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Abstract

This thesis examines how to estimate the parameters of a chaotic system given
observations of the state behavior of the system. We discover two. properties that
are very helpful in performing parameter estimation on chaotic systems that are not
structurally stable. First. it turns out that most data in a time series of state observa-
tions contribute very little information about the underlying parameters of a system,
while a few pieces of data may be extraordinarily sensitive to parameter changes.
Second, for one-parameter families of systems, we discover that there is often a pre-
ferred ordering of systems in parameter space governing how easily trajectories of one
system can “shadow” trajectories of nearby systems. This asymmetry of shadowing
behavior in parameter space is proved for certain families of maps of the interval.
Numerical evidence indicates that similar results may be true for a wide variety of
other systems. Using the two properties cited above, we devise an algorithm for doing
the parameter estimation. Unlike standard parameter estimation techniques like the
extended Kalman filter, the proposed algorithm has good convergence properties for
large data sets. In at least one case, the algorithm appears to converge at a rate

proportional to n% where n is the number of state samples processed.
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Chapter 1

Introduction

The development of high-performance computers has made it possible to in-
vestigate many interesting new applications in nonlinear dynamics. One such
application is the analysis of chaotic time series. Over the past several years
there has been considerable interest in studying chaotic time series for pur-
poses of prediction, estimation, and smoothing. There have been a number
of papers published ! reporting on various methods that :ave been used to
analyze all sorts of systems, including everything from simple ODE’s to sun
spots and the stock market. Unfortunately, the complexity and generality
of the problems involved can often make it difficult to understand important
issues and can inhibit a systematic analysis of the possible constraints in a
particular problem.

However, one particularly simple problem also has the possibility of some
especially innovative applications. That is the problem of how to estimate
the parameters of a system using a stream of noisy state data. This problem
has interesting implications, for example, for high precision measurement.
The idea is that if a system is “chaotic” and displays a sensitive dependence
on initial conditions, then it may also be sensitive to changes in parameter
values. Thus, development of successful parameter estimation techniques

!See for example Casdagli, et. al., [8] for an overview of some of this work and associated
references.
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might make it possible to estimate the parameters of such systems extremely
accurately given data about the state history of the system.

Also, in the process of analyzing this problem we hope to develop a better
real understanding of how dynamics affects estimation in general. One goal of
the project is to develop a numerical algorithm for estimating the parameters
of a chaotic system. However, another objective is to really attempt to
analyze what is going on. Since parameter estimation is a comparatively
simple sort of chaotic time series project, we hoped this to be possible. We
would like to know, for example, how much information about the parameters
of a system is really contained in state data and how much of that information
can be reasonably extract. We thus attempt to establish theoretical bounds
on the accuracy of a parameter estimator based on state data.

The problem

Before proceeding further, however, we should be more explicit in what
we mean by “parameter estimation.” Basically, the idea is the following:
Suppose that we are given a parameterized family of mappings f,(z), where
z is the "state” of system and p are some invariant parameters of the system.
Further, suppose that we are given a series of observations {y,} of a certain
state orbit {z,} where:

Tot1 = fp(zn)
and Yn = Tnp+v, Wwhere|v,|<e

for all n and some ¢ > 0 where v, represents measurement errors in the data
stream, {y,}. We are interested in how to estimate the value of p given a
stream of data, {y,}.

Preview of important issues

Let us now try to get a flavor for some of the important issues that govern
the performance of parameter estimation techniques. First of all, given a
family of mappings of the form, f,, and a noisy stream of state data, {y,},
we would like to know which f,’s have orbits that closely follow or “shadow”
{yn}. We know that {y,} represents an actual orbit of f, for some value of
p, with € magnitude measurement errors added in. Thus, if no orbit of f,
shadows {y,} within € error for a particular p = po, then pp cannot be the
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parameter value of the system that is being observed. On the other hand,
if many systems of the form, f,, have orbits that closely shadow {y,}, then
it would be difficult to tell from the data which of these systems is actually
being observed.

It turns out that a large body of work has already been developed that
answers questions like, “what types of systems are insensitive to small per-
turbations so that orbits of perturbed systems shadow orbits of the original
system and vice versa?” However, many of the results in this direction are
topological in nature, meaning that they mostly answer whether such shad-
owing orbits must exist or not. On the other hand, in order to evaluate the
possibilities for parameter estimation, we need to know more geometrically-
oriented results like, “how closely do shadowing orbits follow each other for
nearby systems in parameter space” and “how long do orbits of nearby sys-
tems follow each other if the orbits do not shadow each other forever.” Such
results, of course, tend to be more difficult to establish and can also depend
more specifically on the exact geometry of the systems involved.

However, fully utilizing the geometry of a system can apparently yield
some interesting results. For example, consider the family of maps:

fp(z) = pz(1 - 2)

for z € [0,1] and p € [0,4]. It is known (see Benedicks and Carlesson [4]) that
for a nonnegligible set of parameter values, this mapping produces “chaotic”
behavior for almost all initial conditions, meaning that orbits tend to explore
intervals in state space, and nearby orbits experience exponential local ex-
pansion (ie, positive Lyapunov exponents). Suppose that we pick py = 3.9
and iterate an orbit, {z,}, of f,, starting with the initial condition zo = 0.3.
Numerically, the resulting orbit appears to be chaotic and exhibits the prop-
erties cited above, at least for finite numbers of iterates. Now consider the
question: “What parameter values, p, produce orbits that shadow {z,} for
many iterations of f,7” We can get some idea of the answer to this question
by simply picking various values for p near 3.9 and attempting to numerically
find orbits that “shadow” {z,}. There are a number of issues (see Chapter 5
for more details) about to do this. > The computation is not quite as easy as

2Note that because we cannot iterate the orbit {z,} accurately for many iterations, one
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one might expect. However, let us for the moment simply assume that the
results we get are at least qualitatively correct.

In figures 1.1 and 1.2 we show results for carrying out the described
experiment with po = 3.9 and zo = 0.3. For values of p close to py, we
attempt to find finite orbits of f, that closely follow the f,, orbit, {z,}_,
for integers N > 0. More precisely, for any p, let Z(p) be the set of all possible
orbits of f, (ie., {z,} € Z(p) if and only if z,41 = fo(2,) for all integer n).
Then define:

N el B

In other words, for each p and integer N > 0, en(p) measures how closely
the best possible shadowing orbit of f, follows the orbit, {z, })_,. Figure 1.1
shows the result of numerically computing ey (p) with respect to p for three
values of N, N = 61, N = 250, and N = 1000 * (where the z—axis is labeled
using p — po). Note the distinct asymmetry of the graph between values of
p greater than and less than py = 3.9. In fact for N = 250 and N = 1000
the graph is so steep for p < po that it looks coincident with the vertical line
demarking p — po = 0. It seems that at least for the parameter values shown,
parameter values of p less than py do not seem to shadow the orbit, {z,},

nearly as “easily” as those systems with parameter values greater than po.

We make this distinction clearer in figure 1.2. Choose ¢, = 0.01. Let
Iy = [p-(N), po], be the largest interval in parameter space bounded above
by po such that ex(p) < € for every p € Iy. Similarly, let I = [po, p+(N)]
be the largest interval bounded below by po such that ex(p) < € for p € I}
Finally set a(N) to be the length of Iy and let b(N) be the length of I
Figure 1.2, shows graphs of a(N) and b(N) with respect to N as computed

might even argue that the entire experiment is dominated by roundoff errors. However,
while our particular numerically-generated starting orbit may not look like the actual orbit,
{zn}, with initial condition z¢ = 0.3 for large values n, we will later see that qualitatively
the pictures are similar.

3There is nothing special about our choice for which values N to graph in figure 1.1.
The algorithm which generated the data in the graph computes orbits in groups of iterates
and the data for N = 61 just happened to readily available (see Chapter 5 for more details).
As seen in figure 1.2, the graph of en(p) looks the same for many values of N, so the data
in figure 1.1 actually gives a meaningful idea for what is happening over many iterates.
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numerically. We see that a(/V) is smaller than b( V), reflecting the asymmetry
in figure 1.1. Also, we see that a(N) and b(N) both appear constant for large
stretches of N, and decrease only rarely. When the decreases do occur, they
occur in short bursts. We will argue later that these decreases in a(/N) and
b(N) occur along stretches of the orbit, {z,}, which pass close to 1 and are
somehow especially sensitive to parameter changes.

The two graphs are especially interesting in terms of parameter estimation
potential. First of all, the asymmetry illustrated in figure 1.1 can be quite
helpful. For instance, in the example we just considered, few maps, f,, with
parameter values lower than the py have orbits that can shadow the given
orbit of f,,. Suppose that we are given noisy measurements of the the state
orbit, {z,}. If we find that only maps from a certain interval in parameter
space can shadow the observed data, then we know that the real parameter
value must be close to the lower endpoint of this parameter range. Thus, the
accuracy of the parameter estimate is approximately governed by the smaller

of a(N) and b(N).

In addition, we will see later that figure 1.2 reflects the fact that a few
sections of the observed state data contribute greatly to our knowledge of
the parameters of the system, while much of the rest of the data contributes
almost no new information. If we can quickly sift through all the “useless”
data and examine the critical data very carefully, we may be able to vastly
improve a parameter estimation technique.

The key to all this is whether or not physically “interesting” systems have
the properties illustrated above. Numerical results hint that surprisingly
many systems may have these properties. We will attempt to investigate the
relevant mechanisms behind these properties and examine ways to utilize
this knowledge to develop an accurate numerical method to estimate the
parameters of a system.

What’s New

A number of new results and concepts are discussed in this thesis. Per-
haps the most interesting is the apparent prevalence of highly asymmetric
shadowing behavior in the parameter space of many chaotic systems. This
shadowing behavior seems to be the result of a mechanism which I shall re-
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ex(p)

Figure 1.1: Graph of best shadowing distance, ey(p), with respect to p for N = 61,
N = 250, and N = 1000. On the z—axis, p is labeled as p — p, where py = 3.9.
en(p) measures how closely an orbit of f, can “shadow” the orbit, {z,}\_,, of f,,
where f, = pz(1 —z), po = 3.9 and z, = 0.3. In particular, ey(p) is the maximum
distance between and the best shadowing orbit of f,. Note the distinct asymmetry
in how well orbits of f, track {z,}]-, for p > py and p < po.
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Figure 1.2: Graph of a(N) and b(N) with respect to N for ¢, = 0.01. a(N) is a
measure of the number of parameter values, p < po, such that there exists an orbit
of f, that can shadow the orbit, {z,}}_,, of f,, with less than ¢, error. Similarly
b(N) measures the number of parameter values, p > po, such that f, that can
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fer to as “folding.” Folding is inherently a “degenerate” phenomenon in the
sense that it disrupts the normal hyperbolic behavior of a chaotic system.

Understanding folding, however, seems to be particularily important for
parameter estimation. Most of the time an orbit of a system is in fact not
very sensitive to parameters in the sense that the orbit can by shadowed by
systems with nearby parameter values. In order to do accurate parameter
estimation, we want to be able to look for and analyze those “degenerate”
stretches of data that are in fact not shadowed by nearby parameter values.
This is where folding comes in. Because folding distinguishes one-sided be-
havior in parameter space, it can effectively distinguish parameter values.
The only problem is waiting for the trajectory to come close enough to re-
gions where folding occurs, or alternatively to choose a system where such
folding occurs more often.

Previous work has mostly concentrated on what happens outside areas of
folding in regions that are hyperbolic in character. The degenerate stretches
of orbits have often been treated as the product of problematic blemishes
in the hyperbolic model. This is understandable since shadowing has often
been thought of as a “helpful” property that lends credence to computer-
generated orbits with roundoff error. Parameter estimation, however, is an
example where the degenerate nonhyperbolic behavior helps and is in fact
extremely important. This thesis describes some the first efforts that I know
of to understand the effects nonhyperbolic behavior, analyze it numerically,
and utilize it to accomplish a specific goal.

Overview

This thesis may be divided into two major parts. The first part, which
includes Chapters 2-4, discusses theoretical results concerning parameter es-
timation in chaotic systems. In particular, we are interested in questions
like: (1) What possible constraints are there to the accuracy of parameter
estimates? (2) How is the accuracy of a parameter estimate likely to depend
on the magnitude of measurement error and the number of state samples
available? (3) What types of systems exhibit the most “sensitivity” to small
parameter changes, and what types of systems are likely to produce the most
(and least) accurate parameter estimates. Basically we want to understand
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exactly how much information state samples actually contain about the pa-
rameters of various types of systems.

In order to answer to these questions, we first examine how parameter
estimation relates to well-known concepts like shadowing, hyperbolicity, and
structural stability. Chapter 2 discusses how the established theory concern-
ing these concepts relates to the problem of parameter estimation. We also
examine what types of systems are guaranteed to have topologically “sta-
ble” sorts of behavior and how this constrains our ability to do parameter
estimation.

In Chapter 3, we examine one-dimensional maps. Because of the relative
simplicity of these systems, they are ideal for investigating how the specific
geometry of a system relates to parameter estimation, especially when one
is dealing with systems that are are not topologically or structurally “sta-
ble.” New quantitative results are obtained concerning how orbits for nearby
parameter values shadow each other in certain one-dimensional families of
maps. For example we prove some specific results on how fast ex(p) rises for
asymptotically large N in the graph of figure 1.2.

In Chapter 4 we examine non-uniformly hyperbolic systems of dimension
greater than one. In such general settings it is difficult to make quantita-
tive statements concerning limits to parameter estimation. However, we use
ideas from the analysis of one-dimensional systems to predict the existence
of mechanisms that are likely to be present. Although the conjectures we
make are not rigorously proved, they are supported by numerical evidence.

The second major part of the thesis (comprising Chapter 5) describes an
effort to utilize the theory to develop a reasonable algorithm to numerically
estimate the parameters of a system given noisy state samples. We discuss
why-traditional methods of parameter estimation have problems, and some
ways to fix these problems. In particular, we use two basic observations to
improve our algorithm: (1) most data in a time series of state observations
contribute very little information about the underlying parameters of a sys-
tem, while a few pieces of data may be extraordinarily sensitive to parameter
changes, and (2) the asymmetry of shadowing behavior in parameter space.

In Chapter 6 we present numerical results demonstrating the effectiveness
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the new estimation techniques proposed.

Chapter 7 summarizes the main conclusions of this thesis, and suggests
possible future work.

How this thesis is arranged

In order to make the thesis more readable, mathematical results are gen-
erally only stated in the text, and proofs are either referenced or placed in
the appendix. [ generally try to make arguments to explain the primary
reasoning behind a result and to argue that the result is at least “plausible.”
However, the reader will probably want to look at the appendices or the
literature to get the full picture.

On the other hand, I also make an attempt to state results precisely, even
if the proofs are omitted or relegated to the appendices. This unfortunately
requires the use of a certain amount of “jargon” which may be unfamiliar
to some readers. | make an attempt to define terms likely to cause trou-
ble, although this is only possible to some extent. Readers not familiar
with dynamical systems, may want to consult texts like Gukkenheimer and
Holmes [22] or Devaney [16].

Those readers interested primarily in algorithms for filtering chaotic times
series may also want to initially skim the first four chapters and look at
Chapter 5 more closely, referring to previous chapters as needed.
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Chapter 2

Parameter estimation,
shadowing, and structural
stability

In this chapter we pool together a variety of established mathematical results
and examine how these results apply to parameter estimation. We introduce
the basic language and concepts that are needed to analyze the feasibility
of accurate parameter estimation. We also examine some topological results
constraining how the dynamics of certain types of systems can change in
parameter space.

2.1 Preliminaries and definitions

In this section, we introduce some of the basic definitions and tools needed to
analyze problems related to parameter estimation. We begin by restating a
mathematical description of the problem. We are given the family of discrete
mappings, f, : M — M where M is a compact manifold ' and p represents

!The reader not familiar with the term “compact manifold” can think of M for now as
simply a closed region of R™.
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the invariant parameters of the system. For the purposes of this thesis, we
will also assume that p is a scalar so that f, represents a one-parameter
family of maps for p € I,, where I, C R is a closed interval of the real line.
Note that it will often be convenient to write f(z,p) in place of fy(z) to
denote functional dependence on both z and p. We will assume that this
joint function of state and parameters, f : M x I, — M, is continuous over
its domain.

The data we are given consists of a sequence, {y»}, of noisy observations
of the state vectors, {z,}, where y, € M, z, € M, and:

Tn4lr = fp(;l:n)
Yyn € B(zn,e€)

for all n € Z where € > 0 and B(z,,€) represents an e—neighborhood of z,
(ie., yn € B(xn,€) if and only if d(yn,z,) < € for some distance metric d).
In other words, the measured data, y,, consists of the actual state of the
system, z,, plus some noise of magnitude € or less.

Note that if we fix pg € I,, we can generate an orbit, {z,}, given an
initial condition, z¢. Basically, we would like to know how much information
this state orbit contains about the parameters of the system. In other words,
within possible measurement error, can we resolve {z,} from orbits of nearby
systems in parameter space? In particular, are there parameters near po
which have no orbits that closely follow {z,}? If so, then we know that
such parameters could not possibly produce the state data represented by
{y.}, and we can thus eliminate these parameters as possible choices for the
parameter estimate. Thus, given py € I, and a state orbit, {z,}, of f,, one
important question to ask is for what values of p € I, does there exist an
orbit, {z,}, of f, such that d(z,,z,) < € for all n?

This relates parameter estimation to the concept of “shadowing.” Below
we describe some definitions for various types of shadowing that will be useful
later on:

Definitions: Let g : M — M be continuous. Suppose d(g(zy), znt+1) < 6 for
all n. Then {z,} is said to be a §-pseudo-orbit of g. We say that a sequence of
states, {z,}, e-shadows another sequence of states, {y,}, if d(z,,yn) < € for
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all n. The map g has the pseudo-orbit shadowing property if for any ¢ > 0,
thereis a 6 > 0 such that every é-pseudo-orbit is e-shadowed by a real orbit of
g- The family of maps, {f,|p € .}, is said to have the parameter shadowing
property at po € I, if for any € > 0, there exists a § > 0 such that every
orbit of f,, is e-shadowed by some orbit of f, for any p € B(po,§). Finally,
suppose that ¢ € X where X is some metric space. Suppose further that for
any € > 0, there is a neighborhood of g, U C X, such that if ¢’ € U then any
orbit of g is e—shadowed by an orbit of ¢’. Then g is said to have a function
shadowing property in X.

We can see that the various types of shadowing have natural connections
to parameter estimation. If two orbits e—shadow each other, then these two
orbits will (to first order) be indistinguishable from each other with mea-
surement noise of magnitude e. If f,, has the parameter shadowing property,
then all systems near p = po in parameter space have orbits that e-shadow
orbits of f,,. This implies inherent constraints on the attainable accuracy
of parameter estimation based on state data, since observable state differ-
ences for nearby systems in parameter space are lost in the noise caused by
measurement errors.

Thus parameter shadowing is really the property we are most interested
in because of its direct relationship with parameter estimation. The concept
of “function shadowing” is simply a generalization of parameter shadowing
so that given some function g, we can guarantee that any continuous pa-
rameterization of systems containing g must have the parameter shadowing
property at g. This situation implies that the state evolution of the system
is in some sense “stable” or insensitive to small perturbations in the sys-
tem. In the literature, the following language is used to describe this sort of
“stability:”

Definitions: Two continuous maps, f : M — M and g : M — M, are said
to be topologically conjugate if there exists a homeomorphism 2, h, such that
gh = hf. Let Dif f7(M) be the space of C" diffeomorphisms ® of M. Then

2A homeomorphism is a continuous function that is one-to-one, onto, and has a con-
tinuous inverse.

3A C" diffeomorphism is an r—times differentiable homeomorphism with an r—times
differentiable inverse.
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g € Dif fr(M) is said to be structurally stable if for every neighborhood, U €
Dif f°(M), of the identity function, there is a neighborhood, V C Dif f"(M),
of g such that for each f € V there exists a homeomorphism, &, € U, satisfy-
ing f = h;lghf. In addition, if there exists a constant K > 0 and neighbor-
hood V' C V of g such that sup, ¢y d(hs(z),z) < Ksup,epd(f(z),9(x)),
for any f € V', then g is said to be absolutely structurally stable.

Unfortunately, we have introduced a rather large number of definitions.
Some of the definitions apply directly to parameter estimation, and others
are introduced because they are historically important and are necessary in
order to apply results found in the literature. Before going further with using
these definitions, it is important to state clearly how the various properties
are related and exactly what they mean for parameter estimation.

2.2 Shadowing and structural stability

We now investigate the relationship between various shadowing properties
and structural stability. The goal here is to relate well-known concepts like
pseudo-orbit shadowing and structural stability to what we are interested in,
namely parameter and function shadowing, so that we can apply results from
the literature.

Let us begin with a brief discussion. First of all, given any po € I,,, note
that if p is near po, then orbits of f, are pseudo-orbits of f,,. The pseudo-
orbit shadowing property implies that a particular system can “shadow” all
trajectories of nearby systems. That is, any orbit of a nearby system can be
shadowed by an orbit of the given system. On the other hand, function shad-
owing is somewhat the opposite. A system exhibits the function shadowing
property if all nearby systems can shadow it. Meanwhile, structural stabil-
ity implies a one-to-one correspondence between orbits of all systems within
a given neighborhood in function space. Thus, if a system is structurally
stable, then all nearby systems can shadow each other.

While these three properties are not equivalent in general they are appar-
ently equivalent for certain types of “expansive” maps, where the definition
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of expansiveness is given below:

Definitions: A homeomorphism g : M — M is said to be erpansive if there
exists e(g) > 0 such that

d(g™(z),9"(y)) < e(g)

for n € Z if and only if z = y. * e(g) is called the ezpansive constant for
g. Also, suppose X is a metric space of homeomorphisms. Then a function
g € X 1s uniformly expansive in X if there exists a neighborhood V C X of
g such that infrev(e(f)) > 0.

We now state some properties relating pseudo-orbit shadowing, function
shadowing, and structural stability. Many of these results are addressed by
Walters in [57]. We refer the reader to [57] and fill in the gaps as necessary
in Appendix A.

Theorem 2.2.1 Let g : M — M be a structurally stable diffeomorphism.
Then g has the function shadowing property.

Proof: This follows directly from the definitions of structural stability and
function shadowing. The conjugating homeomorphism, &, from the definition
of structural stability provides a one-to-one connection between shadowing
orbits of nearby maps.

Theorem 2.2.2 (Walters) Let g : M — M be a structurally stable diffeo-
morphism of dimension > 2. Then g has the pseudo-orbit shadowing prop-
erty.

Proof: This follows directly from Theorem 11 of [57]. The proof is not as
simple as the previous theorem, since a pseudo-orbit of ¢ is not necessarily a
real orbit of a nearby map. However, Walters shows that given a pseudo-orbit

4Note that in general, if g is a function then we will write g" to mean the function g
composed with itself n times. For the case where n = 0, we will assume ¢° is the identity
function.
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of g, we can pick a (possibly) different pseudo-orbit of g that both shadows
the original pseudo-orbit and is in fact a true orbit of a nearby map. Then
structural stability can be invoked to to show that there must be a real orbit
of g that shadows the original pseudo-orbit.

Theorem 2.2.3 Let g : M — M be an expansive diffeomorphism with the
pseudo-orbit shadowing property. Suppose there exists a neighborhood, V C
Dif f{(M) of g that is uniformly expansive. Then g is structurally stable.

Proof: This follows from discussions in [57]. See Appendix A for notes on
how to prove this.

Theorem 2.2.4 : Let ¢ : M — M be an expansive diffeomorphism with
the function shadowing property. Suppose there exists a neighborhood, V C
Dif f{(M) of g such that V is uniformly expansive. Then g is structurally
stable.

Proof: See Appendix A.

Summarizing our results relating various forms of shadowing and struc-
tural stability, we find that structural stability is the strongest condition
considered. Structural stability of a diffeomorphism of greater than one di-
mension implies both the pseudo-orbit shadowing and parameter shadowing
properties for continuous families of mappings. Thus we can utilize the liter-
ature on structural stability to show that certain families of maps must have
parameter shadowing properties, making it difficult to accurately estimate
parameters given state data. As we shall see, however, most systems we
are likely to encounter in physical applications are actually not structurally
stable.

Also, the pseudo-orbit shadowing property, parameter shadowing prop-
erty, and structurally stability are equivalent for expansive diffeomorphisms
g: M — M of dimension greater than one if there exists a neighborhood of ¢
in Dif f1(M) that is uniformly expansive. However, again we shall see that
most physical systems do not have this expansiveness property. Note also

that these results do not apply to the maps of the interval which we consider
in the next chapter.
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2.3 Absolute structural stability and param-
eter estimation

There is one more useful property we have not yet addressed. That is the
concept of absolute structural stability.

Lemma 2.3.1 Suppose that f, € Dif fY(M) forp € I, C R, and let f(z,p) =
fo(z) for any x € M. Suppose that f : M x I, - M is C* and that f,, is
an absolutely structurally stable diffeomorphism for some po € I,. Then there
exists €g > 0 and K > 0 such that for every positive € < €, any orbit of f,,

can be e—shadowed by an orbit of f, if p € B(po, Ke¢).

Proof: This follows fairly directly from the definition of absolute structural
stability. The conjugating homeomorphism provides the connection between
shadowing orbits. See Appendix A for a complete explanation.

Thus if an absolutely structurally stable mapping, g, is a member of a
continuous parameterization of mappings, then nearby maps in parameter
space can e-shadow any orbit of g. Furthermore, from above we see that
the range of parameters that can shadow orbits of g varies at most linearly
with € for sufficiently small € so that decreasing the measurement error will
not result in any dramatic improvements in estimation accuracy. In these
systems, it is clear that dynamics does not contribute a great deal to our
ability to distinguish between the behavior of nearby systems. In the next
section, we shall see that so called uniformly hyperbolic systems can exhibit
this absolute structural stability property, making them poor systems for
accurate parameter estimation.

2.4 Uniformly hyperbolic systems

Let us now turn turn our attention to identifying what types of systems
exhibit the various shadowing and structural stability properties described
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in the previous section. Stability is intimately associated with hyperbolicity,
so we begin by examining uniformly hyperbolic systems.

Uniformly hyperbolic systems are interesting as the archetypes for com-
plex behavior in nonlinear systems. Because of the definite structure avail-
able in such systems, it is generally easier to prove results in this case than
for more general situations. Unfortunately, from a practical viewpoint, very
few physical systems actually exhibit the properties of uniform hyperbolic-
ity. Nevertheless, understanding hyperbolicity is important as a first step to
figuring out what is happening in more general situations.

Our goal in this section is to state some stability results for hyperbolic
systems, and to motivate the connections between hyperbolicity, stability,
and parameter estimation. Most of the results in this section are well-known
and have been written about in numerous sources. The material provided
here outlines some of the properties of hyperbolic systems that pertain to
our treatment of parameter estimation. The brief discussions use informal
arguments in an attempt to motivate ideas rather than provide proofs. Ref-
erences to more rigorous proofs are given. For an overview of some of the
material in this section, a few good sources include: Shub [50], Nitecki [40],
Palis and de Melo [45], or Newhouse [39].

We first need to know what it means to be hyperbolic:

Definitions:

(1) Given g: M — M, A is a (uniformly) hyperbolic set of g if there exists
a continuous invariant splitting of the tangent bundle, T,M = E; ® E
for all z € A and constants C > 0 and A > 1 such that:

(a)|Dg™v| < CA™™|v|ifve EEn>0
(b)|Dg~"v| < CA™"*|v|if v € E¥,n >0

(2) A diffeomorphism g : M — M is said to be Anosov if M is uniformly
hyperbolic.

One important property for understanding the behavior of hyperbolic
systems are the existence of smooth uniformly contracting and expanding
manifolds.
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Definition: We define the local stable, W?*(z,g), and unstable, W*(z,g),
setsof g: M — M as follows:

Wi(z,g) = {y€ M:d(¢"(z),9"(y)) <eforalln >0}
Wi(z,g) = {yeM:d(g"(z),g7"(y)) <eforalln>0}

We define the global stable, W*(z,g), and unstable, W*(z,g), sets of g :
M — M as follows:

W(z,9) = {yeM:d(g"(z),9"(y)) = 0asn— oo}
W(z,g) {yeM:d(g"(z),g7"(y)) = 0 as n — oo}.

i

The following result shows that these “sets” have definite structure. Based
on this result, we replace the word “set” with the word “manifold” in the
definitions above, so, for example, W*(z,g) and W*(z,g) are the stable and
unstable manifolds of g at x.

Theorem 2.4.1 (Stable/unstable manifold theorem for hyperbolic sets): Let
g: M — M be aCT diffeomorphism (r > 1), and let A C M be a compact in-
variant hyperbolic set under g. Then for sufficiently small € > 0 the following
properties hold for x € A:

(1) W (z,g) and W*(z,g) are local C™ disks for any z € A. Wi(z,g) is
tangent to E2 at z and W*(z,g) is tangent to E* at z.

€

(2) There exist constants C > 0 and A > 1 such that:

d(g"(z),g"(y)) < CX" foralln >0 ify € Wi(zx)
d(g7™(z),9 " (y)) < CA™™ foralln >0 if y € W¥(z).

(8) W*(z) and W*(z) vary continuously with .

(4) We can choose an adaptive metric such that C =1 in (2).

Proof: See Nitecki [40] or Shub [50].
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Note that from (2) above, we can see that our definitions for the global

stable and unstable manifolds are natural extensions of the local manifolds.
In particular, W(z,g) C W*(z,g), W¥(z,g9) C W¥(z), and:

Wi(z,g9) = g (W:(g"z))

n>0

W¥(z,9) = |Jg"(Wi(g™"x)).

n>0

Thus C7 stable and unstable manifolds vary continuously, and intersect
transversally on hyperbolic sets, meaning that the angle of intersection be-
tween the stable and unstable manifolds is bounded away from zero on A.
These manifolds create a foliation of uniformly contracting and expanding
sets that provides for a definite structure of the space. We will now argue that
uniformly hyperbolic systems obey shadowing properties and are structurally
stable.

Lemma 2.4.1 (Shadowing Lemma): Let g : M — M be a C” diffeomor-
phism (r > 1), and let A C M be a compact invariant hyperbolic set under g.
Then there exists a neighborhood, U C M, of A such that g has the pseudo-
orbit shadowing property on U. That is, given € > 0, there ezists 6 > 0 such
that iof {z.} is a b-pseudo-orbit of g, with z, € U for all n, then {z,} is
e—shadowed by a real orbit, {z,}, of g such that z, € A for all integer n.

Proof: Proofs for this result can be found in [6] and [50]. Here we sketch an
informal argument similar to the one given by Conley [13] and Ornstein and
Weiss [43] for the case where g is Anosov (ie, A = M is hyperbolic).

Let {z,} be a é-pseudo-orbit of g and let B, = B(z,,€). For the pseudo-
orbit shadowing property to be true, there must be a real orbit, {z,}, of ¢
such that z, € B, for all integer n. Thus it is sufficient to show that for any
€ > 0 there is a § > 0 such that given any §-pseudo-orbit of g, {z,}, there
exists xg € A satisfying:

Zo € ﬂ 97 (B(zn,€))- (2.1)

nez
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Since the stable and unstable manifolds intersect transverally (at angles
uniformly bounded away from zero), for any p € A, we can use the structure of
the manifolds around p to define a local coordinate system for uniformly large
neighborhoods, of p € A. ® We can think of this as locally mapping the stable
and unstable manifolds onto a patch of R"™ such that stable and unstable
manifolds lie parallel to the axes of a Cartesian grid (see figure 2.1). Also we
can choose an adapted metric on A (specified in part (4) of the stable manifold
theorem), for each p € A so that ¢ has uniform local contraction/expansion
rates. Using this metric on the transformed coordinates, we have a nice, neat
model of local dynamical behavior, as we shall see below. From now on we
deal exclusively with transformed local coordinates centered around z, and
the adapted metric. Note that the discussion below and the pictures reflect
the two-dimensional case (the idea is similar in higher dimensions).

Wep.e) /_\ Wep.e) Wipog)
Py q
Wepy.2)
p Px Wep.2)
Original System Adapted Metric

Figure 2.1: First we use the structure of the manifolds of the hyperbolic system to
define a local coordinate system with nice geometric properties, so that the mani-
folds-are orthogonal and and expand/contract uniformly under a single application
of g.

Now for all n pick squares, S(z,,€) = Sy, of uniformly bounded size
centered at z, with S(z,,€) C B(zy,¢€) such that the sides of S, are parallel
to the axes of the transformed coordinate system around z,. The sides of the

5The local coordinates we refer to here are known as canonical coordinates. For a more
rigorous explanation of these coordinates refer to Smale [54] or Nitecki [40].
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Figure 2.2: For any € > 0 we can choose § > 0 so that for any n € Z, (a) any
line segment, a¥, along the unstable direction in S, gets mapped by g so that it
intersects S,., and (b) any line segment, a?, along the stable direction in S, gets
mapped by ¢g~! so that it intersects S,_,.

S, squares are fibered by stable and unstable manifolds, so when we apply g
to S,, the square is stretched into a rectangle, expanding along the unstable
direction, contracting in the stable direction. Meanwhile, the opposite is true
for g~'. Note that if we can show that there exists some zo € A and € > 0
such that:

0 € ] 97"(5(2n,6))

nez

for any sequence, {z,}, that is §-pseudo-orbit of g, then the shadowing prop-
erty must be true. This is our goal.

Let n € Z and let a¥ be any line segment extending the length of a
side of S(z,,¢) parallel to the unstable direction inside S(zn,€). Set a%, ; =
9(a%)N S(zpt1, €). Then, for any € > 0, we can choose a suitably small §; > 0,
such that for any n, a%,, must be nonempty if {z,}, is a ;—pseudo orbit,
of g (see figure 2.2). In figure 2.2 we see that §; > 0 represents the possible
offset between the centers of the rectangle, ¢(.S,), and the square, S,41. As €
get smaller, the size of the rectangle and square gets smaller, but we can still
choose a suitably small 6; > 0 so that g(a¥) intersects S,4+1. Furthermore

n
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we can do exactly the same thing in the opposite direction. That is, let
aé be any line segment extending along the stable direction of S(z,,€), set
as_, = g7 Ha2) N S(zn_1,€), and choose §; > 0 suitably small so that a®_,
must be nonempty for any n if {z,}, is a §—pseudo orbit, of g.

Given any € > 0 set 6 = min{é,92}. Then, for any n > 0, let a3(n) be
a segment in S, = S(z,,¢€) parallel to the stable direction. Set aj_,(n) =
g~ ' (ai(n)) N Sk—y for any k < n. From our previous arguments we know that
as long as {z,} is a §—pseudo orbit of ¢, then aj_,(n) must be a (nonempty)
line in the stable direction within Sx_; if a}(n) is a line in the stable direc-
tion of Sy. Consequently, by induction, aj(n) must be a line in the stable
direction of Sy for any n > 0. Furthermore note that aj(n) C S for any
k € {0,1,...,n}. Doing a similar thing for n < 0, working with g instead of
g~', and starting with a segment a¥(n) parallel to the unstable direction of
S,, we see that for any n < 0 there exists a series of line segments, a(n) C Sk,
for each k € {n,n +1,...,—1,0} oriented in the unstable direction. Clearly
ai(—n) and af(n) must intersect for any n > 0. Now consider the limit of
this process as n — 00. It is easy to show that the intersection point

z0 = (Jim ag(w)) ()(_lim_a3(n))

must exist and must in fact be the zo we seek satisfying ( 2.1). This initial
condition can then be used to generate a suitable shadowing orbit, {z,}.

Theorem 2.4.2 Anosov diffeomorphisms are structurally stable.

Proof: Proofs for this result can be found in [3] and [34].

It is also possible to prove this result based on the shadowing lemma.
The-basic idea is to show that any Anosov diffeomorphism, g : M — M,
is uniformly expansive, and then to apply theorem 2.2.3 to get structural
stability. Walters does this in [57]. We outline the arguments.

The fact that g is expansive is not too difficult to show. If this were not
true, then there must exist z # y such that d(¢"(z),¢"(y)) < € all integer
n. But satisfying this condition for both n > 0 and n < 0 would imply that
y € W*(z,g) and y € W¥(z,g), respectively. This cannot happen unless
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xr = y. The contradiction shows that the Anosov diffeomorphism, g, must be
expansive with expansive constant, e(g) > €, where ¢ > 0 is as specified in
the stable manifold theorem.

The next step is to observe that there exists a neighborhood, U, of ¢
in Dif f1(M) such that any f € U is Anosov. Then since the stable and
unstable manifolds W?(z, f) and W*(z, f) vary continuously with respect
to f € U ([25]), ® we can show that there exists a neighborhood, U’ C U,
of g such that f € U’ is uniformly expansive. Since g has the pseudo-orbit
shadowing property, we can apply theorem 2.2.3 to conclude that Anosov
diffeomorphisms must be structurally stable. This completes our explanation
of theorem 2.4.2.

Theorem 2.4.2, however, is not the most general statement we can make.
We need a few more definitions, however, before we can proceed to final
result in theorem 2.4.3.

Definitions:

(1) A point z is nonwandering if for every neighborhood, U, of z, there
exists arbitrarily large n such that f*(U) N U is nonempty.

(2) A diffeomorphism f: M — M satisfies Aziom A if:
(a) the nonwandering set, Q(f) C M, is hyperbolic.
(b) the periodic points of f are dense in Q(f).

(3) We say that f satisfies the strong transversality property if for every
reEM, EEp E*=TM.

Theorem 2.4.3 (Franks) If f : M — M is C? then f is absolutely struc-
turally stable if and only if f satisfies Aziom A and the strong transversality

SInstead of hiding the details in this statement about stable and unstable manifolds,
[57] gives a more direct argument (but one that requires math background which I have
tried to avoid in the text). Let B(M, M) be the Banach manifold of all maps from M
to M and let &; : B(M, M) — B(M, M) so that ®;(h) = fhg='. If f = g, ®,(h) has a
hyperbolic fixed point near the identity function, id (where by hyperbolic we mean that
the spectrum of the tangent map, 75, ®, is disjoint from the unit circle). Thus for any
f € U, ®;(h) has a hyperbolic fixed point near, id, and, since g is expansive, this shows
uniform expansiveness for f € U.
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property.

Proof: See Franks [18].

Intuitively, this result seems to be similar to our discussion of Anosov
systems, except that hyperbolicity is not available everywhere. However,
there has been a great deal of research into questions concerning structural
stability, especially whether structurally stable f € Dif f'(M) implies that
f satisfies Axiom A and the strong transversality property. The reader may
refer to [50] for discussions and references to this work.

For our purposes, however, we now summarize the implications of theorem
2.4.3 to parameter estimation:

Corollary 2.4.1 Suppose that f, € Dif f{(M) for p € I, C R, and let
f(z,p) = fo(z) for any z € M. Suppose also that f : M x I, - M is C! and
that for some py € I, fp, ts a C* Aziom A diffeomorphism with the strong
transversality property. Then there exists ¢¢ > 0 and K > 0 such that for
every positive € < €, any orbit of f,, can be e—shadowed by an orbit of f, if

pE B(po,Ke).

In other words, C? Axiom A diffeomorphisms with the strong transver-
sality satisfy a function shadowing property. They are “stable” in such a
way that their dynamics does not magnify differences in parameter values.
Chaotic behavior clearly does not lead to improved parameter estimates in
this case. However, as noted earlier, most known physical systems do not
satisfy the rather stringent conditions of uniform hyperbolicity. In the next
two sections we will investigate results for some systems that are not uni-
formly hyperbolic, beginning with the simplest possible case: dynamics in
one-dimension.
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Chapter 3

Maps of the interval

In the last chapter we examined systems that are uniformly hyperbolic. In
this case, orbits of nearby systems have the same topological properties and
shadow each other for arbitrarily long periods of time. We would now like
to look at what happens for other types of systems. To start out with,
we will investigate one-dimensional maps, specifically, maps of the interval.
One-dimensional maps are useful because they are the simplest systems to
analyze; yet as we shall see, even in one-dimension there is a great variety
of possible behavior, especially if one is interested in geometric relationships
between the shadowing orbits of nearby systems. Such relationships are
important in assessing the feasibility of parameter estimation, since they
determine whether nearby systems can be distinguished from each other in
parameter space.

In section 3.1 we begin with a brief overview of what maps of the interval
are structurally stable, and in section 3.2 we look at function shadowing
properties of these maps. Our purpose here is not really to classify maps into
various properties. Although it is important to know what types of systems
exhibit various shadowing properties, the main goal is to distill out some
archetypal mechanisms that may be present in a number of “interesting”
nonlinear systems. Especially of interest are any mechanisms that may help
us understand what occurs in higher dimensional problems.
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In the process of investigating function shadowing, we will examine how
the “folding” behavior around turning points (ie, relative maxima or min-
ima) of one-dimensional maps governs how orbits shadow each other. This
investigation will be extended in section 3.3, where we consider how folding
behavior can often lead naturally to asymmetrical shadowing behavior in the
parameter space of maps. This, at least, gives us some hint for why we see
asymmetrical behavior in a wide variety of numerical experiments. As we
will see in Chapter 5, this asymmetrical shadowing behavior seems to be
crucial in developing methods for estimating parameters, so it is important
to try to understand where the behavior comes from.

In order to get definite results, we will restrict our claims to increasingly
narrow classes of mappings. In section 3.4 we will apply our results to a
specific example, namely the one-parameter family of maps we examined in
Chapter 1:

fo(z) = pz(1 — 2).

Finally, in section 3.5, we conclude with a number of conjectures and sug-
gestions for further research into parameter dependence in one-dimensional
maps.

3.1 Structural stability

We first want look at what types of maps of the interval are structurally
stable. These are not the types of maps we are particularly interested in for
purposes of parameter estimation, but it is good to identify which maps they
are. We briefly state some known results, most of which can be found in de
Mele and van Strien’s book, [30]. !

Note that since interesting behavior for maps of the interval occurs only
in non-invertible systems, we must slightly revise some of definitions of the
previous section in order to account for this. In particular, instead of bi-
infinite orbits, we now deal only with forward orbits. These revisions apply,

1 [30] is perhaps the best source of material I have seen for much of what is currently
known about one-dimensional dynamics.
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for example, in the definitions for various types of shadowing. Unless we
mention a new definition explicitly, the changes are as one would expect.

Let us, however, make the following new definitions, some of which may
be a bit different from the analogous terms from Chapter 2. In the definitions
that follow (and this chapter in general) assume that I C R is a compact
interval of the real line.

Definitions: Suppose that f : I — I is continuous. Then the turning points
of f are the local extrema of f in the interior /. C(f) is used to designate
the set of all turning points of f on I. Let C"(1,I) be the set of continuous
maps on [ such that f € C(1,]) if the following two conditions hold:

(a) fis C" (for r > 0)

(b) f(1) C 1.
If in addition, we have that

(c) f(Bd(I)) C Bd(I) (where Bd(I) denotes the boundary of I),
then we say that f € C"(I,1).

For either f,g € C'(I,I) or f,g € C"(1,1), then let d(f,g) = sup,¢;|f(z) —
g(z)l.

Definitions:

(1) feC"(I,1)is said to be C structurally stable if there exists a neigh-
borhood U of f in C7(I,I) such that for every g € U, there exists a
homeomorphism hy : I — [ such that ghy, = h,f.

(2) Let f: I — I. The w-limit set of a point, z € I, is:

w(z) = {y € I : there exists a subsequence {n;} such that f™(z) — y

for some z € [}

B is said to be the basin of a hyperbolic periodic attractorif B = {z €
I : p € w(z)} where p is a periodic point of f with period n and
|IDf"(p) < 1.

3) feC™(I,I) is said to satisfy Aziom A if
(
(a) f has a finite number of hyperbolic periodic attractors
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(b) Every z € I is either a member of a (uniformly) hyperbolic set
or is in the basin of a hyperbolic periodic attractor.

The following theorem is the one-dimensional analog of theorem 2.4.3.

Theorem 3.1.1 Suppose that f € C™(I,I) (r > 2) satisfies Aziom A and
the following conditions:

(1) Ifce Il and Df(c) =0, then c € C(f).
(2) fMC())NC(f) =0 for alln > 0.

Then f is C? structurally stable.

Proof: See for example, theorem I11.2.5 in [30].

Axiom A maps are apparently quite prevalent in one dimensional systems.
For example, the following is believed to be true:

Conjecture 3.1.1 The set of parameters for which f, = pz(1 — z) satisfies
Aziom A forms a dense set in [0,4].

Proof: de Melo and van Strien [30] report that Swiatek has recently proved
this result in [56].

Assuming that this result is true, we can paint an interesting picture for
the parameter space of f, = pz(1 — z). Apparently there are a dense set of
parameter values for which f, = pz(1—z) has a hyperbolic periodic attractor.
Theset of parameter values satisfying this property must be consist of a union
of open sets, since we know that these systems are structurally stable.

On the other hand, this does not mean that all or almost all of the
parameter space of f, = pz(1 —«) is taken up by structurally stable systems.
In fact, as we shall see in section 3.4, a positive measure of the parameter
space is actually taken up by systems that are not structurally stable. These
are the parameter values that we will be most interested in.
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3.2 Function shadowing

We now consider function and parameter shadowing. In section 2.2 we saw
that for uniformly expansive diffeomorphisms, structural stability and func-
tion shadowing are equivalent. For more general systems, structural stability
still implies function shadowing, however, the converse is not necessarily true.
As we shall see, there are many cases where the connections between shad-
owing orbits of nearby systems cannot be described by a simple homeomor-
phism. The structure of these connections can in fact be quite complicated.

3.2.1 A function shadowing theorem

There have been several recent results concerning shadowing properties of
one-dimensional maps. Among these include papers by Coven, Kan, and
Yorke [14], Nusse and Yorke [36], and Chen [9]. This section extends the
shadowing results of these papers in order to examine the possibility of pa-
rameter and function shadowing for parameterized families of maps of the
interval.

Specifically, we will deal with two types of maps: piecewise monotone
mappings and uniformly piecewise-linear mappings of a compact interval,
I C R onto itself:

Definitions: A continuous map f : [ — [ is said to be piecewise monotone
if f have finitely many turning points. f is said to be a uniformly piecewise-
linear mappings if it can be written in the form:

f(z) = a; £ sz for z; € [ci1, ¢ (3.1)

where s > 1, co < ¢; < ... < ¢, and ¢ > 0 is an integer. (We assume s > 1

because otherwise there will not be any interesting behavior).

Note that for this section, it is useful to define neighborhoods, B(z,¢),
so that they do not extend beyond the confines of I. In other words, let
B(z,€) = (z—€,z+€)NI. With this in mind, we use the following definitions
to describe some relevant properties of piecewise monotone maps.
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Definition: A piecewise monotone map, f : [ — I, is said to be transitive if
for any two open sets U,V C I, there exists an n > 0 such that f*(U)NV # 0.

Definitions: Let f : I — [ be piecewise monotone. Then f satisfies the
linking property if for every ¢ € C(f) and any € > 0 there is a point z € [
and integer n > 0 such that z € B(c,¢), f*(z) € C(f), and |f(c)— fi(z)]| < €
for every ¢ € {1,2,...,n}. Suppose, in addition, that we can always choose
a z # c¢ such that the above condition is satisfied. Then f is said to satisfy
the strong-linking condition.

We are now ready to state the main result of this section.

Theorem 3.2.1 : Transitive piecewise monotone maps satisfy the function
shadowing property in C°(I,I) if and only if they satisfy the strong linking
property.

Proof: The proof may be found in Appendix B.

In particular, this theorem implies the following parameter shadowing
result. Let I, C R be a closed interval of the real line. Suppose that {f, :
I — I|p € I,} is a continuously parameterized family of one-dimensional
maps, and let f,, be a transitive piecewise monotone mapping with the strong
linking property. Then f, must have the parameter shadowing property at
p = po. Note that f,, is certainly not structurally stable in C°(I,I). * The
connections between the shadowing orbits are not continuous and one-to-
one in general. In the next section we shall further examine what these
connections are likely to look like.

Now, however, we would like to present some motivation for why the-
orem 3.2.1 makes sense. The key to examining the shadowing properties
of transitive piecewise monotone maps is to understand the dynamics near
the turning points. In regions away from the turning points, these maps
look locally hyperbolic, so finite pieces of orbits in these regions shadow each

2In fact, no map is structurally stable in C°(I,I). This is clear, since any C°(I,I)
neighborhood of f € C°(I,I) contains maps with arbitrary numbers of turning points.
Since turning points are preserved by topological conjugacy, f cannot be structurally
stable in C°(1,I).
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other rather “easily.” The transitivity condition guarantees hyperbolicity
away from the turning points, since any transitive piecewise monotone maps
is topologically conjugate to a uniformly piecewise linear map.

Close to the turning points, however, things are more interesting. Sup-
pose, for example, that we are given a family of piecewise monotone maps
fp © I — I, and suppose that we would like to find parameter shadowing
orbits for orbits of f,, that pass near a turning point, ¢, of f,,. Consider a
neighborhood, U C I around the turning point c¢. Regions of state space near
c are “folded” on top of each other by f,, (see figure 3.1(a)). This can create
problems for parameter shadowing. Consider what the images of U look like
under repeated applications of f,, compared to what they might look like for
two other parameter values (p_ and p4) close to po (see figure 3.1(b)). Under
the different parameter values, the forward images of U become “offset” from
each other, since orbits for parameter values near pg look like pseudo-orbits

of fpo-

The forward images of U for different parameter values tend to consis-
tently either “lag” or “lead” each other, a phenomenon which has interesting
consequences for parameter shadowing. For example, in figure 3.1(b), since
f;fi(U) “lags” f,fol(U), it appears that f,_ has a difficult time shadowing the
orbit of f,, emanating from the turning point, ¢. On the other hand, from
the same figure, there is no reason to expect that there are any orbits of f,
which are not shadowed by suitable orbits of f,, .

However, this is not the end of the story. If the linking condition is
satisfied, then the turning points are recurrent and neighborhoods of turning
points keep returning to turning points to get refolded on top of themselves.
This allows the orbits of “lagging” parameter values to “catch up” as regions
get folded back (see figure 3.1(c)). In this case, we see that the forward image
of U under f,, gets folded back into the the corresponding forward image of
U under f,_, thus allowing orbits of f,_ to effectively shadow orbits of f,,.

On the other hand we see that there is an asymmetry in the shadow-
ing behavior of parameter values depending on whether the folded regions
around turning point “lag” or “lead” one another under the action of differ-
ent parameter values. The parameter values that “lag” seem to have a more
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Figure 3.1: In (a) we illustrate how neighborhoods near a turning point get
“folded.” In (b) we look at what might happen for three different parameter values,
p- < po < p;. The images of neighborhoods near the critical point may get “offset”
each from other so that the neighborhoods for certain parameters (eg., p;) may
begin to “lead” while other parameters (eg., p_) “lag” behind. Lagging parameters
have difficulty shadowing leading parameters. In (c) we show how neighborhoods
can get refolded on each other as a result of a subsequent encounter with a turning
point, allowing “lagging” parameters to “catch up,” so that they can still shadow
parameter values that normally “lead.”
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“difficult” time shadowing other orbits than the ones that “lead.” Making
this statement more precise is the subject of the next section. Theorem 3.2.1
merely states that if the strong linking condition is satisfied, then regions
near turning points are refolded back upon one another in such a way that
the parameter shadowing property is satisfied.

3.2.2 An example: the tent map

In [9], Chen proves the following theorem:

Theorem 3.2.2 The pseudo-orbit shadowing property and the linking prop-
erty are equivelent for transitive piecewise monotone maps.

One interesting thing to note is the difference between function shadowing
and pseudo-orbit shadowing. For instance, what happens when a transitive
map exhibits the linking property but does not satisfy the strong-linking
property? We already know that such maps must exhibit the pseudo-orbit
shadowing property but must not satisfy the function shadowing property
on C°(1,I). It is worth a brief look at why this occurs.

As an illustrative example, consider the family of tent maps, f, : [0,1] —
[0,1], where:

pwifa:ﬁ%

folz) = {p(l—a:)ifa:>%

for p € [0,2]. Pick po € (v2,2) such that f3 (1) = 1. It is not difficult to
show that such a py exists. Numerically we find that one such value for po
occurs near po =~ 1.5128763969.

We can see that fp, is transitive on the interval I(po) = [f2 (¢), fp(c)]
where in this case, ¢ = % Given any interval, U C I(po), since po > V2,
if ¢ @ U then |f,,(U)] > V2|U| and if ¢ € U then |f,(U)] > 42|U], where
|U| denotes the length of the interval U. Thus either |f2 (U)| > 2|U| or

2

P
2(U) = I(po), and for any U C I(po) there exists a k > 0 such that
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;O(U) = I(po). Consequently, f must be transitive on I. Note that even
though I(p) is not invariant with respect to p, theorem 3.2.1 still applies,
since we could easily rescale the coordinates to eliminate this problem.

Now let po be near 1.5128763969 so that f5 (c) = ¢ = 1. We would
like to investigate the shadowing properties of the orbit, {fX (c)}32,. Let
f(z,p) = fp(z). Two important pieces of information are the following:

5 af
D,f(¢e,po) = ——a;(c,po) ~ —1.2715534 (3.2)
0-5(6? pO) = -1 (33)

where we define:

oi(e,p) = {

1 if ¢ is a relative maximum of f;,
-1 if ¢ is a relative minimum of f;

As we shall see in the next section, statistics like ( 3.2) and ( 3.3) are
important references in evaluating the shadowing behavior for families of
maps. For this example, let us consider a combined state and parameter
space and examine how a small square in this space around (z,p) = (¢, po)
gets iterated by the map f. We see that because fzfo has a relative minimum
at ¢ = 1 and because D, f%(c,po) is negative, parameter values higher than
po tend to “lead” while parameter values less than po tend to “lag” behind
in the manner described earlier in this section. Since the turning point of fp
at c is periodic with period 5, this type of lead/lag behavior continues for
arbitrarily many iterates.

We want to know if nearby maps, f,, for p near po have orbits that shadow
{f%(c)}?2o- Consider how the lead/lag behavior affects possible shadowing
orbits. Because ¢ =  is periodic, it is possible to verify that the quantity,
[0(c,pg ) Dpf™(c,p5)], grows exponentially as n gets large (where py indi-
cates that we evaluate the derivative for p arbitrarily close to, but less than
po). Thus for maps with parameter values p < po, all possible shadowing
orbits diverge away from {f% (c)}%2, at a rate that depends exponentially
on the number of iterates. Consequently there exists a § > 0 such that if
p € (po — 6, po), then no orbit of f, lex e—shadows { ,’,‘0(0)},;‘10 for any € > 0
sufficiently small. On the other hand the orbit {f} (¢)}32, can be shadowed
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by f, for parameter values p > po. In fact, because everything is linear, it
is not difficult to show that there must exist a constant K > 0 such that
that for any ¢ > 0, there is an orbit of f, that e—shadows {f} (¢)}, if
p € [po,po + Kel.

In summary, we see that the orbit, { ,fo(c)},;’o:o, cannot be shadowed by
parameter values p < po, but can be shadowed for parameter values p > py.
f», satisfies the linking but not the strong linking property. Thus f,, satisfies
the pseudo-orbit shadowing property, and any orbit of f, for p near po can
be shadowed by an orbit of f,,. On the other hand, f,, does not satisfy
function or parameter shadowing properties, since not all nearby systems
(for example, f, for p < po) have orbits that shadow orbits of f, . Also, note
how the “lead” and “lag” behavior in parameter space results naturally in
asymmetrical shadowing properties in parameter space. We will look at this
more closely in the next section.

As a final note and preview for the next section, consider briefly how the
above example might generalize to other situations. The tent map example
may be considered exceptional for two primary reasons: (1) the tent map is
uniformly hyperbolic everywhere except for at the turning point, and (2) the
turning point of f,, is periodic. We are generally interested in more generic
situations involving parameterized families of piecewise monotone maps, es-
pecially maps with positive Lyapunov exponents. Apparently a number of
“likely” scenarios also result in lead/lag behavior in parameter space, pro-
ducing asymmetries in shadowing behavior similar to that observed in the
tent map example. However, this behavior generally gets distorted by local
geometry. Also things become more complicated because of folding caused
by close returns to turning points. In particular for maps with positive Lya-
punov exponents, shadowing orbits for “lagging” parameter values tend to
diverge away at exponential rates, just like in the tent map example, but this
only occurs for a certain number of iterates until a close return or “linking”
with a turning point occurs. In such cases, function shadowing properties
may exist, but the geometry of the shadowing orbits still reflects the asym-
metrical lead/lag behavior. This behavior certainly affects any attempts at
parameter estimation.
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3.3 Asymmetrical shadowing

In the previous two sections we were primarily interested in topologically-
oriented results about whether orbits of nearby one-dimensional systems
shadow each other or not. However, topological results really do not pro-
vide enough information for us to draw any strong conclusions about the
feasibility of estimation problems. Whether orbits shadow each other or not,
in general we would also like to know the answers to more specific questions,
for example: what is the expected rate of convergence for a parameter esti-
mate, and how does the level of noise or measurement error affect the possible
accuracy of a parameter estimate?

In this section we address a more analytical treatment of the subject of
shadowing and parameter dependence in one-dimensional maps. The prob-
lem with this, of course, is that there is an extremely rich variety of possible
behavior in parameterized families of mappings, and it is difficult to say any-
thing concrete without limiting the statements to relatively small classes of
maps. Thus some compromises have to be made. However, we approach our
investigation with some specific goals in mind. In particular we are interested
in definite bounds on how fast the closest shadowing trajectories in nearby
systems diverge from each other and some explanation concerning how the
observed asymmetrical shadowing behavior gets established in the parameter
space. We will concentrate on smooth maps of the interval, especially maps
like the quadratic map, f,(z) = pz(l — z).

3.3.1 Lagging parameters

In this subsection, we argue that asymmetries are “likely” to occur in param-
eter space, and that given a smooth piecewise monotone map with a positive
Lyapunov exponent, shadowing orbits for nearby maps which “lag” behind,
tend to diverge away from orbits of the original system at an exponential
rate before being “folded” back by close encounters with turning points.

Preliminaries
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We will primarily restrict ourselves to maps with the following properties:

(C0) g : I — I, is piecewise monotone.
(Cl) gis C?on I.

(C2) Let C(g) be the finite set such that ¢ € C(g) if and only if ¢ has a
local extremum at ¢ € I. Then ¢”(c) # 0 if ¢ € C(g) and ¢'(z) # 0 for
all z € I'\ C(g).

We are also interested in maps that have positive Lyapunov exponents. In
particular, we will examine maps satisfying a set of closely related properties
known as the Collet-Eckmann conditions. Under these conditions there exist
constants Kg > 0 and Ag > 1 such that for some ¢ € C(g):

(CE1) [Dg™(9(e))] = KeAp
(CE2) [Dg™()] > KpAp if g°(2) = .

for any n > 0.

We also consider one-parameter families of mappings, f, : I, — I, pa-
rameterized by p € I,, where I, C R and I, C R are closed intervals of the
real line. Let f(z,p) = fp(z) where f: I, x I, — I,. We are primarily inter-
ested in one-parameter families of maps with the following characteristics:

(DO) For each p € I, f, : I, — I, satisfies (C0) and (C1). We also require
that C(f,) remains invariant with respect to p for all p € I,,.

(D1) f:Il,x1I, > I;is C? for all (z,p) € I, x I,.

Note that the following notation will be used to express derivatives of f(z,p)
with respect to z and p.

D, f(z,p) = g—i(w,p) (3.4)
D,f(z.p) = %(x,p). (3.5)



The Collet-Eckmann conditions specify that derivatives with respect to
the state, x, grows exponentially. Similarly we will also be interested in
families of maps where derivatives with respect to the parameter, p, also
grow exponentially. In other words, we require that there exist constants
K, >0, A, > 1, and N > 0 such that for some po € I,, and c € C(f,,):

(CP1) |Dpf™(c,po)| > KpAT

for all n > N. This may seem to be a rather strong constraint, but in practice
it often follows whenever (CE1) holds. We can see this by expanding with
the chain rule:

Dy f™(¢,p0) = Da f(f"~" (e, p0), po) Dp f" (¢, po) + Dy f(f"7 (¢, p0); Po) (3-6)
to obtain the formula for D, f"(z,po) :

n—2 n—1

Dy f*(x,po) = Dpf(f"_l(C’PO),PO) + E[Dpf(fi(CuPO),PO) H Dxf(fj(C»PO)»PO)]-

i=0 J=i+1

Thus, if |D;f™(f(c,po),po)| grows exponentially, we expect |D,f"(z,po)| to
also grow exponentially unless the parameter dependence is degenerate in
some way (eg, if f(z,p) is independent of p).

Now for any ¢ € C(fp,), define o,(c, p) recursively as follows:

ont1(c,p) = sgn{D:f(f"(c,p),p)}ox(c,p)

where
(c.p) = 1 if ¢ is a relative maximum of f,
- aep) = -1 if ¢ is a relative minimum of f,
Basically o,(c,p) = 1if f has a relative maximum at ¢ and o,(c,p) = —1 if

fy has a relative minimum at c¢. We can use this notion to distinguish a one
direction in parameter space from the other.

Definition: Let {f, : I, — I.|p € I,} be a one-parameter family of map-
pings satisfying (D0) and (D1). Suppose that there exists po € I, such that
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[, satisfies (CE1) and (CP1) for some ¢ € C(f,,). Then we say that the
turning point, ¢, of f,, favors higher parameters if there exists N’ > 0 such
that

sgn{Dpf"(c,po)} = onlc,p) (3.7)

for all n > N'. Similarly, the turning point, ¢, of f,, favors lower parameters

if

sgn{Dyf(e,p0)} = —oulerp) (38)
for all n > N'.

The first thing to notice about these two definitions is that they are
exhaustive if (CP1) is satisfied. That is, if (CP1) is satisfied for some p, €
I, and ¢ € C(fp,), then the turning point, ¢, of f,, either favors higher
parameters or favors lower parameters. We can see this from ( 3.6). Since
| Dy f(,po)| is bounded for z € I, if |D, f™(z,po)| grows large enough then
its sign is dominated by the signs of D, f(f"*(c,po),po) and D,f"(c,po),
so that either ( 3.7) or ( 3.8) must be satisfied.

Finally, if po € I, and ¢ € C(f,,), then for any ¢ > 0, define n.(c, €, po) to
be the smallest integer n > 1 such that |f*(c, po)—c.| < efor any c. € C(f,,)-
We say that n.(c,€,po) = oo if no such n > 1 exists.

Main result

We are now ready to state main results of this subsection.

Theorem 3.3.1 Let {f, : I, — L.|p € I,} be a one-parameter family of
mappings satisfying (D0) and (D1). Suppose that (CP1) is satisfied for some
po € I, and c € C(f,,). Suppose further that f,, satisfies (CE1) at ¢, and that
the turning point, c, favors higher parameters under f,,. Then there erists
ép > 0,2 > 1, K' > 0, and K > 1, such that if p € (po — 6p,po), then
for any € > 0, the orbit {f] (c)}32, is not e—shadowed by any orbit of f, if
Ip — po| > K'eA—me(eKero),

The analogous result also holds if f,, favors lower parameters.
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Proof: The proof of this result can be found in Appendix C.

The proof is actually relatively straightforward, although the details of the
analysis becomes a bit tedious. The basic idea is that away from the turning
points, everything is hyperbolic, and we can uniformly bound derivatives
with respect to state and parameters to grow at an exponential rate. In
particular, the “lagging” behavior for “lower” parameters is preserved and
becomes exponentially more pronounced with increasing numbers of iterates.
Shadowing orbits for parameters p < po diverge away exponentially fast if
higher parameters are favored. However, this only works for orbits that don’t
return “closely” to the turning points where derivatives are small.

3.3.2 Leading parameters

Motivation

We have shown in the previous section that if f : I, x [, — I, is a one
parameter family of maps of the interval and if there exists N > 0 such that

D, f*(¢,po) > on(c, po) KA (3.9)

for all n > N, then for p < po, orbits of f, tend to diverge at an exponential
rate away from orbits of f,, that pass near the turning point, c¢. Such orbits
of f,, can only be shadowed by orbits of f, for p < po if the orbits of f,, are
“folded” back upon themselves by a subsequent encounter with the turning
point.

On the other hand, we would like to find a condition like ( 3.9) under
which orbits of f, for p > po, can shadow any orbit of f,, indefinitely with-
out felying on “folding.” This type of phenomenon is indicated by numerical
experiments on a variety of systems. Unfortunately however, the derivative
condition in ( 3.9) is local, so we have little control over the long term be-
havior of orbits. Thus, we must replace this condition with something that
acts over an interval in parameter space.

For instance, we are interested in addressing systems like the family of
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quadratic maps:

f(z,p) = pz(l —z). (3.10)

It is known that the family of quadratic maps in ( 3.10) satisfies a property
known as the monotonicity of kneading invariants in the parameter space
of f,. This condition is sufficient to make one direction in parameter space
preferred over the other. We show in this subsection that monotonicity of
kneading invariant along with (CE1) is sufficient to guarantee strong shadow-
ing effects for parameters that “lead,” at least in the case of unimodal (one
turning point) maps with negative Schwarzian derivative, a class of maps
that include ( 3.10). Maps with negative Schwarzian derivative have been
the focal point of considerable research over the last several years, since they
represent some of the simplest smooth maps which have interesting dynam-
ical properties. We take advantage of analytical tools developed recently in
order to analyze the relevant shadowing properties.

Definitions and statement of results

Definition: Suppose that ¢ : I — [ is C® and I C R. Then the Schwarzian
derivative, Sg, of g is given by the following:

gllf(x) B i}_(g”(m)
g'(z) 2 g¢'(z)
where ¢'(z),9"(z), 9" (z) here indicate the first, second, and third derivatives
of z.

Sg(z) =

)’

In this section we will primarily restrict ourselves to mappings with the
following properties:
(AO) g: 1 —I,is C*(I) where I = [0, 1], with g(0) = 0 and g(1) = 0.

(A1) g has one local maximum at z = c; g is strictly increasing on [0, c|
and strictly decreasing on [c, 1];

(A2) ¢"(c) <0, |g'(0)] > 1.

(A3) The Schwarzian derivative of g is negative, S¢g(z) < 0, over all z € [
(we allow Sg(z) = —o0).
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Again we will be investigating one-parameter families of mappings, f :
I x I, — I, where p is the parameter and I, [, C R are closed intervals.
Let f,(z) = f(z,p) where f, : I, — I,. We are primarily be interested in
one-parameter families of maps with the following characteristics:

(BO) For each p € I, f, : I, — I, satisfies (A0), (A1), (A2), and (A3)
where [, = [0, 1]. For each p, we also require that f, has a turning point
at ¢, where ¢ is constant with respect to p.

(Bl) f:I,x I, - I, is C*for all (z,p) € I, x I,

Another concept we shall need is that of the kneading invariant. Kneading
invariants and many associated topics are discussed in Milnor and Thurston [31]. -

Definition: If ¢ : I — [ is a piecewise monotone map with exactly one
turning point at ¢, then the kneading invariant, D(g,t), of g is defined as
follows:

D(g,t) =1+61(g)t +62(9)t +... +0,(g)t" +...

where

0.(9) = ei(g)ea(g)---€alg)
€x(9) = lim sgn(Dg(g"(z)))

z—ct

for n > 1. If ¢ is a relative maximum of g, then one interpretation of 6,(g)
is that it represents whether ¢g"*! has a relative maximum (8,(g) = +1) or
minimum (6,(g) = —1) at c.

We can also order these kneading invariants in the following way. We will
say that |D(g,t)| < |D(h,t)|if0:(g) = 6;(h),for 1 < i < n,but 0,(g) < O.(h).
A kneading invariant, D(f,,t), is said to be monotonically decreasing with
respect to p if p; > po implies |D(fp,,t)| < |D(fpo,t)l-

We are now ready to state the main result of this subsection:
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Theorem 3.3.2 Let {f, : I, — L|p € I,} be a one-parameter family of
mappings satisfying (B0) and (B1). Suppose that py € I, such that f,, sat-
isfies (CE1). Also, suppose that the kneading invariant, D(f,,t), is mono-
tonically decreasing with respect to p in some neighborhood of p = py. Then
there exists ép > 0 and C > 0 such that for every xo € I, there is a set,
Wixg) C I x I, satisfying the following conditions:

(1) W(zo) = {(awy(t), Beo(t))|t € [0,1]} where oz, : [0,1] — I, and B, :
[0,1] — I, are continuous and B, (t) ts monotonically increasing with
respect to t with 8;,(0) = po and B8;,(1) = po + ép.

(2) For any xo € L, if (x,p) € W(zo) then |f"(z,p) — ["(zo,po)| <
C(p — p0)§ for all n > 0.

Proof: See Appendix D

Corollary 3.3.1 Let {f, : I, — IL;|p € I,} be a one-parameter family of
mappings satisfying (B0) and (B1). Suppose that py € I, such that f,, satis-
fies (CE1). Also, suppose that the kneading invariant, D(f,,t), is monotoni-
cally decreasing with respect to p in some neighborhood of p = po. Then there
ezists ép > 0 and C > 0 such that if p € [po,po + 8p], then for any ¢ > 0,
every orbit of f,, is e-shadowed by an orbit of f, if |p — po| < Cé€.

Proof: This is an immediate consequence of theorem 3.3.2.
Overview of proof

We now outline some of the ideas behind the proof of theorem 3.3.2.
The proof depends on an examination of the structure of the preimages of
the turning point, * = ¢, in the combined space of state and parameters
(I x I, space). The basic idea is to find connected “shadowing” sets in state-
parameter space. These sets have the property that points in the set shadow
each other under arbitrarily many applications of f. Certain geometrical
properties of these sets can be determined by squeezing the sets between
structures of preimage points. In order to discuss the approach further, we
first need to introduce some notation.
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We consider the set of preimages, P(n) C I, x [, satisfying:
P(n) = {(z,p)|f(z,p) = c for some 0 < i < n}.

It is also useful to have a way of specifying a particular section of path-
connected preimages, R(n,zo,po) C P(n), extending from a single point,
(zo,po) € P(n). Let us define R(n, zq, po) so that (z',p’) € R(n,zo, po) if and
only if (2’,p") € P(n) and there exists a continuous function, g : [, — I,
such that g(po) = 2o, g(p') = 2, and

{(z,p)lz = g(p),p € [po; P']} C P(n),
where [po; p'] may denote either [po, p’] or [p/, po], whichever is appropriate.

The first step is to investigate the basic structure of P(n). We show that
P(n) contains no regions or interior points and that P(n) cannot contain any
isolated points or curve segments. Instead, each point in P(n) must be part
of a continuous curve that stretches for the length of the parameter space,
I,. In fact, if (zo,y0) € P(n), then R(n,zo,po) N (Iz x {sup [,}) # 0 and
R(n,zo,po) N (I; x {inf I,}) # 0.

The next step is to demonstrate that if the kneading invariant of f,,
D( fy,t), is monotonically decreasing (or increasing), then P(n) has a special
topology. It must take on a tree-like structure so that as we travel along one
direction in parameter space, branches of P(n) must either always merge or
always split away from each other. For example if D(f,,t) is monotonically
decreasing, then branches of P(n) can only split away from each other as
we increase the parameter p. In other words, R(n,y_,po) and R(n,y+,po) do
not intersect each other in the space, I, x {p}, for for p > po if y4 # y- and

Y+,Y- € Ir

Now suppose we want to examine the points that shadow (zo,po) under
the action of f given any zo € I,. We first develop bounds on derivatives
for differentiable sections of R(n,z,po). We then use knowledge about the
behavior of R(n,z,po) to bound the behavior of the shadowing points. We
demonstrate that for maps, f,, with kneading invariants that decrease mono-
tonically in parameter space, there exist constants C > 0 and ép > 0 such
that if o € I; and

U(p) = {z] |z — zo| < C(p — po)*} (3.11)
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for any p € I, then for any p’ € [po,po + 6p], there exists =/, € U(p')
such that (z/,,p") € R(ny,y4+,po) for some y, > o and ny > 0 assuming
that f™*(y4,po) = c. Likewise there exists 2, € U(p’) such that (z_,p') €
R(n_,y_,po) for some y_ < zg and n_ > 0 where f*~(y_,po) = c.

However, setting n = max{ny,n_}, since R(n,y_,po) and R(n,y+,po)
do not intersect each other for p > py and y_ # y4, then we also know that
for any y_ < y4, there is a region in I, x I, space bounded by R(n,y_,po),
R(n,y4,po), and p > po. Take the limit of this region as y_ — g, y; — zg,
and n — oo. Call the resulting region S(zo). We observe that S(zg) is a
connected set that is invariant under f and is nonempty for every parameter
value p € I, such that p > po (by invariant we mean that f(S(z0)) =
S(f(zo,po))). Thus, since S(zg) is bounded by ( 3.11), there exists a set of
points, S(zo), in combined state and parameter space that “shadow” any
trajectory, {f (zo)}no of fp- Finally we observe that there exists a subset
of S(zq) that can be represented by the form given for W(z,).

3.4 Example: quadratic map

In this section we examine how the results of Chapter 3 apply to the quadratic
map, f, : [0,1] — [0, 1], where:

fo(z) = pz(l — ) (3.12)

and p € [0,4]. For the rest of this section, f, will refer to the map given in
( 3.12), and f(z,p) = fo(z) for any (z,p) € I, x I, where I, = [0,1] and
I, = [0,4].

We have already seen in conjecture 3.1.1, that there appears to be dense
set of parameters in I, for which f, is structurally stable and has a hyperbolic
periodic attractor. However, by the following result, we find that there is also
a large set of parameters for which f, satisfies the Collet-Eckmann conditions
and is not structurally stable:

Theorem 3.4.1 Let E be the set of parameter values, p, such that (CE1) is
satisfied for the family of quadratic maps, f,, given in ( 3.12). Then E is
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a set of positive Lebesque measure. > Specifically, E has a density point at
p = 4 so that:

o ABN 4= 4))

e—0 €

= 1. (3.13)

where A(S) represents the Lebesgue measure of the set S.

Proof: The first proof of this result was given in [4]. The reader should
also consult the proof given in [30]. *

Apparently, if we pick a parameter, po, at random from [, (with uniform
distribution on [,) there is a positive probability that f,, will satisfy (CE1).
We might note that numerical evidence suggests that the set of parameters,
p, resulting in maps, f,, which satisfy (CEl) are not just concentrated in a
small neighborhood of p = 4.

In any case, applying the results of the last section, we see that for a
positive measure of parameter values, there is a definite asymmetry with
respect to shadowing results in parameter space. The following theorem
illustrates this fact.

Theorem 3.4.2 Let I, = [0,4], I, = [0,1], and f, : I, — I, be the family
of quadratic maps such that f,(z) = pz(1 — z) for p € I,. For any v > 1,
there exists a set of parameter values, E(y) C I,, and constants, C > 0,
§ >0, Ko >0, and Ky > 0 such that E(y) has positive Lebesgue measure
with density point at p = 4 and satisfies the following properties for any ¢ > 0
sufficiently small:

3Rather than go into a formal definition of what Lebesgue measure is, suffice it to say
that it is a generalization of the “length” of a set. The key point is that if £ has positive
Lebesgue measure, then if we pick a parameter, p out of I, at random (with uniform
distribution on I,), then there is positive probability that p € E.

4These two references actually deal with the family of maps, g.(z) = 1 — az?, where a
is the parameter. However, the maps g, and f, are topologically conjugate if a = p? - 2p.
The conjugating homeomorphism in this case is simply a linear function. Thus the results
in the references immediately apply to the family of quadratic maps, f, : I — I, for
pE I.
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(1) If po € E(v) then f,, satisfies (CE1).

(2) If po € E(v) then any orbit of f,, can be e—shadowed by an orbit of f,
pr € [pOapO + CEB]-

(3) If po € E(v), then almost no orbits of f,, can be e—shadowed by any
orbit of f, for p € (po — 6, po — Ko(K1€)”). That is, the set of possi-
ble initial conditions, xo € I, such that the orbit {f;o(l’o)}?;o can be
e—shadowed by some orbit of f, comprises at most a set of Lebesgue
measure zero on I, if p € (po — 6, po — Ko(Ky€)7).

Proof of Theorem 3.4.2: The full proof for this result can be found in Ap-
pendix E.

Before we take a look at an overview of the proof for theorem 3.4.2, it
is useful to make a few remarks. First of all, one might wonder whether
the asymmetrical situation in theorem 3.4.2 is really generic for all py € I,
such that f,, satisfies (CEL). For example, are there other parameter values
in I, for which it is easier to shadow “lower” parameter values than it is
to shadow “higher” parameter values? Numerical evidence indicates that
most if not all p € [, exhibit asymmetrical shadowing properties if f, has
positive Lyapunov exponents. Furthermore, it seems that these parameter
values “favor” the same specific direction in parameter space. In fact it is
easy to show analytically that condition (2) of theorem 3.4.2 actually holds
for all po € I, for which f,, satisfies (CE1). In other words, for f,, satisfying
(CE1), there exists C' > 0 such that for any € > 0 sufficiently small, f,, can
be e—shadowed by an orbit of f, if p € [po,po + C€3].

We now outline the strategy for the proof of theorem 3.4.2. For parts (1)
and (3) we basically want to combine theorem 3.3.1 and theorem 3.4.1 in the
appropriate way. There are four major steps. We first bound the return time
of the orbit of the turning point, ¢ = %, to neighborhoods of ¢. Next we show
that f, satisfies (CP1) and favors higher parameters on a positive measure
of parameter values. This allows us to apply theorem 3.3.1. Finally we show
that almost every orbit of these maps approach arbitrarily close to ¢ so that

if the orbit, {f: (c)}2, cannot be shadowed then almost all other orbits of
fpo cannot be shadowed either.
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We bound the return time of the orbit of the turning point, ¢, to neigh-
borhoods of ¢ by examining the proof of theorem 3.4.1. Specifically, as part
of the proof of theorem 3.4.1, Benedicks and Carleson [4] show that for any
a > 0, there is a set of positive measure in parameter space, S(a) € I,, such
that if po € S(«) then f,, satisfies (CE1) and the condition:

If;O(c) —c| > e~ (3.14)

for allz € {0,1,2,...}. The set, S(a), has a density point at parameter value
p=4.

Next we show that f, satisfies (CP1) and favors higher parameters on
a subset of S(«a) of positive measure. This is basically done by looking at
what happens for p = 4 and extrapolating that result for parameters in a
small interval in parameter space around p = 4. The result only works for
those values of p for which f, satisfies (CE1). However, since p = 4 is a
density point of S(a), for any a > 0, there is a set, S.(«a), contained in a
neighborhood p = 4 with a density at p = 4 for which py € S.(a) implies
[, satisfies (CE1) and ( 3.14), and f, favors higher parameters and satisfies
(CP1) at p = po.

Then by applying theorem 3.3.1 we see that there exist constants § > 0,
Ko > 0 and K; > 0 such that for any a > 0, if ps € S.(a) then the orbit,
{fi ()}, cannot be shadowed by any orbit of f, for p € (po — 6,po —
KoeA~me(eK1ep0)) (recall that n.(c, €, po) is defined to be the smallest integer
n > 1 such that |f"(c,po) — ¢| < €.) By controlling o > 0 in ( 3.14) we can
effectively control n.(c, €, po) to be whatever we want. Thus for any v > 0
we can choose a set E(y) C I, with a density point at p = 4 such that if
po € E(y) then f,, satisfies (CE1l) and no orbits of f, e—shadow the orbit,

{f;;o(c) ;20’ fOI‘ any p € (Po - 5,190 - Ko(Klé)’y).

Finally it is known that if f,, satisfies (CE1) then almost every orbit of
f», approaches arbitrarily close to ¢. Thus for almost all zo € I, the orbit,
{fi (z0)}22, cannot be shadowed by an orbit of f, if the orbit, {7 (c)}32,
cannot be shadowed by any orbit of f,. We see that for any v > 1 if py € E(%)
then f,, satisfies (CE1) and almost no orbits of f,, can be shadowed by any
orbit of f, if p € (po — Ko(K1€)?,po). This would prove parts (1) and (3) of
the theorem.
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Part (2) of theorem 3.4.2 is a direct result of Corollary 3.3.1 and the
following result, due to Milnor and Thurston [31]:

Lemma 3.4.1 The kneading invariant, D(f,,t), is monotonically decreasing
with respect to p for all p € I,.

Thus if po € E(~) satisfies (CE1), there exists constant C' > 0 such that
if po € E(~), then any orbit of f,, can be e—shadowed by an orbit of f, if
p € [po, po + C€%]. This is exactly part (2) of the theorem.

3.5 Conclusions, remarks, and future work

The primary goal of this chapter was to examine how shadowing works in
one-dimensional maps. We have been particularly interested in investigating
how “folding” affects parameter shadowing and how this might help explain
numerical results which show asymmetrical behavior in the parameter space
of one dimensional maps. More specifically, for a parameterized family of
maps, fp, it is apparently the case that an orbit for a particular parameter
value, p = po, is often shadowed much more readily by maps with slightly
higher parameter values than by maps with slightly lower parameter values
(or vice versa). We are interested in this phenomenon because of its affect on
parameter estimation. For example, if we are given noisy observations of the
orbit described above and asked what was the parameter value of the map
that produced that data, then we would immediately be able to eliminate
most values less than py as possible candidates for the actual parameter
value. On the other hand, it may be much more difficult to distinguish pg
from parameter values slightly larger than po.

For piecewise monotone maps with positive Lyapunov exponents, we
demonstrated that the folding behavior around a turning point generally
leads to asymmetrical behavior, unless the parameter dependence is degen-
erate in some way. In particular, images of neighborhoods of a turning point
under f, tend to separate exponentially fast for perturbations in p. This re-
sults in a sort of “lead-lag” phenomenon as images for different parameter
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values separate, causing the images for some parameter values to overlap each
other more than others. Near the turning point, orbits for parameter values
that “lag” behind cannot cannot shadow orbits for the parameter values that
“lead” unless a another folding occurs because of a subsequent approach to a
turning point.

For the case of unimodal families of maps with negative Schwarzian
derivative, the result is sharper. Apparently, if the parameter dependence is
not degenerate, and if a map, f,,, has positive Lyapunov exponents for some
parameter value, pg, then there is one direction in parameter space in which
all orbits of f,, can be e—shadowed by an orbit of f, if |p—po| < Ce® for some
C > 0 and any € > 0 sufficiently small. Meanwhile, in the other direction
in parameter space, there exist constants 6 > 0, Ky > 0, and K; > 0 such
that if |p — po| < 6 then almost no orbits of f,, can be e—shadowed by any
orbit of f, if |p— po| > Ko(Ky€)” where v > 1 may be arbitrarily large. This
clearly illustrates some sort of preference of direction in parameter space.
As a side remark, note that this result also demonstrates that all orbits of
certain “chaotic” systems can be shadowed by orbits of systems with nothing
but hyperbolic periodic attractors (look, for example, at the quadratic map,
fo(z) = pz(1 — z)). Shadowing results have sometimes been cited to justify
the use of computers in analyzing dynamical systems, since if one numeri-
cally integrates an orbit and finds that it is chaotic, then similar real orbits
must exist in that system (or nearby systems). This is true, but one should
also be careful, because the real orbits that shadow a numerically generated
trajectory may in fact be purely pathological.

In any case, many questions related to this material still remain unan-
swered. It seems to be quite difficult to come up with crisp general results
when it comes to a topic as varied as parameter dependence in families of
maps. For instance, I do not know of a simple way of characterizing exactly
when parameter shadowing favors one direction over the other in parameter
space for piecewise monotone maps. For unimodal maps, it appears that per-
haps a useful connection to topological entropy may be made. If topological
entropy is monotonic, and if there is a change in the topological entropy of
map f, with respect to p at p = po then certain asymmetrical shadowing
results seem likely for orbits of f,,. However, topological entropy does not
appear to be an ideal indicator for asymmetrical shadowing, since it is global
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in nature. For one thing, if a piecewise monotone map has multiple turning
points, it is possible for some turning points to favor higher parameters while
other turning points favor lower parameters. Such examples are interesting,
from a parameter estimation point of view, because that means that one may
be able to effectively “squeeze” parameter estimates within a narrow band of
uncertainty as the orbit being sampled passes close to turning points which
favor different directions in parameter space.

Another important question is: Can we get better bounds on the likely
accuracy and convergence rates of parameter estimation techniques by look-
ing at the invariant measures of maps and how they change with respect to
parameters? The problem of convergence rates is particularly important in
parameter estimation, since we would like to know how many state samples
are needed in order to attain a certain accuracy. We have already seen that
convergence and accuracy of parameter estimates for a piecewise monotone
map depends on how long it takes for a particular orbit to come close to
the turning points of the map and how close the orbit comes to the turning
point. When an orbit comes close to the turning point, nearby regions in
state space are subject to the “folding” effect which enables us to distinguish
nearby parameter based on state data. With a given level of measurement
noise, ¢, there also exists a lower limit on the parameter estimation accuracy
that can be attained using the folding effect from one turning point. This
bound is related to the amount of time it takes for an orbit near the turning
point to return within e distance of a turning point. For many realistic cases
we have tried, however, this lower limit seems to be too small to be of prac-
tical importance. The question then becomes, can we establish a reasonable
estimate of the convergence rate of parameter estimates resulting from the
folding effect, disregarding the lower limit caused by returns to the turning
point.

Ergodic theory comes into play in this question if we talk about typical
orbits, for example if we let the system settle into its equilibrium behav-
ior and take an initial condition at random from an arbitrarily long orbit.
Unfortunately, due to time constraints I have not been able to analyze the
problem in detail. For tent maps, with slope s > 1, however, I suspect that
the convergence of parameter estimate error should, on average, go as + the
number, n, of iterates analyzed, at least until the lower limit is reached re-
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flecting subsequent approaches to the turning point. The case for the tent
map is simple because the invariant measure for tent maps is trivial (a con-
stant) and because there is a linear relationship between shadowing orbits in
state and parameter space.

For other families of maps, the situation because more complicated be-
cause the invariant measures (if they exist) can be complicated. However,
there is some hope of getting reasonable bounds if the maps are known to
have at least absolutely continuous invariant measures, like quadratic maps
satisfying the Collet Eckmann conditions ( [12]). In the case of the quadratic
map, a rough estimate goes like this: we expect that the distance between

»(c) and f7 ,5,(c+ 6z) grows like D, f™(c, po)ép + K Dz f™( fp (), po)(8z)?.
where A is a constant. If an orbit of f,, comes within éz of the turning point,
c. then any parameter value within ép ~ K;(6z)* will be able to shadow that
section of orbit where A is a constant. If we make the naive assumption
that the closest approach the data orbit makes to the critical point is about
dr(n) ~ 1{2% for some constant K, then we expect the parameter estimate
to converge at a rate proportional to ;15 This estimate seems to fit numeri-
cal results in Chapter 5. More work, however, is needed to investigate these

convergence results more fully.
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Chapter 4

General nonuniformly
hyperbolic systems

In this chapter we examine shadowing behavior for general one-parameter
families of C? diffeomorphisms, f, : M — M for p € R. We want to consider
why orbits shadow each other (or fail to shadow each other) in maps that
are nonuniformly hyperbolic.

The exposition in this chapter will not be rigorous. Our goal is to motivate
some possible mechanisms that might help explain results from numerical
experiments. In particular we will attempt to draw analogies to our work
in Chapter 3 to help explain what may be happening in multi-dimensional
systems.

4.1 Preliminaries

Let us first outline some basic concepts.

We start by introducing the notion of Lyapunov exponents. Let f, : M —
M be a C? diffeomorphism. Suppose that M is ¢g—dimensional and that for
some xr € M there exist subspaces, R = E! D E2 D ... in the tangent space
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of f at = such that:
A = lim lzog|Df“(g:)u| ifue EL\ E L
n—oo n

for some numbers Al > A2 > .... Then the \'’s are the Lyapunov ezxpo-
nents of the orbit, { f*(z)}. Oseledec’s Multiplicative Ergodic Theorem ( [44])
demonstrates the existence of these exponents in a wide variety of situations.
In particular, Lyapunov exponents exist for almost all x, with respect to an
invariant probability measure! on M.

If there are no A'’s equal to zero, then there also local stable manifolds
at z tangent to the linear subspace, E! if A\ < 0. There also exists an
analogous unstable manifold. In other words, for almost any z € M there
exists an € > 0 such that:

We(z, f) = {yeM:d(f"(z), f*(y)) Seforalln >0}

Wiz, f) = {yeM:d(f™(z),[(y)) Seforalln >0}
These manifolds are locally as differentiable as f. This result is based on
Pesin [47] and Ruelle [49]. The difference between these manifolds and mani-
folds for the uniformly hyperbolic case is that these manifolds do not have to

exist everywhere, the angles between the manifolds can approach zero, and
the neighborhoods, €, can approach zero.

We can also define global stable and unstable manifolds as follows:

We(z,f) = {yeM:d(f*(z),f*(y)) — 0asn— oo}
Wz, f) = {yeM:d(f"(z),f"(y)) = 0 as n — oo}.
Note that these manifolds are invariant in the sense that f(W?*(z,f)) =

W3(f(z), f). Although locally differentiable, the manifolds can have extremely
complicated structure in general.

4.2 Discussion

We now return to the investigation of shadowing orbits.

!See, for example [17] for a brief introduction into this material.
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There have been some attempts to examine the linear theory regarding
nonuniformly hyperbolic maps in order to make statements about shadowing
behavior (see for example [21]). However, since the nonexistence of shadow-
ing orbits fundamentally results from degeneracy in the linear theory, it may
also be useful to consider what happens in terms of the structure of nearby
manifolds.

For almost every z, f looks locally hyperbolic. However, in nonhyperbolic
systems if we iterate the orbit {f*(x)}, we expect that we will eventually
approach some sort of degeneracy.

For example, one possible scenario is that for some point a € {f*(z)},
Ws(a, f) and W*(a, f) are nearly tangent and intersect each other at some
nearby point, y as shown in figure 4.1. As illustrated in the figure, this
structure implies a certain scenario for the evolution of the manifolds as we
map forward with f or backward with f~!. We will argue that this situation
1s in some sense a multidimensional analog for the “folding” behavior we
observed in one dimension.

For one thing, the homoclinic intersection of manifolds can prevent or
at least hamper shadowing. We illustrate this in figure 4.2. Consider for
example two nearby points a and b such that d(a,b,) < é and let {c,} be a
d—pseudo-orbit of f with the following form:

fMa)ifn <0
fr)yifn>0

Cn

In a uniformly hyperbolic scenario as shown in figure 4.2(a), we can easily
pick a suitable orbit to shadow {c,}, namely {f*(z)} where z = W*(a, f) N
W2(b, f). However if a homoclinic intersection is nearby as in figure 4.2(b),
we see that there is no obvious way to pick a shadowing orbit, since there
may be no point z satisfying z = W¥(a, f) N W2(b, f).

Note that the difficulty in finding a shadowing orbit seems to depends on
how close a is to the homoclinic tangency, and the geometry of the manifolds
nearby. Shadowing seems to be more a problem if the radius of curvature
of the manifolds is high. On the other hand, there maybe many nearby
tangencies that do not cause trouble if manifolds are jagged or have sharp
cusps.
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Figure 4.1: Possible situation near a homoclinic tangency. Note how a “fold” in
the unstable manifold is created as we map ahead by f”, and a “fold” in the stable
manifold is created as we map back by f~".
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Figure 4.2: An illustrative example of how homoclinic tangencies can cause prob-
lems for shadowing

Figure 4.3: Why higher dimensional maps might exhibit asymmetrical shadowing
in parameter space.
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One might also imagine that homoclinic tangencies could cause asym-
metrical shadowing in parameter space. As we map the region near the
tangency ahead using f we see that a tongue, or fold of the unstable mani-
fold develops. It may be the case, for example that for some slightly higher
parameter value, the corresponding fold in the unstable manifold overlaps the
fold corresponding to the original system. In this case we might expect that
the original system would have difficulty shadowing a trajectory close to the
apex of the fold in the higher parameter system. This is shown in figure 4.3.
A similar argument works for f~!. Numerical results seem to indicate that
for some families of systems at least, there is an ordering in parameter space
such that as we increase (or decrease) the parameter value, the systems get
progressive more “flexible” in sense that a system that is more “flexible” can
always shadow an orbit of a system the is less flexible.

ws(‘Fh( a))

b ‘T‘ncv\)
'Fnc ¢) £ h( ;,)

Figure 4.4: Refolding after a subsequent encounter with a homoclinic tangency.

Also recall that with maps of the interval, a folded region can get refolded
upon a subsequent encounter with a turning point. A similar thing can also
happen in higher dimensions. Consider figure 4.4 for example. Here we see
that the folded tongue of the unstable manifold gets refolded back on itself,
possibly allowing “lagging” orbits to catch up so that shadowing is possible.
This suggests that there may be interesting shadowing results of the sort
described in Chapter 3 for one dimension. The situation here, however, is
more complicated since in one dimension there were only a finite number of
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“sources” of folding, namely the turning point, while here there a likely an
infinite number of sources for the folding.
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Chapter 5

Parameter estimation
algorithms

5.1 Introduction

In this chapter we present new algorithms for estimating the parameters of
chaotic systems. In particular we will be interested in investigating esti-
mation algorithms for nonuniformly hyperbolic dynamical systems, because
these systems include most of the “chaotic” systems likely to be encoun-
tered in physical applications. From our discussion in Chapters 3 and 4,
we know that there are three basic effects that are important to consider
when designing a parameter estimation algorithm for nonuniformly hyper-
bolic dynamical systems: (1) most data points contribute very little to our
knowledge of the parameters of the system, while a relatively few data points
may-be extremely sensitive to parameters, (2) the sensitive sections of orbits
reflect nearby “folding” behavior which must be accurately modeled in order
to extract information about the parameters, and (3) the “folding” behavior
often results in asymmetrical shadowing behavior in the parameter space of
the system, so we can generally eliminate only parameters slightly less than
or slightly greater than the actual parameter value. The goal is to develop
an efficient algorithm that takes all three of these effects into account.

70



Our basic strategy will be to take advantage of property (1) above by using
a linear filtering technique to scan through most of the data and attempt
to locate parts of the trajectory where folding occurs. In sections of the
trajectory where folding does occur, we will examine the data closely using
a type of Monte-Carlo analysis which we have designed to circumvent the
numerical pitfalls that accompany work with chaotic systems.

We begin this chapter by surveying some traditional filtering techniques
and examining some basic approaches for parameter estimation problems
(section 5.3). Those readers who are familiar with traditional estimation
theory may wish to skim these sections. We go on in section 5.4 to exam-
ine how and why traditional algorithms fail in high-precision estimation of
chaotic systems. We then propose a new algorithm for estimating the pa-
rameters of a chaotic system in one dimension (section 5.5). This algorithm
is generalized in section 5.6 to deal with systems in higher dimensions.

Numerical results of these algorithms describing the performance of these
techniques are presented in Chapter 6.

5.2 The estimation problem

Let us begin by restating the problem.! Let:

Tutr = fp(an) (5.1)
and Yn = Tp+ Up (5.2)

where z,, is the state of the system, y, are observations, v,, represents noise,
f evolves the state, p € I, C R is the scalar parameter we are trying to
estimate, and I, is a closed interval of the real line.

!Note that the setup in ( 5.1) and ( 5.2) is somewhat less general than standard formu-
lations of filtering problems. For example one could add an extra term, wy, to represent
the “system noise” so that z,4+1 = fp(€n) + wn, or one could add and extra function,
hn(z), so that y, = h,(zs) + va, to reflect the fact that the observations might represent
a more a general function of the state. However, we have elected to the keep problem as
simple as possible in order to concentrate on how chaos affects estimation, and in keeping
with the presentation in Chapters 2-4.
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It will also be useful to write the system in ( 5.1) and ( 5.2) in terms of
Un = (zn,p), a combined vector of state and parameters:

Uny1 = g(un) (5.3)
Yo = Huu, + o, (5.4)

where the map, g, satisfies g(z,p) = (f,(z),p), and:

I, 0
io= 0] (5.5)

where [, is a ¢ x ¢ identity matrix if the state, z, has dimension g.

We now make a few remarks about notation. In general, throughout
this chapter, the letters z, p, u will correspond to state, parameter, and

state-parameter vectors. Set z" = (2o, Z1,...,Zn), Y™ = (Yo, Y1,---+Yn), and
u™ = (Upgy Uty .-y Un).
The symbol “*” above a vector will be used to denote an estimate. For

example. the estimate of the parameter p based on the observations in y"
will be denoted p,. We will also use the notation, i, to denote an estimate
of u, based on observations, y*. Similarly, the symbol “” will be used to
denote an “error” quantity. For example we might write that @, = u, — tiy.

5.3 Traditional approaches

We now examine some basic methods for approaching parameter estimation.
In sections 5.3.1 and 5.3.2 we mainly concentrate on providing the motivation
behind linear techniques like the Kalman filter. This treatment is extended
in the section 5.3.3, where nonlinear techniques are discussed in more detail.
The material in this section is well-known in the engineering community, but
we explain it here because it provides the basis for new algorithms we develop
later to deal with chaotic systems.

There are a variety of ways to approach parameter estimation problems.
Engineers have developed a whole host of ad hoc “tricks” that may be applied
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in different situations. The basic idea, however, is relatively simple. Given
observations, {yx}}-q, and a model for f,, we would like to pick our parameter
estimate, p = p,, so that there exists an orbit, {Zx(p)}r_o, of f, that makes
the residuals,

€(p) = yx — Zx(p)

as “small” as possible for £ € {0,1,...,n}. In order to choose the best
possible estimate, p,,, we need some criteria for evaluating how “small” these
residuals are.

From here, there are a number of different ways to approach the problem
of how to choose the optimizing criteria to make use of all the known infor-
mation. In fact, the recursive Kalman filter itself has many different possible
interpretations. Many of the different approaches to parameter estimation
provide interesting insight into the estimation problem itself. Our objective
here will be to motivate some of the different ideas on how to look at pa-
rameter estimation, without getting immersed in specific derivations. The
reader may consult texts like [2], [26], or [20] for more detailed and/or formal
treatments of this subject.

5.3.1 Nonrecursive estimation

Least squares estimation

One of the simplest ideas about how to estimate parameters is to choose
the estimate p, so that p = p, minimizes a quantity like:

S’ = inf i"iin T R’ -1 ,'—-.f,‘n 5.6
0= o e {g(y m(P)" (R)™ (v — 2n(P)}  (5.6)
where Z(p) is the set of all orbits of f, and (R:)~! are symmetric positive-
definite matrices that weight the relative importance of various measure-
ments. This sort of idea, known as least squares estimation, dates all the
way back to Gauss [19].

The formulation in ( 5.6) is not really useful for estimating parameters
in practice, since there is no direct way of choosing p, to minimize ( 5.6).
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Things become more concrete, however, if we assume the function g in ( 5.4)
is linear in both state and parameters. 2 In this case we can write that:

y" = Guup + V" (5.7)

where (G, is a constant matrix that effectively represents the dynamics of
the system. Our goal is to get a good estimate for ug = (zo,p) based on
the observations in y™. In this case, least squares estimation amounts to
minimizing
n T p— n n
Su(uo) = (3" = Gn(uo))" Ry (y" = Gu(u")) (5.8)

with respect to ug where R;! are positive-definite weighting matrices. Qur
estimate for ug based on y", Uop, = (Zojn, Pn), is the value of uo that mini-
mizes S, (uo). We can find the appropriate minimum of S,(uo) by taking the
derivative of S, with respect to ug. If we do this we find that thus value of
ug that minimizes S, (uo) is:

o = (G R, 'Gn) 'GL R 'y" (5.9)

where GZ denotes the transpose of G,,.
Stochastic framework

Another way to approach the problem is to think of u,, y,, and v, as
random variables. We shall assume that the v,’s are independent random
variables with zero mean. The idea is to choose a parameter estimate, p,,
based on y™ so that the residuals, €;(p) = y; — Z;(p), are as close to zero as
possible in some statistical sense for i € {0,1,...,n}.

We can write the probability density function 3 for u, given y* according
to Bayes rule:

P(y*un) P(ur)
P(y*)

ZNote that this assumption is extremely restrictive in practice, since even if the system
is linear with respect to state, it is generally nonlinear with respect to combined states
and parameters. The purpose of this example, however, is to simply motivate linear ideas.
We address nonlinearity in the next section.

3Contrary to common convention, our choice of the letter p for the “parameter” neces-
sitates using a capital P to denote probability density functions. Thus P(u, |y*) represents
the density for for u, given the value of y*.

- P(unly®) =

(5.10)
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These density functions describe everything we might know about the states
and parameters of the system. Later we will examine more closely how track-
ing such probability densities in full can provide information about how to
choose parameter estimates, especially in cases involving nonlinear or chaotic
systems. To start with, however, we concentrate on examining conventional
filters which look only at first and second order moments of these densities.

Minimum variance

Given the density function, P(uo|y"), one approach is to pick the estimate,
tlg|n, to minimize the variance,

E[(UO - ﬂOln)T(uo - &O{n)] (51 1)

where Efz] = [z P(z)dz denotes the expected value of z. This criterion is
called the minimum variance condition. It turns out that this estimator has
particularly nice properties. For instance, it is not hard to show (eg, [52])
that the gy, that minimizes ( 5.11) also satisfies:

Uop, = Eluoly™].
for any density function, P(uo|y™).

Now suppose that g is linear in state and parameters so that ( 5.7) is
satisfied. Let us attempt to find the so called optimal linear estimator:

'&Oln = Anyn + bn

where the constant matrix, A,, and constant vector, b,, are chosen to mini-
mize the variance condition in ( 5.11). Assuming that the estimator is unbi-
ased (ie, E(up — 4(n|0)) = 0) then:

b, = E(uo) — A E(y™).
Minimizing E[(uo — tojn )T (u™ — dop,)] we find ( [52]) that
A, = (Q '+ GIR'G)'GTR™! (5.12)

where Q = E[uoul] is the covariance matriz of uy and R, = E[v"(v™)7T] is
the covariance matrix of v™. Thus we have that:

ol = E(uo) + An(y" — Ely"])- (5.13)
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where A, is as given in ( 5.12). Comparing this result with ( 5.9) we see
that the g, above, which we derived as the linear estimator with minimum
variance, actually looks a lot like the estimator from the deterministic least
squares approach except for the addition of a prior: information about wug
(in the form of E(uo) and the covariance ). With the minimum variance
approach, the weighting factor R, also has a definite interpretation as the
covariance of the measurement noise.

Furthermore, if we assume that u,, and v, are Gaussian random variables,*
and attempt to optimize the estimator 4o, for minimum variance, we again

find ( [27]) that dg}, has the form given in ( 5.12) and ( 5.13).

Thus, in summary, we see that the “optimal” estimator, g, as given in
(5.12) and ( 5.13) has a number of different interpretations. If the system, ¢,
is linear then the estimator can be thought of as resulting from a deterministic
least squares approach. If u, and v, are thought of as random variables, then
o, = Eluoly™], and if we assume that u, and v, are Gaussian then the dop,
given in ( 5.13) satisfies the minimum variance condition. Alternatively, if we
drop the Gaussian assumption and search of the best linear estimator that
minimizes the variance condition, we find that g, as given in ( 5.12) and
( 5.13) is the optimal linear estimator. All these interpretations motivate us
to use the estimator given in ( 5.12) and ( 5.13).

5.3.2 The Kalman filter

We now have the form of an “optimal” filter for linear systems. However,
the filter has problems computationally. It would be nice if there were a
way so that new data could be taken into account easily without having to
recompute everything. This is accomplished with the recursive Kalman filter.

The Kalman filter is mathematically equivalent to the linear estimator

4A random variable v € R? has Gaussian distribution if

P(v) =

e~ 3(=E@)TE] (v-E(v))

(2m)}

where E[v] is the expected value of v and £, = E{vvT] is the covariance matrix of v.
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described in ( 5.12) and ( 5.13), except that it has some important com-
putational advantages. The basic premise of the Kalman filter is that the
“state” of the filter can be kept with two statistics, t,, and X,,, where X,
is the covariance matrix, E[(ty — Ginjn )(Un — Ginjn)T]. Once we have these two
particular statistics, it will be possible, for example, to determine the “next
state” of the filter, d,41jn+1 and X, 1qjnq1, directly given a new piece of data,
Yn+1, the filter’s present state, ti,,, Xynn, and knowledge of the map g.

Specifically, suppose we are given the linear system:
Un+1 = q)nun
Yn = Hpun +vn.

where v,, are independent random variables with zero mean and covariance
R,.. The recursive Kalman filter can be written in two parts:

Prediction:
ﬁn+1ln = ‘Dnﬁnln (5.14)
E'n,+1|n = (I)nznlnq)z+Rn+l (515)
Combination:
ﬁn+l]n+1 = &n+l|n+l(n+1(yn+1‘Hn+1an+1[n) (516)
Sntiptr = (I = Kny1Hot1)Zns1pn (5.17)

where the Kalman gain, K, 41, is given by:

A’n+l = 2:n+1|n}13.|.1[I1n+1E'n,+1|nI{,Z‘_}_1 + Rn+l]_1- (518)

Motivation and derivation

The Kalman filter can be motivated in the following way.> Consider the
metric space, X, of random variables where inner products and norms are

defined by:

(z,y) = Elzy"]
and ||z|| = (z,z)

$Much of the explanation here follows the exposition in Siapas [51].
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if z,y € X. Let Y, = span{yo,y1,...,yn} be the space of a all linear com-
binations of {yo,¥y1,...,yn}. To satisfy the minimum variance condition, we
would like to pick i,, € Y, to minimize:

Elali,] = |||

where %, = u, — ty},. This formulation gives a definite geometric inter-
pretation for the minimization problem and helps to show intuitively what
the appropriate iy, is. In order to minimize the distance between u, and
Upin € Yy, it makes sense to pick iy, so that i, is orthogonal to Y,. That is,
we require:

(Un,y) =0 (5.19)

for any y € Y,,. It 1s not hard to show that this condition is in fact sufficient
to minimize E[l,] (see eg, [2]). From a statistical standpoint, this result
also makes sense since it says that the error of the estimate, ,, should be
uncorrelated with the measurements. In some sense, the estimate uses all
the information contained in the measurements.

We can now derive the equations of Kalman filter. The prediction equa-
tions are relatively straightforward:

&n+1|n = E[un+1|yn] :q)nanln

Zn+1|n = E[(un+1|n - uni—lln)(un+1|n - un-’l\-1|n)T] = ¢n2n|n®£ + Rn+1-

For the estimator 1,41 to be unbiased, @, 41jn41 must have the form
given in ( 5.16). Now let us now verify that the formula for K,4; in ( 5.18)
makes the Kalman filter an optimal linear estimator. To do this, we must
show that K, minimizes the variance, E[&Z:Hﬁnﬂ], where U,y = Upyy —
Ung1fnt1- SI0CE Uppqjng1 € Ynpr we know from ( 5.19) that a sufficient condi-
tion for E[aX,  Un41], to be minimized is that:

T - . AT
Bty Untrpnt1] = TraceEling1lyyqne1] = 0. (5.20)
Let us investigate the consequences of this condition. First we have:

ﬁn+1 = QO u, — [ftn+1{n + Kn+1(yn+1 - Hn+1ﬂn+1|n)]
= Opun — Pplinpn — Kng1[Hng1Unt1 + Vng1] + Knp1 Hn1 @ntinpn
= (I - Kn+1Hn+l)q)nﬁ'n - Kn+1vn+l
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So,
Eltns1i)pypns1] = E[{(I = Kng1 Hug1)®ntln — Kng1vny}
{tngipn + Kng1(Yntr — Hn+1ﬁn+1|n)}T]
= FE{({ — Knt1Hnt1)®rtn — Kiy1vpn4a})
{®ntnn + Knp1Pntin + Kpi10nt1}] (5.21)
Since we require that E[ald,,] = Trace{E[G,al]} =0, from ( 5.21) we get
that:
T”GCG{E[ﬁnﬂﬁnﬂlnH]T}
= Trace{(I = Knt1Hn41)®, ElintlJOTHI KT | — Knp1 Elvpsivl ]KL )
= Trace{®, S ®TH (KT, | — Knp1 Hp1 9,5, ®THY KT | — Ko 1 Ro K21}
= Trace{[2n+1|nHZ+1 - Kn+l(H'n+1 En+l|’nH7’{+l + Rn+1 )]KTZ"FI}

Thus, choosing K41 = 2n+1|nH;{+1[Hn+12n+1|nH;{+1 + R,1]™! as in
(5.18) makes Trace{ (il tin41jnt1]} = 0 and therefore minimizes E[al, tny1].

The equation for ¥, 1jn41 in ( 5.17) can then be derived by simply eval-
uating Ypyijnt1 = E[agﬂﬁnﬂ]-

5.3.3 Nonlinear estimation

Probability densities

The filters we looked at in the previous section are optimal linear esti-
mators in the sense that a minimum variance or least squares condition is
satisfied. Estimators like the Kalman filter are only optimal, however, if the
system 1is linear and the corresponding probability densities are Gaussian.
Let us now, however, consider how one might approach estimation problems
when these rather stringent condition are relaxed.

Let us begin by recalling the density function in (5.10):

P(yklun)P(”n)
P(y*)
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where u, = (x,,p) is the joint vector of state and parameters and y* =
(Yo, Y1,---,Yyk) represents a vector of observations. This density function
represents everything we know about a state given the observations specified.
Techniques that use this density directly to estimate the parameters of a
system are known as Bayestan estimation algorithms. For example, one
might simply attempt to pick an estimate, i, so that P(u,|y*) is maximized
at Up = Up. This is known as a maximum a posteriori (MAP) estimate.

If the system, g, is linear in ( 5.4) and all the a priori information and
measurement noises are Gaussian, then the MAP estimator gives the same
answers as the Kalman filter (eg, see [20]). We can see this by considering
how the appropriate conditional probability densities get transformed by the
dynamics of a linear system and combined with new data, as in the prediction
and combination steps of the Kalman filter. For example, suppose that the
density, P(u,|y™) is Gaussian for some value of n (see figure 5.1). The density,

P (Uml\ym‘ )

Puy) P )

Figure 5.1: Mapping probability densities using ¢ and combining them with new
information. This is a probabilistic view of what a recursive estimator like the
Kalman filter does. Note that Gaussian densities have equal probability density
surfaces that form ellipsoids. In two dimensions we draw the densities as ellipses.

P(tn41|y™), can be then determined from P(u,|y™) by simply “mapping”
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P(un|y™) using the system dynamics, g. More precisely we have that:

Punpaly™) = D [P(zly")[Dg(2)]7"] (5.23)
z€U (un+41)

where U(uny1) = {z]z = g7 (un+1)} and [Dg(z)| is the determinant of the
Jacobian of ¢ evaluated at z. It is not hard to show that if ¢ is linear and
P(u,|y™) is Gaussian then P(un41|y") is also Gaussian. Also by Bayes rule,
(P(A,B) = P(A|B)P(B) = P(B|A)P(A)) we have that:

P(un+]7yn+llyn) = P(un+1|yn+1)P(yn+1‘yn) = P(yn+11un+1,yn)P(Un+1Iyn)

where P(yn41|y™) = [ P(Yn+1|tnt1)P(tns1|2")duny1. Thus we find that com-
bining information from a new measurement, y,1, results in the density:

n+1) _ P(ynt1|tns1) P(unia|y™)
P(Yn+1ly™)

Since the denominator is independent of w,4q, 1t 1s simply a normalizing
factor and is therefore not important for our considerations. Also note that
since P(Ynt1ltng1) and P(un41]y™) are Gaussian, P(un41]y™*') must also
be Gaussian. Thus, by induction if all the data is Gaussian distributed,
then P(u|y*) must be Gaussian for any k. Also, the MAP estimate and

minimum variance estimate for u,,, are both the same, namely t,1jn41 =
1
Elunly™*].

P(tny1 ly (5.24)

Now consider what happens if the system is nonlinear. The appropriate
densities still describe all we know about the states and parameters. In
particular, the equations in ( 5.23) and ( 5.24) are still valid descriptions of
how to map ahead and combine densities. However, in general there are no
constraints on the form of these densities. As a practical matter, the problem
becomes how can we deal with these arbitrary probability densities? How can
one represent approximations of the densities in a computationally tractable
form while still retaining enough information to generate useful estimates?
There have been a number of efforts in this area:

Extended Kalman filter

The most basic and widely used trick is to simply linearize the system
around the best estimate of the trajectory and then use the Kalman filter.
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The idea is that if the covariances of the relevant probability densities are
small enough, then the system acts approximately linearly on the densities,
so linear filtering may adequately describe the situation. For the system,

Upy1 = g(un) (525)
Ynq1 = H’nun+vnv (526)

as in ( 5.3), ( 5.4), and ( 5.5), the extended Kalman filter is given by the
following equations, mirroring the Kalman filter in ( 5.14)-( 5.18):

Prediction:
Ungifn = G(Unpn) (5.27)
Zn+1|n = Dg(anln)znlan(ﬁnln)T (528)
Combination:
ﬁn+1|n+1 = ﬁn+lln + Kn+1(yn+1 - Hn+1an+1|n) (529)
Yrtingr = (I — KnyiHog1) X041 (5.30)

where the Kalman gain, K, 1, is given by:

Knyr = SoinHo gy [Hos 1 Snp1nHY 4y + R (5.31)

Other work in nonlinear estimation

A number of other efforts to do estimation on nonlinear systems have
concentrated on developing a better description of the probability densities.
For example, in [20] methods are presented that attempt to take into account
second order behavior from the dynamics. However, the method still relies
on a basically Gaussian assumption of the error distributions, since it com-
putes and propagates only the mean and covariance matrices of densities,
adjusting the computations to account for errors due to nonlinearity. Taking
into account higher order effects in the densities is in fact a difficult proposi-
tion because there is no obvious representation for these densities. Gaussian
densities are invariant under linear transformations, and are especially easy
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to deal with when it comes to combining data from new measurements. How-
ever, similar higher order representations do not exist.

Other methods do attempt to get a better representation of the error
densities. For example in [1], a method is proposed whereby the densities
are represented as a sum of Gaussians. For example, one might write:

P(u) = ZaiN(u; mi, $;)

where the a;’s represent scalar constants and N(u;m;, L;) evaluates the
Gaussian density function with mean m; and covariance matrix ¥; at u.®
If each of the Gaussians in the sum are localized in state-parameter space
(have small covariances) then we might be able to use linear filters to evolve
and combine each density in the sum in order to generate a representation
of the entire density.

5.4 Applying traditional techniques to chaotic
systems

In this section we examine why traditional techniques have a difficult time
performing high accuracy parameter estimation on chaotic systems. This
investigation will illuminate some of the general difficulties on encounters
with dealing with chaotic systems, and will provide some useful ground rules
for designing new parameter estimation algorithms.

Let us attempt, for example, to naively apply an estimator like the ex-
tended Kalman filter in ( 5.27)-( 5.31) to a chaotic system and see what
problems emerge.

The first problem one is likely to encounter is numerical in nature, and has
a relatively well-known solution. It turns out that the formulation in ( 5.27)-
( 5.31) is not numerically sound. The problems are especially bad, how-
ever, in chaotic systems because covariance matrices become ill-conditioned

6In other words, N(u;m;, £;) = (2 1) e~ Hu=m)TET (u=—m.) if q is the dimension of u.
g
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quickly as densities are stretched exponentially along unstable manifolds and
contracted exponentially along stable manifolds. Similar sorts of problem,
albeit less severe, have been encountered and dealt with by conventional fil-
tering theory. One solution is to represent the covariance matrix Y, as the
product of two matrices:

2'nln = S‘n.['n. ST

nlns

(5.32)

and propagate the matrices S, instead of ¥,,,. These estimation techniques,
known as square root algorithms, are mathematically the same as the Kalman
filter, but have the advantage that they are less sensitive to ill-conditioned
covariance matrices. Using square root algorithms, for instance, the result-
ing covariance matrices are assured to remain positive definite. Since the
decomposition in ( 5.32) is not unique, there are a number of possible imple-
mentations for such algorithms. The reader is referred to Kaminski {28] and
related papers for detailed implementation descriptions. ’

Other problems result from the nonlinearity of the system. Some of these
problems can be observed in general nonlinear systems, while others seem
to be unique to chaotic systems. First of all, using a linearized parameter
estimation technique on any nonlinear system can cause trouble, even if the
system is not “chaotic.” Often errors due to nonlinearity cause the filter
to become too “confident” in its estimates, which prevents the filter from
updating its information correctly based on new data and eventually locks
the filter into a parameter estimate with larger error than expected. This
phenomenon is known as divergence. ® It is not hard to see why divergence
can become a problem with estimators like the Kalman filter. For example, in
the linear Kalman filter, note that the the estimation error covariance matrix,
Y, can actually be precomputed without knowledge of the data. In other
words there is no feedback between the actual performance of the filter and
the filter’s estimate of its own accuracy. In the extended Kalman filter there
is also virtually no feedback between the observed residuals, y, — H,u,, and
the computed covariance matrix, X,,.

"In this thesis, whenever we refer to numerical results using square root filtering tech-
niques, the implementation we use is the one given in [28] labelled “Square Root Covariance
1L

8See eg, Ljung [38] for discussion of some related work.
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P(Un—

The divergence problem is considerably worse in nonuniformly hyperbolic
systems than it is in other nonlinear applications. This is because “folding,”
a highly nonlinear phenomenon, is crucial to parameter estimation. While
linearized strategies may do reasonably well following most chaotic trajec-
tories if the uncertainty variances are small, linearized techniques invariably
have great trouble with the sections of trajectories that are the most sensitive
to parameter perturbations. Figure 5.2 gives a schematic of what happens
when “folding” occurs. The linearized probability densities in that case be-
come poor approximations to the real densities. Note that the composite
densities look extremely long and thin because the densities have gotten
stretched and contracted along unstable and stable manifolds.

P(ynlun)

P(Yn+l luns1)

l|yn‘l)

Plunly™!)

Figure 5.2: In this picture we show what types of things that can happen to
probability densities in chaotic systems. Because of the effects of local “folding,”
linear filters like the Kalman filter sometimes have difficulty tracking nonuniformly
hyperbolic dynamical systems.

In Chapter 6, we show some examples of the performance of the square
root extended Kalman filter on various maps. The filter generally performs
reasonably well at first but eventually diverges as the trajectory it is tracking
passes close to a folding area. As we observed earlier, once the extended
Kalman filter becomes too “confident” about its estimate, it generally cannot
recover. While various ad hoc techniques can make small improvements to
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this problem, none of the standard techniques [ encountered did an adequate
job of handling the folding. For example, consider the case of the gaussian
sum filter, which is basically the only method that one might expect to
have a chance at modeling the folding behavior. Note that the densities in
the gaussian sum have to be re-decomposed into constituent gaussians every
few iterations because of spreading, as expansion along unstable manifolds
quickly pushes most of the constituent densities out into regions of near zero
probability. In addition, the position of the “apex” of the fold, which is
crucial to estimating the correct parameters, is quite difficult to get a handle
on without including many terms in the representation of the density.

5.5 An algorithm in one dimension

In the previous section we saw that traditional techniques do not seem to do
a reasonable job modeling the effects of “folding” on parameter estimation.
Since there seems to be no simple way of adequately representing a prob-
ability density as it gets folded, we resort to a Monte Carlo representation
of densities near folded regions, meaning that the appropriate densities are
sampled at many different points in state and parameter space and this data
is used as a representation for the density itself. The eventual hope is that
we will only have to examine a fraction of the data using computationally-
intensive techniques like Monte Carlo, since we know that only a few sections
of data are really sensitive to parameter values.

Though the ideas are simple, the actual implementation of such parame-
ter estimation techniques is not as easy one might think because of numerical
problems associated with chaotic systems. In this section we examine the ba-
sics of how to apply Monte Carlo-type analysis to chaotic systems by looking
at an algorithm for one-dimensional noninvertible systems. An algorithm for
higher dimensional invertible systems will be considered in section 5.6.
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5.5.1 Motivation

Let us consider the following question. Suppose we are given a family of
maps of the interval, f, : I, — I, for p € I, and noisy measurement data,
{yn}, such that:

ITn+1 = fpn(xn)

and Yn = Tp + Uy,

where z, € I, for all n, I, C R, and pg € [, C R such that f,, is “chaotic.”
Suppose also that the v,,’s are zero mean Gaussian independent variables with
covariance matrix, R,, and that we have some a prior: knowledge about the
value of po. Given this information, we would like to use the state samples,
{yn}, to get a better estimate of py. Let us assume for the moment that we
have plenty of computing power and time. What sort of method is likely to
extract the most possible information about the parameters of the system
given the state data?

The first thing one might try is to simply start picking parameter values,
p, near po and initial conditions, x, near yg, and attempt to iterate orbits of
the form, {fi(z)}i o, to see if they come close to {yi}%,. If no orbit of f,
follows {y;}7, then we know that py # p. As we increase n, many orbits
of the form, {fi(z)}%,, diverge from {y}i,, and we can gradually discard
more and more values of p as candidates for the actual parameter value, py.

5.5.2 Overview

In order to implement this idea, we first need some criteria for measuring how
“close” orbits of f, follow {y;} and some rules for how to use this information
to decide whether the parameter value, p, should remain a candidate for our
estimate of py. Basically, we want p to be eliminated if the best shadowing
orbit, {fz’,(z)}, of f, is far enough away from {y;} that it is highly unlikely
that sampling {f,(x)}, could have resulted in {y;}, given the expected mea-
surement noise. As discussed earlier, one way to do this think of z,, y,, and
po as random variables and to consider a probability density function of the
form, P(zq,poly™). Our goal will be to numerically sample such probability
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densities and use the results to extract information about the parameters.
This is accomplished in “stages,” since we can only reliably compute orbits
for a limited number of iterates at once. Information from various stages
can then be combined to construct the composite density, P(zo,poly™), for
increasing values of n.

So, for example, let us examine how to analyze the kth stage of observa-
tions, consisting of the data, {y; %:“, where Ni4 1s chosen to be as far away
from N as possible without greatly affecting the numerical computation of
orbits shadowing {yi}%:“. Let y[a, bl = (Ya,Yat1,---,Ys), be a vector of state
data. We begin by picking values of p near po. For each of these param-
eter samples, p, we pick a number of initial conditions, z, and iterate out
orbits of the form, {fi(z)}i_y,, for n > Nj to evaluate P(zn,|po,y[Nk,n])

for increasing values of n. °

For each n > N, we want to keep track of the set of initial condi-
tions zo € I, such that P(zn,|po,y[Nk,n]) is above a threshold value. If
P(zn,|po, y[Nk,n]) is below the threshold for some value of zy,, we dis-
card the orbit {fi(zn,)}io because it is too far from {y;}}, and attempt to
repopulate a region, Ug(p,n) C I, in state space with more initial con-
ditions, where Ui(p,n) is constrained so that z € Ui(p,n) implies that
P(zn, |po,y[Nk,n]) is above the threshold. Some care must be taken in figur-
ing out how to choose Ui(p, n) so that new initial conditions can be generated
effectively. Without care, these regions develop Cantor-set-like structure that
is difficult to deal with.

After collecting information from various stages, we then recursively “com-
bine” the information from consecutive stages (similar to probabilistically
combining densities in the Kalman filter) in order to determine the appro-
priate overall statistics for concatenated orbits over multiple stages. After
combining information, at the end of each stage we also take a look at the
composite densities of for the various parameter samples, p. Values of p whose

9Note that P(zn, |po, y[Ni,n]) is sufficient to determine P(zn, ,poly™) for any partic-
ular value of p, since:

P(zn,,poly") = P(zn,|po, ¥™ ) P(po)

where P(po) is a normalizing factor quantifying a prioriinformation about the parameters.
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densities are too low are thrown out, since this means that f, has no or-
hits which closely shadow {yi}f";gl. The surviving parameter set, ie, the set
in parameter space still being considered for the parameter estimate, must
then be repopulated with new parameter samples. The statistics of the new
parameter samples may be determined through a combination of interpo-
lation with nearby parameter samples and recomputation of the statistics
of nearby stages. Because of the asymmetrical behavior in shadowing dis-
cussed 1 Chapters 3 and 4, we find that P(zo,poly™*), generally has an
extremely asymmetrical structure with respect to p. Specifically, the density
P(ro.poly™*) generally drops off extremely rapidly for parameters at either
the higher or lower end of the surviving parameter range (see numerical re-
sults in section 6.1). This allows us to get an extremely accurate parameter
estimate for py by simply choosing our estimate, py,,,, to be the extremum
of the surviving parameter range where the density drops off rapidly.

A block diagram summarizing the main steps in algorithm is shown in
figure 5.3.

5.5.3 Implementation

Below we explain various aspects of the algorithm in more depth. Note that
unless otherwise indicated, z,, yn, and po refer to random variables in the
discussion below.

Evaluating probability densities

The first thing we must address is how to compute the values of relevant
densities. From ( 5.24) we have that:

P(yn o, po) P(xo, poly™ ")

P(zo,poly™) = 5.33
0 POIy ) P(yn|y"“1) ( )
Expanding the right hand side of this equation recursively we have:

P(zo, poly™) = K1P(z0,p0) [] N(yi; £, (z0), R:) (5.34)

1=0

89



Start new -
Stage

v

Determine
the number
of iterates in stage

Y

[terate out
shadowing -
orbits for
each parameter
sample

Add new
* parameter
) samples

Combine
stages

Y

Delete bad
parameter
samples

Figure 5.3: This block diagram illustrates the main steps in the proposed estima-
tion algorithm for one-dimensional systems. The algorithm breaks up the data in
sections called “stages.” The diagram above shows the basic steps the algorithm

takes in analyzing each stage of data.
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where K is some constant and P(zo, po) is the probability density represent-
ing a priori knowledge about the values of z¢ and po, while N( ;0(:170); vi, R;)
is the value of a Gaussian density with mean f} (zo) and covariance matrix
R; evaluated at at y;. In the limit where no @ priori knowledge about z is
available, the weighting factor, P(z, po), reduces to P(po), reflecting a prior:
information about the parameters. Then, taking the natural log of ( 5.34)
we get that:

logl Py, poly™)] = K +1oglP(po)] = 5 3-(Ji(20) = 1) BT (£ (a0) = 1) 45.35)

where K is a constant. Note that except for the extra term corresponding

to the a priori distribution for po, maximizing ( 5.35) is essentially the same
as minimizing a least squares criterion. Also note that for any particular
value of py we have from ( 5.35) that:

log[P(zolpo,y™)] = log[P(zo, poly™)] — log[P(po)]
= Ky = 5 3 (fila) — ) BT (o) = wi). (5.36)

1=0

Representing and dividing state regions

Given a parameter sample, pp, and stage, k, we need to specify how
to choose sample trajectories, {f (zn,) "M to shadow {vi}iy, forn €
{Ng, Ne+1,...,Ngy1}. Foreachn € {Ng, Ny +1,..., Nyy1} we want to keep
track of the set of “interesting” initial conditions, Ux(pg,n) C I, from which
to choose states, zy, to evaluate the density, P(zn,|po, y[Nk, n]). We require
that if zn, € Ux(po,n), then zy, must satisfy the following thresholding
condition:

log[P(zn,|po, y[Ne,n])] = sup  {log[P(zn,|po,y[Ne,n])]} — o*  (5.37)

TN, €l
for some constant, ¢ > 0 so that the orbit, {f;o(ka)}?;{)N", follows suf-
ficiently close to {y;}l_y,. o can be interpreted to be a measure of the
maximum number of “standard deviations” zy, is allowed to be from the
best shadowing orbit of the map, f,. This interpretation arises since if
P(zn,|po,y™) were Gaussian, the condition, ( 5.37), would be satisfied by
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all states, zy,, within ¢ standard deviations of the mean, Zn,(po,n) =
fka c1, TN, P(2N, [po, y[ Nk, n])dz.'® To be reasonably sure we don’t acciden-
tally eliminate important shadowing orbits of f,, close to {y;}, we might
choose, for example, for o to be between 8 and 12.

Given a parameter sample, po, let Vi(po,n) C I, represent the set of all
zn, € I, satisfying ( 5.37). Recall that Ug(po, n) represents the set of points
from which we will choose new sample initial conditions, zy,. We know that
we want Ug(po,n) C Vi(po,n), but problems arise if we always attempt to
saturate the set Vi(po,n) with sample trajectories. For low values of n,
Vie(po,n) is an interval. In this case, let Ug(po,n) = Vi(po,n) and we can
simply choose initial conditions, zy,, at random inside Vi(po,n) to generate
samples of P(zn,|po,y[Nk,n]). As n gets larger, Vi(po,n) tends to shrink
as f;}‘N" expands regions in state space and more trajectory samples get
discarded from consideration for failing to satisfy ( 5.37). However, as long
as Vi(po,n) is an interval, continue to set Uy(po,n) = Vi(po,n), since it is not
hard to keep track of Vi(po,n) to repopulate the region with new trajectory
samples.

A problem occurs, however, because of the folding around turning points.
If the region, f;*(Vi(po,m)), contains a turning point for some integer m > 0,
then as n grows larger than m, Vi(po, n) may split into two distinct intervals,
Vit (po,n) and V (po,n). Folding causes the two separate regions to get
mapped into each other by f7+! (ie, frt (ViF(po,n)) = ft (Vi (po,n)))-
In addition, the new intervals, V" (po, n) and V,~ (po, n), can also be split apart
into other separate intervals by similar means as n increases. In principle,
this sort of phenomenon can happen arbitrarily many times, turning Vi(po, n)
into a collection of thin, disjoint intervals. This makes it difficult to keep up
with a characterization of Vi(po,n), and makes it difficult to know how to
choose new initial conditions, zn, € Vi(n,p), to replace trajectory samples
that have been eliminated.

190ne might think that this Gaussian assumption may be a bad one and that in general
we might, for instance, want to make sure that we “kept” a set, @, of initial states such
that Pr(zn, € Q|po) > 1 — a for a > 0 small, where Pr(X) is the probability of event
X . However, in practice, the condition ( 5.37) is simpler to evaluate and works well for all
the problems encountered. The choice of thresholding value is not critically important as
long as it is not so high that close shadowing orbits are thrown away from consideration.
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Instead of attempting to keep up with all the separate areas of Vi(po, n),
and trying to repopulate all these areas with new state samples, we let
Uk(po,n) C Vi(po,n) be the single connected interval of Vi(po,n) where
P(zn,|po,y[Nk,n]) is a maximum.!’? We know that the separate areas of
Vi(po,n) eventually get mapped into each other, so there is no way that one
of the separate areas of Vi(po,n) can end up shadowing {y;} if no states in
Uk(po,n) can shadow {y,}. Since we are primarily interested in the best shad-
owing orbit of f,,, keeping up with orbits with initial conditions in Uy(pg,n)
is adequate.

Finally, note also that it is sometimes obvious that the parameter sam-
ple, po, cannot possibly be the correct parameter value. This happens if no
orbit of f, comes anywhere close to shadowing {y;}. In this case we can
immediately discard parameter sample, pgy, from consideration.

Deciding what parameters to keep

We need to evaluate how good a parameter sample is, so we know which
parameter samples to keep and which parameters to eliminate as a possi-
ble choice for the parameter estimate. After the completion of stage &, we
evaluate a parameter sample, po, according to the following criterion:

Lisi(po) = sup {log[P(zn,,poly™ )]} (5.38)

INk EII

which i1s what one would expect if we were interested in obtaining a MAP
estimate. Let Py be the set of parameter samples valid at the start of the
kth stage. We will eliminate a parameter sample, po, after the kth stage if it
satisfies the following formula:

Liy1(po) < sup {Lgy1(p)} — o’
p'€Px

where o > 0 is some measure of the number of “standard deviations” p is
allowed to be from the most “likely” parameter value.

UStrictly speaking we actually want to maximize
P(xn,._,po, Y[Nk-1, Ni]) P(z N, |po, [Nk, n]), (see the section how to “combine’ data). In
practice this almost always amounts to maximizing P(zn, |po, y[Nk, n]) because Uy (pg, n)
is generally much smaller than fNk=Ne-1(U,_y(po, Ni)).
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Choosing the number of iterates per stage

The necessity of breaking up orbits into “stages” is apparent, since orbits
can only be reliably computed for a limited number of iterates. We now
explain how to determine the number of iterates in each stage. Let pyrap(k),
be the MAP estimate for po, at the beginning of stage k (ie p = pmap(k)
is the parameter sample that maximizes Li(p) for any p € Pi). We want to
choose Ny to be as large as possible provided we are still able to reliably

compute orbits of the form, {f;o(:rNk)}iz"Jl-N", to shadow {yl}fg}f,‘t

Suppose that zy, € Uk(po,n). A reasonable measure of the number of
iterates we can reliably compute for an orbit like { f;o(xNk)}?goN" is given
by the size of Ui(po,n). If Ug(po,n) is small, this implies that small changes
or errors in initial state get magnified to magnitudes on the order of the
measurement noise. Since we need to compute states to accuracies better
than the measurement noise, it makes sense to pick Ny41 so that Ux(po, Nkt1)

1s a few orders of magnitude above the precision of the computer.

One complication that can arise, is that the sequence of states, {yn,, yn, +1,- - -

might correspond to an especially parameter-sensitive stretch of points, so
that there may be no orbit of f;,,, (k) that shadows the data, {y:}/_y, . In this
case, we cannot use the size of Ux(pmap(k),n) to determine Niyq. Instead of
using ppap(k) pick the next best parameter sample in Py, p'(k), where p'(k)
maximizes Ly, (p) for any p € Py, besides pprap(k). We then try to play the
same procedure with p’ that we described for ppmap(k). Similarly, if f; can-
not shadow the data choose another parameter value from Py, and so forth.
Eventually some parameter value in P, must work, or else either: (1) there
are not enough parameter samples, or (2) pp is not in the parameter space
region specified upon entrance to the kth stage. This can be especially be a
problem at the beginning of the estimation process when the parameters are
not known well, and parameter samples are more sparse in parameter space.
The solution is to choose parameters intelligently, choosing varying numbers
of parameter samples in different regions of parameter space and in different
situations (for example, to initialize the estimation routine).

Combining data from stages

As in the Kalman filter, we want to build a recursive algorithm so that
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data summarizing information for stages 1 through £ — 1 can be combined

with information from stage £ to produce results which summarize all knowl-

edge about stages 1 through k. Specifically, suppose that y[Ng, Npy1] =

(UNe> YNe+15- - -1 YNe,, ) “epresents the state samples of the kth stage. We pro-

pose to compute Ly41(po) using information given in Li(po), P(zn,_, |Po, y[Ne—1, Nk]),
and P(zn,,poly[Nk, Ne+1]). Then all information about stages 1 through &

can be represented by Liy1(po) and P(zn,|po, [Nk, Nk+1])-

From ( 5.38) we see that Li(po) depends only on P(zn,_,, poly™¥*) evalu-
ated on the orbit that “best” shadows the first /Ny state samples. In other
words if {Z;n, N is the “best” shadowing orbit based on the first N state
samples, then from (5.38) and ( 5.35):

Lk(PO) = log[P(xNk-—l = ‘%Nk—ﬂNk?pUlyNk)]
1 M

= K +log[P(po)] = 5 2_(Ziw, — yi) R (&an, — 9i)- (5.39)
1=0

One key thing to notice is that Ux_1(po, Ni) and Uk (po, Nk+1) should be
very small compared to the measurement noise, R;, for any 2. This is a reason-
able assumption as long as none of the measurements have relative accuracies

on the order of the machine precision. Therefore we can approximate Z;y,,,
with &;n, for e € {0,1,..., Nk_1} in ( 5.39) and if we let:

lNk—l N _ .
Ai(po) = log[P(po)] — 5 S Faves, — ¥) TR (BiNey, — i) (5.40)
=0

Then from ( 5.36), ( 5.39), and ( 5.40):

Li(po) = Ak(po) + sup {log[P(zn,_,|po, y[Nk-1, Ni])]} (5.41)

sz_IEIz
and also:
1 & T =1
Lk+1(p0) ~ Ak(po)—'i Z (-T?ilNk“"y{) Ri (‘rilNkﬂ—yi)
1=Ng_1
+ sup {loglP(e, o,y [Ne, Necal ]} (542
TN Clz
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We can now evaluate ( 5.42) given the appropriate representations of L (p),
P(zn,_,|po, Y[Nk=1, Ni]), and P(zn,|po,y[ Nk, Nk41]). The term on the right
hand side of ( 5.42) involving SUp,, 7, Can be approximated from our rep-
resentation of the density P(zn,|po, y[Nk, Nk+1]) by simply taking the max-
imum density value over all the trajectory samples. Likewise Ax(po) can
be evaluated from ( 5.41) in a similar manner given Li(po). The trajec-
tory {'%ilNk-{-l}‘fY—‘ka_l can be approximated by looking for trajectory sam-
ple ' € Ux_1(po, Nk) in the representation for P(zn,_,|po,y[Nk-1, Nk]) that
makes f;\g‘“‘Nk—l(x’) as close to Ug(po, Nk+1) as possible. Then let TiNgy, =
f;;o“N“-l(x’) for € {Nj-1,..., N}

Note that this assumes that Ug(po, Nk+1) C fégk-Nk_l(Uk_l(pg,Nk)). If

this is not true then no orbit of f,, adequately shadows {y; f‘ﬁg ' and we can

throw out the parameter sample pq.

Choosing new parameter samples and evaluating associated densi-
ties

Once a parameter sample is deleted because it does not satisfy ( 5.37), a
new parameter sample must be chosen along with the appropriate statistics
and densities. We want choose new parameters after stage k so that they
adequately describe Liyq1(p) over the surviving parameter range. In other
words we attempt to choose new parameters to fill in gaps in parameter
space where nearby parameter samples, p; and p,, for example, have very
different values of Liy1(p1) and Lg41(p2).

Once we choose the new parameter sample, p., we need to evaluate the rel-
evant statistics, namely Liy1(p«) and P(zn, |po = s, Y[ Nk, Nk41]). We could,
of course, do this by going back through all of data {y; fv__fa‘ ' and sampling
the appropriate densities. This, however, would be quite time-consuming,
and would likely not reveal much more information about the parameters
than we could get by much simpler means, assuming that enough parameter
samples are used. Instead, we interpolate Ax(p.) given Ai(p) for all valid
parameter samples, p € P,. We then compute P(zn,_, |po, ¥[Nk-1, Nk]) and
P(zN,|po, Y[ Nk, Nk41]) by iterating trajectory samples. We can then evaluate

Li41(p.) according to ( 5.42).
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Efficiency concerns

This algorithm is not designed to be especially efficient. Rather, it is
intended to try to extract as much information about the parameters of
a one-dimensional map as reasonably possible. For a discussion of some
performance issues, see the next section where we apply the algorithm to the
family of quadratic maps.

One way to increase the efficiency of this algorithm would be to attempt
to locate the sections of the data orbit that are sensitive to parameters, and
perform the appropriate analysis only on these observations. For maps of the
interval this corresponds to locating sections of orbit that pass near turning
points. The problem, however, is not as obvious in higher dimensions. Rather
than address this issue in a one-dimensional setting, in section 5.6 we will
look at how this might be done in higher dimensional systems using linear
analyses.

5.6 Algorithms for higher dimensional sys-
tems

In this section we develop an algorithm to estimate the parameters of general
nonuniformly hyperbolic systems. Suppose we are given a family of maps,
fo: M — M, for p € I, and noisy measurement data, {y,}, where:

Tutr = fpo(Tn)
and Yn = Zn + v,

where z, € M for all n, M is some metric space, and po € I, C R such
that f,, is nonuniformly hyperbolic. Suppose also that the v,’s are zero
mean Gaussian independent random variables with covariance matrix, R,,
and that we have some a prior: knowledge about the value of py. Our goal
in this section we develop an algorithm to estimate py given {y,}.

Like the algorithm for one-dimensional systems discussed in the last sec-
tion, the estimation technique presented here is based on an analysis of prob-
ability densities using a Monte-Carlo-like approach. The idea, however, is to
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avoid the heavy computational burden typical of Monte Carlo methods by
selectively choosing which pieces of data to fully analyze. Since most of
the state data in a nonuniformly hyperbolic systems apparently do not con-
tribute much information about the parameters of the system, the objective
is to quickly bypass the vast majority of data, but still construct extremely
accurate parameter estimates by performing intensive analyses on the small
sections of data that really matter.

5.6.1 Overview

The parameter estimation algorithm has two primary components. The first
component sifts through the data to locate orbit sections that might be
sensitive. The second component performs an analysis on the parameter-
sensitive data sections to determine the parameter estimate.

The data is first scanned using a linear estimator like the square root
extended Kalman filter. As described in Chapter 4, linear analyses can indi-
cate the presence of degeneracy in the hyperbolic structure of a system. In
the case of a recursive linear filter, degeneracies corresponding to parameter-
sensitive stretches of data are indicated by a sharp drop in the covariance
matrix of the estimate. We simply run the data through the appropriate
filter, look for a drop in covariance estimate over a small number of iterates,
and note the appropriate sections of data for further analysis.

The second component of the estimation technique consists of Monte-
Carlo-based technique. The underlying basis for this analysis is similar to
what was described in section 5.5 for one dimensional systems. Basically
the estimate is constructed by using information obtained by sampling the
appropriate probability densities in state and parameter space. There are,
however, a few important differences to point out from the one-dimensional
algorithm. First, since the systems are invertible, we iterate the map both
forwards and backwards in “time”!? in order to obtain information about

2For lack of a better term we use “time” to refer to increasing iterations of the discrete
map f,. For example applying f, to a state will sometimes be called mapping “forwards”
in time and applying fp'ol will be referred to as mapping “backwards” in time.
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probability densities. Also the higher dimensionality of the systems causes
a few problems with how to represent and choose regions of state space in
which to generate samples for. Finally instead of concatenating consecutive
“stages” by matching initial and final conditions of sample trajectories, we
generate only one stage for each section of sensitive state data. The stages
are separated in space and time, so there is no matching of initial and final
conditions.

5.6.2 Implementation

In this section we detail some of the basic issues that need to be addressed
in order to implement the proposed algorithm.

Top-level scan filter

The data is first scanned by a square root extended Kalman filter. The
implementation is straightforward: simply process the data and look for
drops in the error covariance matrix. There are two parameters that may be
adjusted: (1) a parameter, N, to set the number of iterates (time scale) to
look for degeneracies, (2) a parameter, o to set the threshold that governs
whether a section of data is sent to the Monte-Carlo algorithm for further
analysis. « is expressed in terms of a ratio of the square roots of the variances
of the parameter error.

Evaluating densities

Let y» = (yo,¥1,---,Yn). To estimate parameters, we are interested in
densities of the form, P(zo,po(y™). From ( 5.36) we have that:

log[P (o, poly™)]
= log P(po) + log[P(zo|po,y™))

n

— Ka+ log Plp) = 5 Y-(f (a0) = v BT (f (00) = 4(5.43)

where K is a constant.

Information about probability densities is obtained by sampling in state
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and parameter space. For a MAP estimator, we expect that the relative

merit of various parameters samples, po, would be evaluated according to the
formula:

L(poly™) = sup log[P(zq,poly™)]

zo€ls

= log P(po) + sup log[P(xo|po,y™)]

o€l

= K, + log P(po) — % sup {Zn:(f,ﬁo(fﬂo) —vi) RS, (o) — wi) -

zo€ls ;—g

In general, however, we will only consider a few sets of observations in
the sequence, {y;}. For example, suppose that for any integer, n > 0, the
linear filter has identified k(n) groups or “stages” of measurements that may
be sensitive to parameters. Then for each j € {1,2,...,k(n)}, define Y; =
{yilt € S;} to be a set of sensitive measurements that have been singled by
the linear filter, where the sets, S; C Z, represent the indices that can be
used to identify the measurements. From our arguments in in Chapters 3
and 4 we expect that most of the information about the parameters of the
system can be extracted locally by looking at each group of measurements
individually. Thus we consider the statistic, Li(n)(po) as a replacement for
L(poly™) where:

. LIRS

k(n)
Ky +log P(po) + > sup log[P(zo,polY;)]

j=1 %€k,

Liny(po)

k(n) , |
= Ku(k(m)) +log Plpo) — 5 3 [sup { 3= (f, (w0) — ) B (7 (x0) = v}
j=1 %0€lz jeg,
and K4(k(n)) depends only on k(n).

As in the one-dimensional case we eliminate parameter samples, p, that
fail to satisfy a thresholding condition: Ly,(p) > S“Pp'epk(n){Lk(n)(p’)} — o
for some o > 0 where Py, is the set of parameter samples at stage k(n).
In practice if Y for j € {1,2...,k(n)}, are really the main measurements
sampling parameter-sensitive areas of local “folding” then Li(n)(po) in fact
mirrors L(po|y™), at least with respect to eliminating parameter values that
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are not “favored.” This is the most important property of Li(,)(po) with
respect to parameter estimation since, as in the one-dimensional case, we
would like to choose the parameter estimate, p,, to reflect the extremum of
the surviving parameter range where L(po|y™) or in this case, Li(n)(po), drops
off rapidly.

Stages

Suppose that the linear filter decides that the data, {y;}, might be sensi-
tive near iterate : = Ni. Given parameter sample, py, we begin to examine the
density, P(zn,|po,y[Nk — n, Nt + n]) for increasing values of n by generating
trajectory samples of the form, {f; (zn,)}%_,, and evaluating:

log[P(zn, [po,y[Ne — n, Np +n])] = K ~ % 3 (filan) —v)TRTN( oy (2N,)

i=—n

for some constant, K. As in the one dimensional case, for each n we keep
only trajectory samples, zy, that satisfy a thresholding condition like:

log[P(l‘Nk IpO,Z/[Nk -n, N + n])]
> sup {log[P(zn,|po, y[Nk — n, Ni + n])]} — o® (5.44)

TNy eEM

for some o > 0. As n is increased, we replace trajectory samples that have
been thrown out for failing to satisfy ( 5.44) by trying new initial conditions
chosen at random from a bounded region in state space which we will denote
Bo(po, Ni,m). Bo(po, Nk,n) C M plays a role analogous to Ug(po, Ng41) in
the one-dimensional case, except that it is a multidimensional neighborhood
instead of simply an interval.

Representing sample regions

Given a specific parameter sample, py, we now discuss how to choose tra-
jectory samples. In particular we examine the proper choice of Bo(po, Nk, n)
for n > 0. For any n > 0, the objective is to choose By(pg, Nk,n) so that it
is a reasonably efficient representation of the volume of space occupied by
Xo(po, Nig,n) where Xo(po, Nk,n) C M is a bounded region in state space
such that z € Xo(po, Nk,n) satisfies ( 5.44). We want to choose a simple
representation for By(po, Nk,n) so that Bo(po, Nk,n) is large enough that
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Bo(po, Ngyn) D Xo(po, Nk, n), but small enough so that if an initial condi-
tion x is chosen at random from By(po, Nk, n) then there is high probability
that 2 € Xo(po, Nk,n). We get an idea for what Xo(po, Nk, n) is by iterating
old trajectory samples of the density, P(zn,|po, y[Nk—(n—1), N¢+(n—1)]),
and deleting the initial conditions that do not satisfy ( 5.44). Based on these
trajectory samples, we choose By(po, Nk,n) to be a simple parallelepiped
enclosing the surviving initial conditions. As new trajectory samples are
chosen by picking random initial conditions in Bo(po, Nk,n), we get a bet-
ter idea about the geometry of Xo(po, Nk,n) and can in turn choose a more
efficient Bo(po, Nk,n) to generate additional trajectory samples.

In our implementation of the algorithm, By(po, Nk,n) is always repre-
sented as a box. This method has the advantage that it is extremely simple
and also makes it very easy to generate a random initial condition within
the region, Bo(po, Nk, n). One could also use more sophisticated approxima-
tions for Bo(po, Ni,n). However, no matter what representation we use for
Bo(po, Ng,n), we are likely to have trouble after a while choosing new initial
conditions and iterating new sample trajectories to satisfy ( 5.44).

Dividing sample regions

There are two main reasons why the default choice of By(po, Nk,n) as
described above can cause problems. First, just as in the one-dimensional
case, high probability density areas in state space can split apart into sepa-
rate regions. For example, in figure 5.4 we see that regions A and B converge
towards each other in both forwards and backwards in time (ie, under the ac-
tion of both f, and f;!). Both regions include orbits that shadow {y; }fﬁ‘;:_n
for large values of n. Note that this sort of phenomenon is particularly likely
to happen near areas of folding, which are the areas we are most interested
in investigating. This situation is not good because if we attempt to choose
Bo(po, Nk, n) to be a large region enclosing both A and B, then there is low
probability that an initial condition chosen at random from Bo(po, Nk, n) will
satisfy ( 5.44). The solution to this problem, however, is not too difficult.
As in one-dimensional case we simply choose Xo(po, Nk,n) to be whichever
region, A or B, has the highest density values and concentrate on sampling
that region.
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Figure 5.4: Here we illustrate why there can be multiple regions shadowing the
same orbit. Near areas of folding, two regions, A and B can be separate, yet can
get asymptotically mapped toward each other both forwards and backwards in
time. Note that in the picture, A and B are located at intersections of the same
stable and unstable manifolds. This situation must be dealt with when sampling
probability densities and searching for optimal shadowing orbits.

Avoiding degenerate sample regions

The other problem is that Xo(po, Nk, n) tends to collapse onto a lower
dimensional surface as n gets large. This is due to the fact that the map,
fp» generally contracts and expands some directions in state space more
than others. Our ability to compute orbits like {f;o(z) *__,. is related to
the largest expansion factor of either f). or f " (eg, the square root of
Dfr(z)TDfr(z)). If Xo(po, Nk,n) collapses onto a lower dimensional sur-
face, that means that across the width of the surface of Xo(po, Nk, n), tiny
differences in initial conditions get magnified to the level of the measurement
noise by either f or f, ™. For example, if f. is responsible for collapsing
Xo(po, Nk, n) onto a surface with thickness comparable to the machine preci-
sion, then we cannot expect to choose trajectory samples of the form f;o(a:)
for ¢« > n without experiencing debilitating roundoff errors.

Ideally, as n increases, we would like Xo(po, NVk,n) to converge toward
smaller and smaller ball-shaped regions while maintaining approximately the
same “thickness” in every direction. Besides having better numerical behav-
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ior than regions that collapse onto a surface, it is also much easier to represent
such regions and choose initial conditions inside these regions.

There is a degree of freedom that is available and can be used to adjust
the shape of the region where initial conditions are sampled. We can simply
choose to iterate trajectory samples further backwards in time than forwards
in time or vice-versa. In other words, if f. expands one direction much more
than f, " expands any direction is state space then we may iterate orbits of
the form, {f; (z)}i2_,, where n, > n,. The relative sizes of n, and n, can
then be adjusted to “match” the rates of convergence of the region where
initial conditions are sampled.

In practice can be a bit tedious to adjust the number of iterates in sam-
ple trajectories and attempt to figure out what effect iterating forwards or
backwards has on the shape of a particular region in state space. A better
way to approach the problem is to examine regions of the form:

Xj(pO, Nka TL) = gO(XO(pOa Nk7 n))

for j € {-n,—n 4+ 1,...,n — 1,n}. For any particular py, N¢, and n, if
Xo(po, Nk, n) starts to become an inadequate region for choosing new sample
trajectories, we simply search for j so that the region, X;(po, Ni,n), is not
degenerate in any direction in state space (This process is described in the
next paragraph). We can then pick new initial conditions, € X;(po, Nk, n)
and iterate orbits of the form {f} (z)};Z’,_; in order to evaluate the proper
densities. Note that instead of deleting sample trajectories according to
( 5.44), new sample trajectories are now thrown out if they fail to satisfy:

LT

log[P(zN,-;lpo, y [Nk —n,Nr +n])] > sup {log[P(zn,;|po,y[Nk — n, Ny + n])]} — o

TN, -5€
This procedure is thus equivalent to sampling trajectories from Xo(po, Nk, n),
except that it is better numerically.

Evaluating and choosing new sample regions

We now describe when how to decide when an initial condition sample
region like X (po, Nk,n) has become inadequate and how to choose a new
J* € {-n,—n+1,...,n — 1,n} so that X;«(po, Nk,n) makes an effective
sample region.
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Basically, as long as we can pick By(po, Nik,n) so that most initial con-
ditions, z, chosen from By(po, Nk, n) satisfy € X,,(po, Nk, n), then things
are satisfactory, and there is no need to search for a new sample region.
However, suppose that it becomes difficult to choose z € By(po, Ni,n) so
that € X;,(po, Nk, n). It might simply be the case that X (po, Nk,n) is
collapsing in multiple directions, and we simply cannot increase n without
running into numerical problems. Otherwise, if this is not the case, then we
first search for whether X, (po, Nk, n) can be divided into two separate high
density regions. If so, then we concentrate on one of these regions. If not,
then we have to search for a new j* € {-n,—n+1,...,n— 1,n} and a new
sample region, X;+(po, Ni,n).

This is done in the following manner. We take the trajectory samples
marking the region, X, (po, V¢, n), and iterate them forwards and backwards
in time looking at samples of

Xj(p07 Nkv n) = fg_jO(on (pO’ Nka n))

forj € {-n+jo,—n+Jjo+1,....,n+ jo}. We would like to pick j* to be a
value for j such that X;(po, Nk, n) is not degenerate so that it is easy to pick
Bo(po, Ni,n) such that z € Bo(po, Nk,n) implies z € X;(po, Nk, n) with high
probability.

We would also like to pick 7* so that X;«(po, Nk, n) is a well balanced
region and is not degenerate in any direction. The first thing to check is
to simply generate the box, B;(po, Nk,n), enclosing X,(po, Ng,n) for each
J and make sure that none of its side lengths are degenerate. This condi-
tion, is not adequate, however, since one could wind up with a j* in which
Xj«(po, Ng,n) is actually long and thin but, for example, curls back on itself
so that it bounding box, B;(po, Nk, n) is not long and thin. In order to check
for this case, one thing to do is to partition the box, B;(po, Nk, n), into a
number of subregions and check to see how many of these subregions are
actually occupied by the trajectory samples demarking X;(po, N, n). If very
few subregions are occupied then we have to reject j as a possible choice for
7. An adequate choice for j* can then be made using this constraint along
with information about the ratio of the side lengths of B;(po, Nk, n).
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Chapter 6

Numerical results

In this chapter we present results from various numerical experiments. In
particular, we demonstrate the effectiveness of the algorithms proposed in
Chapter 5 for estimating the parameters of chaotic systems.

The algorithms are applied to four different systems. The first system,
the quadratic map, is the same one-dimensional system that was examined
in Chapter 3 of this thesis. The second system we look at is the Henon
map, a dissipative two-dimensional mapping with a strange attractor. The
third system is the standard map, an area-preserving map that is thought
to exhibit chaotic behavior. Finally in contrast to the first three systems,
which are all nonuniformly hyperbolic, we also take a brief look at the Lozi
map, one of the few nonpathological examples of a chaotic map exhibiting
uniformly hyperbolic behavior.

We find that with the exception of the Lozi map, the other maps in this
chapter all exhibit asymmetrical shadowing behavior on the parameter space
of the map. Furthermore, this asymmetrical behavior always seems to favor
one direction in parameter space regardless of locality in state space.

Note that many of the basic comments and explanations applicable to
all the systems are included in section 6.1 on the quadratic map, where the
issues are first encountered.
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6.1 Quadratic map

In this section we describe numerical experiments on the quadratic map:

fo(z) = pa(l — z) (6.1)

where z € [0, 1] and p € [0,4]. For values of p between 3.57 and 4.00, numer-
ical experiments suggest that there are a large number of parameter values
where ( 6.1) exhibits chaos. In particular we will concentrate on parame-
ters near po = 3.9, For po = 3.9, numerical results indicate that f,, has a
Lyapunov exponent of about 0.49.

Let us begin by presenting a summary of our results for one particular
orbit of the quadratic map, the orbit with initial condition, zo = 0.4. We
will discuss: (1) what each of the lines in figure 6.1 mean, (2) why each of
the data sets graphed has the behavior shown, and (3) what we expect the
asymptotic behavior for each of the traces might be if the simulations were
continued for higher numbers of data points.

6.1.1 Setting up the experiment

In order to test parameter estimation algorithms numerically, we first pick
a parameter value, pp and generate a sequence of data points {y;}",, to
represent noisy measurements of f, . This is done by choosing an initial
condition, zo, and numerically iterating the orbit {z; = f (o)}, The noisy
measurements, {y;}7,, are then simulated by setting y; = z; + v; where v; is
a randomly generated value for 7 € {0,1,...,n}. For the experiments in this
section, the v;’s are chosen to simulate independent identically distributed
Gaussian random variables with standard deviation 0.001.

We then use the simulated data, {y;}",, as input to the parameter esti-
mation algorithm to see whether the algorithm can figure out what parameter
value was used to generate the data in the first place. In general the param-
eter estimation algorithm may also use a priori information like an initial
parameter estimate along with some measure of how good that estimate is.
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in the quadratic map for data generated using the initial condition z, = 0.4.
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In this chapter we generally choose the initial parameter estimate to be a
random value within .025 of p.

6.1.2 Kalman filter

Let us now examine what happens when we apply the square root extended
Kalman filter to the quadratic map. We investigate the Kalman filter for
data generated from four different initial conditions: zo = {0.1,0.2,0.3,0.4}.

Figure 6.2 illustrates perhaps the most important feature of the simula-
tions, namely that the Kalman filter eventually “diverges.” Each trace in
figure 6.2 represents the average of ten different runs using ten different sets
of numerically generated data from each initial condition. On the y—axis we
plot the ratio of the actual error of the parameter estimate versus the esti-
mated mean square error obtained from the covariance matrix of the filter. If
the filter is working, we generally expect this ratio to be close to 1. Note also
that the filter seems to start ok, but then the error jumps to many “standard
deviations” of the expected error and never returns to the normal operating
range.

In fairness, plotting an average can be somewhat misleading because the
average might be skewed by outliers and and runs that fail massively. There
are in fact significant differences from run to run. However, numerous exper-
iments with the Kalman filter, suggest that divergence pretty much always
occurs if one allows the filter to run long enough. In addition, none of the
techniques attempted for addressing the divergence difficulties seem to be
able to adequately solve the problem. It seems that one is stuck with either
letting the filter diverge, or somehow decreasing confidence in the covariance
matrix so much that accurate estimates cannot be attained.

In figure 6.3 we plot the actual error of the Kalman filter versus number of
state samples used on a log-log scale. Again the errors plotted are the average
of the errors of ten different runs. We see that the error makes progress for a
little while but then divergence occurs. The Kalman filter rarely makes any
real progress after divergence occurs, not even exhibiting the \/L; improvement
characteristic of purely stochastic convergence (not getting any information
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Quadratic map: Error in Kalman filter estimate, as muitiples of expected deviation
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Figure 6.2: This figure shows results for applying the square root extended
Kalman filter to estimating the parameters of the quadratic map with p = 3.9.
Each trace represents the average ratio of the actual parameter estimate error
to the estimated mean square error as calculated by the Kalman filter over 10
different trials. The different traces represent experiments based on orbits with
different initial conditions. Note how the error jumps up to levels on the order of
10 or higher, indicating divergence.
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from the dynamics), since the over-confident covariance matrix prohibits the
estimate from moving much, unless the state data somehow drifts many
deviations away from what the filter expects. !

6.1.3 Analysis of proposed algorithm

We now examine the performance of the algorithm presented in section 5.5.
The results in this section, reflect an implementation of the algorithm based
on 9 samples in parameter space and 50 samples in state space (250 when
representations for different stages are being combined). Each stage is iter-
ated until the state sample region is of length 1 x 10~° or less. We use o = 8
so that the sample spaces in state and parameters are 8 “deviations” wide.

One of the most striking things about the results of the algorithm is
the asymmetry of the merit function, L(p) in parameter space. As shown in
figure 6.4, the parameter merit function, typically shows a very sharp dropoff
on the low end of the parameter space. Based on this asymmetry we choose
the parameter estimate to be the parameter value at which the sharp dropoff
in L(p) occurs.

In figure 6.5 we see the performance of the algorithm on data based on the
initial conditions, zo € {0.1,0.2,0.3,0.4}. Each trace in the figure represents
one run of the algorithm. Rerunning the algorithm multiple times on data
based on the same initial condition produces similar results, except that the
scanning linear filter sometimes defers a few more or less points to the Monte
Carlo estimator for analysis.

Note how the error in the estimate tends to converge in sudden large
jumps, sometimes making great progress over a few iterates, while other times
staying the same. This indicates when the data orbit makes a close approach
to the turning point, causing a stretch of state samples to become sensitive
to parameters. We know that this is not simply a product of discretization

nterestingly, this actually does occur, apparently near areas of folding, since the filter
models the folding phenomena so poorly. Occasionally this can even cause the filter to
get back in sync, moving the parameter estimate just the right amount to lower the error.
This is quite rare, however.
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Quadratic map: Error in Kalman filter estimate
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Figure 6.3: Graph of the average error in the parameter estimate as computed by .
square root extended Kalman filter applied to the quadratic map with parameter

value, p = 3.9. Data represents average error over 10 runs.
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merit function, L(p)
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Figure 6.4: Asymmetry in the parameter space of the quadratic map: Here we
graph the parameter merit function L(p) after processing 2500 iterates of an orbit
with initial condition z, = 0.4. The merit function is normalized so that the L(p) =
0 at the maximum. Since o = 8, a parameter sample, p is deleted if L(p) < —64.
This sort of asymmetrical merit function is typical of all orbits encountered in the
quadratic map, Henon map, and standard map.

in the algorithm because sometimes the Monte Carlo estimator makes no
gains at all, while sometimes great gains are made, and a large number of
parameter samples are deleted on the lower end of the parameter sample
range.

One might wonder how this graph would look like if we were to extend
it for arbitrarily many iterates. Consider the theory presented in Chapter 3.
First of all, it is likely that f,, satisfies the linking condition, and therefore
exhibits a parameter shadowing property. This means there is essentially an
end to the progress that can be made in the estimate based on dynamical
information, after which stochastic convergence would be the rule. However,
there is evidence that the level of accuracy at which this effect becomes
important is probably many, many orders of magnitude down from the level
we are dealing with. 2

21t is difficult to calculate this directly, since it requires knowing the exact number of
iterates it takes an orbit from the turning point to return near the turning point. However,
rough calculcations suggest that for most parameters around po = 3.9 we expect that
parameter shadowing would not be seen until parameter deviations are less that 1 x 10~%°
for noise levels of 0.001.
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Quadratic map: Error in parameter estimate, log scale
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Figure 6.5: Graph of the actual error in the parameter estimate of the proposed
algorithm when applied to data from the quadratic map with p = 3.9. A line
of slope -2 is drawn on the graph to indicate the conjectured asymptotic rate of
convergence for the estimate.
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This leads us to ask: assuming that we do not see the effects of param-
eter shadowing, how does the parameter estimation accuracy converge with
respect to, n, the number of parameter samples used? As conjectured in
section 3.5, based on Theorem 3.4.2 we suspect that the accuracy may go as
%. A line with a slope of -2 is drawn, in figure 6.5 to suggest the conjectured
asymptotic behavior. Note that the conjecture seems at least plausible from
the picture, although more data would be needed to really make the evidence
convincing.

In figure 6.6 we show the error in the upper bound of the parameter
range being considered by the algorithm. While the lower bound of this
range is used as the parameter estimate, the upper bound has significantly
different behavior. After an initial period, the convergence of the upper
bound is governed purely by stochastic means (ie without any help from the
dynamics). This is predicted by Theorem 3.4.2. Thus we expect that the
convergence will be on the order of -\/1—1-;, as suggested by the line with a slope

of —2 as shown in the figure. The small jumps in the graphs for figure 6.6 are
simply the result of the discrete nature of how parameter space is sampled.

6.1.4 Measurement noise

One other impotant question to ask is, what happens if we change the level
of measurement noise? The short answer is that the parameter estimate
results presented here are surprisingly insensitive to measurement noise. If we
ignore the parameter shadowing effects caused by close returns to the turning
point (which we have already argued are nelgible for our experiments), then
shadowing is really an all or nothing thing in parameter space. Consider a
stretch of state orbit with initial condition z, close to the turning point. Then
for a parameter value in the unfavored direction, either the parameter value
can shadow that stretch of orbit (presumably with initial condition closer to
the turning point than zo,) or the parameter value cannot shadow the orbit,
in which case it “loses track” of the orginal orbit exponentially fast. Thus
asymptotically, ignoring parameter shadowing effects caused by linking, the
measurement noise actually makes no difference in the parameter estimate.
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Quadratic map: Upper bound on parameter range, log scale
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Figure 6.6: Graph of the error in the upper bound of the parameter range being
considered by the proposed algorithm for the quadratic map with p = 3.9. A line
with a slope of —% is drawn to indicate the expected asymptotic convergence of

the error.
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Measurement noise does have a large affect on figure 6.6, the upper pa-
rameter bound, and the possibility of parameter shadowing caused by linking.
If the measurement noise is large, then there is likely to be more parame-
ter shadowing effects. On the other hand, if the measurement noise is re-
ally small, then the asymmetrical effect in parameter space will in fact get
drowned out for quite awhile (until the sampled orbit comes extremely close
to the turning point). In most reasonable cases however, the asymmetry in
parameter space is likely to be quite important if we want to get accurate
parameter estimates for reasonably large data sets.

6.2 Henon map

We now discuss numerical experiments with the Henon map:

Tpy1 = Yn+1—az? (6.2)

Yn+1r = b:cn (63)

where the state (z,,y,) € R? and the parameter values, a and b, are invariant.
For parameter values a = 1.4 and b = 0.3, numerical evidence indicates the
existence of a chaotic attractor as shown in figure 6.7. See Henon [24] for a
more detailed description of some of the properties of Henon map.

For the purposes of testing out parameter estimation algorithms, we fix
b = 0.3 and attempt to estimate the parameter, a. State data is chosen
from an orbit on the attractor of the Henon map. Noisy measurement data
is generated using a state orbit and adding Gaussian noise with standard
deviation 0.001 to each state value.

Applying the square root extended Kalman filter to an orbit on the at-
tractor results in figure 6.8, we see that the filter diverges after about 15,000
iterates and does not recover. Note that the figure represents data for only
one run. However, qualitatively similar results are also true for other se-
quences of data. Although the performance of the Kalman filter is quite
sensitive to noise, the key point is that divergence inevitably occurs, sooner
or later, and the performance of the filter is generally unreliable.
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Figure 6.7: The Henon attractor for a = 1.4, b = 0.3.

Note in figure 6.8 that the expected mean square error of the Kalman
filter tends to change suddenly in jumps. In most cases these jumps probably
correspond to sections of orbits that are especially sensitive to parameters
because of folding in state space. The Kalman filter has a tough time handling
the folding and typically divergence occurs during one of these jumps in the
mean square error. This phenomenon is especially evident in figure 6.12.
Note also that even after divergence, jumps in the expected mean square
error can often change the parameter by many standard deviations, indicating
that the state error residual must have been many deviations off. This again
reflects the fact that the Kalman filter does not model folding well.

We now apply the algorithm described in section 5.6. We choose to
examine the top-level scan filter every 20 iterates or so looking for covariance
matrix drops of around a factor of .7 or less. The algorithm is relatively
insensitive to changes in these parameters so their choice is not particularly
critical.

As in the quadratic map, we find that the parameter merit function,
L(a) is asymmetrical in parameter space. Specifically, L(a) always has a
sharp dropoff in it lower bound, indicating that the Henon map favors higher
parameters for parameter a (see figure 6.9). This property seems to be true
for any orbit on the attractor. It also seems to be true for all the parameter
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Henon map: Kalman filter error, log scale
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Figure 6.8: This graph depicts the performance of the Kalman filter in estimating
parameter a for one sequence of noisy state data from the Henon map for a =
1.4 and b = 0.3. The data was generated using the initial condition, (zo,%) =
(.633135448,18940634) which is very close to the attractor.
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Figure 6.9: Asymmetry in the parameter space of the Henon map: Here we graph
the parameter merit function L(a) after 200000 iterates of an orbit with initial
condition zo = (.42340924516780914,.20806730517740715). Note that this merit
function is actually based on only the most sensitive 931 data points, since the
linear filter threw out over 199,000 points.

values of the Henon that have been tried. We thus take advantage of the
asymmetry in parameter space in order to estimate the parameters of the
system.

Figure 6.10 shows the estimation effort for data generated from several
different initial conditions on the attractor. The tick marks on the traces
of the graph denote places where the top level scan filter deferred to the
Monte-Carlo analysis. Note that as with the quadratic map, improvements
in the estimate seem to be made suddenly. Because relatively few numbers
of points are analyzed by the Monte-Carlo technique, and because the state
samples scanned by the Kalman filter do not contribute to the estimate,
almost all the gain in parameter estimate must have been made because of
the dynainics.
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Henon map: Error in parameter estimate, log scale
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Figure 6.10: Graph of the actual error of the parameter estimate for a using the
proposed algorithm on the Henon map (with a = 1.4 and b = 0.3). This graph
contains results for four different sets of data corresponding to four different initial
conditions, all chosen on the attractor of the system. The tick marks on each trace

denote places where the top level Kalman filter deferred to a Monte-Carlo-based
approach for additional analysis.
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6.3 Standard map

We now discuss numerical experiments with the standard map:

Tny1 = (Zn + yn + Ksinz)mod2r (6.4
Ynt1 = (yn + Ksinz)mod2m (6.5)

where K is the parameter of the system and the state, (z,,y,) € T?, lives
on the 2-torus, T2. The standard map is a Hamiltonian (area-preserving)
system, and thus does not have any attractors. Instead, for example, for
K = 1, there is apparently a mixture of invariant tori and “seas” of chaos
that orbits can wander around in. This is illustrated in figure 6.11. See
Chirikov [10] for more discussion on the properties of the standard map.

Figure 6.11: This picture shows various orbits of the standard map near K = 1.
Note that since the space is a torus, the sides of the square are actually overlapping.
This picture shows a number of different orbits. Some orbits fill out spaces and
exhibit chaotic behavior, while others remain on circular tori. [Picture generated
by Thanos Siapas].
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In order to test the parameter estimation technique, we chose K = 1 and
generated data based on orbits chosen to be in a chaotic region. To each state,
we add random Gaussian measurement noise with standard deviation 0.001
to produce the data set. The results of applying the square root extended
Kalman filter are shown in figure 6.12. As in the quadratic map and Henon
map, we see that the Kalman filter diverges.

In figure 6.14 we show the result of applying the algorithm in section 5.6
to the standard map. In particular we investigate data for five different
initial conditions in the chaotic zone. Also note figure 6.13 where we see the
effects of asymmetric shadowing in the standard map. The settings for the
algorithm used in these trials are the same as those used for the experiments
with the Henon map. This indicates that the algorithm is relatively flexible
and does not have to tuned precisely to generate reasonable results.

6.4 Lozi map

We now discuss numerical experiments with the Lozi map:

Tnt1 = Yo+ 1 —alz,| (6.6)
Ynt1 = bz, (67)

where the state (z,,y,) € R? and the parameter values, a and b, are invariant.
The Lozi map may be thought of as a piecewise linear version of the Henon
map. Unlike the Henon map, however, the Lozi map is uniformly hyperbolic
where the appropriate derivatives exist ([33]). For parameter values a = 1.7
and b = 0.5, the Lozi map has a hyperbolic attractor ([33]) as shown in
figure 6.15.

For the purposes of testing out parameter estimation algorithms, we fix
b = 0.3 and attempt to estimate a. State data is chosen from an orbit on the
attractor of the Lozi map.

In figure 6.16 we show the result of applying a square root extended
Kalman filter to the Lozi map. Unlike in the quadratic, Henon, and standard
maps, the Kalman filter shows no signs of divergence in the Lozi map, at
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Standard map: Kalman fiiter error, log scale
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Figure 6.12: This graph depicts the performance of the square root extended
Kalman filter for estimating parameter K using one sequence of noisy state data
from the standard map with K = 1. The data was generated using the initial
condition, (zo,%o) = (0.05,0.05). This initial condition results in a trajectory that
wanders around in a chaotic zone.
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Figure 6.13: Asymmetry in the parameter space of the standard map: Here we
graph the parameter merit function L(K) after 250000 iterates of an orbit with
initial condition z, = (.423,.208).

least within 100,000 iterates. Note that the convergence of the expected
mean square parameter estimation error falls almost exactly at the —= rate
indicated by pure stochastic convergence. Thus, as we would expect out of
a hyperbolic system, the dynamics makes no contribution to the parameter
estimate past an initial limit.

We cannot really apply the algorithm from section 5.6 to the Lozi map,
because there are basically no sensitive orbit sections to investigate. Basically
the whole data set would pass right through the top level scanning filter
without further review. However if we do force the Monte-Carlo algorithm -
to consider the data points, we again find purely stochastic convergence.
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Standard Map: Error in parameter estimate, log scale
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Figure 6.14: This graph depicts the performance of the proposed algorithm for
estimating parameter K using one sequence of noisy state data from the standard

map with K = 1.
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Figure 6.15: The Lozi attractor for a = 1.7, b = 0.5.
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Lozi map: Kalman filter error, log scale
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Figure 6.16: This graph plots the performance of a square root extended Kalman
filter in estimating the parameter, a, in the uniformly hyperbolic Lozi map. The
data here represents the average over five runs based on data with different mea-
surement noises bit generated using the parameters a = 1.7, b = 0.5, and the same
initial condition, (zo,y0) = (—.407239890045248, .4298642544936652), located on
the attractor. Note the lack of divergence, and the fact that convergence is purely
stochastic.
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Chapter 7

Conclusions

This thesis examines how to estimate the parameters of a chaotic system
given observations of the state behavior of the system. We approached the
thesis with two main goals: (1) to examine to what extent it is theoretically
possible to estimate the parameters of a chaotic system, and (2) to develop
an algorithm to do the parameter estimation. Significant progress was made
in both regards, although there is also plenty of work left to be done.

As far as examining the theoretical possibilities of parameter estimation,
we first broke chaotic systems down into two categories: structurally sta-
ble and not structurally stable. Structurally stable systems are not terribly
interesting, since we can get very little information about the parameters
from the dynamics of these systems. The situation for systems that are not
structurally stable is somewhat different. In order to investigate the possibil-
ities for parameter estimation in these systems, we examined some specific
results concerning how orbit shadow each other. In particular, we discov-
ered that there is often asymmetrical shadowing behavior in the parameter
space of families of nonuniformly hyperbolic systems. To illustrate this in at
least one case, we proved a specific shadowing result showing there truly is a
preferred direction in parameter space for certain maps of the interval with
negative Schwarzian derivative satisfying a Collet-Eckmann-like condition for
state and parameter derivatives.
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As far as designing a new parameter estimation algorithm, we took ad-
vantage of two main observations. First since most of the state data is
apparently insensitive to parameter changes, we simply chose a fast top-level
filter to scan through the data, before concentrating on data that might be
especially sensitive. The observation about asymmetrical shadowing results
is extremely important, since it means that we have only to investigate the
sharp parameter space boundary between parameters that shadow the data,
and parameters that get folded away exponentially in state space from the
correct data orbit.

There is still plenty of work to be done. On the theoretical side, I still do
not know how to really characterize the ability of a system to shadow other
systems. Shadowing seems to be particularly not well understood in higher
dimensional systems. Perhaps it would be possible to further investigate the
invariant manifolds of nonuniformly hyperbolic systems to better understand
shadowing results. There is also work to be done in figuring out exactly what
the rate of convergence is likely to be for parameter estimation in particular
nonuniformly hyperbolic systems. This is important if we would like to choose
a system to optimize for parameter sensitivity.

On the engineering side, the algorithm itself can probably be improved
somewhat. For instance, the biggest problem now seems to be in the behavior
of the scanning Kalman filter. Perhaps a better solution would be to used
some sort of fixed-lag smoother so that data is taken from both forwards and
backwards in “time” in attempting to local stretches of parameter-sensitive
data.

Most importantly, there are still questions about how to apply parameter
estimation in chaotic time series to problems like high precision measurement,
control, or other possible applications. Now that we have a better theoretical
base for understanding what is happening, it should be easier to answer
important questions about how to apply these results.
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Appendix A

Proofs from Chapter 2

This appendix contains notes on three proofs from Chapter 2. Note that in
the first two theorems (sections A.1 and A.2), we reverse the names of the
functions f and g from the corresponding theorems in the text of this thesis.
This is to done to conform with the notation used in Walters’ paper, [57].
The notation in the appendix is the same as in Walters, while the notation
in the text is switched.

A.1 Proof of Theorem 2.2.3

Theorem 2.2.3: (Walters) Let f : M — M be an ezpansive diffeomorphism
with the pseudo-orbit shadowing property. Suppose there erists a neighbor-
hood, V. Dif fY{(M) of f that is uniformly ezpansive. Then f is structurally
stable.

Proof: This is based on theorem 4 and 5 and the remark on page 237 in [57].
In theorem 4, Walters states that an expansive homeomorphism with the
pseudo-orbit shadowing property is ”topologically stable.” However, Walters’
definition of topological stability is weaker than our definition of structural

stability. In particular, for topological stability of f, Walters requires that
there exist a neighborhood, U C Dif f1(M), of f such that for each g € U,
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there is a continuous map h : M — M such that hg = fh. For structural
stability, this A must be a homeomorphism. We can get the injectiveness of
h from the uniform expansiveness of nearby maps (apply theorem 5 of [57]).
We can get the surjectiveness of A from the compactness of M based on an
argument from algebraic topology (see Lemma 3.11 in [35], page 36). Since
M is compact, and A is injective and surjective, h must be a homeomorphism.

A.2 Proof of Theorem 2.2.4

Theorem 2.2.4: Let f : M — M be an expansive diffeomorphism with
the function shadowing property. Suppose there exists a neighborhood, V C
Dif fY(M) of f such that V is uniformly expansive. Then f is structurally
stable.

Proof: The proof given here is similar to theorem 4 of [57] except that the
effective roles of f and g are reversed (where g denotes maps near f in
Dif f{(M)). Instead of knowing that all orbits of nearby systems can be
shadowed by real orbits of f (pseudo-orbit shadowing), here we are given
that all orbits of f can be shadowed by real orbits of any nearby system
(function shadowing).

We shall prove that there is a neighborhood U C V of f in Dif f1(M)
such that for any g € U, there exists a continuous k such that Af = gh (note
that the h we use here is the inverse of the one in theorem 2.2.3). From
this result we can use the arguments outlined for theorem 2.2.3 to show that
h is a homeomorphism because of the uniform expansiveness of f and the
compactness of M.

First we need to show the existence of a function h : M — M such that
hf = gh. From the function shadowing property, given any ¢ > 0, there exists
a neighborhood, U, C V of f such that any orbit of f is e—shadowed by an
orbit of g € U..

Now suppose that € < %infgev e(g). In this case, we claim that there is
exactly one orbit of g that e—shadows any particular orbit of f. If this were
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not true then two different orbits of g, {z,} and {y, }, must shadow the same
orbit of f. But because of the expansiveness of g there must exist an integer,
N, such that d(zn,yn)) > 2¢, so that {z,} and {y,} clearly cannot e-shadow
the same orbit of f. Thus we can see that there must be a function A which
maps each orbit of f to a shadowing orbit of g.

Consequently, for any € > 0, there exists a neighborhood U, such that for
any g € U,, we can define a function h such that Af = gh and:

supemd(h(z),z) < e. (A.1)

We now need to show that this A is also continuous. To do this we first need
the following lemma from [57):

Lemma A.2.1 (Lemma 2 in [57]) Let f be expansive with erpansive con-

stant e(f) > 0. Given any § > 0, there ezists N > 1 such that d(f"(z), f*(y)) < ‘:7

e(f) for |n| < N implies d(z,y) < 6.

Proof of Lemma: Given § > 0, suppose that the lemma is not true so that
no such N can be chosen. Then there are exists a sequence of points, {z;}2,
and {y:}22, (not orbits), such that for any N > 1, d(zn,yn) > 6 and
d(f"(zn), fM(yn)) < e(f) for all |n| < N. There exists a subsequence of
points {zn, }32, and {yn, }2, such that z,;, — = and yn, — y as ¢+ — oo such
that d(x,y) > é. By continuity of f this implies that d(f™(z), f"(y)) < e(f)
for all n, which is a direct contradiction of the expansiveness of f. This com-
pletes the proof of lemma A.2.1.

Returning to the proof of theorem 2.2.4, we now want to show the conti-
nuity of . In other words, given any a > 0 we need to show there exists a

6 > 0 such that d(z,y) < § implies d(h(z),h(y)) < a.

Our strategy is as follows: Since g is expansive, from lemma A.2.1 we
know that for any o > 0 we can choose N, such that if d(¢™(h(z)), g"(h(y))) <
e(g) for |n| < N, then d(h(z),R(y)) < a. Thus suppose that for any o > 0
there exists § > 0 such that d(z,y) < é implies d(g"(h(z)), g"(h(y))) < e(g)
for all |n| < N,. Then d(k(z),k(y)) < @, and h must be continuous. This is
what we shall show.
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Given a > 0, pick § > 0 such that d(f*(z), f*(y)) < 6 if |n| < N,. Set
e(V) = supyeve(g) and fix e = 3e(V). From equation ( A.1) we know that
given this € > 0, there exists a neighborhood, U, C V, of f in Dif f1(M) such
that for any g € U,, there exists h such that Af = gh and sup,epmd(h(2z),z) <
¢. Thus for any g € U, and corresponding h : M — M, if d(z,y) < € then we

have:

dg" (b)), g™ (b)) = d(A((2)), A ()
< d(h(f*(2)), fM(=)) + d(f"(2), /" (y) + d(f"(y), R (S (¥)))
< e+ -;-e(V) +e€
< e(V) <e(g) for all |n| < N,

From the argument in the previous paragraph, this shows that A must be
continuous which completes the proof of theorem 2.2.4.

A.3 Proof of Lemma 2.3.1

Lemma 2.3.1: Suppose that f, € Dif f{(M) for p € I, C R, and let
f(z,p) = fo(z) for any x € M. Suppose also that f is C' and that f,, is an
absolutely structurally stable diffeomorphism for some py € I,. Then there
exists g > 0 and K > 0 such that for every positive € < €y, any orbit of f,,
can be e—shadowed by an orbit of f, for p € B(po, Ke).

Proof: This follows from the definition of absolute structural stability. From
that definition, we know that there exists o > 0, K; > 0, and conjugating
homeomorphisms, A, : M — M, such that if p € B(po, &), then:

sup d(h; " (z), z) < K sup d(fy(2), fo(2)))-
T€M z€EM

where fp, = hpfyh;'. Given an orbit, {z,}, of f,, we claim that ;' maps
z, onto a suitable shadowing orbit, z,(p) of f, for each n € Z. Also, since
fis C! for (z,p) € M x I,, there exists a constant, K; > 0, such that
supzemd(foo (2), fo(z)) < Ka|p — po| for any p € I,. Thus, setting z,(p) =
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h>'(z,). for all n we see that:

supd(zn(p),a) < sup d(h7)(2),z)
ne€Z zeM
< Kysup d(fp(2), f(2))
zeEM
< KiKa|p — pol
for all integer n. Now setting K = ﬁ, we have the desired result that

Supnezd(z,(p), z,) < € if p € B(po, Kcﬁ, for all n and any positive € < €.
This completes the proof of lemma 2.3.1.

135



Appendix B

Proof of theorem 3.2.1

In this appendix, we present the proof for theorem 3.2.1.

B.1 Preliminaries

We first repeat the related definitions which are the same as those found in
chapter 3. Throughout this appendix we shall assume that I C R represents
a compact interval of the real line.

Definitions: Suppose that f : I — [ is continuous. Then the turning points
of f are the local extrema of f in the interior I. C(f) is used to designate
the set of all turning points of f on I. C"(/,]) is the set of continuous maps
on [ such that f € C"(1, 1) if:

(a) fis C (for r > 0)

(b) f(I) € I, and

(c) f(Bd(I)) C Bd(I) (where Bd(I) denotes the boundary of I).
I f € C°(1,1) and g € C°(L, ), let d(f,g) = sup,e; |f(z) — 9(2)].

Definitions: A continuous map f : I — [ is said to be piecewise monotone
if f have finitely many turning points. f is said to be a uniformly piecewise-
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linear mappings if it can be written in the form:
f(z) = a; £ sz for z; € [ci1,¢i] (B.1)

where s > 1, ¢ < ¢; < ... < ¢; and ¢ > 0 is an integer. (We assume s > 1
because otherwise there will not be any interesting behavior).

Note that for this section, it is useful to define neighborhoods, B(z,€),
so that they do not extend beyond the confines of I. In other words, let
B(z,€) = (z—€,z+¢€)N 1. With this in mind, we use the following definitions
to describe some relevant properties of piecewise monotone maps.

Definition: A piecewise monotone map, f : [ — I, is said to be transitive if
for any two open sets U,V C I, there exists an n > 0 such that f*(U)NV # 0.

Definitions: Let f : [ — [ be piecewise monotone. Then f satisfies the
linking property if for every ¢ € C(f) and any € > 0 there is a point z € [ such
that z € B(c,¢), f*(2) € C(f) for some integer n > 0, and |f*(c) — fi(2)] < €
for every : € {1,2,...,n}. Suppose, in addition, that we can always pick
2 # ¢ such that the above condition is satisfied. Then f is said to satisfy the
strong-linking condition.

We are now ready to state the objective of this appendix:

Theorem 3.2.1 Transitive piecewise monotone maps satisfy the function
shadowing property in C°(I,1) if and only if the satisfy the strong linking
property.

We note Liang Chen [9] proves a similar result, namely that the pseudo-
orbit shadowing property is equivalent to the linking property for maps topo-
logically conjugate to uniformly piecewise linear mappings. Some parts of
the proof we describe below are also similar to the work of Coven, Kan, and
Yorke [14] for tent maps (uniformly piecewise linear maps with one turning
point). The main difference is that they prove a pseudo-orbit shadowing
property while we are interested in parameter and function shadowing.
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B.2 Proof

This section will be devoted to the proof of theorem 3.2.1 and related results.
The basic strategy of the proof will be as follows. First we relate piecewise
monotone mappings to piecewise linear mappings through a topological con-
jugacy (lemmas B.2.1 and B.2.2). This provides for uniform hyperbolicity
away from the turning points. Second we capture the effects of “folding”
near turning points and show how this leads to function shadowing (lem-
mas B.2.4, B.2.5, B.2.6). Finally in lemma B.2.7 we show that the local
folding effects of lemmas B.2.4, B.2.5, or B.2.6 are satisfied for the maps we
are interested in.

Lemma B.2.1 : Let f: I — I be a transitive piecewise-monotone mapping.
Then f s topologically conjugate to uniformly piecewise-linear mapping.

Proof: See Parry [46] and Coven and Mulvey [15].

The following lemma is necessary for the application of the topological
conjugacy result.

Lemma B.2.2 Let f: 1 — [ and g : [ — I be two topologically conjugate
continuous maps. If f has the linking or strong linking property then g must
have these properties also. If f satisfies has the function shadowing property
on C°(I,I), then g must also satisfy the function shadowing property on
C(L, ).

Proof: Since f and g are conjugate, the orbits of f and g are connected
through a homeomorphism, k, such that g = h~! fh. Because h is continuous
and one-to-one, the of turning points of f and g must be preserved by the
topological conjugacy. Thus if f has the linking or strong linking properties,
then g must have these properties also.

Now suppose that f has the function shadowing property on C°(1,I). We
want to show that g also has this function shadowing property which means
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that for any € > 0, there exists a neighborhood, V, of g in C°(/, I) such that
if g. € V then any orbit of ¢ is e—~shadowed by an orbit of g..

Since h is continuous, and [ is compact, we know that given € > 0 there
exists 6 > 0 such that |z — y| < &8 implies |h(z) — h(y)| < e if z,y € I.
Given this 6 > 0, since f has the function shadowing property, there is a
neighborhood U C C°(1,I) of f such that if f. € U, then any orbit of f can
be é-shadowed by an orbit of f,. Let V = A~'Uh. Since g = ™! fh, V must
contain a neighborhood of g in C°(/, 7). We now must show if g. € V, then
any orbit of g can be e—shadowed by an orbit of g..

Suppose we are given an orbit, {z,}, of g and any g. € V. Let {w,} be the
corresponding orbit of f such that w, = A~ (z,). Set f. = h™'(g.). Since f. €
U, there exists an orbit, {y,}, of f. that é—shadows {w,}. Then if z, = h(y,),
{2,} must be an orbit of g. that e—shadows {z,}, since |h(z) — h(y)| < € if
|x — y| < &. This proves the lemma.

Thus, combining lemmas B.2.1 and B.2.2, we see that the problem of
proving the function shadowing property for transitive piecewise-monotone
maps with the strong linking property reduces to proving the function shad-
owing property for uniformly piecewise linear maps with the strong-linking
property.

We now introduce one more result that will be useful later on:

Lemma B.2.3 Let f : [ — I. Suppose f™ satisfies the function shadow-
ing property on C°(I,I) for some integer n > 0. Then f has the function
shadowing property on C°(1,1).

Proof: Given any € > 0 we need to show that there exists a neighborhood, U
of fin C°(I,I) such that if g € U, then any orbit of f is e—shadowed by an
orbit of g. Since f is continuous and [ is compact, there exists a 6 > 0 such
that if |z — y| < 6, then

7i(e) = Fw)l < e (82)
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for any 7 € {0,1,...,n} and z,y € I. We also know that there exists a
neighborhood, V; of f in C°(1,I) such that if g € V; :

F(@) - g2l < 3¢ (B.3)

forallz € I and 7 € {0,1,...,n}.

Combining ( B.2) and ( B.3) and using the triangle inequality we see that
for any € > 0 there exists a § > 0 and a neighborhood, V;, of f in C°([, )
such that if g € V} and |z — y| < §, then:

Ifi(z) —g'(y)| < (B.4)

for all i € {0,1,...,n} if z,y € I. Given € > 0, fix § > 0 and V; € C°([,1)
to satisfy ( B.4).

Using this § > 0, since f™ has the function shadowing property, we know
there exists a neighborhood, V, of f™ in C°(I,I) such that if " € V;, then
any orbit of f™ is §—shadowed by an orbit ¢g". Given this neighborhood, V3,
of f*, we can always pick a neighborhood, V3 C C°(/, I) of f such that g € V3
implies that ¢g" € V,. This is apparent, since for any o > 0 there exists a
neighborhood V; of f in C°(I,I) such that

d(f*,g") = sup |f*(z) — g"(z)| < e

if ¢ € U. Thus, for any € > 0, if g € V3, then any orbit of f™ is é-shadowed
by an orbit of g".

Now set U = V3N V;. Note that U must be a contain neighborhood of f in
C°(1, ). If we fix g € U, we find that given any orbit, {z;}72,, of f, there is
an orbit, {y;}2,, of g such that y; € B(z;,68) if 2 = kn for any k € {0,1,...}.
Thus, from ( B.4), we know that y; € B(z;,€) for all ¢ > 0. Consequently,
given any € > 0, there exists a neighborhood U of f in C°(1,I) such that if
g € U, then any orbit of f can be e—shadowed by an orbit of g. This is what
we set out to prove.

We now examine the mechanism underlying shadowing in one-dimensional
maps. In the next three lemmas we look at how local “folding” can lead to
shadowing.
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Lemma B.2.4 Given f € C°(I,I), suppose that for any ¢ > 0 sufficiently
small there exists a neighborhood, U, of f in C°(I,I) such that if g € U,

9(B(z,€)) 2 (B(f(z),¢)) (B.5)

for all z € I. Then f has the function shadowing property in C°(1, ).

Proof. Let {z,} be an orbit of f and suppose that ( B.5) is satisfied. Then
if g € U, for any y; € I with y; € B(zy,€) we can choose a yo € I so that
Yo € B(zo,¢€) and y1 = ¢(yo). Similarly for any y, € I with y; € B(z,,¢€), we
can pick y; and yo within e distance of z; and z, respectively. Extending
this argument for arbitrarily many iterates we see that ( B.5) implies that
there exists an orbit, {y;}, of ¢ so that y; € B(z;,¢) for all integer 7 > 0.
Thus, given any € > 0 sufficiently small, there exists a neighborhood, U, of f
in C°(1, 1) such that if g € U, then any orbit orbit of f can be e—shadowed
by an orbit of g.

Lemma B.2.5 Let f € C°(I,I). Suppose that for any ¢ > 0 sufficiently
small, there exists N > 0 and a neighborhood, U, of f in C°(1,I) such that
for any g € U, there exists a function n: [ — Z* so that for each x € I :

{g"P@): |f{(z) - g'(y)| < &0 <i <n(z)} 2 (B[f"P(z),d]) (B.6)

where 1 < n(z) < N for all z € I. Then f has the function shadowing
property in C°(1, ).

Proof: The idea is very similar to lemma B.2.4. Let {z,} be an orbit of f. In
lemma B.2.4, given sufficiently small € > 0 and g € U, we could always choose
Yo € B(zo,¢€) given a y; € B(z1,¢€) so that y; = g(yo). A similar thing applies
here except that we have to consider the iterates in groups. Suppose that the
premise of lemma B.2.5 is satisfied. Given sufficiently small ¢ > 0, fix g € U.
Then, for any yn(zy) € B(Zn(z), €), there exists a finite orbit Yy = {yi}?._(_ff)
of g such that |z; — y;| < ¢, for : € {0,1,...,n(z0)}. Similarly, we can play
the same trick starting with y,(s,) for the next n(z,,)) group of iterates

constructing another finite orbit, ¥; = {yi}?z(io(:;l(z”("’)), of g. Since we are

free choose Yy from any yn(s,) € B(Zn(so),€), 1t Is clear that given any Y,
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we can pick a Y; belonging to the same infinite forward orbit of ¢, thereby
allowing us to concatenate Yy and Yj to construct a single finite orbit of
g, {y }7_§°)+n(x"(’°) that e—shadows {z;}._q Fo)+nlonco)) i process can be
repeated indefinitely for arbitrarily many groups of iterates, gluing together
each group of iterates as we go. Thus the function shadowing property holds.

Lemma B.2.6 Let f € C%I,I). Suppose that for any € > 0 sufficiently
small, there exists N > 0 and a neighborhood, U, of f in C°(I,I) such that
for any g € U, there exists a function n: [ — Z* so that for each x € I :

(" () : e —yl < &|f () — g'(y)] < 8¢,1 <i < n(z)) (B.7)
2 g[B(f*?(z),¢)]

where 1 < n(z) < N for all ¢ € I. Then f has the function shadowing
property in C°(1,1).

Proof: (compare with lemma 2.4 of [14]). We shall show that given
sufficiently small € > 0 and any g € U, if ( B.7) is satisfied, then for any
orbit, {z;}2, of f, there exists an orbit, {y;}2,, of g such that |z; — y;| < 8¢
for all integer « > 0. By condition ( B.7), given any yg(mﬂ € 9(B[Tn(z0), €])

we can choose a finite orbit, Yo = {32} of ¢ that 8e-shadows {z;}7)
and satisfies g(yn(;)) = ¥o(z)41- Similarly, using the same trick with the next

130)+n(xn(:0)) Of

n(Zn(zo)) iterates, we can construct a finite orbit, ¥; = {y!}._. n(z0)

g that 8e-shadows {xi}n(xo)w(zn(m))

i=n(zo)

and satisfies y, ) € B(Tn(z), €)-

Also, notice that given Y; we can always choose a Yj so that g(yg(xo)) =
y}z(xo)ﬂ. This is because we know that y,ll(m) € Blz,(s,), €] and because we are

free to choose any Yo(zo)+1 € 9(BlZn(z,), €]) to construct Yo. Consequently we

can concatenate Yy and Y] to form an orbit that 8¢-shadows {:z:,}?_(f,0 trlEneo)

We can continue this construction by concatenating more groups of n(x,)
iterates for increasingly large . Thus given ( B.7) it is apparent that we can
choose an orbit, {y;}2,, of g that 8e-shadows any orbit of f if g € U. This
proves the lemma.

Now we must show that lemma B.2.6 is satisfied for any uniformly piecewise-
linear map. Note that condition ( B.6) in lemma B.2.5 in fact implies ( B.7)
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in lemma B.2.6, so it is sufficient to show that either ( B.6) or ( B.7) is true
for any particular * € I. This is done in lemma B.2.7 below. We can then
combine lemma B.2.7 with lemma B.2.3 to prove theorem 3.2.1.

First, however, we introduce the following notation, in order to state our
results more concisely.

Definition: Given a map, f € C°(I, 1), define:
Di(z,9.6) = {g°(v):y € LIf'(z) = g'(y)| < efori € {0,1,...,k}}.
Ei(z,g.¢) = {¢*(y):y € l,|xt—y|<e and |f(z) — g'(y)| < 8e for i € {1,2,...,k}}.

for any z € I, k € Z*, and € > 0 where g € C°([,I) is a C° perturbation
of f. Although Di(z,g,¢€) and Ei(z,g,¢€) also depend on f we leave out this
dependence because f will always refer to the uniformly piecewise linear map
specified in the statement of lemma B.2.7 below. .

Lemma B.2.7 : Let f : I — I be a uniformly piecewise linear map with
slope s > 9. Suppose that [ satisfies the strong linking property. Then for
any € > 0 there exists N > 0 and a neighborhood, U, of f in C°(I,I) such
that for any g € U at least one of the following two properties hold for each
rel:

([) Dn(x)(z:agae) 2 B[fn(z)(‘z)76]

(1) 9(Euiz)(2,9,€) 2 9(B[f*(z), €])

where n : [ — Z* and 1 <n(z) < N forallz € I.

Proof of lemma B.2.7: Let C(f) = {e1,¢2,...,¢5} where ¢; < ¢ < ... <.
Assume that € > 0 is small enough such that

lek — ¢i| > 16€

for any k # 1.
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We now utilize the strong linking property. For each j € {1,2,...,q} and
k € Z* define wi(j,€) C I such that:

: ; ; 5 ,
wi(j€) = {g"(y) sy € L[f(c;) = fi(w)] < geforie{0,1,...,k}} (BS8)
Given € > 0, for each 7 € {1,2,...,q} let m; be the minimum k such that

wi(j,€)() C(f) #0. (B.9)

The strong linking property implies that such m;’s exist and are finite for
each j € {1,2,...,q} and for any € > 0. From ( B.8) and ( B.9) we can also
see that for each j € {1,2,...,q}, there exists some r(j) € {1,2,...,q} such
that

cr(j) € wk(j,e).

Now set:
1 i ™5 (e :
z = Eje{rlr,lz},r.l..,q} |/ (¢;) = e (B.10)
and note that from ( B.8) and ( B.9):
m 3
/7 () = eri] < 5 (B.11)
for any 7 € {1,2,...,q}. Thus it is evident that:
1

Because of the strong linking property, we know that 6, > 0.

Also, set M = mazjci,..qym;j, define Az(g) : C°(I,I) — R such that:

veey

_ i) — gt B.1
Az(g) ie{ﬂi’fmﬁ?wx) g'(z)l, (B.13)

and choose U to be a neighborhood of f in C°(7, I) such that A,(g) < é, for
any g € U. Thus for any g € U, any z € I, and any ¢ € {1,2,...,M}:

Fi(e) ~ ()] < ge (B.14)
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Now, let (a;b] indicate either the interval, (a,b], or the interval, [b,a),
whichever is appropriate. Then, since s > 9, for any € > 0 we assert that:

Di(cj, fr€) = (f(ej) = oule)e 5 fi(ej)] (B.15)
for each j € {1,2,...,q} and every ¢ € {1,2,...,m;} where:

(¢) = +1 if f* has a a relative maximum at ¢ € C(f)
ile) = —1 if f* has a a relative minimum at ¢ € C(f).

Note that ( B.9) guarantees that that Di(c;, f,€) N C(f) = @ for any i €
{1,2,...,m; — 1}. Thus, since s > 9, ( B.15) can be shown by a simple
induction on z.

We now proceed to the main part of the proof for lemma B.2.7:

Given any g € U we must show that for each z € I either condition (I)
or (II) holds in the statement of the lemma for some n(z) < N. We now
break up the problem into two separate cases. Given some € > 0 first suppose
that = is more than € distance away from any turning point. In other words
suppose that |z — ¢j| > e for all j € {1,2,...,¢}. Then we can set n(x) =1
and it is easy to verify that condition (I) of the lemma holds:

D1($7g76) = g(B(JZ,G))ﬂB(f(:IJ),C)
= B(g(z),¢€)

since s > 9 and |f(z) — g(x)| < § forall z € I.

The other possibility is that z is within € distance of one of the turning
points, in other words that z € V' where:

V={zel:|z—cj|<eforje{l,2,...,9}}

Below we show that for all ¢ € U, if £ € V does not satisfy condition (I)

then z satisfies condition (II) of the lemma. This would complete the proof
of lemma B.2.7.

Suppose that |z — ¢;| < € for some 7 € {1,2,...,q} and suppose that
does not satisfy condition (I) for any n(z) € {1,2,...,m;}. In qualitative
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terms, since f is expansive by a factor of s > 9 everywhere except at the
turning points, the only way for z not to satisfy condition (I) is if z is close
enough to ¢; so that D;(z,g,¢€) represents a “folded” line segment for every
1€ {1,2,...,771]'}.

More precisely, for each 1 € {1,2,...,m; if we let
Ji(z,g,¢) ={y € I:|ff(z) — ¢*(y)| < efor k € {0,1,...,3}}.
so that D;(z,g,¢) = ¢'(Ji(z,g,¢€)), then following claim is true.

Claim: Given g € U, suppose that z € B(c;, €) does not satisfy condition (I)
of lemma B.2.7 for any n(z) € {1,2,...,m;}. Then for each j € {1,2,...,q}
we claim that the following three statements are true:

(1) For any 7 € {1,2,...,m;}, if we define y;(5) € Ji(z,g,€) such that:

soon-{TEsid woTh e
then
Di(z,g,€) = (f'(2) — ailci)e ; ¢'(y:(4))] (B.17)
and ¢'(y:(7)) € (f'(z) — &, fi( ) +e).
(2) For any 7 € {1,2,... -1}, D,(:z: f, ) C(f)=0.
(3) For a.nyie{l,?,...,mJ} yi(7) € Ji(z, f,¢).

Proof of claim: We prove parts (1) and (2) of this claim by induction on 2.

First we demonstrate that if conditions (1) and (2) above are true for
each? € {1,2,...,k} where k € {1,2,...,m; — 1}, then condition (1) is true
for i = k+ 1. Thus we assume that Dy(z,g,¢€) has the form given in ( B.17),
if z € B(z,¢€), so that:

Di(z,g,€) D (f(z) — ok(cj)e ; g"(z)].
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Since |f*(z) — g*(z)| < 3¢, this means:

De(z.9,€) > (7*(2) = oules)e i 14(2) = 7on(es)e]

g,¢). Since Di(z, f,€) D (f¥(z) —

In particular (f¥(z) — 30u(cj))e € Di(z,g,€

or(cj)e i fi(z)] and Di(z, f,e) N C(f) = Q) (assuming that (2) is true for
i = k) we know that [C(f) N (f*(z) — Sok(cj)e ; f'(z))] = 0. Thus, since
s>9:

o4 () — goules)e) € (/5(2) = gs0rm(es)e = 6 ; T5(2) = gsommer)e +62)

Now suppose that c; is a relative maximum of the map f**! so that o441(c;) =
+1 (the case where o441(c;) = —1 is analogous). Then we find that:

9(H(z) - Soule)e) < fH(z) e

where g(f*(z) — 3ok(c;)e) € g(Di(z,g,€)). Thus, since Di(x,g,€) and hence

g(D(z,g,€)) are connected sets, this means that since

Dk+1(xvga6) = g(Dk('rvg’f)) n B(fk-H(x)vf)

we know that f¥(z) — ¢ must be the lower endpoint of Diyy(z,9,¢). Also we
know that

Diyi(2,9,¢) C (f*(z) —€; [ (z) +¢)

because otherwise condition (I) is satisfied for n(z) = k + 1. Consequently
by the definition of yx(7) in ( B.16), we see that:

Dia(z,9,€) = (f!(z) = (¢j)e 5 g*(wrr1(4)))-

where ¢*(yk41(5)) € (f¥*1(z) — € ; f**'(2) + €) if ok41(c;) = +1. Combing
this with the corresponding result for o4+1(c;) = —1 proves that condition
(1) is true for z = k + 1 given that (1) and (2) are true for : = k.

Next we show that if (1) and (2) are true for each : € {1,2,...,k} where
ke {1,2,...,m;—2}, then (2) is true for 7 = k4 1. Suppose on the contrary
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that (2) is not true for k¥ = 7 + 1 so that Dgii(z, f,€) N C(f) # 0. Since
Diyi(z, f,€) C B(f**(z), €) we know that:

ka(x) € B(c,€) (B.18)

for some ¢ € C(f). From ( B.8) and ( B.9) we also know that:

Files) ¢ (e 5 et 2oiles)o (B.19)
for any c€ C(f) ifi € {1,2,...,m; —2}.

We now address two cases. First suppose that there exists some ¢ €

{1,2,...,k} and c € C(f) such that:

ce (f'(z); fie)) (B.20)

Let ¢ be the minimum value for which ( B.20) holds for any ¢ € C(f). Since
t is minimal we know that f* must be monotone on (z;c¢;) so that:

ai(c;)(f*(e;) = f'(z)) 2 0.
Combining this result with ( B.20) and ( B.19) we find that:

o)) — 11(2) > o (B21)

Now suppose there exists no ¢ € {1,2,...,k}, such that:
ce(file) 5 fi(e)

for any ¢ € C(f). Note that since we assume (2) is true for ¢ < k, this means
there exists no ¢ € {1,2,...,k}, such that:

c€ (f’(:c) : fi(cj)) U Di(z, f,€).

for any ¢ € C(f). Then for any i € {1,2,...,k + 1}, we know that f* is
monotone on (z;¢;) U Ji(z, f,€). Thus, for any z € D;(z, f,€) we have:

ai(c;)(fi(cj) —2) = 0
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and from ( B.18) and ( B.19):

Tr (&) e) — (@) > e (B.22)

From ( B.21) and ( B.22) we have shown that if (2) is satisfied for any
i € {1,2,...,k} then there exists t < k + 1 such that:

3
ou(e;)(f(e) = (=) > e

This implies that:

a1(c;)(g'(c;) = f'(z)) > e
so ¢; ¢ Ji(z,g,€). Thus there exists some ¢ € {0,1,...,t — 1} such that
¢; € Ji(z,g,€) for any ¢ satisfying 1 < 7 < ¢ but ¢; € Jpq1(z,9,¢). Since
Di(z,g9,e)NC(f) =0 for any ¢ € {1,2,...,£} we know that:

oer(e)(fH (¢j) = f*(2)) 2 0.

Consequently, since ¢; € Jet1(z,9,€), it is apparent that:

e (c) (g™ () = f(2)) > e

Thus, since Dy(z,g,€) is connected, and since ¢**1(c;) € g(Di(x,g,¢), we

[
-

know that f*(z)+0¢41(c;)e must be an endpoint of Dyyq(z, g, €) = g(Di(z, g, €)N

B(f*(z),€) where £+ 1 <t < k 4 1. This contradicts (1) for s = £+ 1 <
k + 1. But we have already shown that if (1) and (2) are satisfied for
© € {1,2,...,k}, then (1) is satisfied for ¢ = k + 1. Thus if (1) and (2)
are satisfied for ¢ € {1,2,...,k}, then (2) is also satisfied for s = k + 1.

We now need to show that (1) is true for ¢ = 1. By definition, we can
write: Dy(z,g,€¢) = g[(z — ¢,z + €)] N B(f(z),¢). If condition (I) is not
satisfied, then Dy(z,g,€) C (f(z) — ¢, f(z) + €) and at least one endpoint of
Di(z,g,¢€) has to correspond either to a maximum or minimum point of ¢ in
the interior of Ji(z,g,¢€). Since s > 9, and since all the turning points of f
are separated by at least 16¢, we know that the other endpoint of Dy(z,g,€)
must be f(z) — o1(c;j)e. Thus Dy(z,g,¢€) has the form given in ( B.17).
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Now we show that (2) is true for ¢ = 1. Suppose that Di(z,g,e)NC(f) #
0. Then o1(¢;)(f(z) — ¢) < € for some ¢ € C(f). lf ¢ € B(cj,€) and m; > 1
then o1(c;)(f(c;) —¢) > 3e for any ¢ € C(f). Thus o1(c;)(f(c;) = f(z)) > 2e
which means that o1(c;)(g(c;) — f(z)) > e. This contradicts (1) for : = 1 and

completes the proof of parts (1) and (2) of the claim.

We now show that condition (3) of the claim holds. Suppose on the
contrary that there exists * € B(cj,€) for some j € {1,2,...,q} such
that y;(j) € Ji(z, f,€) for some ¢ € {1,2,...,m;}. Then there exists a
k€ {0,1,...,1 — 1} such that ye41(J) &€ Jes1(z, f,€) but ye(j) € Ji(z, f,¢€)
for any integer ¢ satisfying 1 < ¢ < k. We know that:

yi(h) € () e, ) +e),
g (w() € (FFH ) —e, fF(2) +e)

And, since | ¥ (yr41(5)) — ¥+ (yk+1(4))| < bz, we find that:
fHuG) € (FP ) -e=6, ) -9 ‘
U (M) +e, ffz)+e+d) (B.23)
W) € ()€, () —et6)
U (FfYz)+e-6;, 5 (z) + ¢). (B.24)
Also, substituting f = g in part (1) of the claim, we can see that:
Dy(z, f,€) = (fi(z) — oilc)e 5 f1(ei)] (B.25)

where fi(c;) € (fi(z) — €, fi(z) +¢€) for any ¢ € {1,2,...,m;} provided
condition (I) of the lemma is not satisfied. Now suppose ox11(¢;) = +1 (the
other case is analogous). Then, since yi(j) € Ji(z, f,€), we know that it
cannot be true that f**1(y;(j)) > f¥*!(z) + ¢, since that would contradict
( B.25). Thus we can drop one of the intervals in each the unions in ( B.23)
and ( B.24). In particular we find that:

M (wih) € (F (@) — ornaley) 5 fH(e) = orrales)(€ = 62))- (B.26)
This implies z # k + 1 since:

if orpa(e) = +1: ¢ Wk (B)) = JSUF )ng(z) > A (z) > ¢ (wi(4))
z€Jp41(7,9:¢€
if orpa(e;) = =10 "y () = inf  ¢"*1(2) < fH(z) < ¢ (w:0))-

z€Jk41(2,9,€)
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But since Dyyi(z, f,e)NC(f) = 0 for k+1 < m; we know from ( B.25) that:
(@) + orpa(ci)e) 5 [SH(=)) () C(f) = 0.

Thus from ( B.26), since s > 9, it is clear that

" (4i(7)) € Disa(z, g,€).

This means that y;(j) & Je(z,g,€) for any £ > k+2,s0 ¢ < k+ 1. But we
have already shown that ¢ # k + 1. Therefore : < k. But this contradicts our
assumption that £ € {0,1,...,2—1}. This proves condition (3) and completes
the proof of the claim.

Returning to the proof of lemma B.2.7 we now assert that:

Em,(xvg’f) 2(fM™(z) - 80'"&;(01')6 y g™ (ym,(]))] (B.27)

if z does not satisfy condition (I) of the lemma for any n(z) € {1,2,...,m;}.
It is clear that D;(z,g,€¢) C Ei(z,g,€) for each each 7 € {1,2,...,m;}. We
also know that |f(z) — g(z)] < je for all z € I so that given the form of
Di(z,g,€) in ( B.17) and because of the expansion factor, s > 9, we have

that:
Eit1(z.g,€) 2 g(Di(z,9,€)) N B(f+(z),8e).

for any ¢ € {1,2,...,m; —1}. Setting ¢« = m; — 1, and substituting D;(z, g, €)
in the equation above using ( B.17), we get ( B.27).

Now suppose that o (c;) = +1 (the case where 7,,,(¢;) = —1 is analo-

gous). Then, from ( B.10):
fm’(cj) — Cr(y) > 105,,. (B.28)

Also, if condition (I) is not satisfied for some z € B(c;, €), then since y,,, (j) €
Dr,,(z, f,€) we know that f™s(c;) > f™ (ym,(J)) since Dm,_1(z, f,€)NC(f) =
0. Thus, because [f™(z) — g™ (z)| < &, :

9™ (Ym, (5)) = f™(ei) < (f™(ym, (5)) +62) — f™(cj)

< (fM(eg) + 60) = [ ()
< by (B.29)
9™ (Ym, () — [ (e;) =2 g™ (c;) — ™ (¢;) > =65 (B.30)
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Note that f has either a local maximum or a local minimum at ¢, ;. For
definiteness, assume that f has a local maximum at ¢,(;) (the other case is
again analogous). Then, since |f(z) — g(z)| < é, for all z € I, there exists a
local maximum of the map, g, at y1(r(7)) such that:

9(ni(r(y))) =  sup g(z) (B.31)
T€B(cr(;),8¢)

and (i) € Blegy2%). (B.32)

since the turning points of f are separated by at least 16¢ distance.

Consequently from ( B.28), ( B.30), ( B.32), and since s > 9 we see that:

9" (ym, (7)) = 91(r(5)) -
= o) + (/™(4) = &) + (67 (m, (7)) = 7 (€)] = ey + (11(r(7) = 1))

Oz
> [CT(]') + 106, — 5$] - [C.,.(j) + 2—8-)]

> 0. (B.33)

Also, from ( B.29), ( B.11), and ( B.32) and since s > 9 and § < }e

9" (Ym, (7)) = n1(r(5))
= (g™ (ym, (7)) — f™2(c)) + (f™ (i) — er(s)) — (eri)) — 11(r(5)))
1)

) <
<61+§€—2:

< e (B.34)

Consequently, from ( B.33), ( B.34), and ( B.27) we see that if z € B(c;, €)
does not satisfy condition (I), then

n(r(s)) € Em, (z,9,€). (B.35)
Furthermore, from ( B.31) we also know that:
9(n(r(7))) = sup  g(2). (B.36)

2€Em, (z,9,¢)
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If we assume o, (c;) = +1, then from ( B.27), ( B.29), ( B.11), ( B.32),

and since s > 9 and §, < ie we have:

9" (z) < g™ (Ym,(0))
< f™(e)+ 6

5
< GGyt getés

2
Blr(§) + 27 + 2e b4,
< (i) + 3¢ (B.37)

Still assuming om,(¢;) = +1, then from ( B.27), ( B.36), ( B.37), and since
6. < ¢, and |f(z) —g(z)| < & forall z € I :

9(Em,(2,9,¢€)) (9(g™ (x) = 8¢) , g(va(r(h))]
(9(y1(r(7)) = 5¢) , g(y1(r(7))]
(9(na(r(4))) — 5se+ 62, g(y1(r(5))]
(9(s1(r(5))

o (r(3)) — s¢ 9 (r()) (B.38)

v v v

1/

Finally, if on,(¢;) = +1, then smce ) < f™(c;) < erj) + 3eand s > 9, we
know from ( B.32) that ¢,y — ;€ < yl(r(j))) < ¢ 5y + 3e. Thus

dBU™(@)e) € (gun(r(G)) — dse — b2+ glun(r(5)))
C (o) - 35¢» onrG))] (B39

Consequently, from ( B.38) and ( B.39), we have that if z € V does not
satisfy condition (I) of lemma B.2.7 for any n(z) € {1,2,...,m;}, then:

9(Enm,(z,9,€)) 2 g(B[f™ (z),€]),

satisfying condition II of the lemma. We already saw that condition I of the
lemma is satisfied for n(z) =1 if 2 € I\ V. This proves lemma B.2.7.

Proof of theorem 3.2.1:
Strong linking condition — Function shadowing: Note that ( B.6) in lemma B.2.5
may be rewritten as:

Duzy(z,9,€) 2 B[f"®(z), €]
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and ( B.7) in lemma B.2.6 may be rewritten as

g(En(z)(xvga 6)) 2 g(B[fn(x)(x)v 6])
so we can see these two statements are the same as conditions in lemma B.2.7.

For any = € I, condition (I) of lemma B.2.7 implies that condition (II)
must also be true, since clearly E,;)(z,g,€) 2 Dys)(x,9,¢). Thus, combining
lemmas B.2.7 and B.2.6, we see that if f : I — [ is uniformly piecewise
linear with s > 9 and the strong linking property, then f must satisfy the
function shadowing property on C°(I, I). Furthermore, using lemma B.2.3,
we can drop the requirement that s > 9. We can do this since s > 1 for any
uniformly piecewise linear map f, so there always exists n > 0 such that f»
is uniformly piecewise linear and satisfies s > 9. Thus, from lemmas B.2.1
and B.2.2, we know that any transitive map f : I — [ with the strong linking
property must also satisfy a the function shadowing property on C°(7, I).

Function shadowing — Strong linking condition: Suppose that f is a
piecewise linear map that does not satisfy the strong linking condition. We
shall first show that f does not satisfy the function shadowing property on
C(1, ).

If f does not satisfy the strong linking condition, then there is a ¢ € C(f)
and €y > 0 such that there exists no z € {B(c,€) \ ¢} and n € Z* satisfying
f*(z) € C(f) and |f'(c) — fi(2)| < € for every 1 € {1,2,...,n}. We will
show that if € € (0, %eo), then for any § > 0 there exists a ¢ € C°(I,I) that
satisfies d(f,g) < 6 but has the property that no orbit of g e—shadows the

orbit, {f*(c)}2,, of f.

Now given 6-> 0 and € < %60, choose g to be any map that satisfies the
following properties:

(1) g € CUI, 1)

(2) gc) = f(c) — or(e)é

(3) 9(z) = f(z) for any z € {I\ B(c,e0)}-
(4) supsen(cqlo1(c)g(z)] = a1(c)g(c)
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(5) d(f.9) <6

Set z; = f*(c) and let y; = ¢'(c) so that {y;} is an orbit of g. Suppose that
k € Z* such that o;(c)(x; — y;) < € for all € {0,1,...,k}. We assert that

oi(e)(zi —y) > 716 (B.40)

for any ¢ € {1,2,...,k+1}. It is not hard to show this assertion by induction.
For any : € {1,2,...,k} we have that C(f) N (zi;y:) = 0 and oip1(c)(f(y:) —
g(y:)) > 0. Thus, since o.41(c)(f(z:) — f(yi)) = soi(c)(z; — y;), we have that

oir1(e)(f(zi) — 9(y:)) Z oira(c)(f(zi) — fy:)) = sou(e)(z: —yi) (B.41)

so that if ( B.40) is true for ¢, then it also must be true for ¢ + 1, provided
that 7 € {1,2,...,k}.

But {y;}¥! does not e—shadow {z;}¥*!. We can see this from ( B.40)
and from our choice of k, since € < %eo. Furthermore there is no orbit of
g that more closely shadows {z;}%} than {y;}%¥l. This is because for any
uel, ifi € {1,2,...,k} and u € Ji(c,g,¢), then (¢(u);z;) N C(f) = 0
since € < %60. Also, using property (4) of our choice of g, we can show that
SUPse,(eg,)0i(€)g' (2)] = oi(c)g'(c) for any 7 € {1,2,...,k+ 1} by induction
on t.

Consequently, if f is a piecewise linear map that does not satisfy the
strong linking condition, then it cannot satisfy the function-shadowing in
C°(1, ). Since the function shadowing property is preserved by topological
conjugacy (lemma B.2.2) this implies that a transitive piecewise monotone
map cannot exhibit function shadowing in C°(7, 1) if it does not satisfy the
strong linking condition.

This concludes the proof of theorem 3.2.1.
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Appendix C

Proof of theorem 3.3.1

This appendix contains the proof for theorem 3.3.1. [ have made an effort
to make the appendix as self-contained as possible, so that the reader should
be able to find most of the relevant definitions and explanations in this ap-
pendix. Naturally, this means that the appendix repeats some material found
elsewhere in this thesis.

C.1 Definitions and statement of theorem

We first repeat the related definitions which are the same as those found 1n
chapter 3. Throughout this appendix we shall assume that I C R represents
a compact interval of the real line.

Definitions: Suppose that f : [ — [ is continuous. Then the turning points
of f are the local extrema of f in the interior I. C(f) is used to designate
the set of all turning points of f on I. Let C"(I,I) be the set of continuous
maps on I such that f € C(I, ) if the following three conditions hold:

(a) fis C" (for r > 0)

(b) f(I) C I.

(c) f(Bd(I)) € Bd(I) (where Bd(I) denotes the boundary of I),
If f € C7(I,1) and g € C(,1), let d(f,g) = sup,e; |f(z) — 9(a)|-

156



We will primarily restrict ourselves to maps with the following properties:

(CO0) g:1I — I, is piecewise monotone.
(C1) gis C?on I.

(C2) Let C'(g) be the finite set such that ¢ € C(g) if and only if ¢ has a
local extremum at ¢ € I. Then ¢g"(c) # 0 if ¢ € C(g) and ¢'(z) # 0 for
allz € I'\ C(g).

Under the Collet-Eckmann conditions, there exist constants Kg > 0 and
Ag > 1 such that for some ¢ € C(g):
(CE1) |Dg™(g(c))| > KgAg
(CE2) |Dg™(z)| > KgAg if g™(2) = c.

for any n > 0.

We consider one-parameter families of mappings, f, : I, — I, parame-
terized by p € I,, where I, C R and I, C R are closed intervals of the real
line. Let f(z,p) = f,(z) where f : I, x I, — I,. We are primarily interested
in one-parameter families of maps with the following characteristics:

(DO) For each p € I, f,: I, — I, satisfies (C0) and (C1). We also require
that C(f,) remains invariant with respect to p for all p € I,..

(D1) f: 1, x I, — I, is C?* for all (z,p) € I, x I,

Note that the following notation will be used to express derivatives of f(z,p)
with respect to z and p.

D.f(zp) = (e ()
Dof(z,p) = %ﬁ(z,p). (C.2)
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The Collet-Eckmann conditions specify that derivatives with respect to
the state, =, grows exponentially. Similarly we will also be interested in
families of maps where derivatives with respect to the parameter, p, also
grow exponentially. In other words, we require that there exist constants
K, >0, A, >1,and N > 0 such that for some py € I,, and ¢ € C(f,,):

(CP1) |Dpf™(c,po)| > Kp\y

for all n > N. This may seem to be a rather strong constraint, but in practice
it often follows whenever (CE1) holds. We can see this by expanding with
the chain rule:

Dy f™(c;po) = Do f(f* (e, p0), p0) Dy f" " (e, p0) + Dpf (£~ (¢, po), po)(C-3)

to obtain the formula for D, f™(z,po) :

D, f™"(z,po) = Dpf(f" (¢, o), Po) +Z D, f(f*(c,po), Po) H D, f(f(¢,po), po))-

1=0 7=1+1

Thus, if |D.f™(f(c,po),po)| grows exponentially, we expect |D,f"(z,po)| to
also grow exponentially unless the parameter dependence is degenerate in
some way.

Now for any ¢ € C(f,,) define o,(c,p) recursively as follows:

ont1(c,p) = sgn{Dxf(fn(c,p),p)}an(c,p)

where
) 1 if ¢ is a relative maximum of f,
(¢,p) = e . .
1 if ¢ is a relative minimum of f,
Basically on(c,p) = 1 if f} has a relative maximum at ¢ and o,(c,p) = —1

if f7 has a relative minimum at c. We can use this notion to distinguish a
particular direction in parameter space.

Definition C.1.1 Let {f, : I = L:|p € I,} be a one-parameter family of
mappings satisfying (D0) and (D1). Suppose that there exists po € I, such
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that fy, satisfies (CE1) and (CP1) for some ¢ € C(f,,). Then we say the
that turning point ¢ of f,, favors higher parameters if there erists N' > 0
such that

sgn{Dpf"(c,po)} = sgn{on(c,p)} (C.4)
for all n > N'. Similarly, the turning point, c, of f,, favors lower parameters

if
sgn{Dpf"(c,po)} = —sgn{on(c,p)} (C.5)
for alln > N'.

The first thing to notice about these two definitions is that they are
exhaustive if (CP1) is satisfied. That is, if (CP1) is satisfied for some p, €
I, and ¢ € C(f,,), then the turning point, ¢, of f,, either favors higher
parameters or favors lower parameters. We can see this from ( C.3). Since
|D, f(z,po)| is bounded for « € I, if |D,f"(x,po)| grows large enough then
its sign is dominated by the signs of D, f(f™ (¢, po),po) and D, f™ (¢, po),
so that either ( C.4) or ( C.5) must be satisfied.

Finally, if po € I, and ¢ € C(f,,), then for any € > 0, define n.(c, €,po) to
be the smallest integer n > 1 such that | f*(c, po) —c.| < efor any c. € C(f,)-
We say that n.(c,€,po) = oo if no such n > 1 exists.

We are now ready to state main result of this appendix.

Theorem 3.3.1 Let {f, : I, — L|p € I,} be a one-parameter family of
mappings satisfying (D0) and (D1). Suppose that (CP1) is satisfied for some
po € I, and c € C(fp,). Suppose further that f,, satisfies (CE1) at ¢, and that
the turning point, ¢, favors higher parameters under f,,. Then there exists
§p >0,-A > 1, K' >0, and K > 1, such that if p € (po — 6p,po), then
for any € > 0, the orbit {f} (c)}L, is not e—shadowed by any orbit of f, if
‘p _ pOl > Kle/\—ne(c,Kc,po)'

The analogous result also holds if f,, favors lower parameters.

C.2 Proof
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Lemma C.2.1 Let {f, : I. — I.|p € I,} be a one-parameter family of
mappings satisfying (D0) and (D1). Then given py € I,, there exist constants
Ki >0, K; >0, and K3 > 0 such that the following properties are satisfied:

(1) |Dgf(z1,p0) — Def(22,p0)| < Ki|z1 — T2| for any z, € I, and z, € I,.

(2) Let bz > 0 to be the mazimal value such that |z — c.| < éz implies
|D? f(z,po)| > 0 for any c. € C(fp,). Then |Df(z,po)| > Kalz — | if
|z ~ ¢| < bz for some c € C(fp,).

(3) Fizce C(fp). Then, |Dsf(z,p) — D= f(z,po)| < Kslz — cl|p1 — pa for
any x € I, and p € I,.
Proof of (1): (1) is true since f(z,p) is C? and I, x I, is compact.

Proof of (2): From (C2) we know that it is possible to choose a éz > 0 as
specified. Let ¢ € C(f,,) and z € I,. By the mean value theorem:

lDfo(:E’pO)I = |sz(y,po)“$ - C|

for some y € [c;z]. Now set:

1
5 inf D2 f(y, po)l.
2 yE[c—%ér,c+§sx]| = (¥, po)|

[(2 =
From our choice of §z, we know K3 > 0. Thus if |z — ¢| < 36z, we have that:
|Df(z,po)| > 2Ks|z — c|.

But since |D2f(y,po)| > 0 if |z — ¢| < 8z, it is evident that |Df(y,po)| >
|Df(z+36,po)| for any y € (c+ 36z, c+6z). Similarly |D f(y,po)| > |Df(z~
16,po0)| if y € (¢ — 6z, ¢ — 6z). Thus:

IDf(2,p0)| > Kalz — ¢l
for any z satisfying |z — ¢| < dz.
Proof of (3): Fix ¢ € C(fp,) and po € I,. Then for any z € I, and p € I,, let:
q(z,p) = D=f(z,p) = Dz f(2,po).
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Since f is C?, ¢ must be C. It is clear that:

q(e,p) =0 (C.6)
for all p € I, and

q(z, po) = (C.7)
for all = € I,.

From ( C.7) and since ¢(z,p) is C?, q(z,p) satisfies a Lipchitz condition
on I, x I, so that there exists a constant C' > 0 such that:

lg(z,p)| < Clp — pol- (C.8)

for any (z,p) € I, x I,. Now define

q!w,p) .
r(z,p) =1 P ifp70 (C.9)
Dpg(z,po) if p=po

Note that from ( C.8), |r(z,p)| < C|l,| for any (z,p) € I, x I, such that
p # po. Since r is bounded and ¢(z,p) is C1, it is fairly easy to check that
r(z,p) is C* for all (z,p) € I, x I,

From ( C.9) and ( C.7), we see that:

q(z,p) = r(z,p)(p — Po) (C.10)

for all (z,p) € I; x I,. Also from ( C.6) we know r(c,p) = 0 for all p € I,.
Thus since r(z,p) is C', there exists K3 > 0 such that |r(z,p)| < Ka|z — ¢|
for any («,p) € I, x I,. Substituting this into ( C.10) we find that:

lg(z, p)| < Ks|z — c|lp — pol
for any (z,p) € I, x I,. This proves part (3) of the lemma.
Lemma C.2.2 Let {f, : I, — I.|p € I,} be a one-parameter family of

mappings satisfying (C0O) and (C1). Suppose that f,, satisfies (CE1l) for
po € I, and some turning point, ¢ € C(f,, ). Suppose that turning point ¢ of
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foo favors higher parameters. Given any Ao > Ay > 1, there exist constants
K > 1,6p > 0 and ¢¢ > 0 such that for any € < e, if |p — po| < ép,

|f(e,p) — f(c,po)| < € and |fi(c,po) — ¢ > Ke for all c. € C(f,,) and
1 <i<n then:

D-(f(ep)p)l _ A
|Dz(f*(c,po), o) Ao

(C.11)

foralll <i<n.
Proof: We first describe possible choices for K > 1, §p > 0, and ¢, > 0. We
then show that these choices in fact satisfy ( C.11).
Fix 6z > 0 such that

DXf(x,po) # 0if |z — c.| < 6z

for any c. € C(fp,)- Then let:
Jo ={z € L] |z — c.| > bz for any c. € C(fp)}-

Set M, = inf ¢y, |Df(z,po)| and define:

A(a)=sup sup |D,f(x,p) — Dy(z, po)l-
z€lz p€lpg —a,po+a]

Now let K; > 0, K, > 0, and K3 > 0 be the constants from lemma C.2.1.
Choose:

2K,
Ky(1 =34

0

K = (C.12)

Note that since K; > K,, we know that K > 1. Choose ép; > 0 such that:

Alpr) < My _ 21y (C.13)
2 o

Let ép, = %(1 - %) and set

ép = min{ép;,bp2}. (C.14)
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Finally, fix

eo—mln{2K1(1 - —/\—0),}?} (C.15)
In order to show ( C.11) it is sufficient to show:
A
Ao
where
. ‘D-’L'f(fi(cap)7p)—Dl‘f(fi(cvpf)%pﬂ)l
A t,P,Po) = : . C.17
(4p:po) D2 f(F e po)spo)] €4
For each 1 <7 < n we now consider two possibilities:
(1) [ft(e,p) — ¢ > bz for some ¢, € C(f,,) .:

(2) Ke <|f'(c,po) — ¢« < 8z for some c. € C(f,,)-

(Note that we know Ke < éz from ( C.15).)

From now on we assume that [p — po| < ép, |f'(c,p) — fi(c,po)| < €, and
[f*(c,po) — c.] > Ke for all e, € C(f,,) and 1 < i < n. We wish to show that
( C.16) is true for both cases (1) and (2) above for each 1 <i < n.

In case (1) using ( C.13), ( C.14),( C.15), ( C.17), and lemma C.2.1 we

have:

< lef(fi(C,p),p) - Dxf(f'(C,po),p)| + IDwf(fi(qu)vp) - Dxf(fl(c’p(}){wgogl

A(i,p, . P
(5P, po) < = D, f(F(c, po), po)l R
Ki|fi(c,p) — fi(c,
< llf( pj)u f( Po)l +A(|p—po{)
K160 MI /\1
i, T2 Ty
1{1 Mz /\1 1 )‘l
ATy A WA W,
c1-2
Ao
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which proves the lemma for case (1).

In case (2), if Ke < |f*(c,po) — c.| < éz, for some c. € C(f,,) then from
lemma C.2.1, ( C.18), ( C.15), and ( C.12):

K| f'(e,p) = (e, po)l + Ks|f* (¢, po) — eullp = pol
K| fi(e,po) — .l
Kie  Kslp — pol
‘WK T T K
1 /\1 1 /\1

<§(1——)‘—0‘)+§(1—-)‘—0)

A(iapv pO) <

<1 A
Ao’

This proves the lemma.

Lemma C.2.3 Suppose that there exist constants C > 0, Ng > 0 and A\g > 1
such that

1D, f*(e, po)| > CA§ (C.19)

for all i > Ny where po € I,. Suppose also that there exists ép > 0 and
A1 € (1, Xo) such that for some n > Ny:

LETACR Y
ID.F(f(),p0)] ~ Do (C.20)

for all 1 < ¢ < nif|p—po| < bp. Then for any Ay € (1,)1), there exists
Ny > 0 (independent of n and ép) and 8py > 0 (independent of n) such that

|Dpfi(e,p)| > C Xy

forall N1§z§n+1 Zflp—p0|<6p1

Proof: Given Mg > 1, fix 1 < Ay < A\; < Ao. Set M, = sup,;. |Dpf(x,po)l
and define:
A2

. A
26) = (22 Zyoonit — 222

i+l 21
AO P /\2 ( /\0) 2MP (C )
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It is apparent that z(z) — oo as 2 — oo. Thus, it is possible to choose N, > 0
(independent of n and 8p) so that z(z) > Ko|[,| for all i > N, where Ky > 0

1s the constant from lemma C.2.1 such that:
| Dpf(z,p) = Dpf(x,p0)| < Kolp — pol
for any z € I, and p € I,. Let N; = max{ Ny, N.}.

We now prove the lemma by induction on ¢ for Ny <2 < n. From ( C.19),
and since |D,f*(c,p)| is continuous with respect to p, there exists dp; > 0

such that
1D, £V (c,p)] > CA (C.22)

if |p — po| < ép2. Set 6p; = min{ép, ép,}. Thus, since §p; > 0 is independent
of n, to prove the lemma it is sufficient to show that:

D fiep) oy
D, (e.p0)] > g (C23)

implies
Do)l Do

| Dy fi*1 (e, po)|l ~ " Ao

for any |p — po| < épy if N7 <7 < n.
j and let A = |D.f(f*(c,po), po) D} (¢, po)|. Then, ex-

. D f_'+1(°’p2l
Let E - ‘Dpf'+1(c,po

panding by the chain rule:
IDPfH-l(c’p)I

U D el |
Isz(fz(C,p),p)Dpf'(C,p)| — IDpf(f’(C,p),p)l (C24)

Z TD.F(f(epo). o) D fi(cr po)] + Dy J (F¥(er po)s po)]

Using ( C.20) and ( C.23):
1Dz f(f(e, ), p) Dpf(c,p)l

= LD (o), po)| 21D, e, o)
0 0
= (;%)fﬂi—:A (C.25)

0
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Also, we know for lemma C.2.1 that there exists Ky > 0 such that:

Do f(f*(e, )P |
< IDPf(fl(c’p)ap) - Dpf(fz(c,p),poﬂ + 'DPf(fi(c?pLPO) - Dpf(fi(c7p0)’p0)l

Thus, substituting ( C.25) and ( C.26) into ( C.24):

()12 A = (Kolp — po| +2M,)

> A+ M,
(g BI04 (Rl 2000 - W
Since |D,f*™(c, po)| < A+ M, and from ( C.19) we have that
A > CoNtt — M, (C28) -

Substituting ( C.28) into ( C.27) and from ( C.21) we have:

g (dryer, Gi DO - MySi(R)™ —2My — Kolp — po
o A+ M,
A2vin z(2) — Kolp — pol
g (/\0) * A+ M,

Since z(z) > Ko|p — pol, for ¢ > Ny, we have that:
A2

E> (j\;)i“,

it N, < iQS n which proves the lemma.

Lemma C.2.4 Let {f, : I, — I.|p € I,} be a one-parameter family of
mappings satisfying (C0) and (C1). Suppose that f,, satisfies (CE1) and
(CP1) for po € I, and some ¢ € C(fp,). Then there erist constants ¢g > 0,
K >1, Ny >0, X >1, and ép > 0 such that for any positive € < €, if
p € B(po,ép) then for any n < n.(c,€,po) the following two conditions are
true:
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(1) If1f(c.p) = fie,po)| < € for every 1 < i <n, then
1Dy f(e,p)| > CN
forany Ny <j <n+1.
(2)
max |f'(c,p) = f*(¢,po)| 2 min{e, CA'|p — po|}.

Ni<i<n

Proof: If f(z,po) for ¢ € C(fp,) then there exists C' > 0, Ny > 0, and Ao > 0
such that:

|1D,f (e, po)| > CX

for all 2 > Ny. Choose A and A; such that 1 < A < A; < Ag. Then from
lemma C.2.2 we know that there exists K > 1, §p; > 0, and ¢; > 0 such that
for any € < €1, if p € B(po,ép1), n < ne(c, K€, po), and | f*(¢c,p)— f*(c,po)| < €
for 1 <1 < n, then:

1Do(f'(e,p) Pl _ A

|Dz(f*(¢,po)yPo)l Ao
for any 1 < ¢ < n. From lemma C.2.3, this implies that there exists ¢; >
0, ép, > 0, and N; > 0 such that for any € < ¢, if p € B(po,dp2) and
|fi(e,p) = fi(e,po)| < € for 1 < i < m, then:

[Df(e,p)| > CN (C.29)

for any j satisfying Ny < j < n + 1, provided that n < n.(c, K¢, po). This
proves part (1) of the lemma. It also implies that

|fi(c,p) = fi(c,po)| = CN'|p — pol (C.30)
for any Ny <i<n+1ifn<n.cKepo).

Now define:

g(p) = 12}2’%} lfi(c,p) - fi(c>p0)|
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for any p € I,. Since f(z,p) is C? and | D, fM (¢, po)| > CAY*, there exists
6ps > 0 such that ¢g(p) is monotonically increasing in the interval [po,po +
dp3] and monotonically decreasing in the interval [py — éps, po]. Choose ép =
mm{&pg, 6])3}

Now fix € < €. For each n > 0, define J, to be the largest connected
interval such that p € J,, implies that |fi(c,p) — f*(c,po)| < € for 1 < < n,
po € Jn, and J, C B(po,dp). In order to prove part (2) of the lemma it is
sufficient to show that for any p € B(po,ép) if Ny < n < ne(c, K¢, po), then
either (a) p € J, which implies |fi(c,p) — f*(¢,po)| > CA forall No <i<n
or (b) p & J, which implies that |f*(c,p) — f*(c, po)| > € for some N; < i < n.
Case (a) has already been proved above (see ( C.30)). We now prove case

(b).

First of all note that by our choice of ép and J,, if p € B(po,ép), then
either p € Jy, or |fi(c,p) — f'(c,po)| > € for some 1 < ¢ < N;. Now fix
p1 € B(po,8) and suppose that p; € J,, for some n satisfying Ny < n <
ne(c, K€, po). Then, since J; D Jiyq for all 2+ > Np, we know that if there exists
k < n such that p; € Ji \ Jrg1 where Ny < k < n.(c, K¢, po). But for any
p € Ji, we know (see ( C.29)) that |Df**1(c,p)| > CA**1. Thus (f**'(c,p)
f¥+1(¢,po)) must be monotone with for all p € Ji. Consequently if p; €
Ji \ Jeg1 then | f¥+1(c, p1) — f¥*1(c, po)| > € where Ny < k < n.(c, K¢, po).
This proves the lemma.

Lemma C.2.5 Let {f, : I, = L|p € I,} be a one-parameter family of
mappings satisfying (C0) and (C1). Suppose that f,, satisfies (CE1) for
some po € I, and ¢ € C(fy,)- For any p € I, and n > 0 define:

Va(p,e) = {z € L| |f'(z,p) — fi(c,po)| < €, for all 0 <1 <n})

Then there exists €g > 0 such that for any positive € < €, and any 1 < n <

ne(c, €,po) :

sup n(c,po)f™(z,p) < onlc,po) f(c, ). (C.31)
TL‘EVn(pvf)

Proof: Proof by induction. Suppose that the elements of C(f,,) are ¢; <
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¢y < ...< Cm, for some m > 1. Assume that

€ < min Cit1 — G
iE{l,2,...,m—-1}| o il

In this case, ( C.31) clearly holds for n = 1 since o1(c, po) = 1 implies that
¢ is relative maximum of f,, and o1(c,po) = —1 implies that c is relative
minimum of f,,. Now assuming that ( C.31) holds for some n = k where
1 < k < ne(c,€,po), we need to show that ( C.31) holds forn=k+1.

Since k < ne(e), |f¥(c,po) — cil > € for any 2 € {1,2,...,m}. Conse-
quently, since | f*(z,p) — f*(¢,po)| < e for any z € Vi(p, €), we see that there
exists 1 € {1,2,... ,m — 1}/. such that ¢; < z < ¢ipr for every z € Vi(p,¢).
In other words. all elements of Vi(p,¢) must lie on one monotone branch of

fp and:

sgn{Df(f*(z,p),p)} = sgn{ Df(f*(¢, po), Po)} (C.32)
for all x € Vi(p, €).

From our specification of ox(c, po) we have that:

ors1(c,po) = sgn{Df(f* (¢, po), po)}ok(c, po)- (C.33)

We can consider four cases: sgn{Df(f*(c,po),po)} = £1 and ok(c, po) = £1.
Suppose that a(c,po) = 1. By assumption, if or(c,po) =1, then

sup  f"(z,p) < f(c,p)- (C.34)

z€Vn(p,€)
Thus, if sgn{D f(f*(c,po),po)} = 1, then, from ( C.33), ok41(c,po) = 1. Also,
from ( C.32), we know that sgn{Df(f*(z,p),p)} = 1 for all z € Vi(p,¢), and

we know-that all elements of Vi(p, €) lie on a monotonically increasing branch
of f,. Combining this result with ( C.34) implies that:

sup  fE*(z,p) < f* (e, p).
z€Vi41(pi€)

On the other hand, if sgn{Df(f*(c,po),p0)} = —1, then okr1(c,po) = —1
and

inf k+l(g, p) > k+1(ce, p).
zeVw(p’e)f (z,p) = f77 (e, p)
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In both cases above we can see that ( C.31) is satisfied for n = k+1. Similarly
we can verify that ( C.31) is also satisfied for n = k+1 in the two cases where
ok(c,po) = —1. This proves the lemma.

Proof of Theorem 3.3.1:

We are given that f,, satisfies (CEl) for some pg € I, and ¢ € C(f,,).
Then, from part (1) of lemma C.2.4, there exist constants K > 1, C > 0,
Ny > 0,6 >0,6p>0,and A > 1 such that for any € < e, if p € B(po, ép),
and |f*(c,p) — f*(c,po)| < € for all ¢ satisfying 1 <i < n — 1, then:

|Dpf"(c,p)| > CA™ (C.35)
for any n such that Ny < n < n.(c, K¢, po).

Now suppose that there exists ¢ € C(f,,) that favors higher parameters.
Then there exists N3 > 0 such that for any n > N3 :

sgn{D,f"(c,po)} = on(c,po). (C.36)

Set N; = max{N,, N3}. From ( C.35) and since f is C? it is clear that
D, f™(¢, p) can not change signs for any p € B(po, 0p) if N2 < n < ne(c, K¢, po).
Consequently, from ( C.36) we have that:

sgn{Dypf"(c,p)} = an(c,po)

for any Ny < n < n.(c, Ke, po) if p € B(po,dp) and |f*(c,p) — f*(c,po)| < €
for 1 <1< n —1.In this case:

sgn{f"(c,p) — f*(c,po)} = on(c,po)sgn{p — po}- (C.37)

Now suppose that p < po. Then from ( C.37) if o,(c,po) = 1, then
fn(c’p) S fn(c7p0) and if Gn(c’pO) = —1’ then fn(c’p) 2 fn(c7p0) for any
p € B(po,6p) such that |f*(c,p) — f(¢,po)| < € for 1 <4 < n — 1, provided
that N; < n < ne(c, K¢, po). Combining this result with lemma C.2.5 we find
that:

sup  f"(z,p) < f*(c,po) if on(c,po) = 1
IEGVn(P,C)

inf f"(z,p) > f"(c,po) if onlc,po) = —1
xEVn(ny)
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which implies that

inf 1f"(2,p) = f*(c;po)| 2 |F™(c,p) = f*(c,po)] (C.38)

rEVn(p,E)

for any p € [po—ép,po), if Ny < n < ne(c, Ke,po) (where V,(p, €) is as defined
in the statement of lemma C.2.5).

Finally, from lemma C.2.4 we also know that

max |f*(c,p) = f*(c, po)| > min{e, CAf|p — po|}. (C.39)

N]S‘isn

if Ny <n<n.(e,Ke,po) and p € B(po, 6p). Combining ( C.38) and ( C.39)
we find that:

inf |f"(2,p) = f*(c,po)| 2 min{e, CX[p — pol}. (C.40)

2€Vn(p,e€)

if Ny <n < n(c,Ke,po) and p € [po —6p, po]. Clearly the orbit {f*(c,p0)}2,
cannot be e—shadowed by an orbit of foif

inf ["(z,p) = f*(c,p0)]| > ¢ (C1)

zeVn(p,e)

for any finite value of n. Consequently from ( C.40) and ( C.41) we see that
for any € < ¢, the orbit, {fi(e, Do) }324, cannot be e-shadowed by f, if

1
[P = pol > ZeATm (KO (C.42)

and p € [po — 8p, po]. Setting K’ = Z, this proves the theorem.
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Appendix D

Proof of theorem 3.3.2

This appendix contains the proof for theorem 3.3.2. I have made an effort
to make the appendix as self-contained as possible, so that the reader should
be able to find most of the relevant definitions and explanations in this ap-
pendix. Naturally, this means that the appendix repeats some material found
elsewhere in this thesis.

D.1 Definitions and statement of theorem

Definition: Suppose that g : [ — [ is C® and I C R. Then the Schwarzian
derivative, Sg, of ¢ is given by the following:

") _34'G),

g'(z) 27 g'(z)

where ¢'(z), ¢"(z), ¢"'(z) here indicate the first, second, and third derivatives
of .

Sg(z) =

In this section we will primarily restrict ourselves to mappings with the
following properties:

(A0) g:1I— I,is C3(I) where I = [0, 1], with g(0) = 0 and g(1) = 0.
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(A1) ¢ has one local maximum at r = ¢; g is strictly increasing on [0, (|
and strictly decreasing on [c, 1];

(A2) g"(c) < 0, |¢'(0)] > 1.
(A3) The Schwarzian derivative of g is negative, Sg(z) < 0, over all z € |

(we allow Sg(z) = —o0).

Under the Collet-Eckmann conditions, there exist constants Kz > 0 and
Ag > 1 such that for some ¢ € C(g):
(CE1) [Dg"(g(c))| > KA}
(CE2) |Dg™(2)| > KgAg if g"(2) = c.

for any n > 0.

We will be investigating one-parameter families of mappings, f : I, X
I, — I, where p is the parameter and [, [, C R are closed intervals. Let
folz) = f(z,p) where f, : I, — I;. We are primarily be interested in one-
parameter families of maps with the following characteristics:

(BO) For each p € I,, f, : I, — I, satisfies (A0), (Al), (A2), and (A3)
where [, = [0, 1]. For each p, we also require that f, has a turning point
at ¢, where ¢ is constant with respect to p.

(Bl) f:I. xI,— I, is C*for all (z,p) € I, x I,.
Another concept we shall need is that of the kneading invariant. Kneading
invariants and many associated topics are discussed in Milnor and Thurston [31].

Definition: If ¢ : I — I is a piecewise monotone map with exactly one
turning point at ¢, then the kneading invariant, D(g,t), of g is defined as
follows:

D(g,t) =14+ 6;(g)t+02(g)t + ... +0(g)t" +...
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where

On(9) = e(g)ea(g)...€a(9)
€n(9) = lim sgn(Dg(g"(c)))

for n > 1. If ¢ is a relative maximum of g, then one interpretation of 6,(g)
is that it represents whether g"*! has a relative maximum (,(¢g) = +1) or
minimum (6,(g9) = —1) at c.

We can also order these kneading invariants in the following way. We will
say that |D(g,t)| < |D(h,t)|if0:(g) = 8i(R),for 1 < ¢ < n,but 0,(g) < 0,(h).
A kneading invariant, D(f,,t), is said to be monotonically decreasing with
respect to p if py > po implies |D(f,,,t)| < |D(fpo,1)]-

We are now ready to state the main result of this appendix:

Theorem 3.3.2 Let {f, : I, — L.|p € I,} be a one-parameter family of
mappings satisfying (B0) and (B1). Suppose that po € int(I,) such that f,,
satisfies (CE1) where int(l,) denotes the interior of I,. Also, suppose that
the kneading invariant, D(f,,t), is monotonically decreasing with respect to
p in some neighborhood of p = po. Then there ezxists ép > 0 and C > 0 such
that for every zo € I, there is a set, W(zo) C I; % I,,, satisfying the following
conditions:

(1) W(zo) = {(az(t),Bz(t))|t € [0,1]} where oy, : [0,1] — I, and B, :
[0,1] — I, are continuous and B, (t) is monotonically increasing with
respect to t with B,,(0) = po and B4, (1) = po + ép.

(2) For any zo € L, if (z,p) € W(zo) then |f"(z,p) — f"(z0,po)| <
C(p — po)t for alln > 0.

D.2 Tools for maps with negative Schwarzian
derivative

There has been a significant amount of interest in recent years into one-
dimensional maps, particularly maps with negative Schwarzian derivative.
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Below we state some useful properties and analytical tools that have been
developed to analyze these maps. For the most part, the results are only
stated here, and references provided to appropriate proofs. We do not at-
tempt to trace the history of the development of these results.

The only results in this section that are new are contained in lemmas D.2.11, D.2.12,

and D.2.13.

Lemma D.2.1 [f g satisfies (A0), (A1), and (A2) then there exist constants
Ko > 0, and K; > 0 such that for allz € I :

(1) Kolz —¢| < |Dg(z)| < K|z — ¢

(2) Koz —c* <lg(z) — g(c)] < 3Knlz — cf?
Proof: This is clear, since ¢"(c) # 0.

Lemma D.2.2 If f(z,p) satisfies (B0) and (B1), then there ezist constants
Ko >0, and Ky > 0 such that for anyx € I;, y € I, po € I,, and py € I, :

(Z) 'sz(-'lf,Po) - Dxf(yap())l < Kﬁ'ir - yl
(2) |Dzf(z,po) — Dof(z,p1)| < Kilpo — p|

Proof: This is clear, since f(z,p) is C? and I, x I, is compact.

Lemma D.2.3 (Minimum Principle). Suppose that g has negative Schwarzian
derivative. Let J = [xo,z1] be an interval on which g is monotone. Then

|Dg(z)| = min{|D f(zo)|,|Df(z1)}
for all x € J.
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Proof: See, for example, page 154 of [30].

Definition: Given map ¢ : I — I, we say that z is in the basin of attraction
of an orbit, {y;}32,, of g if there exists an m > 0 such that lim;_ o (¢"t™(z) —
yi) = 0.

Lemma D.2.4 (Singer) If g : I — I is C° and has negative Schwarzian
derivative, then the basin of attraction of any stable periodic orbit contains
either a critical point or one of the boundary points of I.

Proof: See Singer [53].

Definition D.2.1 We will say that a piecewise monotone map, g : [ — I,
has a sink if there exists an interval J C I such that that g is monotone on
J" and g"(J) C J for some n > 0.

Lemma D.2.5 [f g : [ — [ satisfies (A0), (A1), (.:2), (A3), and (CE1).

Then g has no sinks.

Proof: 1t is relatively simple to show that the existence of such a sink implies
the existence of a stable periodic point (see for example Collet and Eck-
mann [11], lemma I[.5.1). From Singer’s theorem, we know that g : [0,1] —
[0,1] does not have a stable periodic orbit unless z =0,z =c,orz=11isin
the basin of attraction of that periodic orbit. From (CE1) we know that the
critical point does not tend to a stable orbit and from (A2) we know that
z = 0and z = 1 do not tend to a stable periodic orbit. Thus g has no sinks.

Lemma D.2.6 (Koebe Inequality). Suppose that g : I — I has negative
Schwarzian derivative. Let T = [a,b] be an interval on which g is a diffeo-
morphism. Given z € T, let L and R be the components of T \ {x}. If there
exists T > 0 such that:




then there exists K (1) > 0 such that:

|Dg(z)| > K(7)sup|Dg(2)|
z€T

where K(7) depends only on 7.
Proof: See, for example, theorem 3.2 in van Strien [55].

Lemma D.2.7 Let g : [ — [ satisfy (A0), (A1), (A2), (A3) and (CFE1).
Then g satisfies (CE2).

Proof: See Nowicki [41].

Lemma D.2.8 Let g : I — [ satisfy (A0), (A1), (A2), (A3) and (CE1).
There exists K > 0 and Ay > 1 such that for any n > 0, if g"(z) = c then
|z —c| > KAT™.

Proof: From lemma D.2.1, we know there exists K, > 0 such that
|Dg(z)| < Kolz — ¢| for any = € I. Now set a = sup,c;|Dg(z)|. Then
we have:

|Dg"(z)| < " Kolz — |

However, by lemma D.2.7, we also know that g satisfies (CE2), so that
Dg™(z) > KgA™ for some constants Kg > 0 and A > 1. Thus a" ' Kylz —¢| <
KgA™ which implies that |z —c| < 2%2(2)". This proves the lemma if we set

Kz"—}i‘%and A= (3).

Lemma D.2.9 Let g : I — [ satisfy (A0), (A1), (A2), (A3) and (CE1).
Let J, C ofI be any interval such that g™ is monotone on J,. Then there
exist constants K > 0 and A, > 1 such that for anyn > 0:

|Jn] < KAZ™
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Proof: See Nowicki [41].

Lemma D.2.10 Let g : I — [ satisfy (A0), (A1), (A2), (A3) and (CFE1).
Suppose that g™ is monotone on J = [a,b] where J C I and g™(a) = c for
some n > 0. Then there exist constants K > 0 and A\, > 1 such that for any
n > 0:

lg"(J)]
> K
lJI =

Proof: See lemma 6.2 in Nowicki [42].

Lemma D.2.11 Suppose that g : I — I satisfies (A0), (A1), (A2), (A3),
and (CE1). Let z € I such that |g'(z) — c¢| > € for 0 < i < n. Then, for any
€ > 0 there exist constants C > 0 and A\ > 1 (independent of z) such that:

|Dg*(z)] > Ce¥X
for 0 <1< n.
Proof: For any 1 > 0, let A;(z) be the maximal interval such that z € Ai(z)

and ¢* is monotone on A;(z). The proof of the lemma is based on the following
claim:

Claim: Let z € I, and suppose that there exists b € A,(z) such that
g"(b) = c for some n > 0. If |g*(z) — ¢| > e for 0 < ¢ < 7, then there exist
Co > 0 and A > 1 (independent of ) such that:

IDg"+l(.’I2)| > 0062/\n+1‘

We shall now describe the proof of the lemma using this claim, leaving
the proof of the claim for later.

Fix ¢ € I and ¢ < n. Suppose that A;(z) = [a,a'] and let z; = fi(z),
a; = f(a), and a! = f'(a’). For definiteness, assume that |z; — a;| < |a} — ;|
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(the other case is analogous). Since A;(z) is maximal, each endpoint of A;(z)
must map either into (1) the critical point, or (2) into the boundary of /. If
case (2) is true, there must exists k < ¢ such that g¥(a) = 0, or g*(a) = 1
(since I = [0,1] by (A2)). This means either a =0, a = 1 or g’(a) = ¢ for
some j < k. If g’(a) = c then case (1) is also satisfied. Otherwise, if a =0 or
a =1, then f'(A;(z)) N {c} # 0, and the lemma may be proved by a direct
application of the claim described above.

Otherwise, if case (1) is true, there must exist k < ¢ such that g*(a) = c.
By (CE1l), we know there exist constants, Kg > 0 and Ag > 1 (independent
of 2 and k) such that:

|Dg" "1 (g"* (a))] > KpAg ™! (D.1)
Now set y € [a,a’] so that y; = ¢*(y) = 3(a;+a!). By the Koebe Inequality,

since |yx — ak| < |aj — yk|, there exists Ko = K(r = 1) > 0 such that:

[Dg'~* 71" (y))| > Kol Dg'™* " (¢"* ()]
Combining this with ( D.1) we have:

|Dg' ™ " (g** (9))| > KoKpAg*™ (D.2)
Also, since |z; — a;| < |a} — z;|, we know z; € [a;;yi] (where [a;b] means
either [a, b] or [b,a] whichever is appropriate). Thus by using the minimum
principle with ( D.1) and ( D.2) we find that there exists K; > 0 such that:
|Dg* ="} (g™*(2))| > KiAg . (D.3)
We are now ready to apply the claim. It is clear that a € Ag(z). Since
g*(a) = ¢, the claim implies that there exists Cop > 0, and Ag > 1 such that:
|DgF*Y (z)] > Coe? AET? (D.4)

Combining ( D.3) and ( D.4) we find that there exists C' > 0, and A > 1 such
that:

|Dg'(2)| = [Dg'~*" (¢"*(2))|Dg"*' (z)| > CEN.
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This proves the lemma, except for the proof of the claim, which we de-
scribe below.

Proof of Claim: Let A,(z) = [a,d']. If b = a or b = d' then the proof is
trivial since g satisfies (CE2) from lemma D.2.7. So suppose that b € (a,a’).
For definiteness suppose that z < b so that z € [a,b] (the other case is
analogous). As before, since A,(z) is maximal, the endpoints of A,(z) must
map either into the critical point, or into the boundary of I. Let us address
the critical point case now, and come back to the other case at the end of
the proof.

Assume that there exists k < n such that ¢*(a) = c. Let ax = ¢*(a)
and by = g*(b) and let y € [a,b] such that yx = ¢*(y) = 3(ax + bk). By
the Koebe Inequality we know that there exists K; = K(r = %) such that
|Dg*(y)| > K,|Dg*(a)|. Also, since g satisfies (CE2), there exists Kg > 0
and Ag > 1 such that:

|Dg*(a)| > KgAk. (D.5)

Combining the last two statements, we find that
|Dg"(y)| > K2Ke)g. (D.6)
Now let y' € [a,b] so that y} = ¢*(y') = ar + 3sgn(be — ax)e) € [ax; bl
Since zx = g¥(x) € [ax; bk], we know |z — ax| = |zx — ¢| > €. Consequently

|bx — ak| > € which implies |yx — ax| > 1e. Thus, since |y; — ax| = 1€, we have
Y € [ak; yxl-

Applying the minimum principle to this interval and using ( D.5) and
( D.6), we find that there exists K3 > 0 such that:

|Dg*(y")| > K3AE. (D.7)

Also, for any € > 0, we know from lemma D.2.1 that there exists K4 > 0
such that

ID(ui)] > 3Kac. (D3)
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y'k=a|(+-l €

2 atE
I | | | | I
I I I I I I
=1 '
a=c Yi= i(ald'bk) by a,
|< € |- Xk

must be in this interval

Figure D.1: The interval g*(A(z)) = [ax, a}] and associated variables are shown.
The figure is drawn assuming that aj > ai, b € (a,d’), and that z € [a, b].

From ( D.7) and ( D.8) and setting K5 = 3 K3Kj, we have:
|Dg**'(y')| > KseAi™. (D.9)
Also, since g¥(a) = ¢, from (CE1l) we know that |Dg"~*~'(g**!(a))| >
KgAE "1, Since ¢g™(b) = ¢, we know from (CE2) that | Dg™*~1(g*+1(b))| >

KgAE %1 Thus, by the minimum principle, | Dg"~*~1(g**1(y'))| > KgAi*~1.
Combining this with ( D.9) we find:

|Dg"(y")| > KsKpe)g. (D.10)
From (CE2) we also know that
|Dg"(b)| > KpAk. (D.11)

In addition, since |zx — ai| > €, we know that zj € [y;; bk] so that z € [v/, b].
Thus, from the ( D.10), ( D.11), and the minimum principle, we can conclude
that there exists Kg > 0 such that:

|Dg"™(z)| > Kee)g.

Finally, since [¢"(z)—c| > €, we can use lemma D.2.1 to bound |Dg(g"(z))| <
K4e for K4 > 0. Consequently there exists C; > 0 such that:

[Dg™t!(2)| > C1€2 M}, (D.12)
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which proves the claim for the case where g*(a) = ¢ for some k < n.

The other possibility is that g*(a) € Bd(I) for some k < n where Bd([)
denotes the boundary of /. But this implies that either a € Bd([) or possibly
that g*~!(a) = c. The possibility where g*~(a) = ¢ has already been covered
by the previous case. On the other hand, if a € Bd(I) then by (A2) there
exists Ao > 1 such that |Dg¢"(a)] > A}. From (CE2) we also know that
|Dg™(b)] > KgA%. Thus, by the minimum principle, there exists K7 > 0
and Ay > 0 such that |Dg™(z)| > K7A} for any = € [a,b]. Then, since
lg"(z) — ¢| > € we can use lemma D.2.1 to bound |Dg(g"(z))| so that there
exists C, > 0 satisfying:

|Dg™ ! (z)] > CaeA} (D.13)

Combining ( D.12) and ( D.13) shows that we can pick C' > 0 and A > 1 to
prove the claim.

Lemma D.2.12 Let g : [ — [ satisfy (A0), (A1), (A2), (A8), and (CE1).
Suppose there exists a € I and n > 0 such that g"(a) = c. Given any o > 0
sufficiently small, either mino<icy |9°(a) —c| > « or there exists be I, n' > 0,
and constants K > 0 and K' > 0 such that g"'(b) = ¢, |b~a| < Ka, and
n’ <n—K'logz.

Proof: Suppose that ming<i<s [g°(a) — ¢| < a. Then there exists m < n such
that |[¢g™(a) — ¢| < @ and |¢*(a) —¢| > afor 0 <1 < m.

Since ¢g™(yo) approaches close to ¢, we can bound m away from n using
lemma D.2.8:

1

> lOg =

D.14
- 10g /\1 ( )

n—m

where A\; > 1 is a constant dependent only on g.

We now consider two possibilities: (1) there exists b € I such that g™(b) =
c and g™ is monotone on [a; b] or (2) there exists b € I and k < m such that
g™ is monotone on [a;b], g¥(b) = ¢, and g™(b) € [¢g™(a);c]. One of these two
cases must be true.
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Let a; = ¢g*(a) and b; = ¢'(b) for 7 > 0. In the first case, from lemma D.2.10,
there exists K3 > 0 such that:

1 «

b—a|l < —|bp —c| < —. D.15

b= al < el =l < (D.15)

Also, from ( D.14) we know m < n — %:—E—. Thus, in this case the lemma is
proved if we set K = -, K/ = —— and n’ = m.

K; T log A

Now we address the second case. From lemma D.2.1 we know there exists

Ko > 0 and K; > 0 such that Ko|lz — ¢|2 < |f(z) — f(¢)| £ Ki|z — ¢|*. Thus
if we set Ky = % we see that for any § > 0 and §* > K, we have that:

g(lex8c) C g([gex6)) (D.16)

where the + notation means that the relation holds for all four possible
combinations. Also note that since by, = ¢ and b,, € [a; c] we have:

[ak+1;0641] = g(lar; b)) = g([ax; c]) (D.17)
[@ms15bme1] = g([am; bn]) C g([am; ). (D.18)

We now assert that |ag—bk| < Kya. Suppose to the contrary that |ax—c| =
lax — bx| > Ko > Kjlan, — c|. Then, combining this with ( D.16), ( D.17),
and (D.18) implies that:

[@m 415 bmt1] C [ar41; b41]- (D.19)

However, since g satisfies (CE1), it cannot have any sinks (from lemma D.2.5).
In particular this means:

[am+1; bmt1] € [art1; bk
if k < msince g™*! is monotone on [a;b] if & > 0 is sufficiently small. Thus,

( D.19) cannot be true so we conclude that:

|ak - bk( S Kza.

Finally, since b, = ¢, we can use D.2.10 to show that there exists K3 > 0
such that:

1
K3

|6 —a| < —|ak — b| = — K« (D.20)

K
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Thus combining ( D.14) and ( D.20) we see that the lemma is satisfied if we

- ¢ -, log L+
set K =22 K'=_1 _andn'=k<m<n-——=a,
K3 log Ay log A\

Thus, combining the results from ( D.15) and ( D.20), proves the lemma.

Lemma D.2.13 Suppose g : [ — [ satisfies (A0), (A1), (A2), (A3), and
(CE!l). Then there ezists C > 0 and ¢g > 0 so that given any positive € < €,
and any z € I such that z + ¢ € I, then there is a y € (z,z + €) such that
N(y,g) < 0o and ming<;cn(y,g) |9°(y) — ¢| 2 Ce. Similarly if z — € € I, then
there ezists y' € (z — €,z) such that N(y',g) < co and ming<icn(y,g) 19 (y) —
c| > Ce.

Proof: We show the proof for y € (z,z + €). The proof for y' € (z —¢,z) is
exactly analagous.

Our plan is to apply lemma D.2.12 as many times as necessary to find an
appropriate y to satisfy the lemma. In other words, lemma D.2.12 implies
that given any y; € I such that n; = N(yi,¢) < 0o and mino<icn, |9°(yi)—c| >
«, then there exists a y;41 € [ such that |y;4; — yi| < Ko and

1
niy1 = N(yiy1,9) <ni— K'; (D.21)

for positive constants K and K'. Thus given yo, we can generate a sequence
{y;}:=r in this manner for increasing ¢ until ¢ = m such that

min |gi(ym) —c > a. (D.22)

0<i<nm

For example, given any a > 0, and any zo € I we know from lemma D.2.9
that if z¢ + o € I, then there exists yo € (zo,zo + &) such that g™ (yo) = ¢
for some integer satisfying:

1

log ~
< o D.23
ne < oz \s +1 ( )

where A, > 0 is a constant dependent only on g. If we generate {y; }:=5* from
the yo specified above, then from ( D.21) and ( D.23) we find that:

.<( L
= log )\,

~ iK")(log é) +1 (D.24)
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forall 0 < < m. Set M = —m + 1. Then for sufficiently small o > 0
we find that m < M because otherwise ( D.24) would imply that n; < 0 for

> m.

So given x € I and positive € < € from the statement of the lemma, set
zo=2+ KMa and a = ﬁ.—ﬂlﬂ—le, Note that we can choose ¢y > 0 to insure
that o > 0 is sufficiently small so that the above arguments work. Also, note
that sincewo+a=w+%%e<x+e, ifx+¢e€ 1l then 2o+ a € I. From
our choice of yo € (zg,z0 + @), we also know that since |y;+1 — ¥i| < Ka,
we have |y, — yo| < Kma. Consequently y,, >z + KMa — Kma > z and
Ym >+ KMa+a+ Kma >z+(2KM+1)a <z +e Thus y, € (z,2+¢€)
and from ( D.22), we have that ming<icn,, [9'(ym) — ¢| = a = Ce where
C = ﬁflﬂT Setting y = Y, this proves the lemma.

D.3 Analyzing preimages

In this section we will investigate one-parameter family of mappings, {f,[p €
I,}, that satisfy (B0) and (B1). Our discussion depends on an examination
of the preimages of the critical point, £ = ¢ in I, x I, space. We first need
to introduce some notation in order to describe the relevant concepts.

For the remainder of this section, {f,|p € [,} will refer to a given one-
parameter family of mappings satisfying (B0) and (B1). We will consider the
set of preimages, P(n) € I, x I, satisfying:

P(n) = {(z,p)|f'(z,p) = c for some 0 < i < n}.

Our first order of business will be to state some basic properties of P(n).
For one thing, if (z',p") € P(n), then there exists an € > 0 such that P(n) N
{(z,p)lp = p',z € B(a',e)} = {(«',p')}. This is true since f is quadratic
around the critical point so that if there exists m < n such that f™(z’,p’) = ¢,
then there exists € > 0 such that f™ is monotone on [z’ — ¢, z'] and [z’, 2’ + €.

It will also be useful to have a way of specifying a particular section of
path-connected preimages, R(n, zo, po), extending from some point (g, po) €
I x I,. So let R(n,zo,po) C I, x I, denote a branch of path-connected
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elements, consisting of all points (z/,p’) € I, x I, such that there exists a
continuous function ¢ : I, — I, satisfying g(po) = zo, g(p') = 2/, and

{(2,D)T = G(z0.00)(P): P € [p0; P']} C P(n).

. where [po; p'] may denote either [po,p’] or [p/, po], whichever is appropriate.

A roadmap of the development in this section is as follows. In lemma D.3.1
we show that P(n) cannot have isolated points or curve segments. Instead,
each point in P(n) must be part of a continuous curve of points in P(n)
that stretches for the length of the parameter space, [,. In lemma D.3.2 we
demonstrate that if the kneading invariant of f,, D(f,,t) is monotonically
decreasing (or increasing), then P(n) must have a branching tree-like struc-
ture. As we travel along one direction in parameter space, branches of P(n)
must either always merge or always split away from each other. For exam-
ple if D(f,,t) is monotonically decreasing, then branches of P(n) can only
split away from each other as we increase the parameter p. In other words
R(n,y—,po) and R(n,y4+,po) do not intersect each other for p > po if y4 > y-
for any y; € I, and y_ € I,.

In lemmas D.3.3, D.3.4, D.3.5, and D.3.6 we develop bounds on the
derivatives for differentiable branches of R(n,z,po). The basic idea behind
lemma D.3.7 is that we can use these bounds to demonstrate that for maps,
fp, with kneading invariants that decrease monotonically in parameter space,
there exist constants C' > 0 and ép > 0 such that if zo € [, and

U(p) = {z| |z — zo| < C(p — po)?} (D.25)

for any p € I,, then for any p’ € [po,po + 6p], there exists z/, € U(p')
such that (z/,,p') € R(n4,y4,po) for some y, > zo and ny > 0 assuming
that f**+{y4+,po) = c. Likewise there exists z, € U(p') such that (z’,p) €
R(n_,y_,po) for some y_ < zo and n_ > 0 where f*~(y_,po) = c.

However, setting n = max{n,,n_}, since R(n,y_,po) and R(n,y+,po)
do not intersect each other for p > py and y_ # y,, we also know that for
any y_ < y4, there is a region in I, x I, space bounded by R(n,y_,po),
R(n,y4+,p0), and p > po. Given any z¢ € I, take the limit of this region as
y_ — r5,y+ — =3, and n — oo. Call the resulting region S(zo). Observe
that S(z¢) is a connected set that is invariant under f and is nonempty for
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every parameter value p € I, such that p > po. Thus since S(z¢) is bounded
from ( D.25), there exists a set of points, S(zo), in combined state and
parameter space that “shadow” any trajectory, {f1 (zo)}2, of fp,. Finally

we observe that a subset of S(z¢) can be represented by the form given for
W'(.’IZ()).

We are now ready to examine these arguments more formally.

Lemma D.3.1 Let {f, : I, — I;|]p € I,} be a one-parameter family of
mappings satisfying (B0) and (B1). Suppose that zo € I, satisfies n =
N(zo, fpy) < 00 for some py € int(I,). Then the following statements hold
true:

(1) There ezists a closed interval J,(zo,po) C I,, and a C? function

h(ro,Po)(p) : Jp(yupo) - I:r such that Po € int(JP(anpo))v hy,Po(pO) = Po,
and f"(hyp,(p),p) = c for all p € Jp(y,po) (where int(J) represents the
interior of J). Also, if J,(y,po) = [a,b] then a is either an endpoint of
I, or fi(hyp(a),a) = c for some i < n, and similarly for b.

(2) There exists a continuous function, g(z,po)(p) : I, — I such that
g($o,po)(P0) = zo and

{(z,P)|2 = 9(zo.p0)(P): P € I} C P(n).

Proof: Suppose that f™°(zg,po) = ¢ for mg < n and f*(z¢,po) # c for
0 < ¢ < mg. Then define the set S(zo,po) C I x I, to be the maximal
path-connected set satisfying the following conditions:

(1) (zo,po0) € S(z0,po)
(2) (z,p) € S(z0,y0) if p € I, and f*(z,p) # c for every 0 < i < my.

Note that S(zo,po) must contain an open neighborhood around (zo, po) be-
cause of the continuity of f.
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Now let S(zo,po)} be the closure of of S(zo,po), define Qzq,p0)(P) =
{z|(x,p) € S(z0,po)}, and let

Jo(zo, = inf , su D.26
»(Z0, Po) [(ryp)es(xo'po)P (r,p)esgo,po)p] ( )

We claim that Q(z.0)(p) € I must consist of a single connected interval
for every p € Jp(zo,po). Otherwise if there existed z; < =3 < z3 such that
21 € Qeope)(P)s T2 & Q(zo p0)(P); and 23 € Q(z0.00)(P) then there would exist
i < mg such that ¢ € [fi(zo,p); f'(z3,p)]- But since (z1,p) € S(zo,po) and
(z3,p) € S(zo,po) there exists a connected path, {(z(t),p(t))}t € [0,1]} C
S(zo, po), joining (z1,p) and (z3,p), where where z(t) : [0,1] — I and
p(t) : [0,1] — I, are continuous functions. Along this path, fi(z(t),p(t))
is continuous and fi(z(t),p(t)) # c for any t € [0,1]. This contradicts the
assertion that ¢ € [f*(zo,p); f'(z3,p)] and proves the claim that Q(zo,50)(P)
must consist of a single interval for all p € Jp(Zo, Po)-

Returning to the proof of the lemma we find that, since (z,p) € S(zo,Po)
implies fi(z,p) # c for every 0 < 1 < mq, we know that fr*°(z) must
be strictly monotonic on Q(z40)(p) for each p € Jp(zo, po). Thus for each
p € [po, p1) there is exactly one £ € Q(zo,40)(P) such that f™(z,p) = c. Conse-
quently there exists a function h(z, o) (P) : Ip = Iz such that f™ (A (zy,p0)(P): P)
¢ and h(zy.p0)(P) € Qzowo)(P) f P € Jo(9,po). Furthermore, the function,
h(z0.30), Must be C? for p € int(Jp(zo,po)) since f(z,p) is C* and f*°(z) is
strictly monotonic in for = € Q(ze.4,)(P) (Where int(J) denotes the interior
of the set J). Finally, from our choice of S(zo, po) and h(zyp)(p), it is clear
that (h(ze0)(p),P) € P(n) for all p € J,(20,po)- This proves property (1) of
the lemma.

We now have to construct a continuous g(z)(p) that is valid over the
entire range of I,. Suppose that J,(z0,y0) = [p_1,p1)- Let g(zop0)(P1) = Z1-
From our specification of S(zo,po) it is clear that f?(z1,p1) = c for some j <
mo. Thus there exists m; < mo such that f™(z1,p1) = ¢ and fi(z1,p1) # ¢
for 0 < i < my. Consequently, we can use the same arguments as before
to consider the set S(z1,p1), and generate a continuous function, A(z, p,)(P)
such that (ks p)(p),p) € P(n) for all p € Jo(z1,p1) where Jp(z1,31) D
[p1,p2] for some p2 > pi. This argument can be carried out repeatedly for
mo > my > ma,... and so forth. However, since f™(z;,pi) = ¢, wWe see
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that sup(l,) € J,(;, p;) for some i < n. Similarly we can also use the same
arguments for p < po, working in the opposite direction in parameter space in
order to successively generate (Az_p_)(P);P) € P(n) for increasing values
of 7. Consequently, there exists —n < a <0and 0 < b < n such that
I, = Ul_, J, (i, pi). Now if we set h(p) : I, — I, to be

I(z0.00) (P) = h(z; pi)(P) if p € (2, p;), (D.27)

we can see that gz, ,,)(p) is continuous since Pz i) (P) is C* if p € int(J,(z;, p;)),
and hz, 5,)(Pi) = bz, p_y)(pi) foralla < i < b. Finally, since (h(, »,)(p),p) €
P(n) for all a < ¢ < b we see that 9(z0,p0)(P) has all the properties guaranteed
by the lemma.

Lemma D.3.2 Let {f, : I, — I:lp € I,} be a one-parameter family of
mappings satisfying (B0) and (B1). Suppose that there ezists 0p > 0 such that

the kneading invariant D(f,,t) is monotonically decreasing for p € [po, po +
op]. Then

R(n’ yOaPO) N R(n’ ylaPO) N (]$ X [pO,pO + 6})]) = 0 (D28)

for any yo # y1 and any n > 0 such that Yo € I, and y, € I,.

Proof: Suppose that there exists Yo € I; and y; € I, such that

R(n,y0,p0) N R(n,y1,p0) N (I, x [Po, Po + ép]) # 0. (D.29)

for some n > 0 where N(yo, f,,) < n and N(y1, fro) < n. It is sufficient to
show that this statement contradicts the condition that D(f,,t) is monoton-
ically decreasing for p € [po, py + 6p].

Let p’ > po be the smallest value such that there exists a pair of points
Y2 € I and y3 € I, with y, < y; satisfying:

R(n,y2,p0) N R(n,y3,p0) N (I, x [po, P']) # 0. (D.30)

Assuming that ( D.29) is true, we know that P’ < po+ 8p. Now fix y, in the
right hand side of ( D.30) and let y; take on all values such that Y3 > yo and
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y3 € I.. Let y4 be the smallest possible value of y3 that satisfies ( D.30) and
set ' € I, such that (z’,p’) € R(n,ys,po) and (z',p') € R(n,y4, po).

Let G2 be the set of all continuous functions, §; : I, — I, such that
g2(p') = z' and f(§2(p),p) € R(n,y2,po) for all p € I,. By lemma D.3.1,
there exist at least one element in (5. Set

92(p) = sup ga(p). (D.31)
92€G2

Clearly g2(z) must be also be continuous function that satisfies go(p') = '
and f(g2(p),p) € R(n,yz,po) for all p > po if p € I,. Similarly we can define
g4(z) in analagous way, making

ga(z) = _inf Gs(z) (D.32)
where G4 is the set of all functions gy : I, — I, satisfying §4(p') = z’ and
f(ga(p),p) € R(n,ya,po) for all p satisfying p € I, and p > po.

Because of our choice of p’, we know that g2(p) # ga(p) if p € [po,p’).
Now let

Jo = {(f(g2(p),p),P)lp € L}
Js = {(f(94(p),p),P)lp € L,}.

And let M € I, x I, be the interior of the region bounded by J, U JyU (I x
{po}). From our choice of p’ we know that

Joa N R(n,y,p0) N (Iz X [po,p")) = 0
JaN0 R(n,y,po) N (I X [po,p")) = 0

for any y # y, and y # y4. From our choice of y4 we also know that (z/,p’) ¢
R(n,y,po) for any y € (y2,ya). Thus we conclude that no R(n, y, po) intersects

M for any y € I, satisfying y # y2, ¥ # ya, and N(y, fp,) < n. Finally, from
our choice of of g;(z) and g4(z) it is also apparent that neither R(n,y2,po)
nor R(n,ys,po) intersects M. Consequently, we see that:

M P(n)=0. (D.33)
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Now let

M.(p) = {zl(z,p) € M}

where M denotes the closure of M. From ( D.33) we know that f; 1s strictly
monotonic on M, (p) for any 0 <z < n. Note in particular that this implies
that there can exist no 0 <7 < n such that

93(p) = gi(p) = ¢ (D.34)
for any p € [po,p’).

Now let {ax} 2, be a monotonically increasing sequence such that ag = po
and ay — p' as k — oco. We know that for any p € [po, p], there exists an
k < n such that f*(gs(p),p) = c. Thus consider the sequence {b;}7, where
br = N(g2(ak), fa,). Since by can only take on a finite number of values
(0 < b < n), we know there exists an infinite subsequence {k;}2, such that
by, = b if 2 > 0 for some 0 < b < n. This implies that f°(go(ax,),ar,) = c for
all 2 > 0. Also, since f is continuous and a;, — p' as 1 — oo, we can also
conclude that

flap),p) = fP(2,p) = c. (D.35)

We also play the same game with g4 instead of g,. Consider the se-
quence {d;}{2, where d; = N(gs(ax), fa,, ). We know that d; can only take
on a finite number of values, so there exists an infinite subsequence, {z;}%2,
and a number 0 < d < n such that d;; = d for all j > 0. In this case,
fd(gz(ak,.]),aklj) = cfor all j > 0. Since ay, — p’ as j — oo this implies that

fgap),P) = f4=",p) = <. (D.36)

However, from ( D.34) we also know that d; # b, for all ¢ > 0. Thus
d # b. For definiteness assume b < d. There exists §p; > 0 such that if
p € [p' — 8p1,p'] then gi(p) # ¢ whenever gi(p') # c for any : satisfying
b < 1 < d. Choose p* = ag;, for some 7 > 0 large enough such that p* >

p’ — 8p;. Note that by this choice of p*, we know that f°(g2(p*),p") = c and
[ ga(p)sp™) = <.
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Now recall the definition of the kneading invariant:

D(fp 1) =1+ iek(fp)ti-
1=1
where

0:(fp) = fl(fp)@(fp) e fi(fp)

&(f,) = lim sgn(Df(f(c,p)))
We claim that
d—b-1 ' d—b-1 .
4+ Y GUE 2 1+ Y )t (D37)

If this claim is true, the rest of the lemma follows. At this point we shall
finish the proof of the lemma before coming back to the proof of the claim.

From ( D.35) and ( D.36) we know that
Oa-s(frr) = +1 (D.38)

Also, since g5(p) # ga(p) for p € [po,p'), and f*(ga(p*),p*) = ¢, we know
f4(g2(p"),p*) = f4b(c,p*) # c. Combining this result with the fact that
<, is monotone on M(p*) we see that if f*~*(c,p*) > c then f¢* has a
maximum at £ = ¢, which implies that f¢**!' must have a minimum at
¢ = c. Otherwise, if f%7%(c,p*) < c then f?~° has a minimum at z = ¢, and

again f?**! has a minimum at z = c. Thus we conclude that:

Oa-s(fpr) = —1. (D.39)

Finally, combining ( D.38) with ( D.39) with the claim above we find that
|D(for,t)| > |D(fp+,t)|. But since p’ > p*, this contradicts the assumption
that the kneading invariant of f, is monotonically decreasing with respect to
p. This proves the theorem, except for the proof of the claim which we give
below:

We now prove the claim given in ( D.37) by induction on i. Suppose that
Hi_l(fpr) = (9,'_1(fp:). We shall show that 9,‘(fpr) > Hi(fp—).
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Since f(g2(p'), ') = f(g2(p*), p*) = ¢, we can see that

sgn(Df(f*(e,p))) = sgn(Df(f**(92(p), ), P))
for either p = p’ or p = p*. Since R(n,y,po) does not cross the boundary

of M for any y € I, we can see that either both f***(g,(p’),p’) > ¢ and

4 (g2(p*),p*) > c or both f*%(go(p'),p") < c and fo*+(ga2(p*),p") < ¢ since
both (g2(p’),p’) and (g2(p*), p*) are on the boundary of M. Furthermore from
our choice of p* and &p; > 0 we know that if ¢*(c,p’) # ¢ then g'(c,p*) # ¢
for 0 < i < b— d. Consequently we can see that if ¢g*(c,p’) # ¢ then

Gf) = 6. (D.40)

This in turn implies 8;(fy) = 0:(fp+) since 0;(f,) = €(fp)0i-1(fp)- On the
other hand, if ¢*(c,p’) = ¢, then 6;(f,') = +1 so we automatically know that
ai(fp’) 2 9i(fp‘)-

Finally, note that the 6;(fy) > 6;(fp) is satisfied for i = 1 since we
have 61(fy) = 61(fp+) from ( D.40) if g(c,p’) = c and 61(fpy) > 61(fpe) if
g(c,p') = c. This completes the proof of the claim.

Lemma D.3.3 Let {f,: I, — I.|p € I,} be a one-parameter family of map-
pings satisfying (B0) and (B1). Let po € int(1,) and M, = super, (D, f(z,po))-
Given zg € I, such that n = N(zq, fp,) < 00, then for each p € J(zo,po):

M, "z_f | 1 |
'sz(fn—l(h(xo,po)(p>’p) )' i=0 -’Efz( (o, po)( ) p)

lh/(ro,po)(p)l S

Proof: In order to prove the lemma, we first need the following result (which
can be found, for example, on page 417 of [30]).

Claim: For anyx € [ andn > 1:

n-1

Do f™ (2, p)| < My 3 |Dof* 7 (fY(2,p), p)] (D.41)

1=0

Proof of claim: Proof by induction on n. For n = 1 the claim is clearly true.
By the chain rule, for any n > 1:

D, f"(z,p) = Dpf(f""(2,p),p) + Duf(f*"(2,p),p) Dpf "' (2, p)
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Thus we have the following
1Dy f™(2,p)| < My +|Daf(f"" (2, p),p)| D, f”“l(fv p)l

< My + Do f(f*7 (2, p),p)| M, ZID Fr S (), p)]

1=0
n—2
< Mp+ MY Do f* N (fi (2, ), p)|
1=0

n~1
< M, 3 ID T (f (wp), p)

This completes the induction argument and proves the claim.

Returning to the proof of the lemma, we know that since f™(h(z, po)(P), P)
c for p € J(zo, po)- Consequently

[f"( (z0.30)(P), P)] = 0 (D.42)
By the chain rule:
’é%[fn(h(xo,yo)(p)vp)] = ( /(xomo)(p))(Drfn(h(fomo)(p)vp)) + Dpfn(h(fo,Po)(p)’@A:})

Thus, combining ( D.42) and ( D.43), we have:

_ IDpfn(h(a:u,Po)(p)ap)'
eon) D = 1D ey (P 2) (D-44)

Let z, = h(xo’po (p). Then, combining ( D.41) and ( D.44) we have:
M o D n—1—-1( f1 2> D),
o)l < e EEIBLE P
LMy DN emp) o)l
T Doz, p)l i {Dxf'(f’(:v,,, ),P)l
M,
< BT S B A

provided p € J(zg,po). This proves the lemma.
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Lemma D.3.4 Let {f, : I, — L|p € I,} be a one-parameter family of
mappings satisfying (B0) and (Bl). Suppose that py € int(l,), and f,, sat-
isfies (CE1). Also, suppose that xq € I, such that n = N(zo, fp,) < 00,
and minp<icn |f*(zo,po) — ¢| = @z, > 0. Then there exist constants C; > 0
(independent of o) such that

1
Ao ,p0) (PO)] < Gy

Zo

Proof: From lemma D.3.3 :

M ! 1
hli‘ < P .
Wieom PO = 1D 7 o), ol 25 1D (o)
From lemma D.2.7, we also know that f,, satisfies condition (CE2). Thus, ¢

since f*(xo, po) = ¢, we know there exists Kg > 0 such that [D, f(f*~(zo, po) pO)[’>
KEg. Substituting this into ( D.45) we have:

(D.45)

n—1

|A{zo 0y (P0)| < Z Do)l xmpo), (D.46)

From lemma ( D.2.11) we know that there exists C > 0 and A > 0 such
that:

|Dg'(z)| > CaZ X'
Then from ( D.46),

, M, ™= M, 1
Ih 1’0 ,Po) (Po)‘ 7{— Zo COﬁ2 N~ ,Ecaf:o(l _ /\_1) Cl

0,2

if we set Cy = EA!PE;’(_—’) This proves the lemma.

Lemma D.3.5 Let {f, : I, —» I;|p € I,} be a one-parameter family of
mappings satisfying (B0) and (B1). Let po € I, and suppose that z, € I,
such that n = N(zo, f,) < 00 and ming<icn |f{ (0, po) — ¢| = ag, > 0. Then
for any 0 < B < 1 there exists 0 < C, < % such that of z, € I; and py € I,
satisfy:
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(1) |pr = pol £ Ca0,.
(Q) Ifi(xhpl) - fi(‘rOapD)' ..<_ C2axo fOT‘ 0 < 1< n

then
lefl(xlapl)l 2 ﬁi-
| Dz (0, po)|
for 0 << n.

Proof. Combining lemmas D.2.1 and D.2.2 with conditions (1) and (2) above
we find that there exists Ko > 0, K; > 0, and K5 > 0 such that:

lDa:f(fi(xlvpl)vpl) - Dz‘f(fi(xlvpl)al)O)I
< Kolpl - p0| < KngOtzo (D47)

[Da:f(fi(‘rlvpl)7p0) —sz(fi(l‘o,po),poﬂ -
< K1|f'(z1,p1) = f*(%0, po)| < K1Crau,(D.48)

[ Dz f(f*(20,po), o)
< K2|fi($0,p0) - C| < K2a1‘o (D49)

for all 0 <12 < n.

From ( D.47) and ( D.48) we have:

Dz f(f*(1,p1), 1) = Dz f(f*(20,P0), po)|
< D f(fi(z1,p1),p1) — Do f(f*(21,P1), o)l
+ [Do f(f'(z1,p1),P0) — D= f(f* (20, Po), Po)|
< KoCaas, + KiCram, = Ca(Ko + K1), (D.50)

forall 0 <z < n.
Now set C; = min{3, 'I'(oiizl?T(l — 3)}. Then from ( D.50) and ( D.49):
|1D:f(f(z,p), )l o _ [D=f(f(21,p1),P1) = Do f(f*(20,Po), po)|

| Do f(f* (20, o) Po)|  — | Dz f(f#(%0, Po) Po)|
S 1_02(K0+K1)01x0
K2aa:o
K Ko+ K
> 1= (- A = 8
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for all 0 <7 < n. Thus we have:

1Dz f*(z1,p1)] _ = |Dof(f?(z1,p1), p1)]
| Dz f*(zo, po)| j=0 |sz(fj($o,P0),Po)l

if 0 <: < n, which proves the lemma.

> A

Lemma D.3.6 Let {f,: I, — I;|p € I,} be a one-parameter family of map-
pings satisfying (B0) and (B1). Suppose that po € int(l,), and f,, satisfies
(CE1). Let zo € I such that n = N(zo, fp,) < 00 and ming<i<n | f*(20,p0) —
c| = ag, > 0. Then there exist C3 > 0 and Cy > 0 (independent of zo) such
that
, 1
Ih(xo,po)(p)‘ < CB&T - €

Zo

L.

if p € V(2o,po) where V(2o,po) = [po,po + 8p1], ép1 = 040120, and Rz pp) 0
V(zo,po) = Iz is a C? function satisfying h(zq.p)(po) = o and f™(h(zep0)(P),P) =
c for all p € V(zo,po)-

From lemma D.3.1 we know that there exists a C? function h(z,4)(p)
such that A 0)(Po) = o and f™(h(zyp)(p),p) = cif p € J(z0, po) where
J(xo,po) C I, is a interval containing po. Also from lemma D.3.1 we know
that there exists a continuous function gz, pe)(p) satisfying g(zq,pe)(Po) = zo

and f™(g(ze,p0)(P),p) = c for all p € I,
By lemma D.2.11, there exists C' > 0 and A > 0 such that:
D. f*(zo,po) > Ca2 X'. (D.51)
for any 0 <12 < n. ‘

Now fix A\; = 2 > 1 and let 8 = A& < 1. Then given g(z,p)(p), we
know from lemma D.3.5 that there exists a constant 0 < C; < 7 (dependent
only on 8) such that if V(zo,po) C I, is the maximal interval satisfying the

following conditions:

(1) If p € V(20,po), then |p — po| < Cray,.
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(2) If p € V(zo,po), then | f*(gize.p0)(P), P) — f1(T0,P0)| < Coargy for 0 <z <
n,

then p € V(zo, po) implies that:

lDrfi(g(ro,po)(p)’p)l
IDl‘fl(xO»pO)'
for any 0 <2 < n. Note that by setting A; > 0, we have also set the constants

0 < B <1and0 < ;< =, so these constants are fixed for the discussion
that follows.

> B (D.52)

5’

Note, also, that from condition (2) above it is apparent that gz, »,) # ¢ for
any p € V(zo,po). From lemma D.3.1, this implies that V(zo, po) C J (0, po)
50 that g(zg,p0)(P) = P(zo,pe)(P) is C* when p € V(zo,po).

Now consider the sequence {y_;}™, where y_; = f""*(zo,po) so that
Y_n = To and yo = c. Then, from ( D.51), ( D.52), and our choice of 3, we
know that:

'Dxfi(h(y—i,po)(p)vp)( 2 |Dxfi(y—iap0)|ﬂi 2 Caio/\iﬂi 2 Caig)\i

if p € V(y_i,po) for ahy 0 < 7 < n. Substituting this into lemma D.3.3 we
find that if p € V(zo, po) :

/ M 1
o8 < [T 7 S T

(D.53)

Where 2(p) = ™" (R(zo,00)(P), P). Since fy, satisfies (CE2) and f(2(p),p) = ¢,
we can bound |D f(z(po), po)| > KE for some constant Kg > 0 independent of
zo. Consequently from condition (2) above and lemma D.2.1 there must exist
K4 > 0 (independent of z¢) such that |D f(z(p),po)| > Kg if p € V(zo,po)-
Substituting this into ( D.53) we have:

M, < 1
Y < =F .
| {(y—i,po) (P)l = Ky ]_ng) Cago)\zl
M, 1

<
- (K};Cozgo
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Thus setting C5 = ﬁ%l—, we have that
LC(-AT)

, |
|h(y_,,p0)(p)l < C352_ (D.54)

o

for0<i<nifpe V(zo,po). Of course, since z, = Y—n, this also implies
that

1

2
Ofxo

Ihz-’vomo)(p)l <G

if p € V(zo,p0).

This places the proper bound on the derivative A’

(z0,p0)(P)- Now we need
to find a proper bound on the size of V(zo, po). Set

. C
§p = m{ﬁago, Catay, sup(1,) — po). (D.55)

We claim that if [po, po + 6p] C V(y—(i-1),Po), then [po, po + &p] C V(y=i, po).
Also, it is clear that [pg, po + op] C V(e,po) = V(yo,Pp0). So, by induction on
¢, this claim implies that [Po, po + 6p] C V(y-n,po) = V(zo,po). Thus if the
claim is true, then from ( D.55), and since az, is bounded above, we know
there exists Cy > 0 such that [Po, po + 6p1] C V(zo,po) where ép, = Caal .
This proves the lemma. Thus, all that is left to do is to prove the claim.

Suppose that the claim were not true. This means there exists p; €
[po, po + 8p] such that p, ¢ V(y-i,po). From our specification of V (o, po)
and the intermediate value theorem, it is apparent that the only way this
can happen is if there exists some P2 € [po, p1] such that

Ih(y-npo)(m) - y—il = C20‘ro (D-56)
and [po, p2] C V(y_i,po).

However, by the mean value theorem, we know that

rumsino)(P2) = Y=il = [R(y_s ) (P2) = By, o) (po)]
, /

hiy—i,p0) (P3)]lP2 = POl (D.57)
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for some p3 € [po,pa] C V(y—(i=1),po). But from ( D.54):

1
[ymsi0) (P3)] < Cs— (D.58)

Zo

Combining ( D.57), ( D.58), and our choice of ép we find that

1
Ay po) (P2) — y=i] < Caag—llb — Pol

Zo

1
< Cz—=ép
a2
1
< 502%0

which contradicts ( D.56) and proves the claim.

Lemma D.3.7 Let {f, : I, — L:|p € L,} be a one-parameter family of
mappings satisfying (B0) and (B1). Given any po € int(l,), zo € I, p1 €
int(L,),, and =1 € I, suppose that W(zo) C I, X I,, is a connected set that
can be represented in the following way:

W(zo) = { (0, (t), Bz, (1))t € [0,1]}
where ag, : [0,1] = I and By, : [0,1] — I, satisfy the following properties:

—~—
Q
8
o
o~
2
3
IS
QQ
o
—
o~
~—
=]
3
®
[}
S
S
<
S
I3
S
=
»

to
HQ
(=)

3.

4' /6730 0
Then there exists constants §p > 0 and C > 0 (independent of o) such that
if [z1 — 2o 2 Clp1 — po|* and |pr — po| < 6p, then

W(zO) N R(nay,Po) n (Ix X [Po,Po + 6P]) 7/: 0

for some n > 0 and y € I, such that y # z,.
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Proof: We assume that z; > zo and p; > po (the other cases are similar).
From lemma D.2.13, we know that there exist constants Kg > 0 and ¢y > 0 so
that for any positive € < €, there is a y € (zo, o + €) such that f*(y,po) = ¢
and ming<i<y, f*(y,po) > Koe for some n > 0. From lemma D.3.6, we know
that there exist constants K; > 0 and K, > 0 such that if

5pc = KI(KOC)B (D59)

then for all p € [po, po + 6pe] :

1

[Alype) (P < K2(E,_e)2’ (D.60)

Thus given z¢ € I, z; € I, po € int(l,), and p; € int([,) choose

1 p -Po)_al.

e=—( K (D.61)

= KO

Also, set p = K;(Koe€o)®. Note that this means p; — po < 8p implies that
€ < €, so that the results of the previous paragraph hold.

In particular, if we substitute ( D.61) into ( D.59), we find that ép. =
K1(Ko€)® = pi — po so that from ( D.60) we have that for all p € [po, p1] :

1
K()G

Ihl(y,pg)(p)l < KZ( )2

for some y € (o, z0 + €). Consequently:

hyao)(P1) < hiymm)(Po) + (p1 = po) inf |hlypo)(P)]

p1)

1
< y+ K2(_]_{;)2(p1 - o)

1
< (330+5)+K2(}-<0_6’)2(P1—P0)
14+ KoK 1K
n + lo 1482
K3 K,
= o+ C(p1 —po)? (D.62)

W=

(p1 — po)

= xo
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where ¢ = KK,

K? Ko

Now suppose that (z1,p1) € W(zo) where 21 — 2o > Clp1 — po|%. From
( D.62) we know that there exists a continuous function, Ay 4)(p) such that

(hypo)(P)P) € R(n,y,po) for all p € [po,p1] where h(yp)(Po) = y > o
and Ay ) (p1) < z1. We are also given that W(zo) can be represented as

W (o) = {(az(t), Bz (t))|t € [0,1]}. Using the Intermediate Value Theorem,
it can be shown that k) (B(t1)) = ag,(t1) for some t; € [0,1]. This implies
that

W (zo) N R(n,y,po) N (I X [po, po + 6p]) # 0 (D.63)

which proves the lemma.

Proof of Theorem 3.3.2: Note that the theorem is trivial if 2o = Bd(I;)
(where Bd(I;) denotes the boundary of I.). Otherwise, fix py € int(1,) such
that f,, satisfies (CE1) and suppose there exists ép; > 0 such that D(f,,?)
is monotonically decreasing for p € [po, po + 6p1]. Given any xo € int(/;) let:
X7 (z0) = {z|N(z, fp,) <nand z < zo}
X (zo) = {zIN(z,fp) < nand x> 20}

Define the following functions a;, : I, = I and af , : [, — I :

a, .. (p) = sup {z|(z,p) € R(n,z’,po),p € I} (D.64)
z'€X, (z0)

at,(p) = inf {z|(z,p) € R(n,2’,po),p € I} (D.65)
’ '€ X} (zo0)

It is apparent from our specification of R(n,z,po) that a; . (p) and a}f, (p)
must be continuous with respect to p.

First of all note that a, , (p) > a5 ., (p) if m > n. Furthermore, we claim

that for any n > 0 there exists m > n such that a . (p) > a; . (p) for all
p € [po, po + 6p1]. By lemma D.3.2 we know that if D(t, f,) is monotonically
decreasing for p € [po, po+6p1] then R(n,z, po) and R(n, ', po) do no intersect
in the region I, x [po,po + ép1] provided = # z’. This is implies that we can

rewrite ( D.64) as:
ar 5, (p) = sup{z|(z,p) € R(n, 27, po)} (D.66)
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where z; = sup{X(z¢)}. Also we know from lemma D.2.9 that given any
n > 0 there exists some m > n such that z}, > z}. This proves the claim.
Similarly, we also can show that for any n > 0 there exists m > n such that

a:r-z,xg (p) < a:,zo (p) fOI‘ 3,11 p € [pOapO + 5?1]

Returning to the lemma, we note that since a; . (p) is monotonically
increasing with respect to n, and bounded above by sup I, = 1, there exists
a function, a_ (p), such that the limit

az,(p) = lim a. . (p) (D.67)

n—00

converges pointwise. Now set

b, (p) = limsup a_ () (D.68)
t—p
and define
S™(zo) = {(z, p)| liltninf b, (t) <z < limsup b (t)}. (D.69)
-p t—p

Similarly we can also define S*(zo) as follows:

af,(p) = limai, (p)
ot (p) = lirtninf a} (1)
—p
St(ze) = {(x,p)llirtninf b (t) < z < limsup bf (1)}
—p t—p
The next step is to show that
5™ (zo) N R(n,z,p) N (Iz x [po,po + 6p1]) = 0 (D.70)

for any = # zo and any n > 0. This will be done in two parts. First we
address the case where z < z5. We claim that ( D.70) is true if ¢ < zo.
Suppose the claim is not true. Then from ( D.64) there must exist some
(¢',p') € S7(20) and n > 0 such that a;_ (p’) > ¢’ where p' € [po, p + 6p1].
But we have already seen that for any n > 0 there exists an m > n such that
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(P) > a7 (p) for all p € [po,po + ép1]. Thus az (p) > a;, (p) for any
O if p € [po, po + Op1]. Consequently since a . (p) is continuous:

n,To
!

¢ < a,,(p) —hmmfhmsupanxo(t)

n,To
t—ty

< liminflimsupag (¢) = liminf b7 (¢)
ti—=p' oty t—p’

which from ( D.69) implies that (z,p’) € S~ (zo). This is a contradiction
which proves the claim.

We now claim that S~ (zo) N R(n,z,p) N (I X [po,po+p1]) = 0 if z > .
If this claim is not true, then from ( D.65) we can see that there must
exist some (z',p’) € S7(zo) and n > 0 such that a}_ (p') < 2’ where p’ €
[Po, o + 6p1]. Furthermore there exists m > n such that aj; (@) < a;'l'xo (p)

for p € [po,po + 6p1). Thus there exists € > 0 such that a}, . (p') < 2’ — 2e.
Since a;f, . (p) is continuous, this implies that there exists 6 > 0 such that

af . (p) <2 —e (D.71)

m,zo
for any p such that [p — p’| < é. But since (2, S~ (zo),

)€
limsup limsup lim a; nalt) >
ty—p’ t—t

Since a .. (p), is continuous, this implies that for any 6 > 0 and € > 0 there
is an n > 0 and p; with |p; —p| < é such that a; (p1) > 2’ — €. Combining
this with ( D.71) we see that there exists p; such that a; . (p2) = a} , (p2).
But this is impossible by lemma D.3.2 because it implies that (z',p’) €
R(m, z1,po) and (2',p') € R(n,z2,po) for some n > 0, m > 0, z; # x5, and

P’ € [po,po + 8p1]. This contradiction proves the claim.

The next step is to show that S~(z¢) U S*(zo) is invariant under f.
We claim that if (z,p) € S~ (zo) then either (f(z,p),p) € S™(f(z0,p0)) or
(f(z,p),p) € ST(f(zo,p0)). For any zq € int(l;), there exists an ¢ > 0
such that (zg — €,20) C (I \ {c}). Let J = (zo — €,20). Then, since fy, is a
diffeomorphism on J, for any y; € f(J, po) such that n(y1) = N(y1, fp,) < 00,
there exists yo € J such that y; = f(yo,po) and N(yo, fr) = n(y1) + 1.
Consequently, from (D.66) we know that there exists N > 0 such that for all
n>N:

f(ar 4, (p);P) = { G j(z0,p0)(P) T Dof(z,p0) >0 0on J
n,ro b - +

a",f(fcoypo)(p) if Dxf(»T,Po) <0onJ
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for any p € [po, po+ép1] if z € int(I,). This result combined with our specifi-
cation of S7(zo) in ( D.67), ( D.68), and ( D.69) proves the claim. Using the
analogous result for S*(zo) gives us that S~ (zo) U S*(zo) is invariant under

f.

Finally, from the formulation of S~(z¢) in ( D.69), it is apparent that
there exists a W~ (z9) C S~ (o) such that W~ (zy) can be represented in the
following way:

W (20) = {(az(t), B (1)1t € [0,1]}

where ag, : [0,1] — I, and f8,, : [0,1] — I, are continuous functions and
fz,(t) is monotonically increasing with respect to ¢ with 8,,(0) = po and
Bz (1) = po + 6p1. Of course, a similar W (2q) C S+(z0) also exists.

Putting it all together, we have now shown that: (1) S=(zo) U S*(zo) is
invariant under f and (2) (S~ (zo)US™(20))NR(n, z, po)N (I X [po, po+6p1]) =
0 for any n > 0 and any = # zo. From property (2) above, lemma D.3.7, and
since W™ (zo) C S™(o), it is apparent that there exists ép, > 0 and C > 0
(independent of o) such that if (z,p) € W~ (zo) then |z — zo| < C(p— po)3.
Set 6p = min{épy,dp.} and let W(zo) = W~ (zo) for p € [po, po + 6p]. Then
property (1) implies that given any zo € int(I), if (z,p) € W(zo) and
P € [po, po+6p], then | f*(2,p) — f™(z0,po)| < C(p—po)? for any n > 0. This
proves the theorem.
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Appendix E

Proof of theorem 3.4.2

This appendix contains the proof for theorem 3.4.2. For reference, the con-

ditions, (CE1l) and (CE2), can be found in the beginning of Appendix D.

Theorem 3.4.2 Let I, = [0,4], I, = [0,1], and f, : I, — I, be the family
of quadratic maps such that f,(z) = pz(l1 — z) for p € I,. For any v > 1,
there ezists a set of parameter values, E(y) C I,, and constants, C' > 0,
6 >0, Ko >0, and K, > 0 such that E(y) has positive Lebesgue measure
with density point at p = 4 and satisfies the following properties for any € > 0
sufficiently small:

(1) If po € E(v) then f,, satisfies (CE1).

(2) If po € E(v) then any orbit of f,, can be e—shadowed by an orbit of f,
if p.€ [po, po + C€.

(3) If po € E(v), then almost no orbits of f,, can be e—shadowed by any
orbit of f, for p € (po — 8,po — Ko(K1€)?). That is, the set of possi-
ble initial conditions, zo € I, such that the orbit {f} (z0)}2, can be
e—shadowed by some orbit of f, comprises at most a set of Lebesgue
measure zero on I, if p € (po — 6, po — Ko(K1€)7).

Proof of Theorem 3.4.2: We first address parts (1) and (3) of theorem and
come back to part (2) at the end.
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The basic idea behind parts (2) and (3) is to apply theorem 3.3.1 to
theorem 3.4.1. There are four major steps. We first bound the return time
of the orbit of the turning point, ¢ = 1, to neighborhoods of c. Next we show
that f, satisfies (CP1) and favors higher parameters on a positive measure
of parameter values. This allows us to apply theorem 3.3.1. Finally we show
that almost every orbit of these maps approach arbitrarily close to ¢ so that
if the orbit, {f ()}, cannot be shadowed then almost all other orbits of
fvo cannot be shadowed either.

We first show that there is a set of parameters, p, of positive measure
such that orbits of the turning point, {f;(c)}fio, do not return too quickly
to neighborhoods of ¢. This can be seen from the construction used to prove
theorem 3.4.1. In [4] it is shown that for any a > 0, if S(a) C I,, is the set
of parameters such that f,, satisfies both (CEl) and:

|f;0(c) —c|>e™™ (E.1)
for all 2 € {0,1,2,...}, then S(a) has a density point at p = 4.

We now show that (CP1) is also satisfied on a positive measure of pa-
rameter values. First consider what happens if p =4 :

Dflep=4) = 7 (E.2)
Dpf(f"(e,p=4),p=4) = Oforanyn >1 (E.3)
|D:f(f*(e,p=4),p=4)] = 4foranyn>1 (E.4)
|Dof"(c,p=14)] = 4" % for any n > 1. (E.5)

It also a simple matter to verify that f, favors higher parameters at p = 4.
Note that from the chain rule we have that:

Do f*(e,p) = Duf(f"7 (e, ), ) Dy f" " (c;p) + Do f(f*H(c,p),p)  (E-6)

for any n > 1 and any p € [I,. Consequently, using continuity arguments
we can see that for any N > 0 and é > 0 there exists ¢, > 0 such that
p € [4 — €1,4] implies that both of the following hold:

D)l > (E.)
|Dp(f™(e,p))| < & foranyne€ {2,3,...,N}. (E.8)
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From ( E.6) we can see that:

D, f"(z,p) Do f(f*(e,p),p) + Z[Dpf fie,p), H Do f(f(c,p),p)]

j=i41
D, f(f*'(c,p),p)

1721 D= f(fi(c,p),p)
= Dpf(fi(c,p),p)

2 ; =1 zf(fj(cvp)sp)]

= H D.f(f ,P)[Dpf(e,p) +

f(fi(c,p),p)l + Dpf(c,p) +

I
J:I'

5 Dof(f(ep)p) oy
7 - (E.9)

=1 nj:l Dxf(f](c, p)ap)

for any n > 1. But from theorem 3.4.1, we also know that there exists Kg > 0

and Ag > 1 and a set E C I, of positive measure such that if p € F, then
(CE1) is satisfied for f, :

TL Daf(Fi(ep),p)| = IDaf"(F(erp),p)] > KEXD.

j=1

Substituting this into ( E.9) we have:

. n—1 D ic
D, @p)| > KeNs 1D, f(e,p)] - 3 2o/ U p) Py

i=1 KE/\fE
Substituting ( E.7) and ( E.8):
|Dpf™(2,p)| > KeNg[(+ - 8) - i I Z =il
4 = Kede Sa 4Kg F
(N+1)
> KEA%_]& —0- KE(lé— Az 4K;~\f1 — /\51)]
for any n > 1. Now if if we set
1 6 Agth Y

Up = [Z —6- Ke(l —Ag))  4Kg(l - A5)

]

we see that Cg > 0 if § > 0 is sufficiently small and N > 0 is sufficiently
large. From ( E.7) and ( E.8) we know that we have full control of § > 0 and
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N > 0 with our choice of €. So choose €¢; > 0 small enough so that Cg > 0
for any p € [4 — €,4]. Then we have that:

1Dy f"(z,p)] > KpCpAg™ (E.10)

foralln > 1if p € [4 — €,4] and f, satisfies (CEL) (ie, |D.f*(f(c,p),p)| >
KgA% for all n > 1). Looking at ( E.6), it is also apparent that if ( E.10)
is satisfied, then since |D, f(f"~(c,p),p)| < 1, the sign of D, f"(z,p) is gov-
erned by the signs of D, f(f""!(c,p),p) and D, f""!(c,p) for n > 1 sufficiently
large. Thus, since f, favors higher parameters at p = 4, there exists some

¢ > 0 with € < ¢ such that f, favors higher parameters if p € [4 — ¢,4] and
fp satisfies (CE1).

Consequently, (CP1) must be satisfied and f,, favors higher parameters
for any po € [4 — €,4] such that f,, satisfies (CE1). But recall that for any
a > 0, S(a) has a density point at p = 4 and po € S(a) implies that f,,
satisfies (CE1). So let S.(a) = S(a) N [4 —¢,4]. Then for any a > 0 we can
see that if py € S(a), then condition ( E.1) is satisfied, f,, satisfies (CE1),
and f, satisfies (CP1) and favors higher parameters at p = po. Furthermore,
S.(a) has a density point at p = 4.

Now recall from section 3.3.1 that n.(c, €, po) is defined to be the smallest
integer n > 1 such that |f"(c,po) — ¢| < €. Thus, if ( E.1) is satisfied, then

1
ne(ec, €,po) > ——loge. (E.11)
a

But from theorem 3.3.1, we know that if f,, satisfies (CE1) and f, satisfies
(CP1) and favors higher parameters at p = py € I,,, then there exist constants
6§ >0, Ko >0, K; >0 and A > 1 such that there are no orbits of f,
which e—shadow the orbit, {f} (¢)}2o, if p € (po — &, po — Koed~ne(eKiepo)y,
Substituting in the condition ( E.11) we find that:

Koehme(eKuem) — fo ([ e)l+alosd, (E.12)

Now suppose we are given any v > 1. We can see that if a < ﬁ log A
then

1
1+Elogz\>7. (E.13)
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Let E(v) = S(;d_—l)log A). For any 5 > 1, we see that if py € E(y) then f,
satisfies (CP1) and (CEl) at p = po. Thus by theorem 3.3.1 and from ( E.12)
and ( E.13) we see that if po € E(7) then no orbits of f, e—shadows the
orbit, {f: (c)}2g, for any p € (po — 8, po — Ko(K1€)?). Furthermore E. has
positive Lebesgue measure and a density point at p = 4.

The final step is to show that almost any orbit of f, comes arbitrarily
close to c. This can be seen from the following two lemmas:

Lemma E.0.8 Let U be a neighborhood of c¢. For any p € I,, of Ey =
{z | fi(z) € I\U for all n > 0} contains no non-trivial intervals, then the
Lebesgue measure of Ey is zero.

Proof of lemma E.0.8: See Theorem 3.1 in Gukkenheimer [23].

Lemma E.0.9 Ifp, € I, and f,, satisfies (CE1), then the set of preimages
of ¢, Cp = Uixo ,;f(c), is dense on I.

Proof of lemma E.0.9: See corollary 11.5.5 in Collet and Eckmann [11].

From these two lemmas we can see that for almost all zq € I, the orbit,
{f:.(z0)}22, approaches arbitrarily close to c if p € E(y), for any v > 1.
Thus for almost all zy € I, there are arbitrarily long stretches of iterates
where the orbit, {f; (€0)}{2¢, looks arbitrarily close to the orbit, { f;o(c)}f_"__o.
This means that if there are no orbits of f, that can shadow {f; (c)}Z,,
there can be no orbits of f, that can shadow {f; (z0)}:2,. Consequently for
any v > 1 if po € E(y) then f,, satisfies (CE1l) and almost no orbits of f,,
can be shadowed by any orbit of f, if p € (po — 8, po — Ko(K1€)”). This proves
the parts (1) and (3) of theorem 3.4.2.

Part (2) of theorem 3.4.2 is a direct result of Corollary 3.3.1, Theo-
rem 3.4.1, and the following result, due to Milnor and Thurston:

Lemma E.0.10 The kneading invariant, D(f,,t), is monotonically decreas-
ing with respect to p for all p € I,.
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Proof of lemma E.0.10: See theorem 13.1 in [31].

Thus if po € E(7) satisfies (CE1), there exists constant C' > 0 such that
if po € E(v) then any orbit of f,, can be e—~shadowed by an orbit of f, if
p € [po, po + C'€®]. This is exactly part (2) of the theorem.

This concludes the proof of theorem 3.4.2.
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