vision in 1989 [39]

and popularized in the late 90's [14, 60, 108]. Again, a discrete disparity map is resolved

in graph-based stereo rather than a continuous one. Graph cut is efficient compared to

traditional global optimization methods and proved to produce good results.

There are two general schools of graph-based algorithms based on how they treat depth

discontinuities. One school uses a linear cost function [60, 108] which enables reaching

a global minimum but tends to produce over-blurred object boundaries. Others use a step
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function to preserve discontinuity which makes global optimization NP-hard, i. e., it is impos-

sible to find a global solution efficiently. However, graph cut algorithms have been developed

to compute a local minimum in a strong sense [12, 13, 69, 70, 71, 72]. This dissertation

continues the idea of using discontinuity-preserving graph cut for energy minimization.

The main disadvantage of graph-based 3D algorithms is their limitation to computing

discrete disparity values due to their inherently combinatorial nature. The recently emerging

layered methods are an extension of graph cut that generate continuous disparity maps

by introducing the concept of support maps. Each region in a support map identifies a

patch of continuous surface. An optimum disparity map is computed by iterating among

segmentation, surface fitting and graph cut [7, 80, 97, 142].

4.1.1 Nomenclature

The major symbols introduced in Chapter 4 and 5 are listed in Table 4.1.

Symbol Explanation

y Smoothness energy coefficient
0- Data energy coefficient
E Energy

f Labeling of the reference image
I Pixel intensity
K Static cue weight
n Data energy coefficient

p, q Pixels
P Reference image
s Source
S-threshold Static cue threshold
t Sink
W Fixed data energy weight

Table 4.1: Nomenclature used in Chapter 4 and 5.
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4.1.2 Fundamentals of graph cut

In this section, we review the basics of graphs in the context of vision applications. Graph

cut as a global optimization approach to solve pixel correspondance problem can be viewed

as a two-step process. The first step is to represent the possible disparity assignments for all

pixels with a weighted graph. The second step is to cut the graph, i.e., find the optimum

disparity assignment.

In order to understand the first step of building a graph, we need to begin with the energy

minimization framework, and then learn how to assign energy terms to a graph.

Left view (Reference) Right view

DLZ WEE

Figure 4-1: Image pair example with binary disparity values.

Let us look at a binary example as shown in Figure 4-1. Conventionally the left view

is chosen as the reference image. In this example each pixel can only assume two disparity

values: 0 or 1 pixel. Each possible disparity value is called a label. The foreground rectangle

moves to the left by one pixel in the right view while the background remains stationary

as illustrated in blowups. Pixel p in the reference image corresponds to p' in the right view

image. Global energy is defined as
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E(f) = E Edata (f) + S Esmooth (f) (4.1)

where f = {f pp e P} is one possible labeling of the reference image P. Our objective is

to find the optimum f that minimizes the total energy E.

The data energy term, Edata(f), measures how well the image pair corresponds to each

other under the disparity labeling f based on the assumption that corresponding pixel p in

the reference image and p + fp in the second image should have similar intensities. Each

pixel in P has a data penalty based on its label. The better the correspondence, the smaller

the penalty. Total data energy is thus

SEdata (f) = Dp(fp) (4.2)
pEP

where D(.) is a non-negative data penalty function, for example,

DP(fP) = 11(p) - I'(p + fp)1 (4.3)

The smoothness term, Esmooth(f), encodes the smoothness assumption as a soft constraint

based on the assumption that there is a high probability that neighboring pixels p and q

have the same disparity. Thus the smoothness term penalizes neighbors that do not have

the same disparity label:

ZEsmooth(f) = Vp,q}(fP, fq) (4.4)
{p,q}EN

where N is the set of all neighboring pixels and V(., .) is a non-negative smoothness

energy function, for example,

V(fP, fq) = P |fp - fql (4.5)

where p is some weight for disparity difference penalty. More choices used for data and

smoothness terms will be discussed in Section 4.1.3.
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Figure 4-2: Example of a graph based on a image pair.

Next we incorporate the pixels in the reference image as well as energy terms into the

data structure of a weighted graph. Figure 4-2 illustrates the graph built from the reference

image in Figure 4-1. Only the nine blowup pixels are shown. A graph is comprised of a set

of nodes and a set of links (can also be called edges or arms) that connect the nodes. There

are two types of nodes: pixel or terminal. Each pixel from the reference image corresponds

to one pixel node. There are two special terminal nodes which are called source, s, and sink,

t, respectively. Terminal nodes correspond to the set of disparity labels that can be assigned

to pixels. The definition of graph calls for quantized disparity values.

There are also two types of links in the graph: n-links and t-links. N-links connect

neighboring pixel pairs. A four-neighbor convention is implemented in this dissertation. T-

links connects pixel nodes with terminals. Before cutting, each pixel is connected to both

the source and sink. All the links in the graph carry a weight or cost (capacity) determined

by the energy terms. The weight for n-links corresponds to the smoothness penalty while

t-links to the data penalty. The weight for the source link is computed as if the pixel is

assigned a sink label. Similarly, the weight for the sink link is computed as if the pixel is

assigned a source label. Note the reverse relationship here of weight assignments.
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Figure 4-3: Example of a-expansion. Left: Initial labeling; Right: label 10 expands into

other areas after expansion.

After explaining the energy model and composition of graph, we are finally ready to

move to the second step, i.e., to actually cut the graph. The expansion-move approach is

one of the most efficient algorithm to cut a graph. As mentioned before, each disparity is

called a label, and the label being solved is called an a-label. While solving for one disparity,

this particular a-label will try to expand from its initial dominating regions. This process

is called a-expansion. Figure 4-3 gives a simple example of a-expansion. The left image

demonstrates the initial disparity map before expansion. Label 10 (pixel) occupies a small

area with the rest belongs to label 5. After solving label 10, it may expand not only its

original occupancy but also propagate to other areas.

In terms of the graph representation, an a-expansion is equivalent to cutting the graph.

Figure 4-4 demonstrates one possible way of labeling for the nine pixels in Figure 4-1. The

top left shows the graph before cutting and bottom left illustrates the initial disparity map.

We suppose all nine pixels have an initial labeling f of 0 disparity for simplicity while in

reality each of them can be initialized to 0 or 1 pixel in this simple binary example. If now

we would like to solve for the disparity of 1 pixel, the source then corresponds to the a-label of

1 and the sink represents whatever the initial label is for each individual pixel. One possible

scenario after expanding the a-label is that four pixel nodes are left connected to the source,

while the rest to the sink as shown in the right column. As a result, the a-label expands

to four pixels in the new labeling f'. A valid s-t cut must satisfy the following rule: each

pixel node should be connected to at least one and only one terminal node. A connection
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Figure 4-4: Graph cut example before and after expanding a-label 1.

between a pixel node and a terminal node after a cut means a disparity assignment. This

way, the uniqueness assumption is satisfied by allowing one and only one disparity value per

pixel node.

The cost of a cut is computed as the sum of the cost of all disconnected links, both n-

and t-links. In the example of Figure 4-4, the total cost is the sum of the weights of four

n-links, five disconnected t-links to the source and four t-links to the sink.

It is easy to prove that the cost of a cut is equal to the energy of a labeling f. A quick

conceptual reasoning is as following: the total smoothness energy of the lower right labeling

in Figure 4-4 equals to the sum of the cost of four n-links because all other n-links have a

cost of zero; the total data energy equals to the sum of four E.'s of the four label-i pixels

and five Et's of the five label-0 pixels, which are exactly the weights of the nine t-links cut.

Thus global energy minimization is reduced to the problem of finding the minimum cost

cut, or min-cut. The famous Min-cut/Max-flow theorem states that the minimum cost cut

of an initial graph is equivalent to the cut that allows the maximum flow from the source
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to sink. Mathematicians have developed numerous max-flow algorithms over the past years.

For big images with thousands to millions of pixels and a large disparity range, efficient

cutting algorithms with polynomial complexity are a must. Graph-based methods rely on

efficient algorithms [72] to closely approximate the minimum cost cut (or equivalently the

maximum flow [23]) of a network graph. This thesis follows the max-flow implementation of

[73] and uses it as standard comparison because of its popularity. As a generic module, the

standard graph cut algorithm has been widely integrated with other modules such as surface

segmentation and multi-image schemes to become much more sophisticated algorithms which

usually require much longer computing time. By improving on the basic graph cut module,

the proposed hybrid approach has the potential to be adopted by other higher level graph

cut methods.

How to solve binary label problems has been explained so far. In real world applications,

we usually need to work on multiple label optimization because various disparity values may

be present. Graph cut processes all the possible labels (disparities) one at a time. For

example, if the disparity range for the reference image is 0 to 15 pixels, a total of 16 a-labels

should be cut. The source represents the current a-label while the sink whatever labeling

from the previous cut. In each cut, a new graph is built and weights calculated based on

the new source and new initial labeling. Then max-flow algorithm searches for a good cut.

This new labeling becomes the initial condition for the next label being cut. A complete

iteration traverses through every possible label in the disparity range. Total energy is usually

computed at the end of each iteration. Several iterations are often required in practice to

reach convergence of the total energy.

4.1.3 Standard energy model

The energy definition in the standard graph cut energy model is:

E(f) = Edata (f) + S Esmooth(f) (4.6)

where
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Figure 4-5: Example of assigning Figure 4-6: Observation for applying

smoothness energy terms to n-links. static cue.

Edata(fp) = II(P) - '(p + f)

Esmooth(fp , fq) I0

K

-K

fp - fq

|Ip - Ig| > Sithreshold and fp $ fq

|Ip - Iq| ; S-threshold and fp $ fq

By summing up all data energy terms for every pixel and smoothness energy for all

neighbors, we have the total energy for one possible labeling f. Data energy of each pixel

is calculated by comparing the intensity difference between the two corresponding pixels

defined by fp. n is a positive integer usually set to 1 or 2. When calculating data energy

term, sub-pixel intensity comparison is implemented in preference to integer pixel in order

to reduce the pixelization noise [6].

Each smoothness energy term is computed by checking whether neighbors have the same

disparity. Figure 4-5 demonstrates how to assign cost for the four n-links of pixel p. Suppose

pixels qi and q2 have the same label as p. Thus their smoothness penalty is zero. When

neighboring pixels have different labels such the case of q3 and q4 , static cue applies to

determine their smoothness penalty. Static cue is based on the observation that adjacent
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pixels with similar intensity values are likely to belong to the same object and consequently

the same disparity, such as the two neighbors pa and q, in Figure 4-6. A larger penalty of

1K discourages pa and qa, to have different labels in Equation 4.8. 7 > 1 is a pre-defined

weight, e.g. 2 or 4. When the intensity values of two adjacent pixels are quite different,

such as the two neighbors PA and qb, they are likely to belong to different objects. A smaller

smoothness penalty gives graph cut algorithm more flexibility to assign different labels to Pb

and qb. K is often set to about 10 and Sithreshold to 5 grayscales.

Left View (Reference) Right View

Figure 4-7: Static cue example. A white block of size 12 x 10 pixel is shift to the left by 1

pixel.

Next let us look at a simple example of how static cue helps propagate useful disparity

information into textureless regions. A white block of size 12 x 10 pixel and intensity 255

grayscales is shifted to the left by one pixel in Figure 4-7. Suppose the background has an

intensity value of 0 and there is no noise in the two intensity images. In this case, energy

minimization is determined by the smoothness terms. The two most possible solutions

where E Edata are zero are illustrated in Figure 4-8. Dark color represents a label of 0 pixel,

while bright color 1 pixel. The dashed area indicates the foreground object's location in the

reference image. Each white strip has a width of one pixel and height of 10 pixels in the left

labeling. The foreground object is assigned a width of 13 pixels and height of 10 pixels in

the right labeling. Intuitively, we know the right labeling is closer to ground truth. However,
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graph cut can only choose the labeling with the minimum total energy.

Figure 4-8: Two possible labelings for the static cue example. Dark color represents a label

of 0 pixel, while bright color 1 pixel. Left: wrong solution. Right: more accurate solution.

If there is no static cue in the smoothness energy term in Equation 4.8, then its definition

is reduced to, for example

Esmooth(fp, fq) 0 fq (4.9)
2K fp fq

where K = 10. We can compute the total energy as: E Esmooth = 20 x 44 = 880 for

the left labeling; and E Esmooth = 20 x 48 = 960 for right labeling. Here 44 and 48 are the

number of neighbors with different labels in each respective labelings. Graph cut algorithm

will prefer the wrong labeling over the right one after comparing total energies when static

cue is not introduced.

If there is static cue in smoothness energy terms as in Equation 4.8, then the total energies

are computed as: E Esmooth= 10 x 12+20 x 10+10 x 10+20 x 12 = 660 for the left labeling;

and E Esmooth = 10 x 34+20 x 12 = 580 for the right labeling. This time, the more accurate

solution will be chosen after cutting label 1.

Note that the occlusion problem around the left boundary is not solved by this standard

energy model. The perfect solution should be exactly the size of the dashed area. However,

the data energy is no longer zero in the perfect labeling due to occlusion, but rather E Eata =

255 x 10 = 2550 if we set n = 1 in Equation 4.7. The smoothness term becomes insignificant
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compared to the data term at E Esmooth= 10 x 44 = 440. Total energy for the perfect labeling

is 2990, which is much larger than 580 of the right labeling in Figure 4-8. As a result, graph

cut will choose the latter one as final output. More sophisticated energy models that take

occlusion into consideration have been proposed in literature [60, 70, 79, 142].

Figure 4-9: Two possible labelings for the binary example in Figure 4-1. Left: wrong; Right:

correct.

Let us go back to the binary example in Figure 4-1 and see how the nine pixels can be

correctly cut following the standard energy model. Only two possible labelings are shown in

Figure 4-9 out of the 92 = 81 potential labelings. Total energies are computed in Table 4.2

for both wrong and correct labeling. Actually total energies of the other 79 possible disparity

maps are all larger than 40. Graph cut will prefer the correct labeling over wrong ones based

on energy minimization.

Energy Wrong f Correct f
Edata 255 x 2 = 510 0

ZEsmooth 0 10 x 4 = 40

Etotat 510 40

Table 4.2: Energy calculation of the two labelings in Figure 4-9.

4.2 Difficulties of standard energy model

Graph-based methods have been gaining momentum in computer vision in recently years

due to their capability to generate a dense disparity map robustly. However, they have their

own issues.
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4.2.1 Initial conditions

Ideal Situation

Imagel 1 M M

Image 2.E

Real World

Image I 1M M MM M M

Image 2 M M M 7 M M M M

Figure 4-10: ID image pairs in ideal situation and real world.

There is an inherent flaw with the standard energy model, which is troublesome for all

correspondence based 3D algorithms. We need to ask this question: are data terms a reliable

test for corresponding pixels? Prevailing systematic or random image noises, which are

everywhere in real images, make Eiasta unreliable. For example, the upper one-dimensional

image pair in Figure 4-10 only exists in simulation. The black background stays put between

frames. The four pseudo-colored pixels shift to the left by three pixels and do not change

their intensity values. However, in real world, image noise can be dominant. For example,

noise may come from sensor dark current, flare or illumination variation from frame to frame.

In real world scenarios, the red and blue pixels may change their intensity values significantly

as shown in the lower example. As a result, only green and yellow pixels may be properly

resolved to have a disparity of three pixels under the standard energy model.

Here is a real example of how image noise is misleading for standard graph cut. Figure 4-

11 illustrates the reference left view of the "Room" pair as well as blowups of both views.

The first frame is rougher while the second one smoother. The area under scrutiny sits across

the conference room wall and door frame. Hand calibrated ground truth indicates that the

background wall has a disparity around 2 pixel and the door frame 3 pixel, while the closer

the object is to the camera the larger the disparity. The foreground table has a disparity of

around 15 pixel. The two solid-line oval regions under a white spot in the blowups should
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Figure 4-11: Blowup of the "Room" image pair.

correspond to each other. However there is obviously significant noise between frames: the

reference image is more varied and the second image more uniform. Consequently, the two

solid-line oval regions do not have a good match based on data energy calculations. Instead,

the oval region in the reference image finds a better match with the dashed-line area 15

pixels to the left in the second image as explained in Figure 4-12.

Two sample labelings are presented in Figure 4-12. For each labeling, the data energy of

each pixel is also shown as a brightness image. The good labeling fg9 0 d is more reasonable

because only labels 2 and 3 are included. The bad labeling fwro,, has a region of label 15 in

the center. We can notice that data energy distribution of fgood looks brighter overall and

thus a larger E Edata than fwrong. Exact energy calculations are given in Table 4.3. E Edata
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Figure 4-12: Energy distribution of two sample labelings using standard energy model. Left:

fg,,d; Right: fwrong.

is dominant in our example over E Esmooth. As a result, fwong is preferred by graph cut.

Energy fgood fwrong

ZEdata 3418 2693
E Esmooth 490 810
Etotai 3908 3503

Table 4.3: Energy calculation of the two labelings in Figure 4-12 using the standard energy

model.

What if we know in advance the ground truth of some pixels? Will their labels remain the

same after cutting based on noisy intensity values? In the example of Figure 4-13, suppose

we are going to cut disparity 15 pixel. The source a-label is then 15. Before the cut, we have

the left graph. All possible t- and n-links are connected and weights are assigned. Each pixel

has an initial condition. Suppose we know a priori that pixel p in Figure 4-13 should have a

disparity of 2 pixel. Its two t-links have the following Edata values, which are correct based

on noisy intensity comparisons: if the pixel has the source label of 15, the data penalty is

10; if it has the sink label of two, the data energy is 40. In other words, the penalty is larger

if this pixel belongs to sink. Graph cut will try to find the minimum cut, i.e. to cut all
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Figure 4-13: Example of cutting a-label 15 using standard energy model.

the links that have the minimum total cost. Then there is a high probability that the t-link

connected to the sink with a much smaller weight will be cut leaving p a wrong label of 15

pixel. This is where most gross errors in graph cut algorithms come from.

It is a desirable property that graph cut can integrate reliable prior information and does

not modify their values after cutting. However, such integration is not an easy task. As a first

instinct, placing prior information into initial conditions seems to be a viable and simple solu-

tion. We know that in the continuous domain, a better initial condition often leads to faster

convergence and global rather than local optima. However unlike continuous minimizations,

graph cut as a combinatorial optimization approach is insensitive to initial conditions. For

example, the hand calibrated ground truth for the "Tsukuba" image benchmark is provided

in Figure 3-13 where lighter grayscale values indicate larger disparities. Initial conditions

of graph cut can be arbitrarily set to any labels in the predefined disparity range, e.g., all

pixels may have a disparity of 0 pixel, or ground truth. The results of "Tsukuba" based on

different initial conditions using the standard energy model are illustrated in Figure 4-14. A

total of 16 labels in the decreasing order from 15 to 0 pixel are cut in each scenario. The

ground truth is deteriorated right after cutting label 15. The final result based on ground

truth is hardly any better than when the initial condition is set to all zeros.

It will be very preferable for graph cut to take advantage of prior information, since often
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Figure 4-14: Output from "Tsukuba" based on standard graph cut energy model. Left:
initial condition is 0 pixel disparity for all image pixels. Right: initial condition is ground
truth.

the user may have some manual input or know the position of some tracking targets. We

need to find out other ways to integrate prior information into graph cut energy model than

mere initial conditions.

4.2.2 Speed

Another disadvantage of standard graph cut is that it requires several iterations (usually

three) to reach convergence. This practice is not preferable to real-time applications. One

interaction on a 500x500 pixel image pair often takes seconds. Most of the fast graph

cut algorithms nowadays do not traverse through all possible labelings, resulting in a local

minimum within a factor to the global minimum. Because the process of cutting one a-label

is only an approximate solution, it is a common practice to randomize the order of cutting

among all the labels in a complete iteration. How to further reduce the computational

time of one interaction for a fixed number of pixels and labels is a working progress among

algorithm developers. This thesis focuses on reducing the number of iterations while at least

maintaining accuracy.
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Figure 4-15: Output from "MIT" pair based on standard graph cut energy model. Left:
n = 1. Right: n = 2.

4.2.3 Parameter sensitivity

The third drawback of standard energy model is its sensitivity to the parameter settings

in the model, such as n in Equation 4.7, K and Sithreshold in Equation 4.8. Figure 4-15

demonstrates how the standard graph cut result of the "MIT" pair in Figure 3-12 is influenced

by n. Other parameter settings are the same: K = 10, y = 2 and Sithreshold = 5. The

"MIT" pair is especially difficult for dense correspondence methods because it has large

untextured areas. Such kind of images are particularly sensitive to the parameter n when K

and y are fixed, resulting in dramatic difference in the two graph cut outputs in Figure 4-15.

n = 2 places a much larger weight on Edata than n = 1. Consequently, the role of Esmooth

to enforce smoothness is diminished. There are much more random dots and patches in the

disparity map when n = 2 due to ambiguity and image noise. In contrast, when n = 1 the

smoothness term successfully propagate good disparities into untextured even though it has

a tendency to over- smooth under the current parameter settings. Optimal settings can be

found by carefully balancing all the parameters in Equation 4.7 and Equation 4.8.

It is impossible that a single set of energy model parameters would suit any types of

images. Our goal is to make graph cut more robust by curtailing the output degradation

when shifting from the optimal parameter settings.
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4.3 Hybrid approach

The proposed solution to the above three issues with the standard graph cut energy model

is a hybrid approach. A much less expensive algorithm, Compressed Feature Correlation, is

used to stabilize and speed up a more expensive method, graph cut. These two algorithms

are integrated together by a modified energy model.

4.3.1 Modified energy model

As mentioned in Section 4.2.1, unreliable data energy computation due to image noise is

one of the main sources of gross errors in graph cut. Suppose we have accurate disparity

estimations for a subset of pixels Q E P. And P - Q stands for the subset of pixels without

any prior information. For pixels with priors, their data energy values can be fixed instead of

using noisy intensity comparisons in order to maintain their original labels. Prior information

is introduced into a modified energy model through fixed data energy cost while smoothness

energy definition remains the same as in Equation 4.8.

a= 15 px

cut

Sink

Figure 4-16: Example of cutting a-label 15 using priored energy model.

Figure 4-16 gives an example of how data energy terms are computed using a priored

energy model when cutting a-label 15. Pixel p is known to have a disparity around 2 pixel.

However, it would be labeled 15 by graph cut using standard energy model as explained in
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Figure4-13. To prevent a label change, p should belong to the sink and remain its initial

condition of 2 pixel, which means that the t-link connected to s should be cut and leave the

one to t connected. Thus the weight of the former link can be forced to take the smallest

possible weight of 0, and the latter link a large weight, e.g. 30. This way, p has a high

probability of keeping its labeling after cutting. This is our proposed way of integrating prior

information into the standard graph cut model and make it relevant to initial conditions. The

hybrid approach may be compared in analogy to continuous optimization. Instead of setting

boundary conditions on the reference image boundary as the practice in the continuous

domain, discrete "boundary conditions" are added in the middle of surface. The optimization

outcome of some specific spots are constrained to preset values. Consequently, neighboring

pixels are also influenced by the priors due to the smoothness assumption.

a=1 or 3 px

t-link

Et=0

r-lin]

* t-fink
ES=5

Sik

Figure 4-17: Example of cutting a-label 3 using priored energy model.

Because prior disparities may have ±1 pixel accuracy, one variation is introduced into the

modified energy model. The label of p c Q is allowed to convert to +1 of its predetermined

disparity value by reducing its shifting cost as illustrated in Figure 4-17. When cutting

a-labels 1 or 3, the t-link connected to the sink has a much smaller fixed cost of 5. This way

it could potentially be cut and p converts to a new label if smoothness energy is minimized

at the same time.

In summary, prior information is integrated into the standard graph cut model by using
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the following modified energy model, where smoothness energy definition is the same as

Equation 4.8.

E(f) = Edata (f) + E Esmooth(f) (4.10)

0

Esmooth( Up, fq ) =K

-K

fp = fq

|Ip - Iq| > Sthreshold and fp 7 fq

I1p - Iq| < Sithreshold and fp # f$

is defined in Table 4.4. W is the fixed data cost for switching to a

to 5. Coefficient o- > 1 can be set to 6-10.

Edata (fp) P G P - Q p e Q
a = fP a = f, 1

Es |I(p)_- I(p+ f')|n |I(p)_- I(p+ a)|n W

Et |I[(p) - I'(p+ ft)jn |I(p)_- I(p+ a)|n 0

(4.11)

=f, ± 1 and is

else
-W
0

Table 4.4: Data energy definition in the modified energy model with priors.

[72] specifies what energy models can be minimized using graph cut. It is easy to prove

that the above modified energy model can be solved using graph cut because the form of

Dp(.) does not matter and V{p,q}(', -) is a metric.

Let us re-visit the real example in Figure 4-11 to see how the proposed hybrid approach

can successfully reduce the damage of image deterioration. The two compressed views are

used in Compressed Feature Correlation. As a result, all the non-black pixels in the reference

view have an estimated disparity of 2 pixel. There are numerous potential labelings after

cutting label 15 and the one with the minimum total energy will be chosen as output. Two

sample labelings are illustrated in Figure 4-18, whose energies are listed in Table 4.5. We

can see that this time fwrong has a larger total data energy than f 9 ood mainly due to the

heavy penalties given to the priored pixels who are mistakenly permitted to change labels.

Combined with E Esmooth, graph cut algorithm will prefer f 9 ood to fwro g. With the hybrid

approach, some erroneous outputs can be prevented and overall accuracy improved.
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Figure 4-18: Energy distribution of two sample labelings using priored energy model. Left:

fgood; Right: fwrong.

Energy fgood fwrong

E Edata 2252 2435
E Esmooth 370 970
Etotal 2622 3405

Table 4.5: Energy calculation of the two labelings in Figure 4-18 using the priored energy
model.

Sample pseudo-code implementation for building the graph and assigning data costs when

cutting an a-label is presented as following:
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1 void BuildGraph(void) {

2 for every pixel p in the reference image

3 get fp from last cutting or initial condition

4 if p has no prior

5 if f =a

6 add constant data penalty E,:= Et

7 else (fp needs to be minimized)

8 calculate E, and Et

9 end if

10 else (p has prior)

11 if fp = o

12 add constant data penalty E= E,

13 else if ac= fp±1

14 calculate E, and E,

15 else (fp would not change)

16 calculate E, and E,

17 end if

18 end if priors

19 end for p

20 }

4.3.2 Discussions

A key step in the hybrid approach is obtaining reliable prior disparity information. Other

than the compressed feature correlation approach proposed in this thesis, there might be

other ways to get priors from manual user input or feature-based 3D tracking methods. For

example, the user may know that all the blue pixels should represent the sky and therefore

have an disparity of 0 pixel between frames. Or the user may have disparity information for

the markers attached to a patient's body tracked by ultrasound or laser devices.
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The two steps of the proposed hybrid approach may be viewed as two independent mod-

ules. The output of compressed feature correlation can be used in applications other than

dense disparity map generation, such as segmentation and tracking. The modified graph cut

energy model can take priors from any other reliable sources.
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Chapter 5

Performance evaluation of the hybrid

approach

In this chapter, experiments are performed on a number of stereo pairs to compare the per-

formance of the proposed hybrid approach and standard graph cut. Results show significant

improvement in speed and accuracy using the hybrid approach. It's limitations are also

discussed in Section 5.3.

The hybrid approach first runs Compressed Feature Correlation and then one iteration

of graph cut with the modified energy model (Equation 4.11 and Table 4.4). Standard graph

cut runs for three iterations because one iteration alone usually renders poor results. Only

grayscale datasets are used, which run faster but might have slightly worse accuracy than

color images. Parameter settings shared by the two algorithms such as n, K and Sithreshold

are exactly the same. Resulting disparity maps for qualitative experiments are illustrated as

intensity images with disparity values assigned for all pixels. Error statistics are computed for

datasets with ground truth. Running times are obtained on a laptop with a 2GHz Pentium

4 processor. Occlusions are not explicitly modeled or marked in this thesis.
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5.1 Qualitative results on real images

Figure 5-1 compares the results of both hybrid and standard graph cut on the "Room" image

pair. The equipment and table in the foreground have a large disparity around 13 pixel. The

far conference room background has a small disparity around 2 pixel. Other objects have a

disparity in between. Using the hybrid method, the disparities of some strong features are

first calculated with compressed feature correlation as shown in Figure 3-7. This process is

very fast using only 16 ms for the 630 x 480 pixel image pair. Then, priored graph cut with

modified energy model is used to find the full field disparity map (n = 1, K = 10, y = 2,

S-threshold = 7). Only one iteration is performed with the hybrid approach.

15 15

10 10

5 5

0 0

Figure 5-1: Graph cut output from "Room" image pair. Left: modified energy model with

priors. Right: standard energy model.

An important question to ask is whether the coupling of two algorithms affects the

accuracy of the final output. Figure 5-1 demonstrates that the hybrid approach produces a

better result than standard graph cut with less than one third of the time. Three iterations

and 29 seconds are necessary to get a good estimate using standard graph cut, while only

8 seconds for the hybrid method. The addition of Compressed Feature Correlation hardly

takes any time compared to graph cut algorithm. By comparing the two results in Figure 5-1,

the hybrid method has a comparable or even better accuracy. For example, the door knobs

are correctly separated from the door; the table is separated from other equipments; and
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Figure 5-2: Texture-mapped rendering of "Room" output using modified energy model with

priors.

the background conference room is recognized from its surrounding walls, door frame and

foreground floor. A texture-mapped disparity rendering of the hybrid result is presented in

Figure 5-2.

pixel pixel
15 15

10 10

5 5

0 0

Figure 5-3: Graph cut output from "Lamp" image pair. Left: modified energy model with
priors. Right: standard energy model.

Figure 5-3 shows the graph cut results on the "Lamp" image pair with or without priors

(n = 2, K = 10, -y = 2, S-threshold = 10). Compared to the standard graph cut, the output

quality of the hybrid method is comparable if not better while the computing time is less

than one third.

Figure 5-4 and Figure 5-7 present two additional datasets as well as their Compressed
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Feature Correlation outputs. Both of them are taken in dark rooms with directional lighting.

The subject in the "Reef" pair is a coral reef ornament about two inches high. Image size

is 640 x 512 pixel and the disparity range is from 0 to 3 pixels. The "Teeth" pair with an

image size of 768 x 1024 pixel studies two real teeth and its disparity range is from 0 to 65

pixels. Such uniform black background datasets provide additional prior knowledge which

helps increase speed and robustness. All pixels with intensities lower than a threshold should

belong to the background and thus have a prior label of 0 pixel. When initial conditions are

set to zero, energy terms for background pixels might be set as follows:

1 void BuildGraph(void) {

2 ...

3 if I(p) < 20

4 if a = 0

5 add constant data penalty E, Et

6 else (fp remains zero)

7 E, = INFINITY and Et =0

8 end if

9 else if

10 ...

11 }

where INFINITY is often chosen to be larger than 1000.

There is significant illumination variation between the two frames of "Reef", especially in

the right part. Compressed Feature Correlation successfully calculates disparity estimates for

major features as illustrated in Figure 5-5 and these prior information significantly stabilizes

and speeds up graph cut. Figure 5-6 shows the graph cut results on the "Reef" image pair

with or without priors (n = 1, K = 10, -y = 4, Sithreshold = 5). Standard graph cut

completely fails in the noisy regions even with three iterations that take 22 seconds, while

priored graph cut takes less than 1.5 seconds and successfully produces correct disparity
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Figure 5-4: Left: left view reference image of "Reef". Right: right view.

estimations in the noisy region .

The "Teeth" pair is a very challenging dataset for pixel correspondence algorithms. The

object surface is overall smooth and there is hardly any surface texture. Shiny speckles change

their shape and brightness at different viewpoints. Sensor dark noise is predominant. What

makes the situation worse is that the disparity range is especially large and the chance of

ambiguous mismatch is greatly increased. Compressed correlation only picks out a moderate

amount of prior pixels as illustrated in Figure 5-7.

Despite all the difficulties, the modified energy model still does a better job than the

standard one. Figure 5-8 shows the graph cut results on the "Teeth" image pair with or

without priors (n = 2, K = 10, y = 2, Sthreshold = 5). The dark background is correctly

separated from the objects using our algorithm and the disparity map has much less gross

errors. The small black holes due to image noise could be easily fixed by post-processing

such as median filtering. A texture mapping rendering of the disparity map generated by

the hybrid approach is presented in Figure 5-9. Three iterations of standard graph cut take

six minutes while one iteration with priors only takes 23 seconds. Again, the computation

time of compressed feature correlation is negligible at 0.09 second.

The "Box" scene is another difficult image type with large untextured regions. Figure 5-

10 shows the graph cut results on the "Box" image pair with or without priors (n = 1,
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Coarse correlation results. CorrSizeX=32 CorrSizeY=8, C-threshold=10
0
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0 100 200 300

X (pixels)
400 500 600

Figure 5-5: Compressed Feature Correlation output of "Reef".

K = 10, -y 2, Sithreshold = 18). Modified energy model is better at resolving the table

floor and separating the two boxes from background. In addition there is no black holes of

disparity 0 pixel as in the standard graph cut output.

5.2 Quantitative results on benchmark images

Finally the proposed hybrid approach is tested on benchmark images with ground truth. For

all the results presented in Section 5.2, the energy model parameters are set to the values in

Equation 5.1 and Table 5.1 if not mentioned otherwise.

0 fp fq

Esmooth(fp, fq) = 10 JI- Iql > 5 and f, fq

20 11p - Iq <; 5 and fp# fq

(5.1)

Compared to some qualitative datasets in Section 5.1, the benchmark images have ample

surface texture to suit the needs of most 3D algorithms. The white regions defined as

untextured areas in the error masks are scattered and small in scale. The "Map" pair is

especially densely textured and has no untextured regions.

114



nixel pixel3

2.5

2

1.5

0.5 0.5

0 mU

Figure 5-6: Graph cut output from"Reef" image pair. Left: modified energy model with
priors. Right: standard energy model.

Coarse correlation results. CorrSizeX=96 CorrSizeY=16, C threshold=10

100
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400

70 0 -. -. -.

800

0 200 0 600

Figure 5-7: Left: left view reference image of "Teeth". Middle: right view. Right: Com-

pressed Feature Correlation outputs.

5.2.1 Accuracy

Table 5.2 compares the results from both standard graph cut and the proposed hybrid

algorithm on four image pairs in three categories and the statistics are illustrated in Figure 5-

12 and 5-13. Error rates are computed as the number of invalid pixels divided by the total

number of pixels in one category. Invalid pixels are defined as those whose output disparities

are larger than ±1 pixel of ground truth.

All error rates have decreased in every category except for the "Map" pair. The reason

is that compressed feature correlation dose not find enough valid prior labels in the "Map"
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Figure 5-8: Graph cut output from "Teeth"
priors. Right: standard energy model.

wpm,

* L I

pixel

.60

150

image pair. Left: modified energy model with

Edata(fp) P E P - Q p E Q
a = f_ a = f t 1 else

Es |I(p)-I'(p+f8 )j 2 jI(p)-I'(p+ a)j2  5 30

Et jI(p)-I'(p+ft)j2 l(p)_I'(p+a)12 0 0

Table 5.1: Data energy definition used in Section 5.2.

image to be statistically significant. In other words, the few prior information contributes

little to graph cut. The hybrid approach has a lower accuracy on the "Map" dataset because

it only runs one iteration while standard graph cut takes three.

5.2.2 Speed

Computation time using the hybrid approach is usually reduced to less than one third of

standard graph cut as shown in Table 5.3 and Figure 5-14 by using only one iteration rather

than three. Again, "Map" is an exception because convergence is reached faster than other

less densely textured images.
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Figure 5-9: Texture mapped rendering of "Teeth" output using modified energy model with
priors.

Figure
priors.

5-10: Graph cut output for the "Box" image pair. Left: modified energy model with
Right: standard energy model.

5.3 Discussions

5.3.1 Label selection

An estimate of disparity range is one of the user inputs to both standard graph cut and

the hybrid approach. Minimum disparity is usually set to zero and maximum disparity is

A. However, Compressed Feature Correlation can serve as a closer disparity range selection

process. The argument is that the detected disparities of major features represent most of

the labels present in the final graph cut output. This assumption has been proved reasonable

in all the datasets studied so far as illustrated by the accuracy improvement in Table 5.2
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Figure 5-11: Graph cut outputs from benchmark images using modified energy model with
priors.

except "Map". A label pre-selection process has been implemented in the hybrid algorithm.

The sub-pixel disparity estimations from Compressed Feature Correlation are rounded to

the nearest integers towards both positive and minus infinity. The following graph cut only

cuts labels that have been validated by compressed correlation. In order to accommodate

densely featured datasets with large disparity range such as the "Map", all labels in the

0 - A range are cut when the number of detected labels after correlation is less than one

Algorithm Tsukuba Sawtooth Venus Map

(%) all untex. disc. all untex. disc. all untex. disc. all disc.
Graph cut 1.86 1.00 9.35 0.42 0.14 3.76 1.69 2.30 5.40 0.36 3.91
Hybrid approach 1.53 0.45 8.19 0.30 0.04 2.72 0.57 0.49 4.67 0.49 5.68
Improvement 18% 55% 12% 29% 71% 28% 66% 79% 14% -36% -45%

Table 5.2: Error statistics of standard graph cut and graph cut with prior.
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Figure 5-12: Error statistics of standard graph cut and hybrid approach.
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Figure 5-13: Accuracy Improvement.

third of all possible labels.

A smaller label selection affects both speed and accuracy. For example, the disparity

range of "Teeth" is 0 to 65 pixel, i. e., 66 labels to cut. It takes six minutes for standard

graph cut to iterate through 66 labels three times. In comparison, there are only 19 labels

present in the compressed correlation outputs in the range from 40 to 62 pixels. Cutting

these 19 labels once while setting initial conditions to all zero takes 23 seconds, which is

(second) Tsukuba Sawtooth Venus Map
Graph cut 7 10.8 15 6
New hybrid approach 1.8 3.2 4.5 3
Improvement 74% 70% 70% 50%

Table 5.3: Processing time of standard graph cut and hybrid approach.
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Figure 5-14: Processing time of standard graph cut and hybrid approach.

6.4% the time of standard graph cut.

Cut labels: 14 - 4 px Cut labels: 14 - 4 px and 0 px

Figure 5-15: Graph cut outputs from "Tsukuba" image pair using modified energy model.

It is important in terms of accuracy to have a close disparity range estimation before

graph cut, even using the modified energy model with priors. Figure 5-15 gives one such

example. The user specified disparity range is 0-15 pixels. A closer estimation by compressed

correlation is 4-14 pixels. The hybrid approach results of two settings are shown: only cutting

11 labels from 4 to 14 pixels or 12 labels with an extra label 0. We can see that overall
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that overall accuracy deteriorates after cutting label 0. This extra label erodes into regions

without priors, such as the black spots and strips around the lamp and in the background.

Global energy is minimized by assigning label 0 to these areas due to data energy noise. The

following rule applies to graph cut: the less redundant labels to cut, the less chance of gross

errors.

5.3.2 Sensitivity to parameters

The standard energy model depends on four numbers: data energy coefficient n, smoothness

penalty K and -y, and static cue threshold Sithreshold. The question of how to choose good

parameters is not well understood in many energy model based algorithms including graph

cut until some recent studies [145]. Common consensus is that data and smoothness energies

are balanced when the parameters fall into some specific range. However, if parameters

are picked very far away from this range, the results become either over-smoothed or too

noisy. Different n calls for different range of smoothness parameters to avoid the above

two extremes. Optimum parameter settings may differ significantly for various image types

which can probably be explained by varying amount of surface texture density, disparity

discontinuities and signal to noise ratio. Using priors generally reduces standard graph cut's

sensitivity to parameter settings in its energy model.

In order to evaluate the hybrid algorithm's sensitivity to parameter settings, each pa-

rameter is varied in turn while other ones are fixed. For example, Sthreshold varies a lot

for different image types depending on local contrast around disparity discontinuities. Fig-

ure 5-16 illustrates how error statistics are influenced by Sithreshold with or without priors.

Y-axis represents the total error rate in percentage. Standard deviation is 0.7% for stan-

dard graph cut, while only 0.1% for the hybrid approach for the "Tsukuba" pair. Standard

deviation statistics for all three benchmark images are listed in Table 5.4.

Two new parameters are introduced in the modified energy model as fixed data penalties

for priored pixels: W and c-. W is set to 4 - 10 and - = 5 - 10 empirically. If prior

information is known to be 100% accurate, the upper limit of a is INFINITY. By setting
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Figure 5-16: Total error rate vs. Sithreshold using both standard and modified energy

model.

o-W = INFINITY, prior information becomes a hard constraint rather than a soft one.

However, compressed correlation may generate erroneous disparity estimations around depth

discontinuities. A moderate a gives the few bad priors some freedom to change labels

depending on their neighboring pixel labelings. Generally speaking, a setting of -W < 100

reduces the risk of being trapped with bad priors. The number of discontinuity errors in the

compressed correlation outputs is usually so small that manually setting them to the correct

values only improves hybrid results marginally.

Compressed Feature Correlation introduces several new parameters to the hybrid ap-
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std (%) Tsukuba Sawtooth Venus
Graph cut 0.70 0.12 0.24
New hybrid approach 0.12 0.08 0.06

Table 5.4: Standard deviation statistics of three benchmark images.

proach, such as Cithreshold, pi and A of confidence measure, w and h of correlation window

size. Varying these parameters within a reasonable range does not affect the final output

much. If falling outside the good range, accuracy worsens very fast. The reason is that

Compressed Feature Correlation can no longer reliably detect disparities of major features

and some important labels are missing when running graph cut.

30
- Tsukuba

Sawtooth

25 - Venus

20

5D

0 10 20 30 40 50 60 70 80 90
C-threshold (grayscale)

Figure 5-17: Total error rate vs. compression threshold using modified energy model.

An important parameter when computing prior disparities for graph cut is the compres-

sion ratio Cithreshold. Figure 5-17 demonstrates that the final output is not sensitive to

Cithreshold in a large range for the three benchmark images. When compression threshold

is too low or too high, compressed correlation can no longer generate a reliable disparity

range estimation because too few correct correlation vectors can be obtained. An intuitive

range selection criterion for C-threshold is when the resulting compression ratio is larger

than 1%.
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5.3.3 Untextured regions

We can see from Figure 5-13 that error rates in untextured regions have a more significant

improvement than those in discontinuous regions. This observation clearly demonstrates

the advantage of the hybrid approach: correct prior disparities of strong features can be

successfully propagated into untextured areas. Priored pixels serve as anchor points when

optimizing surrounding regions.

CorrSizeX=32 CorrSizeY=4, threshold=35
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Figure 5-18: Compressed Feature Correlation outputs from "Venus". Left: reference image.

Right: compressed view.
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Figure 5-19: Disparity maps and errors of the blowup region in

approach. Right: standard graph cut.
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Figure 5-18 provides a detailed example of the hybrid approach's performance in untex-

tured regions. The dashed square area in Figure 5-18 is under scrutiny. There are 14 pixels

with prior information in this 50x 100 pixel region. Figure 5-19 shows graph cut results of

both the hybrid approach and standard graph cut. Pixels with erroneous disparities are

represented by a dot. Some of the errors around the image left boundary in the standard

graph output can be attributed to boundary effects and cutting three extra labels from 0 to

2 pixel which the hybrid approach is exempt of. However, most errors happen in untextured

regions. The hybrid algorithm significantly reduces the number of untextured errors in this

example.

5.3.4 Limitations

The hybrid method has certain limitations inherited from its two composing modules, even

though their significance has reduced by some degree in the integrated algorithm.

The hybrid approach is not suitable for images which (a) are densely textured and (b)

have a large disparity range such as "Map". It works better than the standard graph cut on

images that only satisfy one of the conditions, such as "Tsukuba" and "Teeth". Condition

(a) and (b) together limit the number of valid windows detected by Compressed Feature

Correlation. Too few priored pixels prohibit a realistic disparity range estimation and are

not sufficient to stabilize the global optimization process.

Resolution of the hybrid algorithm is limited to integer pixel disparities like standard

graph cut. Sub-pixel discretization of disparity values is possible if speed is not a concern.

Computational complexity of state of the art graph cut algorithms is still polynomial, not

linear. A disparity resolution increase from integer to 0.1 pixel in one direction might result

in a computing time 0(10") times of the original one, where n stands for the order of

polynomial. Another solution to achieve sub-pixel labels is by upsampling the input image

pair.
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5.4 Summary

In conclusion, the effectiveness and efficiency of the proposed hybrid approach have been

proved by qualitative and quantitative datasets. Outputs from Compressed Feature Corre-

lation serve as control points to guide the global optimization process. As a result, stability

and efficiency of graph cut are improved significantly with reduced computational cost. The

hybrid algorithm has three major advantages: improved accuracy by taking advantage of

prior information, reduced computational time and improved robustness to parameter set-

tings.
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Chapter 6

Conclusions

This dissertation has developed a fast and robust algorithm to solve the dense correspondence

problem by merging Sparse Array Correlation from the computational fluids community with

graph-based stereo from the computer vision community. In this chapter, we summarize our

contributions and point out potential future directions.

6.1 Contributions

This dissertation presents a new method which consists of two independent modules: Com-

pressed Feature Correlation and graph cut with priors.

The first module is called Compressed Feature Correlation, which combines feature-based

3D matching with compressed image correlation. The algorithm uses an image compression

scheme that retains pixel values in high intensity gradient areas while eliminating pixels with

little correlation information in smooth surface regions. The result is a highly reduced image

dataset with lowered computational load. In addition, by utilizing an error correlation

function, pixel comparisons are made through single integer calculations eliminating time

consuming multiplication and floating point arithmetic. Unlike the traditional fixed window

sorting scheme, adaptive correlation window positioning is implemented by dynamically

placing strong features at the center of each correlation window. A confidence measure
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is developed to validate correlation outputs. The sparse disparity map generated by this

extremely fast Compressed Feature Correlation algorithm may either serve as inputs to global

methods or suffice to be interpolated into dense disparity map when object boundaries can

be clearly detected.

The second module is a modified graph cut algorithm with an improved energy model

that accepts prior disparity information by fixing data energy terms. The image pixels with

known disparity values help stabilize and speed up global optimization. As a result only one

graph cut iteration is necessary instead of the common practice of three and sensitivity to

parameters is reduced. Prior information may come from either user input or 3D tracking

algorithms.

An efficient hybrid algorithm is implemented based on the above two modules. By cou-

pling a simpler and much less expensive local algorithm, Compressed Feature Correlation,

with an expensive global method, graph cut, the computational expense of the hybrid calcu-

lation is one third of performing the entire calculation using the more expensive of the two

algorithms, while accuracy and robustness are improved.

6.2 Suggestions for future work

By no means all potential avenues of the hybrid approach have been explored. In fact, this

dissertation barely opened a new door by bringing together two previously-isolated research

communities. Following are some interesting directions worth further pursuing.

Graph cut algorithms have produced strong results in multi-camera scene reconstruction

with consideration for occlusion as shown in literature. Introducing priors into these much

more sophisticated energy models might greatly speed the algorithms up.

Layered methods overcome the integer pixel limitation of graph cut by interacting be-

tween a graph cut module and a surface fitting module. Our hybrid approach might be used

to speed up the graph cut module.

It is also interesting to discard the compressed feature correlation step and directly build

feature detection into the energy model. Noisy data energy calculation can be verified against
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local gradient.

The outputs of compressed feature correlation may also serve as ground control points

to one- or two-pass dynamic programming to improve its performance.

So far the essence of Particle Image Velocimetry (PIV) has been introduced to computer

vision. The reverse direction might be equally rewarding. PIV algorithms have been troubled

with the window averaging effects of local correspondence methods. The hybrid approach

presented in this dissertation might be a potential solution.

A final but not least issue that needs to be addressed is one that is inherent to many

global optimization algorithms, namely, how to automatically detect image type and select

parameters.
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