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Abstract

In this paper we describe and analyze a class of multiscale stochastic pro-
cesses which are modeled using dynamic representations evolving in scale based
on the wavelet transform. The statistical structure of these models is Marko-

vian in scale, and in addition the eigenstructure of these models is given by
the wavelet transform. The implication of this is that by using the wavelet
transform we can convert the apparently complicated problem of fusing noisy
measurements of our process at several different resolutions into a set of decou-

pled, standard recursive estimation problems in which scale plays the role of
the time-like variable. In addition we show how the wavelet transform, which
is defined for signals that extend from -oo to +oo, can be adapted to yield a
modified transform matched to the eigenstructure of our multiscale stochastic
models over finite intervals. Finally, we illustrate the promise of this method-
ology by applying it to estimation problems, involving single and multi-scale
data, for a first-order Gauss-Markov process. As we show, while this process is
not precisely in the class we define, it can be well-approximated by our models,
leading to new, highly parallel, and scale-recursive estimation algorithms for
multi-scale data fusion. In addition our framework extends immediately to 2D
signals where the computational benefits are even more significant.
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1 Introduction and Background

Multiresolution methods in signal and image processing have experienced a
surge of activity in recent years, inspired primarily by the emerging theory of
multiscale representations of signals and wavelet transforms [1, 7, 8, 9, 12, 15,
16, 31, 25]. One of the lines of investigation that has been sparked by these
developments is that of the role of wavelets and multiresolution representa-
tions in statistical signal processing [5, 6, 10, 11, 14, 26, 27, 28, 29, 30]. In
some of this work (e.g. [10, 11, 14, 24]) the focus is on showing that wavelet
transforms simplify the statistical description of frequently used models for
stochastic processes, while in other papers (e.g. [28, 29, 30, 5, 6, 26, 27]) the
focus is on using wavelets and multiscale signal representations to construct
new types of stochastic processes which not only can be used to model rich
classes of phenomena but also lead to extremely efficient optimal processing
algorithms using the processes' natural multiscale structure. The contribu-
tions of this paper lie in both of these arenas, as we both construct a new class
of multiscale stochastic models (for which we also derive new and efficient al-
gorithms) and demonstrate that these algorithms are extremely effective for
the processing of signals corresponding to more traditional statistical models.

In [26, 27] a new class of fractal, 1/f-like stochastic processes is con-
structed by synthesizing signals using wavelet representations with coeffi-
cients that are uncorrelated random variables with variances that decrease
geometrically as one goes from coarse to fine scales. The wavelet transform,
then, whitens such signals, leading to efficient signal processing algorithms.
The model class we describe here not only includes these processes as a spe-
cial case but also captures a variety of other stochastic phenomena and signal
processing problems of considerable interest. In particular by taking advan-
tage of the time-like nature of scale, we construct a class of processes that
are Markov in scale rather than in time. The fact that scale is time-like
for our models allows us to draw from the theories of dynamic systems and
recursive estimation in developing efficient, highly parallelizable algorithms
for performing optimal estimation. For our models we develop a smoothing
algorithm, an algorithm which computes estimates of a multiscale process
based on multiscale data, which uses the wavelet transform to transform the
overall smoothing problem into a set of independently computable, small 1D
standard smoothing problems.

If we consider smoothing problems for the case in which we have measure-
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ments of the full signal at the finest scale alone, this algorithmic structure
reduces to a modest generalization of that in [27]-i.e., the wavelet transform
whitens the measurements, allowing extremely efficient optimal signal pro-
cessing. What makes even this modest contribution of some significance is
the richness of the class of processes to which it can be applied, a fact we
demonstrate in this paper. Moreover the methodology we describe directly
yields efficient scale-recursive algorithms for optimal processing and fusion
of measurements at several scales with only minimal increase in complexity
as compared to the single scale case. This contribution should be of con-
siderable value in applications such as remote sensing, medical imaging, and
geophysical exploration, in which one often encounters data sets of different
modalities (e.g. infrared and radar data) and resolutions. Furthermore, al-
though we focus on ID signals in this paper, the fact that scale is a time-like
variable is true as well in the case of 2D, where similar types of models lead
to efficient recursive and iterative algorithms; the computational savings in
this case are even more dramatic than in the case of ID.

In order to define some of the notation we need and to motivate the
form of our models, let us briefly recall the basic ideas concerning wavelet
transforms. The multiscale representation of a continuous signal f(x) consists
of a sequence of approximations of that signal at finer and finer scales where
the approximations of f(x) at the mth scale consists of a weighted sum of
shifted and compressed (or dilated) versions of a basic scaling function +(x):

+00

fm (x) = E f(m, n)22$(2m x - n) (1)
n=-oo

For the (m + 1)st approximation to be a refinement of the mth, we require
+(x) to be representable at the next scale:

+(x) = > V2h(n)0(2x - n) (2)
n

As shown in [8], h(n) must satisfy several conditions for (1) to be an orthonor-
mal series and for several other properties of the representation to hold. In
particular h(n) must be the impulse response of a quadrature mirror filter
(QMF) [8, 23], where the condition for h(n) to be a QMF is as follows.

A, h(k)h(k- 2n) = 6, (3)
k
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By considering the incremental detail added in obtaining the (m + 1)st
scale approximation from the mth, we arrive at the wavelet transform based
on a single function +p(x) that has the property that the full set of its scaled
translates {2m/20b(2mx - n)} form a complete orthonormal basis for L 2. In

[8] it is shown that 0 and ? are related via an equation of the form

+(x) = £ v'g(n)q(2x - n) (4)
n

where g(n) and h(n) form a conjugate mirror filter pair [23], and that

fm+l(x) = fm(x) + Z] d(m, n)2m/ 2
0 (2mx - n) (5)

n

Note that g(n) and h(n) must obey the following algebraic relationships.

Eg(k)h(k-2n) = 0 (6)
k

Ig(k)g(k- 2n) = a (7)
k

Z h(n)h(n- 2k) + Z g(n)g(n - 2k) = an (8)
k k

If we have the coefficients {f(m + 1, .)} of the (m + 1)st-scale represen-
tation we can "peel off" the wavelet coefficients at this scale and carry the
recursion one complete step by calculating the coefficients {f(m, -)} at the
next coarser scale. The resulting wavelet analysis equations are

f(m, n) = y h(2n - k)f(m + 1, k) - (Hmf(m + 1, -))n (9)
k

d(m, n) = y g(2n - k)f(m + 1, k) (Gm f(m + 1, '))n (10)
k

where the operators Hm and Gm are indexed with the subscript m to denote
that they map sequences at scale m + 1 to sequences at scale mln. From

'Note that for the case of infinite sequences the operators as defined here are precisely
equivalent for each scale; i.e. they are not a function of m. However, we adhere to this
notation for the reasons that a) we may allow for the QMF filter to differ at each scale
and b) for the case of finite-length sequences the operators are in fact different at every
scale due to the fact that the the number of points differ from scale to scale.
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(3,7,6) we have the following

HmHA = I (11)

G m = I (12)

HmG* = 0 (13)

where "*" denotes the adjoint of the operator.
Reversing this process we obtain the synthesis form of the wavelet trans-

form in which we build up finer and finer representations via a coarse-to-fine
scale recursion:

f(m + 1, n) = > h(2k - n)f(m, k) + E g(2k - n)d(m, k) (14)
k k

Expressed in terms of the operators Hm and Gm we have

f(m + 1, n) = (H f(m, ))n + (Gmf(m, ')), (15)

or
H1Hm + G-Gm = I (16)

which is an expression of eq.(8) in operator form.
Thus, we see that the synthesis form of the wavelet transform defines

a dynamical relationship between the coefficients f(m, n) at one scale and
those at the next, with d(m, n) acting as the input. Indeed this relationship
defines an infinite lattice on the points (m, n), where (m + 1, k) is connected
to (m, n) if f(m, n) influences f(m + 1, k). This structure is illustrated in
Figure 1 for the case where h(n) is a 4-tap filter, where each level of the
lattice represents an approximation of our signal at some scale m. Note that
the dynamics in (14) are now with respect to scale rather than time, and
this provides us with a natural framework for the construction of multiscale
stochastic models.

In particular if the input d(m, n) is taken to be a white sequence, then
f(m, n) is naturally Markov in scale (and, in fact, is a Markov random field
with respect to the neighborhood structure defined by the lattice). Indeed the
class of 1/f-like processes considered in [26, 27] is exactly of this form with the
additional specialization that the variance of d(m, n) decreases geometrically
as m increases. While allowing more general variance structures on d(m, n)
expands the set of processes we can construct somewhat, a bit more thought
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yields a substantially greater extension. First of all, with wavelet coefficients
which are uncorrelated, (14) represents a first-order recursion in scale that
is driven by white noise. However, as we know from time series analysis,
white-noise-driven first-order systems yield a comparatively small class of
processes which can be broadened considerably if we allow higher-order dy-
namics, which can either be captured as higher-order difference equations in
scale, or, as we do here, as first-order vector difference equations. As fur-
ther motivation for such a framework, note that in sensor fusion problems
one wishes to consider collectively an entire set of signals or images from a
suite of sensors. In this case one is immediately confronted with the need to
use higher-order models in which the actual observed signals may represent
samples from such a model at several scales, corresponding to the differing
resolutions and modalities of individual sensors.

Thus the perspective we adopt here is to view multiscale representations
more abstractly than in the wavelet transform, by using the notion of a state
model in which the state at a particular node in our lattice captures the
features of signals up to that scale that are relevant for the "prediction" of
finer-scale approximations. As we will see, this leads us to a model class that
includes the wavelet representation of (14) as a special case and that leads
to extremely efficient processing algorithms. In the next section we intro-
duce our framework for state space models evolving in scale, and we show
that the wavelet transform plays a central role in the analysis of the eigen-
structure of these processes. This fact is then used in Section 3 to construct
scale-recursive, and highly parallel algorithms for optimal smoothing for such
processes given data at possibly a number of different scales. In Section 4
we then investigate an important issue in the practical application of these
ideas, namely the issue of applying the wavelet transform to finite-length
data. The typical approach is to base the transform on cyclic convolutions
rather than on linear convolutions and to perform the scale by scale recursion
up to some specified coarse scale. We present a more general perspective on
the problem of adapting the wavelet transform to finite-length data which in-
cludes as a special case the approach using cyclic convolutions as well as other
approaches which provide modifications of the wavelet transform to provide
Karhunen-Loeve expansions of windowed multiscale processes. In Section 5
we illustrate the promise of our multiscale estimation framework by applying
it to smoothing problems for lst-order Gauss-Markov processes, including
problems involving the estimation of such processes based on multiresolution

5



data. Additional experimental results for other processes, including 1/f-like
fractal processes can be found in [5].

2 Multiscale Processes on Lattices

In this section we define our class of multiscale state space models and analyze
their eigenstructure. We develop our ideas for the case of the infinite lattice,
i.e., for signals and wavelet transforms of infinite extent. In Section 4 we
discuss the issue of adapting the wavelet transform and our results to the
case of finite-length data.

Consider an infinite lattice corresponding to a wavelet whose scaling filter,
h(n), is an FIR filter of length P. Recall that in the wavelet transform of a
signal f each level of the lattice can be viewed as the domain of an 12 sequence,
namely f(m, .) = f(m). In our generalization of the dynamic model (15) we
think of each level of the lattice as corresponding to a vector 12 sequence
x(m) = x(m, .), where x(m, n) can be thought of as the vector state of our
multiscale model at lattice node (m, n) and x(m) as the representation at
scale m of the phenomenon under study.

To motivate our general model let us first consider the synthesis equation
(14) driven by uncorrelated wavelet coefficients d(m, n), where the variances
are constant along scale but varying from scale to scale. In this case we
obtain the following stochastic dynamic state model where we define the
scale index m from an initial coarse scale L to a finest scale, M, and where
we assume that the coarsest scaling coefficients f(L,n) are uncorrelated.
Thus, with x(m) corresponding to f(m, ) and w(m) to d(m, ) we have for
m = L,L+ 1,...,M-1

E[x(L)x(L)T ] = AL (17)
= ALI

x(m + 1) = Hmx(m) + Gmw(m) (18)

E[w(i)w(i)T ] = Ai (19)

= i, i = L,L + 1,...M-1

Note that if we let Ai = a22- vi , this model is precisely the one considered in
[26, 27] for modeling a 1/f-type process with spectral parameter .
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The model class we consider in this paper is a natural generalization
of (17)-(19). In specifying our model we abuse notation and use the same
notation Hm, Gm for the coarsening and differencing operators defined as in
(9,10) where f(m, n) is a vector. With this convention our model takes the
following form for m = L, L + 1,...M- 1

E[x(L)x(L)T ] = Px(L) (20)

x(m + 1) = HmA(m + l)x(m) + B(m + l)w(m + 1) (21)
E[w(i)w(j)T ] = Q(i)Si_j, i= L + 1, ... M (22)

where

A(m) - diag(..., A(m),...A(m),...) (23)

B(m) diag(...,B(m), ... B(m),...) (24)

Q(m) - diag(...,Q(m), ... Q(m),...) (25)
'P(L) = diag(..., P(L), ... P(L), ... ) (26)

and where A(m), B(m), Q(m), and Px(L) are finite-dimensional matrices rep-
resenting the system matrix, the process noise matrix, the process noise co-
variance matrix, and the initial state covariance matrix, respectively.

If we let x(m, n) and w(m, n) denote the components of x(m) and w(m),
respectively, the model (21) can be written in component form as

x(m + 1, n) = h(2k - n)A(m)x(m, k) + B(m)w(m, n) (27)
k

where the w(m, n) are white with covariance Q(m). Comparing (21), (27)
to (14), (18) allows us to make several observations. In particular, (21) is
indeed a generalization of (18). This might not appear to be obvious since
the driving noise term in (21) does not involve the differencing operator Gm.
However, if we examine (21) and define

u(m) = Gmw(m) (28)

then, thanks to (7) or (12) and the fact that the covariance of w(m, n) varies
with m but not n, we find that the yL(m, n) are white with covariance AmI,
that varies with m but not n. That is, (18) is exactly of the form of (21),
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with x(m,n), w(m,n) scalar and A(m) = B(m) = 1. By augmenting our
model class to include finite-dimensional state vectors defined on lattices, we
allow for the possibility of higher-order models. This allows us to consider a
considerably richer class of processes which is parametrized by the matrices
corresponding to our state model. Note also that this model bears resem-
blance to Laplacian Pyramid schemes[4] where the added detail in going from
one scale to the next is not constrained by the differencing operator Gm.

As mentioned in the introduction, the model (17)-(19) yields a covari-
ance with eigenstructure given by the wavelet transform, and it is this fact
that is used in [26, 27] to develop efficient processing algorithms for 1/f-like
processes. As we now state, the same is true for our more general model
(21), where in this generalization we focus on what can be thought of as
the "block" eigenstructure of the process x(m). That is, if x(m,n) is d-
dimensional, the discrete wavelet transform of the signal x(m, .) for each m
yields an uncorrelated set of random vectors. To see this, let us examine the
covariance R,,(m) of x(m), where, if we use the fact that the block-diagonal
operators A(m), B(m), Q(m), P7(L) and their adjoints commute with the
operators Hm, Hm, we find that

R,= (m) E[x(m)x(m) r] (29)
rnm-1 i=L

= ( (m - 1, L)P,(L) (m - 1, L))( I H*)( II Hi)
i=L m-1

m-1 m-1 k

+ E (T(m - 1, k)8(k)Q(k)13*(k)T(m- 1, k))( I Hi)( jII Hi)
k=L+l i=k i=m-1

+ B(m)Q(m)B*(m)

where for i > j
I i= (

i A(i)(i- 1,j) i > (30)

Let us next define a sequence of block unit vectors as follows.

ij - [ -., Od. Od, Id, Od, .. Od, ... ]T (31)

ith

where the superscript j is used to denote that the vector (in (12)d) corresponds
to the jth scale of the lattice and where Id is the d x d identity matrix (and



0d the d x d zero matrix). Note that in the present context the superscript
j is completely superfluous notation. However, in Section 4 we consider the
extension of the ideas presented here and in the next section to the case of
finite length signals. In this case the (finite) lengths of the vectors x(m)
vary with m, as will the dimensions of the block unit vectors analogous to
(31). As we will see, with changes in definitions of quantities such as &6, the
following result on the block-eigenstructure of R_,(m), as well as the results
of Section 3, hold in essentially unchanged form for the finite length case.

Lemma 2.1 The block vectors if(m), v$ (m) for 1 = L,...m - 1 and for
i, n E Z are block-eigenvectors of the correlation matrix at scale m, R,,(m),
where

m-1

;U (m) ( = I H;)1 )(32)
j=L

and
m-1

vl (m) ( I H )G (33)
i=l+1

The following holds:

Rz(m)T(m) = diag(...,.L(m),...AL(m),...)Tf(m) (34)

RT(m)vl (m) = diag(..., Aj(m), ... At(m), .. )v (m) (35)

for = L,...m- 1, i, n E Z where AL(m), Ai(m) are d x d matrices of the
form

m

AL(m) = i (1(k,L)B(k)Q(k)BT(k)T(k, L)) + 4(m- 1, L)Px(L)rT(m- 1,L)
k=L+l

(36)
m

AI(m) = E (,(k, l)B(k)Q(k)B T (k)DT (k, 1)) (37)
k=1+1

where

(iD ) i j (38)· (ii) = A(i)D(i- 1,j) i > (38)

The details of the proof of this result can be found in [5]. Rather than
present these details here, we provide a simple interpretation of them which
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will also be of value in understanding the optimal estimation algorithms
presented in the next section. Specifically, for m = L,..., M - 1 define the
following transformed quantities, where j in (39) runs from I through m - 1
and k from -oc to + oo in (39), (40):

zj,k(m) a (vj(m))T x(m) (39)
UL,k(m) (VL(m))Tx(m) (40)

From (15) and (32, 33) we see that what we have done is to take the
partial discrete wavelet transform decomposition of each component of the
d-dimensional x(m, n) viewed, for m fixed, as a discrete-time signal with time
index n. That is, starting with x(m, ) we have first peeled off the finest level
of the wavelet transform Zm-l,k(n), viewed as a discrete signal with index
k, and then have computed successively coarser wavelet coefficients, through
zL,k(m), also producing the coarse scaling coefficients uL,k(m).

What the lemma states is that all of these variables, i.e., the set of d-
dimensional vectors zj,k(m) and uL,k(m) for all values of j and k are mutually
uncorrelated. Indeed much more is true, in that these variables in fact evolve
in a statistically decoupled manner as a function of m. Specifically, if we
transform both sides of (21) as in (39), (40), and use (11)-(13) and the
commutativity of the operators in (23)-(26) with H, and G*,, we obtain the
following transformed dynamics for m = L,..., AM- 1. First, the coarsest
signal components evolve according to

uL,k(m + 1) = A(mn + l)uL,k(m) + B(m + l)rL,k(m + 1) (41)

where rL,k(m + 1) is the coarse wavelet approximation of w(m + 1, .), i.e., 2

rL,k(m + 1) = (vL(m + 1))Tw(m + 1) (42)

and where the initial condition for (41) is simply the coarse scale signal itself:

UL,k(L) = x(L, k) (43)

2Note that we are again abusing notation since w(m, n) may have dimension q : d. In
this case the only needed modifications are to use q-dimensional identity and zero matrices
in (31) and similar q-dimensional versions of the operators Hk and Gk.
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Next, the wavelet coefficiets at different scales evolve according to

zj,k(m + 1) = A(m + 1)zj,k(m) + B(m + 1)sj,k(m + 1) (44)

for j = L,..., m - 1, and where

sj,k(m + 1) = (vj(m + 1))Tw(m + 1) (45)

are the corresponding wavelet coefficients of w(m + 1, ). Finally, as we move
to scale m + 1 from scale m we must initialize one additional finer level of
wavelet coefficients:

zm,k(m + 1) = B(m + 1)sm,k(m + 1) (46)

What we have determined via this transformation is a set of decoupled
ordinary dynamic systems (41), (44) where this set is indexed by k in (41)
and by j = L,...m - 1 and k in (44), where m plays the role of the "time"
variable in each of these models, and where at each "time" m + 1 we initialize
a new set of models as in (46). More importantly, thanks to (11)-(13) and
(25), (26) the initial conditions and driving noises, x(L, k), rL,k(m + 1), and
sj,k(m + 1) are mutually uncorrelated with covariances P,(L), Q(m + 1), and
Q(m + 1), respectively, so that these models are statistically decoupled as
well. From this fact the lemma essentially follows immediately, with the
identification of AL(m) as the covariance of uL,k(m) (for any value of k),
which evolves according to

L(m + 1) = A(m + 1)L(m)AT (m+ 1)+B(m+ )Q(m + 1)B(m+ 1) (47)

with initial condition
AL(L) = P,(L) (48)

Similarly, At(m) is the covariance of zl,k(m) which also evolves according to
a Lyapunov equation exactly as in (47), but from initial condition at the
(l + 1)st scale:

A1(l + 1) = B(l + 1)Q(I + 1)BT(I + 1) (49)

3 Wavelet-Based Multiscale Optimal Smooth-
ing

In this section we consider the problem of optimally estimating one of our
processes as in (21) given sensors of varying SNR's and differing resolutions.

11



An example where this might arise is in the case of fusing data form sensors
which operate in different spectral bands. We formulate this sensor fusion
problem as an optimal smoothing problem in which the optimally smoothed
estimate is formed by combining noisy measurements of our lattice process at
various scales. In other words each sensor is modeled as a noisy observation
of our process at some scale of the lattice.

Consider the following multiscale measurements for m = L, L + 1, ... M.

y(m) = C(m)x(m) + v(m) (50)

where

C(m) - diag(...,C(m), ... C(m),...) (51)

14(m) - diag(..., R(m),...R(m),...) (52)
E[v(i)v(j)T ] = 1(i)Si_j (53)

and where C(m) is a b x d matrix and R(m) is a b x b matrix representing
the covariance of the additive measurement noise.. Note that the number of
sensors, the resolution of each sensor, and the precise spectral characteristics
of each sensor are represented in the matrix C(m). For example if there were
simply one sensor at the finest scale, then C(m) = 0 for all m except m = M.

We define the smoothed estimate, denoted as xs(m), to be the expected
value of x(m) conditioned on y(i) for i = L, L + 1, ... M; i.e.

xS(m) = E[x(m)Iy(L),...y(M)] (54)

We define the coarse-to-fine filtered estimate, to be the expected value of
x(m) conditioned on y(i) for i = L, + 1, ... m; i.e

x(mlm) = E[x(m)ly(L),...y(m)] (55)

We define the coarse-to-fine one-step predicted estimate to be the ex-
pected value of x(m) conditioned on y(i) for i = L, L + 1, ... m - 1; i.e

:(mlm - 1) = E[x(m)ly(L),...y(m - 1)] (56)

From standard Kalman filtering theory, we can derive a recursive filter
with its associated Riccati equations, where the recursion in the case of our
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lattice models is in the scale index m. We choose to solve the smoothing
problem via the Rauch-Tung-Striebel(RTS) algorithm[22]. This gives us a
correction sweep that runs recursively from fine to coarse scales with the
initial condition of the recursion being the final point of the Kalman filter.
The following equations describe the "down" sweep, i.e. the filtering step
from coarse to fine scales.

For m = L, ... , M:

5(mlm - 1) = Hm_,A(m)i(m - llm - 1) (57)
:(mlm) = 4(mlm - 1) + kC(m)[y(m) - C(m):(mlm - 1)] (58)

KC(m) = P(mIm- 1)C*(m)S(m) (59)
S(m) = (C(m)7P(mlm- 1)C*(m) + R(m))- ' (60)

P(mlm- 1) = Hm_iA(m)P(m - lim - 1)A*(m)Hm_l

+ B3(m)Q(m)L3*(m) (61)
P- 1(mlm) = P-(mlm - 1) + C*(m)1Z 1(m)C(m) (62)

with initial conditions

4(LIL- 1) = 0 (63)

P(LIL- 1) = P.(L) (64)

We also have the following equations for the correction sweep of the Rauch-
Tung-Striebel algorithm, i.e. the "up" sweep from fine to coarse scales.

For m = M-1, M - 2,...L+ 1,L:

x3 (m) = x(mlm) + P(mlm)A*(m + 1)HmP-l(m + l1m)[xs(m + 1) - x(m + llm)]

(65)

'P(m) = P(mlm) + E(m) [(m + 1) - P(m + llm)] E*(m) (66)
E(m) = P(mim).A*(m + 1)Hm P-'(m + ljm) (67)

with initial conditions

xs(M) = .(MIM) (68)

PS(M) = P(MIM) (69)

Note that we could equally have chosen to start the RTS algorithm going from
fine to coarse scales followed by a correction sweep from coarse to fine, i.e.
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an up-down rather than the down-up algorithm just described. This involves
defining the filtered and one-step predicted estimates in the direction from
fine to coarse rather than coarse to fine. Similarly we could also construct a
so-called two-filter algorithm [22] consisting of parallel upward and downward
filtering step. Details on these variations are found in [5].

The smoothing algorithm described to this point involves a single smoother
for the entire state sequence x(m) at each scale. However, if we take advan-
tage of the eigenstructure of our process and, more specifically, the decoupled
dynamics developed at the end of the preceding section, we can transform
our smoothing problem into a set of decoupled 1D RTS smoothing prob-
lems which can be computed in parallel. Specifically, define the following
transformed quantities.

zj,k(mlm - 1) - (vk(m)) T '(mlm - 1) (70)

Pj,k(mlm - 1) A (vk(m)) T P(m1m - 1)vj(m) (71)

zj,k(mlm) - (vk(m))T'(mlm ) (72)

Pjk(mlm) - (vj(m))TP:(mIm)vj(m) (73)

uL,k(mlm - 1) - (v-(m))T5(mIm - 1) (74)

PL,k(mm--1) - ( L(m))Tp(mm - 1)vk(m) (75)

L,k(mm) ((m))T(mm) (76)

PL,k(mlm) = ((m))TP(mm)(m) (77)

z;,(m) - (v(m))Tx (m) (78)

Pjk(m) - (vk(m))TP"(m)v~(m) (79)

zL( ) ( VL(m)) x(m) (80)

L I,k(m) - (VL(m))Tp,(m)VL(m) (81)

These quantities represent the transformed versions of the predicted, filtered,
and smoothed estimates in the Rauch-Tung-Striebel algorithm, along with
their respective error covariances, in the transform domain. We also need
to represent the transformed data, where the data at each scale, y(m) has
components which are finite-dimensional vectors of dimension b x 1. We
represent these vectors using eigenvectors as in (32), (33), where in this case
the blocks in (31) are b x b:
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yL,k(m) _ (Uk(m))Ty(m) (83)

As before for each scale m, where m = L + 1, ... M, the index ranges are j =
L, ... , rm- and -oo < k < oo. That is, for each m other than at the coarsest
scale, L, we transform our quantities so that they involve eigenvectors whose
coarsest scale is L.

We now can state the following, which follows directly from the analysis
in the preceding section :

Algorithm 3.1 Consider the smoothing problem for a lattice defined over a
finite number of scales, labeled from coarse to fine as m = L, L + 1, ... M. The
following set of equations describes the solution to the smoothing problem,
transformed onto the space spanned by the eigenvectors of R,,(m), in terms
of independent standard Rauch-Tung Striebel smoothing algorithms.

DO WN S WEEP:
For j = L, L + 1, ... M - 2 and k E Z:

zj,k(mlm- 1) = A(m)~j,k(m - llm- 1) (84)

Pj,k(mlmr- 1) = A(m)Pj,k(m - lrm - 1)AT (m) + B(m)Q(m)BT (m)

(85)

m = j+2,j+3,...M

with the initial conditions for j = L, L + 1, ... M - 1 and k E Z

Zj,k(i + lj) = 0 (86)

Pj,k(j + lij) = B(j + 1)Q(j + 1)BT (j + 1) (87)

For j = L, L + 1,...M-1 and k E Z:

zj,k(mlm) = ij,k(mrm - 1) + Kj,k(m)(Yj,k(m ) - C(m):j,k(mJm- 1))
(88)

--jl(nmj) = P^,(mlm- 1) + C T (m)R-'(m)C(m) (89)

m = j + ,j +2,...M

,k(M) - ((m))k (m) (90)
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For k E Z we have

uL,k(mlm- 1) = A(m)ilL,k(m- lirM- 1) (91)
PL,k(mlm -1) = A(m)PL,k(m- Ilm- 1)AT(m) + B(m)Q(m)BT (m)

(92)
rm = L+1,L+2,...M

with the initial conditions

uL,k(LIL- 1) = 0 (93)

PL,k(LIL- 1) = P.(L) (94)

For k E Z we have

uL,k(mlm) = UL,k(mlm - 1) + kL,k(m)(L,k((m) - C(m)iL,k(mlM - 1))

(95)

Pk(I(mim) = PI(mI m- -1) + C T (m)R-l(m)C(m) (96)
m = L, L+ 1,...M

kfL,k(m) - (k (m))T C(m)VT(m) (97)

UP SWEEP:
For j = L, L + 1,...M-1 and k E Z

ZJ'k(rn) = zj,k(mlm) + Pj,k(mlm)AT(m + 1)Pj,(m + 1!m)[zJ,k(m + 1) - Zj,k(m + 11m)]

(98)

Pj,k(m) = Pj,k(mlm) + E-j,k(m) [Pjk(m + 1) - Pj,k(m + 1m)] Ejk(m) (99)

Ej,k(m) = Pj,k(mlm)AT(m + 1)Pjk(m + lrm) (100)
m = M-1,M-2,...j+2,j +1 (101)

with initial condition

Z;,k(M) = Zj,k(MIM) (102)

Pj,k(M) = Pj,k(MIM) (103)
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desired at some scale L < m << M, we use the wavelet synthesis equation
(15) to construct it from its coarse scale approximation ,L ,k(m) and its finer
scale wavelet coefficients Z,k for scales j = L,..., m - 1. Thus, the overall
procedure is of complexity O(IN).

Let us make several closing comments. First, as the preceding complexity
analysis implies, the algorithm we have described can be adapted to finite
length data, with appropriate changes in the eigenvectors/wavelet transform
to account for edge effects. This extension is discussed in the next sec-
tion. Secondly, note that if only finest-scale data are available (i.e. only
C(M) $ 0), our smoothers degenerate to coefficient-by-coefficient static es-
timators (i.e. each wavelet coefficient in (82) , (83), at scale m = M is
used separately to estimate the corresponding component of x(M)), which
is an algorithm of exactly the same structure as that in [27] for the particu-
lar choice of parameters in the scalar version of our model corresponding to
1/f-like processing.

Finally, it is important to note that the transform method of parallelizing
the smoothing problem, used here and in [27], requires the matrix C(m)
in (50) to have constants along the diagonal for all m, i.e. that the same
measurements are made at all points at any particular scale. The case of
missing data at a given scale is an example in which this structure is violated.
This is relevant to situations in which one might want to use coarse data to
interpolate sparsely distributed fine data. This problem can be handled via
an alternate set of efficient algorithms using models based on homogeneous
trees. We refer the reader to [5, 30] for details.

4 Finite Length Wavelet Transforms

In this section we discuss the problem of adapting the wavelet transform,
thus far defined only for infinite sequences, to the case of finite-length se-
quences, i.e. producing a transform that maps finite-length sequences into
finite-length sequences. This is a topic of considerable current interest in
the wavelets literature, [31], as the effects of windowing in wavelet trans-
forms are not as well-understood as those for Fourier analysis. To begin,
note that both the analysis and synthesis equations, (9,10,14), for comput-
ing the wavelet and scaling coefficients are defined as operations on infinite
length sequences. Adapting these equations to the case of finite length se-
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For k e Z

zL,k(m) = Uj,k(mlm) + Pj,k(mlm)AT(m + 1)Pj-, (m + lIm)[;,k(m + 1) - uj,k(m + ilm)]
(104)

PL,k(m) = Pj,k(mlm) + Ej,k(m) [Pjk(m + 1) - Pj,k(m + rm)] (ESk)T(m) (105)

E'j,k(m) = Pj,k(mlm)A T (m + 1)PT.(m + lIm) (106)
m = M-1,M-2,...L + 1,L (107)

with initial condition

ZL,k(M) = fiL,k(MIM) (108)

PL,k(M) = PL,k(lMlM) (109)

Note that our algorithm is highly efficient in that we have transformed the
problem of smoothing what are, in principle, infinite dimensional or, in the
case of windowed data, very high-dimensional vectors, to one of smoothing
in parallel a set of finite dimensional vectors. Also, the smoothing procedure
takes place in scale rather than in time, and for finite data of length N
this interval is at most of order logN, since each successively coarser scale
involves a decimation by a factor of 2. Note also that as we move to finer
scales we pick up additional levels of detail corresponding to the new scale
components (46) introduced at each scale. This implies that the smoothers
in our algorithm smooth data over scale intervals of differing lengths: of
length roughly logN for the coarsest components (since data at all scales
provide useful information about coarse scale features) to shorter length scale
intervals for the finer scale detail (since data at any scale is of use only for
estimating detail at that scale or at coarser scales, but not at finer scales).
This structure is illustrated in Figure 2.

Let us next analyze the complexity of our overall algorithm for smoothing
our lattice processes. We first transform our data using the wavelet trans-
form which is fast: O(IN) where N is the number of points at the finest
scale and I is the length of the QMF filter. We then perform in parallel
our 1D smoothers. Even if these smoothers are computed serially the total
computation is O(IN). After performing the parallel 1D smoothers on these
transformed variables an additional inverse transformation is required, which
is performed again using the inverse wavelet transform. That is if ?s(m) is
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quences while preserving both the orthogonality and the invertibility of the
transformation proves to be non-trivial for the following reason. Take a 10-
point sequence, x(n), and consider performing its wavelet transform using a
QMF filter, h(n), of length four. To compute the scaling coefficients at the
next coarsest scale we apply (9) to x(n), resulting in a scaling coefficient se-
quence, c(n), which is of length 6 (the linear convolution results in a 13-point
sequence, while the downsampling by a factor of two reduces this to a 6-point
sequence). Similarly, by applying (10) to x(n) we get a wavelet coefficient
sequence, d(n), which is also of length 6. Thus, the overall transformation
from the nonzero portion of {x(n)} to the nonzero portions of {c(n), d(n)}
in this case is a map from Rio' to R1 2, which makes it impossible for it to
be invertible. This example is illustrated Figure 3, where x(n) is defined as
indicated on the first level of a truncated lattice and {c(n), d(n)} are mapped
into the second level where the lattice branches are illustrated for the case
where the operators Hi, Gi correspond to a QMF filter, h(n), of length four
and only branches connecting to points in the nonzero portion of x(n) are
shown.

Thus, we can already see the fundamental problem in trying to develop
an orthonormal matrix transformation based on the wavelet transform. At
each scale we must have a well-defined orthonormal transformation from our
approximation at that scale into its scaling coefficients and its wavelet coeffi-
cients at the next coarsest scale. To see how this can be done it is sufficient to
focus on our previous example involving the map from x(n) into {c(n), d(n)}.
We can write the transformation in our example explicitly as follows. We
denote our 4-tap QMF filter, h, as a row vector [ ho hi h2 h3 ]. Sim-
ilarly, our filter, g, is denoted as [ go gl g2 g3 ] where from (6) - (8) a
valid choice of g is

[ go g 92 93 ]=[h3 -h 2 hi -ho ] (110)

If we think of the non-zero portion of our sequence x(n) as a vector, x, in
R i0 and the non-zero portions of c(n), d(n) as vectors, c and d, in RT6 , our
maps x(n) -+ c(n) and x(n) '-+ d(n) can be thought of as the following 6 x 10
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matrices.

h2 h3 0 0 0 0 0 0 0 0
ho hi h2 h3 0 0 0 0 0 0

- O O0 ho hi h2 h3 0 0 0 0
H 0 0 0 0 ho hi h2 h3 0 0 (111)

0 0 0 0 0 0 ho hi h2 h3

0 0 0 0 0 0 0 0 hO ho i

g2 3 0 0 0 0 0 0 0 0
go gl g2 93 0 0 0 0 0 0

G - 0 0 go glg2g 0 0 0 0
O O O O go gg 2g 3 0 (112)
0 0 0 0 0 0 go go g9 g3
0 0 0 0 0 0 0 0 go gl

where

c = Hx (113)

d = Gx (114)

Note that c and d are precisely the non-zero portions of the sequences
one obtains by applying the operators Hi, Gi to x(n). Thus, we can in fact
reconstruct x(n) from c,d using our synthesis equation, eq.(16). In matrix
notation

x = HTc + GTd (115)

If we denote our overall map x - c, d as the 12 x 10 matrix

U = G ] (116)

then (115) says that UTU = I. Note, however, that it is not the case that
UUT = I, since U is not even square. That is, while it is true that the finite
dimensional version of (16), namely HTH + GTG = I, holds, the following
conditions do not hold:

HHT = I (117)

GGT = I (118)

GHT = 0 (119)

20



The failure of these conditions to hold is due primarily to the first and last
rows of H and G. In Figure 3 these correspond to the averaging performed
at the edges of both ends of the lattice. Note that the rows of H are mutu-
ally orthogonal and the rows of G are mutually orthogonal. The reason for
(117,118) is simply the fact that the edge rows of H and G are not normal-
ized so that their inner products equal one. The reason for (119) is the fact
that the edge rows of G are not orthogonal to the edge rows of H.

If we want our overall transformation, U, to be orthonormal, we must
somehow eliminate two of its rows. Note that if we eliminate the first and
last rows of the matrix H we get

ho hi h 2 h3 0 0 0 0 0 0

0 0 ho h I h 2 h3 0 0 0 0

0 O O 0 h0 hi h2 h3 0 0 (120)
O O O O 0 ho hi h2 h3

In this case (117) and (119) do hold with H replacing H, but (118) does
not quite hold due to the fact that the the first and last rows of G are not
properly normalized. Examining G in detail and using the QMF property in
(7) we see that

a 0 00 0
0 1 0 00 0

GGT= 0 0 1 0 0 (121)
000010 0
0 0 0 0 1 0
0 00 0 b

where

a = g22+3 (122)

b = go + (123)

Thus, we can satisfy (118) simply by normalizing the first and last rows of
G by a and b, respectively.

The resulting transformation maps our length 10 signal x into scaling
coefficients c of length 4 and wavelet coefficients d of length 6. This has the
following interpretation. While U maps the nonzero portion of x(n) into the
nonzero portion of its wavelet coefficients, d(n), at the next coarsest scale,
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normalizing the coefficients at the edges, it maps the nonzero portion of x(n)
into the nonzero portion of its scaling coefficients, c(n), while zeroing the two
scaling coefficients at the edges. Note that if we perform our transformation
recursively in scale, at scale each scale we end up with scaling coefficients
which are zeroed at the edges, leaving us with fewer and fewer scaling coef-
ficients as we go to coarser scales. If we take our example one step coarser
in scale, i.e. we apply the same idea used to create U on the scaling coeffi-
cients c, we end up mapping c into one scaling coefficient and three wavelet
coefficients at the next coarsest scale. The overall two scale decomposition
results in scaling coefficients defined on the lattice in Figure 4. The resulting
wavelet coefficients reside on the lattice in Figure 5, where the dotted lines
represent averaging at the edges due to the normalization of the gi's.

Note that if we consider a QMF pair of length greater than 4, there
are more edge rows of G, and the required modification to these is more
than simple normalization. For example if the filter is of length 6, then the
corresponding H operator, with the edge rows removed has the form

ho hi h 2 h3 h4 h5 00 0 O
0 O ho hi h 2 h3 h4 h5 0 ... 0

H= . . (124)
0 ... 0 0 ho hi h 2 h3 h4 h5 0 0

0 ... h0 0 0 0 ho hi h2 h3 h4 h5

and the corresponding G matrix, including the edge rows, is

g4 g5 0 0 0 0 0 0 ... 0

92 g3 94 95 0 0 0 0 ... 0

9o gl g2 g3 94 95 0 0 ... 0

0 0 go 91 92 g3 g4 g5 0 ... 0

G = . . (125)

0 ... 0 0 90 91 g2 93 94 95 0 0

0 -.. 0 0 0 0 go90 91 92 93 94 95

0 ...-- 0 0 0 0 0 0 go gi g2 93

0 ... 0 0 0 0 0 0 0 0 go gl

The point now is that each of the two pairs of edge-rows in (125) is not
only not normalized but also not an orthogonal pair. Consequently we must
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Gram-Schmidt orthonormalize each of these pairs. This changes the values
of the nonzero coefficients in the edge rows but does not introduce additional
nonzero entries, so that the local nature of the wavelet calculations is still
preserved. More generally, if we have a QMF of length P (which, to satisfy
the QMF conditions, must be even), we must perform two Gram-Schmidt
orthonormalizations of sets of P/2 vectors.

Note that the coefficients d(n) and c(n) play a symmetric role in our
procedure, and thus we could equally well have zeroed the edges of of our
wavelet coefficients d(n) rather than our scaling coefficients c(n) or could
have zeroed out the scaling coefficients at one end of the signal and the
wavelet coefficients at the other. In addition there are other possible ways
in which to modify the edge rows of H and G to achieve orthogonality, the
most common being cyclic wrap-around. We refer the reader to [31] and [5]
for further discussion of these variations, as we focus here on the one we have
just described, as it is this form that yields the correct eigendecomposition
for a windowed version of the state model described in the preceding section.

In particular, we specify our model on a finite lattice as follows for m =
L, L + 1,...M-1,

E[x(L)x(L)T ] = Px(L) (126)

x(m + 1) = HTmA(m + 1)x(m) + B(m + 1)w(m + 1) (127)
E[w(i)w(j)T] = Q(i)_j, i = L + 1,...M (128)

where

A(m) - diag(A(m),...A(m)) (129)

B(m) _ diag(B(m),...B(m)) (130)

Q(m) - diag(Q(m),...Q(m)) (131)

x(L) - diag(P,(L),...Px(L)) (132)

Here A(m), B(m), Q(m), and Px(L) are as before, x(m) and w(m) represent
the finite vectors of variables x(m, n) and w(m, n), respectively, at the finite
set of nodes at the mth scale, and Hm and Gm are the counterparts of the
operators Hm and Gm adapted to the case of finite intervals by removing edge
rows of Hm and orthonormalizing those of Gm (note that here we again allow
these wavelet operators to act on vector signals component-by-component).
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Note that the dynamics (127) are not square, since over a finite interval we
increase the number of scaling coefficients as we move from coarse to fine
scales. For example if scale L consists of a single root node and if we use
QMF's of length 4, our dynamics evolve on the finite lattice of Figure 4 from
coarse to fine scales, yielding a stochastic process at a sequence of resolutions
on a finite interval. As we have indicated, the block-eigenstructure of our
finite-lattice process is precisely as we derived in the previous section, except
that we now must use the modified wavelet transform on a finite interval, as
determined by the sequence of operators Hmn, Gm. To make this precise, let
f (m) denote the number of nodes on our finite lattice at scale m = L, ... , M,
where for a length P QMF we can easily check that

f(i + 1) = 2f(i) + P - 2 (133)

Define the block unit vectors

i - [d,...,Od, Id ,Od, ...Od] (134)

ith

where the superscript j is again used to denote that the vector (now in
Zf(j)xd) corresponds to the jth scale of the lattice and where Id is the d x d
identity matrix (and 0d the d x d zero matrix). The block vectors vU(m),
v,(m) for I = L,...m - 1 and for i = 0, 1, 2...f(L)-1 and n = 0, 1,2...f(1)-1
are block-eigenvectors of the correlation matrix of the process at scale m,
R,,(m), where

m-1
f(m) (fI Hf)S[i (135)

j=L

and
m-1

v() - ( T= H" )GT an (136)
i=l+l

As we did for the infinite case we can now transform the smoothing problem
using a wavelet basis composed of the block vectors i4l(m) and vi (m). Our
transformed variables are formed as in eq.'s(70-81), except that now we have
a finite number of variables to estimate. In particular for each scale index,
j, the translation index k ranges from 0 to f(j)- 1. The wavelet transform
smoothing algorithm developed in the preceding section then applies.

24



5 Numerical Examples

In this section we illustrate the use of our multiscale estimation framework
for solving estimation problems involving both single scale as well as mul-
tiscale data. We do this by focusing on problems involving estimation of
first-order Gauss-Markov processes. We have chosen this process as it is a
frequently-used and well-understood and accepted model and it cannot be
exactly modeled using the multiresolution framework. Thus we can demon-
strate the richness of our models in approximating well-known processes by
comparing the performance of our smoother, using model parameters chosen
so as to well-approximate the Gauss-Markov process, with the performance
of standard smoothers. Our examples indicate that our multiscale models
do rather well both in modeling important classes of processes and as the
basis for constructing computationally efficient algorithms. For first-order
Gauss-Markov processes there, of course, already exist efficient estimation
algorithms (Wiener and Kalman filters). However, these algorithms apply
only in the case of pointwise measurement data. On the other hand, our
multiscale modeling framework allows us to incorporate data at a set of res-
olutions with no increase in algorithmic complexity. We demonstrate the
potential of this capability by fusing multiscale data for the estimation of a
Gauss-Markov process, illustrating how the use of coarse-scale data can aid
in estimating features which are not discernible using fine-scale data of poor
quality. We refer the reader to [5] for other examples of the application of
our framework, including the fusion of multiscale data for the 1/f-processes
introduced in [26, 27]

5.1 Processes and Multiscale Models

Consider the following stationary 1st-order Gauss-Markov process.

i(t) = -3x(t) + w(t) (137)

E[x2 (t)] = 1 (138)

This process has the following correlation function and associated power
spectral density function.

Oxx(r) = e-,3ll (139)
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$S.(w) = w2 23 2 (140)

In the numerical examples that follow we use a discretized version of
(137). In particular we use a sampled version of (137) in which the sampling
interval is small enough to minimize any aliasing effects. We choose /3 = 1
and take the sampling rate to be twice wo where S~(wo) = .002, S,,(w) being
the power spectral density function of x(t). This yields a sampling interval
of A = 7r/wo where wo = 30. Our discretized model is as follows.

x(t + 1) = ax(t) + w(t) (141)
E[x2(t)] = 1 (142)

c = e- P - .9006 (143)

We consider the following measurements of x(t).

y(t) = x(t) + v(t) (144)
E[v2 (t)] = R (145)

Y = {y(t)lt = 0,...N-1} (146)

In the examples that follow we take the interval length N = 128.
Figure 6 is a gray-scale image of the covariance matrix of our stationary

first order Gauss-Markov process defined on a finite interval, corresponding
to the model in (141). Note that thanks to the normalization (138), what
is displayed here is the array of correlation coefficients of the process, i.e.
the covariance between two points normalized by the product of the stan-
dard deviation at each point. The diagonal of the matrix thus is unity, and
the off-diagonal terms decay exponentially away from the diagonal. In [11]
this correlation coefficient matrix is transformed using various wavelet bases,
i.e. the matrix undergoes a similarity transformation with respect to the
basis representing the wavelet transform based on a variety of QMF filters,
h(n). This transformation corresponds essentially to the separable form of
the 2D wavelet transform[16]. Figures 7,8 are the images of the correlation
coefficient matrix in Figure 6 transformed using QMF filters of length 2 and
8, respectively. That is, these are the correlation coefficient matrices for
the multiscale wavelet coefficients of a finite length segment of a 1st-order
Gauss-Markov process, where the finest level wavelet coefficients are located
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in the bottom half of the coefficient vector, the next coarser level coefficients
comprise the next fourth of the vector, the next set fills the next eighth, etc.
Note that aside from the finger-like patterns in these images, the off-diagonal
elements are essentially zeroed. The finger patterns correspond to correla-
tions between wavelet coefficients at different scales which share the same
location in the interval. Note that even these correlations are weak. Further-
more, since the variances of many of the wavelet coefficients are actually quite
small, the normalization we have introduced by displaying correlation coef-
ficients actually boosts the magnitude of many of the off-diagonal terms, so
that the approximate whitening of this process performed by wavelet trans-
forms is even better than these figures would suggest. Note that analogous
observations have been made for other processes, such as fractional Brown-
ian motions [14, 24], suggesting a rather broad applicability of the methods
described here.

To continue, the low level of inter-scale correlation in the wavelet rep-
resentation of the Gauss-Markov process as illustrated in Figures 7 and 8
motivates the approximation of the wavelet coefficients of this process as un-
correlated. This results in a lattice model precisely as defined in (17-19). We
use this model as an approximation to the Gauss-Markov process in order
to do fixed interval smoothing. In particular, the class of models which we
consider as approximations to Gauss-Markov processes is obtained precisely
in the manner just described. That is, we construct models as in eq.'s(17-
19) where the wavelet coefficients are assumed to be mutually uncorrelated.
In this case the variances of the wavelet coefficients, w(m) in eq.'s(17-19),
are determined by doing a similarity transform on the covariance matrix
of the process under investigation using a wavelet transform based on the
Daubechies FIR filters[8]. In particular if P, denotes the true covariance
matrix of the process, V the diagonal matrix of wavelet coefficient variances,
and W is the wavelet transform matrix, then

A = WP'WT (147)

V = WPapproXWT (148)

Thus, this approximate model corresponds to assuming that A is diagonal
(i.e. to neglecting its off-diagonal elements).

In our examples we use the 2-tap Haar QMF filter as well as the 4-
tap, 6-tap, and 8-tap Daubechies QMF filters[8]. Note that in adapting the
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wavelet transform to the finite interval we have, for simplicity, used cyclic
wrap-around in our wavelet transforms rather than the exact finite interval
wavelet eigenvectors described in the preceding section. In this case the
number of points at each scale is half the number of points at the next finer
scale.

5.2 Smoothing Processes Using Multiscale Models

In this section we present examples in which we compare the performance of
the optimal estimator for a 1st-order Gauss-Markov process with that of the
suboptimal estimator based on our multiscale approximate model.

Let x(t),t = 0,..., N- 1 denote a finite window of our Gauss-Markov
process, and consider the white-noise-corrupted observations.

y(t) = x(t) + v(t) (149)
E[v2 (t)] = R (150)

Y = {y(t)lt=0,...N-1} (151)

Let the optimal smoothed estimate (implemented using the correct Gauss-
Markov model) be denoted as

· S(t) _ E[x(t)IY] (152)

Letting x and ~s denote the vectors of samples of x(t) and 34(t), respec-
tively, we can define the optimal smoothing error covariance

Eopt - E[(x - ,)(x - s)T] (153)

Also if Px denotes the covariance of x the optimal estimate is given by

~s = LxY (154)

with

Lx = P,(Px + RI)- 1 (155)

and
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Yopt = Px - P.(P. + RI)-'P: (156)

More generally if we consider any estimator of the form of (154) (such as
the one we will consider where L. corresponds to the optimal smoother for
our multiscale approximate model for the Gauss-Markov process), then the
corresponding error covariance is given by

Esub - E[(x - -sub)(x- I-,,b)T ] (157)

= (I- Lz)P:(I- Lz)T + LzRLT (158)

We now give several examples demonstrating the performance of our mul-
tiscale models in smoothing Gauss-Markov processes. We focus in this sub-
section on the case of a single scale of data at the finest scale. In Fig.'s 9-13
we compare the performance of the optimal estimator, with the performance
of our suboptimal estimator based on lattice models for both 2-tap and 8-
tap Daubechies filters. In these examples the measurement noise variance
R = .5; i.e. the data is of SNR = 1.4142.

Note the strikingly similar performances of the optimal and subopti-
mal smoothers, as illustrated in Figure 12 for the case of the 2-tap lattice
smoother. From visual inspection of the results of the two smoothers it is dif-
ficult to say which does a better job of smoothing the data; it seems one could
make a case equally in favor of the standard smoother and the lattice-model
smoother. The similarity in performance of the optimal smoother and our
lattice smoothers is even more dramatic for the case of the 8-tap smoother
as illustrated in Figure 13.

Note that although the standard smoother results in a smaller average
smoothing error (the trace of Eopt divided by the number of points in the
interval), it seems the average error of our lattice-model smoothers is not
that much larger. To quantify these observations let us define the variance
reduction of a smoother as follows.

p = variance reduction (159)
Po - Ps

Po
Po = average process variance (160)
p, = average smoothing error variance (161)
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2-tap 4-tap 6-tap 8-tap
SNR= 2.8284 1.07 % .550 % .402 % .334 %
SNR= 1.412 3.27 % 1.77 % 1.24 % 1.04 %
SNR= .7071 6.71 % 4.13 % 2.70 % 2.33 %
SNR-= .5 9.58 % 6.14 % 3.87 % 3.27 %

Table 1: Performance Degradation Comparison of Lattice-Model Smoothers
- 2-tap, 4-tap, 6-tap and 8-tap

We also define the performance degradation resulting from using a lattice
smoother as compared with using the standard smoother as follows.

Aperf - performance degradation (162)

Pstandard - Plattice

Pstandard
Pstandard = variance reduction of standard smoother (163)

Plattice = variance reduction of lattice-model smoother (164)

Table 1 shows the performance degradation of the lattice-model smoother
relative to the standard smoother for filter tap orders 2, 4, 6, and 8 and for
four different noise scenarios: 1) SNR = 2.8284 2) SNR = 1.412 3) SNR =
.7071 4) SNR = .5. The variance reductions are computed using smoothing
errors averaged over the entire interval. While the degradation in perfor-
mance lessens as the order of the filter increases, a great deal of the vari-
ance reduction occurs just using a 2-tap filter. For example for the case of
SNR = 1.412 the standard smoother yields a variance reduction of 85 per-
cent. It is arguable whether there is much to be gained in using an 8-tap filter
when its relative decrease in performance degradation is only 2.23 percent
over the 2-tap smoother; i.e. the variance reduction of the 8-tap smoother
is 83.8 percent while the variance reduction of the 2-tap smoother is already
81.9 percent.

The performance degradation numbers for the lower SNR case (SNR =
.7071) seem to suggest that the effect of raising the noise is to decrease the
performance of the lattice-model smoothers. But one should keep in mind
that this decrease is at most only marginal. Consider the case where the
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SNR = .5. In this case the data is extremely noisy, the noise power is double
that of the case where SNR = .7071, and yet the performance degradation
in using the 2-tap smoother compared with the standard smoother is 9.58
percent, up only 2.87 percent from the case of SNR = .7071. Furthermore,
if one examines a plot (Fig 14) of the results of applying the two smoothers
on such extremely noisy data, the performance of the two smoothers is as
before quite comparable.

We emphasize that the average performance degradation is a scalar quan-
tity, and at best gives only a rough measure of estimation performance. From
this quantity it is difficult to get any idea of the qualitative features of the es-
timate. The plots of the sample path and its various smoothed estimates over
the entire interval offer the reader much richer evidence to judge for himself
what the relative differences are in the outputs of the various smoothers.

The preceding analysis indicates that multiscale models can well-approximate
the statistical characteristics of 1st-order Gauss-Markov processes in that
nearly equivalent smoothing performance can be obtained with such models.
Further corroboration of this can be found in [5] where Bhattacharya dis-
tance is used to bound the probability of error in deciding, based on noisy
observations as in (149), if a given stochastic process x(t) is either a lst-order
Gauss-Markov process or the corresponding multiscale process obtained by
ignoring interscale correlations. An important point here is that the 1st-order
Gauss-Markov model is itself an idealization, and we would argue that our
multiscale models are an equally good idealization. Indeed if one takes as an
informal definition of a "useful" model class that (a) it should be rich enough
to capture, with reasonable accuracy, important classes of physically mean-
ingful stochastic processes; and (b) it should be amenable to detailed analysis
and lead to efficient and effective algorithms, then we would argue that our
multiscale models appear to have some decided advantages as compared to
standard models. In particular not only do we obtain efficient, highly paral-
lel algorithms for the smoothing problems considered in this section but we
also obtain-equally efficient algorithms for problems such as multiscale data
fusion, which we discuss next.

5.3 Sensor Fusion

In this section we provide examples that show how easily and effectively our
framework handles the problem of fusing multiscale data to form optimal
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smoothed estimates. In our framework not only is there no added algorithmic
complexity to the addition of multiscale measurements but it is also easy for
us to evaluate the performance of our smoothers in using multiscale data.

For simplicity we focus here on the problem of fusing data at two scales.
Consider the Gauss-Markov process used in our previous examples as defined
in (141). We assume that we have fine-scale, noisy measurements as in (149)
together with one coarser level of measurements. In particular, as before,
the length of our interval is taken to be 128 points. Thus we assume that we
have 2M = 128 measurements of the finest scale version of our signal as well
as 2 K measurements of the coarser approximation of our signal at scale K. 3

Consider the case where our fine scale measurements are of extremely
poor quality. In particular we take the case where our data is of SNR =
.3536 (the noise power is eight times the signal power). Figure 15 compares
the result of using the standard smoother on these data with the result of
using a 4-tap lattice model smoother on the same data. The performance of
the two smoothers is comparable as we would expect from our results in the
previous section.

Now we use the same data and consider fusing a higher quality coarse
scale data set to form a smoothed estimate. In particular we take our coarse
data to reside at the scale one level coarser than the original data (scale at
which there are 64 points) and the coarsening operator, Hi, corresponds to a
4-tap filter. The SNR of this coarse data is equal to 2. Figure 16 compares
the result of using the standard smoother on the low quality fine scale data
alone with the result of using our 4-tap lattice smoother to fuse this low
quality data with high quality coarse data.

Note that the coarse measurement aids dramatically in improving the
quality of the estimate over the use of just fine-scale data alone. To quantify
this recall that our smoother computes the smoothing error at each scale.
We use these errors as approximations to the actual suboptimal errors (note
that the computation of the actual error covariance from multiscale data is
appreciably more complex than for the case of single scale measurements;
the same is not true for our tree models, where the complexity of the two
cases is essentially the same). The variance reduction in the case of fusing

3Note that as mentioned previously, the lattice models used in this section correspond
exactly to the wavelet transform, i.e. to (17) - (19), so that the signal x(K) is precisely
the vector of scaling coefficients at scale K of the fine scale signal x(M).
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the two measurement sets is 97 percent versus only 36 percent for the case
of using only the poor quality fine-scale data.

To explore even further the idea of fusing coarse measurements with poor
quality fine measurements we compare the results of using coarse measure-
ments of various degrees of coarseness in order to determine how the scale of
the coarse data affects the resolution of the smoothed estimate. In particular,
we take our fine scale data to be the same as that in Figure 16. However, we
supplement this data with coarse measurements of extremely high quality
(SNR = 31.6) and consider several cases: 1) the coarse data is at a scale
at which there are 64 points 2) the coarse data is at a scale at which there
are 32 points 3) the coarse data is at a scale at which there are 16 points.
Figures 17-19 compare the original signal with its smoothed estimates using
coarse data at the three different scales. Note how the estimates in these
figures adapt automatically to the quality and resolution of the data used to
produce them.

6 Conclusions

In this paper we have described a class of multiscale, stochastic models mo-
tivated by the scale-to-scale recursive structure of the wavelet transform. As
we have described, the eigenstructure of these models is such that the wavelet
transform can be used to convert the dynamics to a set of simple, decoupled
dynamic models in which scale plays the role of the time-like variable. This
structure then led us directly to extremely efficient, scale-recursive algorithms
for optimal estimation based on noisy data. A most significant aspect of this
approach is that it directly applies in cases in which data of differing resolu-
tions are to be fused, yielding computationally efficient solutions to new and
important classes of data fusion problems.

In addition we have shown that this modeling framework can produce ef-
fective models for important classes of processes not captured exactly by the
framework. In particular we have illustrated the potential of our approach
by constructing and analyzing the performance of multiscale estimation al-
gorithms for Gauss-Markov processes. Furthermore we have shown how the
problem of windowing - i.e. the availability of only a finite window of data
- can be dealt with by a slight modification of the wavelet transform. Fi-
nally, while what we have presented here certainly holds considerable promise
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for 1-D signal processing problems, the payoffs for multidimensional signals
should be even greater. In particular the identification of scale as a time-
like variable holds in several dimensions as well, so that our scale-recursive
algorithms provide potentially substantial computational savings in contexts
in which the natural multidimensional index variable (e.g. space) does not
admit natural "directions" for recursion.
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Figure 1: Infinite Lattice Representing Domain of Scaling Coefficients
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Figure 3: Transformation of a 10-pt. Sequence x(n) into its 6-pt. Scaling
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Figure 5: Lattice Representing Domain of the Wavelet Coefficients for 2-scale
Decomposition Based on Zeroing Edge Scaling Coefficients
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Figure 6: Covariance Matrix of a Stationary Gauss-Markov Process
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Figure 7: Representation of the Stationary Gauss-Markov Process in a
\WVavelet Basis using a 2-Tap QMIF filter
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Figure 8: Representation of the Stationary Gauss-Markov Process in a
Wavelet Basis using an 8-Tap QMF filter
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Noisy Version with SNR=1.4142 (dashed)
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Figure 10: Stationary Gauss-Markov Process (solid) and Its Smoothed Ver-
sion (dashed) Using Standard Minimum Mean-Square Error Smoother (Data
of SNR=1.4142)

46



3

2

,t

-I ) . I I

It 

0I r " :

4r7- ,
II , , - ,

-,, I III I 



2

1.5 -'~'

-2 -
IC II

time

48
II· ,,

I, I

-2

-2.5 1 140
0 20 40 60 80 100 120 140

time

Figure 12: Standard Minimum Mean-Square Error Smoother (solid) versus
Multiscale Smoother Using 2-Tap (dashed) (Data of SNR=1.4142)
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Figure 13: Standard Minimum Mean-Square Error Smoother (solid) versus
Multiscale Smoother Using 8-Tap (dashed) (Data of SNR=1.4142)
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Figure 14: Sample Path of a Stationary Gauss-Markov Process (solid), Stan-
dard Smoother (dotted), 2-Tap Smoother (dashed) (Data of SNR=.5)
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Figure 15: Sample Path of Stationary Gauss-Markov Process (solid), Result
of Standard Smoother on Poor Data of SNR=.3536 (dotted), Result of 4-tap
Lattice Smoother on Same Data (dashed)
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Figure 17: Sample Path of Stationary Gauss-Markov Process (solid), Results
of 4-tap Lattice Smoother Using Fine Data of SNR = .3536 Supplemented
with Coarse Data of SNR = 31.6: Coarse Data at 64 pt. Scale (dashed)

53



3 I I

-2
")3 I1 Il ~ ~~ III5

O 20 40 60 80 100 120 140

time



3

time

~~~~~~~~~~~~~55~~ I
1.

Figure 19: Sample Path of Stationary Gauss-Markov Process (solid), Results
of 4-tap Lattice Smoother Using Fine Data of SNR = .3536 Supplemented
with Coarse Data of SNR = 31.6: Coarse Data at 16 pt. Scale (dashed)
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