
LIDS-P-2124-Revised
October 1992

A Hierarchical Algorithm for Neural Training and Control

T. V. Theodosopoulos, M. S. Branicky, and M. M. Livstone
Laboratory for Information and Decision Systems

and
Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA

Accepted as a regular paper for
The Thirtieth Annual Allerton Conference

on Communication, Control, and Computing

Abstract

Lately, there has been an extensive interest in the possible uses of neural networks for
nonlinear system identification and control. In this paper, we provide a framework for the
simultaneous identification and control of a class of unknown, uncertain nonlinear systems.
The identification portion relies on modeling the system by a neural network which is trained
via a local variant of the Extended Kalman Filter. We will discuss this local algorithm for
training a neural network to approximate a nonlinear feedback system. We also give a
dynamic programming-based method of deriving near optimal control inputs for the real
plant based on this approximation and a measure of its error (covariance). Finally, we
combine these methods in a hierarchical algorithm for identification and control of a class
of uncertain, unknown systems. The complexity of the whole algorithm is analyzed.

0

1 Introduction

Lately, there has been an extensive interest in the possible uses of neural networks for non-
linear system identification and control [7, 3, 6]. Typically, these approaches use multilayer
feedforward neural networks with various backpropagation learning rules.

Recurrent neural networks have thus far enjoyed a disproportionately low level of attention.
That is mainly because the delays internal to such a model make traditional backpropagation
learning ineffective. Matthews and Moschytz [5] suggest that just as multilayer perceptrons
have been shown to be good approximators for nonlinear feedforward systems, so can recurrent
neural networks for nonlinear feedback systems.

In particular, Matthews and Moschytz first suggested the use of the Extended Kalman Filter
(EKF) algorithm for training neural networks [5]. Later Livstone, Farrell, and Baker showed
how to localize the EKF algorithm to make the learning more computationally efficient [4]. The
Spatially Localized Extended Kalman (SLEK) algorithm of [4] forms the basis of this paper.

We will first discuss the SLEK algorithm for training a neural network to approximate a
nonlinear feedback system. We next give a dynamic programming-based method of deriving
near optimal control inputs for the real plant based on this approximation and a measure of its
error (covariance). Combining these methods leads to a hierarchical algorithm for identification
and control of a class of uncertain, unknown systems. Finally, the complexity of the whole
algorithm is analyzed.

2 Identification and Control of Unknown, Uncertain Systems

2.1 Approximating the System

The algorithms in this paper are written to handle the case where

[k + 1] = f(x[k],u[k])+ fknown(x[k],u[k]) + g([k])

y[k] = h(x[k])+v[k]

where x, , E Rn , u E Rm , y, v E RP and f, fknown, g, h are continuous, possibly nonlinear,
functions on the associated spaces. We assume fklown, g, and h are known; f is unknown.
Further, ,[k] and v[k] are uncorrelated white Gaussian noise sequences that are also uncorrelated
with the initial condition x[O].

However, for ease of presentation, we will treat the special case where the system dynamics
are modeled as:

x[k+] = f(x[k],u[k])+ [k]

y[k] = x[k]+v[k]

where x,z, v,y e Rn, u e R m , and f G C[Rn+m, Rn]; f is unknown. Further, g[k] and v[k]
are uncorrelated white Gaussian noise sequences with covariances

E{([k] T [n]) = Q[k]6kn

E{v[k]vT [n]} = R[k]6kn

E{.,[k]vT [n]} = 0

and d[k], v[k] are uncorrelated with the initial state x[0]. Note that the measurement equation
is linear. The nonlinear state equation will be approximated by the network

x[k + 1] fnet(x[k],u[k]; 0[k])

where 0[k] are network parameters to be learned. Let q[k] = [xT[k], uT[k]]T. We will refer to
this Rn+m vector space as the state-input space. With this notation we see

N

fnet,i(q[k]; 0[k]) = E Aijgj(q[k]) (1)
j=l

where the gj are radial basis functions (RBFs) and Aij, the magnitudes or weights, are the
parameters in 9[k]. In this paper, we will use Gaussian RBFs to simplify calculations:

gj (q[k]) = exp {-(q[k] - cj) T S -'(q[k] - cj)}

where the covariance matrix S = diag(sl, s2,... S n+m) and cj is the jth mean or center. Finally,
we have the parameter vector

0 = [All, A 2 1 ,. .. , A,, A 12, A 22 , · ., An 2 ,. ·.. A1N, A2N, ..., AN]T

Thus, 0 is a vector in RnN.
Implicitly, we have assumed that the state-space is really S C Rn and the input space is

C C R m , where S and C are compact sets surrounding the region of interest in state and input
space, respectively. For many applications-e.g., motor control or robotics-the state space is
inherently compact (e.g., angles, velocity saturation, kinematic constraints). In practice, one
would use a safety net controller (usually based on that portion of dynamics that is known a
priori) to insure that the state remains within S.

2.2 SLEK Algorithm

One could now use the EKF algorithm to simultaneliously approximate the state and learn
the parameters (here, weights) [5]. However, this requires O(n3 + (nN)3) operations per step
(assuming no cross-correlation between the state and the parameters).

Instead, we wish to use a localized version of the EKF to update at each step only those pa-
rameters which are significant to the model at that point. When the underlying basis functions
have compact support (or die quickly) as in the case of Guassian RBFs, this strategy can lead
to an algorithm which is more computationally tractable. The so-called Spatially Localized
Extended Kalman Filter (SLEK) algorithm of [4] implements such a strategy.

To localize, we need to create a generalized nearest neighbor map:

Te: Rn+ m power set of {1,2,..., nN}

TE(q) = : fnet,i >E

That is, Te(q) is a map from a point in the state-input space to the indices of those parameters
that are significant to the approximation at that point. Next, we will let qbloal(q) denote the

2

vector (matrix) obtained b)y ordering those elements of the vector (matrix) b which are "picked
off" by T,(q). For example, local(q) E RP where p is the cardinality of To(q) alnl (Iocalij(q) = 0k

if k is the jth smallest element of T,(q). Likewise, the matrix elo,,c(q) would be p x p with
Oij part of Oloal(q) if {i, j} C T,(q) (with the obvious ordering). Finally, in a slight abuse of
notation, we will say Oi E 01ocai(q) whenever i G Te(q). Specifically, we will say Aij E oca,,l(q)
whenever ij E Te(q).

To ease exposition and the complexity analysis, we will consider the nearest neighbor map
that gives the two closest centers in each dimension. In other words, if di is the spacing of the
centers of the RBFs in dimension i of the state-input space and if cj is the center vector of the
jth RBF,

io0cal(q) = {Akj: qi - cj,il < di}

where k = 1, 2,..., n, j = 1, 2,..., N, and i = 1,2,..., n + m. Note that this can be made
consistent with our general (Tf(q)) notation by picking

E < exp - Z (di/si)2}

So now the sum in (1) is taken over j such that Aij E Ol¢cl(q[k]). Next, let's construct an
augmented state vector with the local parameters of 0:

[z[k + 1] =x[k + 1] z[k + 1] =
0[o.ca[k + 1](q[k])

r fnet(x[k],u[k]) 1j [k]
lflocajl[k](q[k]) + / 1ocalJ[k]

F(z[k], u[k]) + w[k]

where

E{4[k]77T[nI} = E[k]6kn

E{4[k] T [n]} = 0

so that

E{w[k]w T [n]} = 6kn [Q[k] 00 (o¢cal~[k]

If we linearize the new system about the current conditions we see that

5z[k + 1] ~ A[k],6z[k] + B[k]6u[k] + w[k]

where

A[k] OF = [Ofnet/X afnet/Olocai 1
OZ 2[klk],u[k] 0 I k],u[k]

OF
B[ki] = [fnet/ O]2[klk]u[k]

3

where i[klk] is our best current estimate of the state provided by the SLEK algorithm (see
below). With some straightforward calculations, we see that

O fnet,i I _ 2 [hnet,(i,(q[k])- ql[k]fnet,i(q[k])]

where

hnet,(i,l)(q[k]) = Aijcj,lgj(q[k])
j:Aiji Elocal(q[k])

is a network with the same RBFs but with scaled weights. We also have:

O9fn.t,i| _{ 0, Oj[k] X .local(q[k])

ao9j[k] q[k] gt(q[k]), Oj[k] E local(q[k]), I= [j/ni

The measurement equation is y[k] = [I, O]z[k] + v[k].
Now, we will use the SLEK algorithm to estimate the augmented state vector. The algorithm

is as follows (see [4, 1]):

i[klk-1] = F(:[k-lk-1],u[k-1])

,[klk-1] = A[k- 1]j[k- lk-1]A T[k-1] + [Q [k 0]

H[k] = [klk- 1l]CT [CE[klk - 1]CT + R[k]] -

z[klk] = z[klk -1] + H[k] [y[k] - CF(2[klk - 1], u[k])]

E[klk] = [I-H[k]C]r[klk -1]

Note that the calculations above can be performed much more efficiently than the general
n + 2" Kalman Filter algorithm because of the special form of C and [f.I.]: C = [I,, 0,tl2n] and
E['1'] = blockdiag(E[.I.-],: 2[.l-]), where Ei[-{-] are symmetric and have dimensions n, x n and
2" x 2n , respectively.

The successive updates of the SLEK algorithm attempt to estimate the augmented state
vector, part of which are the local parameters of the neural network. Thus the SLEK algorithm
trains the neural network by finding the weights necessary to express the dynamic nonlinearity
as a local sum of Gaussians (assmuning such a decomposition is possible).

2.3 Near Optimal Control with an Approximate Model

Now we proceed with the control problem. At every discrete point in time we have an estimate
of where the system will go if we were to apply a specific input. This estimate is provided to lus

by the SLEK algorithm along with a measure of its uncertainty, the covariance (El[klk]). Let

G: R " +m -4 R

be a (non-negative) cost function. For a discount factor a E (0, 1) we define

J(x[0]) =e E aiG(x[i],u[i])
i=O

4

to be the penalty function for the infinite horizon problem. So we want to

min J(x[O])
u[0],u[t1,u[2],...

with

K =(n,6) 5I)[klk]l--/" rk(y), Ilfnet(q[k];O[k])- yl, _< 6
Pr(x[k + 1] = ylq[k]) = , otherwise

where JAJ is the determinant of matrix A and K(n, 6) is a constant that normalizes the truncated
Gaussian pdf to integrate to unity.

rk(y) = exp - [y - fnet(q[k]; [k])]T (El[k k])-1 [y - fnet(q[k]; 0[k])]

and 6 comes from discretizing the state space. In particular, if S C Rn was the state space
before, we now consider the 6-lattice that spans S, called S6 . Thins we substitute S with a grid
of "fineness" 6. From the definition of the probability, we only allow nonzero probability of the
two closest neighbors in each dimension of the state estimate (though, as with T, before, more
general maps can be formulated). This is a convention for computational tractability.

From now on, the input space is also assumed to be discrete (for practical considerations).
In particular the input space is C C Rm. The discretization, C6 ', need not have 6' = 6 because
it arises from different considerations.

We will use dynamic progranmling to solve the above control problem. In particular, we
will choose:

u[k + 1] = argmin {G(z[k], u) + a E Pr(ylx[k], u)J(y) }
where J(y) is the estimated cost-to-go. So u[k + 1] is the solution of

a =G aE Pr(ylq[k]) j(y) (2)

ou ,[k+l] yES6 u ufk+l]

We now digress to discuss how to estimate the cost-to-go. Let B(S 6) be the set of bounded
continuous functions on S6. Consider the following operator:

T:B(S6) - B(S6)

TJ(x) min {G(x, u)+ a E Pr(ylq[k])J(y)
uE¢

This operator can be proven to be a contraction [2]. So, since B(S 6) is complete, T has a
unique fixed point, which is the solution we seek, i.e., the real cost-to-go. So, if we start from
some approximation Jo(x), we can iterate:

Ji+l(x) = TJi(x)

5

One could even use fancier techniques to obtain tight hounds on the error at every iteration
(e.g., see [8]). We will not concern ourselves with the specifics of this approximation in this
paper.

Going back to solving (2), we see that it is not a straightforward task. So we will iterate it
to find u[k + 1]. We will first introduce some notation:

C = [Cr,n+17 *,, Cr,n+m]T

d' = [d+l,. .. ,d dn+,]T

Br = {y E R' I IIy -c'.l < d'}

Also, define the function

Pr: R m' B,
p,(x) = argmin lz-YIoo

yEB,

Then

I'· r OG + Pr(y, u) J(y)
= p rp(P)(x =P[r A (r X) y± S dOry+u la(P)(X) A Y)

with /3 < 0, where

a Pr(yl x, u) I = Pr(ylx, f(P)(x))Ak(y)

ak() = [y - fnet(xf(P)(x); 0[k])IT(l[kIk])-l

Above, p is the index of iteration and r shows that this gradient search is implemented in
parallel N m times, where N is the number of RBFs per input dimension. In particular, for
each r we will start the corresponding search from c' and limit it to the 1 ball around it
of radius d'.

2.4 The Hierarchical Algorithm

We now describe the overall algorithm (see Figure 1):

0. Initialize the algorithm with k = 0 and u[-1] = 0; t(?)(x) of each D. P. r at c'; and the
cost-to-go estimate at some Jo(z), for all x E S6

1. Given y[k - 1], u[k- 1], run SLEK at the top level, updating fnt, h,,t, and El[k - ll - 1]
and send them to the lower level.

2. Given fnet, hnet, and l1[k - Ilk - 1], run at the D. P. commnand level for each x E S6

Jk-_(X) = G(z, umin()) + a E Pr(ylx, Umin(z))Jk- 2(Y)

6

3. Run (for a prespecified length of time or number of steps, or until convergence) for each
z E S6 each D. P. r starting at fi*(x) from the previous iteration.

4. Send the new ui(x)'s to the upper D. P. level which recalculates

Umin(x) = arg min {G(x ()) + t E Pr(yx, it*(x))Jk_1(Y)}

5. Set u[k] = Umin(x[k- 1]) and send to the plant.

6. Increase k and Go back to Step 1.

There are some points we wish to make about this algorithm. In practice, we suggest that
the SLEK algorithm be run first, with random inputs, for a number of iterations in order for
the network to begin converging. Then, the search for unj,(x) can be localized after a limited
number of D. P. iterations. Thus, the number of required computations will decrease rapidly.

3 Computational Complexity

We will now discuss some computational complexity considerations. Let's assume we use N

Gaussian RBFs in each dimension of the state-input space. Then each iteration of ft')(x) at
D. P. r takes O(n3 9") operations. At the upper level, each iteration of the SLEK algorithml
takes O(n3 + 8n) operations. Also, we need O(Nmn3 3n) operations to calculate umin(Z).

4 Conclusions

To conclude, we have presented a hierarchical algorithm based on training recurrent networks
for nonlinear control. The Extended Kalman Filter (EKF) algorithm and its localized variant
(SLEK) play a central role, both in the training of the neural network and in the dynamic
programming iterations to find the near optimal input at any time: The SLEK algorithm
is used for training a neural network to approximate a nonlinear feedback system; we use a
dynamic programming-based method of deriving near optimal control inputs for the real plant
based on this approximation and a measure of its error (covariance). Finally, we combine
these methods in a hierarchical algorithm for identification and control of a class of uncertain,
unknown systems. We also provide computational complexities for the different calculations
required for the algorithm.

5 Acknowledgements

During this work M. S. Branicky was supported by an Air Force Office of Scientific Research
Graduate Fellowship (Contract F49620-86-C-0127/SBF861-0436, Subcontract S-789-000-056).,
which is greatly appreciated.

7

U
Plant

[y

SLEK

'ra-min

Networks: fnet, hnet D. P. Command

UNm

D.P. 1 · · · D.P.r · · · D.P.N m

Figure 1: Hierarchical Controller

8

References

[1] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Prentice-Iall, Inc., Englewood
Cliffs, NJ, 1979.

[2] C-S. Chow and J. N. Tsitsiklis. Optimal multigrid algorithm for continuous-state, discrete-
time stochastic control. Technical Report LIDS-P-1751, Laboratory for Information and
Decision Systems, Massachusetts Institute of Technology, February 1988.

[3] S. R. Chu, R. Shoureshi, and M. Tenorio. Neural networks for system identification. IEEE
Control Systems Magazine, 10(3):31-35, 1990.

[4] M. M. Livstone, J. A. Farrell, and W. L. Baker. Computationally efficient algorithm for
training recurrent networks. In Proc. American Control Conference, Chicago, IL, June 1992.

[5] M. B. Matthews and G. S. Moschytz.; Neural network nonlinear adaptive filtering using
the extended Kalman filter algorithun. In Proc. Int. Conf. Neural Networks, pages 115-119,
Paris, France, July 1990.

[6] K. Narendra et al. Identification and control of dynamical systems using neural networks.
IEEE Trans. Neural Nets, 1(1):4-26, March 1990.

[7] D. H. Nguyen and B. Widrow. Neural networks for self-learning control systems. IEEE
Control Systems Magazine, 10(3):18-23, 1990.

[8] A. R. Odoni. On finding the maximal gain of Markov decision processes. Operations
Research, 17:857-860, 1969.

9

