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Abstract

In [1] we introduced a class of multiscale dynamic models described in terms of scale-recursive
state space equations on a dyadic tree. An algorithm analogous to the Rauch-Tung-Striebel algorithm-
consisting of a fine-to-coarse Kalman-filter-like sweep followed by a coarse-to-fine smoothing step-
was developed. In this paper we present a detailed system-theoretic analysis of this filter and of the
new scale-recursive Riccati equation associated with it. While this analysis is similar in spirit to that
for standard Kalman filters, the structure of the dyadic tree leads to several significant differences.
In particular, the structure of the Kalman filter error dynamics leads to the formulation of an ML
version of the filtering equation and to a corresponding smoothing algorithm based on triangular-
izing the Hamiltonian for the smoothing problem. In addition, the notion of stability for dynamics
requires some care, as do the concepts of reachability and observability. Using these system-theoretic
constructs we are then able to analyze the stability and steady-state behavior of the fine-to-coarse
Kalman filter and its Riccati equation.
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1 Introduction

In a companion paper [1] we introduce a class of multiscale state space models evolv-

ing on dyadic trees in which each level in the tree corresponds to a particular level

of resolution in signal representation. Such pyramidal representations for signals and

images have been and continue to be of considerable interest, both in research and

in application, since they suggest efficient and highly parallelizable computational

structures and also appear to be natural forms of representation for many phenom-

ena including those with fractal or self-similar features. The framework introduced

in [1] had as its motivation the development of a rational framework for statistical

modeling and optimal processing based on such pyramidal representation, and the

potential of this framework was illustrated in [1] both for problems of optimal fu-

sion of multiresolution data and for the efficient solution of computationally intensive

problems of signal and image analysis through the use of "fractal regularization"

techniques based on our models.

One of the other contributions of this work, we feel, is in identifying the significant

role that systems and control researchers can have in this area, as multiresolution mod-

eling and analysis problems have a strong systems flavor. For example, the optimal

estimation algorithm [1] can be viewed as a direct generalization of Kalman filtering

and state space smoothing algorithms, introducing a new class of scale-recursive Ric-

cati equations. This suggests, among other things, the development of a theory of

multiresolution modeling, requiring techniques for realization and identification, and

the detailed system-theoretic analysis of the filtering algorithms developed in [1]. The

objective of this paper is to tackle this latter problem, while an initial investigation

of multiscale realization theory is the subject of [2].

In the next section we briefly review the multiscale state space model and optimal

estimation algorithm of [1]. As we discuss, the objective of error and stability analysis

for multiscale filtering leads directly to a variation on this algorithm which we develop

in Section 3. This "ML algorithm" also has a direct connection with the solution

of the estimation problem via the triangularization of the smoothing Hamiltonian,
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which we describe in an appendix. In Section 4 we then turn to the system-theoretic

analysis of our models, and as we will see, the notions of reachability, observability,

and especially stability, have significant variations as compared to their counterpart

for ordinary state space models. These tools are then used in Section 5 where we

analyze the properties of the error covariance for our optimal filter and the stability

and asymptotic behavior of the filter error dynamics and our new Riccati equation.

2 State Space Models and Multiscale Estimation

on Dyadic Trees

In this section we briefly review the formulation and results in [1]. As illustrated in

Figure 1, the basic data structure for multiresolution modeling is the dyadic tree.

Here each node t in the tree T corresponds to a pair of integers (m, n), where m

denotes the scale corresponding to node t and n its translational offset. Thus, if

z(t) denotes a signal defined on T, then the restriction of z to any particular level,

i.e. the collection of values of z(t) for t = (m, n) with m fixed, corresponds to the

representation of a signal (viewed as a function of n) at the mth scale. As illustrated

in the figure, it is useful to visualize T as having horizontal levels corresponding

to different scales, where increasing m corresponds to moving to finer resolutions.

While we will find it convenient to use the more compact notation t for nodes on T,

rather than the scale-translation pair (m, n), we will on occassion wish to refer to the

scale of a particular node t, which we denote by m(t). Also, again as illustrated in

the figure, we will define our dynamic operations in terms of basic shift operators,

namely the unique backward shift T and two forward shifts a and ,. In particular if

t = (m, n), then ta = (m + 1,2n), to = (m + 1,2n + 1), and ty = (m- 1, [2]). The

basic picture one should have is that finer scales introduce additional detail into the

signal representation, while coarser scales involve successively decimated and lower

resolution (e.g. low-pass filtered) representation (sec [1] for further discussion and

references).

There are two alternate classes of scale-recursive linear dynamic models that are
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of interest. The first of these is the class of coarse-to-fine state space models on T:

x(t) = A(t)x(ty) + B(t)w(t) (2.1)

y(t) = C(t)x(t) +(t) v(t) (2.2)

The term A(t)x(tf) in (2.1) represents a coarse-to-fine prediction or interpolation,

B(t)w(t) represents the higher resolution detail added in going from one scale to the

next finer scale, and y(t) is the measured variable (if any) at the particular scale m

and location n represented by t. This model serves as the basis for the multiscale

modeling of stochastic processes developed in [1]. In contrast the fine-to-coarse

Kalman filtering step of our estimation algorithm falls into the class of fine-to-coarse

recursive models of the form

x(t) = Fl(ta)x(ta) + F2(t/i)x(t/) + G(tac)w(ta) + G(t/3)w(t,3) (2.3)

Note that the general models (2.1)-(2.3) allow full t-dependence of all the system

matrices, and several of the applications described in [1] require this general depen-

dence. An important special case is that in which the system parameters are constant

at each scale but may vary from scale to scale, in which case we abuse notation by

writing A(t) = A(m(t)), etc. Such a model is useful for capturing scale-dependent

effects and fractal behavior. For simplicity we focus the detailed covariance analysis

and stability results on this case, while our investigation of steady-state behavior, of

course, looks at the further specialization to constant-parameter models.

In [1] we analyze the second-order statistics of (2.1) when w(t) and v(t) are inde-

pendent, zero-mean white noise processes with covariances I and R(t), respectively.

We also assume that w(t) is independent of the "past" of x, i.e. {x(r)lm(r) < m(t)}.

Also, if we wish to consider representations of signals of unbounded extent, we must

deal with the full infinite tree T, i.e. {(m,n)I - oo < m, n < oo}. This will be of

interest when we consider asymptotic properties such as stability and steady-state
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behavior. In any practical application, of course, we must deal with a compact inter-

val of data. In this case the index set of interest represents a finite version of the tree

of Figure 1, consisting of M + 1 levels beginning with the coarsest scale represented

by a unique root node, denoted by 0, and M subsequent levels, the finest of which

has 2 M nodes.

The covariance Px(t) = E[x(t)xT (t)] evolves according to a Lyapunov equation on

the tree:

P.(t) = A(t)Px(ty)AT (t) + B(t)BT(t) (2.4)

In the scale-varying model, i.e. the case in which the model parameters vary in scale

only, if at some scale Px(t) is constant, then this holds at each scale, so that by an

abuse of notation Px(t) = P,(m(t)), and we have a scale-to-scale Lyapunov equation:

Px(m + 1) = A(m)Px(m)A T (m) + B(m)BT(m) (2.5)

If we further specialize our model to the case in which A and B are constant, and

if A is stable, then (2.5) admits a steady-state solution, to which Px(m) converges,

which is the unique solution of the usual algebraic Lyapunov equation:

Px = APxAT + BBT (2.6)

In our development and analysis of smoothing algorithms, we encounter the need

for fine-to-coarse prediction and recursion. In particular, the reversal of (2.1), i.e. a

model representing x(tT) as a linear function of x(t) and a noise that is uncorrelated

with x(t) is given by

x(ty) = F(t) x(t) - A-(t)B(t)zv(t) (2.7)

with

F(t) = A-1(t)[I- B(t)BT(t)P;- (t)]

= P (t 7 )AT(t)P-(t) (2.8)

and where
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wv(t) = w(t) - E[w(t)lx(t)] (2.9)

E[w(t)ifT(t)] = I- B T(t)P -l(t)B(t)

- (t) (2.10)

In [1] we derive a generalization of the Rauch-Tung-Striebel smoothing algorithm

consisting of a fine-to-coarse Kalman filtering step followed by coarse-to-fine smooth-

ing step. Specifically, let :(slt) denote the optimal estimate of x(s) based on data at

or "below" node t (i.e. y(r) for r = t or r a descendant of t), and let x(slt+) denote

the optimal estimate of x(s) based on data strictly "below" t (i.e. y(r) for r a strict

descendent of t). Let P(slt) and P(slt+) be the corresponding error covariances.

Then the coarse-to-fine Kalman filter consists of a measurement update step

~(tlt) = 2(tlt+) + K(t)[y(t) - C(t)5x(tlt+)] (2.11)

K(t) = P(tlt+)CT(t)V-l(t) (2.12)

V(t) = C(t)P(tlt+)CT (t) + R(t) (2.13)

P(tlt) = [I - K(t)C(t)]P(tlt+) (2.14)

a coarse-to-fine one-step prediction step:

i(tjta) = F(ta)x(tcalta) (2.15)

:(tit#) = F(t0/)i(tlIt3) (2.16)

with corresponding error covariances given by

P(tltac) = F(tac)P(tcaltca)FT (tca) + Q(tc) (2.17)

Q(toa) = A-l(ta)B(tca)(Q(t)B T(tc)A -T(ta) (2.18)

P(tltf) = F(t0/)P(t/IltI3)FT (t0/) + Q(t/) (2.19)

Q(tO/) = A-l(t/)B(tP)Q(t/) B T (t/3)A- T(t]) (2.20)

and a fusion step to merge the estimates (2.15) and (2.16), to form :(tlt+):

x(tlt+) = P(tIt+)[P-l(tltca)X(tlta) + P-'(tIt/3>)(t It/)]
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(2.21)

P(tjt+) = [P-1(tjta) + P-(tjt) - P-(t)]- (2.22)

This filtering algorithm has an obvious pyramidal structure, allowing substantial

parallelization. Note that while the update and prediction steps are analogous to the

corresponding steps in usual Kalman filtering (although, as discussed in [1], this step

must proceed from fine-to-coarse and hence must use the backward model (2.7) for

the prediction step), the fusion step has no counterpart in the standard case, and,

as we'll see this leads to some interesting differences in our analysis of the filtering

algorithm.

Finally, let is(t) denote the optimal estimate of x(t) based on all available data on

a finite subtree with root node 0 and M scales below it. Once the Kalman filter has

reached the root node at the top of the tree, we have computed is(O) = 5-(010), which

serves as the initial condition for the coarse-to-fine RTS smoothing sweep which also

has a parallel, pyramidal structure:

xs(t) = x(t|t) + J(t) [i,(tv) - :(t [t)] (2.23)

J(t) - P(tlt)FT(t)P-1(t`[lt) (2.24)

where P,(t), the smoothing error covariance, satisfies

Ps(t) = P(tjt) + J(t)[P,(ty) - P(t-Vt)]J T(t) (2.25)

3 The ML Filter

The fine-to-coarse filtering equations presented in the preceding section have several

significant differences with standard Kalman filtering analysis and present some dif-

ficulties in analysis that provide motivation for a slightly different algorithm. Specif-

ically the Riccati equation (2.12)-(2.14), (2.17)-(2.20), (2.22) for our optimal filter,

differs from standard Riccati equations in two respects: 1) the explicit presence of
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the prior state covariance P,(t) and 2) the fusion of two sources of information in

(2.22). The latter of these is intrinsic to our Riccati equations and, as we will see,

has important consequences in the stability analysis of fine-to-coarse filtering. The

presence of P,(t), on the other hand, points to an apparent complication in analyzing

our filter that motivates an alternate filtering algorithm in which P, does not appear.

Specifically, in standard Kalman filtering analysis the Riccati equation for the error

covariance can be viewed simply as the covariance of the error equations, which can

be analyzed directly without explicitly examining the state dynamics since the error

evolves as a state process itself. This is apparently not the case here because of the

explicit presence of P,(t) in (2.22) and in the backward model parameters (2.7)-(2.10)

that enter into the fine-to-coarse prediction step (2.17)-(2.20). On first examination,

this might not appear to be a new problem, as backward models for standard tem-

poral models also involve the state covariance. However, the present situation is not

as simple. First of all, as discussed in [1], the driving noises in (2.7) are not white

(except along fine-to-coarse paths). Also, and more importantly, the new fusion step

adds a new twist. In particular, if we examine the backward model (2.7)-(2.10) and

the Kalman filter (2.11), (2.15), (2.16), (2.21), we find that the upward dynamics

for the error x(t) -x(tjt) are not decoupled from x(t) unless P;'(t) = 0. Thus

we apparently have a significant difference in analyzing these error dynamics, and,

in particular, their stability. To overcome this, we consider a slight variation in the

filtering and RTS algorithm.

Specifically, we define what we will refer to as the ML filter by setting the Px'l(t)

terms in (2.11)-(2.22) to zero. The resulting filter recursions are then given by

Measurement Update:

XML(tlt) = XML(tlt+) + KML(t)[Y(t) - C(t)~ML(tIt+)] (3.1)

KML(t) = PML(tlt+)CT (t)VML'(t) (3.2)

VML(t) = C(t)PML(tlt+)CT (t) + R(t) (3.3)

PML(t t) = [I - KML(t)C(t)]PML(tt+) (3.4)
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One-step Prediction:

XML(t7 t) = A-l(t)aML(t t) (3.5)

PML(tylt) = A- (t)PML(tJt)A-T(t) + A-' (t)B(t)BT(t)A-T(t) (3.6)

Merge Step:

XML(tlt+) = PML(tIt+)[P'MLL(tIta)IML(tlta) + PjIM(tIt/L)ML(ttL)] (3.7)

PML (tIt+) = P'ML (t It) + PML(tIt3) (3.8)

The key difference here are the absence of a P;'(t) term in (3.8) (compare to

(2.22)), and the changes to the prediction step (3.5)-(3.6) due to the simpler form of

the backward model (2.7)- (2.10) when P,'(t) = 0.

As shown in Appendix A, 5 ML(tlt) has the interpretation as the ML estimate of

x(t), viewed as an unknown vector, based on the measurements Yt. Thus the Bayesian

estimate of the preceding section and its covariance can be computed as follows:

.(tlt ) = P(tlt)P~,L(tlt)~ML(tIt) (3.9)

P-1(tlt) = PIMl(tit) + P-l(t) (3.10)

Note that this provides us with an alternative RTS-like algorithm: we apply the

fine-to-coarse ML filter (3.1)-(3.8) from the finest scale M up to the top of the tree,

i.e. through the computation of XML(0I0), PML(OIO). We then incorporate prior

information at the top of the tree, using (3.9), (3.10) to yield x,(0) = xi(010) and

P,(0) = P(010). The downward smoothing sweep is then computed by adapting

(2.23)- (2.25) (using (3.9), (3.10)) so that the ML estimator computed in the ML

filtering sweep are used in the smoothing step. Specifically, as shown in Appendix A

is(t) = lxML(tIt) + J(t)[i 8 (tT) - xML(tY|t)] (3.11)

Ps(t) = PML(tIt) + J(t)[P,(t7) - PML(tylt)]JT (t) (3.12)
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where

J(t) = PML(tlt)A- T (t)PMfL(tV7lt) (3.13)

Also as in standard Kalman filtering, the ML filtering equations (3.1)- (3.8) cannot

be directly used at the initial levels of recursion- i.e. for the finest level M and

perhaps several levels above this-until the ML covariance is well-defined. Rather the

information form of this filter must be used, and this is also described in Appendix

A. Note that as one might expect and as will be used in Section 5, observability plays

a central role in guaranteeing that the error covariance does become well-defined.

Also, in Appendix B we present an alternate viewpoint for the derivation of RTS-like

algorithms, namely through analysis of the Hamiltonian equations for our estimation

problem. The Hamiltonian and the two-point boundary-value problem associated

with it plays a central role in the theory of smoothing for standard state space models.

For example, as discussed in [6], [7], triangularization of the Hamiltonian leads to two-

filter smoothing algorithms, while triangularization leads to the RTS algorithm. In

our case, the structure of the tree adds a fundamental asymmetry to the Hamiltonian,

which precludes diagonalization, but whose triangularization is possible, leading to

the ML form of the RTS algorithm we have just described. This is developed, for

simplicity in the constant-parameter case in Appendix B.

Finally, as mentioned at the beginning of this subsection one of the motivations for

introducing the ML filter is that its use allows us to obtain a dynamic representation

for the filtering error that is decoupled from the state dynamics itself. Specifically,

from (3.1)-(3.8) we can derive the following ML filter recursion

XML(t t)

= [I - KML(t)C(t)]PML(t t+)[P~L(tjltc)A-l(ta)x(taltca)

+ PL(t It/)A-'(t3)X(t/tP3)] + IfML(t)Y(t) (3.14)

Also, from (2.1)

x(t) = A-l(ta)x(ta) - A-'(tca)B(ta)w(ta) (3.15)
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x(t) = A-1 (t/)x(t/) - A-'(t/3)B(t/3)w(t/) (3.16)

and thus, using (3.8)

x(t) = PML(tIt+)[PML(t tca)A- (ta)x(ta) + PM~L(t t/3)A- (t/3)x(t/)]

-PML(tlt+)[P ML(t ta)A- (ta)B(ta)w(ta)

+ PML(tt/3)A-l(t/)B(tf)w(t/)] (3.17)

and thus defining XML(tlt) = x(t) -- ML(tlt), we obtain

XML(t t)

= [I - KML(t)C(t)]PML(tjt+)[PML(t ta)A- (ta)i(tajtaQ) + PM1L(t t/3)A- 1(tf)X(t/3t/)]

-PML(tlt+)[PML(tlta)A- (tca)B(ta)w(tca) + PML,(tlt/)A-(t/3)B(t/)w(t/)]

- KML(t)V(t) (3.18)

Note that (3.14), (3.17), and (3.18) each represents a fine-to-coarse system of the

form of (2.3), and in particular, (3.18) represents the filtering error as the state of

such a system driven by white process and measurement noise. It is the stability of

this system-in the scale-varying case-that is investigated in Section 5.

4 System-Theoretic Concepts for Fine-To-Coarse

Dynamic Models

In this section we introduce and investigate several system-theoretic concepts for

dynamic systems on dyadic trees. The structure of the tree leads to several important

differences with standard-state space system theory, and furthermore this setting

appears to be a natural one in which to develop a theory for multiresolution modeling

and realization. Our goals here, however, are far more modest. In particular we refer

the reader to [2] for a first step in developing such a multiscale realization theory and
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focus here on the specific constructs and results needed in Section 5 for the asymptotic

analysis of the fine-to-coarse filtering algorithm described in the preceding section.

In particular, we focus here on the fine-to-coarse model (2.2), (2.3). Moreover,

the analysis of Section 5 focuses for scale-varying systems, and thus we focus here on

the analogous specialization of (2.2),(2.3), namely

x(t) = F(m(t) + 1)[x(ta) + x(t3)] + G(m(t) + 1)[w(ta) + w(t/3)] (4.1)

y(t) = C(m(t))x(t) (4.2)

where, since we focus in this section on deterministic properties, w(t) in (4.1) should

be viewed as an input, and we have eliminated the measurement noise from the

observation (4.2). Furthermore, to simplify the discussion we assume the F(m) is

invertible for all m.

4.1 Reachability and Observability

The first property we wish to investigate is reachability for the model (4.1), i.e.

the ability to drive the system from any fine-scale initial condition to any coarse-

scale target. Note that the number of descendent nodes below any node to grows

geometrically with scale- i.e., there are 2 descendants one scale finer than to, 4

descendants two scales finer, etc. Thus there are 2m "initial conditions" affecting

x(to) and at a scale M levels finer than x(to). Thus let us define the following vectors,

XM,to - [XtT(toaM),XT(tofaM 'l), ... XT(to/M)]T (4.3)

WM,to - [WT(to) WT(to)... w(toaM)...WT(to M ) ]T (44)

The vector XM,to denotes the vector of 2M points at the Mth level down that influence

the value of x(to). The vector WM,tO comprises the full set of inputs that influences

x(to) starting from initial condition XM,tO, i.e. the w(t) in the entire subtree down to

M levels from to.
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Definition 4.1 The system (4.1) is reachable from XM,to to x(to) if given any

XM,to and any desired Y(to), it is possible to specify WM,to so if XM,to = XM,to,

then x(to) = Y(to).

As always, in studying conditions for reachability, we can set XM,to = 0, in which

case

x(to) = GWM,to (4.5)

where

G [I (0) qF(0) T(1) T(1) T(1) k(1)... (46)

(M - 2) ... %(M - 2) (M - 1)...q~(M - 1)

2 M-1 times 2 M times

@11(i) - q(m(to), m(to) + i)G(m(to) + i + 1) (4.7)

q5(m1,m 2 ) (4.8)
, F(ml + l)0(ml + 1,m2) ml < m2 (48)

0(m-l,m) F(m) (4.9)

Let us define the reachability Gramian

1Z(to, M) _ 66T
M-1

- E 22i+l(m(to), m(to) + i)G(m(to) + i + 1)
i=O

x GT(m(to-) i + 1)9T(m(to), m(to) + i) (4.10)

Thus since the rank of g equals the rank of GGT, we see that the system (4.1) is

reachable from XM,tO to x(to) if RZ(to, M) is invertible. Also we can now define a

notion of uniform reachability:

Definition 4.2 The system (4.1) is uniformly reachable if there exists y, Mo > 0

so that

1(t. MO) > I for all t (4.11)
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Note that 1Z(to, M) bears a strong similarity to the standard reachability gram-

mian for the following system.

x(m) = F( )x(m + 1) + V1) G(m + 1)u(m + 1) (4.12)

Furthermore the factor of V2 in (4.12) certainly affects the absolute magnitude of the

reachability gramian, but it does not affect either reachability or uniform reachability.

Thus, the usual conditions for temporal state space models apply here as well. For

example, if F and G are constant, then reachability and uniform reachability are

equivalent to the usual condition, i.e. rank[GIFGI... jFn-'G] = n.

It is interesting to note that the structure of the tree adds a substantial level

of asymmetry to the analysis of coarse-to-fine and fine-to-coarse systems. For ex-

ample, for standard temporal systems there are two closely related notions, namely

reachability- i.e., the ability to reach any state from any state- and controllability-

i.e., the ability to reach zero from any state. If the state dynamic matrix is invertible

these are equivalent, and this is also true for the fine-to-coarse model (4.1). However,

this is not true for the coarse-to-fine model (e.g. (2.1) or it s scale-varying specializa-

tion). In particular, reachability for a coarse-to-fine model involves driving a single

initial condition x(to) to any possible value of the 2M-point set of values in XM,tO.

This is an extremely strong condition, in contrast to the condition of controllability,

i.e. driving x(to) to XM,to = 0. While this is of no direct interest to us here (and we

refer the reader to [9] for details), the dual of this property is.

Specifically, let us turn to the problem of determining the state given the knowl-

edge of the input and output. In the standard temporal case, there are two notions-

observability (i.e. the ability to determine the initial condition) and reconstructibility

(i.e. the ability to determine the final state)-which coincide if the state dynamic

matrix is invertible. The asymmetry of the tree certainly leads to a substantial

difference for us. For coarse-to-fine dynamics, observability-i.e. determining the

single coarse state from the subtree of data beneath it-is a much weaker notion than

reconstructibility-i.e. determining the 2M states at a fine scale based on the subtree

of data above it. The exact opposite conditions hold for the fine-to-coarse model



4 SYSTEM-THEORETIC CONCEPTS 14

(4.1), (4.2)-i.e. reconstructing x(to) based on the subtree of data below it is a much

weaker condition than determining the 2 M states in XM,to based on the data in the

subtree above it. Fortunately for us, it is the weaker of these notions that we require

here. Thus we focus on that case here and refer the reader to [9] for a full treatment.

Let us define

YM,to [ yT(to)l y(toto), yT(to0)j ... [yT(toaM),...yT(to3M) ]T (4.13)

Definition 4.3 The system (4.1),(4.2) is reconstructible from XM,to to x(to) if

given knowledge of WM,to and YM,to, we can uniquely determine x(to).

As always in studying reconstructibility and observability, superposition allows us

to focus on the case when WM,to = 0 in which case

YM,to = -tMXM,to (4.14)

where 7IM is most easily visualized if we partition it compatibly with the levels of

the observations in YM,to:



4 SYSTEM-THEORETIC CONCEPTS 15

2M blocks

0(0) 0(0) ... ... 0(0)

O(1) . ... O(1) 0 ..... 0O

0 .... . 0(1) ... . O(1)

0(2) ... 0(2) 0 ... 0 0 ... 0 0 ... 0

0 0 0(2) ... 0(2) 0 ... 0 0 ... 0

0 ... 0 0 ... 0 0(2) ... 0(2) 0 ... 0
7'(M. 0 ... 0 0 ... 0 0 0 (2) ... 0(2)

0(M) 0 ... ... 0

0 (M) ... ... 0

O O ... ... O(M)

(4.15)

Here

O(i) - C(m(to) + i)O(m(to) + i, m(to) + M) (4.16)
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As a simple example to help clarify the structure of the matrix 7-M consider the

matrix 7-{2 for the scale-invariant case, i.e. where F(m) = F, C(m) = C.

CF2 CF2 CF2 CF2

CF CFO 0 

O O CF CF

'/'E = C 0 0 0 (4.17)

O C 0 0

O 0 C 0

O 0 0 C

That is, at level i, there are 2/ measurements each of which provides information about

the sum of a block of 2 M-i components of XM,tO. Note that this makes clear that

upward observability is indeed a very strong condition. Specifically, since successively

larger blocks of XM,tO are summed as we move up the tree, subsequent measure-

ments provide no information about the differences among the values that have been

summed. However, the situation for reconstructibility is very different. Specifically, if

WMto = 0, then

x(to) = q(m(to), m(to) + M)IMXM,to (4.18)

where

IM = [I[I ... [ i (4.19)

2 M times

and each I is an n x n identity matrix.

Since the condition of reconstructibility only requires being able to uniquely de-

termine the single point x(to) from the measurements in the subtree, we guarantee

this condition by requiring that any vector in the nullspace, of (4.14) is also in the

nullspace of (4.18). Since O(ml, m2) is invertible, this is equivalent to being able to

uniquely determine IMXM,to, i.e. the sum of the components of XM,to (which is all

that affects x(to)) from YM,to. We then have

Theorem 4.1 The system (4.1), (4.2) is reconstructible iff A/(7-M) C V(IM);

which is equivalent to the invertibility of the reconstructibility gramian 0(to, M):
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O(to, M) = IM1TMHlMIM

= A; 22M-iT(m(to) + i, m(to) + M)CT(m(to) + i)
i=O

x C(m(to) + i)O(m(to) + i, m(to) + M) (4.20)

Proof: We need only show that A/(1-M) C A/(IM) is equivalent to the invertibility

of O(to, M) = IMl M1tMIM. Suppose first that O(to, M) is not invertible. Then

there exists y $/ 0 so that l-(MZ = 0 where z = IMy. Note that IM is one-to-one

so that z :Z 0 which in turn implies that IMz = IMITY 7 0 which contradicts

A/(7-(1M) C A/(IM). If on the other hand A(7-HM) is not included in .(A/IM), then

there exists an x such that l-(Mx = 0 and IMX 7 0. Since xeR(IrM(to)) ED (IM(to)),

we can write x = IMy + z where y :& 0 and zcA/(IM). Making this substitution into

AMHx = 0 and left-multiplying by IMHT-, we get

IMIHMHMIMTY + IMHMl-MZ = 0 (4.21)

However, a straightforward but tedious calculation [9] yields

IM'1 MTYM = ATIM (4.22)

where X is an nxn matrix computed from the elements of I-M in (4.15). Equation

(4.22) is a consequence of the special structure of 7-tMTLM. In particular it indicates

that the columns of 27T form a block-eigenspace for HT H-IM. Indeed, as discussed in

detail in [9], 7-T E1 M is block-diagonalized by the (vector) Haar transform, and (4.22)

represents the coarsest scale component of that transform.

If we now substitute (4.22) into (4.21) and use the fact that zeA/(HM), we see that

·(to)2t M=mt(to)y = 0 for some y - 0, implying that yT4(to)-l TM -lt(to)y = 0,

contradicting the invertibility of O(to, M)

Also, as in the case of reachability, it is useful to define a notion of uniformity:

Definition 4.4 The system (4.1), (4.2) is uniformly reconstructible if there ex-

ists 6, Mo > 0 so that

O(t, Mo) > bI for all t (4.23)
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Furthermore, note that ((to, M) is the standard observability gramian for the fol-

lowing system.

x(m) = lF(m + 1)x(m + 1) + lG(m + 1)u(m + 1) (4.24)

y(m) = v"2C(m)x(m) (4.25)

Thus as for reachability, the conditions for reconstructibility and uniform recon-

structibility for our model is the same as the usual notions for the pair F(m), C(m).

For example if F and C are constant, then (since F is assumed to be invertible),

reconstructibility and uniform reconstructibility are equivalent to the usual condition

for F and C to be an observable pair.

4.2 Stability

Finally, let us examine the question of asymptotic stability for the autonomous version

of (4.1), i.e.

z(t) = F(m(t) + 1)[z(ta) + z(t3)] + G(m(t))u(t) (4.26)

as the dynamics propagate up the tree. Intuitively what we would like stability to

mean is that z(t) -O 0 as we propagate farther and farther away from the initial

level of the tree. Note, however, that as we move up the tree, z(t) is influenced by

a geometrically increasing number of nodes at the initial level. For example, z(t)

depends on {z(tc), z(t/3)} or, alternatively on {z(tc2), z(t,3c), z(tac), z(t#/2 )}, etc.

Thus in order to study asymptotic stability it is necessary to consider an infinite

dyadic tree, with an infinite set of initial conditions corresponding to all nodes at the

initial level.

For the remainder of this discussion, we adopt a change of notation to a more

standard form for stability analysis of dynamic systems. Specifically, we change the

sense of our index of recursion so that m increases as we move up the tree. In

particular we arbitrarily choose a level of the tree to be our "initial" level, i.e. level
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0, we now index the points on this initial level as zi(O) for i E Z. Points at the mth

level up from level 0 are denoted zi(m) for i C Z. The dynamical equation we then

wish to consider is of the form

zi(m) = F(m - 1)(z2i(m - 1) + z 2i+ 1(m - 1)) (4.27)

Let Z(m) denote the infinite sequence at level m, i.e. the set {zi(m) , i E Z}.

The p-norm on such a sequence is defined as

IIZ(m) llp (. [lzi(m)lIP) P (4.28)

where Ilzi(m)llp is the standard p-norm for the finite dimensional vector zi(m).

Definition 4.5 A system is Ip-exponentially stable if there exists 0 < a < 1 and

C > 0 so that given any initial sequence Z(O) such that llZ(O)ll < 00,

IIZ(m)llp < Cam llZ(o)llp (4.29)

From (4.27) we can immediately write the following.

zi(m) = '4(m,0) g zj(O) (4.30)
jEOm,i

where the cardinality of the set 0 m,i is 2m and 4(m, 0) is the state transition matrix

associated with F(m). As one would expect, it is this matrix that controls the stability

properties of (4.27), although the structure of the tree leads to important differences.

Theorem 4.2 The system defined in eq.(4.27) is I,-exponentially stable if and only

if

2'q ll (m,0)lp I< IK'ym for all m (4.31)

where 0 < - < 1 and K' is a positive constant, and

- + 1 (4.32)
P q
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Proof

Let us first show necessity. Specifically, suppose that for any K > 0, 0 < y < 1,

and M > 0 we can find a vector z and an m > M so that

IlD(m, 0)z[ip > K-m2-i [IZIlp (4.33)

Let z and m be such a vector and integer for some choice of K, y, and M, and

define an initial sequence as follows. Let pO, p1, P2, ... be a sequence with

00

:PiP = 1 (4.34)
i=O

Then let
poz 0 < i < 2m

pl z 2m < i < 2 .2 m

zi(0) = ] (4.35)

piz j2m < i < (j + 1)2 m

Note that

IIZ(0)IlP = 2mlIzIIP (4.36)

Thus, using (4.33)- (4.36)

IIZ(m)ll = 2mPtI[(m,0)zIlP
-mp

> 2mPKPIYm p2 q IIZIIP

= 2 mPKPrTmp2 q 2-m IZ(O0)l

= KPmPlIIZ(O)Ilp (4.37)

Hence for any K, 0 < y < 1 and M > 0 we can find an initial Ip-sequence Z(O) and

an m > M so that

IIZ(m)ll > Kt/m IZ(o)ll p (4.38)

so that the system cannot be Ip-exponentially stable.
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To prove sufficiency we use two simple facts. First, (4.27) is exponentially stable

if there exist 0< fi < 1 and K > 0 so that for each i

IIZi(m)llp < K'm( E llzj(0)llp)p (4.39)
jEOm,i

This follows by raising (4.39) to the pth power and summing over i. Secondly, for

any sequence of vectors xi and any m and j

II Z xilp <• 21 ( < [IIx[IIP) (4.40)
iEIm,j iEIm,j

where Zm,j = {j, j + 1, ... j + 2m - 1}. To show this, note that

1 1
Ila + blip < 21(Ilallp + IlbllIP) (4.41)

Specifically, since - lpP is a convex function, we can write

-](l)a + (1- )bllP < (2)IHa pP + (1-2) llbllp (4.42)

from which eq.(4.41) follows immediately. Using this we can show (4.40) by induction

on m. Note first that (4.40) is trivially true for m = 0 . Suppose then that for all j

(4.40) holds for a particular value of m. If we then sum xi over the two sets Im,j, and

Im,j,2 where j 2 = jl + 2 m we get

II( E xi+ E xi)llp < 2q(ll( E xillp+ I( E xillp)p (4.43)
iElm,jl iElm,,j iEImj,, iEIm,j2

Then by substituting into (4.40) into (4.43) we get

II E xillp < 2 (m+ (I( E xilp + ll( xII) PP (4.44)
iEl'm,j 1 UTmj 2 iEiEf,jl iElzm,j 2

and apply (4.41), we find that (4.40) holds for m + 1 as well.

We can now complete the proof of the theorem. By applying the p-norm to

eq.(4.30), using the Cauchy-Schwarz inequality, and then (4.40) we obtain

Ilzi(m)rp <• II(m,o)Ilp2 ( E Ilz(O)II)-} P (4.45)
jEm ,i
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If we then assume that (4.31) holds this, together with (4.45) yields

lizi(m)llp < K J7m( n IlZj(O)IIP)p (4.46)
j EIm,i

from which we conclude that the system is Ip-exponentially stable.

Note that from this result we see that the 4p-exponential stability of (4.27) is

equivalent to the usual exponential stability of the system

((m) = 2qF(m - 1),(m - 1) (4.47)

For example for p = 2, we are interested in the exponential stability of

((m) = V/2F(m - 1)~(m - 1) (4.48)

If F is constant this is equivalent to requiring F to have eigenvalues with magnitudes

smaller than A.

5 Covariance Bounds, Stability, and Steady-State

Behavior

In this section we develop several system-thematic results for our fine-to-coarse filter-

ing algorithms, paralleling those for standard Kalman filtering, but with several key

differences due to the structure of the dyadic tree. We focus in this section on the

scale-varying case, i.e. the case in which all system parameters vary with scale only.

In this case the Bayesian filtering algorithm of Section 2 becomes

x(tjt) = i(tlt+) + K(m(t))[y(t) -C(m(t))x(tlt+)] (5.1)

:(tflt) = F(m(t))5(tit) (5.2)

5(tjt+) = P(m(t)Im(t)+)P-l(m(t)lm(t) + 1)[(f(tlt) + .(tlt#/)] (5.3)
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with the scale-varying Riccati equation

P(mlm+l) = F(m+l)P(m+llm+l)FT(m+l)+G(m+l)Q(m+l)GT(m+l) (5.4)

P-'(mjm) = 2P-'(mlm + 1) + CT(m)R-l(m)C(m) - PZl(m) (5.5)

where we have combined the update and fusion steps in (5.5). Also F(m(t)) and

Q(m(t)) are given by (2.8), (2.10) in the scale-varying case and

G(m) = A-'(m)B(m) (5.6)

Furthermore, the remaining quantities needed in (5.1)-(5.2) are

P-l(mlm+) = 2P-l(mlm + 1) - P,-l(m) (5.7)

K(m) = P(mlm)CT(m)R-l(m) (5.8)

In the ML case, with P,-l set to zero we obtain a further simplification of these

equations or, equivalently, of (3.14):

XML(tIt) = 1 (I - K'ML(m(t))C(m(t))A'l(m(t) + 1)(iML(tQlta) + XML(tjlt#))

+ KML(m(t))y(t) (5.9)

Similarly we have the following simplified form of (3.18) for the ML filter error:

XML(tlt) = 1(I - KML(m(t))C(m(t)))A- (m(t) + 1)(~ML(tQaltc) + xML(t3lt/))

- (I - IKML(m(t))C(m(t)))G(m(t) + 1)(w(ta) + w(t3)) - KML(m(t))v(t)

(5.10)

The ML Riccati equation in this case becomes
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PML(mlm+I) = A-Il(m+I)P(m+lm+l)A-T(m+ )+G(m+l)GT(m+i) (5.11)

Pm,(m m) = 2P (mlm + 1) + C T (m)R-'(m)C(m) (5.12)

Also

IKML(m) = PML(mlm)cT(m)R- (m) (5.13)

and also, for future reference,

PML(mlm+) = -PML(mim + 1) (5.14)

and this, together with (5.13) yield

-[I- IML(m)C(m)] = PML(mlm)PML(mlm + 1) (5.15)

5.1 Bounds on the Error Covariance

In this section we derive upper and lower bounds on the error covariances P(mlm)

and PML(mlm). As is the case for standard Kalman filtering, [3,8], reachability and

reconstructibility conditions are key in this analysis. In this case the system to be

analyzed is the following backward model, obtained directly from (2.7)-(2.10) in the

scale-varying case:

x(t) = 2F(m(t) + 1)[x(ta) + x(t/)] + .G(m(t) + 1)[tz(ta) + tb(t/)] (5.16)

together with the measurements (2.2). In this case, accounting for the scaling factor

of 2 in (5.16) and the covariances of wtz and v, we define the stochastic reachability

Grammian:

M-1

(t, M) - E 2-i-(i(m(t), m(t) + i)G(m(t) + i + 1)
i=O

x Q(m(t) + i + 1)GT(m(t) + + + 1)T(m(t), im(t) + i) (5.17)
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and the stochastic reconstructibility grammian:

o(t, M) 2iq T (m(t) + i, m(t) + M)CT (m(t) + i)
i=O

x R-'(m(t) + i)C(m(t) + i)k(m(t) + i, m(t) + M) (5.18)

where the state transition matrix is given by (4.8)-(4.9). In our analysis we also

assume that A(m), A-l(m), B(m), P- 1 (m), C(m), R(m), and R-l(m) are bounded

functions of m. In terms of our reachability and reconstructibility grammians these

assumptions mean that for any Mo > 0 we can find ca, 3 > 0 so that

1Z(t, Mo) < cI for all t (5.19)

O(t,Mo) < 3I for all t (5.20)

Also uniform reachability in our present context corresponds to the existence of

y, Mo > 0 so that

jZ(t, Mo) > -I for all t (5.21)

while uniform reconstructibility corresponds to the existence of 5, Mo > 0 so that

O(t, Mo) > SI for all t (5.22)

These conditions coincide with those in Section 4.1 with the replacement of F(m)

by 1F(m), G(m) by ½G(m)Q2(m), and C(m) by R-2 (m)C(m). Furthermore, thanks

to the boundedness assumptions, the relationship between the original model (2.1) in

the scale-varying case and the reverse model (2.7)-(2.10), and the analysis in Section

4.1, it is straightforward to show that the uniform reachability and reconstructibility

conditions are equivalent to the usual conditions for the pairs (A-'(m), G(m)) and

(R- (m)C(m), A-'(m)), respectively.

We are now in a position to derive an upper bound for the optimal filter error

covariance, P(mlm). The general idea in deriving this bound is to make a care-

ful comparison between the Riccati equations for our optimal filter and the Riccati

equations for the standard Kalman filter. First consider the following lemma.
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Lemma 5.1 Let P(mlm) be the solution to the Riccati equation (5.4)-(5.5) and let

P(mjm) satisfy the second Riccati equation

P(mlm + 1) = F(m + 1)P(m + 1lm + 1)F T (m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1) (5.23)

P-1(mlm) = P-'(mlm + 1) + C T (m)R-'(m)C(m) (5.24)

Then

P- 1 (mlm) < P-l(mlm) (5.25)

Proof

First note that (5.5) can be rewritten as

P-l(mlm) = P-l(mlm + 1) + CT(m)R-l(m)C(m) + DT(m)D(m) (5.26)

since P(mlm + 1) < P,(m). Also, the Riccati equation (5.23), (5.24), characterizes

the error covariance for the optimal filter corresponding to the following standard

filtering problem.

x(m) = F(m + 1)x(m + 1) + G(m + 1)w(m + 1) (5.27)

E[w(m)wT (m)] = Q(m) (5.28)

y(m) = C(m)x(m) + v(m) (5.29)

E[v(m)vT (m)] = R(m) (5.30)

Similarly, the Riccati equation,(5.4), (5.26), characterizes the error covariance for the

optimal filter corresponding to the filtering problem involving the same state equation

but with the following augmented measurement equation.

(m) = [(m) (m) + u(m) (5.31)

E[u(m)u T (m)] = [R(m) ] (5.32)

so that (5.25) follows immediately.

so that (5.25) follows immediately.
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We now state and prove the following theorem concerning an upper bound for

P(m m).

Theorem 5.1 Suppose there exists /, 6, Mo > 0 so that (5.20) and (5.22) are satis-

fied. Then there exists n > 0 such that for all m at least Mo levels from the initial

level P(mjm) < rI.

Proof

As we have discussed, (5.20), (5.22) are equivalent to the existence of analogous

uniform upper and lower bounds on the observability Gramian for (5.27)-(5.30). Thus

standard Kalman filtering results imply that there exists a /c > 0 such that P(mim) <

KI or P-'(mlm) > s-'I. From Lemma 5.1 we then have that P-'(mlm) > K-sI or

P(mlm) < Ki.

We can easily apply the previous ideas to derive an upper bound for PML(mIm) as

well: Specifically note that the identical idea used in Lemma 5.1 yields an analogous

result for the ML Riccati equation (5.11), (5.12), i.e.

P-l(mlm) _< P- (mlm) (5.33)

where P(mlm) is the solution of a Riccati equation as in (5.23), (5.24) but with F and

Q replaced by A - 1 and I, respectively. Then, as we have discussed, the conditions

(5.20), (5.22) are equivalent to the analogous conditions on the usual observability

gramian for the pair (R-2 (m)C(m), A-'(m)). This in turn yields an upper bound on

P(mlm). Using (5.33) we then have the following

Theorem 5.2 Suppose that there exists ,, ,Mo > 0 so that (5.20) and (5.22) are

satisfied. Then there exists a' > 0 such that for all m at least Mo levels from the

initial level PML(mlm) _< P'I.

We now turn to the lower bound for P(mlm). We begin with the following
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Lemma 5.2 Let

s(mIm) (P-'(mlm) -C T (m)R-'(m)C(m) + P-'(m)) (5.34)

3 (mlm + 1) - F-T(m + 1)P(m + )lm( + 1)F-'(m + 1) (5.35)

Consider also the Riccati equation

S*(mlm + 1) = 2F-T(m + 1)S*(m + llm + 1)F-l(m + 1)

+ F-T(m + 1)CT(m)R-1(m)C(m)F-'(m + 1) (5.36)

S*-'(mlm) = S*-l(mlm + 1) + G(m + 1)Q(m + 1)GT(m + 1) (5.37)

where S(OO1) = S*(010). Then for all m, S*(mlm) > S(mlm).

Proof

A straightforward calculation using (5.5) and (5.34) yields

S(mlm) = P-1(mjm + 1) (5.38)

Then using (5.4) we arrive at

S(mlm) = [F(m + 1)P(m + ljm + 1)FT (m + 1)

+ G(m + 1)Q(m + 1)GT(m + 1)]- 1

= [S-l(mlm + 1) + G(m + 1)Q(m + 1)GT(m + 1)]-' (5.39)

where the the last equality results from the substitution of (5.35). Also, by substi-

tuting (5.34) into (5.35) and collecting terms we obtain

3(mlm + 1) = 2F-T(m + 1)S(m + llm + 1)F-l(m + 1)

+ F-T(m + 1)CT(m)R-1(m)C(m)F-1 (m + 1)

- F-T(m + 1)P'(m)F-'(m + 1) (5.40)

Now we prove by induction that for all m S*(mjm) > S(mlm). Obviously, S*(010) >

3(010). As an induction hypothesis we assume S*(i + 1 li + 1) > S(i + 1 i + 1). From

(5.40), (5.36), and the fact that F-T(m + 1)P'l1(m)F-l(m + 1) > 0 we get that

S*- (iji + 1) < S-'(ii) (5.41)
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Substituting (5.37) and (5.39) into (5.41) and canceling terms we arrive at S *- l(ili) <

s (ili), i.e. S*(ili ) > S(ili) .

El

Theorem 5.3 Suppose that there exists a, y, Mo > 0 so that (5.19) and (5.21) are

satisfied. Then there exists L > 0 such that for all m at least Mo levels from the

initial level P(mlm) > LI.

Proof

From standard Kalman filtering results we know that the solution to the standard

Riccati equation (5.36), (5.37) satisfies S*(mlm) < NI. for some N > 0 if the pair

(Q 2(m)GT(m), F-T(m)) is bounded and uniformly observable. However, by standard

duality results and the boundedness of F, this is equivalent to the boundedness and

uniform reachability of (F(m), G(m)Q2 (m)), which in turn are equivalent to (5.19),

(5.21) . Then from Lemma 5.2 we conclude that S(mlm) < NI.

Thus (5.34) together with the boundedness assumption yields

P-'(mlm) < L-'I (5.42)

Using analogous arguments we can derive a lower bound for PML(mlm). Note

that with the following definitions for S and (5.36), (5.37) where the matrices F and

Q are replaced with the matrices A - 1' and I, respectively, Lemma 5.2 still applies.

S(mm) - !(PfL(mlm) - C T (m)R-l(m)C(m)) (5.43)

S(mlm + 1) - AT(m + 1)PM~(m + Ilmr + 1)A(m + 1) (5.44)

Using the same argument as in the proof of Theorem 5.3 with our current definitions

for S we get that

2(PML(mIm) - C T (m)R-'(m)C(m)) < NI (5.45)

for N > 0, and the boundaries assumption then yields

Theorem 5.4 Suppose that there exists a, y, Mo > 0 so that (5.19) and (5.21) are

satisfied. Then there exists L' > 0 such that for all m PML(mlm) > L'I.
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5.2 Filter Stability

We are now in a position to analyze the internal stability of the ML filter error

dynamics (5.10) , i.e. using (5.15) we are interested in investigating the asymptotic

stability of the autonomous error dynamics

4(t) = PML(m(t)lm(t))P[1(m(t)[m(t) + )A-l(m(t)t) + )[~(ta) + ~(tO/)] (5.46)

In particular, we have the following

Theorem 5.5 Suppose that (5.19)-(5.22) are satisfied. Then, the ML error dynamics

(5.10), or equivalently (5.46), are 12 -exponentially stable.

Proof

Based on the analysis in Section 4.2, we see that we wish to show that the following

causal system is stable in the standard sense:

z(m) = PML(mlm)P7[(mlm + -1)v2A-l(m + 1)z(m + 1) (5.47)

The remainder of the analysis follows the line of reasoning used in [3]. Specifically,

thanks to Theorems 5.2 and 5.4, PML(mlm) is bounded above and below by positive

definite matrices. Thus we can define the following Lyapunov function.

V(z(m), m) - zT(m)PmL(m im)z(m) (5.48)

Let us also define the following quantity.

i(m) - vA-l(m + )z(m + 1)

= PML(ml + 1)PAL(mlm)z(m) (5.49)

Substituting (5.12) into (5.48) followed by algebraic manipulations, one gets

V(z(m),m) = z T(m)(2PML(mlm + 1) + C T (m)R-l(m)C(m))z(m)

= 2zT (m)(PMl(mIm) - 2PM7,L(mjm + 1))z(m) - zT (m)CT (m)R-'(m)C(m))z(m)LM\ Ii~l-LM\I(~ jP IC
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+ z T (()(2m + 1))z(m)

zl () 1 z(m) T (M)(mmP z(m)+T(Tm) -1 

= -(v2z(m) - V() T P)P L(mIm + 1)(v2z(m)- _V2) 

- z T (m)C T (m)R1(m)C(m)z(m) + VM) PK(mlm + 1) (5.50)

However, using (5.49) we have that

T(m) ( + 1) () = zT(m + 1)A-T(m + 1)pjPM (m|m + 1)A-l(m + 1)z(m + 1)

• zT(m + 1)PL~(m + I rm + 1)z(m + 1)

= V(z(m + 1),m + 1) (5.51)

where the inequality follows from (5.11) and application of the matrix inversion

lemma. Thus it follows that

V(z(m), m)- V(z(m + 1),m + 1) < -(Vfz(m) (m))Tp) - | 1)(v'z(m) -(v)

- zT(m)CT(m)R-l(m)C(m)z(m) (5.52)

Stability follows from (5.52) under the condition of uniform observability of the pair

(R- (m)C(m), A-(mr))

Let us now examine the full estimation error after incorporating prior statistics.

It is straightforward to see that

i(t t) = P(m(t)lm(t))(PM,(m(t) m(t))ML(t It) + P l(m(t))x(t)) (5.53)

Thus we can view x(t t) as a linear combination of the states of two upward-evolving

systems, one for XML(tIt) and one for Pl'(m(t))x(t). Note first that since P(mjm) <

PML(m Im)

IIP(m(t) Im(t))PML(m(t) Im(t))XML(tIt) I| < IIiML(t It) I (5.54)
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and we already have the stability of the XML(tlt) dynamics from Theorem 5.5. Turn-

ing to the second term in (5.53), note that the covariance of P'1(m(t))x(t) is sim-

ply Px;l(m(t)). By uniform reachability Pl'(m(t)) is bounded above. Thus, since

P(m(t)jm(t)) is bounded, the contribution to the error of the second term in (5.53) is

bounded. Finally, our analysis also allows us to conclude that the full, driven iML(t t)

dynamics (5.10) are bounded-input, bounded-output stable from inputs w and v to

output XML(t t).

5.3 Steady-state Filter

In this section we focus on the constant parameter case and analyze the asymptotic

properties of the filter. Specifically, we have the following:

Theorem 5.6 Consider the following system defined on a tree.

x(t) = Ax(tT) + Bw(t) (5.55)

y(t) = Cx(t) + v(t) (5.56)

with independent white noises w and v having covariances I and R, respectively.

Suppose that (A, B) is a reachable pair and that (C, A) is observable. Then, the error

covariance for the ML estimator, PML(mlm), converges as m -, -oo to PO, which

is the unique positive definite solution to

P = A-lPAT 1+ GGT
2 2

- If(ICA-1pA-TCT + ICGGTCT + R)K (5.57)
2 2

where

If" = PCCTR - l (5.58)

Moreover, the autonomous dynamics of the steady-state ML filter, i.e.

e(t) = (I - IfoC)A-l(e(ta) + e(t/f)) (5.59)



5 COVARIANCE BOUNDS AND STABILITY 33

are 12 -exponentially stable, i.e. the eigenvalues of (I - ooC)A- 1 are less than V/2/2

in magnitude.

Proof

Note first that the reachability of (A, B) and observability of (C, A) are equivalent

to the reachability of (A - 1', G) and observability of (R-2C, A-'), respectively.

Convergence of PML(mIm)

This will be established if we can show that a) PML(mlm) is monotone-nonincreasing

as m -- -oc and b) PML(mlm) is bounded below. The second of these conditions

comes directly from the assumptions of reachability and observability. The mono-

tonicity of PML(mnlm) follows from an argument analogous to that used in the stan-

dard case [8]. Specifically, let P(m; m') denote the solution to the scale-invariant ver-

sion of the ML Riccati equation (5.11), (5.12) initialized at m' with' P(m'; m') = oo.

That is P(m; m') equals PML(mim) if the coarse level at which we begin is m'. Since

the parameters of (5.11), (5.12) are constant, we immediately see that

P(m; m') = P(m - m') (5.60)

so that the monotonicity result we wish to show is equivalent to showing that if

mi > m 2 , then

P(m; ml) < P(m; m2) for all m < m 2 (5.61)

However, the scale-invariant Riccati equation certainly preserves positive definite or-

derings so that the inequality in (5.61) holds for m = mo, then it must hold for all

m < mo. However at m = n2, P(m 2 ; ml) < 00oo = P(m 2 ; m 2 ), so that (5.61) is in fact

true.

Having established the convergence of PML(mim), let us denote the limit as fol-

lows.

lim PML(mlm i) Po (5.62)

1To be precise here we should use the information form of (5.11), (5.12) (see Appendices A,B).
However, thanks to observability and reachability, for Im - m'l sufficiently large P(m; m') is well-
defined and invertible. Since we are interested in the asymptotic behavior as m - m' -- -oo, the
argument given above is valid.
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It is straightforward to see that 7P5 must satisfy (5.57), which is the steady-state

version of the constant-coefficient ML Riccati equation (5.11), (5.12). Furthermore,

by Theorem 5.4, PO, must be positive definite.

Exponential Stability of '(I - KoC)A-'

What we need to show is that if P5 is any positive definite solution to (5.57), then

each eigenvalue, A, of %'(I-IKs C)A- ' has magnitude less than 1, where KI, is given

by (5.58). The approach is a variation of the proof for the standard Riccati equations

[8]. Specifically, some algebra shows that we can rewrite the Riccati equation (5.57)

in the following form:

Poo = V2(I - K.C)A-']P. [ (I -IKoC)A-1]T+ (I-KTo C)GGT(I-K,, C)T+ KooRK T
22 2

(5.63)

Suppose that there exists an eigenvalue with JAI > 1. Then letting x be the

associated eigenvector of [" -(I - ooC)A-1l]T, we see that

xHpox = AI2xHP x + IAI2xHBBTx + xHIRIK RKx (5.64)

where xH is the conjugate transpose of x and we have used the fact that G = A - l B.

Since PTo > 0 and IAI > 1, we can conclude from (5.64) that BTx = 0 and KTx = 0,

but the latter of these implies that - 2A-Tx- = Ax. That is, we have a vector x so

that

xHA- l = Vx/"AHx, xHB = 0 (5.65)

which implies that (A-1,B) is not a reachable pair which in turn contradicts the

assumption that (A-l, G) = (A-1, A-B), or, equivalently, (A, B) is reachable.

Uniqueness of P,,

Consider P1 and P2, both of which are positive definite and satisfy (5.57). Thus,

for i = 1,2

Pi= A-1PiA-T+ 1 GGT
2 2

- Kii(CA-1PiA-T C T + LCGGTCT + R)IfT (5.66)
2Ki = PiC2R- (5.67)

if= PiCTR-1 (5.67)
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Subtracting (5.66) with i = 2 from (5.66) with i = 1 yields

P1 - P2 = '(I - K1 C)A-'(P1 - P 2)(--2(I- K 1 C)A-1 )T

+ A (5.68)

where

I -TCT+ C TT + ( -21 T > 0 (
A = (K 1 - I 2)[ CA-P2A-TCT - CGGTCT + R(K1 - K2)T > 0 (5.69)

Note that we have established the fact that 2(I - K1 C)A-' has eigenvalues within

the unit circle. From standard system theory this tells us that P1 - P2 > 0. Reversing

indices yields P 2 - P1 > 0, proving uniqueness.

El

Finally let us comment on the asymptotic behavior of the Bayesian error covari-

ance P(mlm), which is given by

P(mlm) = [PA(mim) + P;-'(m)]-l (5.70)

Since the original state process is defined evolving from coarse-to-fine while the re-

cursion of the ML filter is in the opposite direction, we need to be a bit careful about

defining exactly what we mean by the asymptotic behavior of (5.70). Specifically,

what we mean here is its asymptotic behavior at a finite value of m as both the

bottom and top levels of the tree recede. Note that while the convergence of Px(m)

depends upon the stability of A, the convergence of P- 1-(m) does not. Specifically,

since (A, B) is reachable, it is easily seen (e.g. by examining the Riccati equation for

Pl'(m) obtained from (2.5)) that P 1l(m) does converge as m increases.2 Thus, if

we let S. denote that limiting value, then P(mlm) converges to [Po1 + S]-1.

6 Conclusions

In this paper we have analyzed in detail the new class of multiscale filtering and

smoothing algorithms developed in [1], based on dynamic models defined on dyadic
2 The two extreme cases being when A is stable, so that P,-'(m) - P`; where P, is the positive-

definite solution of (2.6), and when A -1 is stable, in which case P;-'(m) - 0.
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trees in which each level in the tree corresponds to a different resolution of signal rep-

resentation. In particular, this framework leads to an extremely efficient and highly

parallelizable scale-recursive optimal estimation algorithm generalizing the Rauch-

Tung-Striebel smoothing algorithm to the dyadic tree. This algorithm involves a

variation on the Kalman filtering algorithm in that, in addition to the usual measure-

ment update and (fine-to-coarse) prediction steps, there is also a data fusion step.

This in turn leads to a new Riccati equation. As we have seen the presence of the data

fusion step leads to a complication in filter and Riccati equation analysis, and this

motivated the derivation in this paper of an alternative ML algorithm which leads in

turn to a variation on the RTS procedure corresponding to the triangularization of

the Hamiltonian description of the optimal smoother.

The major emphasis of this paper is on the development of system-theoretic con-

cepts of reachability, reconstructibility, and stability for fine-to-coarse dynamic mod-

els which we then used to analyze the multiscale Kalman filter error dynamics and

Riccati equation. Specifically, as we have seen, the structure of the dyadic tree leads

to significant differences in these system-theoretic concepts as compared to their

counterparts for standard state-space models. Using these concepts, we have deter-

mined reconstructibility and controllability conditions under which the solution to

the Riccati equation is bounded above and below, the Kalman filter error dynamics

are asymptotically stable, and, in the constant-parameter case, the Riccati equation

solution converges to a unique, steady-state solution.

As we discuss in [1] multiresolution methods of signal and image analysis are of

considerable interest in research and in numerous applications. One of our objectives

in [1], the present paper, and our paper [2] on multiresolution realization theory is to

demonstrate that there is a substantial role for the systems and control community

in this field. Indeed it is our opinion that there are a broad range of opportunities

for further work in both theory and application, and it is our hope that our work will

help to stimulate activity in this fascinating and important area.
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A Appendix

In this appendix we derive several results related to the ML filter described in Section

3. The first is to show that XML(tit) as defined in this section is indeed the ML

estimate of x(t) based on Yt and also that it satisfies (3.9) - (3.10). To do this, we

start by writing

Yt = -Htx(t) + o(t) (A.1)

where O(t) is a zero-mean noise vector constructed from process and measurement

noises in the subtree under t using (2.1), (2.2). The ML estimate of x(t) based on

(A.1) is precisely XML(tlt), while, using standard ML estimation results [4] 5(tlt) is

the ML estimate of x(t) based on (A.1) together with one additional "measurement".

0 = x(t) = r(t) (A.2)

where r(t) is a zero-mean noise vector, independent of O(t) and with covariance Px(t).

From this it is straightforward to verify (3.9)- (3.10).

To verify the recursive formulae (3.1)- (3.8) note that XML(t-lt) is the ML esti-

mate based on Yt together with one additional "measurement" namely the dynamical

relation (2.1) between x(t) and x(tf). Using results on recursive ML estimation [4],

XML(tflt) is, equivalently, the ML estimate of x(t-7) given the "measurement".

XML(tlt) = A(t)x(tf) + w(t) + XML(tlt) (A.3)

where the estimation error XML(tlt) is zero-mean, independent of w(t), and with

covariance PML(tlt). Eqs. (3.5)- (3.6) follow directly from this. The fusion step

(3.7), (3.8) then follows directly from standard ML results [4] on the fusion of ML

estimates based on disjoint data sets with independent noises, since XML(tlta ) is the

ML estimate based on Yt, together with (2.1) evaluated at ta, while XML(tlt3) is

based on Yt, and (2.1) evaluated at t/3. Similarly the update step (3.1)- (3.4) follows

from the standard result on incorporating a new, independent measurement (namely

(2.1)).
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The second result to be derived is the equivalence of (2.23) - (2.25) and (3.11)

- (3.13). We begin with the equivalence of (2.24) and (3.13). That is, using (2.8),

(3.11) and its counterpart for P(t;lt) we wish to verify that

[PML(tlt) + P-' (t)]P-' (t)A(t)P.(t) [PZl(tlt)f + P;'(t)] = PML(t It)A(t)PML(tT7t)

(A.4)

Algebraic manipulation of this relationship yields the equivalent form

PML(tY[t) = A-l(t)PML(tlt)A-T (t) + A-l(t)Pt (t)A-T(t) - P'(tv) (A.5)

Eqs. (2.4) and (3.6) then verify this equality. Secondly, to verify the equivalence of

(2.23) and (3.11) we must show that

(I- J(t)F(t))x(tlt) = (I- J(t)A-l(t))&ML(tjt) (A.6)

(where we have expressed one-step predicted estimates in terms of updated estimates.)

Using (3.9), we must show that

(I - J(t)F(t))(PMjL(tjt) + P- 1(t))-lPML(tIt) = I - J(t)A-l(t) (A.7)

Rearranging and using (2.8) and (3.13), we find that this is equivalent to (A.5), which

verifies (A.6). Next, we must verify the equivalence of (2.25) and (3.12). i.e. we must

show that

P(t It) - J(t)P(t7Jt)JT (t) = PML(tlt) - J(t)PML(t;yt)JT (t) (A.8)

Again algebraic manipulations reduce (A.8) to (A.5), finishing this verification.

Finally, straightforward algebraic manipulations on (3.1) - (3.10) lead to an in-

formation filter version of the ML algorithm. Specifically, let S denote the inverse

covariance and z the state of the information filter, i.e.

S(t It) = PL(t It), S(tt+) = PM L(tIt+), etc. (A.9)

z(tit) = S(tlt)SML(tlt), z(tjt+)= S(tlt+):ML(tlt+), etc. (A.10)

Then, we have the following algorithm
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z(tlt ) = :(tlt+) + CT(t)R-l(t)y(t) (A.11)

g(tVlt) = JT(t)g(tlt) (A.12)

:(tlt+) = i(tltc) + :(tjlt3) (A.13)

where the recursions for the inverse covariances and a corresponding equivalent ex-

pression for J(t) are:

S(tlt) = S(tlt+) + CT(t)R-1 (t)C(t) (A.14)

J(t) = {I - B(t)[BT (t)S(tlt)B(t) + I]-lBT (t)S(tjt)}A(t) (A.15)

S(tlt) = JT(t)S(tlt)A(t) (A.16)

S(tlt±) S(tlta) + S(t(ltf) (A.17)

Note in particular the simple form of the fusion calculations (A.12) , (A.17),

emphasizing the fact that independent sets of information are being combined. Also,

as indicated in Section 3, this algorithm, is well-defined when S is singular, i.e. when

insufficient information has been collected for x to be estimable. In particular, the

initialization of the ML algorithm at the finest level is given by

z(tlt+) = , S(tlt+) = 0 for all t such that m(t)=M (A.18)

In addition, further algebra yields the corresponding version of the smoothing step

(3.11) - (3.12), using only the information filter quantities calculated during the up-

ward sweep:

xs(t) = J(t)i,(tT) + J(t)A-l(t)B(t)BT (t)g(tlt) (A.19)
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Ps(t) = J(t)Ps(tT)JT (t)+ J(t)A-'(t)B(t)BT (t)JT (t) (A.20)

where this is initialized at the top of the tree with

x'(O) = P3(0)(010) (A.21)

Ps(0) = [S(010) + P2 1(0)]- (A.22)

B Appendix

In this appendix we describe an alternate derivation of the RTS smoothing algorithm

by introducing the Hamiltonian form of the smoothing equations on the tree. For sim-

plicity in exposition and notation we focus here exclusively on the constant parameter

case. The extension to the general case is straightforward.

Specifically, consider the model

x(t) = Ax(ty) + Bw(t) (B.1)

y(t) = Cx(t) +v(t) (B.2)

where w and v are white-noise processes with variances I and R respectively, and

(B.1), (B.2) are defined on an M-level tree, i.e. m(t) = 0,...,M, with a single

root node which we denote by 0. The Hamiltonian form of the smoothing equations

can be derived in several ways: using the complementary model construction as de-

scribed, for example, in [6] or by examining the minimization problem in computing

the x(t)-trajectory that has maximum posterior probability given the data, the prior

statistics and those of the noises, and the dynamic constraint (B.1). We follow the

latter approach here. Specifically, with x(0) having prior mean of 0 and prior co-

variance of Px(0), by straightforward adaptation of standard results we find that the

optimal smoothed estimate trajectory x,(t) is obtained by minimizing the following
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Hamiltonian

H = E 2(y(t) - Cx(t)) T R-l'(y(t) - Cx(t)) + E T(t)(t) (B.3)
t t#o

+ " T(O)PZl(0)x(O) + E A T (t)(x(t) - Ax(tVy)- Bw(t))
t#o

with respect to the state x, the noise w, and the Lagrange multiplier AT(t).

As in the standard case, after we set to zero the derivatives of H with respect

to x, w, and A, we find that we can eliminate w by expressing it as a function of A,

yielding the following optimal smoothing equations for m(t) = 1,..., M:

A(t) = AT[A(ta) + A(t/)] - CTR - 1C i s(t) + CT R -ly(t) (B.4)

x3 (t) = A5,(ty) + BBTA(t) (B.5)

and the boundary conditions 3

:,(O) = [P(O) + CTR-1C]-1{AT[A(Oa) + A(Oi)] + CTR-ly(O)} (B.6)

A(t)= 0, m(t) = M + 1 (B.7)

Let us note several points concerning these equations. First note that, as in

the standard case, the dual dynamics for A run in the opposite direction to the x-

dynamics. In this case, thanks to the asymmetry of the tree, the dual dynamics

(B.4) are in the form of fine-to-coarse dynamics which merge values as we progress

up the tree (4.1). Secondly, by organizing the dynamics (B.5), (B.6) we can obtain

the Hamiltonian form of the dynamics for m(t) = 1,..., M:

A[8J] + e +[ t
8 1 0 J (B.8)

CTR-ly(t)

3Note that, as is typically done in the standard case, we have added an (M + 1)st level to A(t)
to simplify the form of the boundary condition.
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with boundary conditions given by (B.6) and (B.7). Also, the matrices in (B.8) are

-A O

A = -A O (B.9)

C T R - 1C I

I -BBT

@o, = 0 o (B.10)

0 -AT

O O

0e = I -BBT (B.11)

0 -AT

While the dynamics strongly resemble the standard Hamiltonian equations, there is

a substantial difference due to the fact that the number of points double as we move

from one level to the next finer level- i.e. (B.8) involves one node t but two nodes, ta

and t/, at the next level. This asymmetry in the number of variables in (B.8) makes

it impossible to "diagonalize" the Hamiltonian-i.e. to decouple the dynamics and

boundary conditions into separate upward and downward dynamics driven by y(t)-

and thus there is no two-filter algorithm as in [6], [7]. However, we can triangularize

these dynamics and boundary conditions to obtain an RTS algorithm.

Specifically, drawing inspiration from [6],[7] consider a time-varying transforma-

tion of the following form

[:d ] = Tm(t) [X ] (B.12)

where

Tm[m I] (B.13)
I 0

With respect to the transformed variables xu and x we now wish to transform the

Hamiltonian dynamics and boundary conditions into a form in which there is an

upward recursion for xu followed by a downward recursion for is. Note that we

are free to multiply (B.8) on the left by an invertible matrix, Sm(t), without losing
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information. By doing so, we wish to transform the dynamics into the following

structure.

1 1 [~~~cTR-1y(t)

Smi(t)ATm(t) 1 +Sm(t)OT m(t)+l [ +Sm(t)O (t)+l [= 0(t) IOTmT; SS(t)(t)+l

(B.14)

where

-_p-A-1 -pro! A - 1 I

Sm = 0 I 0 (B.15)

I 0 0
I 0

SmATm1- = L 1 L2 (B.16)

L 3 L4

Fm+- O

SmOaT4- [ = 1O O0 (B.17)

N Gm+l

Fm+i O

SmOTm+1 = N Gim+] (B.18)

O O

Substituting the forms of (B.13), (B.15) into (B.16)- (B.18) yields the following con-

straints for L 1 - L4 , N, Fm, Gm, Pm, and rI'm:

L 1 = L 3 = 0 , L 2 = L4 = -A (B.19)

N = -BBT (B.20)

rP = 2P- I + CTR- 1C (B.21)

Fm+lrm+l = -P= -A-1 (B.22)
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Fm+l = P; A-BBT _ AT (B.23)

Gm+, = I + BBTTrm+ (B.24)

Combining (B.21)- (B.23) yields a recursion for P;':

mP = (A-' (2Pl + CTR-lC)-1 A - T + A-1BBTA-T)- 1 (B.25)

which is exactly the same as the information form of the ML Riccati equation (5.11),

(5.12) in the constant parameter case- i.e. if we set

P -l= P(MLm {m + 1) (B.26)

then P;l satisfies (B.25) together with the boundary condition

PMf- 1 = 0 (B.27)

Furthermore in this case from (B.21) we see that

rm = P'l(mlm) (B.28)

and, using these identifications plus (B.23), (B.24), yields

Fm+l = P;'A-'Fr1 = -PfL(mlm + 1)A-1PML(m + 1 Im + 1) (B.29)m+l p-

Gm+, = APmATrm+l = APML(mlIm + 1)ATPL(m + 1mra + 1) (B.30)

so that Fm = -JT(m) and Gm = AJ-'(m), where J is defined in Section 2.

Finally, using these expressions and the dynamics (B.14) - (B.18) yields the fol-

lowing algorithm. The filtering recursion is given by

Xu(t) = JT(m(t) + 1)[xu(ta) + xu(ti)] + CTR-ly(t) , m(t) = 0,... , M - 1 (B.31)
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with initial conditions (using (B.12), (B.13), (B.21) for m = M, (B.27), and (B.7)

xU(t) = CTR-ly(t) , m(t) = M (B.32)

Using the boundary conditions at t = 0 yields the initial condition

s,(O) = [rO + P.1 (0)]-'xu(O) (B.33)

for the downward recursion, which we directly have from (B.14)- (B.18):

iS(t) = J(m(t))i,(t) + J(m(t))A-1BBT xU(t) (B.34)

Finally, comparing (B.31)- (B.34) to (A.8)- (A.10), (A.16), (A.18), (A.19), we see that

this triangularization yields the information filter form of the ML RTS algorithm.
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