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ABSTRACT
IS-95 is the present U.S. 2nd generation CDMA standard. Currently, the 2nd generation

CDMA phones are produced by Qualcomm. Texas Instruments (TI) has ASIC design for Viterbi
Decoder on C54x. Several of the components in the forward link process are also implemented
in hardware. However, having to design a specific hardware for a particular application is
expensive and time consuming. Thus, the possibility of the alternative implementations is of
great interest to both customers and TI itself.

This research has achieved in successful implementation of IS-95 entirely in software on
TI fixed-point DSP TMS320C6201, and met the real time constraint. IS-95 system, the
industrial standard for CDMA, is a very complicated system and extremely computationally
demanding. The transmission rate for an IS-95 system is 1.2288 Mcps. This research project
includes all the major components of the demodulation process for the forward link system: PN
Descrambling, Walsh Despreading, Phase Correction & Maximal Ratio Combining,
Deinterleaver, Digital Automatic Gain Control, and Viterbi Deccc:r. The entire demodulation
process is done completely in C. That makes it a very attractive alternative implementation in
the future applications. It is well known that ASIC design is not only expensive and but also
time consuming, programming in assembly is easier and cheaper, but programming in C is a
much easier and efficient way out, in particular, for general computer engineers.

During the whole process, efforts have been devoted on developing various specific
techniques to optimize the design for all the components involved. These developments are
successfully achieved by making the best use of the following techniques: to simplify the
algorithms first before programming, to look for regularity in the problem, to work toward the
Compiler's full efficiency, and to use C intrinsics whenever possible. All these attributes together
make the implementation scheme great for DSP applications. The benchmark results compare
very well to the TI-internal hand scheduled assembly performance of the same type of decoders.
The estimated percentage usage of all the components (excluding PN) is only 21.18% of the total
CPU cycles available (4,000 K), which is very efficient and impressive.

Thesis Supervisor: Michael V. Bove
Title: Principal Research Scientist of MIT Media Lab
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CHAPTER 1. INTRODUCTION

Wireless communication has been increasingly important as a new tool both for

business and daily life. New and specific applications are growing at a much faster rate

than ever before due to the increasing demand and sharp market competition. Thus, the

traditional technique of developing products for specific applications through specific

hardware designs or using assembly language is facing severe challenge because it is

expensive, time consuming, and sometimes, at risk (at beginning). Finding better

alternative implementations is of great interest not only for consumers, but also for

manufacturers. As part of this goal, intensive research has been conducted to implement

IS-95, the CDMA Standard, on TMS320C6201 DSP by C language.

1.1 Literature Review

1.1.1 The Wireless Communication Networks

For a long time, the wireless world has been confronted with the challenge of how

to use its communication resources efficiently. The problem of providing the resources

to multiple users while maintaining their mutual interference below an acceptable level

has been central.

There are three major multiple access techniques employed in the existing

wireless networks. Frequency Division Multiple Access (FDMA) and Time Division

Multiple Access (TDMA) are the conventional techniques. Analog phones utilize the

FDMA technology. Global System for Mobile (GSM) and IS-136 are standards for

TDMA systems. IS-95 is the current U.S. 2 nd generation standard for Code Division

Multiple Access (CDMA) and is a more recent development by Qualcomm in 1993 for
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digital cellular applications. The 3rd generation standard is currently being proposed and

is coming up soon.

In a FDMA system, users are assigned specific frequency bands that are disjoint

from those of any other user. Each user has the sole right of using his or her frequency

band for the entire call duration. Each user's signal is isolated by using pulse shaping

filters that reduce out-of-band interference below an acceptable level. This effectively

reduces the multiple access channel into many single point-to-point channels

[Qualcomm, 1997]. The bandwidth and the Signal to Noise Ratio (SNR) of the channel

help to determine its capacity. Larger bandwidth and higher SNR leads to higher

capacity.

As an improvement to a FDMA system, a TDMA system shares many similar

features with a FDMA system. However, rather than letting a single user occupy an

assigned frequency band for the entire call duration, this frequency band is shared among

several users. The idea of user channelization in the same frequency band is achieved

through separation in time. Each user is only allowed to transmit through the band at

predetermined time slots [Qualcomm, 1996]. The capacity of each channel is then

further limited by the time allocated to each user.

The CDMA technique takes on a completely different approach. It does not

attempt to allocate disjoint frequency or time resources to each user, but instead allocates

all resources to all simultaneous users. CDMA users are channelized by uniquely

assigned codes. The signals are separated at the receiver by using a correlator that uses

the same code as the one for the desired user. After correlation (despreading), undesired

signals contribute only as background noise and are usually modeled as additive white

2



Gaussian noise (AWGN) [Qualcomm, 1996]. A CDMA system has many advantages

over a FDMA and a TDMA system. Its most significant contribution is the much more

efficient use of the system's bandwidth, which will be discussed next.

1.1.2 Capacity Comparison

Most of the existing FDMA systems are analog systems, whereas the TDMA and

CDMA systems are all digital. When it comes to voice transmission, digital systems

have a natural edge over analog systems. A FDMA system needs 30KHz per channel for

voice transmission, whereas due to data compression, only 10KHz per channel is needed

for a TDMA system. It is easy to see that a TDMA system has a three times capacity

gain when compared to that of a FDMA system. How does the capacity of a CDMA

system compared to a TDMA system? CDMA has its basis in the spread spectrum

technology. CDMA systems operate at a very low SNR, but use a very large bandwidth

in order to provide acceptable capacity. CDMA's theoretical roots lie in the principles of

Shannon's information theory. The capacity of a channel of band W perturbed by white

thermal noise of power N when the average transmitter power is limited to P is given by

C=Wlog(P+N)/N (Eq. 1.1)

This means that by sufficiently involved encoding systems we can transmit binary

digits at the rate W og2(P+N)/N bits per second, with arbitrarily small frequency of

errors [Shannon, 1949]. Shannon's Capacity Equation relates capacity to both bandwidth

and SNR. It shows that acceptable capacity can be achieved even at very low SNR, if

adequate bandwidth is allocated. A cellular IS-95 channel (forward and reverse link) is a

pair of frequencies with 1.25 MHz bandwidth 45 MHz apart.
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The capacity of FDMA/TDMA cellular system is severely limited by its

frequency reuse pattern. When multiple access in the same cell is achieved by using

disjoint frequency bands, users in adjacent cells must also be provided disjoint frequency

slots; otherwise interference between cells would become intolerable.

In a cellular system, this usually results in a frequency reuse pattern of 7 as shown

in Figure 1.1 to provide a long enough distance between cells using the same frequency

band so that the interference is diminished adequately due to path loss. In sectored cells

that use three antennas to further divide up the cell, a reuse pattern of 21 is common.

Basically, what this means is that at any time, only 1/7 of a carrier's frequency allocation

could be used in any cell, and only 1/21 of it could be used in any cell sector. In a two-

person conversation, when frequency and time resources are assigned exclusively to the

users, these resources are further underutilized because each speaker is active less than

half of the time.

I 

Figure 1.1. Cellular systems with a frequency reuse pattern of 7
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At this point, it is easy to see the advantage of a CDMA system. The CDMA

system can allocate all of its spectrum and time to all of its users in all cells

simultaneously; and it can efficiently transform the pauses during a conversation into a

decrease of the background noise. As shown in Figure 1.2, the same frequency spectrum

can be used in all CDMA cells. So the overall capacity gain for a CDMA system is much

higher. CDMA offers 5 to 7 times more capacity than a TDMA system; it offers 15 to 20

times more capacity when compared to a FDMA system [Qualcomm, 1996].

CDMA's multiple access capabilities and high bandwidth efficiency has

established it as the leading technology in a bandwidth starved wireless communication

world. The direction of the market is clear; the importance of CDMA technology is

clear. The emerging 3 rd generation wireless system being proposed is also based on the

CDMA technology gives another demonstration of the market's emphasis on the CDMA

technology.

Figure 1.2. CDMA System frequency reuse
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1.1.3 IS-95 Standard

In July 1993, the Telecommunications Industry Association (TIA) published IS-

95 as the CDMA standard. The IS-95A revision was published in May [Qualcomm,

1996]. Subsequent revisions also include IS-95B and IS-95C. The IS-95 is the current

U.S. 2nd generation standard, and the 3rd generation is coming up.

IS-95A specifies technical requirements that define a compatibility standard for

wideband spread spectrum cellular mobile telecommunications. They ensure that a

mobile station can obtain service in any cellular system manufactured according to this

standard. IS-95A specifies requirements for both the mobile and base station, including

message encryption and voice privacy, call flow, system layering, constants, retrievable

and settable parameters, and the mobile station [Qualcomm, 1997].

Since the forward channel (base station to mobile communication) will be of

primary interest to the research being proposed, some highlights will be presented here.

Several types of digital signal processing are done to a signal prior to its transmission at

the base station transmitter. First, the signal goes through a variable rate vocoder which

produces a frame every 20 msec using Code Excited Linear Prediction (CELP) technique.

There are two rate sets of vocoders. Cellular band can use both sets. Rate set 1 vocoder

produces 192 bits per frame; rate set 2 produces 288 bits per frame. The quality of rate

set 2 vocoder is superior to that of the rate set 1. For both rate sets, the variable rate

vocoders can produce frames either at full, half, quarter or eighth rate. The full rate is 9.6

Kbps for rate set 1 and 14.4 Kbps for rate set 2. The frame rate depends on the voice
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activity. Lower rates are generated by the vocoder for lower voice activity [Qualcomm,

1997].

The forward traffic channel supports both vocoder sets. Rate set 1 data are

convolutionally encoded with a rate ½/2 encoder. Rate set 2 has a 1/2 rate encoder followed

by puncturing to produce an effective coding rate of 3/4. In addition to convolutional

coding, the symbols are repeated when lower rate frames are produced by the vocoder so

to maintain a constant symbol rate of 384 symbols per frame or 19,200 symbols per

second regardless of the rate of the vocoder. Full rate frame does not have any repetition;

half rate frame is repeated once; quarter rate frame is repeated three times; and eighth rate

frame is repeated seven times. Symbol repetition reduces the "energy per symbol"

requirement and leads to lower power transmission and lower interference to other users.

The following block diagram (Figure 1.3) is an illustration of the forward traffic channel.

Figure 1.3. Block diagram of the generation of the forward traffic channel
( IS-95A: The CDMA Standard, p.3-8)
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After the convolutional encoder, a block interleaver is then used to interleave the

symbols. Interleaving is a jumbling of the symbols. Interleaving the symbols prior to

transmission has the effect of "whitening" the channel: errors that occurred in bursts due

to fading appear to be randomly scattered when the symbols are de-interleaved. This

results in a more effective performance for the decoder since convolutional codes are

useful when the errors are random and not in bursts. Interleaving is done at a block of the

20msec frame. There is no interleaving across the frame boundaries.

A CDMA system employs three pseudorandom noise (PN) sequences. The

system has two short codes and one long code that are time-synchronized to midnight,

January 6, 1980 (GPS time). All base stations and all mobiles use the same three PN

sequences. The Long PN Code is used for spreading and scrambling. It repeats every 41

days (at a clock rate of 1.2288 Mcps). This provides a CDMA system with an inherent

feature of voice privacy that greatly surpasses that provided by any FDMA or TDMA

system. The two Short PN Codes are used for quadrature spreading; its unique offsets

serve as identifiers for a cell or a sector and they are repeated every 26.67 msec (at a

clock rate of 1.2288 Mcps) [Qualcomm, 1996]. An important property of a PN sequence

is that time-shifted versions of the same PN sequence have very little correlation with

each other.

After the symbol frame is interleaved, the Forward Traffic Channel is scrambled

by the Long PN sequence. The 19,200 symbols per second are multiplied by the Long

PN sequence that is also generated at 19,200 symbols per second.

The signal is then orthogonally spread using the Walsh codes. Within a sector,

each traffic channel in the forward direction uses a unique Walsh code. This provides
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isolation between channels within a sector due to the orthogonality condition of the

codes. Each symbol is spread by all 64 chips of the Walsh code sequence. The Walsh

codes are reused in every sector [Qualcomm, 1997].

After spreading by the Walsh code sequence, the forward traffic channel is

scrambled over both quadratures. All of the information is sent into both quadratures

(BPSK modulation). Each quadrature is spread using a short PN sequence with different

time shifts for different sectors and cells. As mentioned previously, the two short PN

sequences are used to isolate one sector from another. This enables the re-use of the

Walsh codes in every sector [Qualcomm, 1997]. These two quadratures are then mapped

into phase shifts of the carrier signal and sent to the transmitter (QPSK spreading).

1.1.4 Demodulating the Forward Traffic Channel

The IS-95 standard, however, contains no details on the receiver whose design is

left to the manufacturer. The following is just a sketch of the demodulation procedure.

After the signal is down converted from the carrier band to the baseband (the carrier band

is 900-1000MHz for cellular and 1.9-2GHz for Personal Communication System (PCS)),

filtering and A/D conversion are performed; and the signal is digitized. The mobile

station implements a rake receiver design, which typically includes three to four finger

correlators and a searcher correlator. The searcher identifies strong multipath arrivals

and a finger is assigned to demodulate at the offset identified. The result is then

coherently combined and passes through the PN de-scrambler and then the Walsh

despreader. After Maximal Ratio Combining (MRC) for the signal paths of the different

fingers, the signal is further processed by the de-interleaver and sent to the Viterbi
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Decoder [Qualcomm, 1997]. Figure 1.4 is a block diagram illustration of the

demodulating procedure.

Figure 1.4. Demodulation of the Forward Traffic Channel

1.1.5 Previous Work

Qualcomm is the developer of the IS-95 standard. It is also currently the leader of

the CDMA digital phone industry. Qualcomm is currently in production for both CDMA

digital cellular and PCS phones. It is also planning on bringing to the market in the first

half of 1999 pdQ smart phone that combines the state of art CDMA technology and Palm

Computing® platform.

Previous work has also been done at Texas Instruments (TI) on its TMS320C54x

DSPs to implement the demodulation process of the forward channels (base station to

mobile communication). Because of power considerations due to the high data rate

(1.2288 Mcps) and the lack of memory on the TMS320C54x DSP, PN and WALSH

despreadings have been done in hardware on Application Specific Integrated Circuit
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(ASIC). The TMS320C54x incorporates a special hardware unit to accelerate Viterbi

metric-update computation. This compare-select-store unit with dual accumulators and a

splittable ALU performs a Viterbi butterfly in four cycles. [Hendrix, 1996]

1.1.6 The TMS320C6201 Digital Signal Processor

TMS320C6201 is the most powerful fixed-point DSP currently available on the

market. The 'C62x devices operate at 200 MHz (5-ns cycle time). It executes up to eight

32-bit instructions every cycle.

The 'C62x use the VelociTI architecture, a high-performance, advanced VLIW

(very long instruction word) architecture, making these DSPs excellent choices for multi-

channel and multifunction applications. [Texas Instruments, 1998]

The 'C62x have a 32-bit, byte-addressable address space (4 gigabytes). 'C6201

has 128Kbytes of on chip RAM. On chip memory is organized in separate data and

program spaces. The family has two 32-bit internal ports to access internal data memory

and a single internal port to access internal program memory. All internal memory is

zero wain-state.

The 'C6x family has the industry's most efficient C compiler; its efficiency is

three times the efficiency of other fixed-point DSP compilers, making the development of

new products much easier and faster.

High performance, ease of use, and affordable pricing make the TMS320C6x

family a great choice for the task undertaken.

11



1.2 Research Objectives

The objectives of this research are summarized as follows:

1) Implementing PN and WALSH Despreading on 'C6201;

2) Implementing Phase Correction/MRC on 'C6201;

3) Implementing the Deinterleaver function on 'C6201;

4) Implementing the Digital Automatic Gain Control function on 'C6201;

5) Implementing Viterbi Decoder on 'C6201; and

6) Benchmarking the system for meeting the real time constraint.

The efforts of this research have been to develop the demodulation procedure for

all the major functions on the main data path of the forward channel. Specifically, this

has involved the PN and Walsh despreading, Phase Correction & Maximal Ratio

Combining (MRC), deinterleaving, Digital Automatic Gain Control (DAGC) and Viterbi

decoding algorithm.

PN and Walsh despreading will be based on the correlation concept. When the

original signals are a binary sequence, this corresponds to exclusive ORing (modulo two

adding) the signals over time; when the signals are antipodal, i.e. in sequence of l's and -

l's, this correlation process corresponds to multiplying the signals over time.

In an additive white Gaussian noise (AWGN) channel, the received signal is

detected by using a matched filter. The detection process is essentially the projection of

one vector onto another. To maximize the value of the result (maximize the difference

between the possible hypotheses and minimize the error probability), the phase between

the two vectors should be zero. The phase correction & MRC algorithm corrects the

12



phase uncertainty of the received signal while at the same time it opticrlally combines the

different signal multipaths to provide time diversity against fading and to optimize the

effective SNR [Papasakellariou, 1998].

As discussed earlier, interleaving the symbols prior to transmission has the effect

of "whitening" the channel. The deinterleaving process simply rearranges the jumbled

symbols into their correct order as to prepare them for the decoder.

A Digital Automatic Gain Control (DAGC) is needed to maintain the input signal

to Viterbi Decoder within a certain dynamic range. The data processing of PN

descrambling, Walsh despreading, and MRC leaves the output signal of the Deinterleaver

to be represented using 28 or 32 bits. This is a much larger dynamic range than what is

traditionally supported by the Viterbi Decoder. DAGC weighs the input signal over one

frame of data and limits the dynamic range that is represented using only 5 bits.

Convolutionally encoded data is decoded through knowledge of the possible state

transitions, created from the dependence of the current symbol on past data. The

allowable state transitions are concisely represented by a trellis diagram. Convolutional

codes are decoded by using the trellis to find the most likely sequence of codes. The

Viterbi Decoding Algorithm simplifies the decoding task by limiting the number of

sequences examined. The most likely path to each state is retained for each new symbol.

The Viterbi Decoding Algorithm includes two functions: metric update and traceback.

Because each state has two or more possible input paths, the accumulated distance is

calculated for each input path. The path with the minimum accumulated distance is

selected as the survivor path. An indication of the path and the previous Delay State is

stored to enable reconstruction of the state sequence from a later point. The actual

13



decoding of symbols into the original data is accomplished by tracing the maximum

likelihood path backward through the trellis. The original data is reconstructed from the

states sequence [Hendrix, 1996].

It is expensive and risky (at first) having to design a specific hardware set to

support a specific application. With the appearance of more and more powerful

processors, it is possible that we could rely less and less on having special hardware to

get special task done. The demodulation process for the forward traffic channels is very

computationally intensive. For example, the IS-95A implementation of the Viterbi

Decoding algorithm, which has a constraint length 9 convolutional encoder, requires 128

butterfly calculations for each metric update. For one frame of symbols, metric update

needs to be done 192 times. Since the IS95-A standard allows for various rate vocoder,

typically, four Viterbi decoders need to be implemented for each frame of data for each

rate set. The amount of calculations is obviously nontrivial.

DSPs are optimized for additions and multiplications. With an especially

powerful DSP, it might be possible to implement a very complicated system, such as the

demodulation of the forward channels, entirely in software. If this were the case, we

could dramatically cut down the development cost for a new system and bring the

products to market much faster, although the DSP solution will require more power than

a full ASIC one.

Thus, this research has been concentrated on implementing all the major functions

for demodulating the forward traffic channel's main data path on a single TI

TMS320C6201 DSP to see if it could be capable of meeting the real time constraint of

14



the system. "C" is the only language for implementing these functions. The result of this

work is of practical importance to TI and many people working in this field.
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CHAPTER 2. WALSH DESPREADING, PHASE CORRECTION & MAXIMUM
RATIO COMBINING

2.1 Walsh Despreading

2.1.1 Considerations for Software Design

Walsh codes are orthogonal codes of length 2^n and there are 2An such codes. In

IS-95, there are 64 of them. They are used in the IS-95 forward link system to separate

different users from the same cell or sector. The IS-95 standard specifies that the sync

channel contains the information about the specific Walsh code used for spreading. The

Rake Receiver then uses this information for despreading.

The Walsh Despreading function unit must be able to support the despreading of

any of the 64 users. It is not known in advance which Walsh code would be the one

needed for despreading. Therefore, the system needs to have the knowledge of all 64

Walsh sequences. This leaves the design choice of either having all 64 sequences stored

in on-chip memory; or to have the function unit be able to generate the requested Walsh

code efficiently. Each Walsh code contains 64 chips. Storing all 64 sequences would be

a huge consumption of the valuable on-chip memory space. Although theoretically, it

could be done; practically, it raises a lot of questions including efficiency and on-chip

memory space. Therefore, going for the alternative route of finding the efficient way to

generate the desired Walsh sequence immediately becomes the task of great importance.

It is obvious that simply following the standard procedures of programming and without

solving this challenge, the generated program would not only waste a huge amount of on-

chip memory space, but also eventually affect the performance.
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2.1.2 Optimization of Design Strategy

The C code developed for the Walsh Despreading algorithm assumes that the

Rake Receiver has already determined the Walsh sequence need to be generated. The

function unit simply takes the code sequence number and generates the appropriate

Walsh code, then uses the Walsh code to demodulate the input sequences.

For the forward link generation, input symbols of data rate 19.2 Kbps are

spreaded by the Walsh code to a data rate of 1.2288 Mcps. In other words, one input

symbol is spreaded by all 64 chips of a Walsh code. The Walsh code sequence used is

unique to the user of the cell or the sector. The same Walsh code is used to spread all the

symbols of the same source. At the receiver's end, the same Walsh code sequence is

used for despreading. The function implemented assumes that the Rake Receiver has

already resolved the timing issue, so that the input chips are synchronized with the Walsh

chip set.

The Walsh Despreding unit consists of two parts: the Walsh code sequence

generating function generator() and the despreading portion. Function generator() takes

the desired Walsh code number as its parameter and generates the appropriate Walsh

sequence. This promoted the initiative to make the best use of the unique characteristic

of the Walsh code, its regularity.

The Walsh code table is a big 64x64 matrix as shown in Table 2.1. The

appearance gives the impression that it contains too many parameters. As discussed

above, following the standard procedures by taking the whole 64x64 matrix would result

in occupying huge amount of valuable on-chip memory space. Is there any way to

simplify the algorithm and optimize the implementing design? A careful study of the
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Walsh code reveals that there is a great deal of regularity within the Walsh code as

discussed below:

* Table 2.1 could also be viewed as consisting of four smaller 32x32 blocks.

Observing carefully demonstrates that the upper right corner block, the lower

left corner block, and the upper left corner all consist of the same 32x32

block. The lower right corner is the exception and consists of the negative of

the other blocks.

* Similarly, the 32x32 block can also be viewed as consisting of four smaller

16x16 blocks. These four 16x16 blocks exhibit the same pattern as their

larger counterparts.

· This regularity can be observed all the way to the elementary 2x2 blccks

where the rudimentary component blocks are single 1 and -l's. In concise

vector terms, a Walsh code set of length 2N can be constructed as w_2N =

[wN w_N; wN-w_N].

Now, if all these regularities could be made the best use, the program would no

longer need to treat a 64x64 matrix for the Walsh Spreading. Instead, a much smaller

matrix would be handled, which could greatly save the on-chip memory space, and

eventually improve the overall performance of the implemented program.

By studying the Walsh code in more details, it reveals that these regularities of

Walsh codes can be put into more concrete terms and used toward programming

optimization. The followings have been observed and considered:

* Following the convention and naming the Walsh Functions from #0 to #63,

for all even Walsh Function numbers, the first two elements of the array are
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all equal to 1; for all odd Walsh Function numbers, the 1st element is 1 and

the 2nd element is equal to -1.

* Considering the 4x4 blocks, the lower right corner is the negative of the

others. Therefore, for Walsh Function number%4 <= 1, the 3rd and 4 th

elements of the array are the exact replica of the first two; on the other hand,

for Walsh function number%4 is equal to 2 or 3, the 3rd and 4 th elements

negate the first two elements.

* Following the path and considering the 8x8 blocks, the lower right corner is

the negative of the other corner components. Therefore, for Walsh Function

number%8 <= 3, the 5 th through the 8th elements of the array are the exact

replica of the first four elements. For Walsh Function number%8 that is

equal to 4, 5, 6, or 7, the 5 th through the 8
th elements of the array are the

negative of the first four elements.

* By considering larger and larger blocks, the 9 th to 16th elements, 17th to 32nd

elements, 3 3rd to 6 4 th elements of the Walsh Function sequence can be

generated accordingly.

Taking all those regularities into considerations, it can be seen that a 64x64 Walsh

code matrix now would be treated in a much smaller scale, which is certain to benefit the

whole programming process.

2.1.3 Despreading

The despreading part of the code aims to absorb the effect of Walsh spreading and

cutting down the data rate back to 19.2 Ksps (The input to the Walsh Despreading

function has a data rate of 1.2288 Mcps). Assuming the timing is synchronized, the
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despreading function simply correlates the input chips with the appropriate Walsh

sequence and sumns the result over a 64-chip range. The dynamic range of the outputs of

the Walsh despreading unit (at the receiver's end) is 6 bits larger than its inputs due to the

summation. The fast increase of the data's dynamic range brings up the need for later

processing to limit the gain.

2.1.4 Summary

The Walsh Despreading has been successfully implemented in C on C6201. The

experience from this implementation demonstrates that it is critical for programming to

simplify the algorithm first, and look for regularity in the problem of concern. By taking

the advantage of the regularity of the Walsh code, no memory storage is required for

storing the code sequences in advance. This is a substantial saving for the valuable on-

chip memory compared to taking a 64x64 Walsh code matrix. Besides, appropriate code

sequence is generated real time based on the code sequence number requested by the

user, which assumingly is already determined by the Rake Receiver.

Due to its high input chip rate (1.2288 Mcps), the Walsh Despeading functions

takes up a relatively large amount of processing time. The benchmark result for

processing one frame of input signal (24,576 chips) is about 63,600 CPU cycles; this is

approximately 1.59% of the CPU time.
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2.2 Phase Correction and Maximal Ratio Combining (MRC)

2.2.1 Design Strategy

In an additive white Gaussian noise (AWGN) channel, the received signal is

detected by using a matched filter. The detection process is essentially the projection of

one vector onto another. To maximize the value of the result (maximize the difference

between the possible hypotheses and minimize the error probability), the phase between

the two vectors should be zero. The phase correction & MRC algorithm corrects the

phase uncertainty of the received signal while at the same time it optimally combines the

different signal multipaths to provide time diversity against fading and to optimize the

effective SNR [Papasakellariou, 1998].

In an IS-95 system, the transmission of a strong, unmodulated pilot signal offers

the possible solution for both phase correction and optimum path combining. The pilot

signal is transmitted synchronously with the information signal. The two signals have the

same phase when they arrive through the same channel path. Multiplying the information

signal with the complex conjugate of the pilot signal can get rid of the phase uncertainty,

i.e., (AeJO)x(Bej ) = A*B, which has zero phase regardless of what the actual value of 0

is.

Both the received pilot signal and the information signal behave like pseudonoise

due to the I and Q PN scrambling code. As a result, signal paths that are separated by

more than one chip interval appear uncorrelated. Combining such paths provides time

diversity against fading and increases the effective SNR. With MRC, each path is scaled

according to its SNR prior to combining. The necessary path weighting is accomplished

through the same operation as for phase correction [Papasakellariou, 1998]. Multiplying
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the information signal with its pilot conjugate results in a functional unit that both

corrects the phase uncertainty and does MRC.

The pilot signal and the information signal are received over their quadratures.

Both the I and Q components of the pilot signal are summed over a period of 16 symbols

for phase correction and MRC with I being the real part and Q being the imaginary part

of the signal. The pilot is summed in order to reduce the signal variations due to fading

and noise. The duration over which the phase remains constant depends on the mobile

speed. For the highest mobile speeds considered in IS-95, the phase remains practically

the same over 20-24 symbols in a cellular system, and about 10-12 symbols in a PCS

system. This phase stability property of the channel limits the number of symbols that

could be used for averaging (or summation). Increasing the number of symbol periods

much beyond the phase stability range of the channel improves the amplitude estimate for

MRC but degrades the instantaneous phase estimate for phase [Papasakellariou, 1998].

This particular implementation has been chosen to sum over 16 symbols for PCS

frequencies; similar performance could be achieved if another value close to 16 had been

used. Also, the symbol summation range is allowed to go twice as large for cellular

frequencies.

Summing the pilot signal for its smoothing effect naturally introduces a new

problem for consideration. Averaging could be done both before and after the "on time"

symbol period. For example, the pilot averaging over N symbol periods can begin from

N-1 symbol periods before the "on time" traffic signal (causal) or it can begin before and

continue after the "on time" period for a total of N symbol periods (noncausal). This

Phase Correction & MRC algorithm is implemented as a non-causal system. A detailed
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discussion of the performance comparison of a noncausal system over a causal system is

presented in IS-95B Algorithm Description Document [Papasakellariou, 1998]. Non-

causal implementation provides a delay to the throughput of the system but provides a 0.1

dB performance gain over a causal system.

This implementation creates two circular buffers of size 16 each for the I and Q

components of the pilot signal. It also creates two circular buffers of size 7 that are used

to store the delayed I and Q symbols of the information signal. Two variables avgI and

avg_Q are used to store the sum of the pilot's I and Q components over 16 symbol

periods. The buffers and the sum variables are all initialized to zero. The oldest element

of the pilot buffer is subtracted from the sum variable while new element is read and

written to its place. The I component of the signal buffer is multiplied with avgI

whereas the Q component of the signal buffer is multiplied with avgQ. The sum of the

two forms the desired output. This is a simplification of the mathematics.

(Ae 0)x(Be 0j ) = (AcosO + jAsin0)x(Bcos0 - jBsin0)

= AcosO x Bcos0 + AsinO x Bsin0 (Eq. 2.1)

Here the cosine terms are the I terms of the pilot and information signal; and the

sine terms are the Q terms. The element of the signal buffer that is multiplied by the sum

variable is actually also the oldest element of the array. After the multiplication, new

information symbol is read and written at its place. This implementation scheme creates

a 7-symbol-delay to the throughput; it allows the 16-element sum to include 7 future

values of the "on-time" pilot signal for averaging, providing the desired noncausal

performance gain.
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2.2.2 Summary

The Phase Correction & MRC algorithm involves the processing of the data frame

for the I and Q branches of both pilot and information signals. There are 384 symbols per

frame of data. The benchmark result for its implementation is about 25,400 CPU cycles

over one frame of data. This is about 0.64% of the processor time.
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CHAPTER 3. IMPLEMENTING DEINTERLEAVER AND DAGC

3.1 Implementing the Deinterleaver

3.1.1 The Deinterleaver

The Interleaver jumbles around the symbols transmitted so that transmission

errors that occur in bursts are spread out after the symbols are put back to the original

order. The interleaver has a "whitening" effect for the communication channel and is

important for the forward traffic channel generation. The Deinterleaver's job is to

rearrange the received data frame and to put the transmitted symbols back to their correct

order. The primary task in implementing such an algorithm is to efficiently generate the

sequence array that rearranges the input sequences.

3.1.2 Discover the Regularity for Optimization

As in the other implementations discussed above, it is critical to discover the

regularity or to simplify the algorithm of the Deimterleaver in order to optimize the

program. Intensive efforts have been initiated for this intention, and some very useful

regularity has been discovered, and applied in the programming.

Table 3.1 shows the Interleaver sequence for a Full Rate data frame. The

sequence is to be read vertically from left to right, i.e., the interleaver takes the 1St, 6 5th,

129th ... output of the convolutional encoder as its 1st, 2 nd 3 rd ... output. The

Deinterleaver's job obviously is to take its st, 2 nd 3 rd ... input symbol and rearranges

them to be the 1st, 65th, 1 2 9 h output symbol.

One of the ways to achieve this is to generate the interleaver array which contains

the sequence of Table 3.1 in its exact order (called it order[]), and let output[order[i]-1] =

input[i] where i stands for the ith element of the input array. What is important here is to
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be able to generate this Interleaver arrav efficiently. There are many ways to generate

this array. However, by recognizing the inherent pattern of the Interleaver array, this

array generator has been implemented with an especially simple form and it runs very

efficiently on C6201.

3.1.3 The Rule of "64"

Looking at Table 3.1 carefully and innovatively, it is not difficult to discover the

regularity in its data array. The 2 nd element read is 64 greater than the ISt element, so is

the 3rd to the 2nd one, the 4 th one to the 5 h one. This trend holds for the entire array

except for every other 6 th element. However, this simplifies the task significantly since it

is only necessary to keep track of every 7 th element of the array and all the other elements

can be easily generated by adding a multiple of 64's to the head of the hexad. Thus,

keeping track of only 64 symbols is enough to generate the entire array. To make it easy

to remember, it is called the Rule of "64" in this project.

3.1.4 The Rule of "32-16-48"

The second regularity of the array is called the Rule of "32-16-48" for

convenience in this project. Looking at all the columns of Table 3.1 can discover this

rule. The 7 th element is 32 greater than the 1st element of the column; the 1 3th element is

16 greater than the 1st element; the 19 th one is 48 greater than the 1st element; and this is

true for all the columns. This observation simplifies even further the number of array

elements that need to be kept track of. Basically, if the 1St element of each column is

known, then the entire column can be easily generated. This boils down to the need of

keeping track of only the elements in the lSt row that contains only 16 symbols.
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3.1.5 The Rule of "1-3-2-4"

The third unique characteristic of the array discovered during the programming

is less obvious but is just as useful. Again, for convenience, this is named the Rule of "1-

3-2-4" in this project. For a better understanding, this rule is discussed in detail as

follows.

It is very helpful to notice that 1 is the 1 St element of the first row; 2 is the 9 th

element of the same row; 3 is the 5 th element of the row; and 4 is the 13 th element of the

row. Further more, each of these elements forms a quartet of its own with a repeating

regularity. The row element that immediately follows 1 is 8 greater than it; the 3rd

element is 4 greater than the 1St element; and the 4 th element is 12 greater than it.

Viewing 1, 3, 2, 4 as the head of the quartet, this regularity appears in all four-quartet

groups. And this first row can be generated by only two simple for-loops. Thus, the

efficiency of the program is substantially increased, and the running time is greatly

reduced.

3.1.6 Summary

It is very important to carefully analyze the data pattern in this Deinterleaver

implementation. With the best use of the three discovered rules, i.e., the three unique

characteristics, the Interleaver array has been generated very efficiently with an

especially easy form. This particular implementation does not require any prior memory

storage for the array and has a very small code size. Of course, the simpler the code, the

faster it runs. All these attributes together make this implementation scheme great for

DSP applications. The benchmark result for the Deinterleaver function to process one

frame of data (384 symbols) is 1,440 CPU cycles; that is only about 0.036% of the
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processor time, a very short time indeed. As noticed during the programming process,

without using these rules, the efficiency and performance would be substantially lower

than what has been achieved now.

3.2 Implementing DAGC on C6201

3.2.1 DAGC and Its Regular Implementation Technique

A Digital Automatic Gain Control (DAGC) is needed to maintain the input signal

to Viterbi Decoder within a certain dynamic range. The data processing of PN

descrambling, Walsh despreading, and MRC leaves the output signal of the Deinterleaver

to be represented using 28 or 32 bits. This is a much larger dynamic range than what is

traditionally supported by the Viterbi Decoder. DAGC weighs the input signal over one

frame of data and limits the dynamic range that is represented using only 5 bits.

The schematic DAGC algorithm for implementation is presented in Figure 3.1.
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Figure 3.1. Schematic DAGC Algorithm Diagram before Simplicfiation

* For X1 .... X3 84, Ixil--> lnlXI --> lnIX[ /ln2 --> int (lnlI /ln2)

--> E1384 int (lnIXNl/ln2) --> int(axl 384 (..)) -->

2 int(a 1 384 (-)) --> f --> fxXi --> S <--- Input to Viterbi.

* a = -1/384



The required signal processing of the DAGC unit is described in Figures 3.2

[Papasakellariou, 1998]. As illustrated in Figures 3.1 and 3.2, the signal processing is

very complicated, and requires substantial amount of floating point calculations over a

sequence of 384 input symbols. Although implementing floating point calculation is

possible on a powerful fixed point DSP such as C6201, this procedure requires calling a

floating point library that consumes a lot of CPU cycles. The immediate negative

consequence is a significant reduction in the processing speed. In addition, large

amounts of floating point calculations would eventually increase the error range of the

results.

3.2.2 Search for New Approaches

Based on the above discussion, the primary task in implementing such a

complicated algorithm of DAGC is to look for alternative approaches that could simplify

the processing, and to minimize the floating point calculations, if possible. Without

significant changes to the specific processing algorithm, it is obvious that the

implemented program would be slow and error prone. In order to achieve that goal,

intensive study has been conducted on simplifying the algorithm to minimize floating

point calculations, and using C intrinsics whenever possible, which are very useful

functions for the project. With the combination of all these efforts, the implemented

DAGC has achieved satisfactory results. The DAGC algorithm, though apparently looks

quite complicated at the very beginning, turns out to have a rather simple solution that

requires very little floating point calculations. The alternative approaches are

summarized in Figure 3.3 for comparison, and some details are discussed below.
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3.2.3 Use C Intrinsics to Improve Programming

The C intrinsic functions are very useful here. C intrinsic functions are compiler

built-in assembly functions that can be called directly by a C procedure. The C6x

compiler supports over thirty C intrinsic functions. Quite often, the C intrinsic functions

can be used to process a task that would be very awkward to implement in pure C. In this

case, the C intrinsic _abs() is used to take the saturated absolute value of Xi for all 384

input symbols.

3.2.4 Simplify the Algorithm Substantially

A lot of efforts have been taken to substantially simplify the algorithm of DAGC.

The results are shown in Figures 3.3 and 3.4. The schematic DAGC algorithm for

implementation after simplification is shown in Figure 3.3, while the required signal

processing of the DAGC unit after simplification is presented in Figures 3.4.
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Figure 3.3. Schematic DAGC Algorithm Diagram after Simplification

* Ixil= -abs(IXil)

* int(lnlXil /n2) = 31 -_lmbd(

384.
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384fxXi = 2 int(a 1384 (..)) xXi = (Xi >> coeff)

by realizing that -coeff is negative
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Comparing Figures 3.3 and 3.4 to Figures 3.1 and 3.2, respectively, it

demonstrates that after the simplification, the originally seemed-to-be complicated

processing turns out to have a rather simple solution. This is quite amazing. The

followings summarize the major steps for the simplifying procedures.

lnIXil/ln2 is equivalent to og2 lXil. Taking the integer value of log21Xil is

equivalent to finding the left most bit ONE in IXi. For example, if Ixil = 2,

then log21Xil = 1; if IXil = 3, then og2lXil is approximately equal to 1.5850.

Taking the integer value of og2IXil in both cases yields an output of 1.

Following the standard practice and calling the right most bit of a 32-bit word

Bit #0, then what int(log2 Xil) actually produces is the bit number of the left

most bit ONE in Xii.

* Another C intrinsic function _lmbd() is used in the program to simplify this

bit searching process. Function _lmbd() searches for the leftmost 1 or 0 and

returns the number of bits up to the bit change. For example, _lmbd(1, 2) =

30 (yielding the number of O's up to the first 1) whereas _lmbd(0,2) = 0

(yielding the number of l's up to the first 0). Thus, int(lnXiJ/ln2) can be

alternatively implemented as 31 - _lmbd(1, input). This alternative step

changes a rough floating point movement into a very simple fixed point

calculation. So the most difficult challenge, huge amount of floating point

calculations, is successfully solved.

* Going further along Figure 3.2, the blocks that calculate the value of 2w and

multiply it with Xi can also be implemented in a much simpler way. With w

denotes the integer value of axi=l 384 int(lnXiJ/ln2), Si's can be obtained by
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shifting Xi's to the right by -w number of bits. This understanding is reached

by first noting that w is a negative integer; then multiplying Xi with 2w is

equivalent to dividing Xi by 2-w or 2Iwl.

* In fixed point DSP, any division by a power of 2 integer can be achieved by a

simple right shifting. Of course, there is a slight difference in the actual

implementation depending on whether the input symbol is positive or

negative. If the input symbol is a positive number, then the right shifting is all

that is needed for the division. If the input symbol is a negative number, then

one needs to be added to the result of the right shifting to compensate for the

sign extension due to the bit shifting.

* Floating point calculations have been substantially minimized as shown in

Figures 3.3 and 3.4, and discussed above.

3.2.5 Summary

Various techniques have been taken to successfully implement the DAGC unit on

C6201 in C program. The C intrinsic functions are employed to improve the efficiency,

and the algorithm is simplified through effective conversions. This series of conversions

make the DAGC unit readily implemented on the C6201 DSP, and substantially

minimize the floating point calculations, greatly increase the processing speed and reduce

the error range. The benchmark result for the DAGC function to process one frame of

data (384 symbols) is 4116 CPU cycles, which is about 0.10% of the processor time.

This is a very impressive and satisfactory result for the DAGC implementation.
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CHAPTER 4: IMPLEMENTING VITERBI DECODER ON C6201

The Viterbi Decoder is the last major component of the demodulation process to

be implemented for this project. It is also the most computationally demanding

component of the entire demodulation process. The Viterbi Algorithm (VA) is a very

well studied subject. There are already many established techniques for implementing

the VA. These techniques naturally form the corner stones of this specific

implementation. However, there are more techniques to be explored here that are aimed

specifically to take the advantage of the C6201's architecture and its C compiler. Those

C6201 specific techniques are of great importance for making the Viterbi Decoder to

meet the real time constraint imposed by the IS-95 system. Without them, it would be

quite difficult for the implemented program to accomplish the task in pure C; besides, the

efficiency of the implemented program would also be substantially reduced.

4.1 The Convolutional Encoder

Viterbi Decoder is also the most complicated component to understand among the

entire demodulation process. Its operation is intimately related to its counterpart at the

transmitter's end: the convolutional encoder. Therefore, understanding the convolutional

encoder is vital for implementing the Viterbi Decoder efficiently.

For the forward traffic channel generation, the IS-95 Standard specifies that the

information bits be convolutionally encoded. Convolutional coding provides redundancy

that the receiver uses to correct errors due to transmission distortions.

The VA is a maximum likelihood (ML) decoder. Viterbi specifically indicates

the use of VA as the optimal decoder for convolutionally encoded data [Viterbi, 1995].
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The IS-95 Standard also specifies the use of Viterbi Decoder for the demodulation of the

Forward CDMA channel.

Both cellular and PCS band can use either rate set 1 or rate set 2 vocoder. The IS-

95 Standard specifies the use of a rate /2, constraint length (K) 9 convolutional encoder

for rate set 1 vocoder. The rate /2 means that the encoder produces two coded bits as

output for every input information bit. Rate set 2 has a 1/½ rate encoder followed by

puncturing to produce an effective coding rate of 3/4. In both cases, a constant symbol

rate of 19.2 ksps is maintained. The constraint length indicates how many delayed

elements will be used in generating the current outputs. For example, for a rate /2, and K

= 9 encoder, the current information bit along with eight most recent uncoded

information bits would be used in producing the two current coded bits. In the actual

implementation, when the encoder is implemented as a shift register, this would involve

using eight delay elements to keep the past information bits in the memory. The

following figure gives an illustration of such an encoder:

Co

Coded Symbols

(Output I)

SB

C,

Coded Symbols

(Output 2)

Figure 4.1. Convolutional Encoding, Rate /2, K = 9
(Figure 3-6 of IS-95A: The CDMA Standard on p.3-10)
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Higher constraint length provides more coding gain. However, complexity

increases exponentially with constraint length. Increasing K beyond 9 would increase the

coding gain slightly with a great increase in complexity [Qualcomm, 1997]. The current

state of the art limits decoders to a constraint length of about K = 10 [Skylar, 1988]. In

"Digital Communications", Sklar [1988] discussed the details on comparison of coding

gains for different constraint length.

The upper and lower branch connection points of the K = 9 shift register in Figure

4.1 can be described by the following two polynomials:

Co(x)= 1 + xx 2+ x 3 +x 5 +X 7 +x8 (Eq.4.1)

C(x)= 1 +x 2 +x3 +x4 +x 8 (Eq.4.2)

The polynomial generators of a convolutional code are usually selected based on

the code's free distance properties. Sklar [1988] also presented a comprehensive

discussion of the related criteria in his "Digital Communications". The IS-95 Standard

has chosen the above two polynomials because they offer the optimal Euclidean distance

for a rate 1/2 encoder. The Euclidean distance represents a measure of the degrees of

orthogonality among possible sequences. Selecting polynomials with the highest degree

of orthogonality or optimal Euclidean distance maximizes the probability of correct

detection at the receiver's end. Eq. 4.1 denotes the upper connection of the shift register

leading to coded bit C whereas Eq. 4.2 is a representation of the lower branch

connection leading to C1. The coefficients of the code polynomials can be conveniently

represented as octal 753 and 561. A table listing of the polynomial coefficients has been

provided in Digital Communications [Proakis, 1995].
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4.2 General Process for Implementing Viterbi Decoder

Numerous past works on implementing the Viterbi Decoder have contributed to a

commonly agreed procedure for implementing the Viterbi Algorithm (VA). Figure 4.2

illustrates the general process for implementing a soft decision (Euclidean) Viterbi

Decoder. Generally, soft decision Viterbi outperforms hard decision (Hamming) Viterbi

since it takes into account the relative uncertainty level of the data. Therefore, it is of

higher interest to consider the soft decision VA here.

The general decoding procedure consists of the Add-Compare-Select (ACS)

operation and the Traceback operation. The ACS is actually a path selection and metric

accumulation operation. The path with the highest accumulated metric is evaluated as the

most possible sequence. Convolutionally encoded data is decoded through knowledge of

the possible state transitions. The VA efficiently limits the number of possible paths for

consideration.

* The VA notes that for a rate /½ encoder, there are only two possible encoder

states at Stage 1 that can enter into a particular encoder state at Stage 2; and there are

only two possible encoder states at Stage 3 that any encoder in Stage 2 can enter. Here,

Stages are references to the time frame.

* If two nodes are merging into the same node, then only one of them needs to be

kept since their path after the merging would be indistinguishable. The VA adds the new

metrics (local distances) to the accumulated metrics associated with the nodes of each

trellis stage, select the one with the higher accumulated metric (more likely path

sequence), and stores the decision of which path it has chosen.
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* After reaching the end of the input sequences, the VA selects the node with the

highest accumulated metric and traces its way back through the trellis according to the

path decision memory it has stored. The traceback path formed would consist of

different states along the trellis. However, the trellis stage states' numbers are exactly

consisted of the uncoded information bits that the decoder is trying to get.

4.3 Implementing IS-95 Viterbi Decoder on C6201

VA is the most computationally intensive part of the demodulation process. To

implement Viterbi Decoder efficiently is vital for meeting real time constraint. The

Viterbi Decoder has been implemented for a K = 9, rate /2 convolutional encoder. This is

a soft decision VA specifically designed for the transmission of a full rate data frame.

Figure 4.3 is the flow chart for implementing the VA.

Figure 4.3 follows the general flow process of Figure 4.2. However, there are

some important procedural differences employed in the actual implementation here that is

worth noting:

* In this IS-95 implementation, the traceback function is implemented over five

times the constraint length rather than over the entire data frame to minimize the delay

and memory storage required by the decoding process. As a consequence, two types of

traceback function are created for dealing with the situation. The function tracebackl(0

does limited traceback and decodes a small number of bits while the VA still reads input

sequences. The function traceback20 is employed for decoding all the remaining bits

once the entire input data set has been read.
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* Since a maximum-likelihood (ML) sequence means the most likely sequence

over the entire data set, VA of this particular implementation is theoretically not a truly

maximum-likelihood decoder because the decoded bit is only based on less than one

fourth of the available data at any point of the decoding process. However, in practice,

the data sequence converge in less than five times the constraint length, so there is little

performance sacrificed in becoming a slightly sub-optimal decoder.

Besides those points made above, there are many other important techniques

employed at each step of the implementation that contribute greatly to the algorithm's

impressive efficiency. In the following paragraphs, the major techniques used will be

discussed with their applications associating to each step of the process.

Step 1:

Step 1 of the flow chart is to read the input symbol pairs. There are 384 symbols

for each frame of data. For this full rate implementation, two symbols are read for each

trellis stage. So a total of 192 trellis stages need to be computed. Each trellis stage is

composed of many nodes (delay states) with its amount depending on the constraint

length of the convolutional encoder. A K = 9 convolutional encoder has 8 delay

elements. So there are 29-1 = 256 delay states in each trellis stage.

When implementing on the C6x, it is important to choose just the right word

length for data. The C6x can do twice the loads, stores, and additions on each function

unit per cycle if the data is of type short integer rather than integer. After the DAGC, it is

possible to represent the input symbols to the Viterbi Decoder as a short integer instead

of an integer. The usage of appropriate word length has helped to improve the final

benchmark results slightly. When initially the inputs to the Viterbi Decoder are 32-bit
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integers, it takes 919 cycles per trellis stage. After making the inputs to 5-bit data, which

only requires short integer for representation, the cycle counts for each trellis goes down

to 889 cycles.

Prelude of Step 3:

Step 3 does the Add-Compare-Select operation. The ACS operation is generally

performed between two nodes of the trellis in a butterfly. This is most easily seen in the

following diagram.

Figure 4.4. Trellis Butterfly Diagram, Rate ½2, K = 9

Nodes N and N+128 of Trellis Stage K both can potentially enter Nodes 2N and

2N+1 of the next trellis stage. Both Nodes N and N+128 have in their record the

accumulated path metrics up to Stage K. There are always two transition possibilities for

each node depending on whether the input bit is 0 or 1. The ACS operation attempts to

add the new local distance to the old metrics, select the one with the higher metrics, and

store the new metric with the associated nodes for the next trellis stage.
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Quite often, this ACS operation is computed as a butterfly function. The new

local distance is calculated based on the input symbols, the value is passed as a parameter

to the function bufferfly(; the ACS operation is performed within the function call. For

an IS-95 system, this would mean calling the bufferfly() function 128 times for each

trellis stage update.

However, through trials of experimentation, it is discovered that the conventional

way of implementing the ACS as an individual function is not efficient when

implemented on the C6x DSP. C6201 relies heavily on the processor pipelining. Making

function calls breaks up the pipelining of the processor. Therefore, it is much better to

implement the ACS in a for-loop as to keep the smooth flowing of the pipeline.

This naturally brings the need of pre-calculating and ordering the local distances

for convenient indexing of the ACS operation in a loop. Step 2 of the Flow Chart has

been invented specifically for this purpose.

Step 2:

Step 2 computes the Euclidean Distance Lookup Table. Rather than calculating

two local distances for each butterfly, which in turn would require calculating the local

distance 256 times for each trellis stage, this step is greatly expedited by developing some

very important improvements as discussed below.

Generally, the soft decision local distance could be calculated according to the

following equation [Hendrix, 1996]:

Local Distance = SDo*Co(j) + SDI *Cl(j) (Eq. 4.3)
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Where SD0 and SDI are the two input symbols to the Viterbi Decoder; Co(j) and

Cl(j) are the two coded output of the rate 1/2 convolutional encoder as shown in Figure

4.1.

There are a few interesting discoveries being made about the components of Eq.

4.3:

* First of all, each state transition yields two bits as its output. Therefore, there

are only four possible choices for the Co(j)CI(j) combination: 00, 01, 10, and 11.

* Co(j) and Cl(jO) are binary bits as demonstrated in Figure 4.1. However, they

should be considered in their antipodal form in Eq. 4.3, i.e., O's represent +l's and l's

represent -l's. Then the local distance will be a sum of two numbers: sign SDo + sign

SDI.

* Since the Euclidean local distance is calculated based on Eq. 4.3, there are only

four possible combinations of local distance that can be produced by any state transition,

i.e., SD0 + SDI, SDo -SDI, -SDo + SDI, -SD - SD1.

* Further, according to Figure 4.4, the local distances (M) involved for each pair

of butterfly are the negatives of each other, i.e. SD0 + SD1 and -SD0 - SDi occur in pairs,

SD0 -SD, and -SD0 + SD occur in pairs.

* All the 128 butterflies within one trellis stage use one of the two pairs of local

distances calculated in the previous step.

* Butterfly ACS computation has a fixed structure as presented in Figure 4.4.

Therefore, what is needed is just to determine the M values of the butterflies and store

them in appropriate sequence for use by the ACS operation.

47



These discoveries bring a great simplification to the problem. Now, the real work

for calculating the local distance for all the 256 nodes is to find out the coded bits that are

produced for each state transition. In addition, another advantage achieved here is that

this job does not need to be done real time and could be pre-calculated and programmed.

The relevant coded bits information for a rate 1/2, K = 9 encoder are calculated and

summarized in the following table:

Table 4.1. Lookup Table for States Transition, Rate '/2, K = 9

Figure 4.4 and Table 4.1 together tell quite a bit about how a rate ½/2, K = 9

decoder could be constructed. For example, if the current state is 100, then N = 100.

Figure 4.4 says that the next state would be 200 if the current input bit is 0 and the next

state would be 201 if the current input bit were 1. Following the convention, the right

most bit in the convolutional shift register is considered to be the most significant bit of

the state.
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Coded bits yield by State Butterfly # = N
Transition (States # = N, N+128)

0, 6, 11, 13, 17, 23, 26, 28, 32, 38, 43,45,
00 (Input bit = 0) or 11 (Input bit = 1) 49, 55, 58, 60, 65, 71, 74, 76, 80, 86, 91, 93,

97,103,106,108,112,118,123,125.
3,5, 8, 14, 1, 18, 20,25,31,35,37,40,46,

01 (Input bit = 0) or 10 (Input bit = 1) 50, 52, 57, 63, 66, 68, 73, 79, 83, 85, 88, 94,
98, 100, 105, 111, 115, 117, 120, 126.
1, 7, 10, 12, 16, 22, 27, 29, 33, 39, 42, 44,

10 (Input bit = 0) or 01 (Input bit = 1) 48, 54, 59, 61, 64, 70,75, 77, 81, 87, 90, 92,
96,102, 107,109,113,119,122,124.
2, 4, 9, 15, 19, 21, 24, 30, 34, 36, 41, 47,

11 (Input bit = 0) or 00 (Input bit = 1) 51, 53, 56, 62, 67, 69,72, 78, 82, 84, 89, 95,
____________________ 99, 101,104, 110, 114, 116, 121,127.



Function branchmetric() is responsible for both reading the input symbols and

calculating the local Euclidean distance. Function branchmetric() first calculates the four

possible values of the local distance, then sets up the look up table according to the

information provided by Table 4.1.

Step 3:

Step 3 does the Add-Compare-Select operation. There are 128 ACS operations

performed for each stage of memory update. With a symbol rate of 19.2 Ksps, the ACS

operations are computed 24,576 times for each frame (20 msec) of data. And this is

obviously a large amount of calculation.

The butterfly computation is a highly parallel operation. This means that the

instructions would have a constant demand for the same type of function units. But it

also means that two butterflies can be computed independent of each other's result. The

two notions make pipelining especially important. As discussed previously, the

computation of the ACS operation in this program has been implemented as a for-loop to

expedite pipelining. The entire loop is in charge of one trellis stage. The inner loop

calculates the ACS for sixteen butterflies. It stores the path chosen by all the 32 nodes in

a single 32-bit word (two nodes form one butterfly).

Even though only a single 32-bit word of storage is needed to satisfy the memory

storage of the entire inner loop, two temporary 32-bit words have been used within the

inner loop. This is an important cycle-saving technique used here within the inner loop

for recording to avoid the delay of two writes to the same destination. The C6x processor

allows four memory accesses to the same register each cycle, which includes three reads

and only one write. Two writes to memory are sometimes needed when computing one
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butterfly. If only one register is allocated for writing, one cycle of delay could be caused

when the second write is needed. On the other hand, allocation of two variables for

recording allow both writes to memory be completed within one cycle. The result of the

two 32-bit words is then combined to a single word at the end of the sixteenth butterfly.

This technique of creating a second temporary storage for path recording yields

significant improvement over the benchmark result.

The inner loop is then repeated by the outer loop for 16 times to capture all the

256 nodes of each trellis stage. The recording of path bits require the usage of sixteen

32-bit words for each trellis stage.

An application of similar spirit is made on the accumulation metrics. Both array

cmetric[256] and nmetric[256] are used for metric accumulation. For odd number of

trellis stages, cmetric[256] is the old array, and nmetric[256] = cmetric[256] + local

distance is the new array. For even number of trellis stages, nmetric[256] is the old array

and cmetric[256] is the new array. The use of dual metric accumulation arrays simplifies

the programming so that the memory sets would not have to be copied over and over. As

seen from the program itself, each outer loop does the calculations for two trellis stages.

Step 4:

Step 4 is a rather simple part of the decoder program that updates all the control

variables.

Step 5:

Step 5 does the decoding before the end of the input sequence has been reached.

Function tracebackl() has been used to achieve this task. The purpose for this

implementation is primarily due to the memory storage concern. Each trellis stage
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requires sixteen 32-bit words as storage. This would require 3072 32-bit words for

storage if decoding were done only once after processing all the input symbols. That is

too much memory to be occupied on a DSP. Thus, an important alternative has been

developed to avoid this problem in an effort to improve the efficiency. That is to do

decoding before reaching the end of the input sequence and just after enough data has

been accumulated for decoding. The data typically converge in less than 5 times the

constraint length. Fifty (50) trellis stages have been chosen as the storage path in this

research. Higher storage path enables more decoding bits at each traceback, but it is

achieved at the expense of consuming more memory for storage. In this implementation,

it has been chosen to decode 2 bits at each tracebackl(. However, it is believed that

more bits could be decoded fore each tracebackl(.

Step 6:

Step 6 does the traceback for the remaining bits once all the inputs have been

processed. This is implemented by function traceback2(. At the encoder's end, eight 0

bits are inserted at the end of each data frame for returning the encoder back to its zero

state. The zero insertion is extremely important for decoding. This information assures

that each traceback2() function has the zero state as its initial state. Since the starting

point for traceback2( is certain, and its ending point is converged, all the remaining bits

could be decoded at once.

C6x depends heavily on the optimization level of the code. Thus, it is very

important to be a smart programmer when programming for C6201 in C. The following

techniques have been developed during the implementation process of the Viterbi
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Decoder. They are very valuable in helping the compiler to compile efficiently, which in

turn helps the C program to run faster.

1) Changing butterfly() function calls to the for-loops

Using the for-loops to substitute the butterfly() function calls in the Add-

Compare-Select operation is one of the important steps developed for this program to

improve efficiency. It is extremely important that Add-Compare-Select operation has

been implemented in these for-loops. The initial implementation involved implementing

the Add-Compare-Select operation for a butterfly as a function (this basically means that

updating each trellis stage involves making 128 calls to this butterfly() function).

However, making function calls like this breaks up the pipelining of the process. Thus, it

is very important to avoid doing such kind of operations. After changing butterfly()

function calls to the for-loops that are present in the program now, the benchmark is

improved tremendously.

2) Skills on good indexing of the arrays

The second important thing to note is that the calculation of Viterbi involves lots

of indexing of the arrays. What is often neglected is the emphasis on the correct indexing

of these arrays. The correct strategy to do the job is to give the compiler as much

information about where the data is coming from as the programmer can possibly do.

This greatly helps improving the pipelining as well. Note the way the indexing has been

done in the Viterbi program, it gives the compiler the full knowledge of each symbol's

relative position to others. Do not give the compiler a black box, i.e., thinking that

16*a+k is used repeatedly and replace it with some variable x for indexing. Doing this

breaks up the pipelining and slows down the processor substantially.
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3) Keeping the pipelining flowing

The extremely important thing to note for programming in C6x is that it is a

highly paralleled processor. It has eight function units and is very important to get as

many function units running as that is possible for the algorithm. Therefore, keeping the

pipelining flowing is so important that it can never be over emphasized.

4) Avoid using the standard C library function calls

Avoid using the standard C library function calls. It is convenient for regular

programming to get something to work but is too slow for DSP implementation.

Function calls generally break up the pipelining. Thus, the usage of function calls should

be minimized.

5) Avoid using % for indexing

Avoid using such operations like % for indexing. The current hardware does not

support it well. Indexing using % operation also requires a hidden function call to

somewhere else. It is fine if this operation is only used for a limited amount of time; if it

is in a loop and is used repeatedly, however, it would be something to be watched out.

6) Keep program simple

Keep one's program simple. It is generally the best way to improve the compiler

efficiency. Only if the work can be done, the program should be kept as simple as

possible.

4.4 Viterbi Decoder Benchmark Result on C6201

The Viterbi Decoder is implemented entirely in C. The benchmark for decoding

one frame of data (384 symbols) is 368.6 K cycles. This is about 9.22% of the CPU time.

The Add-Compare-Select operation takes 889 cycles per trellis stage including overhead
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with a 4-cycle kernel per butterfly. This result compares very well to TI-internal hand

scheduled assembly performance for the same type of Viterbi Decoder which also has a

4-cycle kernel per butterfly 4 a benchmark result of 512 cycles + overhead per trellis

stage. The Compiler flag used for benchmarking is -g -o3 -k -mg.

This code contains some fscanf(, and fprintf() functions. These are for reading

inputs from an input PC file and send the outputs of Viterbi to a PC file. The entire

purpose of their presence is to check the accuracy of the Viterbi Decoder. In real time

processing, inputs to Viterbi would not be taken from a PC file, so when benchmarking

the Viterbi code, these file I/O operations should be commented out. Otherwise, PC file

I/O operations go through JTAG and the Go DSP profiler can not clock the CPU cycle

counts accurately.

4.5 Constructing VA for Half, Quarter and Eighth Rate Encoders

The IS-95 system supports a variable rate vocoder. The decoder has no

information on which rate has been transmitted. Therefore, the demodulation process

needs to allow the decoding at all four possible rates; then compare the CRC bit of the

decoded sequence to decide on the actual sequence that has been transmitted.

The operations for constructing the Viterbi Decoder for the half, quarter, and

eighth rate vocoder are essentially the same as for the full rate vocoder. The only

difference lies in that the input symbols to Viterbi need to be combined before being fed

into the Viterbi. Figures 4.5 through 4.7 illustrate the idea.

For decoding of the quarter and eighth rate vocoder, the number of input symbols

to Viterbi is decreased to 96 and 48 symbols respectively; this causes the number of

trellis stages to decrease to 48 and 24 stages respectively. In these cases, memory storage
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of the chosen data path is no longer an issue. The entire data sequence could b,6 decoded

once, eliminating the use of function tracebackl(. This idea is illustrated in Figures 4.6

and 4.7.

From the illustration of the decoding for other vocoder rates, it is possible to get

an approximate benchmark for the number of cycles needed to decode one frame of data.

The decoding of the half, quarter, eighth rate vocoder should be strictly less than half,

quarter, and eighth of the total cycle counts for decoding the full rate vocoder,

respectively. The reason is that the number of ACS operations needed is proportional to

its rate. However, the decoding for lower variable rate vocoder decreases or eliminates

the need for using function tracebackl(; thus it should result in a lower cycle count.
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4.6 Summary

The Viterbi Decoder has been successfully implemented on C6201 entirely in C.

A lot of improvements have been developed in this project that are aimed specially to

take the advantage of the C6201's architecture and its C compiler in order to greatly raise

the efficiency and meet the real time constraint imposed by the IS-95 system.

The benchmark for decoding one frame of data (384 symbols) is 368.6 K cycles.

This is about 9.22% of the CPU time. The Add-Compare-Select operation takes 889

cycles per trellis stage including overhead with a 4-cycle kernel per butterfly. The

benchmark result compares very well to TI-internal hand scheduled assembly

performance for the same type of Viterbi Decoder. The Compiler flag used for

benchmarking is-g -o3 -k-mg.
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CHAPTER 5. IMPLEMENTING PN ON C6201

5.1 Pseudorandom Noise Descrambling

Following the orthogonal spreading, each code channel is spread in quadrature.

The spreading sequence, called the pilot Pseudorandom Noise (PN) sequence, is a

quadrature sequence of length 2 5 (i.e., 32,768 PN chips in length). The spreading

sequence is based on the following characteristic polynomials:

P1(x) = x15 + x 13 + x9 + x8 + x7 + x5 + 1 for the in-phase (I) sequence

and

PQ(X) = x 15 + x 12 + xII + x + x6 + 5 + x 4 + x3 + 1 for the quadrature (Q) phase

sequence (TIA/EIA/IS-95-A, p. 7-18)

The C code that generates the PN sequences was provided by Dr. Aris

Papasakellariou of Texas Instruments. It is included here as the completeness to the

project. The PN generator implements two maximum length linear feedback shift

register sequence {i(n)} and {q(n)} based on the above polynomials. They are of length

215 - 1 and is generated by the following linear recursions:

i(n) = i(n-15) G i(n-10) 3 i(n-8) · i(n-7) · ) i(n-6) ) i(n-2)

(based on PI(x) as the characteristic polynomial)

and

q(n) = q(n-15) G q(n-12) S q(n-11) ® q(n-10) G q(n-9) E q(n-5) 33 q(n-4) q(n-

3)

(based on PQ(X) as the characteristic polynomial)

where i(n) and q(n) are binary-valued ('0' and '1') and the additions are modulo-2

[TIA/EIA/IS-95-A, p. 7-18].
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5.2 Summary

The PN generator in its current form takes approximately 1.2 million CPU cycles

to generate one frame of the I and Q PN sequences (24,576 chips for each sequence); that

is about 30% of the CPU time. It takes approximately another 51,000 CPU cycles for the

demodulation, which is nearly 1.28% of the CPU time.

The bottleneck of the PN Descrambling function lies in generating the spreading

quadrature sequences. The current PN generator is very inefficient in this aspect. Even

though the C6201 is still quite capable of meeting the real time constraint with this

inefficiency, better alternatives should be investigated for the future work. Either a

simplification of the algorithm is needed, or implementing the sequence generation

function in special hardware might indeed be a better solution.
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CHAPTER 6. CONCLUSIONS

The IS-95 system, the industrial standard for CDMA, has been successfully

implemented in software on TI fixed-point DSP TMS320C6201, and met the real time

constraint. The project includes all the major components of the demodulation process for

the forward link system: PN Despreading, Walsh Despreading, Phase Correction &

Maximal Ratio Combining, Deinterleaver, Digital Automatic Gain Control, and Viterbi

Decoder. The entire demodulation process is done completely in C.

Intensive efforts have been concentrated on developing various specific

techniques to optimize the design for all the components involved during the whole

implementation process. These developments are accomplished by making the best use

of their unique characteristics to simplify the algorithms of concern, taking the

advantages of the C620 l's architecture, and its C Compiler. Simplifying the algorithms is

one of the keys on implementing the IS-95 system on C6201 DSPs. This principal has

been applied in the entire implementing process. The algorithms of the different

components of interest have been analyzed and studied thoroughly. Some very

interesting phenomena have been observed, and efficiently used in the programming

process.

Overall, the major specific techniques employed in the project include but not

limit to the followings: to simplify the algorithms first before programming, to look for

regularity in the problem, to work toward the Compiler's full efficiency, and to use C

intrinsics whenever possible. All these attributes together make the implementation

scheme great for DSP applications. The benchmark results compare very well to TI-

internal hand scheduled assembly performance for the same type. To be specific, when
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using -g -3 -k - mg compiler flag for all benchmark, the benchmark result over one

frame for the different components are as follows:

* Walsh Despreading = 63.6 K CPU cycles;

* Phase Correction/MRC = 25.4 K;

* Deinterleaver = 1.4 K;

* DAGC=4.1K;

* Full Rate Viterbi = 368.6 K;

* Total CPU cycles available = 4,000 K; and

* Estimated Percentage of Usage = 21.18% (including all 4 rates of Viterbi but

excluding PN descrambling)

The overall process time-shares of all the components are presented in Figure 6.1.

This successful implementation provides a very attractive alternative for the

future applications of DSPs. It is well known that ASIC design is expensive and time

consuming, programming in assembly is easier and cheaper, but programming in C is a

much easier and efficient way out, in particular, for general computer engineers.

Currently, the 2nd generation CDMA phones are produced by Qualcomm. Texas

Instruments (TI) has ASIC design for Viterbi decoder on C54x. Several of the

components in the forward link process are also implemented in hardware. However,

having to design a specific hardware for a particular application is not only expensive but

also time consuming. Thus, the possibility of the alternative implementations has been of

great interest to both customers and TI itself. The successful implementation of IS-95

entirely in C on TI C-6201 provides such kind of alternatives.
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In addition, the IS-95 system is a very complicated system and extremely

computationally demanding. The transmission rate for an IS-95 system is 1.2288 Mcps.

A series of digital processing need to be done on all those data. That is a significant

amount of computation. Thus, the successful implementation of IS-95 on C6201 also

proves that using software as an alternative implementation is not just possible for simple

applications, it is also feasible for complicated systems such as IS-95, the industry

standard of CDMA.

With respect to each of the research objectives, further conclusions may be drawn

as follows:

6.1 Implementation of Walsh Despreading

Walsh Despreading has been successfully implemented on TI C6201 DSPs with

an input chip rate of 1.2288 Mcps. The benchmark result for processing one frame of

input signal (24,576 chips) is about 63,600 CPU cycles; this is approximately 1.59% of

the CPU time.

Considering the very high input chip rate (1.2288 Mcps) and the huge 64x64

Walsh code matrix, the benchmark result of Walsh Despreading is very impressive and

satisfactory. In order to achieve these successful results, efforts have been devoted to

simplify the algorithms first, and look for regularity in the problem. By taking the

advantage of the regularity of the Walsh code, surprisingly, even no memory storage is

required for storing the code sequences in advance. This is a substantial saving for the

very valuable on-chip memory compared to taking a 64x64 Walsh code matrix and

storing it on the chip memory. Besides, appropriate code sequence is generated real time
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based on the code sequence number requested by the user, which assumedly is already

determined by the Rake Receiver.

6.2 Implementation of Phase Correction/MRC

The Phase Correction and Maximum Ratio Combining functions have been

implemented in C on TI C6201 DSPs with great satisfaction. The benchmark result for

its implementation is about 25,400 CPU cycles over one frame of data. This is only

0.64% of the processor time.

This implementation creates two circular buffers of size 16 each for the I and Q

components of the pilot signal. It also creates two circular buffers of size 7 that are used

to store the delayed I and Q symbols of the information signal. The Phase Correction &

MRC algorithm involves the processing of the data frame for the I and Q branches of

both pilot and information signals. There are 384 symbols for each type of signal per

frame of data. However, by simplifying the algorithm, the efficiency has been

significantly improved.

6.3 Implementation of Deinterleaver

The Deinterleaver function has been satisfactorily implemented in C on TI C6201

DSPs. The benchmark result for the Deinterleaver function to process one frame of data

(384 symbols) is 1,440 CPU cycles; that is only 0.036% of the processor time, an

extremely short time indeed.

The Deinterleaver has to generate a sequence array that rearranges the input

sequence, which eventually could have a big code size. However, the detailed analysis of

the data pattern demonstrates that the full rate Deinterleaver array, which seems to be in a
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mess from appearance, has very unique regularity. The discoveries of the Rules "64",

"32-16-48" and "1-3-2-4" have made this possible. Thus, the Interleaver array has been

generated very efficiently with an especially easy form. This particular implementation

does not even require any prior memory storage for the array and has a very small code

size. Of course, the simpler the code, the faster it runs. All these attributes together

make this implementation scheme great for DSP applications. As noticed during the

programming process, without using these rules, the efficiency and performance would

be substantially lower than what has been achieved now.

6.4 Implementation of DAGC

The Digital Automatic Gain Control function has been successfully implemented

in C on TI C6201 DSPs. The benchmark result for the DAGC function to process one

frame of data (384 symbols) is 4,116 CPU cycles, which is just 0.10% of the processor

time. This is a very impressive and satisfactory result for the DAGC implementation.

Various specific techniques have been developed for this implementation. First,

simplify the algorithm before programming. As shown in Figures 3.1 and 3.2, based on

the regular implementation technique, the signal processing is very complicated, and

requires substantial amount of floating point calculations over a sequence of 384 input

symbols. No doubt, the resulted program from the DAGC Algorithms would be very

time consuming, and greatly increase the error range of the results. However, after a

series of effective conversation to simplify the DAGC Algorithms, the solutions turn out

to be much simpler than they seem to be, as illustrated in Figures 3.3 and 3.4. Thus, it

greatly simplifies the program and improves the efficiency. Combining with the other
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novel approaches developed for this implementation such as using the C intrinsic

functions to limit the floating calculations, significant improvements have been achieved.

The application of C intrinsic functions successfully change a rough floating point

movement into a very simple fixed-point calculation. Thus, the most difficult challenge,

handling a huge amount of floating point calculations, is successfully solved.

This series of conversions not only make the DAGC unit readily implemented on

the C6201 DSP, and substantially minimize the floating point calculations, but also

greatly increase the processing speed and reduce the error range.

6.5 Implementation of Viterbi Decoder

The Viterbi Decoder has been implemented on TI 6201 DSPs with impressive

success. The benchmark result for decoding one frame of data (384 symbols) is 368.6 K

cycles. This is about 9.22% of the CPU time. The Add-Compare-Select operation takes

889 cycles per trellis stage including overhead with a 4-cycle kernel per butterfly. The

benchmark result compares very well to TI-internal hand scheduled assembly

performance for the same type of Viterbi Decoder.

A lot of specific techniques have been developed in this project that are aimed

specially to take the advantage of the C6201's architecture and its C Compiler in order to

greatly raise the efficiency and meet the real time constraint imposed by the IS-95

system. These techniques include but not limited to the followings:

* Simplify the algorithms first;

* Changing butterfly() function calls to the for-loops;

* Skills on good indexing of the arrays;

* Keeping the pipelining flowing;
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* Avoid using the standard C library function calls;

* Avoid using % for indexing; and

* Keep program simple

These discoveries and techniques bring a great simplification to the problem,

substantially improve the program efficiency, and meet the real time constraint of the

implementation of the Viterbi Decoder.

6.6 Implementation of PN

The Pseudorandom Noise (PN) Descrambling has been implemented on TI 6201

DSPs successfully. The PN generator in its current form takes approximately 1.2 million

CPU cycles to generate one frame of the I and Q PN sequences (24,576 chips for each

sequence); that is about 30% of the CPU time. It takes approximately another 51,000

CPU cycles for the demodulation, which is nearly 1.28% of the CPU time.

The bottleneck of the PN Descrambling function lies in generating the spreading

quadrature sequences. Although it can still meet the real time constraint with this

inefficiency, better alternatives should be investigated for the future work. The choice

could be either a simplification of the algorithm or the implementation of the sequence

generation function in a special hardware.

In summary, the IS-95 system, the industry standard of CDMA, has been

successfully implemented entirely in C on TI fixed-point DSP TMS320C6201. Intensive

efforts have been devoted to simplify the algorithms of concern based on their regularity

and/or unique structure, and to develop many specific techniques in an effort to improve

the efficiency of the program. The implementation has satisfied the real time constraint,
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and achieved impressive efficiency. The benchmark results compare very well to TI-

internal hand scheduled assembly performance of the same type of decoders. . IS-95

system is a very complicated system and extremely computationally demanding. This

successful implementation of IS-95 provides a strong evidence for the possible use of

general TI DSPs as an alternative to ASIC designs in the future, which would potentially

benefit both customers and TI itself.
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ABBREVATIONS AND SYMBOLS

ACS Add-Compare-Select Operation

ASIC Application Specific Integrated Circuit

AWGN Additive White Gaussian Noise

CDMA Code Division Multiple Access

CELP Code Excited Linear Prediction

DAGC Digital Automatic Gain Control

DSP Digital Signal Processor

FDMA Frequency Division Multiple Access

FEC Forward Error-correcting (or Error Control) Coding

FTC Forward Traffic Channel

GSM Global System for Mobile

kbps Kilo bits per second

ksps Kilo symbols per second

mcps 1 million cycles per second

ML Maximum Likelihood

msec 1 millionth second

MRC Maximal Ratio Combining

PCS Personal Communication System

PN Pseudorandom Noise

SNR Signal to Noise Ratio
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TDMA Time Division Multiple Access

TI Texas Instruments

VA Viterbi Algorithm

VLIW Very Long Instruction Word
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Appendix A: C Program Code for Walsh Despreading

/* Xiaozhen Zhang */
/* Jan 19, 1999 */
/* This code does Walsh despreading for a frame of IS95 Rate 1/2, K=9 convoluationally
encoded data. */
/* This version works! */
/* The benchmark for Walsh despreading over one frame of data is 63,612 CPU cycles */

#include <stdio.h>

#define WALSH_SIZE 64

typedef char Word;

static Word walsh[WALSH_SIZE];
static short win[WALSH_SIZE];
static short wout[384];
static Word num, count=O, class=O;

FILE *fpl;
FILE *fp2;

void generator(Word num);
void walsh_init(void);

void main(void)
{ inti,j,x;

/* open output file for writing */
if((fpl = fopen("'input.dat", "r"))==NULL) {

printf("Cannot open input file.\n");
exit(l);
}

/* open output file for writing */
if((fp2 = fopen("output.dat", "w"))==NULL) {

printf("Cannot open output file.\n");
exit(l);
}

generator(8); /* func generator() takes the desired Walsh code number as its parameter
*/

for(x=O;x<2;x++){
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walsh_init();

for (j=0; j<384; j++)
{ /* Read input chips */
for (i=0; i<WALSH_SIZE; i++)
{ fscanf(fpl, "%d", &win[i]);

I

/* Multiply input chips with appropriate Walsh chips */
for (i=0; i<WALSH_SIZE; i++)

{ woutUj] += (win[i])*(walsh[i]);
}

for (i=0; iWALSH_SIZE; i++)
{ fscanf(fpl, "%d", &win[i]);

I

for 0=0; j<384; j++)
{ fprintf(fp2, "%d\n", woutj]);

I

if (feof(fpl)) {
printf("End of file!\n");
break;

}

fclose(fpl);

fclose(fp2);
fclose(fp2);
exit(O);

}

void generator(Word num)
{ int i = 0;

if (num<0 1J num >63)
{ printf("Please enter valid walsh code number!\n");
exit(l);

}

walsh[O] = 1;
class = num%2;
if (class == 0) walsh[1] = walsh[O];
else walsh[l] = -walsh[O];
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class = num%4;
for(i=2; i<4; i++)

{ if (class <= 1) walsh[i] = walsh[i-2];
else walsh[i] = -walsh[i-2];
}

class = num%8;
for(i=4; i<8; i++)

{ if (class <= 3) walsh[i] = walsh[i-4];
else walsh[i] =-walsh[i-4];
}

class = num%16;
for(i=8; i<16; i++)

{ if (class <= 7) walsh[i] = walsh[i-8];
else walsh[i] = -walsh[i-8];
}

class = num%32;
for(i=16; i<32; i++)

{ if (class <= 15) walsh[i] = walsh[i-16];
else walsh[i] = -walsh[i-16];
I

for(i=32; i<64; i++)
{ if (num <= 31) walsh[i] = walsh[i-32];

else walsh[i] = -walsh[i-32];
}

void walsh_init(void)
{ int k;
for (k=O; k<384; k++)

{ wout[k] = O;

}

}
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Appendix B: C Program Code for Phase Correction and MRC

/* Xiaozhen Zhang August 20, 1998 */
/* This function does Phase Correction and Maximal Ratio Combining */
/* This version works! */
/* The benchmark is 25,413 CPU cycles for processing one frame of data */
/* The compiler flag used is -g -o3 -k -mg */

#include <stdio.h>

#define SIZE 16 /* MRC is done for summing over 16 pilot symbols */
#define DELAY 7 /* Delay is 7 symbols */
#define FULL_FRAME 384

static int pbufferI[SIZE], pbuffer_Q[SIZE], sbufferI[DELAY], sbufferQ[DELAY];
static int avg_I, avgQ, Iterm, Qterm;
static int mrc;

void initpilot(void);

FILE *fpsi, *fps q, *fppi, *fppq, *fp3;

void main(void)
{int j=0, i=0, count=0;

/* open input file for reading */
if ((fps_i = fopen("mrcini.dat", "r"))==NULL) {

printf("Cannot open real input signal file.\n");
exit(l);

I

if ((fpsq = fopen("mrcinq.dat", "r"))==NULL) {
printf("Cannot open imaginary pilot signal file.\n");
exit(l);

I

/* open real part of the pilot signal file for reading */
if ((fppi = fopen("ipilot.dat", "r"))==NULL) {

printf("Cannot open real pilot signal fileA.\n");
exit(l);

}

/* open imaginary part of the pilot signal file for reading */
if ((fppq = fopen("qpilot.dat", "r"))==NULL) {

printf("Cannot open imaginary pilot signal file.\n");
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exit(1);
}

/* open output file for writing */
if ((fp3 = fopen("mrcoutput.dat", "w"))==NULL) {

printf("Cannot open output file.\n");
exit(1);

}

initpilot();

for(;;){
avgI = avgI - pbufferI[i]; /* pilot signals are averaged over 16 symbols

*l
fscanf(fppi, "%d", &pbufferI[i]); /* reading on-time symbol for the

pilot's real term */
if(feof(fppi))

{ if (count == O)
{ printf("End of file - Frame completed!n");

} else printf("End of file - Frame incompleted!\n");
break;
I

avgI = avgI + pbufferjI[i]; /* pbuffer_I contains the real term of the
pilot signals */

I_term = sbuffer_I[j]*avgI; /*sbuffer_I contains the real term of the
received singnals */

fscanf(fpsi, "%d", &sbuffer_I[j]); /* reading delayed symbol (by number
of DELAY) for the

received signal's real term */

avgQ = avgQ - pbufferQ[i];
fscanf(fppq, "%d", &pbuffer_Q[i]); /* reading on-time symbol for the

pilot's imaginary term */
avgQ = avgQ + pbufferQ[i]; /* pbufferQ contains the imaginary term

of the pilot signals */

Qterm = sbuffer_Q[j]*avg_Q; /*sbuffer_I contains the imaginary term
of the received singnals */

fscanf(fpsq, "%d", &sbufferQj]); /* reading delayed symbol (by
number of DELAY) for the

received signal's imaginary term */

mrc = I_term + Q_term; /* the maximal ratio combining output */
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fprintf(fp3, "%d\n", mrc); /* writing the MRC results to an output file */

count = (count+1)%FULLFRAME; /* updating the Frame Counter */
i = (i+I)%SIZE; /* updating the circular buffer for the received signals */
j = (j+1)%DELAY; /* updating the circular buffer for the pilot signals */

fclose(fpsi);
fclose(fpsq);
fclose(fppi);
fclose(fpp_q);
fclose(fp3);
exit(O);

void initpilot(void)
{int r;
int m;
for (r=0; r<=SIZE-I; r++) /* Initialization for the buffer-- IMPORTANT!! */
{ pbufferI[r]=0; /* For the first 16 symbols, MRC is done */
pbufferQ[r]=0; /* for summing over less than 17 symbols */

for (m=0; m<=DELAY-1; m++)
{ sbufferI[m]=0; /* Initilizing the buffers to 0 for the effect of delay by DELAY.

*/

sbuffer_Q[m]=0;

avg_I=0;
avgQ=0;
}

/* Initalizing the sum of pilot symbols -- IMPORTANT!! */
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Appendix C: C Program Code for Deinterleaver

/* Background: IS95 rate 1/2, K=9 convolutional encoder */
/* This function does deinterleaving over one frame of IS95 data */

/* Xiaozhen Zhang */
/* January 20, 1999 */

/* Benchmark = 1,440 CPU cycles using -gk -mg -o3 as the compiler flag*/

#include <stdio.h>
#define FRAME 384

int order[FRAME];
FILE *fpl; /* fpl is the file pointer for the input file; */
FILE *fp2; /* fp2 is the file pointer for the output file; */

void init(void);

void main(void)
{ int in[FRAME], out[FRAME];
int i, k;

/* open input file for reading */
if ((fpl = fopen("input.dat", "r"))==NULL) {

printf("Cannot open input file.\n");
exit(l);

}

/* open output file for writing */
if ((fp2 = fopen("output.dat", "w"))==NULL) {

printf("Cannot open output file.\n");
exit(1);
}

for(i=0;i<FRAME;i++) {

/* Read input symbols */
fscanf(fpl, "%d", &in[i]);

}

init();

/* This for loop changes the sequence of the input symbols */
/* and put them into the correct position */

for (k=0;k<FRAME;k++) {
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out[(order[k])]=in[k];
}

for (i=0; i<FRAME;i++) 
fprintf(fp2, "%d\n", out[i]);

}

fclose(fpl);
fclose(fp2);
printf("End of file - Frame completed!\n");
exit(O);

/* function init() generates the Full Rate Interleaver Output Array */

void init(void)
{int i,j;

/* order[] yields the sequence order for the output array */
/* Locate the position for 0 through 3 in the array*/

for (i=0; i<=l; i++) {
order[i*192] = i;
order[i* 192+96] = i+2;

I

/* Locate the position for 4 through 15 in the array */
for (i=0; i<=3; i++) 

order[i*96+24] = order[i*96]+8;
order[i*96+48] = order[i*96]+4;
order[i*96+72] = order[i*96]+12;

I

/* Locate the position for the remaining part of the 384 symbols */
for (i=0; i<=15; i++) {

order[i*24+6] = order[i*24]+32;
order[i*24+12] = order[i*24]+16;
order[i*24+18] = order[i*24]+48;

I

for (j=O; j<=63; j++) {
for (i=l; i<=5; i++)

order[j*6+i] = order[j*6]+i*64;

}

}
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Appendix D: C Program Code for DAGC

/* Xiaozhen Zhang */
/* December 23, 1998 */
/* Digital Automatic Gain Control (DAGC) */
/* This version works! It yields a cycle count =4116 cpu cycles*/

#include <stdio.h>
#define FULL 384

int dagc_in[FULL], mag[FULL];
short int dagc out[FULL];
int i, j, coeff;
unsigned int sum;
FILE *fpl, *fp2;

void main(void)
I

if ((fpl = fopen("input.dat", "r"))==NULL) {
printf("Cannot open input file.\n");
exit(l);

I

/* open output file for writing */
if ((fp2 = fopen("output.dat", "w"))==NULL) {

printf("Cannot open output file.\n");
exit(l);
I

for(;;){
for (j=O; j<FULL; j++)
{

/* Read input symbol pair */
fscanf(fpl, "%d", &dagc_in[j]);
if(feof(fp 1)) break;

I

if(feof(fpl 1))
{ printf("End of file\n");

break;
}

sum = 0;
for (i=0; i<FULL; i++) {
mag[i] = _abs(dagcin[i]); /* C6x C Compiler intrinsic _abs */
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/* _abs returns the saturated absolute value of the source */
sum += 31 - _lmbd(1, mag[i]); /* C6x intrinsic _lmbd */
} /* _lmbd searches for a leftmost 1 & returns the # of bits up to the

bit change. */

coeff = (int)(sum/384);

for (i=O; i<FULL; i++) {
dagcout[i] = dagc_in[li] >> coeff;

}

for (i=O; i<FULL; i++) {
if (dagc_in[i]<O) dagc_out[i] += 1;

}

for(j=O; j<FULL; j++) {
fprintf(fp2, "%d\n", dagcoutlj]);
}

fclose(fpl);
fclose(fp2);
exit(O);
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Appendix E: C Program Code for Viterbi

/* Xiaozhen Zhang December 23, 1998 */

/* Viterbi Decoder for K=9 and rate=1/2 convolutional code*/
/* The Viterbi Decoder is designed for decoding the data frame at full rate */
/* The code polynomails for the IS-95-A forward link code

are octal 561 and 753 */

/* The benchmark result is 368,625 CPU cycles for decoding one frame of data (384
symbols) */
/* The compiler flag used is -g -o3 -k -mg */
/* There is a related documentation file viterbi.doc written by Xiaozhen Zhang*/
/* viterbi.doc is written to specifically address the design choices made during the
implementation */

#include <stdio.h>

#define NODES 256
#define MEMPATH 50
#define MERGEDIST 48 /* trace back length is the smallest even number */

/* greater than 5 times the constraint length */
#define FRAME 192

int counter = 0, wd = 0;
int sd[384], data[2], data2[MEMPATH];
short int dm[128], cmetric[NODES], nmetric[NODES];
unsigned int paths[8*MEMPATH]; /* memory storage for the decoded bit at each

stage is 256 bits = 8*32bits = 8
words */
void init(void);
void branchmetric(int w);
static void tracebackl(int world);
static void traceback2(int world);

FILE *fpl; /* fpl is the file pointer for the input file; */
FILE *fp2; /* fp2 is the file pointer for the output file; */

void main(void)
{ int a, k, p;
short int dmb;

init();
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/* open input file for reading */
if ((fpl = fopen("input.dat", "r"))==NULL) {

printf("Cannot open input file.An");
exit(l);

I

/* open output file for writing */
if ((fp2 = fopen("output.dat", "w"))==NULL) {

printf("Cannot open output file.\n");
exit(l);
I

for(;;){

for (a=O; a<384; a++)
{

/* Read input symbol pair */
fscanf(fpl, "%d", &sd[a]);
if(feof(fpl)) break;
I

if(feof(fp 1))
{ if (counter == 0) printf("End of file - Frame completed!\n");

else printf("End of file - Frame incompleted!\n");
break;

I

for (p=0;p<=95;p++) {
/* Compute branch metrics using the input symbol pair */

branchmetric(counter);

/* Metric Update */
/* The following loop does the add-compare-select(ACS) operation, it takes the old
metrics from cmetric and stores the new metrics into nmetric. */

for (a = 0; a < 8; a++)
{ int mOO, mOl, mlO, mll;
unsigned int decO = 0;
unsigned int dec = 0;

int path_bit = 1;

for (k = ; k < 16; k++)
{dmb = dm[16*a+k];

mOO = cmetric[16*a+k] + dmb;
mOl = cmetric[16*a+k+128] - dmb;
mlO = cmetric[16*a+k] - dmb;
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ml 1 = cmetric[l6*a+k+128] + dmb;

if (mOl>mOO) decO += pathbit;
else mOl = mOO;

if (ml l>m lO) decl += path_bit;
else ml = mlO;

nmetric[2*(16*a+k)] = (short)mOl;
nmetric[2*(16*a+k)+1] = (short)ml 1;

path_bit *=4;
}

paths[8*wd+a] = decOl(dec 1l*2);

wd++;
counter++;

/* Compute branch metric */
branchmetric(counter);

/* Metric Update */
/* The following loop also does the add-compare-select(ACS) operation, except it takes
the old
metrics from nmetric and stores the new metrics into cmetric. */

for (a = ; a < 8; a++)
{ int mOO, mOl, mlO, ml l;
unsigned int decO = 0;
unsigned int dec = 0;
int path-bit = 1;

for (k = ; k < 16; k++)
{dmb = dm[16*a+k];

mOO = nmetric[16*a+k] + dmb;
mOl = nmetric[16*a+k+128] - dmb;
mlO = nmetric[16*a+k] - dmb;
ml 1 = nmetric[16*a+k+128] + dmb;

if (mOl>mOO) decO += pathbit;
else mOl = mOO;

if (ml l>mlO) decl += pathbit;
else ml = mlO;

cmetric[2*(16*a+k)] = (short)mOl;
cmetric[2*(16*a+k)+1] = (short)ml 1;
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path_bit *=4;
3

paths[8*wd+a] = decO(decl*2);
I

if (++wd >= MEMPATH) wd -= MEMPATH; /* Implementing circular buffer
storage */

counter++;
if(counter=-FRAME) traceback2(wd);
if(counter>=MEMPATH)
tracebackl (wd);

}

fclose(fpl 1);
fclose(fp2);
exit(O);

}

/* Initializing the matrices. */
void init(void)

{ int k;

for(k=0;k<NODES;k++){
cmetric[k] = 0;
nmetric[k] = 0; 

for(k=0;k<8*MEMPATH;k++){
paths[k] = 0;)

data[O] = 0;
data[ 1] = 0;
I

void branchmetric(int w)
{ inty,k;

short int dO, dl, d2, d3;
/* Compute brunch metric */

dO = (short)(sd[2*wl + sd[2*w+l J); /* M */
dl = (short)(sd[2*w] - sd[2*w+l 1); /* L */
d2 = -dl; /* .. *
d3 = - dO; /* M /

for (k=O; k<33; k=k+32) 
for (y=O; y<7; y=y+6)

( dmly+kJ x d0: t * 0, 6, 32. 38 */
dmly+k+ } a d2: /* 1, 7, 33, 39 */
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dm[y+k+8] =dl;
dm[y+k+9] = d3;

}

for (y=O; y<3; y=y+2)
{ dm[y+k+2] - d3;
dm[y+k+3] = dl;
dm[y+k+10] = d2;
dm[y+k+l 1] = dO;
I

for (y=O; y<7; y=y+6)
{ dm[y+k+l16] = d2; /

dm[y+k+17] = dO;
dm[y+k+24] = d3;
dm[y+k+25] = dl;
I

for (y=O; y<3 ; y=y+2)
{ dm[y+k+l18] = dl;
dm[y+k+19] = d3;
dm[y+k+26] = dO;
dm[y+k+27] = d2;

I

/* 8, 14, 40, 46*/
/* 9, 15, 41, 47 */

1* 2, 4, 34, 36 */
/* 3, 5, 35, 37 */
/* 10, 12, 42, 44 */
/* 11, 13,43,45*/

* 16, 22, 48, 54 */
/* 17, 23, 49, 55 */
/*24, 30, 56, 62 */
/* 25, 31, 57, 63 */

/* 18,20,50,52*/
/* 19, 21, 51, 53 */
/* 26, 28, 58, 60*/
/* 27, 29, 59, 61 */

for (y=O; y<32; y++)
{ dm[y+64] = dm[y+l16];
dm[y+96] = dm[y+16];
}

/* Traceback */
static void tracebackl(int world)
{ int ma, i, j, beststate, bit, test, m;

short int mx, *c;
/* Find the best state for the current state */
ma= 0;
mx = cmetric[0];

for (m=l; m<=256; m++)
if (mx < cmetric[m] ) mx = cmetric[ma=m];

c = &cmetric[ma];
beststate = c - cmetric;
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/* Trace back for the best state for MERGEDIST number of times */
if (--world<O) world += MEMPATH;

for(i=O; i<MERGEDIST; i++) {
test= paths[8*world + (beststate>>5)] & (1 <<(beststate & 31));

if (test) beststate = best_state + 256;
best_state = (best_state >> 1);
if (--world<O) world += MEMPATH;

}

/* Best state is now the encoder state MERGEDIST bits back.
Continue to trace back until we accumulate 2 bits. */

for(jO=0; j<=1; j++) {
if (paths[8*world + (best_state>>5)] & (l<<(beststate & 31))) {

best_state = best_state + 256;
data[j] = 1; } else data[j]=O;

beststate = (beststate >> 1);
if (--world<O) world += MEMPATH;

}

fprintf(fp2, "%d\n", data[1});
fprintf(fp2, "%d\n", data[O]);

}

static void traceback2(int world)
{ intj, beststate;

/* Find the best state for the current state */
/* Trace back for the best state for MERGEDIST number of times */
counter = 0;
beststate = 0;
if (--world<O) world += MEMPATH;

for(j=O; j<MEMPATH; j++) {
if (paths[8*world + (best_state>>5)] & (l<<(beststate & 31))) {

best_state = best_state + 256;
data2[j] = 1; } else data2[j]=0;

best_state = (beststate >> 1);
if (--world<O) world += MEMPATH;
}

for(j=0; j<MEMPATH; j++) {
fprintf(fp2, "d\n", data2[MEMPATH-1-j]);
}

wd=O;
init();

}
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Appendix F: C Program Code for PN

/****PN despreading *********/

/***************************************1
/* XiaozhenZhang */
/* July 15, 1998 */
/* C Source File for PN Despreading */
/* Part I of Thesis Project: */
/* Implementing IS95 onC6x */
1****************************************1

/* This version works! */
/* Jan. 19, 1999 */

#include "pn_defs.h"

UWord ipnjreg;
UWord qpnreg;
UWord igen.poly;
UWord qgen-poly;

void initpn(UWord I_Init_State, UWord QIniLtState)
{1************************* * * **** ***** *:****** ** **

*Initialize the I and Q LFSR's.

ipnreg = I_Init_State;
qpnjreg = Q_InitState;

I** * * ***** * *** * * ***** ** :****** * * * * *******

* Initialize the generator polynomials with the
* the 15th order primitive polynomials with a
* shift (because they are applied to bits 14:1).

igenpoly = PRIMITIVE_POLY_1 << 1;

q-genpoly = PRIMITIVE_POLY_2 << 1;

* This function generates the I and Q PN sequences from the PN
* linear feedback shift registers (LFSR's) of length 15. Bit
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* 0 of the data structure holds the MSB of the LFSR, since it
* is shifted from left to right.
*

* The PN sequences have a period of 2A15 due to zero insertion,
* and output at the chip rate of 1.2288 MHz.
*

* Params (input):
* pnload - If TRUE, a new state is loaded into IQ PN (with an
* effective delay of 1 chip). If FALSE, the next two
* input parameters are ignored and the PN LFSR's function
* normally.
* new_Istate - New state for loading into I PN sequence LFSR.
* newQ.state - New state for loading into Q PN sequence LFSR.
*

* Params (output):
* pnjI_ptr - the output of I PN generator.
* pn Qptr - the output of Q PN generator.
************************** * * * *** * ** ****** ** *** ****** **********

void pnseq(UWord new_I_state, UWord newQstate,
UWord *pnIlptr, UWord *pnQptr)

{

UWord regmsb;
UWord nor res;

* First calculate the output of the I register using the MSB,
* XOR'ed with the NOR result of the lower 14 bits of the LFSR.
* This is done to implement zero insertion after state 2A15-1.

regmsb = ipnreg & LSB_MASK;

if ((i_pnreg >> 1) = 0)
nor_res = 1;

else
norres = 0;

*pn_Iptr = reg msb A norres;

* Repeat this process for the Q LFSR to get the PN output.

regmsb = qpnreg & LSBMASK;
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if ((qpnreg >> 1) == O)
norres= 1;

else
nor_res = 0;

*pnQptr = regmsb ^ nor_res;

* Update the I and Q LFSR's using the proper polynomials.

if (*pnIptr)

ipnreg = (ipnreg A igenpoly);

if (*pn_Q_ptr)

qpnreg = (qpnreg ^ qgenpoly);

*Implement feedback to update LSB of the LFSR.

ipnjreg = (*pn_I_ptr << (PN_REGLEN-1)) I (i_pn-reg >> 1);

qpn-reg = (*pnQptr << (PNREGLEN-1)) (qpnreg >> 1);
}

void main()
{

UWord pnL, pnQ;
UWord pncount;

init-pn(O, 0);

for (pncount=O; pn_count < NUMPN_OUTPUTS; pncount++)
{

pn-seq(O, 0, &pnI, &pnQ);
}

}
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