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Abstract

It has been assumed that Ca2+ influx of different duration and amplitude would

generate different level of potentiation. The conventional protocols of generat-

ing LTP have been 1. tetanic stimulation of presynaptic cell, 2. theta burst

stimulation of presynaptic cell, and 3. correlated stimulation of pre- and post-
synaptic cells. However, the effects of different Ca2+ influx can not be precisely

dissected with the conventional protocols for the following defects: 1. the pro-

tocols do not discriminate between pre- and postsynaptic side plasticity, 2. the
protocols observe synaptic plasticity between two cells which involve multiple

synapses with heterogenous properties, 3. precise control and measurement

of the amount of Ca2+ influx are not possible in the protocols. In the present

experiment, we perfused glutamate directly on to a single postsynaptic site, de-

polarized the postsynaptic intracellular potential to a controlled voltage for a

controlled duration of time, thus controlling the opening of postsynaptic NMDA

receptors and Ca2+ influx. By using this method, we found 1. that modifica-

tion of synaptic strength has a bell-shaped dependency to the amount of Ca2+

influx, 2. that weak Ca2+ current through desensitized NMDA receptors sus-

tained for a long period of time (160 ms) generates LTD, 3. evidence that

phosphorylation of AMPAR leads to insertion of AMPAR.
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1 Introduction

The human brain, a huge neural network, consists of roughly 10 billion neurons and

50 to 100 trillions synaptic connections between the neurons. These connections are

the cellular substrate of higher cognitive functions such as learning, memory, and

consciousness. As a brain matures, the synaptic connections also mature, becoming

more refined, functional and numerous, as the brain develops cognitive skills.

The higher cognitive functions and any other information that are stored in brain

are encoded in terms of strength of synaptic connections. Therefore, modification

of synaptic strength - the process called synaptic plasticity - during the maturation
process is believed to be the fundamental basis of learning and memory. In behavioral

experiments, it was found that when animals learn information from experiences, their

synaptic connections of certain brain areas show structural and functional changes,

and more over when they were treated with drugs that cease further modification of

synapses, the animals could not store new memories.

Therefore, the modification of synaptic strength depends on external events, or

more specifically, the spatio-temporal patterns of neural activity which reflect the

external events. A neural network controls its synaptic properties in such a way that

the network ends up encoding certain amount of information of the experience it

has gone through. In 1949, Donald Hebb postulated that such a control of synaptic

modification is in fact embraced in the properties of individual synapses.

Hebb's conjecture is the following: if input from neuron A often contributes

to the neuronal activity firing of neuron B, then the synapse from A to B will be

strengthened.[1] Hebb suggested that such synaptic modification could produce neu-

ronal assemblies that reflect the relationships experienced during training. For exam-

ple, consider applying this rule to neurons that fire together during training due to an

association between a stimulus and a response. These neurons would develop strong

interconnections, and subsequent activation of some of them by the stimulus could

produce the synaptic drive needed to activate the remaining neurons and generate

the associated response. Hebb's original suggestion concerned increases in synaptic

strength, but it has been generalized to include decreases in strength arising from the

repeated failure of neuron A to be involved in the activation of neuron B. The general

form of the Hebb rule state that synapses change in proportion to the correlation or

covariance of the activities of the pre-and postsynaptic neurons.

Hebb's activity-dependent-synaptic-plasticity was confirmed in cultured neurons
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and slices of mammalian brain which is generally termed Long-Term-Potentiation

(LTP). LTP is a stable and enduring increase in the magnitude of the synaptic re-

sponse of neurons after appropriate electrical stimuli have been applied to the presy-

naptic cell and postsynaptic cell. LTP has been found in all excitatory pathways in

the hippocampus, as well as in several other regions in the brain, and there is grow-

ing evidence that it underlies at least certain forms of memory. [4] [5] The conventional

stimuli protocol for artificially generating LTP is tetanus - stimulating the presynaptic

cell with high frequency, high amplitude current pulses, which generate large synaptic

current enough to activate the postsynaptic cells correspondingly.[6][7] Bi and Poo

(1998) invented another stimulation protocol and clearly showed that LTP is depen-

dent on spike-timings of a pair of neurons (pre- and postsynaptic neurons).[?] When

presynaptic cell was constantly stimulated to fire spikes 2-20 ms prior to postsynaptic
cell spike activity (positive temporal correlation), their synaptic response increased

in size. When the neurons were stimulated in reverse order (negative temporal cor-

relation), their synaptic response decreased (Long-Term-Depression, LTD).

It is known that Ca2+ current through NMDA receptor channels on the postsynap-

tic site triggers modification of the synapse: When NMDA channel blocker, D-AP-5 or

7-Chlorokynurenic acid, was injected in the extracellular solution, LTP and LTD was

blocked, and the animal could not learn new memories. [8][9] Current view of the field

is that high-amplitude, short duration (- tens of milliseconds) pulses of Ca2+ currents

into the post- side of a synapse increase the synaptic strength, while low-amplitude,

long duration (over hundreds of milliseconds) pulses of Ca2+ ion currents decrease

strength. However, the effects of different Ca2+ influx can not be precisely dissected

with conventional LTP/LTD generation protocols due to the following limitations:

1. the protocols do not discriminate between pre- and postsynaptic side plasticity,

2. the protocols observe synaptic plasticity between two cells which involve multiple

synapses with heterogenous properties, 3. precise control and measurement of the

amount of Ca2+ influx are not possible in the protocols.

In the present study, we introduce a new technique which involves stimulation and

response of the postsynaptic site of a single synapse. The technique also allows us

to control and estimate the amplitude and duration of Ca2+ current through NMDA

receptors of the postsynaptic site. With this new powerful tool, we have partially

characterized the dependence of synaptic modification on the amount and duration

of Ca2+ influx during activities of neurons.

For the readers without prior knowledge of neuroscience, I will review the structure

3



Dongsung Huh

and functions of neurons and synapses before further proceeding into the details of

the research.

2 Introduction to Neurons and Synapses

2.1 Neurons

Neurons are specialized for generating electrical signals in response to several types of

(mostly chemical) stimulus inputs, and transmitting them to other cells. Important
morphological structures are the dendrites that receive inputs from other neurons and

the axon that carries the neuronal output to other cells. The dendritic tree allows a

neuron to receive inputs from many other neurons through synaptic connections.

Figure 1: Schematic picture of neuron with its three defined regions: the cell body

and the dendrites, and the axon.

2.1.1 Membrane Voltage, Equilibrium Potential

The electrical signal of relevance to the nervous system is the difference in elec-

trical potential between the interior of a neuron and the surrounding extracellular

medium. The intracellular voltage fluctuates as ionic current flows in and out through

membrane-spanning ion channels. Ion channels control the flow of ions across the cell

membrane by opening and closing in response to voltage changes and to both internal

and external signals. Ions involved in the electrical activities of neurons are mostly

sodium (Na+), potassium (K+), calcium (Ca2+ ), and chloride (Cl-).

Flow of ions through open ion channels is controlled by voltage difference and con-

centration gradient across the membrane. Consider, or example, a positively charged
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(q) ion and a negative membrane potential (V). In this case, ions are free to flow

into the cell and therefore the inward ionic current is simply proportional to the con-

centration of ions outside of the cell ([outside]). However, ions inside the cell can

flow out of the cell only if they have sufficient thermal energy to overcome the energy

barrier qVl.. According to the Boltzmann distribution of energies, the probability of

an ion to have thermal energy larger than qVI is exp (-ITV). Therefore, the outward

ionic current is proportional to [inside]* exp (Q). At a particular potential, called

equilibrium potential VE, the net flow of ions will be 0 when the inward and outward

flows are equal.

[outside] = [inside] * exp qkT ,

Therefore, the equilibrium potential is

[inside]qE=I [DIinsid] ) (Nernst Equation) (1)

Therefore, equilibrium potential for each species of ions is determined by the ion's

charge and intracellular and extracellular distribution. The equilibrium potential for

a K+ conducting channel, EK, typically falls in the range between -70 and -90 mV.

The Na+ equilibrium potential, ENa, is 50 mV or higher, and Eca, for Ca2 + channels,

is higher still, around 150 mV. Cl- equilibrium potentials are typically around -60

to -65 mV, near the resting potential of many neurons. In all cases, the surrounding

extracellular medium is the ground.

Under resting condition, conductance of K+ channels of neurons are 20-100 times

larger than other types of ion channels and keeps the intracellular voltage of a neuron

near its equilibrium potential EK ( -70 mV), and the cell is said to be polarized.

Any of mechanical, electrical or chemical perturbations on a neuron would would

trigger opening certain types of ion channels and move the membrane potential up

or down toward the ion channel's equilibrium potential. When a cell's membrane

potential is more negative than its resting potential, the cell is said to be hyper-

polarized. When a cell's membrane potential is less negative or even positive values

the cell is said to be depolarized.

2.1.2 Action Potential

When a neuron receives enough depolarizing current to raise the membrane potential

above a threshold level ( -20 mV), a positive feed back process induces a sharp de-

polarization (up to 20. 30 mV) followed by slight hyper-polarization called an action
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potential, or shortly, a spike. At threshold voltage, voltage-gated Na+ channels start

to open, which shoots the membrane potential up toward the equilibrium potential

of Na+, 50 mV, then opening of voltage-gated K+ channels brings down toward K+

ion equilibrium potential, which is -90 mV. Duration of an action potential is about

1 ms.

A neuron fires action potentials at the cell body (soma) and axon, but not at

dendrites. Action potential travels down along the axon as a chain reaction: An

action potential at a patch of membrane depolarizes the next patch inducing a second

action potential, and so on. An action potential is an effective form of electrical signal

that can propagate over large distance without noise or loss of signal.

When an action potential fires at the cell body, the fluctuation of electric field also

travels toward dendritic sites passively through intracellular cytoplasm. This passive

process - referred to as back propagating dendritic spike - is believed to play a crucial

role in correlated activity dependent synaptic plasticity.

2.2 Synapse

Figure 2: A schematic picture of synapse showing the presynaptic axon terminal,

postsynaptic dendritic area, release of neurotransmitters and postsynaptic receptors.

(Excerpted from http://www.scientific-art.com/)

A synapse is a narrow junction where two neurons communicate chemically. When

a action potential arrives at a synapse of signal-sending, or the presynaptic neuron,
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vesicles filled with neurotransmitter are released. The neurotransmitter then binds
to receptors at the signal-receiving or postsynaptic side of the synapse, causing ion-
conducting channels to open. Depending on the nature of the ion flow, the synapses
an have either an excitatory, depolarizing, or an inhibitory typically hyperpolarizing,

effect on the postsynaptic neuron. The strength of a synaptic connection is deter-
mined by the size of excitatory or inhibitory current through the postsynaptic site
induced by a single action potential of the presynaptic cell.

Two important neurotransmitters in central nervous system are glutamate acid
and GABA. At excitatory synapses, binding of glutamate to glutamatergic receptors
on postsynaptic cell opens ion channels which conducts Na+, K+, and Ca2+ and
depolarize the cell. At inhibitory synapses, GABA binds to GABAergic receptors
which opens Cl- conducting ion channels and hyperpolarize the postsynaptic cell.

AMPA receptor (AMPAR) and NMDA receptor (NMDAR) are two most impor-
tant glutamatergic receptor ion channels . AMPAR and NMDAR can be selectively
blocked with. different drugs so that their properties can be separately studied. The
response of AMPAR and NMDAR to release of neurotransmitters are quite different.

2.2.1 Conductance of AMPA Receptors

AMPAR channels work in a simple mechanism. An AMPAR channel is in the open

state when glutamate is bounded to it and in the closed state when glutamate is
unbounded. Transition between the two states is probabilistic and is described by
the following equation.

dPgiu
dt= agu(1 - Pgu) - gluPgu (2)dt

Here, Pglu is the probability of a channel being in the open state, glu is the opening
rate of the closed channels, which is proportional to concentration of glutamate near

the receptor, and 3glu is the closing rate of the open channels, which is essentially
constant.

When an action potential in the presynaptic cell releases glutamate, the glutamate
concentration increases extremely rapidly, remains high for approximately 1 ms, and
then falls rapidly to 0. We can simplify the fluctuation of glutamate concentration as
a narrow square pulse of duration T ( 1 ms) at the moment of presynaptic action
potential and 0 everywhere else. Integrate Equation 2 under this assumption, we
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obtain

Pglu(t) = 1 -e - glut for 0 < t < T (3)

Pgiu(t)- p e - gu(tT) for t > T ( where Pmax = Pglu(T) ) (4)

for fast synapses like AMPA receptors

PglU (t) ' Pmax exp(-t/Tglu) (5)

Tglu 1//glu (6)

The AMPAR conductance is proportional to Pglu(t).

gAMPA Pglu(t) (7)

Conductance of a channel differs for different ions. AMPAR channels are most con-

ductive to Na+ and k+ .

2.2.2 Conductance of NMDA Receptors

The mechanism of NMDAR is more complex, because it involves magnesium block.

NMDAR has a Mg2+ binding site on its ion conducting pathway which is blocked

when Mg2+ is bound on it. Therefore, NMDAR opens only when both two conditions

are met: binding of glutamate and unbinding of Mg2+. Binding of Mg2+ on NMDAR

is voltage dependent which can be described in terms of statistical physics. The

energy difference between the Mg2+ bound state and unbound state is where E0 is

the binding energy and 6V is the partial voltage difference that Mg2+ feels. Transition

rate from the NMDAR-Mg2+ bound state to the unbound state is proportional to the
probability of a particle to have thermal energy larger than AE, , exp (-E ) dE =

exp (- E). On the other hand, the binding rate of Mg2+ to an unblocked NMDAR

is simply proportional to the concentration of Mg2+ ions ([Mg2+]) in the vicinity of

the receptor. The probability of an unblocked NMDAR state is then described by the

following equation.

dPMg [Mg2+]p (qV (I
dt _ -Mg[Mg ]PMg + OMg exp k (1PMg) (8)
dt 

(where O{g = 3Mgexp(-E0/kT), Mg: unbinding rate constant). At equilibrium
condition (dIP = 0), Equation 8 gives the unblocked probability of NMDAR as

PMg(V) = 1 + [Mg2+] Mg exp(-6qV/kT) (9)
r~-7--
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Extracellular Voltage: 0

I

Internal Voltage: V : Magnesium Ion with Charge q

AE =EO - qV

Figure 3: Schematic diagram of NMDAR structure.

In 1990, Jahr and Stevens matched this result to empirical data and concluded that

PMg(V) = 1 + 3.57mM exp(-V/16.13mV) (10)

NMDA receptors are open only when both glutamate is bound to it and Mg2+ block-
ade is removed. Therefore, the conductance of NMDAR is proportional to

gNMDA(t, V) O( Pglu(t)PMg(V) (11)

where Pglu(t) is expressed as Equation 3 and Equation 4, but it has smaller binding and
unbinding rates compare to AMPAR. Conductivity of a channel differs for different
ion types. NMDAR channels are conductive to Na+, K+ and Ca2+.

Therefore, NMDA receptors open only for correlated activity of pre- and postsy-
naptic cells: presynaptic glutamate release and the postsynaptic membrane voltage
elevation. For this reason, NMDA receptors are also referred to as "the coincidence
detector".

2.2.3 Current through Membrane Channels: Goldman-Hodgkin-Katz Equa-
tion

Equation 7 and Equation 11 tell us the conductance of AMPA and NMDA to which
their mediated currents are proportional. However, calculation of the actual amount
of current involves more consideration of movements of ions in fluid. Ions in fluid move
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around by diffusion and drift. Under electric field, ions drift with the velocity at which

the electric force and viscosity friction cancel each other. V6drift = FEB = qBVV, where

B is the friction constant. Therefore, the drift flux is

1- -UI - . . . .
- CA~}l~I & m-m,.l t | f,* [* !; i I ; ! t ...* i A.~.i. 11,, ...- t-- ....... ..-! .~ : : ' ! : : . .: . - CAGHK i .2 m m;

ltO rs--- !"I-11-: -- 2 .m 'M....~~~~~~::' : 1 n_ 2 -- ` !-* -! -----1---)--- ----- ---- ----I...... ....... .. . . . . .. . . . . .. . . . .
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Figure 4: Left: Plot of NMDAR mediated Ca2+ current under 2.6 mM Ca2+ and [5.2,
2.6, and 1.3 mM] Mg2+ extracellular concentrations according to GHK and Woodhull

equations. During induction protocol, cells were under extracellular solution with 1.3

mM Mg2+ and 2.6 mM Ca2+. Right: Plot of the total amount of NMDAR mediated

ionic current under 1.3 mM Mg2+ and 2.6 mM Ca2+ extracellular condition according

to Equation 17. The current axis (y-axis) in both plots are in an arbitrary unit.

Jdrift = pVdrift = -pqBVV, (12)
where p is the number density of the ions. When the solution is not homogeneous,

ions diffuse from higher concentration region to lower concentration region. Fick

discovered that the diffusion flux is proportional to concentration gradient.

Jdiffuse = -DVp, (13)

where the diffusion constant D has thermodynamic interpretation as

D = BkT ( Einstein's relationship. See Appendix A.3)

Therefore the total flux of ions is

J = Jdrift + Jdiffuse = -kT (Vp + 3pqVV) (where ,3 = 1/kT) (14)

Using the integration factor eqV(x), the above equation can be rewritten as

j- 3qV(x) =-lkTV (p(x)eqV(x)) (15)Je -Bk~~~~~~~~~~t ~~(15)

lo-+--.'- i.-- '--+- - 7" .. .. ..... -L.-~~~~~~~~ -i
90 ____f-- -- l--e+'-'' -' '--'- -- '---'- 100

70 -- t ~~._ - - -_-.. . . . --. I r-4- -.--------- ------

70so ... .Xr.x,. .,. ,
40~~~~~~~~~~~~~~~~~4

40 - ....
0 .................... .......... : 20

, ..
... I"** .* 

.\A/....- -.

., _ ... _ -

... _... _........

i ........

.,I

.; .... .... ...............................

.......... 1. -

.............

--------------

------ I-------

..............

..............

,.............. . : ......... 
---- I------------- - -------------

I

............

..............

--------------

............ .



Ca2 + Dependent Synaptic Modification

Goldman-Hodgkin-Katz assumed 1 dimensional channel model and constant field in

membrane, that is

V(x) = Vx/d, ( < x < d),

where x is the position in the 1 dimensional channel pathway. In this case, Equation 15

can be easily integrated and rearranged.

B3qV Pout - Pineqv (16)
d eI3 qV -

where setting J = 0 gives the Nernst Equation (Eq. 1). Ions are assumed not to

interfere with other types of ions, and the total current through a channel is the

summation of all ion flux.

itotal = NaJNa + 9KJK + gCaJca, (17)

where conductances are given as functions of voltage and time (Equation 7, Equa-

tion 11). Plots in Figure 4 show NMDAR mediated Ca2 + current in different Mg2+

concentration and the total current in 1.3mM of extracellular Mg2+ concentration as

predicted by Equation 17.

2.3 Synaptic Plasticity

The process by which the strength of a synapse changes over time is called synaptic

plasticity. Synaptic plasticity involves both pre- and postsynaptic changes. Presynap-

tically, the probability of releasing neurotransmitter vesicles and the amount of neuro-

transmitters contained in a single vesicle can change. [10] Postsynaptic changes involve
insertion[11] [12][13])/exertion ([14] [15] [16] [17] [18])of receptors and activation/inactivation

of receptors through phosphorylation/dephosphorylation. [19] [20] [21] [22]

Most of postsynaptic change is due to change of AMPAR response, while NMDAR

current size remains constant. Instead, NMDAR is involved in control mechanism of

AMPAR modification. NMDAR mediated Ca2+ current is known to trigger a cas-

cade of plasticity reactions, one of which phosphorylates AMPARs and increase their

ionic conductance, and another triggers insertion of AMPAR from non-synaptic areas

into the synapse.[8][9] Correlated activities of pre- and postsynaptic neurons intro-

duces a large Ca2+ current through NMDAR, which is believed to be the underlying

mechanism of Hebb's activity-dependent-synaptic-plasticity postulate.

In the present experiment, we Several experimental evidences suggest that differ-
ent magnitudes and patterns of postsynaptic [Ca2+ ] influx can selectively induce LTP
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or LTD. For example, high-amplitude, short duration ( tens of milliseconds) pulses of

Ca2+ currents into the post- side of a synapse induce LTP, while low-amplitude, long

duration (over hundreds of milliseconds) pulses of Ca2+ ion currents induce LTD.

However, the exact effect of Ca2+ current of different properties has not yet been

experimentally confirmed.

3 Experiment

To directly measure the effect of NMDAR mediated Ca2+ current through single post-

synaptic site, we used two powerful techniques. To gain control of electric potential of

the postsynaptic cell and measure the current flowing in and out from the cell, we used

whole-cell-perforated-patch-clamping method. For local application of glutamate on

to a single synaptic site, we used the iontophoresis technique.

3.1 Experimental Tools

3.1.1 Perforated Whole Cell Patch Recording

Perforated whole cell patch clamping is a powerful technique for controlling and/or

recording intracellular membrane potentials and currents. A hollow glass pipette

electrode filled with conducting electrolytes makes a tight connection with a neuron

membrane. After the patch electrode seals (up to GQ of electrical resistance), the

perforation chemical (amphotericin B) starts to introduce pores onto the membrane

beneath the electrode tip, providing electrical contact or resistance of 10 20 MQ, called

access resistance, with the interior of the cell. A series of 10 ms step depolarization

pulses from -70 to -60 mV were applied to assay access resistance according to the

circuit model in Figure 5. Access resistance of less than 30 mega-Q were required to

swiftly change a neuron's intracellular voltage.

For our experiment, we used a protocol called voltage clamp: We controlled the

intracellular potential to the desired voltage by injecting current to maintain the
voltage. The injection of current was recorded, which is equivalent to the current

passing through the entire cell membrane.

3.1.2 High-resolution Iontophoresis

The number and properties of functional postsynaptic receptors can be assessed di-

rectly by their responses to local application of transmitter. LTP could also be gen-
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Figure 5: A schematic diagram of whole cell patch clamp method. A diagram of an

equivalent circuit is overlapped.

erated by the same method. For elaborate generation and measurement of post-

synaptic modification, we used iontophoresis technique to directly stimulate a single

post-synaptic site in the physiological time scale (0.5 ms). Our iontophoresis elec-

trode is a quartz pipette filled with an glutamate acid solution (150 mM) with a tip

opening smaller than the synaptic size (0.1 microns).

Such a narrow tip is required both to prevent leakage during non-stimulation,

and to restrict the area of glutamate diffusion within a single synapse. However, the
narrow-tip, high resistance electrode resulted in a long RC time constant T- of 200 ms

(R-100 MQ, C-0.2 nF). The low-filter property of the system becomes an obstacle

for ejection of single pulses of 0.5 ms. To help minimize this problem, we decreased

R by pulling electrodes with a short shank, as a long, thin shank increases electrode

resistance. \We lowered the extracellular solution level as much as possible since the

submerged portion of the electrode contributes to capacitance. To compensate for

the remaining RC filtering, we used a positive-feedback capacitance compensation in

the stimulation current.
To properly adjust the capacitance compensation, we applied a-10 nA square-

wave pulse at 20 Hz to the iontophoresis electrode after filling it and immersing the

tip in the bath. We monitored the tip voltage on an oscilloscope while adjusting

the compensation so that the voltage also described a square wave. With the proper

13
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capacitance compensation setting, the iontophoresis electrode could inject a pulse of

glutamate of 64 nA amplitude and 0.5 ms duration. [23]

A Patch electrodes was mounted on MP-285 micro-manipulator (Sutter Instru-

ment) and the iontophoresis electrode was mounted on MPC-100 micro-manipulator

(Sutter Instrument) to be controlled in sub-micrometer precision.

3.2 Experimental Procedure

The protocol for our experiment was the following: 1. We patch-clamped a neuron,

voltage-clamped it at -70 mV in an extracellular bath solution which was designed

to block NMDA receptors - we call it the baseline solution (See B.4 section for the

composition of baseline solution and induction solution). To locate synaptic sites we

used a fluorescent presynaptic marker FM1-43 (See B.2) for the composition of FM1-

43 solution). We brought the iontophoresis electrode to the 1 m vicinity to a single

synaptic site and measured baseline synaptic current in response to local application

of glutamate for 5 to 10 minutes (Baseline-recording of initial synaptic strength).

2. Then the bath solution was switched into the induction solution which enables

NMDAR channels to open. We ran an induction protocol which induces a specific

amount of Ca2+ influx through NMDAR channels (Induction of synaptic change). 3.

We switched the bath solution back to the baseline solution and measured synaptic

responses as in step 1 until the size of synaptic current stabilized (Post-modification

measurement of synaptic strength).

For the analysis, the amplitude of synaptic response current of step 1 and step 3

were compared for the measurement of potentiation of the single postsynaptic site.

NMDAR blocker was used during step 1 and step 3 because the test pulses of

glutamate (64 nA for 1 ms, for the measurement of synaptic current size) were so

large that introduced a large AMPAR mediated current which locally depolarized the

postsynaptic site. Without NMDAR blocker, some amount of Ca2+ would flow into

the cell and cause potentiation of the postsynaptic site during baseline measurement -

we call this effect "creeping" (See Figure 10). Therefore, NMDAR blocker was mixed

in baseline solution to avoid creeping and measure the exact size of initial and final

postsynaptic responses.

We tested several NMDAR blockers. The commonly used NMDAR blocker, D-

AP-5, could not efficiently block NMDAR mediated current (Figure 7). It is because

D-AP-5 is a competitive glutamate site blocker and becomes rivaled out to pulses of

high concentration of glutamate. Creeping was observed during the measurement in
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AP5 added baseline solution. Then, we tested a non-competitive glycine site blocker

of NMDAR. 7-Chlorokynurenic acid (Glycine is another requirement for opening of

NMDAR channels). Use of this drug completely blocked NMDAR mediated current

and creeping effect (Figure 11), but it also decreased the AMPAR current drastically

(see Figure 8 and Figurel2). Our analysis involved only relative changes in AM-

PAR response size, therefore data obtained in this baseline solution was still usable.

However, blocking of AMPAR might have an unknown effect in cells metabolism and

is not desirable. Finally, we employed 5,7-Di-Chlorokynurenic acid - a variation of

7-Chlorokynurenic acid - for the baseline solution, in which NMDAR current was

completely blocked and AMPAR current size was mostly unaffected (Figure 9).

3.3 Induction Protocol

During the induction phase (step 2), neurons were immersed in induction solution.

Our LTP induction protocol involves local application of glutamate and depolarization

of the postsynaptic neuron which opens NMDAR channels. There was 40ms gap

between the glutamate pulse and postsynaptic depolarization due to the fact NMDAR
takes 40ms to open with maximum probability. We controlled the depolarization

voltage and duration of the depolarization. The amount of Ca2+ influx was estimated

according to Figure 4. See the table below for the specifications of protocols.

To ensure that our iontophoresis technique does induce potentiation as classical

methods do, we employed an additional protocol which applies 5 pulses of glutamate

at 100Hz frequency for each stimulus similarly to the conventional presynaptic tetanic

stimulation. However, the tetanic protocol does not allows us to estimate the amount
of NMDAR mediated Ca2 + influx and thus was not analyzed further.

Protocol Depolarization Depolarization Stimulus Number

Voltage V(mV) Duration T(ms) Freq.(Hz) of Cycles 

Tetanus N/A N/A 0.2 40

-10.160.1 -10 160 1 100

-20.160.1 -20 160 1 100

-30.40.0.2 -30 40 0.2 50

-30.160.1 -30 160 1 100

+30.160.1 +30 160 1 100

15
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Glutamate Releases from
lontophoresis Electrode
at t=O

40 (ms) later, postsynaptic neuron
gets depolarized from -70 (mv) to
V(mv) for duration T (ms).

0 40,(ms) 40 + T (ms)
I __ ~ ~~~~ I I *4P

t r
V (mv)

-70 mV T

Figure 6: Explanatory figure for our induction protocol.

4 Results

Samples of recordings are shown in Figure 13-16. Each protocol had different efficacy

of generating potentiation. Figure 17 shows a summary of the potentiation results.

On average, -10.160.1 generated 4.9 ± 8.3% increase, -30.160.1 generated 37 i 22%

increase, -30.40.0.2 generated 108 i 35% increase, +30.160.1 generated 6.4 ± 12%

increase, and tetanus evoked 43 i 9.1% increase (Figure 17, upper). To understand

the role of depolarization duration and stimulus frequency, I've grouped the results

of x.160.40..1 protocols (160 ms, 1 Hz). The lower plot of Figure 17 clearly shows

that 160ms, Hz protocols rarely induce potentiation, while 40 ms, 0.2Hz protocols

produce massive potentiation, even more than classical potentiation due to tetanic

stimulation.

Lack of potentiation in 160ms, 1Hz protocols was unexpected, because it would

introduce maximum Ca2+ at each stimulation pulse and generate most potentiation.

However, shorter duration and lower stimulation frequency protocols turned out to
be more reliable for massive potentiation generation. We discovered that the 160ms

1 Hz protocols introduced a large initial Ca2+ influx that led the NMDA receptors

into another state - desensitized. An NMDA receptor in the desensitized state does
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not respond to binding of neurotransmitters until it recovers to functional states. 1
second interval between induction pulses of 160ms 1 Hz protocols was not sufficient

for the receptors to recover from the desensitized state, and the NMDA mediated

current was significantly decreased after several stimulation cycles (Figure 18). On

the other hand, the NMDAR responses to 40ms 0.2 Hz induction protocol showed

little change throughout all the stimulation cycles. (Figure 19) Therefore, during the

160ms 1 Hz induction protocols, except for the first few pulses, there was very little

Ca2+ influx through NMDA receptors for a long period of time (160ms), which is

currently believed to be the properties required for LTD induction stimulus protocol.

Further analysis of-30.40.0.2 showed an interesting relationship between the amount

of functional NMDAR and change of synaptic strength (Figure 22). When the amount

of functional NMDAR is small (less than 300 pA) there is a large positive correla-

tion between the amount of NMDAR and potentiation amount, however when the
amount of NMDAR exceeds a threshold (700 pA in this case), potentiation level

drops, thus the overall shape of the curve becomes bell shaped. Since the amount of

functional NMDAR is proportional to Ca2+ influx, we assert that this curve shows

the relationship between Ca2+ influx and synaptic strength modification.

We also observed that the potentiation during induction protocol can predict the

amount of post-induction potentiation. The ratio between the synaptic response in
the beginning of induction and at the end of induction protocol (induction ratio) had
a significant correlation with overall change of synaptic response (between step 1 and

step 3). (Figure 24)

5 Discussion

The bell-shaped curve dependence of LTP on Ca2+ in Figure 22 is in close agreement

with the previous result (Sadeghpour, unpublished Figure 23). This experiment was

in fact designed to confirm the preliminary result of the bell-shaped dependence. The

previous data involved creeping in baseline recordings and therefore the result was

hard to be interpreted. Of course, the number of data-points in the Figure 22 is too

small to conclude the assertion. Further research would eventually reveal the actual

shape of the curve.

Generation of LTD due to small amplitude, long duration desensitized Ca2+ cur-

rent partly confirms the wide-spread belief that small amount of sustained Ca 2+influx

induces LTD. We are currently implementing a method to estimate the amount of
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Ca2 + influx through desensitized NMDAR channels. Further research will involve

more quantitative analysis of the effect of sustained, small-amplitude Ca2+ influx on

LTD. It is very expected to find a vivid correlation between small Ca2+ current and

LTD generation level.

The quick potentiation effect during induction protocol (- 1 minute) is due to

phosphorylation of AMPAR. The high positive correlation between induction ratio

and overall synaptic strength change (Figure 24) strongly suggests that the short-

term potentiation through phosphorylation undergoes transition into a long-term po-

tentiation involving insertion of AMPAR. This result may explain the underlying

mechanism of consolidation of short-term-potentiation into long-term-potentiation,

and furthermore explain the consolidation process of short-term-memory into long-

term-memory.

Synapses control the flow of current from one portion of the network to another,

similar to the role of transistors in electronic circuits. This fundamental unit of com-

putation of the brain also has an exquisite property that it modifies itself according to

experience to encode information of the experience. Comprehension of how the funda-

mental learning process works in synaptic level will eventually lead to comprehension

of learning algorithm of overall brain and the encoding and storage mechanism of

information in brain.
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A Appendix

A.1 Brownian motion: Einstein-Smoluchowski theory

Let us now to study the Brownian motion from the point of view of diffusion. The

variables under consideration are the number density of the Brownian particles in the
fluid p(f, t) and the current density of the particles j(, t) = p(f, t)i,(f, t). The two
fundamental laws are

J= -DVp the Fick's law, where D = diffusion coefficient (18)
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0pV-- j±li = 0 Continuity Equation (19)

Substituting the Fick's law into the continuity equation, we obtain the diffusion equa-

tion
1 Op

V2 p- ~ = 0 (20)
= 0

Of the various possible solutions of this equation, the one relevant to the present

problem is

p(it) exp ( r2) ' (21)p( =(47rDt)3/2 4Dt
whose diffusion properties are

(i(t)) = 0 (22)

(r2(t)) = X r2 p(F, t) 47rr2 dr = 6Dt. (23)/0
for 3 dimensional case, JK=: total number of particles (Einstein-Smoluchowski)

In this approach, we are considering the motion of an 6nsembleof /' Brownian par-

ticles placed under 6quivalentphysical conditions. Accordingly, the averages of various

physical quantities obtained here will be in the nature of ensemble averages... Thus

the nsembleof the Brownian particles, initially concentrated at the origin, diffuses

outis time increases, the nature and the extent of its spread at any time being given

by Equation 22 and Equation 23 respectively. The diffusion process gives us a fairly

good picture of the statistical behavior of a single particle in ensemble.

A.2 Brownian motion: Langevin theory

Consider a free Brownian particle in a fluid, that is, a particle is assumed to feel

only two types of forces: 1) the viscous drag - and 2) a apidly and randomly

fluctuatingforce F(t), which averages out too zero over long intervals of time. Then

the equation of motion of the particle will be

mdt .B + F(t), ((F(t)) = 0) (Langevin), (24)

and therefore,

d V-
-- + A(t) ((A(t)) = 0) where = mB (25)

dt T

23



Dongsung Huh

We construct the scalar product of Equation 25 with the position F of the particle

and take the ensemble average of the product. In doing so, we make use of the facts

that,

r ? v - - 2 r d v = d m v-v dr =2d, - -- and (r. A)=O.
2 ddt ' d. dt 2=dt dt)-¥Vr-2dnddt 

Therefore, we obtain,
d2 dt
dt2 (r2) + -7< (r2) = 2(V2),

which can be rewritten by the use of integrating factor et /
T as,

d (d (r2)et/T) = 2(v2)t/ (26)

At thermal equilibrium, the quantity (v2 ) has its equipartition value 3kT/m. The

equation is then readily integrated with the result

r) + - (27)

where the constants of integration have been so chosen that at time t=O both (r2)

and its first time-derivative vanish. We observe that, in macroscopic time scale t > T,

6kTT(r2) t = 63kTt when t > T (28)
m

A.3 Einstein's Relationship

By comparing the results of Langevin's approach and Einstein's approach of Brownian

motion (Equation 23 and Equation 28) we obtain thermodynamic equation for the

diffusion constant

D = 3kT (29)

which is often referred to as Einstein's Relation.

B Method

B.1 Cell Culture

Primary cultures of CAl-enriched hippocampal neurons were prepared from neonatal

rats (P1). The age of the cultures used in this study range from 14 to 21 days in

vitro (DIV). All experiments involving animals were approved by the Massachusetts

Institute of Technology's Committee on Animal Care.
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B.2 Fluorescent Imaging of Synapses

Functional presynaptic boutons were stained with 10 M FM 1-43 (synaptogreen, Bi-

otium). The composition of the FM1-43 staining solution was (in mM): KCl 90, NaCl

39, Glucose 30, HEPES 25, CaCl2 2, MgCl2 1, NBQX (6-nitro-7-sulphamoylbenzo[f]quinoxaline-

2,3-dione) 0.005, D-AP-5 (DL-2-amino-5-phosphonovalerate) 0.1, and FM 1-43 0.01

(adjusted to pH 7.4 with NaOH).

B.3 Imaging

Imaging was taken using an Olympus (FV300) confocal laser inverted microscope.

The 488 nm line of the argon laser was used for excitation, and the emitted light was

filtered using a 510 nm long pass filter and detected by photomultiplier. A 40x 1.15

NA water-immersion objective was used for imaging. For experiments, images were

collected at a resolution of 1024x1024 with a pixel width of 0.11 Aim. Confocal

aperture was set to maximal. The gain of photomultiplier was adjusted to maximize

the signal/noise ratio without causing the saturation by the strongest signals.

B.4 Electrophysiology

Whole cell perforated patch clamp recordings (Hamill et al., 1981; Horn and Marty,

1988; Rae et al., 1991) were made on cultured hippocampal pyramidal neurons. Perfo-

rated patch pipettes were front-filled with a solution containing (in mM): CsOH, 127;

D-gluconic acid, 127; CsCl, 4; HEPES, 10; NaCl, 8; EGTA, 0.4; pH was adjusted

to 7.2 with CsOH, and then back-filled with the same solution containing 150-220

ng/ml amphotericin B (Sigma, St. Louis, MO). We used two different extracellular

solutions for the measurement (Baseline Solution) and for the induction protocols (In-

duction Solution). Baseline solution contained (in mM): NaCl, 145; KCl, 3; glucose,

15; HEPES, 10; MgC12, 5.2; CaCl2, 1.3; 0.05 picrotoxin (Sigma); and for the induc-

tion phase extracellular solution contained (in mM): NaCl, 145; KCl, 3; glucose, 15;

HEPES, 10; MgCl2, 1.3; CaCl2, 2.6; 0.005 glycine (Sigma), 0.05 picrotoxin (Sigma)

and NMDA blocker (See 3.2 section); For both solutions pH was adjusted to 7.4 with

NaOH. The extracellular bath solution was constantly perfused with fresh recording

medium at slow rate through out recording, and at higher rate when switching the

induction and baseline solutions. All experiments were performed at room temper-

ature. Synaptic responses were recorded using a MultiClamp 700A amplifier (Axon
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Instruments, Foster City, CA), digitized at 10 kHz with 1.2 kHz filtering.

Electrophysiological data was analyzed by a custom script written for Matlab

(MathWorks, Natick, MA) by Safa Sadeghpour.

C Figures
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Figure 7: Recording of response of a synapse at different clamped voltage (-70, -

30, 10, 50 mV) when immersed in induction-solution (left) and in baseline-solution

with D-AP-5 (right). We fitted the curves to the GHK equation (Equation 17) and

the conductance equations of AMPAR and NMDAR (Equation 7, Equation 11) to

estimate the amount of active AMPA and NMDA receptors. The amount of receptors

are expressed in terms of their peak response amplitude. The number of active NMDA

receptors were reduced from 393 pA to 37 pA, and AMPA receptors from 196 pA to

147 pA at the presence of D-AP-5.
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pA GV in Induction Solution GV in Baseline Solution wI 7-Chlorokynurenic Acid
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Figure 8: Change of synaptic response when immersed in induction-solution(left)

and in baseline-solution with 7-Chlorokynurenic Acid (right). The number of active

NMDA receptors were reduced from 81 pA to 3 pA, and AMPA receptors from 117

pA to 35 pA.
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Figure 9: Change of synaptic response when immersed in induction-solution(left) and
in baseline-solution with 5,7-Di-Chlorokynurenic Acid (right). The number of active
NMDA receptors were reduced from 238 pA to 2 pA, and AMPA receptors from 69
pA to 55 pA.
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Baseline Recording in Induction Solution - Creeping
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Figure 10: Baseline-recording in induction solution (no NMDA blocker, w/ Glycine).

The uppermost figure is the plot of size of synaptic response current at each measure-

ment time. Each event of measurement introduce NMDAR mediated Ca2+ influx and

increase the next measurement size of synaptic response. The middle figure shows

the initial rise time of the response. Rise time is an increasing function of distance

between iontophoresis electrode and synapse. Therefore, we endeavored to keep the

rise time constant in small range (4 8 ms), by bringing iontophoresis electrode as near

to a synapse as possible. The lowermost figures are traces of sample synaptic response

recordings. Each trace corresponds to an empty circle in the uppermost figure.
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Baseline Recording in Baseline Solution wI 7 Chlorokynurenic Acid
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Figure 11: No creeping effect in baseline-solution with 7-Chlorokynurenic acid.
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Decrease of AMPAR response in Baseline Solution with 7 Chlorokynurenic Acid
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Figure 12: Effect of 7-Chlorokynurenic acid on AMPAR response size. 7-CK blocks

AMPAR as well as NMDAR.
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mGluR Protocol -Potentiation
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Figure 13: Tetanic stimulation generates potentiation.
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-20.160.40 protocol - No Potentiation
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Figure 14: -30.160.1 induction protocol (-30 mV depolarization for the duration of

160 ms with 1Hz stimulation frequency) does not generate potentiation.
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Ca2 + Dependent Synaptic Modification

+40.160.40 protocol - No Potentiation
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Figure 15: +30.160.1 induction protocol (+30 mV depolarization for the duration of
160 ms with 1Hz stimulation frequency) does not generate potentiation.
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-20.40.40..6 protocol - Potentiation
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Figure 16: -30.40.0.2 induction protocol (-30 mV depolarization for the duration of 40

ms with 0.2Hz stimulation frequency) generates massive potentiation most of time.
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37Ca2+ Dependent Synaptic Modification

Change of Synaptic Strength after Application of Each Protocol
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Figure 17: Summary of potentiation generation by several induction protocols. On

average, -10.160.0.2 generated 4.9 i 8.3% increase, -30.160.1 generated 37 i 22%

increase, -30.40.0.2 generated 108 ± 35% increase, +30.160.1 generated 6.4 ± 12%
increase, and tetanus evoked 43 ± 9.1% increase as shown on the upper figure. In

general, 160 ms, 1Hz protocols did not generate potentiation regardless of their de-
polarization voltage.
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Figure 18: Desensitization of NMDA receptors under -30.160.1 induction protocol.

Once large inward current diminishes in P 10 stimulation cycles.
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Ca2+ Dependent Synaptic Modification
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Figure 19: No

protocol. The

desensitization effect of NMDAR responses under -30.40.0.2 induction

NMDAR responses are stable throughout the stimulation protocol.
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Figure 20: Distribution of AMPAR and NMDAR response sizes and their ratio.
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Ca2+ Dependent Synaptic Modification
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Figure 21: The NMDAR response size is not correlated with AMPAR response size.
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Figure 22: The amount of synaptic strength change is positively correlated with Ca2+

influx below 300pA. At large influx, potentiation level is low.
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Ca2 + Dependent Synaptic Modification

Figure 23: The previous result [24] also displays initially increasing then decreasing

dependence of synaptic strength modification on Ca2+.
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Correlation between induction ratio and ratio
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Figure 24: There is a large positive correlation between overall synaptic strength

change (AS/Sinitial) and the short-term-plasticity during induction protocol (induc-

tion ratio) regardless of the induction protocols.
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