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ABSTRACT

Properties of nuclear matter are calculated with a quark model in the spirit of the MIT bag model.A

many body wavefunction is written in terms of the quark degrees of freedom. With this wavefunction local

correlations are built in the many quark system such that three quarks close to each other are dominantly

in a color singlet nucleon state. The energy of the system is calculated as the sum of the contributions from,

the kinetic energy of the quarks,a bag energy proportional to the volume of the system and the interaction

of the quarks through gluon exchange treated in perturbation theory to lowest order in the strong coupling

constant ac,.The energy of an uncorrelated fermi gas is calculated within the same approximation.At low

densities,the system described by the correlated wavefunction has a lower energy per baryon compared to

the fermi gas whereas the fermi gas gives a lower energy at high densities.This result suggests a transition

from the correlated state of quark matter,i.e. nuclear matter,at low densities to -a quark fermi gas at high

densities.This calculation indicates that this transition can be expected to occur at a few times the normal

nuclear density.
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I.Introduction

With accumulating evidence indicating quantum chromodynamics to be the under-

lying theory of the strong interactions,considerable effort has been devoted to calculating

the predictions of QCD using a wide variety of methods and comparing with experiment

whenever possible.The asymptotic freedom property of QCD makes it possible to use per-

turbation theory in calculating processes involving momentum transfers large compared

to the QCD scale parametefrA .05-.15 Gev.Our knowledge of the low energy behavior of

QCD,however,is rather limited.The strong coupling phenomenon demands genuinely new

methods for calculating with a quantum field theory.Lattice gauge theories provide5 us with

the only numerical results starting from the original field theory.Although the results so

far obtained are encouraging we are still not in a position to calculate physical observ-

ables like hadron masses with lattice gauge theories because of numerical limitations. The

MIT bag model offers a simple and physically motivated framework for calculating low

energy bound states of quarks and gluons and it has been quite succesful in reproducing

the low energy hadron spectra with a small number of adjustable,yet physically meaning-

ful,parameters.With the QCD picture of hadrons made up of quarks and gluons gaining

a firmer footing,there has been growing interest in determining the consequences of this

hadron substruce in the realm of nuclear physics and ultimately achieving a unified under-

standing of the strong interactions from the particle and nuclear physics perspectives. The

parameters of the bag model are the bag constant B,the coefficient of the zero point en-

ergy Zo,the strong coupling constant a, and the strange quark mass nz, whenever strange

hadrons are concerned. In this model,hadrons are bound states of quarks interacting



through exchange of gluons.All the complicated aspects of this problem,the strong cou-

pling phenomenon,self interaction of gluons etc., are represented by associating a positive

energy density B wherever the quark or gluon fields are nonvanishing.This procedure auto-

maticaly- ensures confinement,i.e. the observation that aggregates of quarks always occur

in color singlet states, because any system carrying a net color charge would have an elec-

tric field extending over the whole space and hence would have an infinite energy.The zero

point energy term is proportinal to Zo/R,where R is the length scale associated with the

problem.This energy is a consequence of doing field theory in a finite domain,i.e. "inside the

bag".It is associated with the zero point energy of all the modes in the theory.Usually,this

extensive energy contribution is discarded in any field theoretical calculation since the

total volume over which the fields are nonvanishing does not change in any process.This

volume,however, is a relevant variable in the bag model.(The 1/R behavior requires a more

detailed calculation4).The strong coupling constant, 8,,=g/47r,is directly significant in the

context of perturbation theory.The second,and lowest,order contributions to the interac-

tion energy are proportional to a 8 ,with the interaction Hamiltonian being proportional to

g, .These contributions are customarily represented by the Feynman diagrams indicated

in figure 1.The implicit motivation for a perturbation treatment is of course the expec-

tation for a convergent series.The popularity of the method rests perhaps mostly on its

very successful application to calculation of processes with quantum electrodynamics.In

the case of QCD,however,the situation is disconcerting.As compared to aQED' 1/137 for

QED,many calculations indicate that ca,s 1 for QCD at low energies.Thus we have no

reason to believe that the usual perturbation series in powers of ac will be convergent.We



can,however, still utilize the corrections to physical quantities calculated as a power se-

ries around a=O by using wavefunctions that possess nonperturbative features.The strong

coupling phenomenon is not completely new.It emerges-as a setback to the naive applica-

tion of perturbation theory in the conventional nuclear many body problem in the same

way.Because of the strong short range repulsion in the nucleon nucleon interaction,any

perturbation expansion starting from a wavefunction built as an uncorrelated product of

single particle wavefunctions is bound to be divergent.The solution to this problem is of-

fered by Brueckner theory'where one starts out with a correlated wavefunction that does

not allow any pair of particles to get very close to each othe:.This wavefunction indeed is

more similar to the true many nucleon wavefunction as we know that the interaction energy

of the nucleons in a nucleus is not infinite.In other words Brueckner theory incorporates a

partial resummation of a (divergent) perturbation series into the initial wavefunction and

produces a convergent series for the calculation of physical quantities of interest,e.g. the

energy,with this wavefunction.We can adopt the same philosophy in the case of calculating

the low energy states of quarks with QCD,especially if we are willing to relax the rigor

in the perturbation treatment.We know again that the true wavefunctions for quarks will

suppress the configurations where the corresponding energy will be very high,e.g. two

quarks separated by a large distance.We can then eliminate these configurations from our

wavcfunctions from the start and lcave the strong coupling aspect of the problem aside.

This is what the bag model does in essence,and whether we have been succesful in elimi-

nating these undesirable components from our wavefunction remains yet to be seen for no

one has yet calculated higher order corrections in the framework of the bag model.Doing
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this with mathematical rigor as in the case of Brueckner theory still requries much more

effort because the treatment of bound states in a field theory is more complicated than it

is in nonrelativistic many body theory.The results of the bag model treatment are quite

encouraging and indicate at least that we are proceeding in the right direction.

The extension of the bag model philosophy to the case of many nucleons is not ob-

vious.Perhaps the most naive picture of a nucleus would be a collection of many bags

standing for nucleons.This picture is not very promising,however,because the mere exis-

tence of nuclei is due to the interaction of their constituent nucleons,which in turn are

nothing but quarks and gluons.If the nucleons do not overlap,they do not interact. Also

the picture of nonoverlapping nucleons is not consistent with the experimental observation

of the density of valence quarks in nuclear matter,p; .5/fm3 and the value obtained by

the bag model for the same density in a nucleon,p- .7/fmS.There is not much volume

in nuclear matter that is not covered by nucleons.We can circumvent this difficulty by

letting the bags overlap.The dynamics of the surface of the bag,however,is determined by

the boundary conditions and in that sense it is not a real dynamical variable.A nucleon

nucleon interaction energy determined by the dynamics of the bag boundaries when the

nucleons overlap,represents the energy difference in the overlapping and nonoverlapping

configurations and would have cotributions from all the terms in the bag Hamiltonian in-

cluding the volume and zero point cncrgy terms and the kinetic energies of the quarks.This

energy may represent the hard core in the N-N interaction but it is contrary to our in-

tuition regarding the N-N interaction at larger distances where it has been customarily

viewed from the point of meson exchange.Meson exchange translates into QCD as quark



and gluon exchange and we would want the interaction that produces nuclear binding to

be due to quark and gluon exchange among nucleons.

Once we have overlapping wavefunctions for quarks in different nucleons ,the antisym-

metrization of the many body wavefunction becomes important and one can not associate

a quark with a definite nduleonA nucleon is then just a very strong local correlation in

the many quark wavefunction.The success of conventional nuclear physics approach of

taking nuclei to be made out of nucleons reminds us that these correlations are still the

most prominent feature of the many quark wavefunction.One way of accomplishing this is

by building the many quark wavefunction as an antisymmetrized product of three quark

wavefunctions representing nucleons at different places.This situation is similar to the case

of electrons in a crystalAn electron does not belong to a particular atom yet the electron

density is modulated by the presence of the crystal of nuclei,and in turn it is this modulated

density that holds the crystal tgether.In the case of nuclear matter there is no crystal in

the background and it is not the one body density that is modulated but instead the two

body correlations are modified.

In this work we attempt to describe nuclear matter by constructing a many body

wavefunction for quarks.We incorporate the features which we believe are important for

the quark wavefunctions.We are after indicative order of magnitude results which can

hopefully be refined later.

The organization of the remainder of this work is as follows.In section II we work with

simple nonrelativistic models to illustrate the basic method.In section III we work on the

more realistic systems after developing the necessary tools for the relativistic calculation.A
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comparison of the quark wavefunctions used in this work with the bag model wavefunctions

is presented in section IV. Section V is on the incorporation of massive strange quarks and

finally a discussion of the results and conclusions are presented in section VI.
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lIa.A Simple Model 

The ground state of a non-interacting fermion system is a fermi gas obtained by filling

up the lowest plane wave states in accordance with the Pauli principle.When we introduce

an interaction,the wave function will be modified to give the lowest possible expectation

value of the Hamiltonian,kinetic plus the interaction energy,as demanded by the Rayleigh-

Ritz variational principleFrom the studies of superconducting systems'we know that any

attractive interaction among the particles near the fermi surface will result in the correlated

BCS ground state where the particles near the fermi surface are coupled pairwise to form

Cooper pairs of zero total momentum and spin.Since the BCS ground state yields a lower

energy,we expect the true ground state wave function to be more similar to the correlated

wave function than to a fermi gas.In the problem we want attack,however,we would like the

particles to be correlated in configuration space instead of momentum space and would not

want this phenomenon to be restricted to only the particles close to the fermi surface.In

other words,it is the quarks that are spatially close that we want to couple to a nucleon

state and not quarks of opposite momenta whose wave functions extend over the whole

system.As we indicated in the introduction,one can accomplish this by building the many

body wave function by antisymmetrizing the product of few body wavefunctions coupled

to the correct quantum numbers?

To begin with,let us assume the two body interaction to be given as,

rI (IIa.l)

If we had only two particles,this interaction would favor them to be coupled to a spin



singlet because by using,

5S2. [ (Ila.2)

we have

<(~:Sl,. ~,l s=? - -4 i 5\1 s = )= (IIa.3)

so the ground state wave function would have the form,

(Ia.4)nstj (~,~_ .(F) U {f,) -r' ) J }a.4)

We expect the many body wave function to carry the property that the particles that

are close to each other,or in the quantum mechanical language that have considerably

overlapping wave functions,to be coupled to spin singlet states. To accomplish this we

first label the two body wave functions T(1,2) by an index i that denotes the location of

the pair.Ti (1,2) will be localized around the point ri.The locations of the points ri will be

determined later.Thus we have,

~i (. '., l tl £) O) '4iz "t' ' 4 " (IIa.5)

The many body wave function will be the antisymmetrized product of the two body wave

functions ,i.This can be most easily done in the second quantization formalism by defining

the creation and annihilation operators, ad and a (where a stands for a= or $ .),so that



atcreates the single particle state lui-acting on the vacuumlO).

Iu =. a'a l O> (IIa.6)

and the a's satisfy the anticommutation relations

C· a =lla $F0o |aj,,a:^0=i;p (Ila.7)

We then define

ai' a
~ t t a1(IIa.8)

which creates the state'Pi (1,2)acting on the vacuum.We note that the antisymmetrization

aspect is automatically taken care of by the anticommutation relations (IIa.7) of the a's

and we do not need to write

We finally construct the antisymmetrized product of the Ti's,by applying all the S 's on

the vacuum.Thus,

is our correlated many body wave function.

We now turn to the spatial part of the i's given by the ui's. They will be single

particle orbitals localized around the point ri.The most localized function around a point



- 1+ -

would be a delta function, 63 (r-ri),or more precisely the square root of a 6 function if we

want it to be square integrable.This choice would be undesirable,however, as can be seen

from the Fourier decomposition,

63~'-i~t -L-@=(2X)3 h e (IIa.10)

it contains components with momenta up to infinity and,we would not want such a drastic

localization of single particle orbits in space,either.We can control the degree of localization

of the function ui if we let the upper limit of the integral in (IIa.10) to be a variable kF

and define,

where N is a normalization factor to be determined later.We can easily evaluate (IIa.11)

to obtain,

* tk \ '\) (IIa.12)

where j stands for the spherical Bessel function.As one can see from the form of (IIa.12),as

kF is increased one obtains a more localized function until in the limit kFrco, ui becomes

a 6 function at r.

The anticommutation relations (IIa.7) demand the orthogonality relations

(IIa.13)



which are essential for the development of the second quantized formalism. The orthogo-

nality relation with respect to the spin indices a,f is obviously satisfied so we only need

to satisfy,

=' =)e '=.r±4A- .,d'Ld•"3r .' e1 d

1 iF

We realize that it is not possible to satisfy(uijlu#>=5iiS.with the form of ui given by

(IIa.12) except for a small number of points Pi,unless we can come up with a uniform

lattice where the distance between any two points is a root of the spherical Bessel function

of first order!We can get around this difficulty in the following way.We keep the integrand

in (IIa.11) the same but change the region of integration to a fermi cube from a fermi

sphere so that,

k,

--kl-

so the orthogonality relation becomes,

I, ( t;) rU jl~gak..d~etit-iei"(l 4Pndj d ar erl D

Aft AI,

- tlnb 11 ( , ikltr-.;),tIL?.e.
= AR? kxf a L).
W -k

S Si N2 kL.(-rX Sirkk(S-r, N r r T
g2 1re", (r -P,, (- ra:

V21 1id:,'
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_SC(2 St ( r, - ri) ;%A hi-r(r SinArj-r;)

Ha Cc, -(rij-rtk (t4- ;5z (11a.16)

Thus,if we choose

g= = (: b and (r4)= .ad t(IIa.17)

we can satisfy(uil u.t=ij.The last condition on the vectors 'i can easily be satisfied if the

ri are placed on a simple cubic lattice of spacing r/kF.With this accomplished,we have

an orthonormal basis of localized wave functions equivalent to the basis of plane waves

of momenta inside the fermi cube.We will use this basis for constructing our many body

wave functions in the manner described earlier.

We now can calculate the expectation value of the Hamiltonian,

H=T+\/ ,= Lall +L L ..Z att (Iia.18)

written in the second quantized notation.Our wave function is,

> l "'L>~=7 a (IIa.19)

It is constructed by putting two particles coupled to spin singlet in each localized orbit i.By

virtue of the form of (IIa.19)I\)is a Slater determinant.Furthermore since each localized

orbit is a linear combination of momentum eigenstates,this Slater determinant,which can

be obtained from the determinant of plane waves by adding rows and columns,is equivalent

to the fermi gas having a spin up and a spin down particle at each momentum state. Thus



our correlated wave function describes nothing but a fermi gas!We will continue working

with this wave function in the form (a.19) to prepare the way for the calculation to be

carried out in section IIb where the coupled wave function will not be a determinant.The

equivalence between the fermi gas and p given in (IIa.19) also provides us with illustrative

checks on the calculation of two body operators,most importantly the interaction energy

which we now proceed to calculate.

The expectation value of the two body operator V in a determinantal wave function

1\'is given by the usual expression,

<7t8l~l\T' 1 <a l2 ,; o (IHa.20)

where (ia),(j) stand for the single particle states out of which is constructed.All we

need to calculate is the direct and exchange terms ij,ij and vij,ii respectively.This is

straightforward,

4,,,? . ?.1, , I~,d, r,I ,-rr \;,r¥ ~,-) Cc, - ~6j (Ha.21)

We insert the expressions for the wave functions u given in (a.14) and let rl-iF ,r 2 -F-,r,

r2 in the integrand.With these and,

V (r,- _
rol

we obtain

V I' =i~l&( ,- sin'r.in'4,,rlintSrrtl 5i<4ts b'12~in%;ir , lf di;rti (I4a.22)
Sje ;7P G I' ala ala Ir2 
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with the same manipulations the exchange integral becomes,

M'd~·i = f' ¢l f% g ;~,,, 'r'- S if, q? S YL 

Vl~l L 76 k6

St V-, (lr, + ri X- i X

(rtbtY~~s-.(tXt-P,< (rzr,,-r~k)(r,,,.tr;,-fe,:tr,+c;1-1^4jftf~; q+(IIa.23)

Both of these integrals have a simple kF dependence as can be seen by substituting ul =kFrl

Y;J 1 Al Li, 5d1%s' It Si;2,.SiAu, u,? ̂ 1u,, S nwSy SinI(lz. 81 :dLtN ; u Si Ifl 

G+K i U) uly U t- 1. U-4 -)s

UZ L U, L Z L + LAUj UU \'4 2 ( ySis

VN" '* -=du, )U L Snu,si(u AL(i,t+k(f-r4 U,} r'n (u.yziT(-y) inyrn(Ut~4fj~ftgJ

,U y U 4 Uzy Ul ? \-t U Ft%-Vl

CXi"Us irL,(c;,-r J··\)tuz(ULY'z-¢IX54ino se(Un-]Cstfiy-nX5)>inrzw seF(ri
3i4 , A LU-§f ;: rj"- C"(L b;,, { t5-~ u2,: Vi,- (7 -tt ))} hi A &0 -I (IIa.24)

The dependence of the integrands on kF is only apparent since kF(ri-rj,=n,with n=(n,n,,nz),a

integer vector. Thus the matrix elements v depend linearly on kF.This is expected.Since

the distances,e.g.the distance between two orbits or the size of the wave functions,scale as

l/kF,the matrix elements of an interaction that has a 1/r behavior scale as kF.

To simplify the integrals further for numerical evaluation at the end we use the Fourier

transform of

I
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that comes from the factor v12.

I = __________________________ I__- __-_t_-_it

\> -w +n"l I ;L-W q

This yields,

oc l (4: .t SLI P)

I ew ¶
01%T\je -7Z 

A- . O

Lso.

A,.L~a , L
l Si')LA 315 ?V\ (L~J+ L T )eYI dw( t

IgV"4
'K 5inv

where =x,yz runs over the components of a vector.We evaluate these expressions usingl

itef1 d1

a UI Se

and

(IIa.25)

(1Ia.26)

--

Uk VU- owlf)

S~~~~C''FVIIt -L dJ'

-~ 4. q , ~ I 4
IT&C

V.. .
ItkI61-

I 11:61
= Ci- 2.)

(-e A)Si3Y\i4
=.- i- 

I 9.L1 < 

PV 0 <' i I, I < 



Wih these we obtain,

Vgastwu = e <if l \ Solid)T LF-4~ _ )(IIa.27)

92

and for the exchange term for ij,

-.-

with kF (i-rj)=n7r

We can now calculate these matrix elements numerically using (a.27) and (IIa.28).The

only dependence on i and j comes through the vector n.As] increases the distance between

the orbits increase and we expect the interaction matrix elements to become smaller.This

comes about in (Ia.27) and (IIa.28) because of the more rapidly oscillating exponential

integrated over a fixed domain.For the same reason it becomes harder to calculate these

matrix elements numerically as lR increases.To illustrate the behaviour of the vi,jji ,its

typical values are given for different values of n in Table 1.They indicate the expected

behaviour asrln increases.We also find that,



en KSSI IJ> =g %i1.siI S5,t OX , si. +

= 2 4 (IIa.29)

and similarly,

t \ sI\1'> L <I s , sz t \
4

If we calculate the expectation value of the total interaction energy with these expres-

sions,we observe that it diverges as the total volume or the number of particles as would

be expected.We instead calculate the interaction energy per particle,by adding the contri-

butions coming from the interaction of the particles in a given orbit with all the rest of the

particles and dividing this result by two,the number of particles in each orbit.This result

will not depend on the particular orbit chosen because of the invariance of the infinite

system by a translation vector belonging to the cubic lattice providing the sites for the

different orbits.Thus we have

do+ L (IIa.30)

where we have defined,

die .%(Ri .s,|Cs b. -4 (Ia.31)
f V 16 .21L~· '3
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We note the absence of the direct term in the contribution coming from the interaction of

the particles from different orbits that would be proportional to

because its coefficient

[ s, s,tt t~;\ts t + Is14, ,\o 4 41 1\-tc

vanishes.Thus we see that,if the wavefunctions from different orbits did not overlap there

wouldn't be any interaction between particles in different orbits.By evaluating the term in

the brackets using the expression (IIa.29) for the spin matrix elements we obtain,

CYI'\j = - ) Li+ , (Ira.32)

which yields an interaction energy per particle,

_. _q. -n,;t ' i (IIa.33)

We then need to evaluate the infinite sum in the second term in principle. Because the

numerical factors vii,ji decrease rapidly as i and j become further apart as indicated in

Table ,we can approximate.the infinite sum by the sum of contributions from nearest,next

nearest neighbors and so on.We will check the reliability of this approximation later on by



calculating the same interaction energy by using the plane wave basis.We obtain then,

V ~ -~G, F (IIa.34)
A

To get the total energy we also calculate the expectation value of the kinetic energy.Since

the kinetic energy operator is diagonal in the plane wave basis it is convenient to use the

plane wave representation for this calculation.This yields,

kF

k~\Ta- = -q- m r C (IIa.35)

The sum E is replaced with the cont nuous integral in k over the fermi cube with the

appropriate normalization factors so that,

C L6

(Since the lattice spacing is I/kF the density of particles is 2(kF/r)).So the kinetic energy

per particle is,

T ke /mz k
(IIa.36)

We can compare this result with the. average kinetic energy of a fermi gas filling a fermi

sphere at the same density.To prevent confusion we will denote the fermi momentum of

the fermi sphere by pF.The density of a fermi sphere gas is,

Hope
e_ Ln



where g is the degeneracy of each momentum state,with g=2 in our case. Equating the

two densities yields,

L2 7 x -> i (6)13 PC (IIa.37)

The total kinetic energy in the fermi sphere is,

|| k adk \ k - e\ (IIa.38)

which yields the average kinetic energy

-r _ P; V / 3 ? 3

A PF/3X \m S (Ia.39)

We see that the average kinetic energy in the fermi cube is higher by a factor of .To

allow local correlations in the wavefunction we have to use higher momentum components

in the wavefunction which result in a higher expectation value of the kinetic energy.Adding

the two contributions and an energy proportional to the volume of the system we obtain

the total energy per particle.

A = his+-- t ( (rla.40)

We will now calculate the interaction energy in the plane wave basis as well and

compare our result for the fermi cube with the one above.Applying (IIa.20) to a fermi gas

wave function yields,



(IIa.41)
\ -4s1>-As,51 sxs'sa, 4ikj I klkz>

2 5ok L I.

The first,direct,term again vanishes because,

d < SSS I. '' Is 5

SI ss2

and we have

1 <.S.-St 'S4, SI aiv>= {. T II;,.Lt",> (1 4>t·, I f 

which yields

<q1V\1'--3 2 <vi l gkk
ktz

The properly normalized momentum eigenstates are

/(r\k~ = e- k
JvV

'% \+ 3
1 4

(IIa.42)

which, with

2_r a,
(,Z

V-& S I I -4 kk.__1A I -S 5 ' -L"(V V.25,1A<'tV v[-+,= -1%7



give

<s1>i>>-3 ~ I -'6t ' ' ' du d H"

Since we expect this expression to diverge as the volume V we concentrate on()6

Since we expect this expression to diverge as the volume V we concentrate on

<_1\_ -3 & I

'V 4 -\ ()

e' ft), L rg ,
1-. ..~ I.ai~~~~dI

(IIa.43)

(IIa.44)

We make the substitutions r2-rlr and rR in this integral to obtain,

V 4.V-(n-T4-V(.,6 Ala e. -k
I$\

(II.45)

The last integral which factorizes is equal to the volume V and it cancels the V in the

denominator yielding,

I3 (< rdk dL 4 e'

Cn4 L i f-
(IIa.46)

Using,

11

Ada

C
r

this becomes,

-I - 3r1
v (Jntc -,v., -- 3(n) (IIa.47)

Aa 9-



The only thing that changes when we go from a fermi sphere to a fermi cube is the integral

If which we will calculate now first for the fermi sphere.

r -3 4 4

I ,-C .&'

tuir -tuWf

zu,du" e
ju,10
Iull I

We evaluate

.& -

Ue rU = 4 Alak =-( %A sj3ir\ ur dU 4r

C? r T '
J

r _ Ir jc-

which gives,

(IIa.49)

4
1 = 

f '4'K ?tj T-rS
"I~iaeJ

The spherical Bessel function j is given in terms of the ordinary Bessel functions as,

dt;D: I.' -, (IIa.,51)
We evaluate the integral,'

a>-IIr (,) rP + )

P VZ! +)\
a.~i

- ¢ A~ \ t I
41 I hst/% (IIa.48)

(IIa.50)
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with p=v=3/2,a=1,A=2 this yields,

r P(3) ' L Ž

using the properties of the gamma function

giving,

Similarly for the fermi cube we evaluate,

4

which gives, 

which gives,

I dc1| 9 r sl5IV
r r r
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.-1~b't

CiT l I6 

Fourier transforming the /r to separate the integrals we obtain,

Ji q9dB e e'9r

43
'r3

' r, , 3iv r" % sn c1
rI IZ IV

| . ql | C^2
_p0

(IIa.52)
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(IIa.54)
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(IIa.55)
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We then evaluate the integral,

-- 'rl
I .e 70

5 C'Q.S ~,,rL ,r, a c

Cz

which gives,

I g
-V rl., 1' IiTa

(A- . ) 4

The last integral denoted as K has to be evaluated numerically.We find K~10.71 giving

I -r 8. 49 4

so that we have,

- PF

_ 6 I4-', (,r,,?

for the fermi sphere and

V -42.4 , 3

V Ir 1 ' 1411

for the fermi cube.Since they are at the same density we have,

(1- ) (.2 - \) =s -B k4

(IIa.56)

(IIa.57)

(IIa.58)
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so that at the same density,

_ \

z _ ' .I

The fermi sphere is more strongly bound than the fermi cube.This is expected. Since

the interaction matrix element behaves as 1/lk-k 2 in momentum space,the more closely

packed fermi sphere gives a slightly higher interaction energy.With these we have all the

contributions to the energy and we obtain the energy per particle for both the fermi cube

and the fermi sphere gases,

3 -2 9'PF

and

F \ )______ _ if o4(Cn: f, | 1(IIa.60)

comparing (IIa.60) with (IIa.40) we see that our approximation of the sum Evij,ji is quite

good.Figure . shows the E N) 2 curve for different relative values of the dimensional pa-

rameters B,m and a.We now proceed to the calculation of the average energy of a more

realistic nonrelativistic system.



Ib. A more realistic syqtem 

We do not expect to be able to describe the dynamics of quarks in a nucleon,or in nu-

clear matter,by using nonrelativistic quantum mechanics.The reason is the large kinetic and

interaction energies of the light quarks compared to their masses.Historically,nonrelativistic

calculations of the low lying hadron spectra has been attempted many times'These calcula-

tions have also introduced a large variety of nonrelativistic quark models usually differing in

how confinement is accomplished and in the interaction among the quarks.A nonrelativistic

quark model similar to the bag model can be constructed in the following manner.We take

two different types of quarks of mass m.These u and d quarks are fermions and carry an

additional color charge customarily denoted by b,r and g.The total energy of the system

includes the kinetic energy of the quarks,a "bag energy" proportional to the volume of the

system and an interaction between the quarks in the form,

(ib.l)
r

The Gell Mann matrices A' are the generators of the color group SU(3).They act on the

color wavefunctions and

This form of the interaction is chosen because it can be shown that the color and spin
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dependence of the lowest order color magnetic gluon exchange interaction roughly has the

same form and this interaction predicts the spin 1/2 isospin 1/2 nucleon to be the lowest

state of the baryon multiplet to which it belongs.It also produces the splitting of the other

members of the multiplet in the right direction.

The states of 3 flavors of spin 1/2 quarks can be classified according to the repre-

sentations of the group SU(6).For the nucleon the spin isospin part of the wave function

is,

9 (,,a,54=E |a(,t~~L)(·t(dL )( + : ((t) 'tA)

- (at) but) (d@) -(d - (ud4(d X)(u4XLt(L'- ((tlA(uA)(§ (LO

(1Ib.2)

this is multiplied by the totally antisymmetric color singlet state of three quarks given by,

*Xn \e+( - |brB- Ib r rb - btig br-8r (IIb.3)

The total wave function appears to have 6X9=54 terms,but since the color wave function

exhausts all the permutations of three colors we can see that there will be identical terms,up

to a permutation of the three particles forming a determinant,among the 54 terms.We find

that one can write the total wave function as a sum of 9 Slater determinants in the following

form

8 ( 2 {aKkat-)L(ruf) (594 ) +a (1,L) (9ilt)( 4; (1Ly9) -(6(6(N( )

(bu )(s'A') (pt- (r 'L )- gu44t') (uf) -tc1t)(rft) 0)-(bdt' (e .)% | bti)



We then define the creation operator,

St·j4Wat art a a a g at -atat t -a', at am

a ~, 42 & bdatubl i Jl r r~t

4 t t a,4 aot 4 -a t a bt at ;

hi ra1~ ~a -s. a i. -a a T -a aka
(IIb.5)

Screates a nucleon state at the position ri with radial wave functions ui(r).In addition to

the matrix elements of the operator '81. ' between various spin states we need the similar

matrix elements of the operator A1 2 which we calculate by straightforward algebra using

the explicit forms of the A matrices.We find

4aal , ,1a= 4

(all a, 7 - ba> (IIb.6)

where a and b stand for different colors among b.r and g.

To calculate the interaction energy per particle,we again calculate the interaction

energy per orbit.To do this we need to calculate the expectation value of the operator

-821' A2 in the nucleon state (IIb.4).This can be done by using group theory and observing

that 8-i e2a 1 A2 is a Casimir operator of the color-spin group SU(6), or by straightforward

but tedious evaluation using the matrix elements (IIa.30) and (IIb.6).In either case we
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obtain,

< -4 { )$'i2 S. <2 19> (Irb.7)

which yields the contribution to the interaction energy due to interactions of the particles

in the same orbit.

L3 L,LL(IIb.8)

The calculation of the contribution from the interactions between different orbits is calcu-

lated by direct evaluation of the matrix elements as described above.Since the two body

operator V can act on only two creation operators to its right we need to consider only

two orbits at once.The 6-particle wave functions created by two Ss is a sum of 81 determi-

nants.The diagonal contributions are straigtforward to evaluate.They are the expectation

values of a two body operators in determinants which we evaluate by using (IIa.20).In

doing this we carefully leave out the contributions that correspond to the interaction of

particles in the same orbit to prevent double counting.There will not be any cross term

contributions because there is no pair of determinants that differ by only two creation

operators,each one coming from a different ${.This is because specifying two of the creation

operators in each of the triplets in an S'automatically determines the remaining e.Thus

there are only diagonal contributions.This calculation yields for the contribution from the

interaction among different orbits,

V -_.qQ4t t 7 . (l b.9)

N 



Tbh coefficient in front depends on the relative orientation of the spins and isospins of the

two nucleons in consideration.The factor in (IIb.9) corresponds to spin up protons at each

site.f we choose to populate each alternating site with a different nucleon,then the sum

in (b.9) is replaced by two dif rent sums,one over the sites that can be reached from

site i by travelling through an odd number of basic lattice vectors and the other sum over

the remaining sites.The second sum is multiplied by .48 and the first is multiplied by a

different factor depending on the relative orientations of the spin and isospin vectors at

the two sites.These numerical factors are given in Table 1.2 

With these results and the numerical factors vii,ii and Evii,ji evaluated earlier in

section Ha we obtain the total interaction energy per particle with spin up protons,

s 41.44 2 \Jj_ V16 = I d (IIb.10)

We now proceed to the calculation of the kinetic energy.As the correlated wave function is

given by

is.= sL

with S given by (IIb.5) we can see that *i is an infinite sum of Slater determinants.Since the

kinetic energy is a single particle operator,it can act on only one creation operator to its

right and we can consider the contributions from each orbit separately.Furthermore,since

there are no determinants differing by only a single creation operator there will not be any

cross term contributions to the kinetic energy.Thus the total contribution will be a sum of

diagonal contributions corresponding to the expectation value of the kinetic energy in each



determinant.In addition to these simplifications since the kinetic energy operator is not

sensitive to the color,spin and isospin quantum numbers of the particles this contribution

depending only on the spatial wave functions will be the same for each diagonal term. We

then can pick any single determinant in the infinite sum for T and the expectation value of

the kinetic energy is the same in this determinant as in the infinite sum.By the arguments

given in section Ha this determinant is equivalent to an incompletely occupied fermi cube

gas contructed by putting 3 particles in each momentum state. With the results of section

IHa for average kinetic energy forafermi cube gas we have the kinetic energy in the correlated

wavefunction.

= (IIb.ll)

We now calculate the energy of a fermi gas of quarks having three different colors.The

wave function for system is a Slater determinant which can be written as,

1 * ) 57 En 1"5 (Ilb.12)

where

- a id aat d ait alfata aatla (IIb.13)

The average kinetic energy of this system is the same as that of a fermi sphere gas consid-

ered in section Ha,which is

kE. 3 P.f
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The calculation of the interaction energy is also the same as in Ha except instead of the

factor

s~~~~~ss, ~ ~ ~ 7-3'SIb2

we now have

Sr C,t,, sCttt V \s ' -; , L . ' C. t '>

.e

C. C

g from the exchange term the expression for the interaction energy in (,t

coming from the exchange term in the expression for the interaction energy in (a.41).The

coefficient of the direct term again vanishes.We now evaluate,

t, ',5' c

We had,

. ( <S'SL I S.-S, Is2 =la

S,S_

and now easily evaluate,

c (L.SC'" 

s ,- ,, I baa) +
'I

. i u a jlo

(IIb.14)

C?t, I , "' , 2, t -, Ctt.,LSt t5- (S. C, St

<a a I ,- '�, I a -z>
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With this we get the interaction energy per particle

v I( F
(lIb.15)

The density of the fermi gas is,

(;>= 11 - F(IIb.16)

and the density of the correlated system is,

en=- (IIb.17)

equating these two expressions yield

1/' ( ) F(Ilb.18)

Putting all the results together we write down the energy per particle for both systems in

terms of PF which really is acting as a parameter for the density of the system.%We also

include the "bag energy" contributions to get

=_-- Pf -- F (IIb.19)

and

)J jor~r /e ;z 2 (IIb.20)

.^>kV



We again obtain a higher kinetic energy per particle with the correlated wavefunction

because we use higher momentum components than demanded by the Pauli principle.But

the local correlations we build into the wave function pays off in the interaction energy.The

interaction energies for the fermi gas and for the correlated systems have even different

signs.Since the bag energy contribution is the same ,at lower densities and hence low

pF,the term linear in PF will be the important one and the correlated wavefunction will

have a lower energy per particle than the fermi gas.As the density increases, however,the

kinetic energy term becomes more important and at high densities it is the fermi gas that

gives a lower energy for the system. These two E/N curves should cross at the density

corresponding to,

-v p p-+%I (Ib.21)

These two E/N curves are shown in Figures 3a and 3b for different relative values of the

parameters m and a.

The simple color magnetic interaction is thus able to predict a locally correlated

system at low densities and a fermi gas at high densities with a nonrelativistic system.This

result was our target in doing this calculation and we have accomplished it for the presented

nonrelativistic system.We would like it to carry over to a more satisfactory field theoretical

treatment of the gluon exchange interaction.This will be done in the next section.

In closing the discussion of the nonrelativistic calculations we would like to note some
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general features.The lattice introduced by demanding the orthogonality of the single par-

ticle wave functions is not a real lattice in the sense of solid state physics.We had already

noted that there is no sign of the lattice structure in the one body densities.The system

has a uniform density as in the case of a fermi gas.To see that the overall location of the

lattice points in space is not a physical variable,we examine the effect of shifting all the

lattice points by a vector R.Then the ui are modified according to (IIa.15)

(r)=-tzdzlRe

The many body wave function T is a Slater determinant constructed by using these single

particle wave functions.We have factored out the e'kri for the following reason.We can

think of the original expression (lIa.15) for the u(r) as a superposition of plane wave

states e-ikr with the corresponding coefficients eiki and the equivalence of the plane

wave determinant and the determinant of u's follows provided that the orthonormality

relationships are preserved.In the same way we can think of the expression for ui,R(r) as a

superposition of plane waves ejk(R-r) with the corresponding coefficients eikr j. It is trivial

to show that the orthonormality relationships are unchanged with the new plane wave

states so that the determinant of ui,R's is equivalent to the determinant of eik(R-r)!s.But

eik(R - r) is- still a plane wave,in fact it is the original one multiplied by a phase factor eikR.

Each term in the Slater determinant constructed with these functions gets multiplied by
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the factor

since each k occurs g times in each term,g being the degeneracy of each momentum

state.Thus the overall many body determinant is multiplied by the factor

If we want to describe a stationary system,we should have

Thus,the overall wavefunction remains unchanged when the lattice is shifted by any vector

R!There is no signature of the lattice in the one particle observables,it is the two particle

structure of the wave function, two body correlation functions etc.,that are modified in the

correlated wave function with respect to the fermi gas.The resulting potential energy with

the correlated wave function indicates that these modifications are in the right direction

toward the true ground state of the system.

The crossing of the E/N curves for the fermi gas and correlated matter fulfils our

physically motivated expectation of nuclear matter going to an asymptotically free fermi

gas at high densities.We also observe.however,that this crossing occurs because of the

different powers of the density entering in the kinetic and the potential energies so that



one of them is the dominant contribution at low densities and the other at high densities.

The crossing of the curves may be meaningless if it occurs at a value of the density where

kFm and we should not be using the nonrelativistic expression for the kinetic energies

of the particles.Since the crossing density depends on the values of the parameters B,a

and m which we are not able to specify,we can not determine whether the results of this

nonrelativistic calculation can indeed be an indication of what is happening in the real

physical systems.We will see that the relativistic calculation of the energies of the two

systems also predict the crossing of the E/N curves.In that case ,this effect is tied to

the well established asymptotical freedom property of QCD rather than kinematics and

provides a more convincing prediction of the real phenomenon.This will be done in the

next section.



IIIa.Relativistic Calculations

20
To begin our relativistic treatment,we recite the basic features of the bag model.The

hadrons in the bag model are finite regions of space where quark and gluon fields are

defined.Inside the bag the quark wave functions obey the Dirac equation,

(IIIa.1)

and the confining boundary condition,

(III.2)

For u and d quarks m=O.The 4X4 y matrices are given in

"'6WY 9A,
*6%

the standard

O I\I I&o > 4 o °-
I:) a*;o)0

representation as,

(IIIa.3)

The solutions of (ma.1)

IT

can be written in the form"9

B viCc) Xn K (
' >^(F) Y (d 

\ Vtk - VX r)
with,

3vk 1= &e'' )
;~Ii P

-T T T-, rr 02 VK v p 9
(IIIa.5)

(IIIa.4)

t n)-y = o--
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and

(t-o68M'(A- P R= I m R (IIIa.6)

The X~ (r) are the spin spherical harmonics.'v,c and p are the radial,angular and azimuthal

quantum numbers respectively.The total angular momentum j is determined by,

+

(IIa.7)

The normalization constants N,, are chosen so that the wave functions qpf,,, are normal-

ized

This yields,

This yields,

2 1ee(ce§,I 1 (IIIa.8

The dimensionless eigenvalues z,, are determined by the boundary condition (IIIa.2) which

can be written as,

j (-) +' Y Z e {Ks,,7= ° (IIIa.9)
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The zx,, for the case of a massless quark are given in table 2.Since we will only be con-

sidering the ground state of hadrons we will only be interested in the lowest energy mode

among the ,VKL. For this special case we have,

d - -' 9 % - , x,- 2.D4 I X sI'.0&O ) e= II IL1= ) V=\ K ) ~l (IlIa.10)

The two spin spherical harmonics X~ and X_,, are related by,

sor massless quarks as,

so that we have the lowest eigenmode of the bag model for massless quarks as,

t NR

Sion &

C _)

X

x k

( '%
y2 S -%, ~

where X is an arbirary spinor.

Although the ground ate of a. badron containing quarks does not contain any gluon

modes,te intermediate states required for the perturbative evaluation of the gluon ex-

change energy do contain such modes.For completeness we also write down the gluon

modes in the bag model. There are eight gluon modes and since we are neglecting the self

interaction and the coupling of different gluon modes,they really act as eight independent

(IIIa.ll)
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fields each one analogous to the usual electromagnetic field.Let AX(r) be the gluon wave-

function of mode a and polarization A.It satisfies the free field Helmholtz equation inside

the bag,

( 5z+L A e (IIIa.12)

The eigenvalues kx are determined by the boundary conditions,

E (IIIa.13)

a r

where E and B are the electric and magnetic fields corresponding to the solution AX(r). The

different polarizations A are classified as,scalar,transverse electric and magnetic,and longi-

tudinal. The scalar polarized mode has the form,

Ualar -_

and the remaining modes have a zero 4th component.

The transverse electric and magnetic modes of the solutions of (IIIa.12) are,

A' (r )= h+ts / - )

EUSK \21+1 - i,-l,^ I3+\ 9J~t Js1

(IIIa.14)



where,

hrrds. r) N t

he cr) -N 
lt iM'

(IIIa.15)

and the YJJM are the vector spherical harmonics.The boundary conditions (IIIa.13) then

determine the dimensionless eigenvalues WNJ=k.,JR,through the equations

A t (r CZ YC)fl=0 - ( .

The normalization constants N are given by

r Jl- C.Ii2Mj _

Similarly for the scalar and longitudinal polarizations we have the wave functions,

/i ~ ~Cr) \ C N SC r) %, %(?)

(IIIa.17)

I L 32 (u;s

(M CEQ~ (IIIa.16)

j I( kr,,..3 r) j 1�'i

� 3111 ( r.) I'LL
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These two modes have identcal eigenvalues and normalization constants given by

8dr |t)~~W" (IIIa.19)

and

sL!(-<4t ( SLtzI 

Some of the eigenvalues wX are listed in table .With this we have all the quark and gluon

wavefunctions that enter the bag model calculations of the hadron spectra.We now proceed

to the case of infinite quark matter and determine the appropriate quark and gluon modes

for expanding our many body wave functions.

We first examine the solutions of the massless Dirac equation (a.l) (with m=O)

without the boundary condition (Ima.2).In doing this,it is advantageous to work in another

representation to decouple the upper and lower components.This representation is related

to the standard one given in (IIa.3) through the unitary matrix

_ t rZ -( ) (IIIa.20)



In this representation we have instead of (IIa.3)

I

('t ° ('
I) 

II \ 0

I \ ( I0
I - ) \j

(IIIa.21)

In this representation,the Dirac equation becomes,

(d 3

a
(IIIa.22)

o.) >~ (\V(C)0 Le If
o- - i c-which decouples into two separate equations for 0 and X in an obvious way.

(V.W5 '= 

(lIla.23)

We take the z direction along the vector k so that

) Ie
API" 

and obtain the four possible linearly independent solutions to the equations (Ia.23)

bid . X_(o eX+l (IIIa.24)

)

2

-N .
rDL - '

.. L I - -

Z : I t

L- 
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5~~~~~~~~~.

j I I 7
0 k k 

· I I t I 
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(IIIa.25)

Glbi° X=(o) t=- (IIIa.26)

i..\/) cp= O By= ( I) t0 +\ (IlIa27)

The corresponding solutions in the standard representation are obtained by transforming

back with the matrix U in (IIIa.20).We obtain,

a L(- i\ `i ) I I )= lo (IIIa.28)

UL=Ajj rv (IIIa.29)

U - I (IIIa.30)

ltCDO tXj~~~~ )OO~ t°A= 6 (IIIa.31)
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So the wave functions in the standard representation are

'tje w (IIIa.32)

with p= li=E.To express these wave functions in another coordinate system where the z

axis is not necessarily along k,we need to rotate the spinors () and (°).If the angles of k are

8 and ,to get from a spin up in the z direction to a spin up in the k direction we perform

a rotation by 0 along the y axis and another one by ' along the z axis.We then have,

yt= iL e; 8 ( I (IIIa.33)

e 

0D

o LDSD

In e'Oe~~~~~iC I& r.;"t'3
which yield

0e~ips ~9I
-1f j5Q

and

Ii 5v1$ aX= it Sf
0 e , Sri

using tbese,the four Dirac spinor

(a$9 I
2Ca _ <;t nA e

ICt 

2-6. fl

L

(AV IIn

solutions becomi

. i. I

i e

i-Cin e 

C;61t C. i
z

with

- c.jT
C

-s;1t3

st2

(IIIa.34)

(IIIa.35)

(IlIa.36)

(IIIa.37)



(IIIa.38)L e 
(k2 Z, 

YXs-, Q;w) (IIla.39)

I~','z . S )~s/g/ (IIIa.40o)

The phase factors in front are unimportant and can be set equal to unity. We finally

classify these solutions according to their energies and chiralities

L E -I ' s't,

,4, eiL r U3(k) E 
-iCXt~~~~~~~~~tf~~ r +W E +V ls(IIIa.41)

We will only be using the positive energy and _ chirality states i;t and 4.Two other

linear combinations of the positive energy solutions which prove to be useful are,

= XWtA, -ci~u ( z e U4 = E twi(IIIa.42)

us;2 e + tsz U4c gan s j 1 (lla.43)

-CWse



The forms of the equations for u+ and u_ are suggestive.They indicate that the

upper component is in a definite spin up or down state.The lower components,however,are

pointing in other directions depending on k.Since the squared amplitudes of the upper and

lower components are equal for the massless solutions above,it would not be accurate to

ascribe the spin of the upper components to the whole mode as might be done in the case

of a low energy massive Dirac particle.

We now describe the gluon wave functions which are again solutions of the free field

Helmholtz equation (a.12) without the boundary conditions (IlIa.13).We can write these

solutions as plane waves,

where the polarization vectors ex can be written in

paallel to kas, \
lox

ON 3 C) I L- C 
sc. kra

We will work in the Lorentz (or Landau) gauge wh

satisfy the gauge condition

(IIIa.44)

the reference frame with the z axis

l0 (IIIa.45)

ich demands that the potential Al,

(IIIa.46)
at, ei W

which yields a°o=aI

We construct the localized wavefunctions the same way as in the nonrelativistic case

-S-

'. 6VP- 1 a= 

\
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by superposing plane waves in a fermi cube with appropriate coefflcients.We define

LA'. iL)=
t.

f * }- -

N (IIa47.)

and try to satisfy the orthonormality relations with this form of the u)(x).We have,

' , Ud W r + -() w±t -4'LA L 6 L riL 1'klI -^~~.LLu;~~~~~~~~~ ~

I-I -=_I

SIF .

I L2= (.aid J"&k

,L (rin ..4 t

- -L 4l
k, rj - ). 1kV crF-'rc).,

_ S S:. (2 o(2k

thus we see that by choosing

N2e (it3 l

we can satisfy the ortonormality relations,

<u') l U()> -S
6~)`, (IIa.48)
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So we have the localized single particle orbital,

(IIa.49)
kF

We now expand the quark and gluon field operators in terms of the normal modes we
have developed.For the spin 1/2 quark fields we have,

and

%(U) ZI- EL Cn + Vn(3t bn (IIIa.51)

here vC ) is the localized wavefunction of polarization a built by superposing the negative
energy states u2 and u in (Ila.38-39) .The operators c and e, create and destroy quarks
in states n.The b's do the same for antiquarks. (a.51) implicitly assumes that a Hamil-
tonian having the eigenmodes u exists and the sum over a goes over all the eigenmodes
of this Hamiltonian.To preserve the equal time anticommutation relation

the operators c and b must have the anticommutation relations

VIC } tt^3>=2>fn |tt |3= - (Ill.53)
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with all other anticommutators zero.Similarly we have the gluon field operators

ArXY= (I i. 5 a Ii )Ee () e .i 1 (IIa.54)

here a (k) creates and a (k) destroys a gluon mode of momentum k.The polarization vectors

CA are given by (Ia.45).Again, to preserve the commutation relationsfI

A tAXz, Av (¥ )-- i r A (" ' "1Ia.55)

among the photon field operators the a's must have the commutation relations

I ,a'nW ai = -- k 9 (rIIa.56)

With these developments we now go on to calculate the one gluon exchange energy in the

next section.
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mb.The Second Order Interaction Energy

The Gell Mann-Low theorem gives the energy shift of the ground state of a field theory

due to a perturbation term i the Hamxiltouian.We will use Hubbard's modification of the

Gell Mann-Low result.In this form the theorem gives the energy shift as,

< Ici LCdE-Eoi; 1. s. . . [.1J I i " Z iiC j (rb.l))

where Eo and E are the unperturbed and perturbed ground state energies,t141is the unper-

turbed ground state and Hi(x) is the perturbing Hamiltonian.The subscript "connected"

emphasizes that we should only include the connected diagrams among those generated by

the time ordered product of operators in the infinite sum.For the coupling of quarks and

gluons the perturbation Hamiltonian is,

i= -t~s s (X P to 9a xz A y(X) (ImIb.2)

here t=Xa/2 and g is the strong coupling constant.The lowest nonvanishing term in

(IIIb.1) is the second order one,which is

inerig (tit ( 1Ib.3)

inserting (b.2) into (b.3) gives,

C -. 4I I t.X C4T 4 iray:l}r b(A.4 t'°i) Aor 4jIbE t~~i,,t/xl o

we use the eigenmode expansions (ia.51) and (a.52) for the field operators and A



and keep only the contributions from the positive energy modes to obtain,

2i_ lg I \ i ·J, s t() d4, 4 2 [.5 u (-X. U.C3etth L(X2)Tt U25

A cc.)e., A& Cc, e+

45e L d* B' tLt +A )t r A t + PPi je j

(11ib.5)

The contributions from the negative energy states are physical and important in princi-

ple,however,they are left out in the original bag model calculations with the expectation

that their effects could be incorporated into the renormalized parameters B and Zo.It is.

therefore only consistent to leave them out in this treatment when we are aiming to make

a connection with the bag model.We have,

bE 'i 2 Othl [J Ltt to de] u rmli u B .A i" e .e

[~~t4 (4 \\ < ct jcCV \ (4 I a a, %) t ) A Ae Lzft)q- 
bt~~~~ ~~~q t b 'Jt~~ ~~~~i)e

(IIIb.6)

-s6-
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Evaluating,

by using the commutation relation (a.56),we get

<q't .i CL*dCC( ( I

j-4 <%1',Ce. \ t 6jl

pz ( aq 3 3t A Aa¢-ŽZ jI·

P 9 0L2 Al
AP [ 9e1)

I3p (' q -&15 P
4 P ( I) 

e 9t il(B
-,10

V 4;belB~~~~~~(E C~li f i G
X P

(IIIb.7)

We evaluate the integrals,

1 (e l (- +=,l

r

at Ielt) e

which when inserted in (IIIb.6) give

10"1> = , I b Lp{)

it6
£

£,,- t, + " 

E 

5. <L aCI

(~~~~ ClnP $.I

Z"t t al

Uic~rt~L~cr~ ,C,~r-b ly:(A IL -
AIE I- a- -, 2 -

fe+ CL~t ')

I
tz (t P-,e 9A a

,,2~-.4~r1 A4

Cj-w ~ F -q) 
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E - g d~Z, 3r tjF ~a t ~
-2 i L

X0<ioctd~I~ul .> |.24 Of3

b ,|Cvc;(tt A '29 OttJY

A pt,) VApV(s
- -e, + P,
4e- + P

E~j U

we now evaluate the matrix elements of the quark creation and destruction operators.Since,

ct c;= n,

is the number operator for orbit i we have

C+. Ct,l iD.- S j Sun; nk t

(~t$4 ct , CL 4 '- LTfl*

(IIIb.g)

with nk=l or 0 if the orbit is occupied in 'P or not.Also for later use in calculating cross

terms in the expectation value of the same operator in a coupled state given as a sum of

Slater determinants, we evaluate,

and also define, Z3; S4 it

laA= - C) (IIl.il)

(IIIb.8)



With these we have,

I d3 \
.apt=?3 E.:-ft,4

[S. S nNNi S ( ,
la kit 6% 

A I:(5 1fLjrAPeo a(9,, 1A

, :2p(3 Cl o.qALpZ fffl
or ;

'r--fl~ (b.12)

(1116.12)

at this point we define,

u. c*y6 ta
L Apr (IIIb.13)

(IIIb.14)

in terms of the T's the expression for the second order interaction energy becomes,

AE () 'jzJ l[ i18~~ Z A " lb A n- C0

IS Z k In ,C,) L CL "A

EpA 4P PA
E- E + PA

PA

bE( 1 i

u (CrY 4a? u k) (Ir PJ~~~P,1G

TpLf

so that

dI ,cr C ut; u(X Ap;vCr,PyP

-6 -

Y9,
IL

xe~jdr~i ?tau
11 e u 

la li %-
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lit, n¢.b~~~~~~p~ (t';5I i(IlIb.15)

or collecting terms,

bE"~- bE + bEewof t FEN~2 (IIIb.16j&E 4 A~~kS~ i~j e

with,

6 i Z! A dQ ( 3 - _~,(IIIb.17)

-Ev' ,' (IIIb.18)

___ \ £ I iv T6 (IIIb.19)

The direct and exchange energies are the counterparts of the nonrelativistic direct and

exchange interactions.The direct term vanishes for a color singlet system because the in-

tegrand is really a product of two sums

bE () =_ -. L3 5- 8 IP T Tl h ()'-A

for a color singlet determinant each color occurs once in the sum i and hence the sum is

proportional to tr(A')=O.The self energy sum is independent of the occupation of one of the

interacting particles and so is a sum of single particle energies.For massless quarks in the
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infinite system with no energy scale the self energy is zero.For the finite bag calculations

the self energy is proportional to the energy scale 1/R.The exchange energy (IIIb.17) is the

main quantity of interest in infinite matter and we will now calculate it with our correlated

wave function. We construct our correlated wave function in the same manner as in the

nonrelativistic system with colored quarks,so that

with Si given by (HIIb.S)The spin indices and ; are now replaced by the polarization

indices of the Dirac spinors.The derivation of the second order interaction energy is the

same as with a detcrminantal wavc function except for evaluation of the matrix clement

< c i (bCisC= >= So I;(jct(e So \b4'*t, C C C r1vc> &VcS

Since the operator cicyckci can only act on two different creation operators we need to

consider only two cases;

i)both creation operators belong to the same orbital i.In this case

4I· 1 ct C C Ce 1s = (S1 Sc C Liz

and there will be two sets of contributions.The first set comes from the diagonal terms

where the same Slater determinant in S occurs both on the right and left of the operator

c icycke.These contributions lead to the same form of the interaction energy as in (IIIb.16-
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18)The second set of contributions will come from the cross terms where the determinants

on different sides of cicjckcs differ by only two creation operators. These contributions are

evaluated with the aid of IIIb.10).We will then have,

&E5 rZ rmou bss tef "-5 (Ib.20)

with

altvva' IAr- s-T _LJ)I e3 (IIIb.21)

tv" T1 (IIIb.22)

Here,the sum on m,n go over the different terms in Scof(n) is the coefficient of the term

n,the sum on P is over the different permutations of (kl) given by (b.10) and (-)P is

the sign associated with P in (b.10).

ii)If (jkl) belong to two different orbits then there are no cross terms as in the nonrel-

ativistic case because there are no two terms,among the 6 particle determinants obtained

by multiplying two S's,that differ by only two at's each one coming from a different S.We

then have only determinantal contributions similar to (IIIb.21) except with the contri-

butions corresponding to the interactions of the particles from the same orbit discarded

to prevent double counting with the case i.With these the final result for the interaction
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energy becomes,

rF 2: + F I \ 2dA

(1)~; tsl3 22 2 (; t' d 9

P(I ~ ~ rr (irrbm)f5Q '~~~~~~~~~~~a
E(M; ( ) (, Ci 3e 

One important simplification occurs due to the fact that all the occupied single particle

orbitals have the same energy for symmetry reasons.(They are nothing but the same wave

function located at different points.) With this, the energy denominators in (b.23) become

independent of i and j. We now calculate the T" (ij) which were defined in (Ib.13) as,

(p'd~- A

with,

-
AiqC CA e £ t)

in the frame where the z axis is parallel to k we have,

X A
ET= 

(IIIb.25)

(11b.24)
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and the orbitals ui are given by (IIIa.49).We then have,

a)tp- I
-T ) lwth ( 4?

e zi 'L4-A

e( -k)e
lr. t i L-rto La '1t 4 C J_.U'a 1k) j'( "'Z 

' kf(r-ri) - (- q -- ftC C - )e ( C ( J5)') t J
C--

el

_&) (r,_

with all the tools for the calculation of the interaction energy now developed we proceed

to the calculation of the energy densities.

kF

e.
s e

( L
C(2 L,'

%-A

q
d11. e.

(IlIb.26)

ta
CL S

i -- " -

C r t v.--K i 1% (_) & A 'a))L t.

.L j
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IIIc.The Energy Densities

We first start with the uncorrelated Fermi gas.In the completely occupied gas each

momentum state is filled with 12 particles exhausting all the possible polarizaton,isospin

and color states.(We are still considering only u and d quarks).For the moment we take

the degeneracy to be g and set g=12 later.The kinetic energy is,

.E.; I 'a 'b' q'; l (IIIc.l)

licPF

the number density is

e=~~~~~~~~~~~ § (,_35 64(IIIc.2)

(mc.l) with (IIIc.2) yields the energy per particle.

_=-fr,~~~. _3~~~~~~~ (IIIc.3)

A 4

The interaction energy is calculated using (Ib.18) with

and

Ir.g k.%t~~~u6 iu t v.+(IIIc.4)
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with k labelling the momentum states and a,B running over the possible polarizations.Since

the total wave function is a Slater determinant this evaluation is straightforward.We then

use the plane waves for the single particle wavefunctions to obtain the well known result'

s p N (rrIIIc.5)
'V Qi

with N=2 the number of quark flavors.This with the density (IIIc.2) yields,

- =- s PF (IrIc.6)

The bag energy contribution is,

B s T (Irr.7)

With these we have the expression for the total energy per particle of the Fermi gas

E) ·X ~-~ (i4~ PF (IIIc.8)

We now go on to the calculation of the corresponding contributions in the correlated

system.The kinetic energy,a one body operator,again has the same expectation value in

any of the determinants composing 9o,as in t, itself.Furhermore these determinants are

equivalent to an incompletely filled fermi cube gas wavefunction as in the nonrelativistic

case.So the kinetic energy is

tF di 4c3 = 45 (IIIc.9)

IFI
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The integral I is evaluated numerically.We find,

15 7.s2 (mo.10)

which yields,

I:.E. = 3 1.42 J (IIIc.ll)

The number density is,

3e = K (IIIc.12)

which with (IIIc.11) gives,

tex. ki f (III.13)

We see again that in the correlated wavefunction the average kinetic energy is higher than

it would be in a fermi sphere gas by more than a factor of 1.5.

The interaction energy is calculated numerically as described in the preceding sec-

tion.We obtain,

AE '1= .oqg. 2L k F (IIIc.14)

Since the correlated system has the same density,the bag energy contribution is the same

as in the Fermi gas,It is given by (c.7)
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Gathering all the results we have the total energy per particle for the correlated system

E' ) = ' .' 9 -' .°78 g F " (II Ic.15

Demanding the correlated system to be at the same density as the fermi gas yields,

PF

Substituting this in (HIc.15) yields

£ ) rg1el (IIIc.16)

We observe that,since the relativistic kinetic energy scales with the density the same way

as the interaction energy,the only difference between the two E/N expressions (IIIc.8) and

(JIc.16) is in the coefficients of the linear term in pF.The fermi gas has the lowest possible

kinetic energy but has an unfavorable interaction energy and the situation is reversed in

the case of the correlated system.At first sight ,this result seems to indicate that the fermi

gas will lie above or below the correlated system depending on the coefficients of the linear

term in PF which in tuna depends on the strong coupling constant g,.In the discussion so

far,however, we have left out an important property of QCD because we have left out all the

complications introduced by the fact that QCD is a non abelian gauge theory.This property

is asymptotic freedom which tells that the renormalized quark gluon coupling constant g,

becomes smaller at higher momentum transfers and conversely it is large for low momentum

transfer and large distance phenomena.In our problem the interaction energy is obtained



as a sum of diagrams involving a whole range of momenta.The overall scale for these

momentum transfers,however, is set by the fermi momentum pF.Thus at high densities or

large PF we have weak coupling and at low densities a,=g,2/4r becomes large.When we

examine the equations (mIc.16) and (IIIc.8) in the light of this expected behavior of g2

we see that at high densities the interaction terms will be negligible and the important

contribution will come from the kinetic energy of the quarks and the fermi gas will be

the energetically favorable state.On the contrary,at low densities g will become large and

the important term will be interaction contribution favoring the correlated system.We

then expect the quark matter system to undergo a transition from the correlated,nuclear

matter,state at low densities to a fermi gas at high densities.We note that this conclusion

has been drawn with a minimal assumption on the behavior of the coupling constant as a

function of the density.This assumption is theoretically predicted by QCD and has been

experimentally verified whenever tested.If we want to examine the detailed features of this

transition we need to parametrize the density dependence of the effective coupling in some

plausible form.The asymptotic form of as is given by,7

r

s i (IIIc.17)

where n is the effective number of the flavors of quarks and AQCD is the QCD scale

29
parameter,expected to be AQCD;50-150 N ev.We then parametrize our effective coupling

constant as,

() = - - - (IIIc.18)

/N2



to be consistent with (IIIc.17) at high densities.The 1 in the logarithm is inserted to remove

the unphysical singularity at PF=A. We do not expect (IIIc.18) to provide an accurate

description of the variation of the effective coupling constant for PF A.In the region of

interest to us PF 2A.At very low densities the dominant contributions come from the bag

energy which has a 1/p. behavior and so the value of the interaction term which at low

densities varies as 1/pF is not important.With this parametrization of a we have the two

E/N curves as

F ) tb I a) \AQC- (Iflc.19)

(J4.C6L A_ Jlb3* a \Tb(IIIc.20)

where we have defined

b.z~~~~~~~~~~~~a~~~ /(IIc.21)

(IIc.22)

AW9tD (IIIc.23)

Once we have the values of B,a(A),and A we can calculate the energy per particle in each



phase.In its original version the bag model fit to hadron masses yielded,

B'4 = 14 S Me 

with these and using AQCD=100 Mev,we obtain the E/A curves plotted in Figure 4.A

detailed discussion of these curves with the other results will be given in the last chapter.

C-1, f IDIO 2 2-
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IV.The Overlap Of The Localized Wave Functions With Bag Model Wave Functions

The form of the single nucleon wave functions in infinite matter was forced by the

technical constraint of the orthonormality of the basis of single particle wavefunctions.This

constraint is necessary for a feasible many body calculation.We now would like to see how

this wave function compares with the original bag model wave function (IIIa.11).To do this

we calculate the overlap of the function ui(r) given by (IIIa.48) with the lowest mode of

the bag model (a.11).We define,

A- I +: Lb( u6 (ib (V.1)

The overlap of the N particle wave functions constructed with the two different sets is then

AN.Using (IIIa.11) and (IIIa.48) for the two wave functions we obtain

-4

Ale Hr 34R3sZ?(2 34 a '

0- IL (2~~~~~~~~ (I..2)

by changing variables to u=xr/R in the r integral,we get

=4l~At jxxe3 e Q; k l,

aI"V.l~- .- ,.p _LI

(IV.3)
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The last term vanishes because of the integration over e-'i.The term with the cos0k

is an odd integrand with respect to the k integration and it drops out leaving

A- (V)"?
4(01/3 -]OM

iir, o '-S Lk- 1 a ) -1.(ut IA)l

_, (LIF t (2 --t.5 --

(.1.Z XL3 L -S W
lI

;i C- ,)

(4)- e)I X~~r

i5;n (-k+ ke/)
(4 + ) 

24.

( ?/<
2k.12L -k
r LI r 5

t+ tz ) _. I.

putting kFR=y we have,

A=r -'.TR-4 N-
7u t)

evaluated numerically.Inserting

'KX . 2$ Z9

the numerical values of the constants appearing and with,

I-a .4

we obtain

s;n vb-S)

A - !ft- '...
2..54

Z; n (2. 4+t)

7.0 I(t+S3) (IV.7)

(IV.4)

with

I= K d =9.t-I-1 V

(Vr.5)

(IV.6)

= Tr

t"I I C -K j"- 1) A.#

(A'C 1) 1
1�4

01Kt - an -K-1

A" 0 " 

Ish CyY' [
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which has a maximum near y=kFR=2.62 with A;.37 .With the average nuclear density

of

(I S. uat.s/p (IV.8)

corresponding to

gF S t P u (IV.9)

the maximum overlap occurs at

We also calculate the same overlap with the chiral localized wave function

LF A
1 4-

_L~ k (2pF~

and obtain a maximum overlap of A,.3 .We thus observe that neither wave function has

a large overlap with the exact bag model wave function. They are trial wave functions

exhibiting the general features of the bag model wave functions as much as is allowed by

calculational difficulties. We hope that more progress can be done in this respect in future

calculations.
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V.Incorporation Of Strange Quarks

The speculation that long lived states of quark matter having a number of strange

quarks comparable to that of the light u and d quarks has led to many investigations on the

properties of such systems with macroscopic strangeness.The expectation of a low energy

system with a large number of strange quarks stems from the simple observation of the

one gluon exchange energy of a fermi gas of quarks of mass m,

___ 4 t3 32 z |t (+< ^ e-(t(Ctl)t ·1· (V.1)

with x=kF/m plotted in Figure .We see that the gluon exchange provides a repulsive

interaction for light quarks and an attractive interaction for heavy quarks in a fermi gas.It

is concievable then that a favorable gluon exchange interaction could produce a long lived

hyperstrange quark matter system which could decay to normal nuclear matter only by

weak interactions. At high densities, with large fermi momenta(compared to the strange

quark mass)for the light quarks,this strange matter could even turn out to be the true

ground state.This is contrary to our intuition regarding strange systems with few strange

quarks.The lowest observed strange baryon is the A particle with mass mA=111 6 Mev.We

do not have any real information regarding a system of many A particles but we would

expect this system to have a higher energy compared to a system of u and d quarks or

nucleons having the same total baryon number.In this chapter we perform a calculation

to check these intuitive forecasts regarding quark systems with a macroscopic number of

strange quarks.

To do this we first contruct our localized wave functions with massive quarks.The four
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linearly independent solutions of the free dirac equation for a particle of mass m,

can he written as.

uL)

and
" -A

&L) ~ r~ (rA kE)TIv (0~~ I (1
M Ia rv,

with

These solutions have the orthogonality relations,

- 6L () U(?)U~~s ()= , () V(C() S

-(a) (s~~Lo" o )t)" it)= CUte W) t) 
L lo (yV)=- "L (f ) k4

We construct our localized wave functions in the same manner,

(aL)Lk . =
L

Ak V w-\-V-r) Cidt0~S s~ e LA ()

). nfl; ( tefz (5
't

(V.2)

(V.3)

(V.4)

(V.5)

(V.6)

(V.7)

i-(J. (4) E
v . \ fall



and verify the orthogonality relation,

Using these wave functions we calculate the T(ij) that are needed for calculating the
exchange energy by using (IIlb.20).For the case of two strange quarks occupying the orbits

i and j we have
LA_ __ __ ___ __ __ r r A LAE YZ- dJB ((- tl ' ( 4 (V.9)T T ' L F -~ d" '

by substituting =k in th e integwo stralnge quarks occupying the obtain

- r; ((r- l6Fl/~ ;4M) (4 (V.10)



at this point we also substitute A=m/k=l/x.We then have

L- . v 4 !"L l.i

(V.11)

and

-- + 1) i.
-4 6-l L

( (V.12)

which altogether result in

'. .5
.(ITno, Jo. elmP * -A-e. Cr~A-ILlsI I

(V.13)

with
(a)

(V.14)

Along with this,the correlated wave function becomes

C +
i.

I

~~cZ r ~t . IZ A-A,'S .M.

c d.rr
E~ 6 (I14 -6 (IL)((

k" .
V 4 

I_
I

,r.i'%

Lkr, I X- )-L-VI
I~sI
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with the creation operator Stnow given by,

trr ~ * ) [r -c; ct ct L -J 1 4ct f .+ o

ti c atb Ct + &4t s+l I' 06dl44 urddCLas trrs L CLT6c-Cf Ca L-5C103 -1 r C r ctlQ 46-
L." At6 s, -L.5CVA ± L.8.,1 4. .,.

c . -c cC. cC C 
+ di4r siC t ' t C+ IuW I s+ SC-u s'Crr C6- .-r, C-2 4 C03 b?6 L5 r war L3 "6 4 rrra6 tn j5 dL jr this AC ST6

(V.15)

derived from the spin isopin color wavefunction of the A particle.

It is now straightforward to calculate the exchange energy in the same manner as was

done in section IIb and IIMc.The result has the form

(2£ (;,; | 9A

pe stA

Z~ ~ d- ciL- 3Art ____________ 2

> (V.16)

P(;j~d

Here,the sum in mn goes over the 18 terms in (V.15) and the sum over the cross terms

goes over the pairs of determinants that differ by two orbits as described in IIIb.We note

that T(ij) vanishes unless i and j are of the same favor.The end result is again obtained

through a numerical evaluation of (V.16).The result for the gluon exchange contribution



-12.-

for the energy per particle of A matter is calculated numerically for four different values

of the parameter A.The result has the form,

(2)

= 2~t ~s: T~~c~~~~kF~ ((V.17)

the calculated values of y(A) are given in Table 3 .Putting this together with the kinetic

energy contribution for strange quarks,

. - d| ;t3 l?*M; = - l^ ) ---- 3 (V.18)
V -k n), o21y 4K

which yields an average kinetic energy,with I(A) defined in (V.18) ,and the bag energy

contribution yields the energy per particle in correlated strange quark matter,

//

{i = N 1 (V.20)

The kinetic energy contribution in the fermi gas is

,E _, =- 
NK 6< Inc 5,. 4-p (.f 3Kt(V.21)

which combined with (V.1) and the bag contribution gives the energy per particle of the

uncorrelated strange quark fermi gas consisting of equal numbers of u,d and s quarks.

2

N 2k' 4 3 [L114 t5' Z It6\6 zL (V.22)

InJ dr;e h(A)= :b at 1(iq~ b7'-~t ` #(lt ~ ~\17 6 a



We again put these equations into dimensionless form by using the scale parameter

A.By using the same parametrization of the running coupling constant as in the nuclear

matter case,and substituting kFr=" 1/ 3 PF obtained by equating the denskiies,e find

Ntrrca = (.It 3[ ( + / ( (a 3 ( .23)

+L hKKA /67\)Qc (1.24)

with b,3 and nc given by (IIIc.22-24).By using the values of the bag model parameters given

in section IIIc we obtain the curves shown in Figure 5.

One aspect of the problem we have left out is the self energy of strange quarks in

infinite matter which unlike the case of massless quarks need not be zero.We plan to

include this effect in a future work.Here we only note that.the self energy enters to both

systems in the same way and ih would not alter the relative positions of the E/N curses

which is the main variable of interest in this work.

A discussion of the main features of Figure 5 will be presented in the next section

along with the discussion of the other results.
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VI.Discussion Of The Results And Conclusion:

Our goal in this work has been singling out the important features of the quark

wavefunctions in nuclear matter.To accomplish this goal we have modified uncorrelated

fermi gas wave functions by building local and spin,isopin,color dependent correlations

among the quarks.The fact that these correlated wave functions give a lower energy than

a fermi gas does,indicates that these modifications are in the correct direction towards the

true wave functions of the systems considered,at low densities.

Our initial relativistic treatment of nuclear matter as a correlated quark matter as

presented in section III has many weaknesses which can hopefully be remedied in future

calculations. The energy per particle curve given in figure 4a. lies well above a realistic

nuclear matter equation of state.Although it has moved away from the fermi gas curve in

the right direction the average.energy near the minimum is still too high to claim that

this wave function accurately describes nuclear matter.The main reason behind this is the

kinetic energy of the quarks in the correlated wavefunction.To maintain the othogonality

properties of our basis of single particle wavefunctions,we were forced to a form of the

wave function that yields a higher average kinetic energy,by a factor of 1.64 than a fermi

gas does. This considerably offsets the gain in interaction energy obtained by coupling the

particles locally.This gain in interaction energy is quite insensitive to the detailed spatial

behaviour of the single particle orbitals,e.g.whether they are build out of plane waves in

a fermi cube or fermi sphere.We could ideally maintain the same gain in the interaction

energy without giving up in kinetic energy,if we were able to make orhogonal orbits out of

the plane waves in a sphere.If one could find the special lattice,satisfying



the condition that all distances between any of its two points is a root of the first order

spherical Bessel function,as mentioned in section IIIa.,we could accomplish this goal.The

energy per particle given by such a hypothetical wave function is plotted in figure 4b.with

the same curves in 4a.Figure 4b.indicates that such a goal would be too ambitious because

the energy per particle at the minimum is less than 300 Mev.We should,then, pay in

kinetic energy for building local correlations but not as much as one does with the simplest

technically motivated form of the single particle wave functions.We hope to improve our

initial calculation in this respect in future calculations,and expect the resulting energy per

particle curve to lie between the curves 2 and 3 in Figure 4b.

One remarkable feature of the energy per particle of the correlated system is that

its minimum occurs at almost exactly the nuclear matter density.We have not adjusted

any parameters to produce this result.In fact all the parameters are fitted to hadron spec-

tra.This result plausibly is more than just a scaling effect , reflecting the fact that the

valence quark densities in hadrons and nuclear matter are not very different,because the

minimum of the uncorrelated system occurs at a different density.

The results of our calculation with strange quarks also indicate a similar transition

from a correlated state at low density to a fermi gas at high density.We are in a much weaker

position to make a comparison of these results with the real systems than in the nuclear

matter case because there is no information available on the real systems except in the

case of very low density where the ground state is a collection of separated A particles. We

would like to obtain a better fit to the nuclear matter properties with our model before

drawing quantitatively predictive conclusions regarding the behavior of correlated strange

-a5-
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quark matter systems.

In conclusion,we have succeded to isolate an important property of quark wave func-

tions in low energy nuclear matter.This property is spin-color-isospin dependent,strong,local

and short range correlations among quarks. We are optimistic that the technical difficulties

encountered can be overcome in the future to obtain a more accurate description of nuclear

matter with quark degrees of freedom.
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These two determinants are equal.This can be seen directly by evaluating the determinants

or by realizing that either one can be obtained from the other by adding rows in the

following way.
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Table Captions:

Table 1.1.The behavior of the magnitude of the exchange interaction vij,ji between

quarks in different orbits as a function of the separation between the orbits denoted by the

integer vector f=(nY, ny, n,).The actual distance scales with kF as ri-rj=j7r/kF.

Table 1.2.The relative magnitudes of the interaction energy vij,i between different

orbits that have three quarks coupled to the designated spin and isospin states.

Table 2.The dimensionless eigenvalues of the massles quark and gluon modes in the

bag model obtained through the boundary conditions (Ia.9), (IIIa.15) and (IIIa.19)

Table 3.Behavior of the coefficient of the interaction term in the energy per particle

curve for the coupled strange matter system representing the system of A particles, as

defined in (V.17), as a function of A = m/pF.



Table 1.1

n. =1 n=l

v 1 2 3

1 .24 .16 .03

ny 2 .16 .03 .007

3 .03 .007 .002

n =2

n,
v 1 2 3

1 .16 .03 .007

n, 2 .03 .007 .0015

3 .007 .0015 .0005
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Table 1.2

pa pc

p nt

pt n

Zv>

-1 .44

-1.97

-1.53

-1. 21

-



Table 2.

XKV 1 2 3 LJ 1 2 3

-1 2.04 5.40 8.58 1 0. 4.49 7.72

1 3.81 7.30 10.16 : 2 2.08 5.94 9.21
-2 3.20 6.76 10.00 3 3.34 7.29 10.61

2 5.12 8.40 11.61

WN 1 2 3 1 2 3

1 2.74 6.12 9.32 1 4.49 7.72 10.90

U 2 3.87 7.44 10.71 ' 2 5.76 9.09 12.32

3 4.97 8.72 12.06 3 6.99 10.42 13.70
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Table 5.

.25 -. 115

.5 -. 49

1 -. 51

2 -. 67

I



Figure Captions:

Figure 1.The second order quark gluon diagrams.The solid lines denote the quark

propogators and the dashed lines are for the gluon propogators both calculated with the

appropriate quark and gluon modes used in expanding the many body wavefunctions. The

diagram at the very top stands for the exchange term, the second for the direct term, and

the last one denotes the quark self energy.

Figure 2a.)The energy per particle (IIa.54) for the Fermi cube gas without color. The

values of the dimensionless parameters b and c are bxc;l with b=3r2 B/m 4 and c=.67a

Figure 2b.)The energy per particle (IIa.54) for the Fermi cube gas without color. The

values of the dimensionless parameters b and c are such that b N c with b=3r 2B/m 4 and

c=.67o

Figure 2c.)The energy per particle (IIa.54) for the Fermi cube gas without color. The

values of the dimensionless parameters b and c are such that b c with b=32r2B/m 4 and

c=.67a

Figure 3a.)The energy per particle of the correlated quark matter with three quarks

coupled to a color singlet at each orbit (curve 1) and the uncorrelated quark fermi gas

(curve 2)ith b ,> c, b=3r 2 B /m 4 and c=.67a

Figure 3b.)The energy per particle of the correlated quark matter with three quarks

coupled to a color singlet at each orbit (curve 1) and the uncorrelated quark fermi gas

(curve 2),with b c, b=3r 2 B/m 4 and c=.67a

Figure 4a.)The energy per particle of a relativistic fermi gas of masless u and d

quarks (curve 1) and the correlated system with coupled quarks occupying the localized

I



orbitals obtained by superposing chirally symmetric states 1l and P4 given by (IIIa.37)

and (IIIa.40)(curve 2).

Figure 4b.)The energy per particle of a relativistic fermi gas of masless u and d quarks

(curve I) and the correlated system with coupled quarks occupying the localized orbitals

obtained by superposing chirally symmettric states (curve 2) with the additional curve

3 providing a lower bound as the energy of a hypothetical system possesing the average

kinetic energy of a fermi gas and the average interaction energy of the correlated system.

Figure 5.)The energy per particle of a fermi gas of u,d and s quarks (curve 1) and a

correlated system representing a collection of A (1116) particles. The strange quark mass

is taken to be m300 Mev with the same bag model parameters Bl4=145 Mev and a 8

= 2.2.AQcD is taken to be 100 Mev.

Figure 6.)The one gluon exchange energy of a quark fermi gas of mass m given by

(V.1),as a function of the density,p. This interaction is attractive for large quark masses,

compared to p' 1, and repulsive for light quarks.
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