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Abstract
We develop a technique for measuring cosmological parameters (QM and w) using
gravitational lens geometry, source and lens redshifts, and the velocity dispersion
of the lensing galaxy. This technique makes use of the relation SE 4 DLs

where the critical radius 0 E and the one-dimensional velocity dispersion of the lensing
galaxy av are observable and the angular diameter distance ratio DLS/DS is related
to the source and lens redshifts Zsource and Zlens through the cosmological model. We
assess the feasibility of this technique by examining the dependence of that ratio on
cosmological parameters, doing a Monte Carlo simulation with a singular isothermal
sphere lens galaxy, and estimating the error due to the asymmetry of real lenses. We
conclude that the method is feasible with a large lens sample and a nearly circular
projected mass distribution. We expect errors of less than 0.1 in QM for a flat universe
with a cosmological constant and a lens sample selected so that the axial ratio f > 0.8
for each lens.
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Chapter 1

Introduction

1.1 Gravitational Lensing

Gravitational lensing, or the deflection of light by massive objects, provides one of the

most stunning tests of Einstein's theory of general relativity. Qualitatively, Newtonian

physics and general relativity are in agreement, but general relativity predicts that

light will be deflected around massive bodies by an amount twice as large as that

predicted by Newtonian physics. In the total solar eclipse of 1919, measurements of

the angular shift of stars near the sun confirmed Einstein's predictions.

In some cases, light may follow multiple paths around a lensing object to reach

the observer, producing multiple images of the source. The separation between such

images increases as the mass of the lensing object increases. In general, stars produce

image separations that cannot be resolved by current technology. This effect may still

be seen in two forms. Galaxies may lens more distant galaxies, resulting in observable

image separations. These systems are useful in studying both galactic dynamics and

the evolution of the universe. In cases where separate images cannot be resolved,

micro-lensing, or the temporary brightening of the object, may be observed. This

effect is due to changes in the solid angle subtended by the image induced by lensing,

though the surface brightness of the source object remains constant. Micro-lensing is

useful as a technique for locating compact dark objects in the halo of the Galaxy, a

candidate for dark matter.[2]
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Figure 1-1: Gravitational lens system geometry. This figure depicts only one possible
path for light, which may sometimes go around the other side of the lens or follow a
path that comes out of the page, as well. 0, L, S, and I represent the observer, lens,
source, and apparent image position, respectively. Light follows the path of the solid
line, from S to O. Other quantities shown are defined in the text.

Although precise calculations of light's path through curved space may be com-

plex, the properties of gravitational lens systems are relatively easy to calculate be-

cause of several simplifying assumptions. Most of the deflection occurs within a small

area about the lens, so the path may be broken into three segments, as in Figure 1-1.

Before and after the lens (regions III and I), light travels through homogeneous space

described by the Friedman-Lemaitre-Robertson-Walker metric. Any inhomogeneities

can be treated as local perturbations, and introduced as either a second lens or shear.

Around the lens system (region II), the scale is small enough the curvature of the

universe as a whole is irrelevant; thus, we may assume space time is locally flat with

a weak perturbation by the Newtonian potential ) of the lensing object. This ap-

proximation is valid as long as i1 < c2 and the peculiar velocity of the lens is small

compared to the speed of light. [2]

The deflection can be calculated from equations derived from the Schwarzschild

metric in General Relativity. In this potential, photons move according to[34]

((b2 L2 dA r2 ( c2r(1.1)
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where the impact parameter b = L/E is approximately equal to in Figure 1-1, L is

the angular momentum of the light about the lens, E is the energy of the photon, r

is the distance of the photon from the lens, and A is a parameter characterizing the

path of the photon. By definition, L = r 2 sin2 0o, where is the angle about thedA' e4i 
lens from the photon's position at its source to its current position. These can be

combined to give[34]

do_ + 1 1 1 (1 2GM\] -1/2= ± - -(1 I- i(1.2)dr r2 b 2 r2 \ O~r 

The angle swept by the light between the source and the observer (which are both

effectively at infinite distance) is given by Aq = oa + r. This angle can be found

by integrating the above equation from the minimum value of r to infinity (half the

path), then multiplying by two. The minimum radius occurs where d = 0. First,dr

substitute a new variable w = b/r. This gives[34]

AO= dw 1-w 2 c2b )] (1.3)

With a bunch of algebra and an integral table, this yields A\ q 7r + 4G for small

Gcbwhich gives = 4GM for point mass or a spherically symmetric mass with ac2 b

radius less than the impact parameter.

For an extended mass distribution, the deflection occurs over a small enough

distance along the path of the light that the mass distribution may be approximated

by its two dimensional projection along the line of sight. This projected distribution

is given by[2]

(= Jp(,z)dz

where is the position with respect to the center of mass in the plane of the projection,

z is the position along the line of sight relative to the plane of the projection, and

p(, z) is the three dimensional mass distribution. Light is deflected at position 
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by[2]

a(~~) = J 2~

Knowing the deflection angle, we can calculate the angular separation of the lens

and the deflected images from the geometry of Figure 1-1. In the figure, DL, Ds, and

DLS are the angular diameter distances (defined in Section 2.2) from the observer to

the lens, from the observer to the source, and from the lens to the source, respectively.

In general, DL + DLS # Ds, but instead is dependent on the cosmology. ODs, aDLs,

and QDs are the distances between the lens and source, source and image, and lens

and image, respectively, projected out to a distance Ds and perpendicular to the line

of sight. As an artifact of the definition of angular diameter distance, these distances

do add linearly. Hence, we get the lens equation:[16]

ODs = 3Ds + aDLS (1.4)

We can see from the Figure 1-1 that ~ = ODL and we know from the previous analysis

that = 4GM for outside a spherically symmetric lens. Combining these, we get

= 2 [3 ± (2 + 402) 1 / 2], where 0+ are the angular separation of the images and

the lens and 0 E = Ac- (Dye) is known as the critical radius.[16] When /3 = 0,

there is no preferred axis for the images so they form a ring around the lens at the

critical radius. This is known as an Einstein ring. Systems with asymmetric lens mass

distributions or those with external shear form three or more images, introducing more

degrees of freedom to the lens equation.

1.2 Cosmology

Modeling the evolution of the universe as a whole is both interesting in its own right

and useful. Not only does it uncover a fascinating story of our past and future, but

such a model also provides opportunities to test fundamental physics. Additionally,
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a model of the universe is necessary to understand the propagation of light from far

away galaxies and to interpret the images we take of the sky.

Two important assumptions lie behind this model, spatial isotropy and homo-

geneity. The assumption of isotropy states that the universe looks approximately the

same in any direction, or that the universe is invariant under rotation. Composition,

density, curvature, and physical laws of the universe are uniform at a given distance

from Earth and a constant moment in time, independent of the angle on the sky.

Obviously, since we see stars, star clusters, galaxies, and clusters of galaxies, this is

only approximately true. However, over a large enough scale the universe can be

well approximated by an isotropic model. We see evidence of isotropy in the large

scale distribution of galaxies. Measurements of the Cosmic Microwave Background

(CMB), radiation left over from the early universe, tell us that the early universe was

isotropic to better than one part in 1000.[16]

In a homogeneous universe, the universe looks the same at every point in space

at a constant time. More mathematically, the universe is invariant under translation.

The composition and densities are the same, the curvature is the same, and the

physical laws are the same. This is of course not true on a small scale. Our galaxy

has a density that is far from uniform and much greater than the density of the

intergalactic medium. However, on a large enough scale, the universe should be

approximately homogeneous. This expectation comes from the Copernican principle,

which states that we are not the center of the universe.[16] Additionally, counts of

galaxy density over medium sized volumes support the postulate of homogeneity, if

the volume chosen is large enough to blur local fluctuations but small enough that

galaxies do not evolve significantly in the time it takes for light to travel from one

side to another.

We construct this model out of a metric derived from general relativity. Although

isotropy and homogeneity demand that the universe be invariant under spatial rota-

tions and translations, the metric may evolve arbitrarily with time. It is assumed that

local fluctuations in density and curvature are small enough that they may be treated

as perturbations to this highly symmetric metric. We use polar coordinates centered

17



at Earth to simplify calculations of physically measured quantities since light travels

radially to us from stars and galaxies. However, homogeneity and isotropy together

demand that these coordinates could be centered anywhere in the universe and the

metric would hold. The most general metric satisfying these conditions is given by[7]

ds 2 -dt 2 + a2 (t) [1 2 + r2 (d2 + sin2OdO2) (1.5)

where t is the time coordinate, r, 0, and are spatial coordinates, and a(t) is an

expression known as the scale factor that governs the time evolution of the distance

between coordinate points. World lines that remain at constant spatial coordinates for

increasing time are geodesics in this metric. Hence, a galaxy at coordinate distance r

from Earth will remain at that coordinate distance for all time. The physical distance

between the same two points will change like a(t)r.

This metric represents three different curvatures depending on the value of K. The

curvature of the metric can be described using only n = 0,1,-1, since the magnitude

of curvature can be subsumed into the choice of coordinates. These three values of ,

correspond to flat, closed, and open universes respectively. A flat universe corresponds

to Euclidean geometry, with parallel lines that never meet and triangles that contain

180 degrees. The closed universe is just S(3), which can be described as a a three-

sphere embedded in four-dimensional space. [7] It has finite volume, parallel lines cross

twice, a long enough straight line will form a closed loop, and triangles have more

than 180 degrees. The open universe is somewhat harder to visualize. Embedded

in four dimensions, it is the three dimensional equivalent of a saddle. Its volume is

infinite, parallel lines diverge, and triangles have less than 190 degrees.

Recent measurements of the cosmic microwave background (CMB) suggest that

our universe is flat or very close to it.[16] This background radiation comes from the

blackbody radiation emitted by the soup of particles in the early universe. When the

universe was hot enough, electrons were not yet bound into atoms. During this time

photons could not travel a significant distance without being scattered or re-absorbed.

18



The first light we see from the distant (and early) universe occurs at an era known

as Recombination, when the electrons settled into atoms and the universe became

transparent. This light has been gravitationally red-shifted to about a thousandth of

its original frequency and now forms the CMB. The curvature of the universe can be

measured by looking at the angle scale of anisotropies in this radiation. The length

scale of these anisotropies should be set by the distance sound could travel in the era

prior to recombination, something that is believed to be well-known. The curvature

of the universe determines the relationship between a length at a given distance and

the angle on the sky, hence these anisotropies provide a test of the curvature of

the universe. The recent WMAP results agree with a flat universe to within two

percent. [16] Because this result is expected in light of inflationary theory and because

the agreement is so good, in this paper we will assume the universe is flat.

We calculate the scale factor by combining the Friedman equation, the first law of

thermodynamics, and the equations of state of various components in the universe.

The Friedman equation comes from the t,t component of the Einstein equation for a

perfect fluid in a Robertson-Walker metric. The equation is given by[16]

a 2 + k 8ip(t)a 2 (1.6)
3

where is the time derivative of the scale factor, k is the curvature, and p(t) is the

total energy density of the universe as a function of time. This equation can also be

derived from Newtonian gravity, where it may be interpreted as the equation relating

kinetic and potential energy.

For the cosmological fluid, the first law of thermodynamics states that if a volume

V contracts infinitesimally, the total energy E = pV is changed by dE = -pdV,

where p is the energy density and p is the pressure of the fluid. [16] The volume can

be rewritten in terms of the scale factor and the coordinate volume: V = a3(t)VcOord.

Dividing by dt and factoring out the coordinate volume, which is time-independent,

19



yields[16]

d [p(t)a3(t)] =-P(t)d [a3(t)] (1.7)dt dt

These two equations, together with the equations of state for each separate com-

ponent of the cosmological fluid, can be used to derive the time evolution of the scale

factor. To the best of our knowledge, the cosmological fluid is made of three differ-

ent kinds of components, each with a different equation of state. Baryonic matter

(such as protons or electrons) is pressureless, yielding an energy density proportional

to 1/a3 (t). Photons (and other massless particles like neutrinos) obey p = p and
3

evolve according to p oc 1/a4 (t). A third kind of fluid, known as dark energy, will

be discussed in the following section. We divide these energy densities by the critical
3H2

density, Pcrt = 3H, where Ho = a(to)/a(to) and to is the present time. This results

in dimensionless quantities QM, Qr, and QA corresponding to matter, radiation, and

vacuum energy fractions, respectively.[33] In a flat universe, these fractions sum to

one. We can show both empirically and theoretically that radiation dominated the

early universe, while baryonic matter and dark energy dominate the universe today,

yielding (approximately) Qm + QA = in the present-day universe. In a flat universe

with only baryonic matter (m = 1), the scale factor evolves like a(t) = (t/to) 2/3.[16]

Once we know the evolution of the scale factor, we can calculate how light prop-

agates through the universe. Radial lines are geodesics, so in the absence of local

perturbations, the only interesting effect is the change in frequency. Light travels

with zero proper time (ds = 0) and radial paths have dO = d = 0. Thus, the met-

ric yields dr = at for light emitted at r = Rat t = t and observed at r = 0 ata(t)

t = to. By integrating both sides, we can relate the distance light travels to its times
dtof emission and observation. We obtain R = fi a(t.[16]

Now we consider light pulses emitted with a frequency of we = ]2, where te is the

time separation between pulses at emission. We define wo and 6to similarly. Successive

pulses travel the same spatial separation R between emission and observation, so
t+t .dt t di+t±t 0 c (t) Because these integrals differ only by an infinitesimal amountte+3te- f i ()

20



on either end and must be equal for all a(t), we know a(te) - 6t From this, we cana(te) - a(t=)

write a(te) = 1 + z, where z is the redshift, defined such that 1 + z = o. Thus,

for any increasing a(t), light frequency is reduced from time of emission at time of

observation. [16]

This reduced frequency is known as cosmological redshift. In 1929, Hubble ob-

served that galaxies followed the approximate relation of z = Hod, where z is the

redshift, H0 is the Hubble constant, and d is the distance obtained from parallax or

from magnitude measurements of objects with known luminosity. Hubble assumed

the redshift was due to Doppler shifts from the recession velocity of these galaxies.

Thus, his famous relation v = Hod, where v is the recession velocity of the galaxy.

1.3 Dark Energy

Dark energy is a discovery of the last decade. Prior to that, models of the universe

assumed that the entire energy density was due to baryonic matter. In the late 1990s,

several different surprising experimental results forced us to alter our models. Better

measurements of the matter density showed convincingly that QM = 0.3 ± 0.1. At the

same time, CMB measurements indicated that the universe must be within a couple

percent of flat. This combination required that some kind of substance, dubbed dark

energy, make up the difference between the critical density for a flat universe and the

observed matter density. Observations of type Ia supernovas as standard candles to

measure distance to receding galaxies determined that the expansion of the universe

is accelerating, a fact that can only be explained by some kind of negative pressure

in the universe. A substance with negative pressure that explains these results also

would account for the difference between the critical density and the matter density;

thus, we learned that dark energy must have a negative pressure.[33]

There are several different ways to model dark energy. The two most common

formulations are the cosmological constant and quintessence. For a cosmological

constant, the energy density remains fixed in time and does not vary with the scale

factor. This corresponds to a vacuum energy, where the energy belongs to space itself.
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The equation of state of dark energy is PA = -PA and the cosmological constant

is given by QA = PA/Pcrit evaluated at the present time. A universe with both a

cosmological constant and a matter density no longer has an analytical solution a(t)

to the Freedman equation, though it remains possible to calculate a numerical solution

for given cosmological parameters.[16]

The alternative to a cosmological constant is quintessence. This theory states

that a scalar field pervades the universe and changes in time, producing the negative

pressure and the energy density of dark energy. This scalar field would be similar to

though weaker than the one responsible for inflation. Several different mathematical

models are possible for such a field, though all allow values of w other than negative

one in the equation of state p = wp. The energy density p oc a-3 (l + w) for these fields.

Neither quintessence nor a cosmological constant is predicted by prior theories.

Current measurements constrain w very little so both possibilities remain wide open.

The nature of dark energy is truly a mystery.

1.4 Constraining Cosmological Parameters

Supernova and CMB data together provide our current best estimates of cosmological

parameters, QM = 0.3 i 0.1 and QA = 0.7 + 0.1[7]. These measurements have been

checked by multiple observations, but another independent method would be useful

both to narrow the available range of parameters and to provide a check in case one

or both of these experiments suffers from unnoticed systematic errors.

Gravitational lensing geometry, combined with lens mass, provides a measure of

angular diameter distances. Angular diameter distances are related to the cosmologi-

cal model, and through that to the redshift. Thus, redshifts of source and lens galaxies

in high redshift gravitational lens systems could be combined with lens geometry and

some measure of lens mass to give another independent measure of cosmological pa-

rameters.
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Chapter 2

Proposed Experiment

2.1 Measuring Lens Mass

As a first approximation, for developing and analyzing the potential of this method,

we will use a singular isothermal spheres (SIS) model of lens mass distribution. Light

passing around or through this spherically symmetric mass distribution obeys the lens

equation derived in Section 1.1. In this model, we assume the lensing galaxy consists

of an ideal gas of stars (which we treat as particles) at a single, constant temperature.

The ideal gas law says pV = NkT, where p is the pressure, V is the volume, N is the

total number of stars, k is Boltzmann's constant, and T is the temperature. Since

the density p = mN/V, where m is the mass of a star, p = pkT

The one dimensional velocity dispersion v is defined such that mov2 = kT, so a

particle moving with a velocity equal to av has a kinetic energy equal to the mean

energy of a star in the system.[2] The velocity dispersion can be measured from the

width of spectral lines emitted by stars in the lensing galaxy. Some random velocities

of stars will be oriented toward Earth, increasing the frequencies of the spectral lines,

and some will be oriented away from us, decreasing the frequencies. Since the galaxy

appears as a point in the sky, the spectral lines will sum into a single, wide spectral

line with a width related to the velocity distribution of stars in the galaxy and hence

to the velocity dispersion. From this definition and the ideal gas law, we can write

p = p 2.
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In order to maintain hydrostatic equilibrium, the gravitational force inward on

the stars must balance the force outward due to the pressure gradient. This yields

the equation of hydrostatic equilibrium,[2]

dp GM(r)p dM = 47rr2p (2.1)
- = 47r P ~~~~(2.1)

dr r2 dr

where r is the radial distance from the center of the galaxy and M(r) is the total

mass interior to r. The second equation above is merely combines the definition

of density with the volume element for radial integration. From the two equations

above andp pv 2, we can find p(r) = -i and M(r) = This model is

unphysical both because the density is infinite at r = 0 (the singular part of the SIS

model) and because the mass increases to infinity with infinite distance. However, it

is useful as a first approximation and can successfully replicate some physical features

of galaxies. [2]

From this mass distribution, we can calculate the lensing geometry. Equations

developed in Section 1.1 allow us to project the mass distribution to two dimensions

then determine the deflection angle from that projected distribution. We find a

projected mass distribution of E(() = 2 . The deflection angle is then a = 47r.2G ~ .
Plugging this into the lens equation with = 0 and solving for 0 yields a critical

radius of[2]

SE = 47 DLS (2.2)
C2 Ds

Of the variables in the above equation, OE and U2 are directly observable. This means

we can directly measure the ratio Ds = 47r 2_. This ratio can also be related to the
DLS OEC2

redshifts of the source and lens galaxies through the cosmological model. The relation

of these redshifts to this ratio allows us to constrain cosmological parameters.
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2.2 Relating Redshift to Angular Diameter Dis-

tance

The angular diameter distance is defined to

length to the angle it subtends, in radians.

tance to redshift depends on the curvature.

equations [17]

be the ratio of an object's transverse

The relation of angular diameter dis-

This relation is given by the following

Ho /(+z) sinh Qkf E(z')]

c f z dz'
Ho(l+z) fo E(z')

C Fz f[ / dz 
H - s( n [L I (z')

Ho ]V/'JSII(l + z ) sn[~~~~

for Qk > 0

for Qk = 0

for Qk < 0

where D is the angular diameter distance, z is the redshift, and

E(z) = VQM(1 + Z)3 + Qk(l + z)2 + QA(1 + Z)3(1+w).

In the previous equation, w comes from the

logical constant, w = -1 and 3(1 + w) = 0.

equation of state p = wp. For a cosmo-

Angular diameter distances do not add linearly. The angular diameter distance

D1 2 between objects located along the same line of sight at D1 (corresponding to

z1 ) and D2 (corresponding to 2) is not D2 - D1 . For a flat universe (Qk = ),

D12 = i [(1 + z2)D 2 - (1 + zl)Dl] [17]. With this equation, we can now relate thel+z2

ratio DL- to the (observable) redshifts of the source and the lens galaxies through
DS

the cosmological parameters. Most interestingly, we learn that although calculating

angular diameter distances from redshifts requires knowledge of the Hubble constant

(H0 ), a ratio of these distances is independent of H0 . Thus, such a ratio may allow

more sensitive measurements of matter density or the cosmological constant and its

evolution because the poorly-known Hubble constant is eliminated from the relation.
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2.3 Distance Ratio as a Function of Cosmological

Model

We have seen that we can directly measure the ratio Ds - 47r __2 , which we may thenDLS OEC

relate to cosmological parameters using the redshifts of the source and lens galaxies.

The usefulness of this ratio as a measure of cosmological parameters depends on how

sensitive it is to changes in those parameters. To answer that question we plot the

ratio Ds for various combinations of source and lens redshifts as a function of thoseDLS

cosmological parameters. Figure 2-1 shows the relationship between lens redshift

and this ratio of angular diameter distances for a source redshift of 3.0 for various

flat cosmological models with a cosmological constant. Figure 2-2 plots this distance

ratio against the matter density for a particular lens system in a flat universe with a

cosmological constant. Figure 2-3 plots DS/DLS against w for the same lens system

in a flat universe QM = 0.3.

The value of DS/DLS is dependent on both ot, and SE, but the error will be

dominated by ao,. Velocity dispersions can be measured to approximately 5 percent

accuracy with current technology. Thus, since Ds/DLs oc , we expect a 10 percent

error on DS/DLS. If we assume currently accepted values of QM = 0.3 and w = -1

are approximately right, we can produce a crude estimate of errors on QM and w

determined from this ratio of angular diameter distances (see Figures 2-2 and 2-

3). We expect to be able to constrain 0.12 < QM < 0.65 and -6 < w < -0.2.

These are not promising results, particularly for w. However, a slight improvement

in measurement techniques would result in a dramatic improvement in constraints on

QM because of the flat slope of the curve at large QM. Because of this sensitivity,

it is worth examining the feasibility of this method in greater detail to obtain a less

crude estimate of potential error bars.
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Lens Redshift Versus Angular Diameter Distance Ratio for Zource = 3.0source

... QM = 0.0, QA = 1.0
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Figure 2-1: The ratio of angular diameter distances versus lens redshift for various flat
models of the universe with a cosmological constant. These plots assume Zsource = 3.0.
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Figure 2-2: The ratio of angular diameter distances versus the matter density of the
universe in a flat universe with a cosmological constant. This plot is for a lens system
with Zsource = 3.0 and Zlens = 1.0. The middle horizontal and vertical lines show the
expected value of QM = 0.3 and its corresponding expected value of DS/DLS. The
outer horizontal and vertical lines form a box corresponding to a 10 percent error in
Ds/DLs for that expected value.
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Figure 2-3: The ratio of angular diameter distances versus w for a a flat universe
with QM = 0.3 and QA = 0.7. This plot is for a lens system with Zsource = 3.0 and
Zlens = 1.0. The middle vertical line and lower horizontal line show the expected value
of w = -1.0 and its corresponding DS/DLS. The upper horizontal line and the outer
two vertical lines bound the region of 10 percent error on DS/LS for this expected w.
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2.4 Proposed Measurement

We propose that the matter density of the universe may be measured using a sample

of gravitational lens systems with known source and lens redshifts, critical radius,

and lensing galaxy one-dimensional velocity dispersions. We assume the validity

of the CMB results and hence a flat universe in our calculations. The ratio of two

angular diameter distances, DS/DLS, can be related to the critical radius and velocity-

dispersion through the following equation:

.Ds a v2D = 4F? 2. (2.5)
DLS OEc2 (

We can also relate this ratio to the galaxy redshifts and the cosmological model using

the Qk = 0 version of the equations in Section 2.2. Thus, we propose measuring

Zsource, Zens, av, and E for each system. From this sample, best fit values of QM

and w may be obtained by maximizing the likelihood function for the sample and the

general cosmological model of a flat universe with no radiation. Because all measured

values are independent, this corresponds to minimizing the X2, given by

X2 E(Ocalculatedi - (2.6)2.Z
i v,i

where i is the index labelling the lens systems, rv,i is the velocity dispersion of the

ith system. In the preceding equation, r2 . is the variance of the velocity dispersions
-v,i

of the sample, and

OE,iC2 Ds (Zsource,i, QM, w)

Ocalculated,i - 47 DLS (Zlens,i, Zsource,i, QM, W) (2.7)

where OE,i is the critical radius of the ith system, Ds is the angular diameter distance

from the observer to the ith source as a function of measured and varied parameters,

DLS is the angular diameter distance from the ith lens to the ith source as a function

of measured and varied parameters, Zsource,i is the redshift of the ith source, and Zlens,i

is the redshift of the ith lens.
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Chapter 3

Simulated Measurement with

Singular Isothermal Sphere Lenses

The feasibility of the technique described in the previous chapter may be examined

using a simulated set of data, analyzed in the manner of real data. In this chapter,

we will examine this technique if data is interpreted with the assumption that lensing

galaxies may be modeled as singular isothermal spheres. This assumption is clearly

false but provides a starting point for the feasibility assessment. The next chapter

will examine the effect of introducing asymmetries in the lensing galaxy.

3.1 Lens Sample

To assess the feasibility of this technique for measuring cosmological parameters, we

must find a way to estimate the error associated with this measurement for each

cosmological parameter. This will require some idea of what results we expect from

our measurements. We will use lens systems with previously measured redshifts

and critical radii to create a sample set of expected results, which we will use as

a basis for our feasibility analysis. We limit our lens sample to systems with four

images or an Einstein ring. In such systems, the critical radius is particularly well

constrained. Precise determination of the critical radius is important to the success of

this observational technique. These constraints applied to the body of measurements
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Table 3.1: Gravitational lens system data used in the Monte Carlo simulation. These
numbers correspond to previous measurements of the system, except as marked. This
list consists of all lens systems with a known source redshift and either 4 images or an
Einstein ring at the time the list was compiled (September 2002). For systems marked
with 1, Zens is unknown. The listed number (used in the simulation) corresponds to
half the source redshift or one, whichever is less. This is a reasonable approximation
of the likeliest position of the lens galaxy, statistically. For systems marked with
2 the critical radius has not been measured. This value (used in the simulation)
corresponds to half the maximum image separation.
Lens System Zsource Zlens SE Type of Lens System References
0047-2808 3.595 0.485 1.35 4 image [11],[38],[39]
0218+357 0.94 0.686 0.332 2 image and Einstein ring [11],[29],[40],[5]
0230-2130 2.16 1.01 1.12 4 image [11],[41]
0414+0534 2.639 0.468 1.15 4 image [11],[24],[12],[36],[3]
0712+472 1.339 0.4060 0.642 4 image [11],[14]
0751+2716 3.200 0.3502 0.4 Einstein ring [11],[37]
0810+2554 1.5 0.751 0.52 4 image [11],[32]
0911+0551 2.8 0.78 1.552 4 image [11],[6]
1115+080 1.722 0.311 1.1 4 image [11],[42],[22],[19]
14113+5211 2.811 0.465 1.14 4 image [11],[26]
1413+117 2.55 1.01 0.682 4 image [11],[8]
14176+5226 3.394 0.81 1.51 4 image [11],[31],[10]
1422+231 3.62 0.64 0.652 4 image [11],[30],[21],[1]
1555+375 1.59 0.42 0.212 4 image [11]
1608+656 1.394 0.6304 1.042 4 image [11],[28],[13]
1654+1346 1.74 0.254 1.052 Einstein ring [11],[23],[20]
1830-211 2.507 0.886 0.492 2 image and Einstein ring [11],[15],[27],[25]
2045+265 1.28 0.87 0.932 4 image [11],[18]
2237+030 1.69 0.04 1.76 4 image [11]

available in September 2002 yield the results in Table 3.1, which contains the data

we used to model our proposed measurement.

3.2 Precision of Measurements

We will also have to assume something about the precision of the measurements we

could make to assess the feasibility of this technique. As in Section 2.3, we will

assume that velocity dispersion measurements dominate the error and neglect error

due to other measurements. We neglect errors in lens redshifts, source redshifts, and
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critical radii, which are expected to be much smaller than the errors in the velocity

dispersions. Our simulated measurement will assume 5% errors in c, that can be

modeled with a Gaussian probability distribution. In other words, we will assume

that each measurement of oC, is equal to its true value plus a random error picked from

a Gaussian distribution with the square root of the variance equal to five percent of

the true velocity dispersion.

3.3 The Cosmos

Finally, we must assume a true model of the universe to predict the results of this

measurement technique. Throughout our simulation we assume a flat universe with

insignificant radiation density dominated by matter and a cosmological constant

(QMtrue = 03, QA,true = 0.7, Wtrue = -1.0). We obtain the errors on our (sim-

ulated) measured cosmological parameters by first constructing simulated observed

values of a, by adding a five percent error to the predicted values for this cosmo-

logical model given our lens data and a SIS lens model. We then minimize the x2

for this simulated set of observational data to obtain our simulated observed values

of cosmological parameters. Repeating this process a large number of times gener-

ates a probability distribution for each observed cosmological parameter whose width

predicts the random observational error associated with this measurement technique.

3.4 Monte Carlo

Our Monte Carlo simulation, then, is produced by the following algorithm:

1. Assume a true universe of QM,true = 0.3, QA,true = 0.7, and Wtrue = -1.0. These

values will not be the same as the values "measured" in the simulation, but

rather represent an abstract, assumed truth about the universe.

2. Create a simulated set of observed data. We do this by:
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(a) Assigning Zsource,i, Zlensi, and OE,i for each lens system (labelled by an index

i) as shown in Table 3.1. We assume these values are perfectly accurate

and precise.

(b) Calculating Ds,i/DLS,i for each lens assuming the true universe defined

above and using Zsource,i and Zlens,i. We do this using the equations for a

flat universe given in Section 2.2 that relate angular diameter distance to

redshift.

(c) Calculating vtrue, EiC
2 Ds'i for each system. This value also does(c) Calculating Ov,true,i -- 4ir DLS,i

not correspond to any measurement, but represents the true velocity dis-

persion that a perfect measurement would obtain in this simulated uni-

verse. Furthermore, this prediction is only valid if lenses can be modeled

as singular isothermal spheres, an assumption tested in the next chapter.

(d) Assigning the observed velocity dispersion av to be av = rv,true,i + X, where

x is a random number drawn from a Gaussian probability density function

given by P(x) = 1 exp .X )2). This is the only step
,/2r(0.05-V,tru~e,i )2 ep( 2(0.05-v truei i)2 ) hsi h nyse

that need be repeated to create a new set of observed data, since the others

only depend on values that remain constant throughout the simulation.

3. Maximize the likelihood (or minimize the 2) of this data set by varying the

measured cosmological parameters. Several different assumptions could go into

the way the parameters are varied. They could all be varied at once, freely,

or some could be held fixed. We favored a flat universe (QA = 1- QM) with

w fixed to w = -1.0, leaving only one independent parameter, because of the

clarity of the CMB results and the inability of this method to measure w, as

shown in the previous section.

2 (predicted,i-(Jv,i ) 2For a flat universe, X = Ei 2v , where a2 is the variance of

the v,iS and grv,predicted,i is calculated by the same process as uv,true,i but with

varied cosmological parameters rather than the true cosmological parameters.

The varied cosmological parameters that minimize 2 for a given simulated

data set are the measured cosmological parameters for that data set. This step,
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"Observed" QM in a Monte Carlo with 4000 Simulated Data Sets
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Figure 3-1: Monte Carlo results for 4000 simulated data sets, using the assumptions
and procedure outlined in this chapter. This histogram shows the values of QM that
minimized each data set's x2 with QM + Q - A = 1 and w = -1.

unlike the others in this algorithm, directly corresponds to analysis that we

would do on real data.

4. Repeat this process for thousands of simulated data sets to produce distributions

of QM, QA, and w. The width of these distributions corresponds to the random

error introduced by measurement uncertainties and propagated through to the

measured cosmological parameters.

Appendix A contains the C code that implements this algorithm. Figure 3-1 shows

the results of this simulation. The mean observed value of QM in the simulation was

0.307 and the square root of the variance (which roughly corresponds to the error)
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was 0.071. These results show a much smaller error than that predicted by the

angular diameter distance ratio alone. This difference is due to the number of lenses

in our sample. The distance ratio only takes one lens system into account while the

Monte Carlo simulation made use of 19 lens systems. We expect the error in a fitted

parameter to decrease as the square root of the sample size minus one. The error

from the Monte Carlo sample is exactly that predicted error; the error associated with

a single lens system (0.3) divided by the square root of the number of lens systems

minus one ( 18) gives the error generated in the Monte Carlo simulation (0.07). An

even larger sample would give an even smaller error.

If the models of the universe and of gravitational lenses used in this simulation

were accurate, we could expect to be able to constrain QM to an error of better than

0.1 using only previously measured lens systems with known source redshifts and

either four images or an Einstein ring. A measurement of QM with an error of less

than 0.1 is probably worth while, and with more lenses it is likely that the error could

be further reduced. However, we know our model of lensing is overly simplistic. It

is interesting, then, to examine the effect lens asymmetry has on the error of this

measurement.
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Chapter 4

Axisymmetric Lenses

Although a typical lensing galaxy likely has a triaxial ellipsoidal mass distribution [4],

it is useful to introduce a model with an axisymmetric lens galaxy as a first test of our

proposed measurements in the absence of spherical symmetry. There are two general

categories of axisymmetric galaxies: oblate ellipsoids have two equal axes and one

shorter axis, while prolate ellipsoids have two equal axes and one longer axis. We

will proceed by separately examining the effect that each type of galaxy has on our

predicted errors, then combining the two effects.

4.1 Modification of Equations for Prolate and Oblate

Lenses

We construct a model for a singular isothermal ellipse (SIE) in parallel with our SIS

model. The two dimensional projected mass profile of an SIS lensing galaxy is given

by E = 1 , where av,sIS is the line-of-sight velocity dispersion and r is the radial

distance from the center. Kyu-Hyun Chae suggests that a corresponding formula for

for an SIE lensing galaxy would be

ESIE Uv,SIE vfA(q, f) (4.1)

where rS is the line-of-sight velocity dispersion of the SIE galaxy, f = 1-e is the
where r,,SIE is the line-of-sight velocity dispersion of the SIB galaxy, f = 1 - E is the
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ratio of the minor axis to the major axis of this projected distribution (also equal to

one minus the ellipticity), q is the intrinsic axial ratio of the three dimensional mass

distribution, and A(q, f) is a parameter introduced to characterize the dependence of

rv,SIE on the inclination angle and intrinsic shape of the galaxy. The factor A(q, f)

affects the deflection angle and thus the image separation, in turn affecting the critical

radius. Thus, additional uncertainty is introduced in our measurements through the

parameter A(q, f), which is unknowable because q is indeterminable. In order to assess

the severity of this additional error, we would like to find a probability distribution

for A i both oblate and prolate cases. We proceed by finding its dependence on

q and f through extension of our SIE model. We will then generate a probability

distribution based on the relationship between q and f.

The following analysis closely follows Kyu-Hyun Chae's derivations in his statis-

tical analysis of the CLASS results [9], with some slight departures in order to obtain

a model capable of dealing with individual lenses.

The density of an isothermal sphere is given by PSIS = in spherical co-2i7rG r

ordinates, where r is the distance radially from the center and Cv,SIS is the one-

dimensional velocity dispersion. For this density distribution, isodensity contours

are concentric spheres. In parallel, we construct a distribution with isodensity con-

tours that are axisymmetric ellipsoids. This distribution, given in cylindrical co-

ordinates (note that r has a different meaning than in the equation above), has

PSIE = tg2sn+1 ,sowhere q is the intrinsic axial ratio of the ellipsoid [9].27rG r2 (sin2 +q-2 cos2 / ) I

Oblate and prolate ellipsoids have q < 1 and q > 1, respectively. In this equation,

ov,sIs is a parameter that corresponds to the one dimensional velocity dispersion

when q = 1. Throughout the rest of this paper, we define q' _ 11 - q21 2 .

The one dimensional velocity dispersion of this galaxy will include contributions

both from random thermal motion and from streaming motion of the particles in

their orbits. The second velocity moments in the z direction () and r direction (r)

can be calculated analytically, as well as the azimuthal component of the velocity

distribution at any point, denoted uo [9]. A Cartesian component U2 perpendicular

to the axis of symmetry is given by ax2 = r2 cos2 q+ U sin2 A. Taking a mass-weighted
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average gives greater weight to the components of the velocity dispersion where the

density is greater. The mass-weighted average in units of av,SIS is given by

W=~ ~ ~~ 2 f (2)
OASIS f p (r 2 sin OdrdOdo) p'2 (r2 sin OdrdOd) (4.2)

For oblate ellipsoids, the mass-weighted averages of the x and z components are [9]:

Woblate(q) = q arcsin (43)

lq qq' O 1 2_cos_
Wzblate(q) = 2 q arctan I o ds 0 arctan 2 -arctan 2 q (4.4)

2q qq)-Jof sinO0

For the prolate case, the corresponding equations are given by:

q q + q
WPro°ate(q) = - q in q (4.5)

l(q )or si 0( ) ( q '2q' q -'= d i q +q' -I n q + cos0 (4.6Wrolate lq 1 nqFq da1 Inq-qj 1 1In qc4s6)
4q' q-q' o sin q- q q- q q-coso 

The line-of-sight velocity dispersion depends on the inclination of the galaxy, de-

fined by the angle i between the unique axis and the observer. In terms of this angle

and the above mass-weighted average second order velocity moments, the line-of-sight

velocity dispersion is [9]

,SE(i) = [Wz(q) cos2 i+ W(q) sin2 i]. (4.7)

The above equation is true for both oblate and prolate lens galaxies.

Now that we have the velocity dispersions, we would like to relate this to the two

dimensional projected mass distribution. These distributions are straightforward to

calculate from our galaxy density distribution. They are given by [9]
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2
oblete Tv,SI4SS

2G vx 2 + f2y2(4.8)

for oblate lenses and

2
Eprolate =v, SIS f q(49)

2G VX2 + f2 y 2

for prolate lenses. These projected mass distribution are characterized by f, the ratio

of its minor axis to its major axis. For an oblate galaxy (q < 1), f 2 = cos 2 i +

2 2 1 = 2 2 q sini = 1 = q sin2 i imin = arcsin f' and imax = 2 corresponding to an edge-on

view. For a prolate galaxy (q > 1), f 2 = (cos2i + q2sin2i) = (1 + q2sin2 i),
1 7L\an ma 

mn = arcsin (sqrtq 1 f ), and imax = 2' where qmax 3.46717 comes from the
requirement that the second velocity moments be non-negative. f is measurable, in

general, while q is not.

We compare these projected mass distributions to the mass distribution proposed

at the beginning of the section and substitute in the formula for the line-of-sight

velocity dispersion to obtain A(q, f). For oblate lensing galaxies, this gives

q1Ab°at , /- W°blate - ~ + sin2 i (Woblate - Woblate) (4.10)

For prolate galaxies,

Aprolate(q, f) q (4.11)
\q £ wProlate +_ f2 ( _f2) (Wproate olate_ W(41)vvz q2_-1] X -W

4.2 Probability Density Function of A(q, f)

Since galaxies are presumably oriented at random relative to us, each allowed incli-

nation should be equally likely. Thus, for a given observed f with a galaxy assumed

to be either oblate or prolate, i has a probability density function given by

1 - for imin(f) < i < imax
P(i; f) = imax-imi (4.12)

0 otherwise
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Histograms of X (q,f) for Several f with an Oblate Lens
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Figure 4-1: P(A(q, f); f) for several different values of f, assuming an oblate lensing
galaxy. Sample size is 4000 for each distribution.

For each f, the probability density function associated with q can then be found by

drawing many i's from P(i; f) and calculating q = Asini for an oblate lens and

q 1-= o22i for a prolate one. Similarly, we calculate P(A(q, f); f) in both oblatef sin 

and prolate cases by drawing random i's from P(i; f), calculating the appropriate q,

and using the appropriate equation for A(q, f) to generate many A(q, f)'s.

We wrote a C program to do this particular calculation for both oblate and prolate

cases, shown in Appendices B and C, respectively. Since f is measurable, we did

not vary it within a calculation but rather calculated the probability distribution

for many different f's in each case. The resulting probability density functions are

show in Figures 4-1 and 4-2 and their means and standard deviations are shown in

Tables 4.2 and 4.2. Although each probability distribution for a given lens model
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Histograms of X (q,f) for Several f with a Prolate Lens
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Figure 4-2: P(A(q, f); f) for several
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Table 4.1: The
4000 simulated

0.8 0.9 1
X (q,f)

1.1

different values of f, assuming a prolate lensing
distribution.

statistics of A for known f and an oblate lens. For each f, we used
lens systems to generate these statistics.
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f Mean A Standard Deviation of A
0.1 2.118 0.023
0.2 1.577 0.024
0.3 1.356 0.021
0.4 1.237 0.014
0.5 1.164 0.005
0.6 1.117 0.011
0.7 1.085 0.028
0.8 1.064 0.050
0.9 1.042 0.067



Table 4.2: The statistics of A for known f and a prolate lens. For each f, we used
4000 simulated lens systems to generate these statistics.

f Mean A Standard Deviation of A
0.2 0.748 0.519
0.3 0.583 0.001
0.4 0.653 0.010
0.5 0.720 0.013
0.6 0.785 0.013
0.7 0.848 0.011
0.8 0.908 0.010
0.9 0.960 0.010

(oblate or prolate) and f has a small standard deviation, the difference between the

oblate and prolate case is great for small f.

If we knew whether a galaxy was oblate or prolate, we could assume the mean value

of A for that f and obtain a small error from the standard deviation of the distribution

of A; however, we cannot determine the intrinsic shape of a galaxy. Assuming an

axisymmetric lensing galaxy that may be either oblate or prolate, we cannot obtain

a single value of A that is most probable without knowing the inherent distribution

of oblate and prolate galaxies. The best we can do is to assume A=1 and increase

our errors to compensate. The standard deviation of A for a lens that may be either

oblate or prolate is approximately half the difference of the means of the oblate and

prolate distributions, a much larger error than that associated with either the oblate

or prolate distribution alone. This error is only about ten percent, though, if we select

lenses with f > 0.8 and it falls to five percent for f > 0.9. In practice, most real lens

systems have f > 0.8, so our lens sample would only be slightly limited by such a

selection.

Since Aod oc Ds/DLS, the uncertainty in A for an axisymmetric lens effectively in-

creases the uncertainty in ,2 if that lens is treated as spherical. When two quantities

with errors of ten percent ( for f > 0.8 and a2 ) are multiplied together their product

has an error of fourteen percent. A true prediction of the error in calculations of QM

made assuming spherical symmetry where galaxies are truly axisymmetric would re-

quire knowledge of the distribution of intrinsic galaxy shapes- the percentage that are
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oblate versus prolate and the distribution of f. We do not at present have a reason-

able model for such a distribution of intrinsic shapes. However, we may estimate the

error introduced by the assumption of spherical symmetry by rerunning our Monte

Carlo simulation from Chapter 3 with errors of fourteen percent, increased from

ten percent to mimic the effect of A. In this simulation we obtained a mean best-fit

QM of 0.313 with a standard deviation of 0.10. If lenses were truly axisymmetric and

we selected our lens sample with f's near enough to one, the error due to assuming

spherical symmetry would be minimal, raising the error on QM from 0.07 to 0.10.
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Chapter 5

Conclusions

We assessed the feasibility of a technique for measuring QM that makes use of gravita-

tional lens geometry and velocity dispersions of lensing galaxies through the equation

62 DLs
OE = 4r DS (5.1)

C2 Ds

This equation assumes spherical symmetry in the lensing galaxy, something that we

clearly cannot expect from real galaxies. Thus, it is important to assess both the

error from imprecise measurements, dominated by oa, and the error produced by

assuming spherically symmetric lenses when this is not truly the case. Our Monte

Carlo simulation, which assumed that lenses truly are spherically symmetric, the

universe is flat, and QM = 0.3, predicted an error of 0.07 for QM.

We refined our lens model to an axisymmetric model using a multiplicative factor

of A in front of the velocity dispersion. We then generated probability distributions

for this factor for various two dimensional mass profiles for both oblate and prolate

galaxies. We found that for a given f with a galaxy known to be either oblate

or prolate, A had a very small standard deviation. However, oblate and prolate

distributions diverged for small f. For f > 0.8, A had a standard deviation of

less than ten percent, leading to predicted error of 0.10 in QM if galaxies are truly

axisymmetric and we assume they are spherical in our analysis. Based on this analysis,

this technique should produce measurements with usefully small errors, particularly

45



if a greater number of lenses are included in the sample. Although initial plots of the

angular diameter distance ratio suggest that this technique is insufficiently sensitive

to changes in w to measure it, it would be useful to do a similar analysis to the one we

have done with w varied when minimizing the x2 . This technique might also provide

a measurement of w with a sufficiently large lens sample, a question left open by our

analysis.

This analysis, however suggestive, is not sufficient in its own right to determine

the feasibility of this technique. Galaxies are not truly spherical or axisymmetric, but

rather triaxial. It should be possible, in principle, to adapt the technique we used for

axisymmetric galaxies. Rather than a single uniformly distributed inclination angle,

there would be two angles that each had equal probability of pointing in any direction

but that had to be at 90 degrees to each other- the inclination angle of the longest

axis and of the shortest axis. We could use these angles to relate intrinsic shape

to projected mass distributions and through that to lensing geometry. The difficult

part would be obtaining equations for the velocity dispersions. There is no known

analytical solution for the velocity dispersion of such a galaxy. It is possible that

Monte Carlo techniques could be used to obtain the velocity dispersion, as well, with

the application of more detailed models of galactic dynamics. Such an analysis would

be important to obtaining an estimate of the error associated with assuming spherical

symmetry in the analysis of data taken on realistic galaxies.

Although we do not have a thorough analysis of the error introduced by assuming

that galaxies are axisymmetric rather than triaxial, we can use oblate and prolate

galaxies to bound the distribution. These types of galaxies represent the extreme

cases of triaxial galaxies, where the middle axis is equal to the longest axis or the

shortest axis. We would expect the probability distribution of A for a triaxial galaxy

to cover the space between the prolate and oblate distributions for the same f. Thus,

for a given f, we can assume that the standard deviation of A for triaxial galaxies

will be equal to or smaller than that determined for axisymmetric galaxies. Although

a simulation with triaxial galaxies would be necessary to obtain a real estimate of

the error associated with this technique, our analysis with axisymmetric galaxies is
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good enough to show that this technique has promise as a way to measure the matter

density of the universe.
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Appendix A

SIS Monte Carlo Code

Many of the functions used in the following code can be found in Numerical Recipes

in C.[35]

/* mytrapzd and myqromb are alterations of Numerical Recipes */

/* functions.*/

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define _XOPEN_SOURCE

#include <sys/time.h>

#undef _XOPEN_SOURCE

#include <float.h>

#define NRANSI

#include "nr.h"

#include "nrutil.h"

#define NUMLENSES 19
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#define NUMSIMS 4000

#define SIGMAVERROR 0.05

float constant = 299792.458*299792.458/2.0/60.0/60.0/360.0;

/* units are km-2/(s-2). const= (c-2/4/pi)*(1 arcmin/60 arcsec)*(1 degree/60 arcm

float epsilon = 0.01;

/* step size for evaluation of chi squareds */

/* File format: Inputs (objectname tab zsource tab zlens tab critrad)*/

/* Outputs (objectname tab zsource tab zlens tab critrad tab */

/* predictedsigmav tab fake_observed_sigmav) */

/* This program generates many sample sets of observed one dimensional */

/* velocity dispersions of gravitational lens systems based */

/* upon a real data set of zsource, zlens, and critrad. It uses */

/* the equation: critrad = 4*pi*sigmav-2/c-2*(dls/dos) where */

/* dls is the angular diameter distance from the lens to the source */

/* and d_os is the angular diameter distance from the observer to */

/* the source. sigmav is the velocity dispersion. critrad is the */

/* critical radius */

/* To generate these sample sets, it is assumed that current observational */

/* errors have a gaussian distribution with a standard deviation of */

/* 5% of the measured velocity dispersion for each lens. */

/* It is assumed that OmegaM = 0.3, OmegaLambda = 0.7. These values */

/* are necessary to calculate dos and d_ls from zsource and zlens. */

/* OmegaRadiation is set to 0 (which is a decent approximation) and */

/* it is assumed that there is a cosmological constant (w=-1) */
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/* This program will read in from a file containing three columns: */

/* zsource, zlens, and critrad. */

main()

float d{s; /* distance from lens to source

float d_os; /* distance from observerns to source */
float d_os ; / . distance from observer to source *

float zsource; /* source redshift */

float zlens; /* lens redshift */

float critrad; /*Critical radius in arcseconds */

float sigmav; /* predicted velocity dispersion */

float fakesigmav; /* fake observed sigmav (sigmav +error) */

float error;

float angdist(float,float,float,float,float,float);

double radicand;

char filein[15]; /* filename of input file */

char fileout[15];

float sigmavs[NUMLENSES];

float outputs[NUMLENSES] [NUMSIMS];

FILE *fopen(), *fpin, *fpout;

float omegam=0.3;

float lambda=O.7;

float zl[NUMLENSES], zs[NUMLENSES],critrads[NUMLENSES];

float omegaradiation=O. O;

float w=-1.0;

float chisquared,chisquaredplus,chisquaredminus, predsigmav;

time_t sc; /* time returned by system clock */
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long idum; /* seed for random number generator */

char objectname[50]; /* Name of the current gravitational lens system */

int lens, simnum=O, i, j;

float calculatechisquared(float zl[NUMLENSES] ,float zs[NUMLENSES] ,float critrad

/*prompt for input file name. prompt for output filename */

printf("Name of input file: ");

for (i = ; (filein[i] = getchar()) != '\n'; ++i)

for (i; i<14;++i)

filein[i] =0;

fpin = fopen(filein, "r");

printf("Name of output file: ");

for (i = ; (fileout[i] = getchar()) != '\n'; ++i)

for (i; i<14;++i)

fileout[i] =0;

fpout = fopen(fileout, "w");

/* seed random number generator with the clock */

sc = time(O);

idum = sc % 32766;

idum = (-1) * idum;

/* This loop creates a fake data set*/

lens=O;

while(fscanf(fpin,"%s\t%f\t%f\t%f\n",objectname,&zsource,&zlens,&critrad) != EOF)
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/*reads zsource, zlens, critrad in and tests for end of file*/

/* calculate value of sigmav to output */

d_os = angdist(O.O,zsource,omegam,lambda,omegaradiation,w);

d_ls = angdist(zlens,zsource,omegam,lambda,omegaradiation,w);

radicand = critrad*constant*dos/dls;

sigmav = sqrt(radicand);

sigmavs[lens] =sigmav;

zl[lens]=zlens;

zs[lens] =zsource;

critrads[lens] =critrad;

/* generate error */

for(simnum=O;simnum<NUMSIMS;simnum++) {

error = sigmav * SIGMAVERROR * gasdev(&idum);

/* that generates errors with a gaussian distribution with */

/* sigma=5%. of sigmav, which simulates current errors in */

/* observations */

fakesigmav = sigmav+error;

/* outputs */

/* store the fake data in a huge array */

outputs[lens][simnum] =fakesigmav;

lens++;
lens++;
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/* this loop finds a local minimum in the chi squared */

for(simnum=O;simnum<NUMSIMS;simnum++){

/*initialize storage for chisquared evaluated at three test

locations about a point, separated by epsilon */

chisquaredplus=O.O;

chisquaredminus=O.O;

chisquared = 0.0;

omegam=0.3;

lambda=0.7;

do{

if(chisquared==O.O){

chisquared=calculate-chi-squared(zl,zs,critrads,outputs,sigmavs,omegam,lambda,omega

}

if(chisquaredplus==O.O){

chisquaredplus = calculate_chisquared(zl,zs,critrads,outputs,sigmavs,omegam+epsilo

}

if(chisquaredminus==O.O){

chisquaredminus = calculate_chi_squared(zl,zs,critrads,outputs,sigmavs,omegam-epsil

}

if((chisquaredplus>chisquared)&&(chisquaredminus<chisquared)){

omegam=omegam-epsilon;

lambda=lambda+epsilon;

chisquaredplus=chisquared;

chisquared=chisquaredminus;

chisquaredminus=O;

}else if((chisquaredplus<chisquared)&&(chisquaredminus>chisquared)){

omegam=omegam+epsilon;
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lambda=lambda-epsilon;

chisquaredminus=chisquared;

chisquared=chisquaredplus;

chisquaredplus=O;

}

}while(!((chisquaredminus>chisquared)&&(chisquaredplus>chisquared)));

printf("%d %f f f %f\n",simnum,omegam, lambda, w, chisquared);

fprintf(fpout,"%f %f %f %f\n",omegam, lambda, w, chisquared);

}

fclose(fpin);

fclose(fpout);

float calculate_chisquared(float zl[NUMLENSES],float zs[NUMLENSES],float critrads[

{

float radicand, predsigmav, dos, d_ls, angdist(float,float,float,float,float,flo

int lens;

float chisquared=O.O;

for(lens=O;lens<NUMLENSES;lens++) {

d_os = angdist(0.0O,zs[lens],omega,lambda,radiation,w);

d_ls = angdist(zl[lens] ,zs[lens] ,omega,lambda,radiation,w);

radicand = critrads[lens] *constant*dos/dls;

predsigmav = sqrt(radicand);

chisquared=chisquared+(outputs[lens] [simnum]-predsigmav) * (outputs[lens][simnu

return chisquared;
return chisquared;
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}

float eqn(float x, float omega, float lambda, float radiation,float w)

{

float k,n;

n = 3.*(1.+w);

k= 1-omega-lambda-radiation;

return 1.0/sqrt(radiation*(1.+x)*( l.+x)*(l.+x)*(l.+x)

+ omega*(1.+x)*(l.+x)*(l.+x)

+ k*(1.+x)*(1.+x)

+ lambda*pow((1.+x),n));

float angdist(float zl,float z2,float omega,float lambda,float radiation,float w)

/* Calculates the angular diameter distance between two redshifts */

/* allowing lambda != 0, radiation pressure != , and other */

/* models of dark energy. Units are */

/* Mpc/h. *

/* z = first redshift /

/* z2 = second redshift /

/* omega = present value of matter density */

/* lambda = present value of scaled cosmological constant */

/* radiation = present value of radiation density */

/* w = ratio of pressure over density /

/* Formulae are those given by D. W. Hogg astro-ph/9905116 /
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/* and Kujat, Linn, Scherrer, and Weinberg astro-ph/0112221 */

float myqromb(float (*func)(float,float,float,float,float),float,float,float,floa

float distance = 0 ; /* value returned */

float d_lcl = ; /* line-of-sight comoving distance */

float d_lc2 = 0;

float d_tcl = ; /* transverse comoving distance */

float d_tc2 = 0;

int nrecs = 1000; /* number of rectangles for integration */

float tolerance = 1; /* tolerance for integration */

float old = ; /* stores integration result */

float z;

float dz; /* step size in integration */

float n; /* power of dark energy in E(z) */

float k; /* curvature density (omegak) */

double dl, d2;

n =3.*(1.+w);

k = 1.0-omega-lambda-radiation;

/* numerically integrate to get line-of-sight comoving distances */

d_lcl=myqromb(eqn,O.O,zl,omega,lambda,radiation,w);

d_lc2=myqromb(eqn,O.O,z2,omega,lambda,radiation,w);

/* transverse comoving distances; formula depends on curvature */

if (fabs(k)<=10*FLT_EPSILON){

/* flat */

d_tcl = d_lcl;

d_tc2 = d_lc2;
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}else if (k < 0.0){

/* positively curved */

printf("Positive\n");

d_tcl = sinh((double) dlcl * sqrt(k)) / sqrt(k);

d_tc2 = sinh((double) dlc2 * sqrt(k)) / sqrt(k);

}else{

/* negatively curved */

printf("Negative %f\n",k);

d_tcl = sin((double) d_lcl * sqrt(k)) / sqrt(k);

d_tc2 = sin((double) d_lc2 * sqrt(k)) / sqrt(k);

}

/* angular diameter distance from transverse comoving distance*/

dl = 1. + k * d_tcl * d_tcl;

d2 = 1. + k * d_tc2 * dtc2;

distance = (dtc2 * sqrt(dl) - d_tcl * sqrt(d2)) / (1.+z2);

distance = 3000. * distance;

return distance;

#define EPS .0e-6

#define JMAX 20

#define JMAXP (JMAX+l)

#define K 5

/* This is a modified Numerical Recipes function */

float myqromb(float (*func)(float,float,float,float,float), float a, float b,float
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{

void polint(float xa[], float ya[], int n, float x, float *y, float *dy);

float mytrapzd(float (*func)(float,float,float,float,float), float a, float b, in

void nrerror(char errortext[]);

float ss,dss;

float s[JMAXP] ,h[JMAXP+1];

int j;

h[11]=1.0;

for (j=l;j<=JMAX;j++) {

s[jl=mytrapzd(func,a,b,j,omega,lambda,radiation,w);

if (j >= K) {

polint(&h[j-K],&s[j-K],K,0.0,&ss,&dss);

if (fabs(dss) <= EPS*fabs(ss)) return ss;

}

h[j+l]=0.25*h[j];

}

nrerror("Too many steps in routine qromb");

return 0.0;

}

#undef EPS

#undef JMAX

#undef JMAXP

#undef K

/* This is a modified Numerical Recipes function. */

float mytrapzd(float (*func)(float,float,float,float,float), float a, float b, int

float xtnmsumdel;
float x,tnm, sum,del;
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static float s;

int it,j;

if (n == 1) {

return (s=O.5*(b-a)*((*func)(a,omega,lambda,radiation,w)+(*func)(b,omega,lambda

} else {

for (it=l,j=l;j<n-1;j++) it <<= 1;

tnm=it;

del=(b-a)/tnm;

x=a+0.5*del;

for (sum=O.O,j=1;j<=it;j++,x+=del) sum += (*func)(x,omega,lambda,radiation,w);

s=O.5*(s+(b-a)*sum/tnm);

return s;

60



Appendix B

Generating P(A(q, f); f) for Oblate

Lenses

Many of the functions used in the following code can be found in Numerical Recipes

in C.[35]

/* #include <stdio.h>

#include <stdlib.h> */

#include <math.h>

#define _XOPEN_SOURCE /* so sys/time.h won't include sys/select.h on solaris */

#include <sys/time.h>

#undef _XOPEN_SOURCE

#define NRANSI

#include "nrutil.h"

#include "nr.h"

float qglobal, qpglobal;
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float eqn(float x)

{

return (atan(qpglobal/qglobal)*atan(qpglobal/qglobal)

-atan(qpglobal/qglobal*cos(x))

*atan(qpglobal/qglobal*cos(x)) )/sin(x);

main()

{

float f=0.9; /* 1-eccentricity of lensing galaxy 2-D profile */

time_t sc; /* time returned by system clock

long idum; /* seed for random number generator */

float i; /* inclination */

float stuff;

float wx;

float wz;

float lambda;

FILE *fopen(), *fpout;

int j;

char fileout[15];

float imin;

float temp;
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fpout=fopen("poflambda.txt","w");

/* seed random number generator with the clock */

sc = time(O);

idum = sc % 32766;

idum = (-1) * idum;

imin=asin(sqrt(1-f*f));

for(j=l;j<=4000;j++){

i=(3.14159/2-imin)*ranl(&idum)+imin;

/*printf("%f\n",cos(i));*/

qglobal=sqrt((f*f-cos(i)*cos(i))/sin(i)/sin(i));

qpglobal=sqrt(1-qglobal*qglobal);

printf("q %f\n",qglobal);

wx=qglobal/qpglobal*asin(qpglobal);

stuff=qromo(eqn, 0.0, 3.14159,midpnt);

wz=qglobal/qpglobal/2/(atan(qpglobal/qglobal))*stuff;

lambda=qglobal/sqrt(f)/(wz+(f*f-1)/(qglobal*qglobal-1)*(wx-wz));

printf("lambda %f\n",lambda);

fprintf(fpout, "%f f %f\n",i,qglobal, lambda);

fclose(fpout);}
fclose (fpout); }
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Appendix C

Generating P(A(q, f); f) for Prolate

Lenses

Many of the functions used in the following code can be found in Numerical Recipes

in C.[35]

/* #include <stdio.h>

#include <stdlib.h> */

#include <math.h>

#define _XOPEN_SOURCE /* so sys/time.h won't include sys/select.h on solaris */

#include <sys/time.h>

#undef _XOPEN_SOURCE

#define NRANSI

#include "nrutil.h"

#include "nr.h"

float qglobal, qpglobal;
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float eqn(float x)

{

return ((log((qglobal+qpglobal) / (qglobal-qpglobal)))

*(log((qglobal+qpglobal) / (qglobal-qpglobal)))

-(log((qglobal+qpglobal*cos(x)) / (qglobal-qpglobal*cos(x))))

*(log((qglobal+qpglobal*cos(x)) / (qglobal-qpglobal*cos(x)))))

/sin(x);

}

main()

{

float f=0.9; /* 1-eccentricity of lensing galaxy 2-D profile */

time_t sc; /* time returned by system clock

long idum; /* seed for random number generator */

float i; /* inclination */

float stuff;

float wx;

float wz;

float qmax=3.46717;

float lambda;

FILE *fopen(), *fpout;

int j;

char fileout[15];

float imin;

float temp;

fpout=fopen ( "poflambda.txt","w");
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/* seed random number generator with the clock */

sc = time(0);

idum = sc % 32766;

idum = (-1) * idum;

imin=asin(sqrt(1-f*f)/f/sqrt(qmax*qmax-1));

for(j=l;j<=1000l;j++){

i=(3.14159/2-imin)*ranl(&idum)+imin;

/*printf("%f\n",cos(i));*/

qglobal=sqrt((1-f*f*cos(i)*cos(i))/f/f/sin(i)/sin(i));

qpglobal=sqrt(qglobal*qglobal-1);

/*printf("q %f\n",qglobal);*/

wx=qglobal/qpglobal/2*log((qpglobal+qglobal)/(qglobal-qpglobal));

stuff=qromo(eqn, 0.0, 3.14159,midpnt);

wz=qglobal/qpglobal/4/log((qglobal+qpglobal) / (qglobal-qpglobal))*stuff;

lambda=qglobal*sqrt(f)/(wz+f*f*(-f*f)/(qglobal*qglobal-1)*(wx-wz));

/* printf("lambda f\n",lambda);*/

fprintf(fpout,"%f f f\n",i,qglobal,lambda);

fclose(fpout);}
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