Isolation and Characterization of Multicopy Suppressors of a spo0K Mutant in *Bacillus subtilis*

by

John Robert LeDeaux

B.S., University of Virginia

(1987)

Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology

November, 1994

© Massachusetts Institute of Technology 1994

Signature of Author

Certified by Alan D. Grossman. Thesis Advisor

Accepted by Frank Solomon. Chairman, Biology Graduate Committee
Isolation and Characterization of Multicopy Suppressors of a spo0K Mutant in Bacillus subtilis

by

John Robert LeDeaux

Submitted to the Department of Biology in partial fulfillment of the requirements for the Degree of Doctor of Philosophy at the Massachusetts Institute of Technology November, 1994

Abstract

Upon entering stationary phase, cells of Bacillus subtilis are capable of entering one of two different developmental pathways, depending on the growth conditions. These developmental pathways include sporulation, which is the ability to form an environmentally-resistant spore, and the development of competence, which is the ability to internalize exogenous DNA. The Spo0K oligopeptide permease is necessary for both the initiation of sporulation and the development of competence and appears to be acting early in both of these processes. To better understand how both of these developmental processes are regulated, I conducted a screen for genes which when present on a multicopy plasmid could bypass the need for spo0K in either of these developmental pathways. I characterized three such multicopy suppressors of spo0K. kinC (mskA) encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB. These sensor kinases autophosphorylate and serve as phosphate donors (indirectly) for the Spo0A sporulation transcription factor. The immediate recipient of phosphate from the sensor kinases is the response regulator Spo0F; Spo0B transfers phosphate from Spo0F to Spo0A. Spo0A-P represses transcription of abrB and activates transcription of several sporulation genes. While KinC is not needed for sporulation under normal circumstances, it appears to be the first of the three sensor kinases to serve as a phosphate donor for Spo0A as judged by derepression of abrB. Also, in the absence of spo0F and spo0B, KinC appears to be the kinase responsible for phosphorylation of the rvtA11 and sof-1 forms of Spo0A. mskB, a multicopy suppressor of the spo0K sporulation defect, encodes a protein similar to SinI, which inhibits the SinR repressor of spo0A transcription. mskD, a multicopy suppressor of the spo0K competence defect, encodes a homolog of the ClpX ATPase, and a model for how overexpressed MskD may be affecting competence is presented.

Thesis Supervisor: Dr. Alan D. Grossman
Title: Associate Professor of Biology
Acknowledgments

I am extremely grateful to my advisor Alan Grossman, without whose conscientious guidance and generous support I could not have done this work.

I also want to acknowledge the many interesting and insightful discussions I've had with my labmates, without which my understanding of development in *B. subtilis* would be much less than it is, and also for putting up with the music I listen to (most of the time), and for introducing me to the music they listen to.

I would also like to thank Yasuo Kobayashi and Ruth Schmidt for communicating DNA sequence data prior to publication.

Last but most, I want to thank my long-suffering helpmate Amy and my not-as-long-suffering daughter Shira, to both of whom this thesis is dedicated.
Table of Contents

Abstract ... 2
Acknowledgments ... 3
Table of Contents ... 4
List of Tables .. 5
List of Figures ... 6
Preface ... 8
Chapter 1: Introduction .. 9
Chapter 2: Analysis of nonpolar single gene mutations within the *spo0K* operon 20
Chapter 3: Isolation of multicopy suppressors of *spo0K* .. 41
Chapter 4: Characterization of *kinC*, and the different roles of the sensor kinases KinA, KinB, and KinC in sporulation .. 48
Chapter 5: Additional multicopy suppressors of *spo0K*: .. 74
 mskB, a multicopy suppressor of the sporulation defect of *spo0K* .. 76
 mskD, a multicopy suppressor of the competence defect of *spo0K* .. 92
Chapter 6: Discussion .. 105
Chapter 7: Materials and Methods .. 112
References ... 134
List of Tables

Table 2.1
spo0K deletion mutations... 26

Table 2.2
Sporulation frequency of different spo0K mutants in DS medium... 33

Table 3.1
Summary of screen for multicopy suppressors of the sporulation or competence defects of a spo0K mutant........ 47

Table 4.1
Suppression of spo0 mutants by multicopy kinC................................. 58

Table 4.2
Relative sporulation frequency of different kin mutants in different media... 60

Table 4.3
Suppression of spo0BΔPst by sof-1 or rvtA11 requires kinC.. 63

Table 5.1
Suppression of spo0 mutants by multicopy mskB............................... 86

Table 7.1
B. subtilis strains used.. 113

Table 7.2
Plasmids used.. 119
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The phosphorelay controls the accumulation of Spo0A-P</td>
<td>12</td>
</tr>
<tr>
<td>1.2</td>
<td>The early competence pathway acts to regulate expression of srfA</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Homology between the spo0K operon of B. subtilis and the opp operon of S. typhimurium</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Map of spo0K region and plasmids used to make spo0K mutations</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Making Δspo0KC, as an example of how each of the spo0K deletion mutations was constructed</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>srfA-lacZ expression in different spo0K mutants</td>
<td>34</td>
</tr>
<tr>
<td>2.5</td>
<td>comG-lacZ expression in different spo0K mutants</td>
<td>36</td>
</tr>
<tr>
<td>4.1</td>
<td>Map of the kinC region and plasmids</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Sequence of kinC</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Comparison of the C-terminal region of KinC to the C-terminal regions of KinA and KinB</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Primer extension analysis of the kinC mRNA</td>
<td>65</td>
</tr>
<tr>
<td>4.5</td>
<td>Expression of kinC-lacZ</td>
<td>68</td>
</tr>
<tr>
<td>4.6</td>
<td>abrB-lacZ expression of different kinase mutants in DS medium</td>
<td>71</td>
</tr>
<tr>
<td>5.1</td>
<td>Map of the mskB region and plasmids</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>Sequence of mskB</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Primer extension analysis of the mskB mRNA</td>
<td>83</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of MskB to SinI and SinR</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>MskB may interact with SinR</td>
<td>90</td>
</tr>
</tbody>
</table>
Overexpression of \textit{mskD} increases expression of \textit{comG-lacZ} in wild type and \textit{spo0K} strains ... 93

Overexpression of \textit{mskD} has little to no effect on expression of \textit{srfA-lacZ} ... 95

Map of the \textit{mskD} region and plasmids ... 97

Comparison of MskD (partial sequence) to ClpX of \textit{E. coli} 100

A model for how increased expression of MskD leads to increased \textit{comG} expression ... 103

Making a LacI-repressible, IPTG-inducible allele of \textit{spo0K} 128
Preface

Some of the material presented in Chapter 2 has been published by Rudner et al. (Rudner et al., 1991). Most of the material in Chapter 3 and Chapter 4 is in press (LeDeaux and Grossman, 1994; LeDeaux et al., 1994).
Chapter 1:

Introduction

Fundamental questions concerning signal transduction in cellular developmental processes include: What are the signals that induce developmental changes within the cell? How are these signals sensed? Once the signals are sensed, how do they lead to the changes in gene expression that cause the developmental changes to occur? The gram-positive soil bacterium *Bacillus subtilis* provides an excellent system for studying these questions (Harwood and Cutting, 1990; Sonenshein et al., 1993; Piggot et al., 1994).

When cells of *B. subtilis* enter stationary phase and receive and integrate certain extra- and intracellular signals, they can embark on a number of different developmental pathways, including pathways that lead to sporulation and competence. This introduction will provide an overview of these two processes and how they relate to the work presented in this thesis.

Sporulation is the process by which vegetatively growing cells produce heat-resistant, metabolically-dormant spores. Whereas vegetatively growing cells divide symmetrically, cells that have initiated sporulation divide asymmetrically. The smaller compartment is called the forespore and will eventually become the spore proper; the larger cell is called the mother cell. The mother cell eventually engulfs the forespore, builds a protective protein coat around the spore, and then lyses, releasing the mature spore into the environment.

Each stage of sporulation is assigned a number: Stage I is condensation of the DNA, Stage II is placement of the asymmetric septum, Stage III is engulfment of the forespore by the mother cell, Stages IV through VI are the construction of
protective layers around the engulfed forespore, and Stage VII is lysis of the mother cell and release of the mature spore into the environment. A mutant not able to sporulate is called spo, assigned a stage number indicating at which stage it is blocked, and then is assigned a letter particular for the mutated gene (e.g., spoIIA). Sporulation mutants which do not get as far as Stage II are spo0 mutants. (There are no known mutations defining stage I.)

A major focus of the field is how cells change from growing vegetatively to initiating sporulation. The spo0 genes studied so far are all involved in initiating that change. The sporulation transcription factor Spo0A is absolutely required for the cells to initiate sporulation (Piggot and Coote, 1976; Hoch, 1993). Spo0A needs to be phosphorylated to become active (Hoch, 1993), and Spo0A-P activates transcription of several spo genes (spoIIA (Trach et al., 1991), spoIIE (York et al., 1992), spoIIG (Satola et al., 1991; Satola et al., 1992; Bird et al., 1993; Baldus et al., 1994) and represses transcription of abrB (Perego et al., 1988; Strauch et al., 1990), which itself represses other sporulation genes (Zuber and Losick, 1987; Robertson et al., 1989; Strauch et al., 1990; Weir et al., 1991).

Before cells initiate sporulation, they receive and integrate many extracellular and intracellular signals. Many signals appear to affect the accumulation of Spo0A-P, as judged by the ability of gain-of-function mutations in spo0A to bypass the need for these signals in activating transcription of spoII genes. These signals include starvation for nutrients (Ireton et al., 1993), high cell density (Grossman and Losick, 1988; Ireton et al., 1993), lack of DNA damage (Ireton and Grossman, 1992a), replication of DNA (Ireton and Grossman, 1994), and a functioning Krebs cycle (Ireton et al., 1994).

Spo0A belongs to a family of transcriptional regulators known generally as response regulators. Usually, response regulators receive phosphate from cognate autophosphorylated histidine protein kinases known as sensor kinases.
A sensor kinase and its cognate response regulator are known together as a two-component system (reviewed in Albright et al., 1989; Parkinson and Kofoid, 1992; Parkinson, 1993). There are estimated to be ~50 two-component systems in *E. coli* (Stock et al., 1989b), and while two-component systems have been studied extensively in bacteria, they have also been recently identified in plants (Chang et al., 1993) and yeast (Ota and Varshavsky, 1993). Sensor kinases are histidine protein kinases that autophosphorylate under certain conditions. The phosphorylated kinase serves as a phosphate-donor for its partner response regulator. In bacteria, response regulators are generally involved in regulation of gene expression.

The conserved response regulator domain consists of a hydrophobic core comprised of a five-stranded parallel beta sheet surrounded by five alpha-helices, based on the three-dimensional X-ray crystallographic structure of the response regulator CheY (Stock et al., 1989a). The three most highly conserved acidic residues are found at the C-terminal edge of the beta sheet in close proximity to each other (Stock et al., 1989a) and include the single aspartate that is phosphorylated (Sanders et al., 1989).

Unlike canonical response regulators, Spo0A does not usually receive phosphate directly from its cognate sensor kinases, KinA (Perego et al., 1989; Antoniewski et al., 1990), KinB (Trach and Hoch, 1993) and KinC (Kobayashi et al., 1994; LeDeaux and Grossman, 1994; and Chapter 4). Rather, the sporulation sensor kinases first serve as a phosphate donor for the response regulator SpoOF. This has been shown biochemically for KinA (Perego et al., 1989; Burbulys et al., 1991), and there is genetic evidence that indicates this is also true for KinB (Trach and Hoch, 1993) and KinC (see Chapter 4). SpoOF~P then donates phosphate to the phosphotransferase Spo0B, which then serves as a phosphate donor for Spo0A (Burbulys et al., 1991) (Figure 1.1). Together the sporulation sensor
Figure 1.1. The phosphorelay controls the accumulation of Spo0A–P. Under certain conditions, the sensor kinases KinA, KinB, and KinC autophosphorylate and serve as phosphate-donors for the response regulator Spo0F. The phosphotransferase Spo0B transfers phosphate from Spo0F to the response regulator and sporulation transcription factor Spo0A (Burbulys et al., 1991). Spo0A–P represses transcription of \textit{abrB} (Perego et al., 1988; Strauch et al., 1990) and activates transcription of several \textit{spoll} genes (Satola et al., 1991; Trach et al., 1991; Satola et al., 1992; York et al., 1992; Bird et al., 1993; Baldus et al., 1994).
kinases, Spo0F, and Spo0B constitute a "phosphorelay" (Burbulys et al., 1991). This phosphorelay provides several possible checkpoints for regulating the accumulation of Spo0A-P (Burbulys et al., 1991; Grossman, 1991).

Another key player involved in the accumulation of Spo0A-P is Spo0K, which is necessary for efficient sporulation (Perego et al., 1991; Rudner et al., 1991). The spo0K operon consists of five open reading frames, and the product of each of these reading frames is very similar to the corresponding protein of oligopeptide permease from Salmonella typhimurium and Escherichia coli (Perego et al., 1991; Rudner et al., 1991; and Chapter 2). Spo0K is necessary for transport of oligopeptides into the cell (Perego et al., 1991), and belongs to a large family of conserved proteins known as ABC transporters, where "ABC" stands for "ATP-binding cassette", a motif common to all these transporters (reviewed in Ames, 1986; Higgins, 1992).

Spo0K is also necessary for the development of genetic competence. Competence is the ability to internalize exogenous DNA (reviewed in Dubnau, 1989; Dubnau, 1993). Only a fraction (~10%) of cells within the population becomes competent, and this fraction has a different buoyant density than the noncompetent fraction of cells. Competent cells have membrane-bound proteins that bind and nick exogenous DNA. Single-stranded fragments of ~ 10 kb are brought into the cell. These membrane-bound proteins are products of the "late" competence genes, and are only expressed in the competent fraction of the population. However, before the late competence genes are expressed, "early" competence genes must become active.

The early competence genes include spo0K, comQ, comX, comP, comA, and srfA (Figure 1.2). comX encodes a precursor for the ComX extracellular pheromone that is required for competence (Magnuson et al., 1994a), and comQ is necessary for production of the pheromone (Magnuson et al., 1994a).
Figure 1.2. The early competence pathway acts to regulate expression of *srfA*.
Modified from Solomon et al., 1994.
CSF (Competence Stimulating Factor)

outside

Spo0K

inside

ComP

ComQ

ComX

ComA-P

ComA

srfA

late competence genes including comG
comP encodes a membrane bound sensor kinase (Weinrauch et al., 1990) that is involved in sensing the ComX pheromone (Solomon et al., 1994). The cognate response regulator for ComP is ComA. ComA-P is necessary for expression of srfA, which is required for the development of competence. The role of Spo0K in initiating competence development is associated with Competence Stimulating Factor (CSF) (Solomon et al., 1994). CSF is at least in part an oligopeptide and is necessary for competence and full expression of srfA (Magnuson et al., 1994b). Spo0K, ComP, and ComA seem to be required in the development of competence only in their positive roles as direct or indirect activators of srfA expression, since expression of srfA from a heterologous promoter causes constitutive competence and bypasses the need for comQ, spo0K, comP and comA (Hahn and Dubnau, 1991; Nakano and Zuber, 1991).

To determine which of the five genes of the spo0K operon were required for sporulation, competence, or peptide transport, nonpolar mutations were made in each of the first four spo0K open reading frames (Chapter 2). Under some conditions, each of the first four genes are needed to a similar extent in sporulation, competence and oligopeptide transport as the entire operon. The last open reading frame is needed to a lesser extent for all three functions.

To identify other genes which are involved in the initiation of sporulation and the development of competence, I isolated genes which when overexpressed could bypass the need for spo0K for either of these processes. This screen is described in detail in Chapter 3. kinC, which when present on a multicopy plasmid bypasses the need for spo0K for the initiation of sporulation (Chapter 4), was originally isolated in this screen.

One of the main results presented in this thesis is that while KinA and KinB are responsible for the accumulation of Spo0A-P necessary to activate transcription of spoII genes (Trach and Hoch, 1993), KinC is responsible for the
early accumulation of Spo0A-P necessary for normal regulation (repression) of abrB (Chapter 4). Another important result is that the three sporulation kinases, KinA, KinB and KinC, have different roles under different growth conditions (Chapter 4).

Several point mutations in spo0A lead to suppression or partial suppression of the sporulation defect of spo0K, kinA kinB double, spo0F, or spo0B mutants. An important result of this work is that the sensor kinase KinC is necessary for this suppression, presumably because these mutant forms of Spo0A are capable of taking phosphate directly from KinC-P (Chapter 4). After I had finished these experiments, we learned that Y. Kobayashi had independently isolated kinC in a screen for genes responsible for the suppression activity of one of these point mutations in spo0A (Kobayashi et al., 1994).

Two other genes isolated as multicopy suppressors of spo0K are mskB and mskD. mskB partially suppresses the sporulation defect of a spo0K mutant, and encodes a protein similar to SinI (Bai et al., 1993). SinI inhibits SinR (Bai et al., 1993); SinR itself represses spo0A transcription (I. Smith, personal communication, see Chapter 5).

mskD partially suppresses the competence defect of a spo0K mutant (Chapter 5) and encodes a homolog of ClpX (Gottesman et al., 1993). ClpX belongs to a large family of ATPases that direct the activity of the ClpP protease (Gottesman and Maurizi, 1992; Squires and Squires, 1992). MecB, which is a homolog of the ClpC ATPase (Krüger et al., 1994; Msadek et al., 1994), and MecA, which has some similarity to ClpP (Kong and Dubnau, 1994), appear to act together to negatively regulate the activity of the late competence transcription factor ComK (Hahn et al., 1994; Kong and Dubnau, 1994; Msadek et al., 1994; van Sinderen et al., 1994; van Sinderen and Venema, 1994). An intriguing model for how MskD may be acting to increase expression of late competence genes is that
MskD when overexpressed interferes with MecA and/or MecB so that neither can regulate the activity of ComK (Chapter 5).
Chapter 2:

Analysis of nonpolar single gene mutations within the spo0K operon

spo0K is necessary for the efficient initiation of sporulation, the development of competence, and oligopeptide permease activity (Perego et al., 1991; Rudner et al., 1991). This chapter describes work characterizing the extent to which each of the spo0K open reading frames is required for each of these activities.

Cloning and sequencing spo0K. As part of our work on signal transduction and the initiation of sporulation, we set out to isolate insertion mutations that would cause kinA mutants to have a more severe defect in sporulation (Ireton and Grossman, 1992b). In the same screen, we were also able to isolate sporulation mutations that could be suppressed by the overexpression of kinA from a heterologous promoter. During the course of this work, we isolated a Tn9171ac insertion mutation that was in spo0K, spo0K::Tn9171ac. The transposon has a promoterless lacZ gene, and the orientation of the insertion is such that lacZ is not expressed.

spo0K was originally defined by the mutant allele spo0K141 (Z31 of Coote (Coote, 1972) and Piggot and Coote (Piggot and Coote, 1976)). Definitive evidence that the transposon was in the spo0K locus came from cloning and characterizing DNA surrounding the transposon. We demonstrated that clones of DNA adjacent to the transposon could rescue the spo0K141 mutation by recombination and that other clones could disrupt the spo0K locus when integrated into the chromosome. Clones were used to sequence the locus and to further characterize the function of spo0K. This work is described in detail elsewhere (Rudner et al., 1991).
Homology with Opp. The spo0K operon contains five open reading frames. These open reading frames are very similar to those of the oligopeptide permease (opp) operon of *S. typhimurium*, and both operons have the same organization (Figure 2.1). The percentage identity between individual gene products ranges from 34% to 53% (Figure 2.1). Both spo0K and opp belong to a large conserved family of genes/operons of ATP-dependent transport systems (Higgins, 1992). This family includes his, mal, and pst transport systems in bacteria, that import histidine, maltose, and phosphate, respectively; STE6, which exports a-factor pheromone in yeast; and MDR, which exports drugs, and CFTR, which channels chloride ions in mammals. All of these systems share a region of homology called an ATP-binding cassette, so they are known as ABC transporters. The assignment of spo0K to this family is based on its sequence homology and its function as an oligopeptide permease.

Based on its homology to the gene products of opp, the following roles have been assigned to each of the gene products in the spo0K operon (Perego et al., 1991; Rudner et al., 1991): Spo0KA is the ligand binding protein, Spo0KB and Spo0KC form a complex in the membrane through which the ligand is transported, and Spo0KD and Spo0KE are the ATP-binding proteins that are thought to provide energy for transport. However, there are some interesting differences between components of Spo0K and Opp; for example, while the ligand binding protein OppA is a periplasmic protein (Hiles et al., 1987), the ligand binding protein Spo0KA is probably tethered to the membrane by a lipid anchor (Perego et al., 1991).
Figure 2.1. Homology between the *spo0K* operon of *B. subtilis* and the *opp* operon of *S. typhimurium*. Percent identity and similarity are as determined by the BestFit program (Devereux et al., 1984).
% Identity; Similarity

<table>
<thead>
<tr>
<th>Spo0KA</th>
<th>Spo0KB</th>
<th>Spo0KC</th>
<th>Spo0KD</th>
<th>Spo0KE</th>
</tr>
</thead>
<tbody>
<tr>
<td>34; 54</td>
<td>48; 73</td>
<td>43; 67</td>
<td>51; 69</td>
<td>53; 69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OppA</th>
<th>OppB</th>
<th>OppC</th>
<th>OppD</th>
<th>OppF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phenotypes associated with *spo0K* mutations. *spo0K* null mutants are deficient in the ability to initiate sporulation, initiate competence development and transport oligopeptides.

Sporulation. *spo0K* null mutants do not sporulate efficiently, sporulating between ~1% to ~10% as efficiently as wild type.

Competence. *spo0K* null mutants take up exogenous DNA 2-3 orders of magnitude less efficiently than wild type. Consistent with this, *srfA-lacZ* and *comG-lacZ* fusions show decreased expression in a *spo0K* null mutant as compared to wild type (Figures 2.4 and 2.5). (*srfA* encodes an early competence gene. *comG* is a late competence gene that is thought to encode part of the DNA-uptake complex (Dubnau, 1993).)

Oligopeptide transport. There are several results that indicate that Spo0K can act as an oligopeptide permease, as its homology to Opp indicates. *spo0K* null mutants are resistant to the toxic oligopeptide phosphinothricyl-alanyl-alanine, also known as PTT or bialaphos (Perego et al., 1991), and is resistant to bialaphos at concentrations up to and including 100 µg/ml. Also, Spo0K is required for utilization of peptides as a source of required amino acids. For example, Spo0K+ cells that are auxotrophic for Met and Phe will grow on minimal medium in the presence of the tripeptide Met-Leu-Phe; *spo0K* mutants with the same auxotrophies will not (Solomon, 1994). Also, proline auxotrophs will grow in the presence of Pro-Gly-Gly but *pro spo0K* double mutants will not (Mathiopoulos et al., 1991). Interestingly, Spo0K will not transport the dipeptide Pro-Gly (at least not to the extent to rescue a Pro auxotroph) (Mathiopoulos et al., 1991), whereas Opp from Salmonella will (Abouhamad et al., 1991).

spo0K nonpolar deletions. To determine the relative contribution of each *spo0K* cistron to the phenotypes associated with null alleles of the entire operon, I made what I presume are in-frame deletions in each of the first four open reading
frames, a single deletion encompassing the last two open reading frames, and
two null mutations in spo0KE. Table 2.1 lists the plasmids I used to make these
deletions, and the sizes of the deletions. These deletions are diagrammed in
Figure 2.2.

To make each deletion, I first made a plasmid that contained the deletion in
the gene of interest within sequence that overlapped either the 5' or 3' end of the
spo0K operon (see Figure 2.2 and Table 2.1). I transformed each of these
integrative plasmids into a wild type strain (JH642). If the deletion actually gives
rise to a Spo− phenotype, in the cases where the plasmid extends past the 3' end
of the operon (pJL34 for Δspo0KC, pJL9 for Δspo0KD, and pJL19 for Δspo0KDE, see
Figure 2.2), then integration of the plasmid could give rise to two different classes
of recombinants depending on the crossover point (see Figure 2.3, which uses
pJL34 as an example). If the plasmid crossed over upstream of the deletion, the
cells should be Spo− (case A in Figure 2.3); if the plasmid crossed over
downstream of the deletion, the cells should be Spo+ (case B in Figure 2.3). In all
three cases, transforming the plasmid in question gave rise to Spo− and Spo+
transformants, indicating that these three deletions did indeed lead to a Spo−
phenotype.

All single crossover events of plasmids that have inserts that extend past
the 5' end of the operon (pJL18 for Δspo0KA and pJL29 for Δspo0KB) should have
resulted in cells that were phenotypically Spo+, whether those crossovers
occurred upstream or downstream of the deletion in the plasmid. However, Spo−
transformants could result from gene conversion events that replaced the wild
type copy of the gene with the deletion version on the plasmid. There were Spo−
transformants in both cases, indicating that these deletions also resulted in a Spo−
phenotype.
TABLE 2.1 *spo0K* deletion mutations.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Deletion</th>
<th>Fraction of ORF deleted</th>
<th>Plasmid used</th>
</tr>
</thead>
<tbody>
<tr>
<td>spo0KA</td>
<td>1371 bp</td>
<td>457aa/545aa</td>
<td>pJL18</td>
</tr>
<tr>
<td>spo0KB</td>
<td>447 bp</td>
<td>139aa/311aa</td>
<td>pJL29</td>
</tr>
<tr>
<td>spo0KC</td>
<td>573 bp</td>
<td>191aa/305aa</td>
<td>pJL34</td>
</tr>
<tr>
<td>spo0KD</td>
<td>408 bp</td>
<td>136aa/358aa</td>
<td>pJL9</td>
</tr>
<tr>
<td>spo0KDE</td>
<td>1341 bp</td>
<td></td>
<td>pJL19</td>
</tr>
<tr>
<td>spo0KE</td>
<td>541 bp</td>
<td>neo insertion</td>
<td>pJL42</td>
</tr>
<tr>
<td>spo0KE</td>
<td>"</td>
<td>spc insertion</td>
<td>pJL75</td>
</tr>
<tr>
<td>spo0KABCD</td>
<td>3184 bp</td>
<td>erm insertion</td>
<td>pJL50</td>
</tr>
</tbody>
</table>

*a*Deletions in each of the first four open reading frames should be in-frame.
Figure 2.2. Map of *spo0K* region and plasmids used to make *spo0K* mutations. Restriction site abbreviations: P, PvuII; Es, EspI; E, EcoRI; Rs, RsrII; A, ApaI; Sn, SnaBI; Bg, BglII; X, XcmI; R, EcoRV; C, ClaI; Sp, SplI; S, SphI. The location of the likely promoter site of *spo0K* is indicated by an arrow and P*spo0K* (Rudner et al., 1991). The location of the Tn917lac insertion is indicated by a triangle and Tn (Rudner et al., 1991).
Figure 2.3. Making Δspo0KC, as an example of how each of the spo0K deletion mutations was constructed. pJL34 contains sequence overlapping the 3' terminus of the spo0K operon, and a deletion in the spo0KC gene (see Table 2.1 and Figure 2.2). Integrating the plasmid into the chromosome of a wild type strain could give rise to two classes of CmR recombinants: If a single crossover event occurs upstream of the deletion on the plasmid (A), the recombinant would have Δspo0KC under control of the spo0K promoter (result not shown), and therefore, it would be Spo−. However, if a single crossover event occurs downstream of the deletion on the plasmid (B), the recombinant would have spo0K+ under control of the spo0K promoter (shown) and would be Spo+. To make a strain that contains only Δspo0KC and no wild type copy of spo0KC, a Spo+ recombinant is grown under conditions where the presence of cat was not required (in the absence of chloramphenicol) and plated on sporulation plates. A second recombination event that excises the plasmid and leaves behind Δspo0KC under control of the spo0K promoter would give rise to a Spo− CmS recombinant.
(I assume that gene conversion events also occurred in the transformations of the plasmids to delete the downstream genes, but they were phenotypically indistinguishable from recombinants that were the result of a single crossover event.)

To make strains that had only the deletion of the gene of interest and no wild type copy of that gene present, I screened for a second recombination event that excised the plasmid and left behind the deletion (Step 2 in Figure 2.3). To do that, one or more Spo⁺ recombinants from the transformation of each plasmid was isolated and grown under conditions where the presence of the plasmid was not required (i.e., in the absence of chloramphenicol), and plated on non-selective sporulation plates. These plates were screened for the presence of Spo⁻ colonies which were then further screened for Cm₅, indicating the loss of the plasmid.

The deletions in spoOKA, spoOKB, spoOKD, and spoOKDE have been shown to be present in the chromosome by PCR analysis, but PCR analysis of the spoOKC mutant has so far been unsuccessful (Solomon, 1994).

Complementation assays. None of the deletions made in the first four genes of the spoOK operon are polar on downstream genes. A complementation test was performed on the ΔspoOKA mutation by putting spoOKA under control of the spoOK promoter at the amyE locus using pJL28 (see Chapter 7) and scoring for the ability to sporulate on sporulation plates. (This same construct was used to show that the spoOKA::Tn917lac insertion is polar on downstream genes in the spoOK operon.)

A complementation test was also performed on the ΔspoOKB and ΔspoOKC mutations to determine if they were polar on downstream genes. Two plasmids were made, one that had only spoOKB under control of the IPTG-inducible promoter Pspac (pJL32) and one that had both spoOKB and spoOKC under the control of Pspac (pJL79). Both of the constructs were put at the nonessential
amyE locus in both the Δspo0KB and Δspo0KC strains. Both constructs rescued the Δspo0KB strain in an IPTG-dependent manner, indicating that the Δspo0KB deletion is not polar on spo0KC or spo0KD and spo0KE. In the presence of IPTG, the Pspac-spo0KB construct did not rescue the Δspo0KC, but the Pspac-spo0KBC construct did, indicating that the Δspo0KC deletion was not polar on spo0KD and spo0KE, and that two copies of spo0KB could not substitute for a loss of spo0KC.

The Δspo0KD deletion is not completely polar on spo0KE because the Δspo0KD allele causes a less severe phenotype than the Δspo0KDE allele (see below).

Phenotypes associated with deletions of particular spo0K genes. The Δspo0KA, Δspo0KB, and Δspo0KC nonpolar deletions and the Δspo0KDE deletion cause phenotypes that are indistinguishable from a spo0K null mutant in terms of sporulation (Table 2.2), srfA-lacZ (Figures 2.4) and comG-lacZ (Figures 2.5) expression, and resistance to bialaphos, where bialaphos was used at 50 μg/ml. The spo0K null mutation is one where the first four open reading frames of spo0K have been replaced with the selectable erm gene, see pJL50 of Figure 2.2. Δspo0KD is virtually indistinguishable from spo0K null mutants in terms of sporulation or bialaphos resistance consistent with results previously reported (Perego et al., 1991), but a Δspo0KD mutation had a less severe effect on srfA-lacZ (Figure 2.4) and comG-lacZ (Figures 2.5) expression as compared to a spo0K null mutant.

spo0KE null mutants sporulate 5 to 20 times better than spo0K null mutants. A spo0KE insertion was previously reported to give a Com⁻ defect, where the competence of the cells was measured at a single point during growth ~2 hours prior to entry into stationary phase (Rudner et al., 1991), but a multiple point transformation assay with a spo0KE deletion-insertion mutant indicates competence levels more in line with those expected from the expression of
TABLE 2.2 Sporulation frequency of different *spo0K* mutants in DS medium.

<table>
<thead>
<tr>
<th>strain</th>
<th>genotype</th>
<th>spores/ml(^a)</th>
<th>spores/cell</th>
<th>relative to wild type</th>
</tr>
</thead>
<tbody>
<tr>
<td>JH642</td>
<td>WT</td>
<td>2.4 x 10(^8)</td>
<td>5.1 x 10(^{-1})</td>
<td>1</td>
</tr>
<tr>
<td>JRL131</td>
<td>Δspo0KA</td>
<td>2.5 x 10(^6)</td>
<td>1.0 x 10(^{-2})</td>
<td>2.0 x 10(^{-2})</td>
</tr>
<tr>
<td>JRL189</td>
<td>Δspo0KB</td>
<td>2.3 x 10(^6)</td>
<td>9.1 x 10(^{-3})</td>
<td>1.8 x 10(^{-2})</td>
</tr>
<tr>
<td>JRL322</td>
<td>Δspo0KC</td>
<td>2.5 x 10(^6)</td>
<td>8.1 x 10(^{-3})</td>
<td>1.6 x 10(^{-2})</td>
</tr>
<tr>
<td>JRL43</td>
<td>Δspo0KD</td>
<td>1.5 x 10(^6)</td>
<td>5.7 x 10(^{-3})</td>
<td>1.1 x 10(^{-2})</td>
</tr>
<tr>
<td>JRL221</td>
<td>Δspo0KE::neo</td>
<td>2.9 x 10(^7)</td>
<td>1.1 x 10(^{-1})</td>
<td>2.1 x 10(^{-1})</td>
</tr>
<tr>
<td>JRL135</td>
<td>Δspo0KDE</td>
<td>7.3 x 10(^5)</td>
<td>2.5 x 10(^{-3})</td>
<td>5.0 x 10(^{-3})</td>
</tr>
<tr>
<td>KI418</td>
<td>spo0KA::Tn917</td>
<td>5.9 x 10(^5)</td>
<td>2.4 x 10(^{-3})</td>
<td>4.8 x 10(^{-3})</td>
</tr>
<tr>
<td>JRL358</td>
<td>Δspo0K::erm</td>
<td>3.7 x 10(^6)</td>
<td>1.3 x 10(^{-2})</td>
<td>2.5 x 10(^{-2})</td>
</tr>
</tbody>
</table>

\(^a\)Data shown are from a single representative experiment, and similar results were obtained in at least three independent experiments. The number of viable cells/ml ranged from 2.1 x 10\(^8\) to 4.7 x 10\(^8\).
Figure 2.4. *srfA-lacZ* expression in different *spo0K* mutants. Strains were grown in S7 minimal medium with 1% glucose and 0.1% glutamate and amino acids for auxotrophic requirements as described in Chapter 7. The time of exit from exponential growth is defined as time 0 (T0). The *srfA-lacZ* fusion is located in single copy at the *amyE* locus and is associated with either the *cat* marker or with the *cat* marker that had been converted to *cat::spc* (Cm^S Spc^R) using pJL62. filled circles, wild type (JRL293); +’s, Δ*spo0KE::spc* (JRL685); filled squares, Δ*spo0KD* (JRL489); triangles, Δ*spo0KA* (JRL486); open squares, Δ*spo0KB* (JRL1105); diamonds, Δ*spo0KC* (JRL1082); open circles, Δ*spo0KDE* (JRL492); and x’s, Δ*spo0KABCD::erm* (JRL494).
The graph shows the time course of β-galactosidase (\(\beta\)-gal) specific activity for different mutants of the srfA-lacZ gene. The time is measured in hours, and the specific activity is given in arbitrary units ranging from 0 to 800. The mutants include WT, spo0KE, Δspo0KD, and all others. The graph indicates that the β-gal specific activity increases with time for all mutants, with WT showing the highest activity, followed by spo0KE, Δspo0KD, and all others.
Figure 2.5. *comG-lacZ* expression in different *spo0K* mutants. Strains were grown in S7 minimal medium with 1% glucose and 0.1% glutamate and amino acids for auxotrophic requirements as described in Chapter 7. The *comG-lacZ* fusion is located in single copy at the *amyE* locus and is associated with the *neo* marker. filled circles, wild type (JRL275); +’s, Δ*spo0KE::spc*, (JRL682); filled squares, Δ*spo0KD* (JRL488); triangles, Δ*spo0KA* (JRL485); open squares, Δ*spo0KB* (JRL1102); diamonds, Δ*spo0KC* (JRL1103); open circles, Δ*spo0KDE* (JRL1104); and x’s, Δ*spo0KABCD::erm* (JRL493).
comG-lacZ

WT

others

-4 -2 0 2 4

time (hrs)

β-gal specific activity

spo0KE

Δspo0KD

all others

-4 -2 0 2 4

time (hrs)

comG-lacZ seen in Figure 2.5 (data not shown). These same insertions were sensitive to all but the lowest levels of bialaphos (0.02 - 0.1 μg/ml) tested, but at these same levels wild type cells were still sensitive. This indicates that spo0KE mutants transport bialaphos but not quite as well as wild type cells.

There may exist conditions under which the phenotypes associated with spo0KE mutants are more severe than reported above (unpublished results), but in every case looked at, phenotypes associated with a spo0KE mutation were less severe than those associated with a complete spo0K null mutation.

Why is Spo0KE not needed to the same extent as the other Spo0K proteins for the initiation of sporulation, the development of competence and oligopeptide transport? It is clear that OppF, the Spo0KE homolog in S. typhimurium, is necessary for oligopeptide transport. Also, it has been shown for the maltose and histidine ABC transporters that the stoichiometry of ATP-binding proteins is such that there are two for every membrane pore (Davidson and Nikaido, 1991; Kerppola et al., 1991). It may be possible that Spo0KD can substitute for Spo0KE, that is, a Spo0KD homodimer may substitute for the proposed Spo0KD-Spo0KE heterodimer. However, since a spo0KD mutant has a more severe phenotype than a spo0KE mutant, a putative Spo0KE homodimer can not substitute for the proposed Spo0KD-Spo0KE heterodimer. Spo0KD and Spo0KE are 42% identical.

It may be the case that an ATP-binding protein from some other ABC transporter is substituting for Spo0KE. What makes this idea particularly intriguing is the recent characterization of app, a cryptic oligopeptide permease of B. subtilis, which is ~5 kb upstream of spo0K (Koide and Hoch, 1994; Solomon, 1994). Like spo0K, the gene products of app are homologous to those of opp of S. typhimurium. Each gene of app is named according to which gene of opp it is most similar. Unlike spo0K, the order of the genes within the operon is different: The
genes encoding the two ATP-binding proteins are first, followed by the gene encoding the ligand binding protein, and ending with the genes encoding the two membrane pore proteins, so the gene order is appD, appF, appA, appB and appC. The mutation which causes App to be inactive in wild type cells is a frameshift mutation in appA, which encodes the ligand binding protein. A revertant that restores the open reading frame suppresses the sporulation, competence and some of the transport phenotypes of a spo0K mutant (the app revertant will transport a tetrapeptide and a pentapeptide as well as the wild type strain, but not a tripeptide) (Koide and Hoch, 1994). It is not known if the frame-shift mutation in appA in wild type cells is polar on appB and appC, but it almost certainly is not affecting expression of the upstream genes encoding the two ATP-binding proteins, AppD and AppF. Since AppF is 54% identical to Spo0KE (Koide and Hoch, 1994), it is possible that AppF could substitute for Spo0KE. This idea is readily testable.

There is precedent for one part of an ABC transporter to work with another ABC transporter. The ligand-binding protein of the dipeptide permease Dpp can work with the membrane proteins of Spo0K to transport dipeptides: a mutation in dpp which is not polar on the gene encoding the ligand-binding protein of Dpp will still allow transport of dipeptides into the cell, but this transport is dependent on spo0K (F. Slack and A. L. Sonenshein, personal communication). Another example is the ability of UgpC, the single ATP-binding protein of the sn-glycerol-3-phosphate (G3P) ABC transporter Ugp, to substitute for MalK, the single ATP-binding protein of the maltose ABC transporter. This is measured by the growth of malK mutants on plates where maltose is the sole carbon source under conditions where UgpC is expressed (Hekstra and Tommassen, 1993). Conversely, MalK was able to substitute for UgpC as measured by growth of
ugpC mutants on plates where G3P was the sole phosphate source (Hekstra and Tommassen, 1993).
Chapter 3:

Isolation of multicopy suppressors of spo0K

I was interested in finding genes which when overexpressed could bypass either the sporulation defect or the competence defect (or both) caused by spo0K mutations. Spo0K appears to act early in both of these processes. So, for example, overexpression of the sporulation sensor kinase KinA suppresses the sporulation defect, but not the competence defect of a spo0K mutant (Rudner et al., 1991). This indicates that Spo0K may act upstream of KinA, and hence upstream of Spo0A, in the initiation of sporulation. Identifying genes which when overexpressed bypass the need for spo0K in the initiation of sporulation might also identify genes that regulate the phosphorelay. Similarly, expression of the early-acting competence gene srfA from a heterologous promoter suppresses the competence defect of a spo0K mutant (Hahn and Dubnau, 1991; Nakano and Zuber, 1991).

Rationale. Identification of genes based on phenotypes caused by increased expression is a relatively general approach that is easier and can sometimes be used in place of isolating gain-of-function mutations. In addition, genes that might be difficult to identify based on phenotypes caused by loss-of-function mutations are sometimes easier to identify based on phenotypes caused by overexpression.

To isolate genes which when present on a multicopy plasmid, and presumably overexpressed, bypass the need for spo0K in either the initiation of sporulation or the development of competence, I transformed a spo0K mutant with two size-selected multicopy plasmid libraries (see below). Because spo0K mutants have a decreased frequency of transformation (Roggiani et al., 1990;
Rudner et al., 1991; and Chapter 2), I constructed a conditional spo0K mutation in which to transform the multicopy plasmid libraries. The multicopy plasmid library could be transformed into the mutant under permissive conditions, when the cells are Spo0K+, and screened under nonpermissive conditions, when the cells are Spo0K−. The conditional allele replaced the normal spo0K promoter with the LacI-repressible/IPTG-inducible promoter Pspac such that the Pspac-spo0K fusion was in single copy in the chromosome and was the only copy of spo0K (for details of the construction of the Pspac-spo0K allele, see Figure 7.1 and Chapter 7). Strains containing the Pspac-spo0K fusion as the only copy of spo0K could be made competent under permissive conditions (in the presence of IPTG) and transformants screened under nonpermissive conditions (in the absence of IPTG).

Making the multicopy plasmid libraries. Two different multicopy plasmid libraries were made in the B. subtilis/E. coli shuttle vector pHP13 (Haima et al., 1987; Bron, 1990). pHP13 has two drug markers suitable for selection in B. subtilis: erm which confers MLSR and cat which confers CmR. In B. subtilis, pHP13 has a copy number of ~5-6 per cell (Haima et al., 1987; Bron, 1990). Chromosomal DNA from JH642 was partially digested with Sau3A and electrophoresed on an agarose gel. DNA was isolated from the size range of approximately 2 to 4.5 kb (library A) and approximately 4.5 to 9 kb (library B), based on size markers run in parallel. Size fractionated DNA was ligated into pHP13 that had been linearized with BamHI and treated with phosphatase, and transformed into E. coli selecting for resistance to chloramphenicol. Transformants were pooled and plasmid DNA was prepared for transformation into B. subtilis.

Approximately 80 to 90% of the plasmids in library A had inserts and the chance that any particular fragment of the average size of 3.2 kb is present in the
library is ~87%, assuming a random distribution of Sau3A sites, no bias in selection in *E. coli*, and an average insert size of ~3.2 kb (probably an overestimate). For library B, ~60 to 70% of the plasmids had inserts, and assuming an average size of 5 kb, the chances that a particular fragment of average size is represented is ~50%.

Plasmid marker rescue transformation. *B. subtilis* takes up transforming DNA as a linear single strand, making establishment of a multicopy circular plasmid rather inefficient. However, incoming DNA is able to recombine with homologous sequences very efficiently. To facilitate introduction and establishment of a multicopy plasmid library in *B. subtilis*, I constructed a helper plasmid, pJL52, that could be used in combination with the cloning vector pHPl3. The helper plasmid, pJL52, was made by deleting from BamHI to NcoI in pHPl3. This deletes part of *cat*, and pJL52 does not confer CmR but still confers MLSR. When a competent cell containing pJL52 takes up a plasmid monomer from a pHPl3-based library and linearizes it, pJL52 provides the homology necessary for the plasmid to recombine and form a closed circular plasmid. One can select for these recombination events using the CmR marker present on pHPl3 that is not present on pJL52. This general process is known as plasmid marker rescue transformation or homology assistance (Gryczan et al., 1980; Bron, 1990).

Conditions for the sporulation suppressor screen. Since *spo0K* mutations cause a more severe sporulation defect in the PB2 strain background than in the JH642 background (Rudner et al., 1991), it seemed that a screen for multicopy suppressors of the *spo0K* sporulation defect might be more sensitive in the PB2 background. Accordingly, I constructed a PB2 derivative that contained the Pspac-*spo0K* fusion, the helper plasmid pJL52, and a *spolIIA-lacZ* transcriptional fusion (Ireton and Grossman, 1994). This strain, JRL459, was grown in the
presence of MLS to maintain pJL52. JRL459 was made competent in S7 minimal medium (+ tryptophan at 40 μg/ml) in 1 mM IPTG to allow expression of spo0K. Competent cells were transformed with the pHP13-based multicopy plasmid libraries and CmR transformants were selected on 2xSG plates containing chloramphenicol or containing chloramphenicol and Xgal (120 μg/ml). Transformants that had a more pronounced Spo+ morphology, or that were darker blue on Xgal (indicating increased expression of spoIIA-lacZ) compared to the parent strain were chosen for further analysis.

Conditions for the competence suppressor screen. The conditions used to find suppressors of the competence defect of a spo0K mutant were similar to those used to find suppressors of the sporulation defect. First, I constructed a PB2 derivative that contained the Pspac-spo0K fusion, the helper plasmid pJL52, and a comG-lacZ transcriptional fusion; comG is a late competence gene the expression of which coincides with competence (Dubnau, 1993). This strain, JRL454, was made competent in the presence of MLS, to maintain pJL52, and in 1 mM IPTG, to allow expression of spo0K. Competent cells were transformed with the pHP13-based libraries. Because transformants did not grow well when plated directly on minimal medium plates containing chloramphenicol and Xgal (120 μg/ml), they were first selected on 2xSG plates containing chloramphenicol and then replica plated onto minimal medium plates containing chloramphenicol and Xgal. Transformants that appeared to have increased expression of comG-lacZ, as judged by a darker blue color on Xgal indicator plates, were chosen for further analysis. (The initial plating onto 2xSG plates containing chloramphenicol also allowed screening of more transformants for the sporulation suppressor screen.)

Isolation of multicopy suppressors of the spo0K sporulation defect. I screened approximately 11,000 transformants (~4,300 from library A and ~6,700
from library B) for suppression of the spo0K sporulation defect, and found 9 that contained plasmids that reproducibly suppressed the sporulation defect caused by the conditional spo0K mutation (Table 3.1). To test if these plasmids suppressed the sporulation defect caused by a true spo0K null mutation (Δspo0KABCD::erm), I isolated plasmid DNA from the candidates and introduced it into wild type (PB2), a Pspac-spo0K mutant (JRL408), and a Δspo0K::erm mutant (JRL417). All 9 plasmids suppressed the sporulation defect caused by the Δspo0K::erm mutation as well as that caused by the Pspac-spo0K mutation, as judged by colony morphology on sporulation plates.

Restriction mapping of the 9 plasmids showed that there were just two classes of plasmids that contained different inserts, exemplified by the plasmids pLK2 and pLK11 (Table 3.1). The genes contained on these plasmids were called $mskA$ and $mskB$, respectively, where msk stands for multicopy suppressor of spo0K. These two plasmids suppressed or partially suppressed, the sporulation defect, but not the competence defect, caused by null mutations in spo0K. As described in the next chapter, $mskA$ encodes a sensor kinase most similar to the sporulation sensor kinases $kinA$ and $kinB$, and has since been renamed $kinC$. $mskB$ is described in Chapter 5, and appears to encode an inhibitor of SinR, a repressor of spo0A transcription (I. Smith, personal communication).

Isolation of multicopy suppressors of the spo0K competence defect. I screened approximately 3,700 transformants (~3,400 from library A and 272 from library B) for suppression of the spo0K competence defect, and found 3 that contained plasmids that reproducibly suppressed the competence defect caused by the conditional spo0K mutation (Table 3.1). Restriction mapping of the 3 plasmids showed that there were again two classes of inserts in the plasmids, exemplified by plasmids pLK4 and pLK6. pLK4 seemed to be unstable in E. coli.
and consequently was not studied further. Analysis of pLK6 is described in Chapter 5.
TABLE 3.1. Summary of screen for multicopy suppressors of the sporulation (Spo) or competence (Com) defects of a spo0K mutant.

<table>
<thead>
<tr>
<th>Class</th>
<th>spo0K defect</th>
<th>Library</th>
<th>Original<sup>a</sup> plasmid</th>
<th>Strain in which isolated</th>
<th>Screen used to isolate plasmid</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLK2</td>
<td>Spo</td>
<td>B</td>
<td>pLK2</td>
<td>JRL459</td>
<td>spoIIA-lacZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK3</td>
<td>JRL459</td>
<td>spoIIA-lacZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK7</td>
<td>JRL459</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK8</td>
<td>JRL454</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK9</td>
<td>JRL459</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK12</td>
<td>JRL454</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td>pLK11</td>
<td>Spo</td>
<td>A</td>
<td>pLK10<sup>b</sup></td>
<td>JRL454</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK11</td>
<td>JRL454</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK15</td>
<td>JRL454</td>
<td>Spo<sup>+</sup></td>
</tr>
<tr>
<td>pLK6</td>
<td>Com</td>
<td>A</td>
<td>pLK6</td>
<td>JRL454</td>
<td>comG-lacZ</td>
</tr>
<tr>
<td>pLK4</td>
<td>Com</td>
<td>B</td>
<td>pLK4</td>
<td>JRL454</td>
<td>comG-lacZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pLK5</td>
<td>JRL454</td>
<td>comG-lacZ</td>
</tr>
</tbody>
</table>

^a Five transformants originally isolated did not show suppression upon retesting, and one other isolate contained a plasmid that did not confer suppressing activity upon reintroduction into the parent strain.

^b The insert in pLK10 contains a 135 bp deletion relative to pLK11 (see Chapter 5).
Chapter 4:

Characterization of \textit{kinC}, and the different roles of the sensor kinases KinA, KinB, and KinC in sporulation

As described in the previous chapter, I isolated two multicopy plasmids that contain genes that suppress (pLK2) or partially suppress (pLK11) the sporulation defect caused by a \textit{spo0K} mutation. pLK2 had the more dramatic effect and the gene responsible for this effect encodes a previously unknown histidine protein kinase, \textit{kinC}. In this chapter, I describe the isolation and characterization of \textit{kinC}, as well as the different roles of the three sensor kinases involved in sporulation of \textit{Bacillus subtilis}, KinA, KinB, and KinC. These sensor kinases autophosphorylate and serve as phosphate-donors to the response regulator Spo0F; the phosphotransferase Spo0B then transfers phosphate from Spo0F to the response regulator and sporulation transcription factor Spo0A (see Figure 1.1). This system is known as the phosphorelay (Burbulys et al., 1991).

Although KinC is not necessary for the initiation of sporulation, it is the first of the three kinases to have an effect on the accumulation of Spo0A–P, as judged by derepression of \textit{abrB} transcription; \textit{abrB} is repressed by Spo0A–P (Perego et al., 1988; Strauch et al., 1990). There exist mutant forms of Spo0A encoded by the \textit{spo0A} alleles \textit{rvtA11} (Sharrock et al., 1984) and \textit{sof-1} (Kawamura and Saito, 1983; Hoch et al., 1985; Spiegelman et al., 1990) that suppress \textit{spo0F} and \textit{spo0B} mutations; in the absence of Spo0F or Spo0B, KinC is the major kinase that donates phosphate to the \textit{sof-1} and \textit{rvtA11} forms of Spo0A.
pLK2 contains a gene (*kinC*) encoding a histidine protein kinase homologous to KinA and KinB. Various fragments from the insert in pLK2 were subcloned into the multicopy vector (pHP13) to give pLK21, pLK22, pLK23, and pLK125 (Figure 4.1, Table 7.2). These subclones were used to identify the region responsible for suppression of the *spo0K* sporulation phenotype. pLK22 and pLK23 did not suppress the *spo0K* mutant. The insert in pLK125 extends from the left end of pLK2 (as drawn in Figure 4.1) to the ApaI site and completely suppressed the *spo0K* sporulation phenotype. pLK21 contains the right end of the insert in pLK2 and ends at the PstI site and partially suppressed the sporulation phenotype. These results indicate that the suppressing activity is located upstream of the ApaI site (Figure 4.1).

I determined the DNA sequence from the EcoRV site upstream of *kinC* (previously *mskA*) to the right end of the pLK2 insert (Figure 4.2). Analysis of the sequence revealed two open reading frames. The predicted protein product of the first open reading frame is 428 amino acids and is homologous to histidine protein kinases. Of all the proteins in the combined databases, KinC is most similar to the two histidine protein kinases involved in sporulation, KinA (Perego et al., 1989; Antoniewski et al., 1990) and KinB (Trach and Hoch, 1993). In the carboxy-terminal 213 amino acids of the proteins, KinC has 111 residues (51%) that are identical to KinA, and 81 (36%) that are identical to KinB (Figure 4.3). The ability to suppress the *spo0K* sporulation defect was localized to the *kinC* open reading frame (see above). pLK21, which partially suppresses the sporulation defect, is truncated in the 5' end of the open reading frame and probably produces a protein fragment that is likely expressed from a plasmid promoter.
Figure 4.1. Map of the *kinC* region and plasmids. Restriction site abbreviations: R, EcoRV; N, NdeI; P, PstI; C, ClaI; A, ApaI; E, EcoRI. pLK2, pLK21, pLK22, pLK23 and pLK125 are present in multicopy in *Bacillus subtilis*; pLK25, pLK114, pLK120, pLK121, pLK124, and pLK126 are integrative plasmids.
Figure 4.2. Sequence of *kinC*. DNA sequence was determined from both strands as described in Chapter 7. An inverted repeat surrounding the EcoRV site upstream of *kinC* is indicated by a pair of arrows. A putative -10 region for a sigma-A promoter is shown with a thick underline. The transcriptional start site is indicated with an arrow at nucleotide 158. Putative ribosome binding sites for KinC and Orf277 are underlined, and putative translational start sites for KinC and Orf277 are boldfaced. Sequence complementary to primer LKP16, which was used for primer extension analysis, is shown with a single arrow. This sequence has been assigned the databank accession number L34803.
Figure 4.3. Comparison of the C-terminal region of KinC to the C-terminal regions of KinA and KinB. The sequences are aligned according to the PILEUP program of the UWGCG software package (Devereux et al., 1984). The first residue shown is amino acid 389, 204, and 205 for KinA, KinC, and KinB respectively. In the regions shown, KinC is 51% identical to KinA and 36% identical to KinB. The residues in bold are conserved in almost every sensor kinase known (Stock et al., 1989b; Parkinson and Kofoid, 1992), and in KinC, include the histidine at position 223, which is the histidine thought to become phosphorylated, the asparagine at position 331, and the two glycine rich regions at positions 363-367 and 387-391.
KinA KSEKLSI AGQAAGIAH EIRNPLTIAK GFLQLM.... KPTMEGNEHY 431
 |:||:| .:|||:||:| |:||:::|:::| |||::|:::| ..::..|
KinC LARESQKLST TSELAAGIAH EVRNPLTSVS GFLQIM.... KTQYFDRKDY 250
 .|:.:: |:||:||:||:|:::|:::|::.:::|:::|:::|:::|:::|:::|...| |
KinB .LIHSEKMTI VSELAASVAH EVRNPLTVVR GFVQLLFNDE TLQNKSSASY 252

KinA FDIFVSELSR IELILSELLM LAKPQQNAVK EYLNLLKLIG EVSALLETQA 481
 |:::|||::|::|:::|::|::|::|::|:::|::|:::|:::|:::|:::|:::|:::|
KinC FDIIFSEIKR IDLVLESELL LAKPQAIIFK TH.QLNEILK QVTLLLDTNA 299
 .:::|:::|:::|::::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|
KinB KKLVLSELDK AQGiITNYLd MAKQQLYE.K EVFDLSALIK ETSSLMSYA 301

KinA NLNGIFIRTS Y.EKDSIYIN GDQNQLKVVF INLIKNAVES MPDG.GTVDI 529
 |:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|
KinC ILSNIVIEKKN FKETDGCMN GDENQLKVVF INIJKNGIEA MPKG.GVVTI 348
 .::.::|:::|:::|::|:::|::|:::|::|:::|:::|:::|:::|:::|:::|:::|:::|
KinB NYKSVTVEAE ..TEPDILLY GDATKLKQA. INLMKNSIEA VPHGKMIHI 348

KinA IITEDEHSVH VTVKDeGeGI PEKVLNRIGE PFLTTKEKGT GILGILVTFNI 579
 . .::.:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|
KinC STAKTASHAV ISVKDeGNM PQEKLQIIGK PFYSTKEKGT GILGPLICRI 398
 . .::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|
KinB SAKRNGHTIM INITDNGVGM TDQHMQRLGE PYYSLKTVNGT GILGILTVTFI 398

KinA IENHQGVIHV DSHEPEKTF A KISFPKK* 606
 ::::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|
KinC LKEHDGELK I ESEAGKGVSF QVVVLPLKSIDS* 428
 ::::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|:::|
KinB IEHHHTISF NSSFQKGTTV TIKLPADLPH* 428

55
Just downstream of \textit{kinC} there is an open reading frame predicted to encode a protein of 277 amino acids, Orf277 (Figure 4.2). The \textit{orf277} gene product does not appear to be similar to any other protein in the database. In particular it does not seem to be a member of the response regulator family of proteins (sensor proteins and their cognate response regulators often occur in the same operon (Albright et al., 1989)), nor is it similar to KapB, the product of the gene downstream of \textit{kinB} (Trach and Hoch, 1993).

This same locus was also sequenced independently by Kobayashi et al. (1994), and they named it \textit{kinC} also. Trach and Hoch (1993) briefly mention an open reading frame they call \textit{kinC} that is homologous to \textit{kinA} and \textit{kinB}, but it is not clear whether this is the same as the locus I describe in this report.

Genetic mapping of \textit{kinC}. I used generalized transduction with PBS1 to determine the chromosomal map location of \textit{kinC}. A PBS1 lysate was made from JRL660 (\textit{\Delta}kinC::spc) and used to transduce the mapping kit strains (Dedonder et al., 1977) to SpecR. Initial results indicated that \textit{kinC} was ~15 to ~20% cotransduced with \textit{pyrD+}. A series of two factor crosses indicated that \textit{kinC} was ~50% linked to \textit{spoOE} and ~50% linked to \textit{kinA} by transduction. To map \textit{kinC} with greater resolution, I did a three factor cross with \textit{\Delta}kinC::spc, \textit{spoOE11}, and \textit{kinA::Tn917}. Strain KI644 (\textit{kinC+, spoOE11, kinA::Tn917}) was transduced to SpecR with a PBS1 lysate grown on JRL660 (\textit{\Delta}kinC::spc, \textit{spoOE+, kinA+}). \textit{spoOE+} was cotransduced with \textit{\Delta}kinC::spc in 107 out of 199 transductants and \textit{kinA+} was cotransduced with \textit{\Delta}kinC::spc in 147 out of 199 transductants. Every \textit{spoOE+} transductant was also \textit{kinA+} (MLSSS), indicating that the gene order is \textit{spoOE - kinA - kinC}.

Effects of overexpression of \textit{kinC} in different \textit{spo0} mutants. I tested the ability of multicopy \textit{kinC} (pLK2) to suppress the sporulation defect caused by \textit{spo0} mutations. In all cases, the sporulation frequency was measured in
otherwise isogenic strains containing the specific sporulation mutation and either pLK2 or the cloning vector, pH13. pLK2 significantly suppressed the sporulation defect caused by spo0K, spo0J, spo0F, and spo0B mutations (Table 4.1). In addition, it also suppressed the sporulation defect of a kinA mutant (Table 4.1). Multicopy kinC did not suppress the sporulation defect of the spo0A9V mutant nor that of the spo0E11 mutant. Because multicopy kinC is able to significantly bypass the need for spo0F and spo0B in sporulation, it appears that KinC, at least when overexpressed, is able to act directly on Spo0A.

The effects of pLK2 on the spo0B mutant makes it possible to determine the likely target of Spo0E in vivo. In vitro experiments have shown that Spo0E is a phosphatase that removes phosphate from Spo0A–P (Ohlsen et al., 1994). spo0E11 is a nonsense mutation that produces an N-terminal fragment of Spo0E and inhibits sporulation (Perego and Hoch, 1991), most likely due to increased phosphatase activity (Ohlsen et al., 1994).

If the in vivo target of Spo0E is one of the components of the phosphorelay (Spo0F or Spo0B), then spo0E mutations should have little or no effect in the absence of a functioning phosphorelay. On the other hand, if the in vivo target of Spo0E is Spo0A, as suggested by the in vitro results (Ohlsen et al., 1994), then spo0E mutations are likely to have effects in the absence of the phosphorelay, if they can be measured. pLK2 partially suppressed the sporulation defect of a spo0F spo0B double mutant (Table 4.1) and this suppression was enhanced by a null mutation in spo0E (Table 4.1; spo0F spo0B Δspo0E::spc). Since the spo0E mutation causes a phenotype in the absence of Spo0F and Spo0B, Spo0E is probably inhibiting Spo0A directly, consistent with the in vitro results.
TABLE 4.1 Suppression of spo0 mutants by multicopy *kinC*.

<table>
<thead>
<tr>
<th>relevant genotype of strain harboring plasmid</th>
<th>sporulation frequency<sup>a</sup></th>
<th>pH13 (vector)</th>
<th>pLK2 (multicopy kinC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT (JH642)</td>
<td>0.41</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Δspo0K358::erm</td>
<td>6.0 x 10<sup>-3</sup></td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>kinA::Tn917</td>
<td>9.8 x 10<sup>-2</sup></td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>spo0A9V</td>
<td><9.0 x 10<sup>-8</sup></td>
<td><8.2 x 10<sup>-8</sup></td>
<td></td>
</tr>
<tr>
<td>spo0J93</td>
<td>2.1 x 10<sup>-4</sup></td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>spo0E11</td>
<td>2.5 x 10<sup>-3</sup></td>
<td>6.9 x 10<sup>-3</sup></td>
<td></td>
</tr>
<tr>
<td>spo0FΔS</td>
<td><2.4 x 10<sup>-7</sup></td>
<td>9.8 x 10<sup>-3</sup></td>
<td></td>
</tr>
<tr>
<td>spo0BΔPst</td>
<td><4.1 x 10<sup>-7</sup></td>
<td>1.1 x 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td>spo0FΔS spo0BΔPst</td>
<td><1.8 x 10<sup>-7</sup></td>
<td>2.5 x 10<sup>-2</sup></td>
<td></td>
</tr>
<tr>
<td>spo0FΔS spo0BΔPst Δspo0E::spc</td>
<td>8.5 x 10<sup>-7</sup></td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

^aCells were grown in DS medium with chloramphenicol and the sporulation frequency was determined as described in Chapter 7: Materials and Methods.
kinC null mutants have no significant effect on sporulation. To characterize the phenotypes caused by loss of kinC, I constructed a strain (JRL660) containing a deletion-insertion mutation in kinC, ΔkinC::spc (Figure 4.1; Chapter 7). The ΔkinC::spc mutation had little or no effect on the sporulation frequency compared to wild type (Table 4.2). Sporulation conditions tested included 2xSG medium, DS medium, minimal exhaustion medium (Table 4.2), and minimal medium with decoyinine (data not shown). In addition, the ΔkinC::spc mutation did not significantly affect the sporulation defect caused by mutations in kinA, kinB (Table 4.2), spo0K or spo0J (data not shown). That is, double mutants with ΔkinC::spc had sporulation phenotypes similar to the single mutants. Also, the ΔkinC::spc mutation had little or no effect on competence development or expression of comG-lacZ compared to otherwise isogenic kinC+ cells (Srivastava, 1994).

KinC is required for the residual sporulation seen in a kinA kinB double mutant in the rich sporulation medium, 2xSG. kinA kinB double mutants had a much more severe sporulation defect than either single mutant under all conditions tested (Table 4.2) consistent with previous findings (Trach and Hoch, 1993). In 2xSG medium the kinA kinB double mutant consistently produced approximately 10^3 spores/ml, at least 100- to 1000-fold more than in DS medium or minimal medium (Table 4.2). This small but reproducible level of sporulation in 2xSG medium was entirely dependent on kinC as the kinA kinB kinC triple mutant produced <10 spores/ml in 2xSG medium (Table 4.2). kinC, and not any other gene downstream of kinC, was responsible for this phenotype, since a disruption of orf277 had little or no effect on the sporulation of the kinA kinB double mutant (Table 4.2).
TABLE 4.2 Relative sporulation frequency of different *kin* mutants in different media.

<table>
<thead>
<tr>
<th>strain</th>
<th>genotypeb</th>
<th>relative sporulation frequencya</th>
<th>2xSGc</th>
<th>DSMc</th>
<th>minimalc</th>
</tr>
</thead>
<tbody>
<tr>
<td>JH642</td>
<td>WT</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>AG522</td>
<td>kinA</td>
<td>0.10</td>
<td>8.0 x 10^-2</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>NY120</td>
<td>kinB</td>
<td>0.67</td>
<td>0.13</td>
<td>7.1 x 10^-2</td>
<td></td>
</tr>
<tr>
<td>JRL920</td>
<td>kinC</td>
<td>0.77</td>
<td>0.45</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>NY121</td>
<td>kinA kinB</td>
<td>1.9 x 10^-6</td>
<td><5 x 10^-8</td>
<td><3 x 10^-7</td>
<td></td>
</tr>
<tr>
<td>JRL1046</td>
<td>kinA kinC</td>
<td>3.3 x 10^-2</td>
<td>6.8 x 10^-2</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>JRL1004</td>
<td>kinB kinC</td>
<td>0.43</td>
<td>0.15</td>
<td>1.0 x 10^-2</td>
<td></td>
</tr>
<tr>
<td>JRL1007</td>
<td>kinA kinB kinC</td>
<td><3 x 10^-8</td>
<td><2 x 10^-7</td>
<td><3 x 10^-7</td>
<td></td>
</tr>
<tr>
<td>JRL1081</td>
<td>kinA kinB orf277</td>
<td>3.2 x 10^-6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

a Relative sporulation frequency is the number of spores/ml as a fraction of the number of cells/ml, normalized to the control (JH642) in a given experiment.

b The JH642 strain is *trpC2 pheA1* (Perego et al., 1988), and all the other strains shown are isogenic with JH642. The *kinA* allele is *kinA::Tn917* (Sandman et al., 1987; Antoniewski et al., 1990), the *kinB* allele is *ΔkinBkapB::spc* (Materials and Methods), the *kinC* allele is *kinC::pLK124* (Figure 4.1), and the *orf277* allele is *orf277::pLK126* (Figure 4.1).

c 2xSG is a rich sporulation medium and contains nutrient broth and 0.1% glucose (Leighton and Doi, 1971). DSM is the nutrient sporulation medium of Schaeffer (Schaeffer et al., 1965). The minimal medium was S7 medium (Vasantha and Freese, 1980) as used previously (Jaacks et al., 1989), except that glucose was used at 0.1%.
Phenotypes caused by *kinA* or *kinB* null mutations depend on the sporulation medium. The ability of KinC to affect sporulation in a *kinA kinB* double mutant is dependent on the sporulation medium. How does the sporulation medium affect the roles of KinA and KinB in the initiation of sporulation? *kinA* null mutants sporulated at a frequency of approximately 4 - 10% of wild type when grown in DS (nutrient broth) medium or the richer 2xSG (twice the nutrient broth as DS medium plus 0.1% glucose) medium (Table 4.2), consistent with published data (Sandman et al., 1987; Perego et al., 1989; Antoniewski et al., 1990; Rudner et al., 1991; Lee et al., 1992). However, when sporulation was induced by exhaustion of glucose from cultures grown in defined minimal medium with glucose (0.1%) as the carbon source, the *kinA* mutant was able to sporulate at or near wild type frequencies (Table 4.2). In contrast, the sporulation frequency of the *kinB* mutant was approximately normal in 2xSG medium and approximately 5 - 10% of wild type in DS medium or minimal medium (Table 4.2). The phenotype of *kinB* in DS medium was somewhat variable and seemed to depend on the specific preparation of DS medium, and is consistent with effects reported by others (Trach and Hoch, 1993). On the other hand, the sporulation defect of the *kinB* mutant in minimal glucose medium was highly reproducible, but was observed only if the culture had undergone at least four or five doublings after inoculation and before entry into stationary phase.

The requirement for a certain number of cell divisions before observing the Spo- phenotype of the *kinB* mutant indicates that an activator of sporulation had accumulated in the preculture that was used as the inoculum, and this factor must be diluted below a certain level to see the *kinB* phenotype. This factor could be a metabolite or a gene product that could substitute for KinB, perhaps another kinase.
Taken together, these results indicate that under certain conditions either KinA or KinB is the major sporulation kinase, and that the different sporulation sensor kinases can respond to different nutritional conditions. These effects could reflect differences in expression of kinA and kinB, or differences in regulation of kinase activity, or both.

KinC is required for sof-1 and rvtA11 to suppress the sporulation defect of spoOB mutants. The sof-1 and rvtA11 alleles of spo0A bypass or partially bypass the sporulation defect caused by mutations in spo0F and spo0B, presumably because these altered forms of Spo0A will accept phosphate from kinases independently of Spo0F and Spo0B. To determine whether KinC is one such kinase, I transformed the ΔkinC::spc mutation into a spo0B mutant that had either the sof-1 or rvtA11 alleles of Spo0A. The kinC mutation completely abolished the suppressing effect of either allele (Table 4.3). In addition, kinC was required for sof-1 and rvtA11 to suppress spo0F mutants (data not shown). kinC, and not orf277 or any other gene downstream of kinC, was responsible for this phenotype. Disruption of orf277 by integrating pLK126 (Figure 4.1) by single crossover had no effect on the ability of rvtA11 to suppress spo0F221 (data not shown). These results indicate that in the absence of Spo0F or Spo0B, KinC is the major kinase that donates phosphate to the sof-1 and rvtA11 forms of Spo0A.

Additional results suggest that KinC can also act on Spo0F, and in some conditions, might prefer Spo0F over Spo0A. The incomplete suppression of the spo0B mutant by sof-1 or rvtA11 was due to the presence of spo0F+. rvtA11 allowed spo0F spo0B double mutants to sporulate much better than the otherwise isogenic spo0B single mutant and this suppression was
TABLE 4.3 Suppression of spo0BΔPst by sof-1 or rvtA11 requires kinC.

<table>
<thead>
<tr>
<th>strain</th>
<th>relevant genotype</th>
<th>sporulation frequency<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>JH642</td>
<td>WT</td>
<td>0.59</td>
</tr>
<tr>
<td>JRL791</td>
<td>ΔkinC::spc rvtA11</td>
<td>0.51</td>
</tr>
<tr>
<td>JRL790</td>
<td>ΔkinC::spc sof-1</td>
<td>0.70</td>
</tr>
<tr>
<td>JRL766</td>
<td>spo0BΔPst</td>
<td><4.1 x 10^-8</td>
</tr>
<tr>
<td>JRL763</td>
<td>spo0BΔPst sof-1</td>
<td>3.6 x 10^-4</td>
</tr>
<tr>
<td>JRL767</td>
<td>spo0BΔPst sof-1 ΔkinC</td>
<td>1.4 x 10^-7</td>
</tr>
<tr>
<td>JRL764</td>
<td>spo0BΔPst rvtA11</td>
<td>2.1 x 10^-3</td>
</tr>
<tr>
<td>JRL768</td>
<td>spo0BΔPst rvtA11 ΔkinC</td>
<td><2 x 10^-8</td>
</tr>
<tr>
<td>JRL783</td>
<td>spo0FΔS spo0BΔPst rvtA11</td>
<td>0.73</td>
</tr>
<tr>
<td>JRL792</td>
<td>spo0FΔS spo0BΔPst rvtA11 ΔkinC</td>
<td><1 x 10^-7</td>
</tr>
<tr>
<td>JRL770</td>
<td>spo0BΔPst rvtA11 kinA</td>
<td>1.2 x 10^-5</td>
</tr>
<tr>
<td>JRL794</td>
<td>spo0FΔS spo0BΔPst rvtA11 kinA</td>
<td>0.34</td>
</tr>
</tbody>
</table>

^aCells were grown in 2xSG and sporulation frequency was determined as described in Materials and Methods.
completely dependent on kinC (Table 4.3). Null mutations in kinA significantly reduced the sporulation frequency of the spo0B rvaA11 strain, but had no significant effect on sporulation of the otherwise isogenic spo0F spo0B rvaA11 strain (Table 4.3). Together, these results indicate that KinC probably interacts with Spo0F and that the presence of Spo0F inhibits the ability of KinC to donate phosphate to Spo0ArvaA11. Furthermore, the absence of KinA probably leaves more Spo0F unphosphorylated, diverting more KinC from Spo0ArvaA11 and decreasing the ability of the cells to sporulate. These results suggest that KinC normally can interact with Spo0F and probably contributes to the initiation of sporulation.

Localization of the promoter and primer extension analysis. Preliminary analysis indicated that the kinC promoter was between the EcoRV and Ndel sites upstream of the kinC open reading frame (Figure 4.1). This was determined by integrating various plasmids into a spo0F rvaA11 strain (K1521). If the insert in the plasmid is internal to the kinC transcription unit, then integrating the plasmid would disrupt kinC and the strain would become Spo-. If the plasmid extends past the 5' end of the transcription unit (or past the 3' end of kinC), then integrating the plasmid would not disrupt kinC and the cells will remain Spo+. Integration of pLK121 and pLK124 resulted in a Spo- phenotype, while integration of pLK120 maintained the Spo+ phenotype. These results indicated that the promoter region of kinC was probably between the upstream endpoint of pLK120 (EcoRV) and the upstream endpoint of pLK121 (Ndel).

I did primer extension analysis, using primer LKP16 (Figure 4.2; Chapter 7), to localize the 5' end of the kinC mRNA. RNA was prepared from strains grown in 2xSG medium. Despite repeated attempts, I could not detect kinC-specific RNA from wild type cells. However, a kinC transcript was easily
Figure 4.4. Primer extension analysis of the \textit{kinC} mRNA. RNA was made as described in Chapter 7 and extensions done with primer LKP16 (see Fig. 4.2). The sequencing ladder was made from pLK2 using primer LKP16.
detected from a strain (JRL951) with \textit{kinC} in multicopy (Figure 4.4). The 5' end of the mRNA is \textasciitilde25 nucleotides upstream of the \textit{kinC} start codon (Figures 4.2 and 4.4). Just upstream of the putative start site is a sequence that matches in 5 of 6 positions the consensus for the -10 region of sigma-A promoters (Figure 4.2). However, sequences located in the -35 region do not show striking resemblance to the -35 consensus for sigma-A promoters, perhaps explaining the evidently low level of expression of \textit{kinC}. Just upstream of the putative -10 region is a perfect "0A box", TGNCGAA, the consensus binding site for Spo0A (Strauch et al., 1990). Based on this, one might expect Spo0A or Spo0A–P to act as a repressor of \textit{kinC}. However, a \textit{spoOA} null mutation caused at most a small but negative effect on \textit{kinC}-\textit{lacZ} expression (see below), indicating that Spo0A or Spo0A–P may act to positively regulate expression of \textit{kinC}. Kobayashi et al. (1994) report that a \textit{spoOA} mutation had a more noticeable negative effect on \textit{kinC} expression as measured by primer extension analysis.

\textit{kinC} is expressed as the cells enter stationary phase. To determine how \textit{kinC} is normally expressed, I made a \textit{kinC}-\textit{lacZ} fusion and recombined it into the chromosome at the \textit{thrC} locus using pLK114 (Figure 4.1; Chapter 7). The \textit{kinC}-\textit{lacZ} fusion contains all of the sequences upstream of the \textit{kinC} open reading frame that are present in pLK2. Expression of \textit{kinC}-\textit{lacZ} was low during growth in 2xSG medium and increased as cells approached stationary phase (Figure 4.5). The low level of \(\beta\)-galactosidase specific activity made it difficult to reliably determine quantitative effects of various regulatory mutations on \textit{kinC}-\textit{lacZ} expression. However, there seemed to be no significant effect of \textit{spoOA}, \textit{spoOB}, \textit{spoOF}, \textit{spoOH}, \textit{spoOK}, \textit{kinA}, \textit{abrB}, \textit{comP}, \textit{comA}, or \textit{sinR} mutations on the expression of the \textit{kinC}-\textit{lacZ} fusion (data not shown).
Figure 4.5. Expression of *kinC-lacZ*. Strain JRL812 (*thrC::kinC-lacZ*) was grown in 2xSG medium and samples were taken at the indicated times for determination of β-galactosidase specific activity. The time of exit from exponential growth is defined as time 0 (T₀). Similar results were obtained with cells grown in DS medium except that specific activities were lower (data not shown).
kinC-lacZ
KinC is required for normal regulation of *abrB* expression. Transcription of the stationary phase regulatory gene *abrB* is repressed by Spo0A-P (Perego et al., 1988; Strauch et al., 1990), but a *kinA kinB* double mutant has little or no effect on expression of an *abrB-lacZ* fusion (Trach and Hoch, 1993). To see if KinC is involved in expression of *abrB*, I measured expression of an *abrB-lacZ* fusion in strains containing different combinations of *kinA, kinB*, or *kinC* mutations.

KinC was largely responsible for most of the regulation of *abrB-lacZ* via the phosphorelay in the *kinA kinB* double mutant. Expression of *abrB* in the *kinA kinB* double mutant in DS medium was similar to that in wild type, as previously reported (Trach and Hoch, 1993), although the amount of β-galactosidase at times after entry into stationary phase (T₀) was reproducibly ~2-fold higher in the double mutant (Figure 4.6A). The amount of β-galactosidase accumulated before entry into stationary phase in the double mutant was less than that in a *spo0B* mutant (Figure 4.6). This indicates that there must be at least one other source of phosphate, and that phosphate must be transferred to Spo0A by the Spo0B phosphotransferase (Trach and Hoch, 1993). KinC was a major source of that phosphate in the absence of KinA and KinB, as expression of *abrB* was higher in the *kinA kinB kinC* triple mutant than in the *kinA kinB* double mutant (Figure 4.6A). The initial accumulation of β-galactosidase in the triple mutant was somewhat lower than that in a *spo0B* mutant, suggesting that there might be yet another minor source of phosphate for Spo0A.

A *kinC* mutation also caused increased expression of *abrB* in otherwise wild type (*kinA*+ *kinB*+) cells. Expression of *abrB* was reproducibly higher in the *kinC* mutant before and at the time of entry into stationary phase (Figure 4.6B). Shortly after entry into stationary phase, β-galactosidase specific activity
Figure 4.6. *abrB-lacZ* expression of different kinase mutants in DS medium. The time of exit from exponential growth is defined as time 0 (T0). The *abrB-lacZ* fusion used is a transcriptional fusion located in single copy at the *amyE* locus and was a gift from Mark Strauch (Perego et al., 1988; Strauch et al., 1990). The *cat* marker associated with the fusion was converted to *cat::neo* (CmS NeoR) using pIK105 as described (Ireton and Grossman, 1992b).

A. open circles, wild type (JRL1018); open squares, *kinA kinB* (JRL1036); closed squares, *kinA kinB kinC* (JRL1039); x’s, *spoOB* (JRL1058).

B. open circles, wild type (JRL1018); closed circles, *kinC* (JRL1035); x’s, *spoOB* (JRL1058). The data shown are from the same experiment as shown in A, and the data points for wild type and *spoOB* are the same.
began to decrease, similar to the decrease seen in wild type cells. This substantive decrease was due to KinA and KinB, as there was much less of a decrease in the triple kinase mutant (Figure 4.6A).

These results on the effects of kinase mutations on abrB expression indicate that different kinases that contribute to the phosphorelay and production of Spo0A-P may be active at different times during growth and stationary phases. The contribution of KinC seems to be greater during entry into stationary phase, while KinA and KinB appear to contribute more after entry into stationary phase. In addition, media conditions may also affect which kinase is more important for the developmental process. Both the growth stage and media effects could be at the level of expression or activity of the kinases, or both, but there is not yet enough information available concerning regulation of expression or activity of the kinases to distinguish these possibilities.
Chapter 5:

Additional multicopy suppressors of *spo0K*

In Chapter 3, I described the isolation of two multicopy suppressors of the sporulation defect associated with *spo0K* mutants, and two multicopy suppressors of the competence defect associated with *spo0K* mutants. The multicopy suppressor of the *spo0K* sporulation defect, *kinC*, on which I have focused most of my attention, was described in Chapter 4.

In this chapter, I describe the other two multicopy suppressors of *spo0K* that I have isolated and characterized. When expressed on a multicopy plasmid, *mskB* partially suppresses the sporulation defect of a *spo0K* mutant. *mskB* encodes a protein similar to SinI. SinI inactivates SinR (Bai et al., 1993); SinR is a repressor of *spoOA* transcription (I. Smith, personal communication) and of some genes regulated by SpoOA (Mandic-Mulec et al., 1992). Based on these findings, multicopy MskB may be activating sporulation by inhibiting SinR.

When expressed on a multicopy plasmid, *mskD* causes a two- to threefold increase in *comG-lacZ* expression whether in a wild type or *spo0K* background. *mskD* encodes the *B. subtilis* homolog of *E. coli* ClpX. In *E. coli*, ClpX is an ATPase that directs the ATP-dependent protease ClpP to specific substrates (Gottesman et al., 1993). It has recently been shown that the *B. subtilis* proteins MecA and MecB are similar to ClpP (Kong and Dubnau, 1994) and the ClpC ATPase (Krüger et al., 1994; Msadek et al., 1994), respectively. MecA and MecB act negatively in the development of competence by inhibiting ComK (Hahn et al., 1994; van Sinderen et al., 1994; van Sinderen and Venema, 1994). ComK is a transcription factor needed for expression of late competence genes that include *comG*. A simple model for the ability of overexpressed MskD (ClpX) to increase
comG expression is that MskD interferes with MecA or MecB such that they can no longer regulate ComK.
mskB, a multicopy suppressor of the sporulation defect of spo0K

Isolation of mskB on a multicopy plasmid. mskB was isolated in multicopy plasmids that partially suppressed the sporulation defect of a conditional spo0K mutant (see Chapter 3). There were three plasmids that were similar in their restriction maps and multicopy suppressing ability: pLK10, pLK11, and pLK15. They were similar except that where pLK10 had a ~1.1 kb HindIII fragment that contained the suppressing activity, pLK11 and pLK15 had a ~1.3 kb HindIII fragment. (Because pLK11 and pLK15 were identical by restriction mapping, of the two, I focused on pLK11.) Both pLK10 and pLK11 caused markedly filamentous growth in both wild type and spo0K cells as judged under a light microscope. Various subclones of the two plasmids were made to localize the regions responsible for the multicopy suppression activity and the cause of filamentous growth (Figure 5.1). In every case, partial suppression of the spo0K Spo⁺ defect correlated with filamentous growth (Figure 5.1).

Sequence and map location of pLK11 and pLK10 inserts. The sequence of the ~1.3 kb Sau3A-HindIII fragment from pLK11 responsible for the suppressing activity was determined. When I compared the MskB open reading frame (see below) to the non-redundant DNA database translated in all six frames, I found that this region had already been sequenced as part of the *B. subtilis* chromosome sequencing project (Glaser et al., 1993). Sequence data from that project is shown in Figure 5.2.
Figure 5.1. Map of the *mskB* region and plasmids. Restriction site abbreviations: R, EcoRV; X, XcmI; N, NdeI; Sp, SpeI; H, HindIII. Every plasmid insert shown is subcloned into the pHIP13 *B. subtilis/E. coli* shuttle vector (Haima et al., 1987; Bron, 1990), except for the insert of pLK115, which is in the integrative pJH101 vector (Ferrari et al., 1983). pLK63 is a subclone of pLK11, and pLK65 is a subclone of pLK10. "orf" refers to *orf45* (see text). The frame shift mutation in *orf45* in pLK122 is marked with "-1" and an X. The frame shift mutation in *mskB* in pLK123 is marked with "+2" and an X. "*spo0K* suppression and filamentous growth?" refers to the ability of the multicopy plasmid to suppress the *spo0K* sporulation defect as determined by colony morphology on sporulation plates and the ability of the plasmid to induce filamentous growth as determined by light microscopy.
spo0K suppression and filamentous growth?

yes —— () —— pLK10

yes —— pLK11

no —— pLK63/pLK65

yes —— () —— pLK66

yes —— pLK64

no —— () —— pLK116

no — pLK117

no — () —— pLK118

no — pLK119

yes —— pLK122

no —— pLK123

—— pLK115
Figure 5.2. Sequence of mskB. The sequence shown corresponds to the complementary strand of GenBank accession number X73124 (Glaser et al., 1993), bases 33592 to 34818. A direct repeat surrounding the sequence that was deleted in pLK10 is indicated by a pair of arrows. A putative -10 region for a sigma-A promoter is shown with a thick underline. The transcriptional start site is indicated with an arrow at nucleotide 398. Putative ribosome binding sites for Orf45 and MskB as well as Ipa-32r (Glaser et al., 1993) are underlined and putative translational start sites are boldfaced. Sequence complementary to primer LKP14, which was used for primer extension analysis, is shown with a single arrow. This sequence is essentially the same as sequence from only one or the other strand from the same region that I determined independently.
1 GATCTTTTTTTTATGAGCTATGTTTTTCTGAGAAGGTACAGCAGAAAATCGTCCTTGCTGAC
61 AAAATGAACATAAAATGCTCTTGGCTGATACCCGCGGCTCTGCTGATATCTTCTACAGA
121 AACCGGATCATACGCTCGGTCAATCAACAAATTCACGCAGCTCTATAAAAACCTTTCAAA
181 TGTGCTCTCTCTTTTTATGGTAATTGTTTTTTTCTGCTCTCGGCTGAAATG
241 ATTACCTTATCTTACACCGGATCAATCTTCTGGTATTATTTCTCTATAAACGTGTTAG
301 CTATTCGTTTCCAGGGTCATTTTTTATAGGCTAAATATTTTTTATTTTTTCTTTACATAC
361 TATCCAGTCAGTATTTTATGTGTATTTTTATTTATAATAAGGTCCATGTGTTATATTAGTCA
421 TTTTTTATTGGGATGTTGGTTCTCTCTTCAGTCTTGTAACACCGGCACACTATGT
481 GTGAAATTTGTTGTTACTCGCCTCCATCATCGCGCTGGCTTGTCTTTTATTGCCCGCATGT
541 TGCAGGAAAATCTCTCATCATGACCATCGCCAGCTCTATAAAACTTTCAAAAGATTT
601 GGACAAAGGTGGCATATGTTAATTCAAGAGCTAGTGATCCCATATGATGATTTCTGTGAG
661 TGTGAGGCAGTTTTTAGAATCTGAGACAGCATCAAGAAAGAAACACAAAAACACGTTG
721 CCGCAAGACTAGTCGCAACAGGCGGATCTATTTACCTCTGGCTTTTCTATCACCTGATC
781 TGAGTTTCACCATATCTCTTATTTCTAAAAAGCAAAATACGCTGGCGTGGCTGTGGGAGG
841 GGTGTTGCTGAGCTCAATACGACGAGACACCCGGGTTGATCGATCATTCTTTGGCCACTATT
901 GTCTAATTAGGAGGTGTGACGAGACACTAAGCTGTGGTTAATAGCCAGCTTGTGAG
961 AACCAACGTTCGATCCTGGAGGTATTGGGAAAGAAACTCTTGTATACACCGGCCAGCTTGA
1021 AACCTTTCGCTGTCCCTGGAGGTTAGCTGCCACCTCTTAGAAGGTTCAGTTCCTCTTC
1081 CTTCCAGCTATTTGAGCAACAGCTATATGCTTCAGCTTCTTCTAATTTATTTCT
1141 TTTGCTTTGCTTTTACAAAGAGCGAGCTTCGTAACAAAGCTCTGATTATAAACAGA
1201 TTGCTGCAACCGCGCTCTTTTTCAAGCCT 1227
1241 AATPSFQA
mskB maps to the B. subtilis chromosome between sacX and sacT, at 331.5°. This is based on the data from the chromosome sequencing project (Glaser et al., 1993). (This is another instance of the relative ease with which one can map genes to the B. subtilis chromosome by using the Ireton and Grossman method © of mapping by sequencing (Ireton, 1993).)

Sequence from the pLK10 insert indicated that pLK10 has a 135 bp deletion relative to pLK11. The deletion is flanked by a 9 bp direct repeat (Figure 5.2), and a single homologous recombination event at this repeat would result in a loss of the intervening DNA.

Within the sequence determined from the pLK11 insert, two small open reading frames were found. The first one may encode a protein 45 residues long, and was imaginatively called orf45, and the second one, which encodes MskB (see below) is 52 residues long. These open reading frames are shown in Figures 5.1 and 5.2.

The second open reading frame ends 446 bp upstream of the putative coding sequence ipa-32r (Glaser et al., 1993) (Figure 5.2). There are no obvious transcriptional terminators between mskB and ipa-32r, so it is possible that they are in the same operon.

Localizing suppressing activity. The multicopy suppressing activity and the cause of filamentous growth was due to the more downstream of the two small open reading frames found in the pLK64 insert. To determine which of the two open reading frames was responsible for this activity, frameshift mutations were made in each of the two open reading frames. The frameshift mutation in the upstream open reading frame was made by digesting pLK64 with XcmI, excising the 1-base 3'-overhang with the Klenow fragment of DNA polymerase I and religating. The frameshift mutation in the downstream open reading frame was made by digesting pLK64 with NdeI, creating a 2-base 5'-overhang that was
filled in using the Klenow fragment of DNA polymerase I and religated (see Figures 5.1 and 5.2). The mutation in the upstream open reading frame did not affect the ability of the plasmid to suppress the spo0K defect or to cause filamentous growth, whereas the mutation in the downstream open reading frame did (Figure 5.1). Based on this, the downstream open reading frame was identified as the one responsible for the multicopy suppression of spo0K and filamentous growth and was called mskB (Figure 5.1). It is not clear if the upstream open reading frame is actually translated or not, but it is transcribed (see below).

mskB promoter localization. To localize the 5' end of the mskB mRNA, primer extension analysis was performed using primer LKP14 (see Figure 5.2, Chapter 7) and RNA prepared from strains grown in 2xSG medium. I could not detect mskB-specific transcripts from wild type cells. However, I could easily detect an mskB transcript from a strain harboring pLK11 (Figure 5.3). The 5' end of the mRNA is ~43 nucleotides upstream of the start codon of the more upstream open reading frame (Figures 5.2 and 5.3). Just upstream of this start site is a sequence that matches in 5 of 6 positions the consensus sequence for the -10 region of sigma-A promoters (Figure 5.2).
Figure 5.3. Primer extension analysis of the *mskB* mRNA. RNA was made as described in Chapter 7 and extensions were done with primer LKP14 (see Fig. 5.2). The sequencing ladder was made from pLK11 using primer LKP14.
Multicopy mskB phenotypes. *mskB* when present on a multicopy plasmid (pLK10 or pLK11) partially suppressed the sporulation defect associated with *spo0K*, *spo0J93*, and *spo0E11*, and completely suppressed the sporulation defect associated with *kinA* (Table 5.1), but did not suppress the sporulation defect associated with *spoOF*, *spoOB* or *spoOA* (data not shown). Also, pLK11 in wild type cells caused decreased *comG-lacZ* expression (Solomon, 1994).

Homology with SinI. The putative product of *mskB* is a protein of 52 residues. This protein shows some similarity to repressor SinR (sin stands for sporulation inhibitor), and the SinR inhibitor, SinI (Figure 5.4). SinR represses transcription of *spo0A* (I. Smith, personal communication) and *spoIIA* (Mandic-Mulec et al., 1992). SinR exists as a tetramer in solution and consists of two domains: an N-terminal DNA-binding domain and a C-terminal multimerization domain (Gaur et al., 1991; Bai et al., 1993). SinI is similar to the multimerization domain of SinR (Bai et al., 1993), and MskB is similar to SinI and SinR in this domain (Figure 5.4). It has been shown that SinI binds to SinR and in so doing, antagonizes the ability of SinR to bind to its target DNA sequences (Bai et al., 1993). Mutations in *sinR* and overexpression of SinI both lead to filamentous growth and decreased expression of *comG* (Bai et al., 1993), and furthermore, a *sinR* mutation partially suppresses the sporulation defect of a *spo0K* mutant (T. Leighton, personal communication, and unpublished results) and also suppresses the sporulation defect of a *kinA* mutant (Mandic-Mulec et al., 1992).
TABLE 5.1 Suppression of spo0 mutants by multicopy mskB.

<table>
<thead>
<tr>
<th>relevant genotype of strain harboring plasmid</th>
<th>relative sporulation frequency<sup>a</sup></th>
<th>vector (pHP13)</th>
<th>multicopy mskB<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT (JH642)</td>
<td>1</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Δspo0K::erm</td>
<td>2.6 x 10<sup>-2</sup></td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>kinA::Tn917</td>
<td>0.15</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>spo0J93</td>
<td>3.6 x 10<sup>-5</sup></td>
<td>3.0 x 10<sup>-4</sup></td>
<td></td>
</tr>
<tr>
<td>spo0E11</td>
<td>2.5 x 10<sup>-3</sup></td>
<td>9.3 x 10<sup>-3</sup></td>
<td></td>
</tr>
</tbody>
</table>

^aCells were grown in DS medium with chloramphenicol. Relative sporulation frequency is the number of spores/ml as a fraction of the number of cells/ml, normalized to the control (JH642 pHP13) in a given experiment.

^bThe multicopy mskB plasmid used in the Δspo0K::erm, spo0J93 and spo0E11 strains was pLK10. The multicopy mskB plasmid used in the kinA strain was pLK11.
Figure 5.4. Comparison of MskB to SinI and SinR. The sequences are aligned according to the PILEUP program of the UWGCG (Devereux et al., 1984). The region of SinR shown is thought to be part of the region involved in the multimerization of SinR (Bai et al., 1993).
<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>MskB</td>
<td>MKTHVKK..DLDKGWHM LIQEARSIGL GIHDRVQFLE</td>
<td>35</td>
</tr>
<tr>
<td>SinI</td>
<td>MKNAKQE HFELOQEWVE LMVEAKEANI SPEEIRKYLL</td>
<td>37</td>
</tr>
<tr>
<td>SinR</td>
<td>EKHETEY DGQLDSEWEK LVRDAMTSGV SKKQFREFLD</td>
<td>100</td>
</tr>
<tr>
<td>MskB</td>
<td>MKTHVKK..DLDKGWHM LIQEARSIGL GIHDRVQFLE</td>
<td>35</td>
</tr>
</tbody>
</table>
Together, these results readily suggest a simple model for the action of multicopy $mskB$, both as a suppressor of the sporulation defect of $spo0K$ and as a cause of filamentous growth. Like SinI, perhaps MskB binds to and inhibits the repression activity of SinR, which leads to increased expression of $spo0A$ and $spoll$ genes and filamentous growth (Figure 5.5). The increase in expression of Spo0A leads to increased amounts of Spo0A~P, bypassing or partially bypassing the need for some stage 0 sporulation genes.

$\Delta mskB$. $sinI$ mutants usually exhibit a sporulation defect resulting in sporulation frequencies of \sim10% of wild type, and this defect is suppressed by mutations in $sinR$ (Bai et al., 1993). To determine if loss of $mskB$ causes a similar sporulation defect, I constructed a strain (JRL871) containing a deletion-insertion mutation in $mskB$, $AmskB::spc$ (Figure 5.1; Chapter 7). The $AmskB::spc$ mutation had little or no effect on the sporulation frequency compared to wild type (data not shown). This could be because $mskB$ is not normally involved in sporulation. Alternatively, since $sinI$ mutants spontaneously acquire mutations in $sinR$ at a higher than normal frequency (I. Smith, personal communication), it is possible that the $AmskB::spc$ strain I isolated is carrying a mutation in $sinR$ which is suppressing an $mskB$ sporulation defect. This latter possibility is easily testable.
Figure 5.5. MskB may interact with SinR. SinI (Bai et al., 1993) and perhaps overexpressed MskB binds to and inhibits SinR. SinR represses transcription of spo0A.
mskD, a multicopy suppressor of the **competence** defect of *spo0K*

Multicopy *mskD* acts later than *srfA* in the development of competence. pLK6 caused a ~2-3-fold increase in expression of *comG-lacZ* in both the wild type background and in the Pspac-*spo0K* mutant as compared to the parent vector (Figure 5.6A), and a similar fold increase in a *spo0K* null mutant (Figure 5.6B). However, the activity of pLK6 that causes this increase in expression must occur later than that of *srfA* in the development of competence, as pLK6 had no effect on the *srfA-lacZ* expression in a wild type, Pspac-*spo0K*, or *spo0K* null background (Figure 5.7). The IPTG-inducible Pspac promoter must allow some transcription even in the absence of IPTG, but less than wild type levels, since both *comG-lacZ* and *srfA-lacZ* are expressed at levels between those observed in wild type and Δ*spo0K::erm* strains (Figures 5.6 and 5.7).

Isolation and localization of mskD on a multicopy plasmid. pLK6 caused a marked increase in *comG-lacZ* expression in the Pspac-*spo0K* background as judged by the darker blue color of the colonies harboring pLK6 on Xgal indicator plates. To determine where in the 2.7 kb insert in pLK6 this activity was located, I made various subclones of the pLK6 insert into the multicopy vector pHP13 (Figure 5.8), and transformed them into the Pspac-*spo0K*, *comG-lacZ* strain, JRL454. Since pLK68 bypassed the *spo0K* mutation, but pLK67 and pLK69 did not (Figure 5.8), sequence containing the EcoRI site was necessary for the suppressing activity of pLK6.

MskD is the *B. subtilis* homolog of ClpX. Partial sequence around the EcoRI site revealed a single large open reading frame that I call MskD.
Figure 5.6. Overexpression of *mskD* increases expression of *comG-lacZ* in wild type and *spo0K* strains. Strains were grown in S7 minimal medium with 1% glucose and 0.1% glutamate and amino acids for auxotrophic requirements as described in Chapter 7. The *comG-lacZ* fusion is a transcriptional fusion located in single copy at the *amyE* locus (Magnuson et al., 1994a). pH13 is the parent vector, pLK6 is the *mskD* multicopy plasmid.

A. open circles, wild type, pH13 (JRL515); closed circles, wild type, pLK6 (JRL1131); open squares, Pspac-*spo0K*, pH13 (JRL455); closed squares, Pspac-*spo0K*, pLK6 (JRL1132).

B. open triangles, Δ*spo0K::erm*, pH13 (JRL523); closed triangles, Δ*spo0K::erm*, pLK6 (JRL1133).
Figure 5.7. Overexpression of *mskD* has little to no effect on expression of *srfA-lacZ*. Strains were grown in S7 minimal medium with 1% glucose and 0.1% glutamate and amino acids for auxotrophic requirements as described in Chapter 7. The *srfA-lacZ* fusion is a translational fusion located in single copy at the *amyE* locus (Magnuson et al., 1994a). The *cat* marker associated with the fusion was converted to *cat::neo* (Cm\(^S\) Neo\(^R\)) using pIK105 as described (Ireton and Grossman, 1992b). pHP13 is the vector, pLK6 is the *mskD* multicopy plasmid. open circles, wild type, pHP13 (JRL740); closed circles, wild type, pLK6 (JRL741); open squares, Pspac-*spo0K*, pHP13 (JRL450); closed squares, Pspac-*spo0K*, pLK6 (JRL739); open triangles, Δ*spo0K::erm*, pHP13 (JRL748); closed triangles, Δ*spo0K::erm*, pLK6 (JRL749).
Figure 5.8. Map of the mskD region and plasmids. Restriction site abbreviations: S, SalI; C, ClaI; E, EcoRI; Bg, BglII. Every plasmid insert shown is subcloned into the pH13 B. subtilis/E. coli shuttle vector (Haima et al., 1987; Bron, 1990), except for pLK101, which is in the integrative pJH101 vector (Ferrari et al., 1983).

"increased comG-lacZ expression?" refers to the ability of the multicopy plasmid to increase comG-lacZ expression as compared to the pH13 vector in a Pspac-spo0K mutant (JRL454) as judged by darker blue color on a minimal plate with Xgal. The box indicating the putative extent of the mskD open reading frame is based on the similarity between MskD and ClpX. The thick line over the box indicates the region of mskD for which I have sequence data.
increased \textit{comG-lacZ} expression?

- yes \hspace{2cm} pLK6
- no \hspace{1cm} pLK67
- yes \hspace{2cm} pLK68
- no \hspace{1cm} pLK69

\textit{spc}
MskD is a *B. subtilis* homolog of ClpX of *E. coli* (Gottesman et al., 1993; Wojtkowiak et al., 1993), as there is 67% identity over 172 residues (Figure 5.9). This open reading frame was also partially sequenced by Ruth Schmidt and it was first identified by her as a ClpX homolog (R. Schmidt, personal communication; Schmidt et al., 1994). ClpX belongs to a large family of ATPases associated with the ClpP protease. Specific Clp ATPases are thought to direct the proteolytic activity of ClpP to specific substrates (Gottesman and Maurizi, 1992; Gottesman et al., 1993).

A mutation in mskD causes a growth defect. To characterize phenotypes caused by loss of *mskD*, I constructed a strain (JRL672) containing a deletion-insertion mutation in *mskD*, ΔmskD::spc (Figure 5.8, Chapter 7). This mutation caused a noticeable growth defect as the colonies that arose from the transformation were smaller, rounder, and shinier. This indicates that either *mskD* is necessary for normal growth in *B. subtilis*, unlike *clpX* of *E. coli*, or this mutation is polar on some other gene that is necessary for normal growth.

Given the pleiotropic nature of the *clpX* mutation, it is not surprising that JRL672 sporulates at a frequency of ~2% as compared to wild type cells. JRL672 gives rise to revertants of the growth defect. One of these revertants was used to make strain JRL679, and the mutation that suppresses the growth defect caused by the ΔmskD::spc allele is unlinked by transformation. The mutation that suppresses the growth defect also partially suppresses the sporulation defect, as JRL679 sporulates at a frequency of ~20% of wild type. It is possible that the mutation that suppresses the growth defect of ΔmskD::spc may be in a gene encoding a protease that interacts with MskD, or it may be in a gene that encodes a regulator of cell growth that is itself regulated by the putative MskD-protease complex.
Figure 5.9. Comparison of MskD (partial sequence) to ClpX of *E. coli*. The sequences are aligned according to the BestFit program of the UWGCG (Devereux et al., 1984). The residues in bold are highly conserved among the family of Clp ATPases (Gottesman et al., 1990; Gottesman et al., 1993).
<table>
<thead>
<tr>
<th></th>
<th>MskD</th>
<th>ClpX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATSLTEAGYVGEDVEIILKLIQARCYDVGKSRKIYIDeIDKVAR</td>
<td>145 ATTLTEAGYVGEDVENIIQKLQQKCDYDVQKAQGIVYIDEIDKISRK</td>
</tr>
<tr>
<td>51</td>
<td>NPSITRDVSQEGVQALLKILEGTVAHVPPPQGGRKHQEFIQIDTTNIL</td>
<td>195 NPSITRDVSQEGVQALLKILEGTVAHVPPPQGGRKHQEFQVDTSKI</td>
</tr>
<tr>
<td>101</td>
<td>FICGGRFGDIEQIKRLG.QKVIGFGADNKA...ADLEKEDLLSKVL</td>
<td>245 FICGGAFAGLKDVRVETGSGIGGATVKASEGELAQUEP</td>
</tr>
<tr>
<td>148</td>
<td>LLRFGLIPEFIRPVIASLEKLDE 172</td>
<td>295 LKFGLEPEFIRLPVVAELNLE 319</td>
</tr>
</tbody>
</table>
Overexpressed MskD may interact with the late competence genes MecA and MecB. SrfA may act negatively on MecA and MecB in the development of competence, as mecA and mecB null mutations bypass the need for srfA in the development of competence (Roggiani et al., 1990; Hahn et al., 1994). MecA (Kong and Dubnau, 1994) and MecB (Msadek et al., 1994) act to block activity of the competence transcription factor, ComK (Hahn et al., 1994; van Sinderen et al., 1994; van Sinderen and Venema, 1994). It has been shown that MecA binds to ComK in vitro (Kong and Dubnau, 1994). ComK positively regulates transcription of late competence genes including comK (van Sinderen and Venema, 1994) and comG (van Sinderen et al., 1994; van Sinderen and Venema, 1994).

MecB is a B. subtilis homolog of ClpC (Krüger et al., 1994; Msadek et al., 1994), and is 60% identical to ClpC (CD4A) from tomato (Gottesman et al., 1990). MecA shows a slight similarity to ClpP (24% identity or conservation to four or more ClpP proteins out of six (Kong and Dubnau, 1994)). However, MecA is probably not acting as a protease as it is missing the conserved serine residue (Kong and Dubnau, 1994) that is reported to be in the active site of the ClpP protease (Maurizi et al., 1990).

An attractive model is that MecA, under the direction of MecB, binds to ComK and keeps ComK from activating transcription. Consistent with this model, overexpressed MskD may displace MecB from MecA and allow activation of ComK (Figure 5.10). To test this, one might test the ability of MskD to bind directly to MecA or to interfere with the ability of MecA to bind with ComK, but it would probably be prudent to first check that overexpressing MskD had no effect on the expression of comG in mecA, mecB and comK mutant backgrounds.
Figure 5.10. A model for how increased expression of MskD leads to increased comG expression. See text for details.
late competence genes including *comG*
Chapter 6:

Discussion

The Spo0K oligopeptide permease is necessary for both the initiation of sporulation (Perego et al., 1991; Rudner et al., 1991) and the development of competence and appears to act early in both of these processes (Rudner et al., 1991). To better understand how both of these developmental processes are regulated, I conducted a screen for genes which when overexpressed could bypass the need for spo0K in either of these developmental pathways. In this chapter, I will discuss what is known about Spo0K and how each of the three multicopy suppressors of spo0K that I characterized add to our understanding of the initiation of sporulation and the development of competence.

The effects of mutations in each of the genes of the spo0K operon. The spo0K operon encodes in order the ligand-binding protein, Spo0KA; the membrane pore forming proteins, Spo0KB and Spo0KC; and the two ATP-binding proteins, Spo0KD and Spo0KE (Perego et al., 1991; Rudner et al., 1991). I have used nonpolar mutations in each of the first three genes in the spo0K operon to show that the ligand binding protein and each of the pore proteins is required for Spo0K to fulfill its roles in the initiation of sporulation, the development of competence, and oligopeptide transport (Chapter 2). Spo0KD, one of the two ATP-binding proteins, is also required for Spo0K to fulfill its roles in the initiation of sporulation and oligopeptide transport (Perego et al., 1991) and to a slightly lesser extent in the development of competence (as judged by expression of srfA-lacZ and comG-lacZ, Chapter 2). On the other hand, the Spo0KE ATP-binding protein has only a slight effect on the initiation of sporulation, the
development of competence (as measured by expression of *srfA-lacZ* or *comG-lacZ*), and oligopeptide transport (Chapter 2).

If two ATP-binding proteins are needed for Spo0K to function under the conditions tested, and if Spo0K still functions in the absence of Spo0KE almost as well as in its presence, then either Spo0KD is acting as a homodimer in the absence of Spo0KE, or an ATP-binding protein from another ABC transporter is substituting for Spo0KE, perhaps AppF from the App oligopeptide permease (Koide and Hoch, 1994) (see Chapter 2).

The role of Spo0K in sporulation and competence. For efficient sporulation in *B. subtilis*, the cells need to be at high density, and they sense high density by the presence in the medium of at least one secreted factor that is at least in part a peptide (Grossman and Losick, 1988). I like to speculate that Spo0K is recognizing one or more such peptide factors and transducing this signal to initiate sporulation.

Two peptide factors in the medium, the ComX pheromone (Magnuson et al., 1994a) and the Competence Stimulating Factor (CSF) (Magnuson et al., 1994b), are necessary for efficient initiation of the development of competence. Recent epistasis experiments have shown that Spo0K acts on the same genetic pathway as CSF (Solomon et al., 1994), probably by interacting directly with CSF and transporting it into the cell. The mutation that activates the cryptic App oligopeptide permease bypasses the need for Spo0K for both sporulation and competence (Koide and Hoch, 1994; Solomon, 1994).

Alternatively, Spo0K (or App) may interact with the oligopeptide factors and then itself activate specific developmental pathways. Finding mutations in *spo0K* that lead to constitutive activation of sporulation or competence pathways even in the absence of transport of the peptide factors would support the latter hypothesis. A similar situation can be found in the ABC phosphate transporter...
Pst in *E. coli*. Pst both transports phosphate ions into the cell and negatively regulates expression of the two-component system PhoR and PhoB (reviewed in Rao and Torriani, 1990). Since there exist mutations in *pst* that eliminate transport activity but do not affect regulatory activity, Pst must be directly involved in regulating expression of PhoR and PhoB (Cox et al., 1988; Cox et al., 1989).

The phosphorelay and sporulation. In the initiation of sporulation there are three sensor kinases, KinA (Perego et al., 1989; Antoniewski et al., 1990), KinB (Trach and Hoch, 1993), and KinC (Chapter 4 and Kobayashi et al., 1994) that donate phosphate to the response regulator SpoOF; the phosphotransferase SpoOB then transfers that phosphate to the response regulator SpoOA (Burbulys et al., 1991). This phosphorelay serves to check the state of the cell with respect to several conditions including: starvation for nutrients (Ireton et al., 1993), replication of DNA (Ireton and Grossman, 1994), lack of DNA damage (Ireton and Grossman, 1992a), a functioning Krebs cycle (Ireton et al., 1994), and high cell density (Ireton et al., 1993).

The *spoOA* mutations *rvtA11* (Sharrock et al., 1984), *sof-1* (Kawamura and Saito, 1983; Hoch et al., 1985; Spiegelman et al., 1990), and *surOB20* (Shoji et al., 1988) cause SpoOA to more readily receive phosphate directly from KinC-P (Chapter 4 and Kobayashi et al., 1994) and bypass the need for SpoOF and SpoOB to initiate sporulation. Based on the crystal structure of the response regulator CheY, these *spoOA* mutations are all missense mutations that change residues in close physical proximity to the aspartate that receives phosphate. These mutations presumably change the structure of the phosphorylation site so that it can now receive phosphate more readily from KinC-P.

Each kinase appears to function differently under different growth conditions (Chapter 4). KinA is necessary for proper initiation of sporulation
when the cells have grown under relatively rich nutrient conditions; the requirement for KinB is greater under poorer growth conditions (Chapter 4). In a kinA kinB double mutant, KinC has its greatest effect in the richest growth conditions tested (Chapter 4). It is not clear whether these effects under different growth conditions are due to differences in expression or activity of the different kinases, or both.

KinC appears to be the kinase that functions earliest in donating phosphate to Spo0A through the phosphorelay, as kinC mutations affect expression of the abrB repressor as the cells enter stationary phase, but kinA and kinB mutants do not (Chapter 4). Later in stationary phase, after kinA and kinB become expressed or activated, there is enough Spo0A~P to repress transcription of abrB (Chapter 4).

It is not clear what signals are affecting expression or activity of the sensor kinases. kinA is transcribed by RNA polymerase holoenzyme containing the sporulation-specific sigma factor, sigma-H (Predich et al., 1992). kinB (Trach and Hoch, 1993) and kinC (Chapter 4) both appear to be transcribed by the major housekeeping sigma factor, sigma-A. However, based on studying expression of transcriptional lacZ fusions, both kinA (Antoniewski et al., 1990) and kinC (Chapter 4) are most highly expressed as the cells enter stationary phase, at least in relatively rich sporulation media. (Similar studies have not been done on kinB expression, at least not to my knowledge).

Based on hydropathy plots, KinB has 6 putative membrane spanning domains (Trach and Hoch, 1993) and KinC has 2 (Kobayashi et al., 1994), whereas KinA is localized to the cytoplasm (Perego et al., 1989; Antoniewski et al., 1990). Clearly, KinA cannot be responding directly to extracellular signals, but it is possible that KinB and KinC are. Perhaps KinB and KinC are responding to one or more of the aforementioned extracellular oligopeptide sporulation factors.
There is precedent for this, as recent epistasis experiments have demonstrated that the membrane sensor kinase involved in the development of competence, ComP, appears to be interacting with the extracellular competence pheromone, ComX (Solomon et al., 1994).

SinI and SinR and transcription of spo0A. During sporulation, spo0A is transcribed by holoenzyme containing sigma-H (Predich et al., 1992; Strauch et al., 1992; Siranosian and Grossman, 1994), but transcription from the sigma-H promoter is repressed by SinR (I. Smith, personal communication). This activity of SinR is blocked by expression of SinI, which binds to SinR, presumably inhibiting multimerization of SinR (Bai et al., 1993). MskB may also be capable of binding to and inhibiting SinR, since MskB is similar to SinI and overexpression of MskB leads to phenotypes similar to those seen when SinI is overexpressed or in a sinR mutant (Chapter 5).

One model for how depletion of functional SinR could lead to (partial) suppression of spo0K and kinA mutations is that depletion of functional SinR leads to increased expression of Spo0A, so the total amount of Spo0A increases. This leads to increased amounts of Spo0A~P, (partially) bypassing the need for spo0K or kinA.

Bai et al. point out three examples of eukaryotic DNA-binding proteins that are regulated similarly to SinR (Bai et al., 1993): Id associates with MyoD so that MyoD can no longer form hetero- or homodimers that positively regulate gene expression (Benezra et al., 1990). I-POU prevents the binding of Cf-1 to its target sequence by forming a stable heterodimer (Treacy et al., 1991). Also, IP-1 binds to AP-1 (Jun) so that it can no longer form multimers and bind to DNA (Auwerx and Sassone-Corsi, 1991).

MskD and regulation of ComK. In the development of competence, ComK is a transcription factor positively required for transcription of late competence
genes (van Sinderen et al., 1994), as well as positively regulating its own transcription (van Sinderen and Venema, 1994). MecA (Kong and Dubnau, 1994) and MecB (Msadek et al., 1994) negatively regulate ComK, and it has been shown that MecA can bind ComK (Kong and Dubnau, 1994). MecB belongs to the Clp family of ATPases, specifically ClpC. The Clp ATPases direct the ClpP protease to specific substrates (Gottesman and Maurizi, 1992; Gottesman et al., 1993), and MecA has some similarity to the ClpP protease (Kong and Dubnau, 1994). While MecA is probably not acting as a protease (it is missing the conserved serine residue thought to be in the active site of ClpP), an attractive model is that MecB directs MecA to sequester or otherwise modify ComK so ComK can not activate transcription (Kong and Dubnau, 1994; Msadek et al., 1994).

Support for this model comes from the observation that overexpression of MskD leads to increased expression of the late competence gene \textit{comG} (Chapter 5). MskD is 67% identical to ClpX (at least over the region sequenced). A simple explanation for how overexpression of MskD leads to increased expression of \textit{comG} is that MskD interferes with the ability of MecB and/or MecA to block activity of ComK.

An \textit{mskD (clpX)} null mutation causes a growth defect, and a strain carrying this mutation gives rise to suppressors of the growth defect (Chapter 5). It will be interesting to determine what genes are normally being regulated by MskD that give rise to this growth defect and whether these genes are normally involved in development.

\textbf{Multicopy suppressor screens.} Screens for multicopy suppressors of mutations in regulatory genes are useful because they often lead to the isolation of genes involved in the regulatory pathways under study, or to the elucidation of mechanisms by which these pathways work. Such screens have been performed to great advantage in \textit{Sacchoromyces cerevisiae} (Rine, 1991); however,
this is the first example of which I am aware of a screen done to isolate multicopy suppressors of a regulatory gene in *Bacillus subtilis*. (*sinR* was isolated as a multicopy inhibitor of sporulation in wild type cells (Gaur et al., 1986).)

Although the screen I did was not saturating (if it were, I should have isolated *kinA* and *spo0K*), the results of this screen led to the isolation and characterization of *kinC* and to the isolation and partial characterization of *mskB* and *mskD*. As the global human population prepares to leave exponential phase growth, there is still much to learn about developmental processes associated with stationary phase in *Bacillus*.
Chapter 7:

Materials and methods

Media. Routine growth and maintenance of *E. coli* and *B. subtilis* was done in LB medium (Miller, 1972). Nutrient sporulation medium was 2xSG medium (Leighton and Doi, 1971) or DS medium (Schaeffer et al., 1965). The minimal exhaustion medium used to assay sporulation was S7 medium (Vasantha and Freese, 1980) as used previously (Jaacks et al., 1989), except that glucose was used at 0.1%. Cells were made competent in S7 minimal medium as described (Rudner et al., 1991; Magnuson et al., 1994a). Amino acids for auxotrophic requirements were added to minimal media at 40 μg/ml. Media in plates were solidified with 15 g of Agar (Difco Laboratories) per liter. Sporulation proficiency was visualized on DS or 2xSG plates. Antibiotics were used at the following concentrations: ampicillin, 100 μg/ml; chloramphenicol (CmR), 5 μg/ml; spectinomycin (SpecR), 100 μg/ml; neomycin, 5 μg/ml; erythromycin and lincomycin together (MLSR) at 0.5 μg/ml and 12.5 μg/ml, respectively, to select for the *erm* gene.

Strains and plasmids. Standard *E. coli* strains were used for cloning and maintaining plasmids, as previously described (Rudner et al., 1991; Ireton and Grossman, 1992b). *B. subtilis* strains used are listed in Table 7.1 and all are derived from strain 168. The JH642 (Perego et al., 1988) or PB2 (Boylan et al., 1988) strains were used as wild type, as indicated. Plasmids used are listed in Table 7.2 and some are illustrated in Figures 2.2, 4.1, 5.1, 5.8, and 7.1.

I made a null mutation in *spo0K* by deleting the first four genes of the *spo0K* operon, from *spo0KA* codon 18 (at the EspI site) to *spo0KD* codon 127 (at the BglII site) (Rudner et al., 1991), and inserting an *erm* cassette. The plasmid
TABLE 7.1 *B. subtilis* strains used.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Genotype</th>
<th>Comments or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>JH642</td>
<td>trpC2 pheA1</td>
<td>(Perego et al., 1988)</td>
</tr>
<tr>
<td>PB2</td>
<td>trpC2</td>
<td>(Boylan et al., 1988)</td>
</tr>
<tr>
<td>AG522</td>
<td>JH642 kinA::Tn917</td>
<td>kinA::Tn917 (Sandman et al., 1987; Antoniewski et al., 1990)</td>
</tr>
<tr>
<td>AG676</td>
<td>JH642 spoOBΔPst pheA+</td>
<td>spoOBΔ allele cotransformed with pheA+ (Weir et al., 1991)</td>
</tr>
<tr>
<td>JRL43</td>
<td>JH642 Δspo0KD43 (Δspo0KD)</td>
<td></td>
</tr>
<tr>
<td>JRL131</td>
<td>JH642 Δspo0KA131 (Δspo0KA)</td>
<td></td>
</tr>
<tr>
<td>JRL135</td>
<td>JH642 Δspo0KDE135 (Δspo0KDE)</td>
<td></td>
</tr>
<tr>
<td>JRL179</td>
<td>JH642 Δspo0KA amyE::Pspo0K-spo0KA</td>
<td></td>
</tr>
<tr>
<td>JRL189</td>
<td>JH642 Δspo0KB189 (Δspo0KB)</td>
<td></td>
</tr>
<tr>
<td>JRL221</td>
<td>JH642 Δspo0KE221::neo (Δspo0KE::neo)</td>
<td></td>
</tr>
<tr>
<td>JRL237</td>
<td>JH642 pHP13</td>
<td>pH13 from BGSC (Haima et al., 1987; Bron, 1990)</td>
</tr>
<tr>
<td>JRL275</td>
<td>JH642 amyE::(comG-lacZ neo)</td>
<td>amyE::(comG-lacZ neo) (Magnuson et al., 1994a)</td>
</tr>
<tr>
<td>JRL293</td>
<td>JH642 amyE::(srfA-lacZ cat)</td>
<td>amyE::(srfA-lacZ cat) provided by D. Dubnau (Magnuson et al., 1994a)</td>
</tr>
<tr>
<td>JRL322</td>
<td>JH642 Δspo0KC322 (Δspo0KC)</td>
<td></td>
</tr>
<tr>
<td>JRL357</td>
<td>JH642 Δspo0K357::neo</td>
<td></td>
</tr>
<tr>
<td>JRL358</td>
<td>JH642 Δspo0K358::erm (Δspo0K::erm)</td>
<td></td>
</tr>
<tr>
<td>JRL407</td>
<td>PB2 spo0K::pJL58</td>
<td></td>
</tr>
<tr>
<td>JRL408</td>
<td>PB2 Pspac-spo0K</td>
<td></td>
</tr>
<tr>
<td>JRL417</td>
<td>PB2 Δspo0K::erm</td>
<td></td>
</tr>
<tr>
<td>JRL450</td>
<td>PB2 Pspac-spo0K amyE::(srfA-lacZ neo) pHPl3</td>
<td></td>
</tr>
<tr>
<td>JRL454</td>
<td>PB2 Pspac-spo0K amyE::(comG-lacZ neo) pJL52</td>
<td></td>
</tr>
<tr>
<td>JRL455</td>
<td>PB2 Pspac-spo0K amyE::(comG-lacZ neo) pHPl3</td>
<td></td>
</tr>
<tr>
<td>JRL459</td>
<td>PB2 Pspac-spo0K spoIIA+::(spoIIA-lacZ neo) pJL52</td>
<td></td>
</tr>
<tr>
<td>JRL485</td>
<td>JH642 Δspo0KA amyE::(comG-lacZ neo)</td>
<td></td>
</tr>
<tr>
<td>JRL486</td>
<td>JH642 Δspo0KA amyE::(srfA-lacZ spc)</td>
<td></td>
</tr>
<tr>
<td>JRL488</td>
<td>JH642 Δspo0KD amyE::(comG-lacZ neo)</td>
<td></td>
</tr>
<tr>
<td>JRL489</td>
<td>JH642 Δspo0KD amyE::(srfA-lacZ spc)</td>
<td></td>
</tr>
<tr>
<td>JRL492</td>
<td>JH642 Δspo0KDE amyE::(srfA-lacZ spc)</td>
<td></td>
</tr>
<tr>
<td>JRL493</td>
<td>JH642 Δspo0K::erm amyE::(comG-lacZ neo)</td>
<td></td>
</tr>
<tr>
<td>JRL494</td>
<td>JH642 Δspo0K::erm amyE::(srfA-lacZ spc)</td>
<td></td>
</tr>
<tr>
<td>JRL515</td>
<td>PB2 amyE::(comG-lacZ neo) pHPl3</td>
<td></td>
</tr>
<tr>
<td>JRL523</td>
<td>PB2 Δspo0K::erm amyE::(comG-lacZ neo) pHPl3</td>
<td></td>
</tr>
<tr>
<td>JRL530</td>
<td>JH642 spo0A9V pLK2 spo0A9V (Piggot and Coote, 1976)</td>
<td></td>
</tr>
<tr>
<td>JRL532</td>
<td>JH642 spo0A9V pHPl3</td>
<td></td>
</tr>
<tr>
<td>JRL539</td>
<td>JH642 spo0E11 pLK10 spo0E (Perego and Hoch, 1987; Perego and Hoch, 1991; Ohlsen et al., 1994)</td>
<td></td>
</tr>
<tr>
<td>JRL540</td>
<td>JH642 spo0E11 pHPl3</td>
<td></td>
</tr>
<tr>
<td>JRL550</td>
<td>JH642 spo0J93 pLK2 spo0J93 (Piggot and Coote, 1976)</td>
<td></td>
</tr>
<tr>
<td>JRL551</td>
<td>JH642 spo0J93 pLK10</td>
<td></td>
</tr>
</tbody>
</table>
JRL552 JH642 spo0J93 pH13
JRL555 JH642 Δspo0K::erm pLK2
JRL557 JH642 Δspo0K::erm pLK10
JRL558 JH642 Δspo0K::erm pH13
JRL595 JH642 pLK2
JRL645 PB2 ΔkinC645::spc (ΔkinC::spc)
JRL660 JH642 ΔkinC::spc
JRL672 JH642 ΔmskD672::spc
(ΔmskD::spc)
JRL679 JH642 ΔmskD::spc suppressor
JRL682 JH642 Δspo0KE::spc amyE::(comG-lacZ neo)
JRL685 JH642 Δspo0KE::spc amyE::(srfA-lacZ cat)
JRL739 PB2 Pspac-spo0K amyE::(srfA-lacZ neo)
pLK6
JRL740 PB2 amyE::(srfA-lacZ neo) pH13
JRL741 PB2 amyE::(srfA-lacZ neo) pLK6
JRL748 PB2 Δspo0K::erm amyE::(srfA-lacZ neo)
pH13
JRL749 PB2 Δspo0K::erm amyE::(srfA-lacZ neo)
pLK6
JRL753 JH642 ΔkinC::spc spo0A+::cat
JRL763 JH642 spo0BΔPst pheA+ sof1-cat sof-1 (Kawamura and Saito, 1983; Hoch et al., 1985) ~90% linked to cat by transformation (Grossman et al., 1992)
JRL764 JH642 spo0BΔPst pheA+ rvtA11-cat rvtA11 (Sharrock et al., 1984)
JRL766 JH642 spo0BΔPst pheA+ spo0A+::cat
JRL767 JH642 spo0BΔPst pheA⁺ sof1-cat
ΔkinC::spc

JRL768 JH642 spo0BΔPst pheA⁺ rvtA11-cat
ΔkinC::spc

JRL770 JH642 spo0BΔPst pheA⁺ rvtA11-cat
kinA::Tn917

JRL783 JH642 spo0FΔS spo0BΔPst pheA⁺ rvtA11-cat
spo0FΔS described in (Kawamura and Saito, 1983)

JRL790 JH642 ΔkinC::spc sof1-cat

JRL791 JH642 ΔkinC::spc rvtA11-cat

JRL792 JH642 spo0FΔS spo0BΔPst pheA⁺ rvtA11-cat ΔkinC::spc

JRL794 JH642 spo0FΔS spo0BΔPst pheA⁺ rvtA11-cat kinA::Tn917

JRL796 JH642 spo0FΔS spo0BΔPst pheA⁺ pLK2

JRL797 JH642 spo0FΔS spo0BΔPst pheA⁺ pH13

JRL812 JH642 thr::(kinC-lacZ erm)

JRL871 JH642 ΔmskB871::spc
(ΔmskB::spc)

JRL903 PB2 Δspo0K::erm pLK64

JRL920 JH642 kinC::pLK124

JRL923 JH642 spo0FΔS pH13

JRL925 JH642 spo0FΔS pLK2

JRL951 PB2 Δspo0K::erm pLK2

JRL990 JH642 kinA::Tn917 pLK11

JRL991 JH642 kinA::Tn917 pH13

JRL992 JH642 spo0E11 pLK2
JRL993 JH642 spo0E11 pH13
JRL995 JH642 spo0BΔPst pheA⁺ pLK2
JRL996 JH642 spo0BΔPst pheA⁺ pH13
JRL1004 JH642 ΔkinBkapB::spc kinC::pLK124 ΔkinBkapB::spc (LeDeaux et al., 1994)
JRL1007 JH642 kinA::Tn917 ΔkinBkapB::spc kinC::pLK124
JRL1010 JH642 kinA::Tn917 pH13
JRL1011 JH642 kinA::Tn917 pLK2
JRL1018 JH642 amyE::(abrB-lacZ neo)
JRL1035 JH642 kinC::pLK124 amyE::(abrB-lacZ neo)
JRL1036 JH642 kinA::Tn917 ΔkinBkapB::spc amyE::(abrB-lacZ neo)
JRL1039 JH642 kinA::Tn917 ΔkinBkapB::spc kinC::pLK124 amyE::(abrB-lacZ neo)
JRL1046 JH642 kinA::Tn917 kinC::pLK124
JRL1058 JH642 spo0BΔPst pheA⁺ amyE::(abrB-lacZ neo)
JRL1081 JH642 kinA::Tn917 ΔkinBkapB::spc orf277::pLK126
JRL1082 JH642 Δspo0KC amyE::(srfA-lacZ cat)
JRL1102 JH642 Δspo0KB amyE::(comG-lacZ neo)
JRL1103 JH642 Δspo0KC amyE::(comG-lacZ neo)
JRL1104 JH642 Δspo0KDE amyE::(comG-lacZ neo)
JRL1105 JH642 Δspo0KB amyE::(srfA-lacZ cat)
JRL1114 JH642 Δspo0KB amyE::Pspac-spo0KB
JRL1115 JH642 Δspo0KB amyE::Pspac-spo0KBC
JRL1117 JH642 Δspo0KC amyE::Pspac-spo0KB
JRL1118 JH642 Δspo0KB amyE::Pspac-spo0KBC
JRL1124 JH642 Δspo0E::spc spo0FΔS spo0BΔPst
 pheA+ pHPl3
JRL1125 JH642 Δspo0E::spc spo0FΔS spo0BΔPst
 pheA+ pLK2
JRL1131 PB2 amyE::(comG-lacZ neo) pLK6
JRL1132 PB2 Pspac-spo0K amyE::(comG-lacZ neo)
 pLK6
JRL1133 PB2 Δspo0K::erm amyE::(comG-lacZ neo)
 pLK6
KI418 JH642 spo0KA::Tn917 (Rudner et al., 1991)
KI644 JH642 spo0E11 kinA::Tn917
KI1521 JH642 spo0F221 rvtA11-cat::spc spo0F221 (Piggot and Coote,
 1976)
NY120 JH642 ΔkinBkapB::spc
NY121 JH642 kinA::Tn917 ΔkinBkapB::spc
TABLE 7.2 Plasmids used.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Comments, source, or referencea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vectors</td>
<td></td>
</tr>
<tr>
<td>pBluescriptII KS+</td>
<td>Ap; used for subcloning and sequencing (Stratagene)</td>
</tr>
<tr>
<td>pAG58</td>
<td>Ap Cm; (Jaacks et al., 1989)</td>
</tr>
<tr>
<td>pJH101</td>
<td>Ap Tc Cm; integrative vector (Ferrari et al., 1983)</td>
</tr>
<tr>
<td>pGEM3Zf(+)::cat-1</td>
<td>Ap Cm; integrative vector (Youngman et al., 1989)</td>
</tr>
<tr>
<td>(pGEM::cat)</td>
<td></td>
</tr>
<tr>
<td>pUC18::erm</td>
<td>Ap MLS; source of erm cassette (Kenney and Moran, 1987)</td>
</tr>
<tr>
<td>pBEST501</td>
<td>Ap Neo; source of neo cassette (Itaya et al., 1989)</td>
</tr>
<tr>
<td>pUS19</td>
<td>Ap Spec; integrative vector, source of spc cassette (Benson and Haldenwang, 1993)</td>
</tr>
<tr>
<td>pJL62</td>
<td>Ap Spec; 1.1 kb BglI (blunted)-NdeI (blunted) spc cassette from pUS19 cloned into NcoI (blunted) of cat gene in pJH101; used to convert CmR SpecS strains to CmS SpecR</td>
</tr>
<tr>
<td>pIK105</td>
<td>Ap Neo; used to convert CmR NeoS strains to CmS NeoR (Ireton and Grossman, 1992b)</td>
</tr>
<tr>
<td>pJL73</td>
<td>Ap Spec; 1.1 kb BglI (blunted)-NdeI (blunted) spc cassette from pUS19 cloned into SmaI site of pBluescript SK+</td>
</tr>
<tr>
<td>pJL74</td>
<td>Ap Spec; same as pJL73 except the spc cassette is cloned in the opposite orientation</td>
</tr>
<tr>
<td>pHPl3</td>
<td>MLS Cm; B. subtilis E. coli shuttle vector (Haima et al., 1987; Bron, 1990)</td>
</tr>
<tr>
<td>pJL52</td>
<td>MLS; 0.5 kb BamHI (blunted)-NcoI (blunted) deletion of pHPl3; helper plasmid used in conjunction with pHPl3 for homology assistance</td>
</tr>
</tbody>
</table>
pDR63 Ap Cm; vector used to recombine fragments into the chromosome at amyE by double crossover, derived from pDH32 (Shimotsu and Henner, 1986)

pDR67 Ap Cm; vector used to place fragments under control of the IPTG-inducible promoter Pspac and recombine into the chromosome at amyE by double crossover (Ireton et al., 1993)

pDG793 Ap MLS; vector used to construct lacZ transcriptional fusions and recombine into the chromosome at thrC by double crossover (a gift from P. Stragier)

Others

pDR9 Ap Cm; clone of spo0KB-E in pJH101 (Rudner et al., 1991)

pDR18 Ap Cm; clone of spo0K promoter region from PvuII site upstream of the promoter to EcoRI site in spo0KA in pJH101 (Rudner et al., 1991)

pDR21 Ap; clone of the spo0K promoter region (as in pDR18) in pBluescript II SK+ (Rudner et al., 1991)

pJL9 Ap Cm; 408 bp BglII (blunted)-XcmI (blunted) deletion of pDR9, used to make Δspo0KD

pJL10 Ap Cm; 3.6 kb EcoRI fragment from pDR9 cloned into EcoRI of pDR18, putting all of spo0KA-D on a single integrational plasmid

pJL12 Ap Cm; 1 kb BglII (blunted)-AatII (blunted) deletion of pJL10

pJL18 Ap Cm; 1371 bp EspI (blunted)-EcoRI (blunted) deletion of pJL12; used to make Δspo0KA

pJL19 Ap Cm; 1341 bp BglII (blunted)-ClaI (blunted) deletion of pDR9; used to make Δspo0KDE
pJL28 Ap Cm; 2.9 kb BamHI-NruI (blunted) fragment of pJL10 cloned into BamHI-EcoRI (blunted) of pDR63; used to make $amyE::P_{sp00K}$-$spo0KA$

pJL29 Ap Cm; 447 bp RsrII (blunted)-ApaI (blunted) deletion of pJL10; used to make $\Delta spo0KB$

pJL30 Ap Cm; 1.3 kb SphI (blunted)-SphII (blunted) deletion of pDR9

pJL32 Ap Cm; 2.3 kb NcoI (blunted)-BglII fragment of pJL10 cloned into SmaI-BglII of pDR67; used to make $amyE::P_{spac}$-$spo0KBC$

pJL34 Ap Cm; 573 bp PvuII-SnaBI deletion of pJL30; used to make $\Delta spo0KC$

pJL36 Ap Cm; 1.8 kb PvuII-AatII (blunted) deletion of pJL30

pJL42 Ap Cm Neo; 1.3 kb neo cassette from pBEST501 cloned into EcoRV-EcoRI of pJL36; used to make $\Delta spo0K::neo$

pJL45 Ap Cm; 311 bp EcoRI (blunted)-SalI fragment, containing Pspac, from pAG58 cloned into EcoNI (blunted)-SalI of pJH101

pJL47 Ap Cm; Pspac replacement vector (Figure 7.1); 1.3 kb BamHI-SphI fragment containing $lacI$ from pAG58 cloned into pJL45 so transcription of $lacI$ is opposite that from Pspac

pJL49 Ap Cm Neo; 1.3 kb neo cassette from pBEST501 cloned into EspI-BglII (sites lost) of pJL10; used to make $\Delta spo0K::neo$

pJL50 Ap Cm MLS; 2.3 kb erm cassette from pUC18::erm cloned into EspI-BglII (sites lost) of pJL10; used to make $\Delta spo0K::erm$

pJL51 Ap Cm; 0.9 kb XmnI (blunted)-ClaI (blunted) fragment from pDR21 5 bp downstream from $spo0K$ promoter cloned into SalI (blunted) site of pJL47
pJL58 Ap Cm; 0.6 kb BamHI-SspI (blunted) fragment from pDR21 containing a 368 bp fragment upstream (23 bp) of the spo0K promoter cloned into ClaI (blunted)-BamHI (blunted) of pJL51; used to make Pspac-spo0K

pJL75 Ap Cm Spec; 1.1 kb spc cassette from pUS19 cloned into EcoRV-EcoRI of pJL36; used to make Δspo0KE::spc

pJL79 Ap Cm; 1.3 kb NcoI (blunted)-PvuII of pJL12 cloned into SmaI of pDR67; used to make amyE::Pspac-spo0KB

pLK2 MLS Cm; original kinC clone, 3.5 kb Sau3A partial digest of JH642 chromosomal DNA cloned into BamHI of pH13

pLK6 MLS Cm; original mskD clone, 2.7 kb Sau3A partial digest of JH642 chromosomal DNA cloned into BamHI of pH13

pLK10 MLS Cm; an original mskB clone, 2.8 kb Sau3A partial digest of JH642 chromosomal DNA cloned into BamHI of pH13, contains 135 bp deletion relative to pLK11

pLK11 MLS Cm; an original mskB clone, 3.0 kb Sau3A partial digest of JH642 chromosomal DNA cloned into BamHI of pH13

pLK21 MLS Cm; 2.1 kb PstI fragment from pLK2 cloned into PstI site of pH13

pLK22 MLS Cm; 1.4 kb ClaI (blunted)-HindIII (blunted) deletion of pLK2

pLK23 MLS Cm; 1.4 kb PstI deletion of pLK2

pLK24 Ap Cm; 3.5 kb EcoRI (blunted) fragment of pLK2 cloned into PstI (blunted) of pGEMcat

pLK25 Ap Cm Spec; 1.1 kb PstI-BamHI (blunted) spc cassette of pJL74 cloned into PstI-ClaI (blunted) of pLK24, used to make ΔkinC::spc
pLK56 Ap; 3.5 kb EcoRI fragment from pLK2 cloned into EcoRI of pBluescriptII KS+
pLK60 Ap Cm; 1.3 HindIII fragment of pLK11 cloned into HindIII of pJH101
pLK62 Ap Cm; 2.5 kb SalI (blunted) fragment of pLK6 cloned into SalI (blunted)-EcoRI (blunted) of pJH101
pLK63 MLS Cm; 1.3 kb HindIII deletion of pLK11
pLK64 MLS Cm; 1.3 kb HindIII fragment of pLK11 cloned into HindIII of pH13
pLK65 MLS Cm; 1.1 kb HindIII deletion of pLK10
pLK66 MLS Cm; 1.1 kb HindIII fragment of pLK10 cloned into HindIII of pH13
pLK67 MLS Cm; 1.4 kb EcoRI deletion of pLK6
pLK68 MLS Cm; 2.5 kb SalI fragment of pLK6 cloned into SalI of pH13
pLK69 MLS Cm; 1.4 kb EcoRI fragment from pLK6 cloned into EcoRI of pH13
pLK101 Ap Cm Spec; 1.1 kb BamHI-ClaI spc cassette from pJL74 cloned into BglII-ClaI of pLK62; used to make ΔmskD::spc
pLK102 Ap; 2.2 kb ClaI deletion of pLK56
pLK104 Ap; 0.4 kb EcoRV-SmaI deletion of pLK102
pLK114 Ap MLS; kinC-lacZ; 2.3 kb EcoRI-ClaI (blunted) fragment of pLK2 cloned into EcoRI-BamHI (blunted) of pDG793; used to make thrC::kinC-lacZ
pLK115 Ap Cm Spec; 1.1 kb SpeI-EcoRV spc cassette from pJL74 cloned into SpeI-XcmI (blunted) of pLK60; used to make ΔmskB::spc
pLK116 MLS Cm; 0.4 kb EcoRV-XcmI (blunted) deletion of pLK64
pLK117 MLS Cm; 0.8 kb XcmI (blunted)-SmaI deletion of pLK64
pLK118 MLS Cm; 0.5 kb EcoRV-NdeI (blunted) deletion of pLK64
pLK119 MLS Cm; 0.8 kb NdeI (blunted)-SmaI deletion of pLK64
pLK120 Ap Cm; 0.7 kb EcoRV fragment from pLK2 into SmaI of pGEM::cat, contains kinC promoter
pLK121 Ap Cm; 0.2 kb NdeI (blunted)-EcoRI (blunted) deletion of pLK120
pLK122 MLS Cm; pLK64 digested with XcmI, blunted, and religated
pLK123 MLS Cm; pLK64 digested with NdeI, blunted, and religated
pLK124 Ap Cm; 0.4 kb BamHI-PstI fragment of pLK120 cloned into pGEM::cat
pLK125 MLS Cm; 0.6 kb ApaI (blunted)-SalI (blunted) deletion of pLK2
pLK126 Ap Cm; 102 bp ApaI (blunted)-BamHI fragment of pLK104 cloned into SalI (blunted)-BamHI of pGEM::cat, used to disrupt orf277

Ap, Tc, Cm, Neo, Spec, MLS refer to resistance to ampicillin, tetracycline, chloramphenicol, neomycin, spectinomycin, and erythromycin + lincomycin, respectively. All sizes in kb are approximate. Klenow fragment of DNA polymerase I was used for all blunting reactions, as described (Ausubel et al., 1990).
that contains this mutation is pJL50 (Figure 2.2, Table 7.2), which has the \textit{cat} gene in the plasmid backbone. I introduced this mutation into the chromosome by transforming wild type cells with linearized pJL50 and selecting for MLSR. One of the MLSR CmS transformants, resulting from a double crossover, was chosen as the Δspo0K::erm mutant. A similar deletion/insertion mutation was made inserting a \textit{neo} cassette (Δspo0K::\textit{neo}) instead of \textit{erm}. Deletion/insertion mutations in \textit{spo0KE} were made similarly using linearized pJL42, which inserts a \textit{neo} cassette, and pJL75, which inserts a \textit{spc} cassette (see Table 2.1, Figure 2.2). Construction of the deletion alleles Δspo0KA, Δspo0KB, Δspo0KC, and Δspo0KD, and Δspo0KDE is described in Chapter 2.

The Δspo0E::\textit{spc} allele used was constructed by Keith Ireton and contains the \textit{spc} cassette from pUS19 inserted into a deletion of \textit{spo0E} that starts from 13 bp upstream of the \textit{spo0E} start codon and ends at the G in the TAG stop codon (Ireton, 1994).

A null mutation in \textit{kinC} was made by deleting from 25 bp upstream of the putative \textit{kinC} start codon (the PstI site in Figure 4.1) to codon 211 (the ClaI site in Figure 4.1) and inserting a \textit{spc} cassette. This mutation, contained on pLK25 (see Figure 4.1), was incorporated into the chromosome by transforming linearized plasmid into PB2 and selecting for SpecR. pLK25 has the \textit{cat} gene in the plasmid backbone. I screened for a double crossover event by screening for transformants that were SpecR and CmS.

The \textit{rvtA11} (Sharrock et al., 1984) and \textit{sof-1} (Kawamura and Saito, 1983) alleles of \textit{spo0A} that were used are \textasciitilde90\% linked by transformation to \textit{cat} or to \textit{spc} (Grossman et al., 1992; Ireton and Grossman, 1992a; Ireton and Grossman, 1994), where the \textit{spc} gene was inserted at the NcoI site of the \textit{cat} gene using pJL62 (Table 7.2).
I constructed a *kinC-lacZ* transcriptional fusion that contains sequence from ~1.5 kb upstream of the putative *kinC* start codon to codon 211 and introduced it into the *thrC* locus of the chromosome, using the *lacZ* fusion vector pDG793 (provided by Patrick Stragier). The plasmid containing this fusion is pLK114 (Table 7.2, Figure 4.1). pLK114 was linearized and transformed into wild type cells selecting for MLSR. Double crossover events that resulted in the introduction of the *kinC-lacZ* fusion at *thrC* caused a Thr\(^{-}\) phenotype.

The *ΔkinBkapB::spc* (*kinB*) allele used was constructed by Namyi Yu (LeDeaux et al., 1994) and is a deletion/insertion mutation that contains the *spc* cassette from pJL73 inserted between the SacII site at codon 232 (of 428) of *kinB* and the BssHII site downstream of *kapB*, the gene downstream of *kinB* (Trach and Hoch, 1993).

I made a null mutation in *mskB* by deleting from 64 bases upstream of the putative *mskB* start codon (at the XcmI site in orf45) to the last sense codon in *mskB* (at the SpeI site in *mskB*) and inserting a *spc* cassette (see Figure 4.1). This mutation is contained in pLK115 (see Figure 4.1; Table 7.2), and was introduced into the chromosome by double crossover in the same manner as the *kinC* null mutation described above.

The *mskD* null mutation was made by deleting from the ClaI to the BglII sites in *mskD* and inserting a *spc* cassette. This mutation is contained in pLK101 (see Figure 5.8; Table 7.2) and was introduced into the chromosome as described above.

Construction of a conditional *spo0K* mutant (Pspac-*spo0K*). I constructed a conditional mutation of *spo0K* by replacing the normal *spo0K* promoter with the LacI-repressible/IPTG-inducible promoter Pspac (Yansura and Henner, 1984; Jaacks et al., 1989; Henner, 1990), using the vector pJL47 (Figure 7.1A). pJL47 can
be used to replace the promoter of a gene with the *lacI* cassette and Pspac in a two-step process without leaving behind any drug resistance marker.

pJL58 contains DNA from immediately upstream and downstream of the *spo0K* promoter cloned into pJL47 (Figure 7.1B) and was used to replace the normal *spo0K* promoter with Pspac in two steps. Transformation of pJL58 into wild type cells gave two types of transformants. One class was Spo+, and most likely resulted from recombination with sequences upstream of the promoter. The other class was Spo- in the absence of IPTG and Spo+ in the presence of IPTG. This class most likely resulted from recombination with sequences downstream of the promoter. Three Spo+ transformants were chosen and used to screen for a second recombination event that would leave behind the *lacI/Pspac* cassette in place of the *spo0K* promoter (Figure 7.1B). The Spo+ transformants were grown to stationary phase in LB medium in the absence of selection for the integrated plasmid, that is, in the absence of chloramphenicol. I screened ~13,000 colonies on sporulation plates (lacking IPTG and Cm) and identified two Spo- colonies that were also CmS. The sporulation phenotype of both of these colonies was completely dependent on IPTG; they were Spo+ in the presence of 1 mM IPTG, and Spo- in the absence of IPTG (data not shown). The sporulation and competence phenotypes in the absence of IPTG were indistinguishable from that of a *spo0K* mutant. One isolate, JRL408 (Pspac-*spo0K*), was chosen for further experiments.
Figure 7.1. Making a LacI-repressible, IPTG-inducible allele of *spo0K*. A. pJL47 contains *lacI* under control of the constitutive P*pen* promoter and the LacI-repressible, IPTG-inducible promoter P*spac* (Yansura and Henner, 1984; Henner, 1990). B. pJL58 contains sequence from both upstream (stippled box) and downstream (striped box) of the *spo0K* promoter cloned upstream and downstream, respectively, of the lacI-P*spac* cassette of pJL47. When transformed into wild type cells selecting for Cm*R* (integration step), pJL58 can recombine either with the upstream *spo0K* sequence (shown), which would result in a phenotypically Spo*+* transformant, or with the downstream *spo0K* sequence (not shown), which would result in a transformant which was Spo*+* only in the presence of IPTG. Cells that had undergone a second recombination event that left behind the lacI-P*spac* cassette in place of P*spo0K* (excision step) were isolated as described in Chapter 7. These cells were Cm*S* and Spo*−* in the absence of IPTG and Spo*+* in the presence of IPTG. Restriction site abbreviations: E, EcoRI; C, ClaI; B, BamHI; S, SphI; L, SalI.
A

Integration

Excision

Pspac

pJL47

~6.8 kb

B

Pspo0K

spo0KA

Integration

Excision

Pspac

spo0KA

pJL58

~8.3 kb
Sporulation assays. Cells were grown in DS, 2xSG, or minimal exhaustion medium at 37°C unless otherwise indicated and spores were assayed approximately 20 hours after the end of exponential growth. The number of viable cells/ml culture was determined as the total number of CFU on LB plates. The number of spores/ml of culture was determined as the number of CFU after heat treatment (80°C for 20 min). Sporulation frequency is the ratio of spores/ml to viable cells/ml.

β-galactosidase assays. For determination of β-galactosidase specific activity, cells were grown in the indicated medium and samples were taken at the indicated times. Prior to the enzyme assay, cells were removed by centrifugation and resuspended in Spizizen salts (Spizizen, 1958). β-galactosidase specific activity is expressed as (ΔA420 per minute per ml of culture per unit of optical density at 600 nm) X 1000 (Miller, 1972).

Sorting the multicopy suppressing plasmid isolates. The 12 plasmid isolates listed in Table 3.1 were originally divided into four classes based on the morphology that they imparted to colonies. Plasmids in the pLK11 class did not suppress the sporulation phenotype of spo0K mutants to as great an extent as plasmids in the pLK2 class and caused the colonies to have a slightly rougher appearance. Plasmids in the pLK6 class gave rise to darker blue colonies on minimal Xgal plates in a Pspac-spo0K background than did plasmids in the pLK4 class.

To verify that only four (essentially) different plasmid inserts were represented by these 12 isolates, each plasmid and also the parent vector pHP13 was digested with each of three restriction enzymes that cut at sites of 5 bases: HphI, HgaI, and AvaII. Single restriction enzyme digest of plasmids belonging to a suspected class were electrophoresed on an agarose gel, and except for pLK10, each plasmid belonging to a suspected class gave the same restriction
The only difference between pLK10 and the other two plasmids in its class were two bands in each digest that were shifted ~0.15 kb relative to corresponding bands in the digests of the other two plasmids, pLK11 and pLK15; otherwise the digests of the three plasmids gave the same pattern. Only representative plasmids in each class were chosen for further study.

DNA sequencing. The Sequenase v. 2.0 kit (U.S. Biochemical Corp.) was used to sequence double stranded plasmid DNA. To sequence *kinC*, sequence of one or the other strand was determined from different subclones of pLK2 into pBluescript II KS using either the universal or reverse primer. To determine the sequence of the opposite strand for the *kinC* region in pLK2, primers were made complementary to the sequence determined using the pBluescript subclones, and these primers were used to sequence pLK2.

The sequence I have for the *mskB* region covers the entire pLK64 insert. Some of this sequence data comes from sequencing pLK64 and pLK66 (see Figure 5.1) using the universal and reverse primers. (Because the polylinker in pHP13 is in sequence derived in pUC9, one can use the universal and reverse primers to sequence the ends of inserts in pHP13.) To sequence across the middle of the pLK64 insert, primers were made complementary to the determined sequence and were used to sequence the pLK64 insert that had been subcloned into pBluescript II KS. However, this sequence is derived mainly from only one strand or the other. This is why I am more confident of the data from the chromosome sequencing project, which comes mainly from both strands (Glaser et al., 1993), and cite that data in Figure 5.2.

Sequence for *mskD* comes only from sequencing the ends of the inserts in pLK67 and pLK69 away from the EcoRI site in pLK6 (see Figure 5.8) using the universal primer.
Database searching. The KinC and Orf277 sequences were compared to the combined nonredundant protein sequence database using the BLAST software package (Altschul et al., 1990) at the National Center for Biotechnology Information. To compensate for the fact that MskB and Orf45 are small enough that their sequences might not have been identified and deposited in a protein database, they were compared to the combined nonredundant nucleotide sequence database translated in all six reading frames using BLAST (Altschul et al., 1990). To compensate for possible frameshifts in the mskD sequence data, this sequence was translated in all six reading frames and compared to the combined nonredundant protein sequence database translated in all six frames, again using the BLAST software package (Altschul et al., 1990).

Transduction. I grew a PBS1 transducing lysate on JRL660 (ΔkinC::spc, trpC2, pheA1) and used it to transduce some of the mapping kit strains (Dedonder et al., 1977). The protocols used were essentially as described (Cutting and Vander Horn, 1990). In the three factor cross between ΔkinC::spc, spoOEll, and kinA::Tn917, transductants were tested for MLSR and the colony morphology was analyzed to distinguish between the different classes of recombinants. It was relatively easy to distinguish spoOEll from kinA::Tn917 from the spoOEll kinA::Tn917 double mutant.

Primer extension analysis. To determine the 5' end of the kinC and mskB transcripts, strains JRL951 (ΔspoOK::erm pLK2) and JRL903 (Δspo0K::erm pLK64) respectively were grown in 2xSG medium with chloramphenicol. 50 ml samples were taken at various times for preparation of RNA essentially as described (Ausubel et al., 1990; Ireton and Grossman, 1992b). The sequence of the primer used to map the 5' end of the kinC transcript, LKP16, was 5'-TTCTTCAGAAAGCTG1ATACTTCCATTC-3', and its complement is underlined in Figure 4.2. The sequence of the primer used to map the 5' end of
the *mskB* transcript, LKP14, was 5'-
CTAAAAACTGCCTCACATCATGAATGCCTA-3', and its complement is
underlined in Figure 5.2. The primers were end-labeled with ^{32}P, essentially as
described (Ausubel et al., 1990), and purified with a NICK™Spin column using
the protocol supplied (Pharmacia). The protocol for hybridization extension
reactions was essentially as described (Ausubel et al., 1990; Ireton and Grossman,
1992b) except I used 200 μg of RNA in each multicopy *kinC* (pLK2) sample and
100 μg of RNA in each multicopy *mskB* (pLK64) sample, instead of 50 μg.
References

Glaser, P., Kunst, K., Arnaud, M., Coudart, M.-P., Gonzales, W., Hullo, M.-F., Ionescu, M., Lubochinsky, B., Marcelino, L., Moszer, I., Presecan, E.,

transport system expressed early during sporulation. Molec. Micribiol. 5, 1903-1913.

