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1 Abstract

This paper presents an overview of the problem of asymptotic worst-case
identification in the presence of bounded noise.

2 Introduction

Recently, there has been an increasing interest among the control commu-
nity in the problem of identifying plants for control purposes. This generally
means that the identified model should approximate the plant as it operates
on a rich class of signals, namely signals with bounded norm, since this al-
lows for the immediate use of robust control tools for designing controllers
[2, 5]. This problem is of special importance when the data are corrupted with
bounded noise. The case where the objective is to optimize prediction for a
fixed input was analyzed by many researchers in [6, 15, 17, 18, 19, 22]. The
problem is more interesting when the objective is to approximate the original
system as an operator, a problem extensively discussed in [31]. For linear time
invariant plants, such approximation can be achieved by uniformly approx-
imating the frequency response (in the 1oo-norm) or the impulse response
(in the 41 norm). In d,7 identification, it was shown that robustly conver-
gent algorithms can be furnished, when the available data is in the form of
a corrupted frequency response, at a set of points dense on the unit circle
[10, 11, 12, 8, 9]. When the topology is induced by the 4l norm, a complete
study of asymptotic identification was given in [27, 28, 30] for arbitrary in-
puts, and the question of optimal input design was addressed. Related work
on this problem was also reported in [7, 13, 14, 16, 20, 21].

The work of Tse et al [27, 28, 30] and [3] allows for the analysis of large
classes of systems including nonlinear fading memory systems. The study is
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done in two steps. The first step is concerned with obtaining tight upper and
lower bounds on the optimal achievable error, for a given fixed experiment.
The second step is then to study these bounds and characterize the inputs
that will minimize them. The upper and lower bounds are characterized under
some mild topological assumptions on the model set through the diameter of
the worst-case uncertainty set, a concept borrowed from Information Based
Complexity [25, 26]. This characterization is valid for any input, and allows
for closed loop identification. The papers include a detailed analysis of this di-
ameter for different classes of systems, including LTI stable systems, unstable
systems, and nonlinear time-invariant fading memory systems. Conditions on
the input set are derived to guarantee finite (optimal) worst-case errors.

Another issue of importance in the context of worst-case identification is
Complexity. It turns out that it is generally much harder to devise experi-
ments that can guarantee small worst-case errors in the presence of bounded
noise. This problem has been extensively analyzed in [4, 23].

It is important to caution at this point that the terminology "worst-
case" does not mean that one can furnish guarantees on the worst-case error.
Clearly, any result we obtain is a function of prior assumptions (which are not
verifiable in general), and thus the results hold only when these assumptions
are valid. This is no different from the traditional stochastic approach for
system identification.

In this report, we will give an overview of the results we have developed in
the context of this problem. Although we will not present proofs, the material
is presented in a unified fashion. The objective is to study:

1. The fundamental limitations of worst-case identification.
2. The impact this has on input design.
3. The impact this has on Algorithms.

Details of these results can be found in [3, 4, 27].

3 Problem set-up

There are three basic ingredients for any identification problem. These are

1. Prior knowledge and assumptions. This includes assumptions/knowledge
of the model set, disturbances, noise, etc.

2. Data. This includes specifications on input design, knowledge of open
loop or closed loop data, and so on.

3. Error criterion. This dictates the sense in which the identified model
approximates the actual process.

Worst case identification in the presence of bounded noise refers to a problem
with specific ingredients. These are discussed below.
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3.1 Prior Knowledge

Let X be the class of all causal, single-input single-output, time-invariant,
discrete-time systems. Let MA C X be the model set which is assumed to
contain the uiiknown plant h to be identified. The set M captures the exper-
imenter's a priori knowledge about h. Some examples of M are the set of all
stable linear time-invariant systems, the set of stable systems with a bound
on the decay rate of the impulse response, the set of all finite-dimensional
systems with a bound on the order, space of stable nonlinear systems with
fading memory, etc.

The process generating the outputs is assumed to have the form:

y= h(u)+ d

where u, y are the inputs and the outputs of the process respectively, and d
is the disturbance. The disturbance is assumed to be unknown but bounded:

1dlloo = sup Id(k)l < 5
k

In this setting, there are no statistical assumptions made on the noise. Such
assumptions have dominated the traditional approaches in system identifica-
tion. Deterministic assumptions are not new in the estimation/identification
literature, for instance see [24].

3.2 Data

For any experiment, only a finite set of data is available:

[(Y,,k) I k = 0,1,..., n]

where u E U: the set of all input sequences that can be used in the identi-

fication experiments. Typically, U is a norm-bounded set, to reflect physical

limitations, power restrictions, safety, or to maintain the validity of the lin-
ear model of the plant. An experiment is conducted by either choosing or
measuring an input sequence u E U and measuring the output sequence y,
related to u by

y = h(u)+d (1)

for a length of time n. If a number of experiments are performed, we use a
vector of inputs u and outputs y.
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3.3 Error Criterion

An identification algorithm is a mapping ( which generates, at each time
instant n, an estimate

h(n ) _ (Pnu, Pny) E X

given the finite sequence of inputs and outputs. Here, P. is the truncation
operator, defined by Pn, = (xo, x, ... , zn) for each infinite sequence a. Its
use signifies that the algorithm ¢ generates at each time instant an estimate
based only on the input-output data it has seen so far. Generally, we will
assume that the algorithm has access to what the model set M is and also
the value of 6, the bound on the disturbance. In the terminology of Helnlicki
et. al. [12], the algorithm is tuned. However, in some cases, we will be able to
give stronger results using algorithms which are untuned to the value of 6.

The error criterion is defined through a metric px. This metric can be
chosen to be the induced operator norm over the spaces too, t 2 and so on.
We would like to evaluate the error px(h, h,n). Of course this is difficult to
evaluate since h is not known. The terminology worst-case identification is in
fact motivated from looking at the maximum value this error criterion takes
over all plants in the model set.

To explain the error criterion, consider the set of behavior C:

C = {y = h(u)+ d Id E ldldloo < 1}

So, for any plant h E M, u E U, this set consists of all possible outputs
that can be generated by disturbances with Ildlloo < 6. The estimates based
on these outputs can be different. The worst-case error criterion simply says
that the distance between the estimate taken after a long experiment and
the plant h, for any possible output in the behavior set, and for any h E M
should be minimized. The error is defined as:

eoo(, , u, 6)-- sup sup limsuppx(0(Pnu,P,,(u*h+d)),h)
heM illd116 n-o

In the above definition of the worst-case asymptotic error, although con-
vergence of the estimates to within e,o(,, M, u, 6) is guaranteed for all ad-
missible plants and disturbance sequences, the rate of convergence may be ar-
bitrarily slow for some plants and some disturbances. The worst-case asymp-
totic error is said to be uniform if the rate of convergence is uniform over all
admissible plants and disturbance sequences. If the convergence is uniform,
the worst-case asymptotic error defined above is the same as the limit of the
worst-case error taken at each finite time n, i.e.

eoo(q, M, u, 6) = lim sup sup sup px ((Pnu, P,(u * h + d)), h)
n-- hEM ldll <6
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This allows one to a priori determine the experiment length required to guar-
antee that any plant in the model set can be identified to a prescribed accu-
racy. It is the notion of convergence considered by Helmicki et. al. in their
framework [12].

Demandin'g uniform convergence is too restrictive a formulation for a gen-
eral theory of fundamental limitations of worst-case identification. Although
such uniform convergence is certainly desirable, it is impossible to achieve for
many interesting model sets. In fact, for many inherently infinite-dimensional
model sets, the worst-case error at each finite time is always infinite, while
the worst-case asymptotic error can be made small using an appropriate
identification algorithm and inputs. Our formulation thus allows us to dis-
cuss optimal worst-case identification and optimal inputs for a much broader
class of model sets. Besides, in some applications of identification, such as
adaptive control, uniform convergence of estimates is not necessary to fulfill
the desired objectives. However, because of the special importance of uniform
convergence, we will give additional conditions on the model set for this to
take place. It will be seen that these conditions are quite strong and essen-
tially require the model set to be finite-dimensional. It is worthwhile to note
that the model set considered in [9, 10] satisfies these conditions.

The optimal worst-case asymptotic error E, (u, M, 6) is defined as the
smallest error achievable by any algorithm:

Eo, (u, A, 6) =_ inf e, (, AM, u, 6)

4 General Results

Given the above set-up of the worst-case identification problem, there are gen-
eral results that can be derived to characterize the optimal error Eo(u, M, 6).
The following presentation is a summary of results reported in [3, 4, 27].

An important concept in such a characterization is the concept of an
Uncertainty Set. Simply, the uncertainty set at time n is the set of all
plants consistent with the data, i.e.,

S.(M, u, y, 6) = {g E MA: fIPn(g(u) - Y)llo < 6}

and the infinite-horizon uncertainty set is the set of all plants consistent with
the infinite-horizon input and output, i.e.,

So (M, u, y, 6) = E M At: lg(u) - Ylloo < 6}

4.1 Lower Bounds on Eo,(u, A, 6)

For a given input, and a plant in the set M, any output in the set of be-

haviors L is a possible output, which in turn results in a specific sequence of
uncertainty sets. At time n, all the plants in S,, are indistinguishable, and
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any estimator will result in an error which is closely related to the diameter of
this set. Finally, since the actual process is unknown, we need to look at the
maximum diameter generated for different choices of h E M. This motivates
the next definitions.

For any set A C X, define the diameter of the set A as

diam(A) = sup px(g, h)
g,hEA

Next, we define a quantity known as the Diameter of Information.

Definition 1 Given a choice of the inputs u, define the infinite-horizon di-
ameter of information D(u, AM, 6) the diameter of the largest possible uncer-
tainty set:

D(u, M, 6) - sup sup diam(S, (M, u, u * h + d, 6))
hEM ildllo<a

In information-based complexity terminology , these quantities correspond
to the diameter of information for the infinite horizon problem where the
information available is the entire infinite output sequence. The quantity
D(u, M, 6) is the largest distance between two plants for which there are
admissible disturbances such that the plants give exactly the same outputs.
It turns out that it is precisely this quantity that characterizes the optimal
worst-case asymptotic errors. First we show that half the infinite-horizon
diameter of information is a lower bound to the optimal asymptotic error.

Proposition 2 Let M be any model set, u be any vector of inputs and 6 > O.
Then

eo (4, M, u, 6) > D(u, M, 6)/2

for any algorithm q.

4.2 Upper Bound

Under some mild assumptions on the model set, the Diameter of Information
is an upper bound on the best achievable error. Such assumptions are related
to a-compactness of the model set. A model set AM is or-compact if it is a
countable union of compact, nested subsets, i.e., M = UiAi. A model set is
separable if it is the closure of a oa-compact set. The following results gives
the upper bound. In here px indicates some induced norm.

Theorem 3. Suppose that the model set M is oa-compact, or separable in the
px topology. there is an identification algorithm k* such that

eo (0*, M, u, 6) < D(u, M, 6)

for all u and 6 > 0.
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This theorem can be interpreted as follows: For model sets with such
topological structure, and for any input, there exists an algorithm such that
the asymptotic worst-case error is bounded by the diameter of information.
Such an algorithm is based on the Occam's Razor principle: Pick the estimate
in the smallest set consistent with the data. This algorithm requires the
knowledge of 6, and thus it is a tuned algorithm.

It should be noted that by an elementary result in information-based com-
plexity theory, the optimal worst-case error achievable when the algorithm
has full access to the entire infinite input-output sequences is also bounded
between the infinite-horizon diameter of information and half the diameter
of information. Our two results (Proposition 2 and Theorem 3) are of an
entirely different nature: they assert that the optimal worst-case asymptotic
error achievable when the algorithm has access to finite but arbitrarily long
data records also satisfies the same bounds. The assumed topological condi-
tions are crucial for the validity of Theorem 3.

4.3 Input Design

From the above discussion, the inputs should be designed to minimize the
diameter of information, i.e.,

inf D(u, M, 6)
UEU

If this quantity is infinite, then accurate worst-case identification is not pos-
sible. For certain model sets, such a minimization can be performed and
optinial inputs can be furnished. In the sequel, we will present a few such
examples.

5 Application to Specific model Sets

The above general results, can be applied to specific model sets, to derive
optimal inputs that guarantee accurate identification.

5.1 Stable LTI Systems

Here X is the space el. This is the space of BIBO linear time-invariant, causal
operators on OO. The metric Px can be either the 4l norm, or the to. The
set M will be any balanced (i.e. if h E M then -h E M) and convex closed
subset of X (with diameter larger than 26).

Since the space il is separable (with respect to both the fl topology and
7Yo topology), then there is an identification algorithm 0* such that

D(u, a, 6) < eo (,*, J, u, 6) < D(u, M, 6)

for all u and 65 > 0.
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To estimate the diameter of information, we first notice that

D(u, M, 6) > 26

In fact, one can show that there exists an input u*, such that the diameter
of information is equal to 26.

Theorem4. Assume M is balanced and convex and contains only stable
plants. If u* contains all finite sequences of 1 's and -1 's, then

D(u*, , 6) < 26

In the above theorem, the diameter is computed with respect to either
the 4l norm or A,0 norm. The results are the same. This, combined with the
earlier result, shows that there exists a single input u*, such that

E,(u', M, ) < 26

Hence, to identify a plant accurately in the limit, it is enough to know a
priori that it is stable; no additional information, such as bounds on decay
rate and gain, is necessary. The achievable accuracy varies continuously with
the noise bound 6 for small 6; thus, identification can be performed robust
to measurement noise.

Uniform Convergence

Next, we look at the issue of uniform convergence. For the model set e1,
it can at once be seen that although convergence to a small asymptotic er-
ror is possible, such convergence cannot be uniform. To guarantee uniform
convergence, we need to look at compact model sets.

Proposition 5 Let M C 4l be a compact set (in the (l-topology) or a sub-
set of a compact set in e1. For the single input u* which contains all finite
sequences of 1 's and -1 's, there is an algorithm the estimnates of which con-
verge, uniformly for all h E M and all l[dll,,. < 6, to an 4e ball of radius 26
around the true plant. Moreover the algorithm does not require the knowledge
of the value of 6 to compute its estimates.

Common examples of such compact model sets are the uniformly stable
ones, of the form M,(g) = {h: Ihil < Igil for all i} where g is any stable
plant. The specific model sets considered in [9] and [10] belong to this class.
In the particular case when gi is taken to be 0 for all i larger than some given
M, we get the model set of finite-impulse- response of length M1. For this
model set the near-optimal algorithm O* is given by

q* (Pnu, Pny) = arg mmin IPn(y - u * h)lloI

which is computable by linear programming.
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Sample Complexity

The input designed to achieve a radius of information equal to 26 is quite
a rich input. This suggests that achieving accurate identification when only
stability is assumed can be quite difficult in practice. To study this problem in
a more precise fashion, let MN denote the subset of et that contains systems
with finite impulse response of length N. Let U,, be the set of all infinite real
sequences {ut} 1i= such that luil < 1 for all i, and ui = 0 for i > n. Any
element of U,, will be called an input of length n. Let D, be the smallest
diameter of information over the class of inputs in U,, i.e.,

DN,n = inf D(MN, u,, 6)

We have shown earlier that

lin D* = 26
n-oo N,n

The sample (time) complexity of such problems is captured in the length of n
necessary to get within a factor of 26. The next result shows that this length
is exponential in N, and thus can be quite unrealistic for large N.

Theorem 6. Fix some K > 1 and let

n*(N, K) = min{n I D',, < 2K6}

Then

I. no(N, K) > 2 Nf (1/X)-1 -N
2. lim N -. log n'(N, K) = f(1/K).

Here, f: (0, 1) -* R is the function defined by

f(a)=1( + (l2) log (2 2) + (2a) log( 2). (2.11)

Notice that the function f defined by (2.11) satisfies f (a) = 1 - H((1 -
or)/2), where H is the binary entropy function. In particular, f is positive
and continuous for ca E (0, 1).

This theorem furnishes a lower bound on the minimum time required to get
within a factor of the optimum solution, which is exponential in NV. This
lower bound is asymptotically tight.
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5.2 Nonlinear Systems with Fading Memory

The set X contains causal functions from U to Roo; these are discrete-time
systems, possibly non-linear, which take as input a sequence in U to give an
output sequence in Ro. The input and the output at time n will be denoted
by u, and h,(u). Assume that they further satisfy the following properties

1. hn(u) depends continuously on u0, ... , , .n-1
2. h has equilibrium-initial behavior:

h,,+(Ou) = h,(u) for alln

where Ou is the input 0, uo, u1 , -

The model sets M we shall consider will be balanced and convex subsets of this
class of functions X. In general, we will use the notation vw' for concatenation,
i.e. first apply the finite sequence v, then w. Since we are dealing with causal
systems, we shall slightly abuse the notation and write h,(w) to mean h,(u),
where u is any infinite sequence the first n elements of which is the finite
sequence w.

The metric Px will be taken to be the operator-induced norm:

llhl} = sup Ilh(u)llc
uE/

This is the natural norm to consider for robust control applications.

Definition of Fading Memory Systems

Definition 7 An operator h has fading memory (FM) if for each e > 0
there is some T = T(e) such that: for every k, every t > T and every finite
sequences v E [-1, l]k, w E [-1, 1]t,

tlht+(vw) - ht(w)lI <

It can easily be seen that fading memory systems satisfying properties (1)
and (2) have bounded operator-induced norms.

Examples of FM Systems

Example 1: stable LTI systems.
For each h E £1 define the input/output map u - u * h by convolution. It is
clear that these systems satisfy the above conditions. The operator-induced
norm im this case is just the El norm.
Example 2: Hammerstein Systems.
These are systems which are formed by composition of a LTI system followed
by a memoryless nonlinear element:

yn = g((u * h)n)
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for some h E l1 and some continuous function g : R -- R. It is easy to
verify that these systems satisfy the first two conditions above. Since [(h *

u),,I < Ihllji then g is uniformly continuous on [-llh111, lh11[]. Hence h has
fading memory. Any stable system with fading memory can be approximated
arbitrarily closely by a Hammerstein system.

Proposition 8 The class of all fading memory systems is separable.

A oa-compact set is constructed as follows: for every n > 0, consider all
Hammerstein systems, in which h is FIR of length n. The set of all stable
systems with fading memory is the closure of the countable union of such
systems.

This means that when we consider fading memory system, we can apply
the general results, and reduce the analysis of asymptotic optimal error to
the analysis of infinite-horizon diameter, i.e.,

D(u, ( ,6) < eo (O', M, u, 6) < D(u, M, 6)
2

for all u and 6 > 0.
It is evident that for any M in X, balanced and convex (with diameter

larger than 26) satisfies:
D(u, X, 6) > 26

The existence of an experiment that results in equality is established below.

Theorem 9. Let the model set M be some subset of the set of fading memory
systems. Let W be any countable dense subset of [-1, 1] and consider any
input u* E [-1, 1] ' which contains all possible finite sequences of elements
of W. Then

D(u*, M, 6) < 26

Complexity

Consider the class of p memory systems. These are systems that operate on
the last p component of the input, and are given by continuous functions on
[-1, 1]P. Let g be such a function. It can be easily seen that in general, the
time needed to identify a system to a prescribed accuracy grows exponentially
as the order of the system, even when there is no noise. For example, if we
assume a certain Lipschitz condition on the order p memory function g, such
as 1g(Z)-g(y)l < Mjll-yjl, then to identify the function up to accuracy e (in
the III oo norm), the number of data points needed is at least the minimum
number of e-balls to cover [-1, 1]P. Since the volume of an e-ball is O(eP), it is
clear that this minimum number is (( )P), and hence so is the experiment
length. This means that if p is large, the experiment length will be very long
if we make no further assumption on the unknown plant.
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It is interesting to compare this situation with the problem of identify-
ing linear finite impulse response systems. For nonlinear systems the time
complexity is exponential of the order, whether or not there is noise. For the
linear case, while it takes only linear time to identify a FIR system exactly
whem there is no noise, we have shown that the time complexity immediately
becomes exponential once we introduce any unknown but bounded noise.
Moreover, it has been demonstrated that if we are willing to put a prob-
ability distribution on the noise, polynomial time complexity can often be
obtained [29]. These facts show that while in the nonlinear case, the plant
uncertainty determines the time complexity of the identification, in the linear
case, the complexity is sensitive to how the noise is modeled.

5.3 Untuned algorithms

So far, all the algorithms devised to deliver accurate identification are tuned.
As we discussed, such algorithms are based on Occam's Razor in which the
simplest model that explains the data is picked. That is, if M = UiMi, where
the Mi's are nested compact sets, and S, is the uncertainty set at time n,
then the estimate h, can be any element in the intersection of S, and Mj,
where j is the smallest integer such that this intersection is not empty. To
implement such an algorithm, the sets Sn need to be computed. This requires
the knowledge of the bound on the disturbance, 6.

Notice that these results are derived for any choice of inputs in U. It
is possible, however, to derive untuned algorithms for specific experiments.
In particular, this is possible when the input used has the property that it
minimizes the diameter of information. Such results can be found in [20, 3]
and will not be discussed here.

6 Summary

Finally, I would like to discuss some of the issues that this line of research
has highlighted.

1. Choose the simplest estimate to explain the data. This is a consequence
of the Occam's Razor principle [1]. This implies that the algorithm should
have enough information to make such a decision, which typically trans-
lates into the knowledge of an upper bound on the magnitude of the
noise. Estimates that fit the data very well generally fit the noise as well,
and result in non-convergent estimates.

2. For nonlinear fading memory systems, we need local interpolants to fit
the nonlinearities. This can be accomplished by basis functions such as
"Linear Splines", or what is known as "Gaussian radial" functions, or any
other local interpolant. Polynomial interpolants generally are not appro-
priate. This is due to the fact that if the interpolant in some neighborhood
depends on far away points, noise can be amplified and the algorithm may
not be convergent.
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3. Inputs have to be quite rich. Of course this depends on the amount of
prior information. This can have major impact on closed loop identifi-
cation, where the inputs are not arbitrary. On the other hand, for fairly
understood models (small model sets), worst-case identification can be
quite easy, see for example [13].

4. It may be too "hard" in practice to give guarantees under such noise
assumptions. This follows from the sample complexity results discussed
earlier. These results capture the fundamental limitations of worst-case
identification in the presence of bounded noise. Also, this suggests alter-
nate formulations in which the error criterion is a worst-case criterion,
however, noise is assumed to be stochastic. It is hinted in [23, 29] that
experiments can be much shorter in such formulations.

5. More work is needed in the area of algorithms and particularly recursive
algorithms.
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