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Abstract

Dynamics of vascular normalization during anti-angiogenic
therapy: implications for combination therapy

Ricky T. Tong

Submitted to the Harvard/MIT Division of Health Sciences and Technology on May 5,
2005 in Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy in Medical Engineering

Solid tumors require blood vessels for growth, and the goal of anti-angiogenic therapy is
to destroy the tumor vasculature. Recent findings suggest that anti-angiogenic therapy
enhances radiation and chemotherapy responses. These findings seem paradoxical, since
anti-angiogenic therapy prunes tumor vasculature while chemotherapy and radiation
therapy rely on the vasculature to transport cancer drugs and oxygen, respectively, to
cancer cells. To resolve this paradox, we propose that anti-angiogenic therapy can
"normalize" the tumor vasculature transiently, resulting in a more efficient delivery of
drugs and oxygen to cancer cells. We first show that DC101, a monoclonal antibody
targeting Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), prunes immature
blood vessels, reduces vascular diameter and improves pericyte and basement membrane
coverages. Functionally, the vascular permeability to macromolecules and interstitial
fluid pressure are reduced. By lowering interstitial fluid pressure while maintaining
microvascular pressure, DC101 induces a hydrostatic pressure gradient across the
vascular wall, which leads to enhanced penetration of macromolecules in tumors. Tumor
hypoxia is also reduced, and it is associated with the increased red blood cell velocity
after DC101 treatment. Using gene array, real time PCR and Western blot analyses,
changes in angiopoietin-2 level during DC101 treatment are identified. To test if similar
effects happen in clinical setting, we obtained tumor biopsy samples from rectal
adenocarcinoma patients treated with bevacizumab, an anti-VEGF monoclonal antibody.
Our analysis shows that after bevacizumab treatment, microvascular density of the
tumors decreases while pericyte coverage increases. The level of angiopoietin-2 also
decreases, similar to the pre-clinical data. Thus our work shows a potential mechanism
that explains the synergism between anti-angiogenic therapy and conventional therapies.
These findings should facilitate the design of optimal dose and schedule of anti-
angiogenic therapy.

Thesis Supervisor: Rakesh K. Jain
Title: Andrew Werk Cook Professor of Tumor Biology

Harvard Medical School/Department of Radiation Oncology,
Massachusetts General Hospital
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Recent pre-clinical and clinical trials suggest that anti-angiogenic therapy should be

combined with cytotoxic/radiation therapy for successful treatment of solid tumors.

However, there are no generally accepted guidelines for optimal scheduling of these

therapies. The synergistic results seen in combined therapy also present a paradox. One

would expect that anti-angiogenic therapy, which aims to destroy tumor vasculature,

would severely compromise, instead of enhance, the delivery of oxygen and therapeutics

to the solid tumors, and thus lead to a less effective chemotherapeutic/radiation response.

The primary goal of this thesis is to resolve this paradox by understanding the dynamic

changes during anti-angiogenic therapy. We propose that anti-angiogenic therapy will

transiently "normalize" the tumor vasculature by passively pruning immature tumor

blood vessels and actively remodeling the remaining vasculature. We further hypothesize

that the changes in vascular function during this normalization time window will enhance

the delivery of molecules in tumors. This work will drive our understanding of general

tumor pathophysiology and may improve treatment of solid tumors using anti-angiogenic

therapy.

To get a better picture of the effects of anti-angiogenic therapy on tumors, multiple

approaches were used to characterize the changes. By implanting tumors in a chronic

window model such as the dorsal skinfold chamber window or cranial window in mice,

daily three dimensional images of tumor vasculature were captured using two photon

laser scanning microscopy (Chapter 6). A few days after DC101 treatment, an anti-

murine VEGFR2 antibody, vascular density and diameter significantly decreased.

Surprisingly, many of the vessels became less tortuous during the treatment.

- 15-



The cellular structure around the tumor vasculature was analyzed using immunostaining

techniques to determine if some tumor blood vessels were more vulnerable to anti-

angiogenic therapy than others. The results demonstrated for the first time that anti-

angiogenic therapy improves pericyte coverage and basement membrane coverage

around tumor blood vessels. Interestingly, by monitoring pericyte coverage throughout

the treatment, it became apparent that anti-angiogenic therapy both preferentially pruned

tumor blood vessels with no pericyte coverage, and at the same time, indirectly increased

the pericyte coverage of the remaining vessels.

Next, the effects of these structural changes in the tumor vasculature on vascular function,

tumor microenvironment, and more importantly, the delivery of molecules in tumors

were studied. Using intravital microscopy, tumor blood vessels were demonstrated to be

less leaky during the treatment (Chapter 7). Of interest, interstitial fluid pressure (IFP)

was significantly lowered after the treatment. Using the micropipette technique,

microvascular pressure (MVP) and interstitial fluid pressure were measured in one

preparation. While interstitial fluid pressure was reduced after DC101 treatment, no

changes were observed in microvascular pressure. Thus, anti-angiogenic therapy induced

a hydrostatic pressure gradient across the vascular wall.

Fluid movement across the vascular wall is governed by the Starling's equation:

Jv = Lp [(MVP - IFP) - (p - rn)]

which states that the rate of fluid movement across a unit area of vascular wall, or fluid

flux (Jv), is proportional to both hydrostatic (MVP, IFP) and oncotic pressure (p, 7r)

difference across the vascular wall. Interestingly, we found that the modification in

hydrostatic pressure was accompanied by a change in interstitial oncotic pressure.

-16-



Moreover, by using experimentally measured values and the mathematical model

developed by Baxter and Jain (Baxter and Jain 1989), it also showed that DC101 lowered

interstitial fluid pressure throughout the entire tumor, and the model further predicted an

increase in interstitial fluid velocity. Using two photon line scan method, we showed that

red blood cell velocity increased after DC101 treatment, and the increase was associated

with a reduced tumor hypoxia.

Next, to determine the molecular changes in tumors during anti-angiogenic therapy,

tumor samples were obtained, and mRNA and protein were examined (Chapter 8). Gene

array and real time PCR data showed that angiopoietins were modified during the

treatment. The change was further confirmed by Western blot analysis.

But are these experiments in mice relevant to cancer patients? Our clinical collaborators

began a phase I clinical trial using bevacizumab, an anti-VEGF monoclonal antibody, to

characterize its effects on rectal cancer (Chapter 9). Patients with primary and locally

advanced adenocarcinoma of the rectum were enrolled in a preoperative treatment

protocol of bevacizumab administration alone, followed 2 weeks later by concurrent

administration of bevacizumab with 5-fluorouracil and external beam radiation therapy to

the pelvis. Surgery was performed to resect remaining disease 7 weeks after treatment

completion. Tumor biopsies were obtained before and 12 days after initial bevacizumab

administration, and immunohistochemistry was performed on these samples. Confirming

the results from the animal studies, the human tumors showed decreased microvascular

density with increased pericyte coverage after bevacizumab treatment. Furthermore,

angiopoietin-2 level was also lowered after the treatment. These results further

- 17-



confirmed that anti-angiogenic therapy normalized tumor vasculature, and provided a

potential mechanism for the synergistic effects seen in combined treatment.

In summary, this dissertation provides a thorough examination of the effects of VEGFR2

blockade on tumors at structural, cellular, functional, and molecular levels. Biopsies

from rectal carcinomas taken from patients treated with bevacizumab show similar

cellular modification as in animal models. The continued progress in this field will

provide clues on multiple avenues, such as designing an optimal schedule for combined

therapies and discovering surrogate markers for anti-angiogenic therapy. It will also help

establish guidelines for future anti-angiogenic clinical trials.
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Table 1.1: Original contribution

Specific Aim Experiment Novelty Contribution*

la Vascular density and diameter RT

lb Pericyte coverage Y RT

lb Basement membrane coverage Y RT

2a Vascular permeability RT

2b Red blood cell velocity Y RT

2c Interstitial fluid pressure measurement in Y RT

spontaneous tumors

2c Microvascular and interstitial fluid pressure Y RT

measurements

2c Plasma and interstitial oncotic pressures Y RT

2d Macromolecule distribution/penetration Y RT

2d Hypoxia Y RT, FW, SK

3a Gene array RT

3b Real-time PCR RT

3c Western blot RT

4a Microvascular density RT, EdT

4a Pericyte coverage Y RT, YB

4b Angiopoietin 2 staining Y RT

* RT: Ricky Tong; FW: Frank Winkler; SK: Sergey Kozin; EdT: Emmanuelle di

Tomaso; YB: Yves Boucher
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Cancer is a major health problem in the world. Since 1990, the United States has seen

nearly 15 million new cancer cases diagnosed (Fig. 1). 1.3 million new cases of cancer

were diagnosed in 2004, excluding an estimated 59,000 new cases of breast carcinoma in

situ, and 41,000 new cases of in situ melanoma (lemal et al. 2004). Over half a million

Americans will die of cancer this year alone, a daily average of more than 1,500 people.

Men have approximately 45% lifetime risk of developing cancer, whereas for women, the

risk is about 38%. Cancer is clearly an important public health concern in the US and

around the world, and has been for centuries .

.....
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Figure 2.1: Cancer incidence rates among males and females for selected cancer

types in the US from 1975 to 2000.

The rates are age adjusted to the 2000 US standard population (lemal et al. 2004)

As a result, the prevention, detection, and treatment of cancer constitute a significant

portion of the current national health budget. Despite this effort, the number of people
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living with cancer has been predicted to double between the years 2000 and 2050

(Simmonds 2003). Furthermore, the annual percent change for the number of cancer

deaths has not decreased significantly (Figure 2). Thus, a tremendous amount of effort

has been put forth in the search for new and innovative treatments for cancers.
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Figure 2.2: Cancer incidence and death rates among males and

females in the US from 1975 to 2000.

The rates are age adjusted to the 2000 US standard population (lemal et

al.2004).

Surgery has been the most effective way to eradiate primary tumors; however, studies

have shown that approximately 30% of patients newly diagnosed with solid tumors have

already developed metastases (Cotran et ale 1999). The presence of metastases is a strong

indication of poor prognosis, and that is what makes cancer so lethal (Ruoslahti 1996).

Once cancer cells have metastasized to many locations in the body, it is almost
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impossible to remedy with surgery. Thus, systemic therapies such as chemotherapy are

often employed to treat metastasized tumors or as post-surgery preventive care.

However, in order for chemotherapy to be effective, therapeutic agents must reach all

cancer cells in sufficient quantity to promote anti-cancer activity without causing major

systemic toxic effects. A number of cytotoxic drugs have shown potent anti-cancer

properties in a laboratory setting; however, existing therapeutic agents have not

dramatically reduced the number of deaths caused by solid tumors (Jemal et al. 2003).

Due to both drug delivery barriers and the development of drug resistance in cancer cells,

many chemotherapy trials have not lived up to expectations (Jain 1989; Jain 1994; Jain

1998). Anti-angiogenic therapy, which targets the genetically stable endothelial cells,

may overcome some of the obstacles offered by conventional therapy and has become a

promising anti-cancer modality (Folkman 1971; Kerbel and Folkman 2002).

Interestingly, recent clinical studies have shown that anti-angiogenic therapy is more

effective when combined with chemotherapy/radiation therapy (Kabbinavar et al. 2003;

Hurwitz et al. 2004). However, these results present an apparent paradox: while anti-

angiogenic therapy aims to eradicate tumor blood vessels, chemotherapy and radiation

therapy rely on tumor vasculature to deliver cancer drugs and oxygen, respectively, to

cancer cells. The lack of mechanistic understanding of the effects of anti-angiogenic

therapy has been a major challenge to the evaluation of treatment efficacy and the design

of optimal treatment schedules. This thesis focused on the effects of anti-angiogenic

therapies, DC101 and Avastin, both blocking Vascular Endothelial Growth Factor

(VEGF) pathway, on the tumor vasculature and microenvironment. It also rigorously

tested the "normalization" hypothesis put forward in 2001 by Dr. Rakesh Jain (Jain 2001)
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(Fig. 2.3). According to this hypothesis, VEGF blockade can normalize tumor

vasculature and enhance drug and oxygen delivery. We identified the structural,

functional, and molecular changes in tumor blood vessels as well as determined the

mechanism responsible for the synergistic effects of anti-angiogenic therapy combined

with radiation therapy.

-,

B. Abnormal

c. Normalized D. Inadequate
Figure 2.3: Schematic of changes in tumor vasculature during the

course of anti-angiogenic therapy.

A. Normal microcirculation with mature vessels. B. Chaotic, irregular

tumor blood vessels composed mostly of immature vessels. C.

Judiciously applied anti-angiogenic therapy might prune immature

vessels, leading to a more normalized tumor vascular network. D.

Excessive pruning leads to inadequate oxygenation and drug delivery

for combination therapy (Jain 2(01).
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Chapter 3: Specific Aims
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Anti-angiogenic therapy has been shown to enhance the efficacy of cytotoxic and

radiation therapies; however, the mechanism responsible for this synergism and the

optimal dose or schedule have not been determined. Each of the following specific aims

addresses a critical aspect to understand and resolve this issue.

Hypothesis: VEGF blockade by DC101, an anti-VEGFR2 antibody, prunes

immature tumor vessels and normalizes the remaining vasculature by modulating

genes that stabilize and fortify the vascular wall. The improved vascular function

enhances the delivery of therapeutic agents during the normalization time window.

Specific Aim 1: Determine the structural changes of tumor vasculature during DCO1

treatment. Hypothesis: DCIOI prunes immature blood vessels and normalizes the

remaining vasculature.

Specific Aim la: Examine the effects of DCIOI on tumor vessel architecture.

Mice with tumors implanted in either the dorsal skinfold chamber or cranial window

were treated with DC101. Dynamic changes in vascular density and diameter were

measured in vivo by both conventional fluorescence and two photon microscopy. A

computer algorithm was used to extract the changes in tumor blood vessel morphology.

Specific Aim lb: Determine the effects of DCIOI on pericyte and basement membrane

coverage.

Tumor blood vessels have abnormal and heterogeneous pericyte and basement membrane

coverage. Endothelial cell survival is dependent on pericyte coverage and VEGF levels,

thus DC101 could target immature blood vessels with limited pericyte coverage.
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Immunohistochemistry was used to detect and quantify the changes in pericyte and

basement membrane coverage.

Specific Aim 2: Determine the functional changes in the tumor vasculature and the

resulting changes in tumor microenvironment during DCOI treatment. Hypothesis:

DCIOI improves vascular function by decreasing vascular permeability to

macromolecules, re-establishing a hydrostatic pressure gradient across the vascular

wall, and increasing red blood cell (RBC) velocity.

Specific Aim 2a: Characterize the vascular permeability of the normalized tumor

vasculature.

The tumor vasculature has an abnormally high vascular permeability and a slow blood

flow rate. The effects of DC101 on macromolecule permeability were measured before

and after DC 101 treatment by either conventional fluorescence or two photon microscopy.

Specific Aim 2b: Examine the changes in red blood cell velocity after anti-angiogenic

treatment

Lowering vascular permeability by VEGF blockade may prevent flow stasis in vessels

and should improve RBC velocity in tumor vessels. The effect of DC101 on RBC

velocity was measured before and after DC 101 treatment by two photon microscopy.

Specific Aim 2c: Determine the hydrostatic and oncotic pressure profiles across the

vascular wall.

Convective flow across tumor vessels is determined by differences in oncotic (osmotic

pressure of proteins) and hydrostatic pressures across the tumor vasculature (Starling's

equation). Oncotic and hydrostatic pressures were measured both inside and outside
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tumor blood vessels in tumors treated with DC101 or control IgG antibody. The changes

in oncotic and hydrostatic pressures were related to vascular permeability measurements

and lymphatic drainage.

Specific Aim 2d: Measure the distribution/penetration of molecules during the

normalization time window.

Modifications in the tumor vasculature and pressure profiles induced by DC101 could

affect the distribution of molecules in tumors. Fluorescently labeled macromolecules

were injected into the circulation and the distribution/penetration of macromolecules was

determined. Hypoxia was also measured during DC101 treatment by

immunohistochemistry.

Specific Aim 3: Determine the molecular changes during DCIOI treatment.

Hypothesis: DCIOI modulates genes that stabilize the vascular wall.

Specific Aim 3a: Determine the modification of gene expression by DCO11 treatment.

Total RNA was obtained from both the control and DC101 treated groups. Gene array

analysis was performed with angiogenic gene array chips.

Specific Aim 3b: Confirm the changes in gene expression level by real time (RT)-PCR.

Several genes identified in specific aim 3a were studied and quantified by RT-PCR.

Gene expression was compared between the control and DC 101 treated groups.

Specific Aim 3c: Confirm the changes in protein level by Western blot analysis.

In order to further confirm the RT-PCR findings in specific aim 3b and to determine cell

types associated with the changes in gene expression, Western blot and immunostaining

were performed for both the control and DC 101 treated groups.
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Specific Aim 4: Examine the effects of bevacizumab in rectal adenocarcinomas in

patients. Hypothesis: Similar to DCIOI treatment in mice, bevacizumab decreases

vascular density, increases perivascular cell coverage and decreases angiopoitein-2

levels in tumors.

Specific Aim 4a: Determine the effects of bevacizumab on pericyte coverage in rectal

adenocarcinoma in patients.

Human biopsy samples of rectal adenocarcinomas were obtained before and 12 days after

treatment with bevacizumab, an anti-VEGF monoclonal antibody. Perivascular cells and

blood vessels were stained with antibodies against aoSMA and CD31, respectively, and

the percentage of vessels covered by perivascular cells was measured.

Specific Aim 4b: Determine the changes in Angiopoietin-2 level in rectal

adenocarcinomas in patients treated with bevacizumab.

Angiopoietin-2 expression was identified by immunohistochemistry in biopsy samples of

rectal adenocarcinomas obtained before and 12 days after treatment with bevacizumab.

A computer algorithm was used to quantify the staining.
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Barriers to drug delivery: A need for finding a new therapy

For any anti-cancer therapy to be successful, it must meet at least two criteria: first, the

agent must be potent and effective at inhibiting the growth of tumors or destroying tumor

cells. Second, it must reach tumor cells in sufficient quantity (Jain 1998). Most cancer

research has been focused on the first criteria, and many potent cytotoxic agents are now

available to physicians. However, cancer cells rapidly develop drug resistance to anti-

cancer drugs due to their inherent genetic instability (Lehne et al. 1998).

Chemoresistance is a major clinical problem and ultimately leads to treatment failure in

many cancer patients.

Furthermore, physiological barriers impede the delivery of chemotherapeutic drugs to

tumor cells (Jain 1998). Tumor vessels are structurally and functionally abnormal, and

the chaotic blood supply in tumors limits the delivery of blood-borne agents (Jain 1988;

Jain 1989). These abnormalities lead to a heterogeneous tumor blood flow, with some

regions having inadequate perfusion. The second barrier is the vascular wall (Jain 1987).

The variability in vessel permeability results in variable drug delivery to different parts of

the tumor. In addition, the elevated interstitial fluid pressure (IFP) reduces intratumoral

transvascular convection, thus limiting extravasation (Baxter and Jain 1989; Boucher et al.

1991; Netti et al. 1999). The third barrier is the tumor interstitium. The interstitial space

consists of a matrix of collagens, proteoglycans, and other molecules that hinder the

delivery of molecules (Jain 1987; Netti et al. 2000; Brown et al. 2003). Thus, for any

therapeutic agent to be effective, it must pass through all these barriers and successfully

reach target cells in optimal quantity.
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Tumor Pathophysiology

The tumor vasculature differs from normal vessels in both structure and function. The

imbalance in the production of pro-angiogenic factors and anti-angiogenic factors leads

to the formation of angiogenic vessels. As a result of the excess angiogenic factors,

tumor blood vessels are leaky, dilated, chaotic, and poorly organized (Baish and Jain

2000; Jain 2003). The chaotic and heterogeneous vascular network further prevents

blood-borne molecules to be delivered uniformly in sufficient quantities (Baish and Jain

2000). Tumor blood flow is also highly heterogeneous, and this is partly due to the

increased leakiness of tumor blood vessels (Chaplin and Hill 1995; Netti et al. 1996;

Baish et al. 1997).

In addition, pericytes around tumor vessels are loosely associated with endothelial cells,

and some vessels are even completely devoid of perivascular cells (Morikawa et al. 2002).

The lack of pericytes leads to endothelial hyperplasia and signs of increased

transendothelial permeability (Hellstrom et al. 2001). Proper pericyte coverage has been

shown to be essential for vessel maturation (Darland and D'Amore 1999; Jain 2003).

Thus, the tumor vasculature is considered immature due to the abnormality in or absence

of pericyte coverage along blood vessels. Basement membrane of some tumor blood

vessels is often thick and becomes multi-layered, while many of the vessels lack a

complete basement coverage (Baluk et al. 2003; Kalluri 2003).

Tumor Interstitial Fluid Pressure

Since 1950, several investigators have demonstrated that interstitial hypertension is a

characteristic of solid tumors (Young et al. 1950; Jain 1987; Boucher et al. 1991; Netti et

al. 1999). In normal tissues, the excess fluid filtered from blood vessels is drained by
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lymphatic vessels to maintain the IFP close to zero (mmHg). In tumors, IFP homeostasis

is perturbed due to impaired lymphatic drainage (Leu et al. 2000; Padera et al. 2002) as

well as abnormalities in vascular structure and function (Jain 2003). The lack of

functional lymphatics in tumors prevents the removal of interstitial fluid from the

extracellular space, thereby increasing the IFP. Furthermore, tumor blood vessels

generally have a higher permeability than normal vessels (Jain 1987; Jain 1994). As a

result, an abnormally high concentration of plasma proteins leaks out of the vessels,

which leads to a negligible oncotic pressure difference across the vessel wall (Stohrer et

al. 2000). Thus, both the oncotic and hydrostatic transvascular pressure gradients are

reduced, which reduces the fluid filtration within solid tumors (Boucher et al. 1990;

Boucher and Jain 1992). In addition, elevated IFP coupled with high vascular

permeability can also reduce blood perfusion in solid tumors and further limit the

delivery of drugs (Netti et al. 1996). Thus, the combination of inefficient blood vessels

and tumor microenvironment hinders the adequate delivery of blood-borne molecules

such as oxygen and cytotoxic drugs throughout the tumor tissues during anti-cancer

therapy.

Angiogenesis

Researchers have long recognized that tumor growth and metastasis are dependent upon

the formation of a vascular network (Folkman 1971). Angiogenesis is the growth of new

blood vessels from pre-existing ones, and it is involved in developmental processes,

wound healing, tissue regeneration, chronic inflammation, and other pathological states

(Folkman 1995; Carmeliet and Jain 2000; Jain and Carmeliet 2001; Kerbel and Folkman

2002; Carmeliet 2003). Without angiogenesis, a solid tumor cannot grow beyond 1-2
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mm in diameter (about 106 cells) due to limitation in the diffusion of oxygen and other

nutrients (Carmeliet and Jain 2000; Hlatky et al. 2002). When cancer cells turn on the

"angiogenic switch", they recruit vessels from the surrounding normal blood vessels,

which permit tumors to continue growth and proliferation.

Because of their crucial role in tumor growth, many angiogenic and anti-angiogenic

factors have been studied extensively in the quest for novel anti-cancer treatments. Some

angiogenic factors stimulate endothelial cells to proliferate and migrate while others

degrade the basement membrane (Cross and Claesson-Welsh 2001). Vascular Endothelial

Growth Factors (VEGFs) are the most studied angiogenic factor family (Ferrara 2002).

VEGF, also known as Vascular Permeability Factor (VPF), has been shown to induce

angiogenesis in solid tumors. VEGF was originally discovered in the context of its

ability to increase permeability of microvessels in vivo, and termed vascular permeability

factor (Senger et al. 1983). To date, six members of the VEGF family have been

identified: VEGF-A (VEGF), VEGF-B, VEGF-C, VEGF-D, VEGF-E (also called Orf

virus VEGF), and P1GF (Veikkola et al. 2000). The physiological importance of VEGFs

and VEGF receptors (VEGFRs) in blood vessel formation has been demonstrated with

knockout mice (Ferrara et al. 2003). Targeted deletions of the VEGF (Carmeliet et al.

1996; Ferrara et al. 1996), VEGFR1 (Fong et al. 1995), and VEGFR2 genes (Shalaby et

al. 1995) in mice resulted in embryonic lethal phenotypes due to their inability to form

normal vasculature. In humans, VEGF and VEGFRs are abundantly expressed and play

significant role in the neovascularization of glioma (Plate et al. 1992), neuroblastoma

(Rossler et al. 1999), breast (Yoshiji et al. 1996), bladder (O'Brien et al. 1995), renal

(Takahashi et al. 1994), and gastro-intestinal (Brown et al. 1993; Takahashi et al. 1995)
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cancers. VEGF can be induced by hypoxia (Shweiki et al. 1992) and inhibit endothelial

cell apoptosis through the PI3-kinase/Akt signaling pathway (Gerber et al. 1998). Due to

the importance of VEGF in tumor angiogenesis, we selected the inhibition of the VEGF

signaling pathway to test the normalization hypothesis.

Anti-angiogenic treatment

Anti-angiogenic therapy can potentially overcome the two main problems experienced by

conventional chemotherapy - drug resistance and barriers to drug delivery. Anti-

angiogenic therapy targets tumor endothelial cells, which are presumably derived from

normal blood vessels or from circulating endothelial cells. Compared to cancer cells,

endothelial cells are considered to have a lower turnover rate and are genetically more

stable (Boehm et al. 1997; Kerbel 1997). Thus, patients treated with anti-angiogenic

therapy are less likely to develop drug resistance. Furthermore, the target of many anti-

angiogenic agents is the vascular lining, and these agents do not face the same transport

barriers as conventional chemotherapeutic agents that target cancer cells. Since a large

number of tumor cells depend on a small number of endothelial cells to supply nutrients

and oxygen, anti-angiogenic treatment might also amplify the therapeutic effect. Finally,

compared to chemotherapy or radiation therapy, anti-angiogenic therapies are less toxic

(Folkman 1995).

VEGF is an attractive target for anti-angiogenic therapy because its receptors are

expressed mostly on endothelial cells, and are upregulated on tumor endothelium

compared to normal endothelial cells (McCarty et al. 2003). Several anti-angiogenic

therapies that target VEGF/VEGFR activities, such as VEGF antisense (Cheng et al.

1996; Saleh et al. 1996), VEGF-toxin conjugate (Ramakrishnan et al. 1996; Arora et al.
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1999), soluble VEGFR (Kendall and Thomas 1993), anti-VEGF mAb (Kim et al. 1993),

anti-VEGFR2 mAb (Prewett et al. 1999), anti-VEGFR2 single-chain antibody (Zhu et al.

1998), VEGFR2 tyrosine kinase inhibitor (Fong et al. 1999), dominant negative anti-

VEGFR2 mutant (Millauer et al. 1994), and a DNA vaccine against VEGFR2

(Niethammer et al. 2002) have been shown to inhibit tumor growth. DC101, a

neutralizing monoclonal antibody, binds to the murine VEGFR2 receptor with high

affinity and blocks ligand-induced receptor activation. It has been demonstrated that

DC 101 can inhibit or delay tumor growth in several human cancer xenografts (Prewett et

al. 1999; Bruns et al. 2000; Kunkel et al. 2001), and spontaneous sarcomas and

adenocarcinomas (Izumi et al. 2003). In this study, the effects of DC101 were

investigated extensively as an anti-angiogenic agent. As for the translation part of the

thesis, bevacizumab (Avastin) was used to treat patients with rectal adenocarcinoma.

Bevacizumab is a monoclonal antibody targeting human VEGF. Various

immunostaining studies were performed to test the validity of pre-clinical findings.

Vascular Normalization

While anti-angiogenic treatment alone seems promising, numerous studies also suggest

that anti-angiogenic agents can potentiate the effects of radiation therapy and

chemotherapy (Appendix 1 and 2). Encouraging results have demonstrated that

combining anti-angiogenic therapy with either conventional chemotherapy or radiation

therapy has additive or synergistic effects (Teicher 1996; Mauceri et al. 1998; Klement et

al. 2000; Kozin et al. 2001). Interestingly, anti-VEGF treatment can enhance tumor

oxygenation (Lee et al. 2000) and increase intratumoral uptake of therapeutic agent CPT-

11 (Wildiers et al. 2003). In a recent clinical study, patients with colorectal cancers
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showed improved response when treated with anti-VEGF antibody combined with

cytotoxic agents (Hurwitz et al. 2004).

However, the results appear to be counter-intuitive initially. Anti-angiogenic therapy

aims to starve off cancer cells by eliminating the tumor blood vessels. On the other hand,

chemotherapy and radiation therapy rely on tumor blood vessels to transport cancer drugs

and oxygen, respectively, to cancer cells. Therefore, anti-angiogenic therapy should

further impede the delivery of therapeutic agents and reduce the effectiveness of

conventional therapies. In 2001, the "normalization" hypothesis was put forward to

explain this apparent paradox (Jain 2001). Anti-angiogenic therapy prunes the immature

vessels in solid tumors and actively remodels the rest, leaving a more "normal"

vasculature (Figure 2.3). It improves the integrity and function of the remaining network,

which enhances the delivery of therapeutic agents. Thus, we hypothesize that the

normalization of tumor blood vessels by anti-angiogenic agents can enhance drug

delivery and the efficacy of cytotoxic agents.

- 37 -



Chapter 5: Material and Methods

-38-



The material and methods section is divided into five parts: i) animal models and

therapeutic agents, ii) microscopy and iii) quantitative measurements and procedures, iv)

histology, and v) molecular techniques.

5.1 Animal models and therapeutic agents

All animal models were developed using procedures carried out following the Public

Health Service Policy on Humane Care of Laboratory Animals and approved by the

Massachusetts General Hospital Institutional Review Board Subcommittee on Research

Animal Care (MGH SRAC protocol 2004N000050, 2002N000138 and 2004N000002).

The experiments were continuously monitored by the MGH veterinary staff. The mice

were 8-10 weeks old. Unless otherwise specified, they were bred and maintained in our

defined flora- and specific-pathogen-free animal colony.

5.1.1 Harvesting tumor cells

Tumor cells were harvested from either nude, C3H, or severe combined immunodeficient

(SCID) mice with either human or murine tumors growing in the subcutaneous space.

The mice were euthanized with an intraperitoneal injection of sodium pentobarbital

(Fatal-Plus, 200 mg/kg). The incision was made, and the connective tissue surrounding

the tumor was severed and the excised tumor was placed on a sterile plate. Tumors were

then cut into small pieces (0.01 to 0.03 mm3) and were ready for implantation. If tumor

slurry was required for the particular experiment, the tumor was then minced with 0.05

ml of Hanks solution until the tissue had a paste-like texture. For this thesis work,

multiple cell lines were used: MCaIV murine mammary carcinoma, U87 human

glioblastoma, and LS 174T human colon adenocarcinoma.

5.1.2 Dorsal skinfold chamber
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The dorsal skinfold chambers were prepared as previously described (Leunig et al. 1992).

The entire preparation was done under anesthesia (100 mg of ketamine hydrochloride/10

mg of xylazine per kg body weight intramuscularly) in aseptic conditions inside the

animal colony. Briefly, the back of the mouse was shaved and hair was removed using

hair removal cream. Two symmetrical titanium frames were stitched on to fix the

extended double layer of dorsal skin between the frames. Roughly 15 mm diameter of

skin was removed from one side, leaving the opposite side of the skin, striated muscle

and subcutaneous tissue intact. The fascia was carefully removed, and a cover glass was

mounted into the frame. The animals were allowed for at least one day of recovery

before using them in experiments.

5.1.3 Cranial window

The procedure of cranial window preparation was described in previous studies (Yuan et

al. 1994). The entire preparation was done under anesthesia (100 mg of ketamine

hydrochloride/10 mg of xylazine per kg body weight intramuscularly) in aseptic

conditions inside the animal colony. A stereotactic apparatus was used to fix the head of

the mouse. The skin of the frontal and parietal regions of the skull was cleaned and

removed in a circular manner on top of the skull. Using a small high speed air-turbine

drill, a 6 mm diameter circle was drilled on the skull. Cold saline was applied to the skull

during the drilling process to avoid thermal damage to the brain. When the bone flap

became loose, a blunt blade was used to remove the bone flap. The dura membrane was

cut completely from the surface of both brain hemispheres. Finally, a cover glass was

glued on the bone to cover up the brain. A few days after the surgery, the cover glass

was removed. With a 23G needle, a path was made under the surface of the brain
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adjacent to the sagittal sinus. A piece of tumor tissue was inserted inside the brain

through the path. A new cover glass was glued on.

5.1.4 Spontaneous tumor model

C3H mice were maintained in the animal colony and allowed to live their normal life

span. Aged C3H mice were screened weekly for tumor development. The experiments

were started when tumors became visible and palpable.

5.1.5 Anti-VEGFR2 monoclonal antibody, DC101

Rat anti-mouse VEGFR2 monoclonal antibody DC101 was developed and provided by

ImClone Inc., and negative control polyclonal rat IgG was purchased from Jackson

ImmunoResearch Laboratories. DC101 or control IgG was given at 40 mg/kg every 3

days i.p., unless otherwise noticed.

5.2 Microscopy

5.2.1 Intravital microscopy

Light from a mercury lamp was directed into the objective lens and then into the sample

through a dichroic mirror. Fluorescence emission was collected by the same objective

lens. After passing through the appropriate band pass filter, the signal was collected by a

CCD camera. The CCD camera was connected to a signal amplifier and a computer.

The image was capture using NIH Image (NIH, Bethesda, MD).

5.2.2 Confocal laser scanning microscopy

The confocal laser scanning microscopy allows three-dimensionally resolved imaging

using a confocal aperture to reject fluorescence light that originates from outside of the

focal plane. Briefly, the confocal microscopy (Olympus) was equipped with three
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different laser sources. The laser beams were focused into the samples through objective

lens. A z-stepper motor allowed 3D imaging by taking a stack of 2D optical sections.

5.2.3 Two photon laser scanning microscopy

Two photon microscopy enables one to acquire 3D sub-micron resolution images (Brown

et al. 2001). Briefly, a tunable MilleniaX-pumped Tsunami Ti:Sapphire laser (Spectra-

Physics, Mountain View, CA) was directed into a Zeiss microscope (Zeiss, Jena,

Germany) through a galvanometer-driven x-y scanner (MRC600, Bio-Rad, Hemel

Hempstead, England). The laser light entered through the side and was deflected into the

objective lens by a dichroic mirror. A piezo-driven stepper motor was used to adjust

axial position during data acquisition. Fluorescence emission was collected through the

same objective lens using photomultiplier tubes (HC125-02 PMTs, Hamamatsu

Photonics, Bridgewater, NJ).

5.3 Quantitative measurement and procedures

5.3.1 Angiography

FITC-dextran 2M MW (Sigma) or Rhodamine-dextran 2M MW was used to trace blood

vessels in vivo. Prior to imaging, the mouse was anesthesized using ketamine/xylazine

solution, and was injected 0.1 ml of fluorescent dye by tail vein cannulation. Extra care

was given to ensure no air bubbles were injected into the blood circulation. The animals

with either dorsal skinfold chambers or cranial windows were then fixed and stabilized

on specially designed plates for imaging.

5.3.2 Analysis of intravital microscopy images

- 42 -



Vascular density and diameter calculation were performed using NIH Image. Briefly,

vessels were traced and diameter was determined for each individual vessel. Vascular

volume density was calculated by assuming the vessels were cylindrical shape.

5.3.3 Permeability measurement

The effective vascular permeability was measured using cyanine-5-labeled BSA (Cy5 Bis

NHS Ester, Amersham Biosciences Corp., Piscataway, NJ) or Tetramethylrhodamine

(TRITC) BSA (Molecular Probes, A23016), according to published methods (Yuan et al.

1993; Yuan et al. 1994). The extravasated fluorescent BSA signal at a given region in the

tumor was measured and quantified every two minutes for 23 minutes immediately after

the injection. Measurements were done both before and three days after the injection of

DC101 in the same tumor region. A macro computer program was used to quantify the

rate of extravasation of BSA normalized by the density of blood vessels in the same

region.

5.3.4 Red blood cell velocity measurement

Red blood cell (RBC) velocity was measured using the line-scan method (Brown et al.

2001). Under fluorescent microscopy and two photon microscopy, RBCs appear as dark

spots in the vessel because the cells absorb the fluorescent signal. By scanning the same

location (same line) repeatedly at a known speed, the rates of RBCs passing through the

vessels were calculated.

5.3.5 Interstitial fluid pressure measurement using wick-in-needle technique

Tumors were implanted subcutaneously into the hind legs of mice. Interstitial fluid

pressure (IFP) was measured when the tumors reach a mean diameter of 6 mm. FP was

measured using the wick-in-needle technique (Fadnes et al. 1977; Boucher et al. 1991)
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before and during DC101 treatment. In brief, 23-gauge needles with a 2-3 mm side-hole

at 4-5mm from the tip were filled with surgical sutures (6-0 Ethilon) to increase the

contact area and improve fluid communication. The needle was connected to a pressure

transducer (Model P23XL; Spectramed Inc., Oxnard, CA) through polyethylene tubing

filled with sterile, heparinized (70 units/ml) saline. The pressure transducer was

connected to a preamplifier (Model 1 -G4113-01; Gould, Inc., Cleveland, OH), and the

signal was sent to an analogue-to-digital converter (Powerlab 4/20; ADInstruments,

Colorado Springs, CO). A measurement was acceptable when the pressure

measurements following compression and decompression did not differ by more than

15%, as this ensured that the fluid communication was satisfactory. The pressure was

determined from the stable values after compression and decompression. For each time

point, IFP was measured in two different tumor regions.

5.3.6 Micropipette preparation

Capillary tubing was used (0.86 mm o.d.; 0.38 mm i.d.) to make micropipettes with a

horizontal pipette puller (Narishige PN-3; Narishige International USA, Inc., Long Island,

NY). The inner tip diameter was grinded to around 2.5 micron. The micropipettes were

filled with M NaCl solution.

5.3.7 Microvascular and interstitial fluid pressure measurements using micropipette

technique

MCaIV tumors were implanted in the dorsal skinfold chambers of SCID mice. The

dorsal skinfold chamber provides a stable and easy access environment for IFP and MVP

measurements using the micropipette technique (Boucher and Jain 1992). Since the

success rate was quite low for this type of measurement, and the measurement was a
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rather invasive one, only one time point (3 days after the injection of DC 101/control IgG)

was measured. For each mouse, several measurements were made for both MVP and IFP.

Briefly, after anesthetizing the animals, tumors in the dorsal skinfold chambers were

continuously flushed with warm saline to keep the tumors at body temperature and wet

throughout the measurements. The pressure measurements were performed using

micropipettes and a servo-null device (Model 5; Instrumentation for Physiology and

Medicine, Inc., San Diego, CA).

A graded micromanipulator (Model 385, Spectra Physics, Mountain View, CA) was used

to maneuver the micropipette and to measure the depth of insertion. Micropipettes were

inserted inside and outside the tumor blood vessels to measure MVP and IFP,

respectively. For IFP measurement, the micropipette was inserted at 0.5 to 1 mm from

the surface of the tumor. The micropipette was positioned to penetrate the tumor

perpendicularly. The insertion process was aided by the use of a stereomicroscope

(Nikon SMZ-1; Charles Seifert Associates, Carnegie, PA). Each day before the

measurement, the system was calibrated using a water column that can generate known

pressures. The pressure was adjusted to zero in the saline film covering the tumor surface.

The IFP measurement was accepted when (a) no visible distortion of the tumor or skin

surface was observed, (b) fluid communication between the micropipette and the

interstitial fluid was demonstrated electrically, (c) zero pressure in the saline film on the

tumor surface was recorded both before the insertion and after the withdrawal of the

micropipette from the tumor.

For the MVP measurement, 1M NaCl solution with Evans blue dye was introduced in the

micropipettes by capillary action. Micropipettes were introduced perpendicularly to the
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vascular wall (Boucher and Jain 1992). The pressure measurement was acceptable when

the criteria (a) through (c) were satisfied. Furthermore, there was no significant

modification of RBC velocity during the insertion of the micropipettes. The injection of

Evans blue dye was used to confirm that the micropipettes were inserted inside the

vessels, and there was blood flow within the vessels.

5.3.8 Plasma oncotic pressure measurement

For each animal, around 150 gL of blood was drawn using heparinized-coated capillary

tubes (Fisher Scientific, Pittsburg, PA) through the venous sinus of the eyes without the

use of anesthesia (Stohrer et al. 2000). The blood sample was immediately transferred to

a 2-ml centrifuge tube. After centrifugation at a force of 1500g for 10 minutes, 8 gL of

plasma fluid was collected for oncotic pressure measurements. To minimize any

evaporation of the plasma fluid, the measurement was done immediately after the

collection of fluid. A membrane colloid osmometer was used to measure oncotic

pressure (Aukland and Johnsen 1974; Stohrer et al. 2000). Ultrafiltration membranes

(Amicon PM 10, Millipore Corp., Bedford, MA) with a molecular weight cutoff of 10,000

g/mole were used. Samples were applied on the membrane, and saline was loaded on the

other side of the membrane. The osmometer was connected to a pressure transducer, a

pre-amplifier, and then to a computer.

5.3.9 Interstitial fluid oncotic pressure measurement

Interstitial fluid was collected using the chronic wick technique (Kramer et al. 1986; Wiig

et al. 1991). The wick was washed with acetone and ethanol, and was soaked in saline

overnight. A long wick (-5 cm) was implanted together with the tumor in the flank

region of SCID mice. After two weeks the wick was completely covered by the tumor
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mass. The wick was collected post mortem to prevent bleeding or staining of the wick

with blood. The entire process was done as quickly as possible to avoid any evaporation.

Any portion of the wick that was stained with blood was cut off, and the remaining

portion of the wick was quickly transferred to a centrifuge (Johnsen 1974). Around 8 gL

of supernatant was used for the measurement. An osmometer was used to measure

interstitial oncotic pressure.

5.3.10 Functional lymphatic assay

To identify functional lymphatic vessels in tumors, ferritin microlymphangiography and

LYVE-1 immunostaining were performed according to published methods (Leu et al.

2000; Padera et al. 2002). Briefly, a total of 5 gL of ferritin (F4503, Sigma-Aldrich

Corp., St. Louis, MO) was injected slowly into the subcutaneous MCaIV tumors in the

hind legs of mice at three different locations over a period of five minutes. One hour

after the injection, tumor tissues were fixed and embedded in paraffin sections. Any

LYVE-1 positive lymphatic vessels containing ferritin were considered as functional

lymphatic vessels.

5.4 Histology

5.4.1 Tissue preparation and sectioning

Mice were perfused and fixed with 4% paraformaldehyde to maintain vessel morphology.

Briefly, mice were anesthesized with ketamine/xylazine solution. Other preparations

were performed at that time depended on the experiments. For example, functional

vasculature was labeled by injecting 0.1 ml of biotinylated lectin (Vector Laboratories).

To perfuse the fixative, animals were pinned to a dissection block, and a small incision

was made to open up the skin and ribs and to expose the beating heart and lungs. The
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heart was held using forceps, and a small incision was made at the apex of the heart. A

cannula was inserted through the incision, and 4% paraformaldehyde was pumped at 80 -

120 mmHg for 5 minutes. The tissues of interest were then prepared in one of the

following procedures: i) to prepare for frozen blocks, the tissues were put in 4%

paraformaldehyde for 3 hours, and then 30% sucrose overnight at 40 C. The tissues were

then embedded in OCT solution (Sakura Finetek, California) at -200 C ; ii) to prepare for

paraffin blocks, the tissues were transferred to formalin, and were embedded in paraffin

using standard procedures at the MGH Pathology Department.

5.4.2 IHC protocol for cSMA and lectin double staining on thick frozen section

80 microns thick sections were cut using a cryostat. To remove OCT, the tissues were

rinsed in PBS for 3x30 minutes. The tissues were then blocked with 3% BSA + 0.1%

Triton-X for 1.5 hour at room temperature. The tissues were stained with streptavidin-

conjugated fluorochrome (Alexa 488 or Alex 647, Molecular Probes) to label

biotinylated-lectin perfused blood vessels for 90 minutes. The tissues were then rinsed in

PBS for 3x30 minutes. The tissues were incubated at 40 C overnight with Cy-3

conjugated SMA antibodies (Sigma). The sections were then put on coverslip with

VectaShield.

5.4.3 IHC protocol for Collagen IV and lectin double staining on thick frozen section

80 microns thick sections were cut using a cryostat. To remove OCT, the tissues were

rinsed in PBS for 3x30 minutes. Then the tissues were blocked with 3% BSA + 0.1%

Triton-X for 1.5 hour at room temperature. The tissues were stained with streptavidin-

conjugated fluorochrome (Alexa 488 or Alex 647, Molecular Probes) to label

biotinylated-lectin perfused blood vessels for 90 minutes. The tissues were then rinsed in
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PBS for 3x30 minutes. The tissues were incubated at 40 C overnight with rabbit anti-

collagen IV (1:2000; Chemicon). Subsequently, the tissues were stained with Cy3-

conjugated secondary antibodies (1:200, Jackson ImmunoResearch). The sections were

then put on a coverslip with VectaShield.

5.4.4 IHC protocol for oSMA and CD31 double staining on paraffin section

1. Deparaffinize and rehydrate sections through graded ethanol baths to water.

a. 2x3 minutes in xylene

b. 2x3 minutes in 100% ethanol

c. 2x3 minutes in 96% ethanol

d. 2x3 minutes in 70% ethanol

e. 2x3 minutes in H20

2. Antigen retrieval: dilute 10x DAKO Target Retrieval Solution 1:10 with dH20.

a. microwave at full power for 4 min;

b. microwave at 10% (level 1) power for 6 min.

c. cool for 20 min, then rinse in PBS 3x3 min.

3. Block endogenous peroxidase activity: Incubate slides in 3% H202 for 5 min.

4. Rinse in PBS for 3x3 minutes.

5. Block tissue with 3% BSA for 30 minutes.

6. Blot and apply CD31 antibody. Incubate for 30 min at room temperature.

7. Rinse in PBS for 3x3 minutes.

8. Apply HRP-labeled polymer (bottle 2 from EnVision kit). Incubate at room

temperature for 30 min.

9. Rinse in PBS for 3x3 minutes.
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10. Develop stain with DAB (1 drop substrate in 1 ml buffer). Monitor intensity

under microscope then place slides in water to terminate reaction.

11. Rinse in PBS for 3x3 minutes.

12. Apply Doublestain Block (double staining Envision kit) for 5 min.

13. Apply mouse anti-human aSMA (DAKO, 1:5000). Incubate at 40 C overnight

14. Rinse in PBS for 3x3 minutes.

15. Apply AP-labeled polymer (double staining Envision kit).

16. Develop color with Alkaline Phosphatase Substrate Kit 1 (Vector Lab.,

SK5100)

a. Add 2 drops of Reagent 1 to 5 ml of 100 mM Tris-HCl, pH 8.2-8.5 buffer

(stock: Sigma T3038), mix well.

b. Add 2 drops of Reagent 2 and mix well.

c. Add 2 drops of Reagent 3 and mix well.

d. Monitor reaction under microscopy (20 min). Terminate reaction in dH20

17. Counterstain with hematoxlyin

18. Coverslip using Faramount (DAKO)

5.4.5 IHC protocol for LYVE-1 and ferritin staining

1. Deparafinize and rehydrate sections. Same procedure as described earlier.

2. Antigen retrieval. Same procedure as described earlier.

3. Rinse in TBS-T for 3x3 minutes.

4. TBST recipe:

a. 0.05 MTris

b. 0.3 MNaCl
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c. 0.1% Tween-20

5. Block endogenous peroxidase activity. Same procedure as described earlier.

6. Rinse in TBS-T 3x3 minutes.

7. Block tissue with 3% BSA solution in TBS-T at room temperature for 1 hour.

8. Incubate for 2 hours with Rabbit anti-mouse-LYVE-1 (from E. Rousalhti)

(1:500) dilution in TBS-T/1% BSA at room temperature.

9. Rinse in TBS-T 3x3 minutes.

10. Incubate for 30 minutes in anti-rabbit labeled polymer (DAKO Envision Plus)

@ RT.

11. Rinse in TBS-T 3x3 minutes.

12. Develop for 5'-10' with liquid DAB from DAKO Envision Plus kit. Stop

with H20.

13. Rinse in H20 3x3 minutes.

14. Incubate with 50:50 solution of 20% HCl and 10% Potassium Ferrocynate for

40 minutes in humidified chamber @RT for Prussian Blue stain.

15. Rinse in H20 3x3 minutes.

16. Stain with Hematoxylin (Fisher Gill's #2) (4 dips)/Rinse H20/Scott's Water

(4 dips)/Rinse in H20.

17. Mount sections in DAKO Faramount Aqueous.

5.4.6 IHC protocol for Ang-2 staining

1. Deparafinize and rehydrate sections. Same procedure as described earlier.

2. Antigen retrieval. Same procedure as described earlier.

3. Rinse in PBS for 3x3 minutes.
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4. Block endogenous peroxidase activity. Same procedure as described earlier.

5. Block tissue with 3%BSA for 1 hour.

6. Blot and apply primary antibody, goat-anti-human-Ang2 (1:200, R&D).

Incubate at 40 C overnight.

7. Rinse in PBS for 3x3 minutes.

8. Incubate for an hour with rabbit anti-goat IgG HRP (1:200, DAKO) for an

hour

9. Rinse in PBS 3x3 minutes.

10. Develop the color with DAB.

11. Rinse in H20 for 3x3 minutes.

12. Counterstain with hematoxylin as described earlier.

13. Mount sections in DAKO Faramount Aqueous.

5.4.7 Macromolecule penetration assay

0.1 ml of TRITC-BSA (Molecular Probes) was injected intravenously one hour before

perfusion fixation in tumor bearing mice. Biotinylated lectin was also injected 5 minutes

before fixation. Three 10 pm thick frozen sections, 50 gm apart, were prepared from

each tumor block. Images were taken with the two photon microscope. Perfused

biotinylated lectin was used to identify functional vessels, and extravasation pattern of

TRITC-BSA was analyzed using a program written in ImageJ. Briefly, ten concentric

rings of 3.25 pm thickness were drawn starting at the vessel wall. Average intensity was

calculated within each ring, and the intensity profile was fitted to an exponential decay

function (I = Ae-BX + C; I = pixel intensity; x = distance from vessels; B = decay constant).

The decay constants were compared between the two treatment groups.
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5.4.8 Pimonidazole staining for tumor hypoxia

To detect tumor hypoxia, 60 mg/kg pimonidazole was injected i.v. 1 hour before brains

were rapidly frozen at -800 C. The Hypoxyprobe- Kit (Chemicon) was used to detect

pimonidazole-protein adducts in 2 brain regions per animal spaced 200 micron apart (n =

3 or 4 animals per group).

5.5 Molecular techniques

5.5.1 RNA isolation

Tumor tissues were isolated from animals and frozen down immediately using liquid

nitrogen. Tissues were homogenized in 0.75 ml of TRIZOL LS Reagent (Life

Technologies, Cat No. 10296-010). The homogenized samples were incubated for 5

minutes at 15 to 300C to permit the complete dissociation of nucleoprotein complex. 0.2

ml of chloroform was added, and after shaking vigorously by hand for 15 seconds, the

samples were centrifuged and RNA was collected in the aqueous phase. RNA was

precipitated from the aqueous phase by mixing with isopropyl alcohol. Upon

centrifugation, a RNA pellet was obtained. After several steps of washing and drying,

RNA was dissolved using RNase-free water and the purity of RNA was checked and

confirmed by UV spectrophotometer and electrophoresis.

5.5.2 Protein isolation

Frozen tumors were dissolved in 1 ml of RIPA buffer (Sigma), with 1:50 protease

inhibitor cocktail (Sigma) and 1:50 phosphatase inhibitor cocktail 2 (Sigma). The tissues

were homogenized using a syringe. 200 gl of homogenized solution was then mixed with

800 gl of lysis buffer (RIPA with the inhibitors). The homogenized solution was
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centrifuged, and the pellet was discarded. To measure protein concentration, BioRad

Protein Assay was used:

1. 5 gL of sample per well (always do duplicate).

2. 1 mL of A + 20 L of S add 25 gL/well.

3. Add 200 gL of B in each well

4. Wait for 15 min (in the dark); do reading afterward.

5. Use BSA & BGG Protein Assay Standard Sets (Pierce 23208) as standard.

5.5.3 Gene array analysis

Angiogenic gene array was purchased from SuperArray, and the experiment was

performed following the GEArray Q and Series Kits protocol. Briefly, cDNA was

prepared by the reverse transcription reaction, following by the linear polymerase

reaction. The DNA probe was blocked by sheared salmon sperm at 1000C for 5 min, and

cDNA was applied to the gene array membrane for hybridization overnight. After a

series of washing steps, the probe was detected by adding chemiluminescent molecules.

Gene expression from each group was normalized by cytoplasmic -actin expression.

5.5.4 Real-time PCR analysis

The RT-PCR was performed according to SuperScript III First-Strand Synthesis System

protocol provided by Invitrogen and standard PCR protocol. The fluorescently labeled

primers were designed using LUX primer designer and ordered from Invitrogen.

5.5.5 Western blot

Protein was first denatured at 1000 C for 5 minutes. Then it was put on ice immediately.

After centrifugation, only the supernatant was collected for loading on the gel. 4-12%

NuPAGE Bis-Tris Gel (InVitrogen) was used for the Western blot. Samples were loaded
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on the gel, and the gel was run at 120V for an hour. Next, the proteins were transferred

to a transfer membrane using the gel box in NuPAGE transfer buffer (InVitrogen) at 30V

for an hour. After the transfer reaction, the membrane was washed 3 times with TBST.

The membrane was then block using 5% milk in TBST for 2 hours. Primary antibody

was then added and incubated overnight at 40 C. On the next day, the membrane was

washed and shaken vigorously for an hour. Secondary antibody (HRP IgG) was added

and incubated for an hour. After another round of washing, the membrane was stained

using ECL Western Blotting Analysis System (Amersham Bioscience) and film was

developed in the dark room.
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Chapter 6: Vascular Structure in Tumors

Portions of this chapter have been taken from:

Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., and Jain, R. K. (2004).

Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces

a pressure gradient across the vasculature and improves drug penetration in tumors.

Cancer Res 64, 3731-3736.

Winkler, F.*, Kozin, S. V.*, Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., Xu,

L., Hicklin, D. J., Fukumura, D., di Tomaso, E., Munn, L. L., and Jain, R. K. (2004).

Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response

to radiation; Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer

Cell 6, 553-563. * These authors contributed equally.
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Introduction

The current treatment of solid tumors is plagued by two problems: physiological barriers

impair the delivery of therapeutic agents in optimal quantities, and genetic and epigenetic

mechanisms contribute to drug resistance. Anti-angiogenic therapy has the potential to

overcome or circumvent these problems. The result from a recent Phase III clinical trial

provided the first clinical proof of the efficacy of anti-angiogenic therapy in the treatment

against cancer. The combination of Avastin - a monoclonal antibody against VEGF -

with conventional chemotherapy increased disease-free survival by 5 months in

colorectal cancer patients compared to conventional therapy alone (Hurwitz et al. 2004).

Before this clinical study, Beverly Teicher first proposed that the combined

administration of an anti-angiogenic agent with a cytotoxic agent would yield the

maximum benefit in eradicating tumors (Teicher 1996). The rationale was that cytotoxic

agents would kill the cancer cells directly, while anti-angiogenic therapy targets the

tumor endothelial cells. Thus, these two therapies aim to destroy two separate

compartments of tumors. However, this explanation presents an apparent paradox.

While anti-angiogenic therapy aims to target tumor blood vessels, chemotherapy and

radiation therapy rely on tumor blood vessels to transport cancer drugs and oxygen

molecules, respectively, to cancer cells. Thus, one would expect anti-angiogenic therapy

would comprise the delivery of cytotoxic agents. To resolve this paradox, Dr. Rakesh

Jain hypothesizes that anti-VEGF antibody can improve the delivery of cytotoxic agents

to tumors by normalizing tumor vasculature and thus increases the effectiveness of

combination therapy (Jain 2001). Tumor blood vessels are leaky, tortuous, dilated, and

have heterogeneous distribution. Perivascular cells, which provide support to endothelial
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cells, are often loosely associated with endothelial cells in tumors. Similarly, the

basement membrane is often abnormal in tumors. Some vessels lack basement

membrane coverage, while others have abnormally thick basement membrane. To test

this hypothesis, we first examined the structural changes of the vascular architecture as

well as of the vascular wall during anti-angiogenic treatment. The first part of my thesis

examined the structural modification of tumor vasculature by DC101, an anti-VEGFR2

monoclonal antibody. Using two photon microscopy, dynamics of tumor blood vessels

were examined in vivo. This was followed by examination of vascular wall integrity by

performing immunostaining for perivascular cell and basement membrane.

Results

DC101 normalizes the architecture of the tumor vasculature.

In order to study the dynamic changes during anti-angiogenic therapy, we implanted

tumors in chronic window models such as dorsal skinfold chamber and cranial window,

and imaged the vessels using two-photon microscopy. Chronic windows allow us to non-

invasively observe the formation of blood vessels and the effects of anti-angiogenic

agents on tumor vasculature. Two photon microscopy can capture high resolution three

dimensional tumor blood vessels images. Functional blood vessels were visualized under

two photon microscopy by injection of fluorescent molecules (FITC-Dextran 2M MW)

i.v. systemically. Figure 6.1 showed blood vasculature in normal striated muscle and

murine mammary carcinoma, MCaIV, implanted in the dorsal skinfold chamber of SCID

mice.

-58-



Figure 6.1: Normal and tumor vasculature in dorsal skinfold chamber.

Vasculature of (left) striated muscle and (right) MCaIY murine mammary carcinoma

implanted in the dorsal skinfold chamber of mice. Tumor blood vessels were dilated,

tortuous and heterogeneously distributed when compared to normal tissue. Image width:

500 microns.

Similarly, Figure 6.2 showed blood vessels of normal brain and human glioblastoma,

U87, implanted in the cranial window of nude mice. As shown in right panel of Figure

6.2, tumor induced the growth of new blood vessels from the surrounding normal tissue.

Tumor vessels were often dilated and tortuous when compared to normal blood vessels.

Figure 6.2: Normal and tumor vasculature in cranial window.

Vasculature of (left) normal brain and (center, right) U87 human glioblastoma implanted

in the cranial window of mice. The right panel is a low resolution image in which the

entire tumor vasculature can be observed. Image width: left and center: 700 microns;

right: 2 ffiffi.

To examine the effects of DeJOJ on the morphology of blood vessels, MCalV murine

mammary carcinoma was implanted in the dorsal skinfold chambers. We monitored the
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same region of the tumor over 6 consecutive days using two-photon microscopy. This

technique allows us to image up to 200 J!m deep from the tumor surface with 1 J!m

resolution (Brown et al. 2001). In contrast to skeletal muscle, which had an organized

vasculature with a relatively smooth vascular wall and uniform diameter (Figure 6.1),

untreated MCaIV tumors had tortuous vessels with abrupt changes in vessel diameter. In

MCalV tumors treated with control IgG, the vessels became more dilated with time

(Figure 6.3). While some vessels disappeared, most vessels either increased in size or

remained the same size.

Da 3 Da 4
Figure 6.3: MealV tumor vessels treated with control IgG.

The images were taken over a period of 6 days. Image width = 500 microns.

On the other hand, after DC 101 treatment, many vessels were either pruned or had a

reduced diameter (Figure 6.4). Furthermore, many of these vessels also became less

tortuous as they reduced in diameter. By day 5, some of these vessels regressed

completely in some regions. Similarly, the vessels at the tumor-host interface also

became less tortuous.
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Da 3 Da 4
Figure 6.4: MCaIV tumor vessels treated with DCIOI.

The images were taken over a period of 6 days. Image width = 333 microns.

Similar striking vascular changes were also observed in the human colon adenocarcinoma

LSl74T (Figure 6.5). Thus, the two photon images showed that DCIOI "normalizes" the

architecture of the vascular network prior to complete regression.

Da 3 Da 4
Figure 6.5: LS174T tumor vessels treated with DCIOI.

The images were taken over a period of 6 days. Image width = 333 microns.

Based on in vivo angiogram, we quantified the changes of vascular density and diameter

after DelOI treatment (Figure 6.6). Three days after a single injection of DC10l,
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vascular length density decreased significantly from 58.8 :!:2.2 cmlcm2 (vessel centerline

length/image field; mean:!: S.E.M.) to 41.9:!: 3.0 cmlcm2• Similarly, DC101 lowered

vascular diameter from 51.1 :!:3.7 J..l111 to 32.2 :!:4.0 J..l111.

P < 0.01
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Figure 6.6: DCIOllowers vascular density and diameter in

MCaIY tumors.

The quantification was done before (red) and three days after

control IgGIDCIOl treatment (blue).

By quantifying the number of vessels based on their diameters, the result showed that

MeaN had a significant number of extremely dilated vessels (Figure 6.7). However,

after DCIOI treatment, these vessels became smaller in diameter, and the overall

distribution of vessel diameter shifted to one that was more similar to normal vasculature,

in that the majority of the blood vessels (i.e. capillaries) had smaller diameters (F test. P

< 0.0001).
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Figure 6.7: Vascular diameter distributions in MealY tumors.

Vessel diameters before and 3 days after control IgG (left) or DCI0l (right)

treatment. DC 101 significantly altered the distribution of vessel diameter (F

test. P < 0.0001)

To further verify the changes in tumor vasculature by DCI0l, another tumor model was

used. In this model, U8? human glioblastoma tumor was implanted inside the brain of

nude mice under cranial windows. The tumor was implanted about 100 Jlm beneath the

surface of the brain. Treatment began when the tumors reached about 2 mm in diameter.

Similar to the findings of MCalY tumors, Del0l significantly reduced vascular density,

volume density (assuming the vessels are cylindrical in shape), and vascular diameter in

the U8? orthotopic tumor model (Figure 6.8).
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Figure 6.8: Vessel morphology in U87 tumors.

3.0 (mm m. __

125

1
CD 2.0 iE .
.a 1.5 J

j~
CD 1.0 j
l: I *i 0.5 lj *
0: '0.0 _

day 2 day 5 day 8
0.0

2.0

~..
E 1.5..
C
c
: 1.0
~
CD>

4:J 0.5..
'i
0:

~ 1.5
C
CD
Q

-= 1.0
10

~
10.5
7a
'i
0: 0.0 _

DCIOI decreased vessel density, vascular diameter, and vessel volume density. * P < 0.05

DCIOI improved perivascular cell coverage

In addition to vascular architectural abnormalities, the tumor vasculature was

characterized by a paucity of, or abnormalities in, mural cells and basement membrane

(Morikawa et al. 2002; Abramsson et al. 2003; Jain 2003). To test whether DCIOI also

normalizes the wall structure, we perfused the tumors with FITC-CD31 to label

functional blood vessels and stained frozen sections for Cy3-aSMA, which labeled

perivascular cells. In normal tissue, blood vessels were completely covered by aSMA-

positive cells (Morikawa et al. 2002). In the left panel of Figure 6.9, aSMA-positive

cells circumferentially' covered endothelial cells in the arteriole. In MCaN tumors, the

organization of perivascular cells was completely different. Perivascular cells scattered

along the blood vessels, and were loosely associated with endothelial cells. The cells also

had extended cytoplasmic processes into the tumor tissue. While most of the vessels

were covered by aSMA-positive cells, some vessels were completely devoid of

perivascular cell coverage, as shown in the center panel of Figure 6.9.
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Figure 6.9: Confocal images of perfused CD31 (green) and aSMA (red) staining in

MCaIV tumors.

aSMA is a common marker for perivascular cells. (left) Double staining CD31 and aSMA in

normal arteriole. Double staining for CD31 and aSMA of MCaIY tumors treated with

control IgG (middle) and DCI0l (right). Image width = 230 microns.

Four mice per treatment group were used to quantify the aSMA-positive cell coverage.

Vessel length and length of the vessel covered by aSMA-positive cells were traced in

three different regions per tumor (each region was 921 JlID by 921 JlID) using 100 JlID

thick frozen sections. As shown in Figure 6.10, DCI0l significantly increased the

fractional coverage of tumor blood vessels by aSMA-positive cells. Approximately 25%

of the vessels in untreated tumors had little or no perivascular cell coverage, but this

fraction dropped to -8% after DCI0l treatment (P < 0.(05). This suggested that DCI0l

pruned vessels that lack perivascular cell coverage, thus increasing the overall

perivascular cell coverage during the normalization time window.
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Figure 6.10: DCI0l increased perivascular cell coverage.

(left) fraction of vessels with aSMA-positive cells coverage was significantly higher in

DCIOI treated group. (right) The fraction of vessel segments that were over 90%

covered by cxSMA-positive cells was the same between the DCIOI and the control group

(P = 0.65); but there was significant difference in the fraction of vessels segments that

were less than 10% covered by aSMA-positive cells between DCIOI and control-treated

tumors.

Not only are endothelial cells and perivascular cells abnormal in tumors, many studies

have shown that the basement membrane is also abnormal (Baluk et al. 2003). During

tumor angiogenesis, factors such as matrix metalloproteinases (MMPs) are produced, and

this leads to basement membrane degradation. The degradation of basement membrane

can liberate endothelial cells to migrate and proliferate (Kalluri 2003). Unlike the vessels

in normal muscle, the collagen IV staining around some vessels was below the detection

limit in MCaN tumors (center panel, Figure 6.11). While all vessels in normal muscle

were covered by basement membrane, some tumor vessels lacked basement membrane

coverage. Furthermore, the basement membrane in MealY tumors appeared to be thick
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and multi-layered. Consistent with the normalization hypothesis, more vessels exhibited

collagen IV staining after DC 10 1 treatment (right panel, Figure 6.12).

Muscle Control DCIOl-treated
CD31

Col IV

Merged

Figure 6.11: DCI0l improved basement membrane coverage.

Vessels were perfused with FITC-CD31 (green) and basement membrane was

stained with collagen IV antibody (red). (left) All vessels were covered by

basement membrane. (center) In MCalV control IgO-treated tumors, the

basement membrane was abnormally thick in most regions, and appeared to be

multi-layered. Some vessels lacked collagen IV staining. (right) After DCIOI

treatment, more vessels in MCalV stained positive for collagen IV.

Quantification of basement membrane coverage showed that three days after DC 10 1

treatment, the basement membrane coverage of MCalV tumors significantly improved.
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Figure 6.12: Quantification of collagen IV staining.

Fractional coverage of collagen IV vessels was

significantly higher in the DCIOI group (n = 6 in the

control group, n = 5 in the DCIOI-treated group; P < 0.05).

Thus, DC 101 induced structural normalization of the tumor vasculature by homogenizing

the vessel size and reducing vessel tortuosity. It also increased the fractional coverage of

perivascular cells and basement membrane. These structural modifications could affect

the function of tumor blood vessels during the normalization time window (Chapter 7).

Conclusion

The normal microvasculature consists of arterioles that control the blood flow to smaller

capillaries, post-capillary venules, and small veins that drain the blood to larger vessels

(Figure 6.1). In tumors, this hierarchical organization of the vascular network was

inexistent, and replaced by small and large vessels that were not uniformly distributed

and were poorly organized (Figure 6.2). Three days after a single dose of DCIOI, the

decrease in vessel length density was associated with an overall decrease in the diameter

of MCaIV tumor vessels and a higher fraction of vessels with diameters of less than 20
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[rm. Similar effects were also seen in other tumor models such as LS 174T and U87, as

well as in published results (Yuan et al. 1996). Thus, by pruning the vasculature and

reducing the caliber of blood vessels, DC101 induced a less abnormal vasculature in

MCaIV tumors.

Another significant characteristic of the normal vasculature is the presence of

perivascular cells that are tightly associated with the endothelium of arterioles, capillaries

and post-capillary venules. In contrast, perivascular cells had a loose and poor

association with the endothelium of tumor vessels (Morikawa et al. 2002). DC101 did

not significantly modify the morphology of perivascular cells in the MCaIV model.

Interestingly, in the LLC Lewis lung carcinoma tumor and RIP-Tag2 pancreatic islet

tumor model, multiple changes occurred in perivascular cells after the treatment of

VEGF-Trap, a potent small tyrosine kinase inhibitor against VEGFRs and PDGFRs (Inai

et al. 2004). Using scanning electron microscopy, the authors showed that these

perivascular cells became closely associated with surviving vessels after the VEGF-Trap

treatment. The cells were oriented circumferentially, resembling smooth muscle in

arterioles.

In our study, we showed that the normalized tumor vasculature was less tortuous and the

vessels were more uniformly covered by perivascular cells and basement membrane.

This result implied that vessels with less perivascular cell coverage were more vulnerable

to DC 101-induced regression. This interpretation was consistent with previous findings

that demonstrated tumor vessels not associated with mural cells regress after VEGF

withdrawal (Benjamin et al. 1999). Since we published our data, another group showed
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that DC101 increased perivascular cell coverage in another tumor model (Vosseler et al.

2005).

The production of MMP9 and other proteases by cancer cells and stromal cells facilitates

the degradation of ECM, resulting in tumor invasion and subsequent metastasis. In vivo

and in vitro analyses of endothelial cell function showed a reduction in MMP9

production in endothelial cells after treatment with DC101 (Sweeney et al. 2002). Using

double immunostaining with MMP9 and CD31 on orthotopic prostate cancer xenografts,

the authors showed that there was a reduction in endothelial cell-associated murine

MMP9 production. This reduction in MMP9 level might explain the observed increase in

basement membrane coverage after DC101 treatment (see Chapter 8 for further

discussion).

Chapter 7 examines how these changes in vascular structure affect its function.
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Chapter 7: Vascular Function and Tumor

Microenvironment

Portions of this chapter have been taken from:

Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., and Jain, R. K. (2004).

Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces

a pressure gradient across the vasculature and improves drug penetration in tumors.

Cancer Res 64, 3731-3736.

Winkler, F.*, Kozin, S. V.*, Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., Xu,

L., Hicklin, D. J., Fukumura, D., di Tomaso, E., Munn, L. L., and Jain, R. K. (2004).

Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response

to radiation; Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer

Cell 6, 553-563. * These authors contributed equally.
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Introduction

Elevated interstitial fluid pressure (IFP) - a hallmark of solid tumors - can compromise

the delivery of therapeutics to tumors (Jain 1989; Jain 1994; Jain 1998). In normal tissue,

the excess fluid filtered from the blood vasculature is drained by lymphatic vessels to

maintain interstitial fluid pressure close to zero. In tumors, however, lymphatic vessels

are compressed by cancer cells, and Padera et. al shows that intratumoral lymphatics are

non-functional (Padera et al. 2002; Padera et al. 2004). Defects in the vascular wall also

contribute to abnormally high leakiness in tumor blood vessels. This leads to an increase

in outflow of proteins and other molecules from blood vessels and thereby a rise in

oncotic pressure in the tumor interstitium (Stohrer et al. 2000). Thus, the interstitial fluid

homeostasis in tumors is perturbed by the abnormal tumor vasculature and impaired

lymphatic function.

Similarly, tumor blood flow plays a crucial role in tumor growth, metastasis, and delivery

of therapeutics. In normal tissue, the blood flow is primarily controlled by the pressure

difference between arterial and venous sides, geometrical resistance, and the viscosity of

blood. The abnormal tumor vasculature contributes to the temporal and spatial

heterogeneity in tumor blood flow (Jain 1988; Baxter and Jain 1991; Chaplin and Hill

1995; Netti et al. 1996; Baish et al. 1997). The increased tumor vasculature leakage

reduces the pressure gradient along the vessels, and thus reduces blood flow through the

tumor vessels (Netti et al. 1996). The highly tortuous blood vessels and chaotic

distribution of vessels can also lead to reduced blood flow (Gazit et al. 1997; Baish and

Jain 2000). Importantly, the relatively stagnant flow in tumor vessels contributes to the

poor delivery of oxygen and molecules.
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In Chapter 6, I showed that DC101 normalized the vascular structure. In this chapter, I

examine the effects of DC 101 on vascular functions. First, I showed that DC 101 lowered

interstitial fluid pressure in multiple tumor models, and the changes were associated with

lowering of vascular permeability. Furthermore, DC 101 induced a hydrostatic pressure

gradient, which led to improved macromolecule delivery. DC101 also alleviated tumor

hypoxia, which could be partly explained by the increase in red blood cell velocity.

Finally, all the measured parameters were fitted into a model developed by Baxter and

Jain (Baxter and Jain 1989).

Result

DC101 lowered interstitial fluid pressure

We first confirmed that similar to a VEGF blocking antibody (Lee et al. 2000), DC101

decreased IFP in both human glioblastoma multiforme U87 (Figure 7.1) and human small

cell lung carcinoma 54A xenografts (Figure 7.2). IFP decreased dramatically 3 days after

the initial treatment, after which it stayed at a nearly constant level. As shown in Figure

7.1 and 7.2, it took approximately 3 days to reach the full effects of DC101 on the IFP of

the two xenografts.
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Figure 7.1: DCI0l1owered interstitial fluid pressure in U87 tumors

in nude mice.

IFP measurement was done by using wick-in-needle method. 40 mglkg

control IgG or DC 101 was given i.p. every three days. Data are

represented as mean:t S.E.M.
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Figure 7.2: DClOllowered interstitial fluid pressure in 54A tumors

in nude mice.

IFP measurement was done by using wick-in-needle method. 40 mglkg

control IgG or DCIOI was given i.p. every three days. Data are

represented as mean:t S.E.M.

DClOl decreased IFP in spontaneous tumors develoPed in C3H mice

To further confIrm the effects ofDClOl on IFP in tumors, aged C3H mice that developed

spontaneous tumors were used. Unlike other xenograft or transgenic tumor models, aged

C3H mice developed spontaneous tumors naturally, similar to tumors in the human

setting. Aged C3H mice were screened weekly for tumor development. The experiment

was started when tumors became visible and palpable. As shown in Figure 7.3, DCIOI

also lowered the IFP in murine spontaneous tumors.
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Figure 7.3: DClOllowered interstitial fluid pressure in

spontaneous tumors developed in aged C3H mice.

IFP measurement was done by using wick-in-needle method. 40 mg/kg

control IgG or DCIOI was given i.p. every three days. The IFP value

was normalized by the value on Day O. Data are represented as mean ::t

S.E.M.

DClOl does not enhance lymphatic function.

To test whether the reduction in IFP was associated with a change in lymphatic drainage,

ferritin microlymphangiography and LYVE-I immunostaining (which stains for

lymphatic vessels) were performed on MCaIV tumors implanted in dorsal chambers and

subcutaneously in the hind leg. Positive LYVE-I staining structures were only observed

in the normal tissue surrounding the tumor (Figure 7.4). Inside the tumor, ferritin was

present only in the interstitium, with no intratumoral LYVE-l positive structures

surrounding it. Thus, we did not find any evidence of functional lymphatic vessels in the
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tumors of both treated and control animals (Figure 7.4). Therefore the drop in IFP could

not be attributed to modifications in lymphatic function.

Figure 7.4: Ferritin functional lymphangiography and LYVE-l

staining in MCaIV tumors after DCIOI treatment.

A LYVE-1 positive lymphatic vessel was seen in the muscular layer.

DCIOllowered vascular permeability

The other way to lower IFP was to alter the flow of fluid from the vasculature into the

interstitial space. Thus, we looked at the effect of DC 101 on the vascular permeability.

Tumor vasculature had been shown to have high vascular permeability relative to normal

vessels (Yuan et al. 1993; Yuan et al. 1994; Yuan et al. 1994; Yuan et al. 1995). It had

also been shown that DC 101 lowered vascular permeability in T241 murine fibrosarcoma

(Kadambi et al. 2001). Thus, as expected, we found that DC101 lowered the vascular

permeability in MCaN tumors implanted in the dorsal skinfold chamber (Figure 7.5).

Three days after the injection of DC101, the vascular permeability of albumin in MCaIY

- a profoundly leaky tumor - was decreased by 51%.
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Figure 7.5: DCIOllowered vascular permeability of albumin in

MCaIV tumors.

Red: before control IgG or DCIOI treatment. Blue: 3 days after control

IgG or DCIOI treatment. Data are represented as mean:t S.E.M.

DCIOI enhanced the oncotic pressure gradient across the tumor vasculature.

In general, leaky vessels in tumors led to an increase in the interstitial oncotic pressure

(Stohrer et al. 2000), which became approximately equal to the plasma oncotic pressure.

To determine whether changes in vascular permeability of tumor vessels translated into

functional normalization, we measured both hydrostatic and oncotic pressure difference

across the vascular wall. We found that 3 days after DCIOI treatment, the interstitial

oncotic pressure was significantly lower than in the control group (Figure 7.6), while the

plasma oncotic pressure did not change. This decrease in interstitial oncotic pressure was

consistent with the decrease in vascular permeability to macromolecules by DC 101, and

increased the oncotic pressure gradient across the vasculature.
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Figure 7.6: DClOllowered interstitial oncotic pressure.

There was no change in plasma oncotic pressure in MCaIV tumors in

the DC 10 1 treated group when compared with the control group.

However, the interstitial oncotic pressure dropped significantly in the

DC101 group (n=5, P<0.05). Data are represented as mean :t S.E.M.

DClOl induced a hydrostatic pressure gradient across the tumor vasculature.

In solid tumors, MVP was approximately equal to IFP, leading to nearly zero pressure

difference across the vessel wall (Boucher and Jain 1992). As a matter of fact, these two

pressures were so closely coupled that changing the vascular pressure led to similar

changes in the IFP within seconds, until they both became equal again (Netti et al. 1999).

Thus the DC 10I-induced decrease in IFP might be accompanied by a similar decrease in

MVP. To test this, we measured MVP in control and DC 10 I-treated tumors by directly

inserting micropipettes in MCaIV tumor vessels (Peters et al. 1980). We found that MVP

was unaffected by DC101 treatment, while IFP decreased significantly by 2 mmHg

(Figure 7.7). Thus, DC 101 created a sustained hydrostatic pressure gradient across the

vasculature.
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Figure 7.7: DCIOI induced a hydrostatic pressure gradient across

the vascular wall.

DC 101 did not affect the microvascular pressure, whereas the

interstitial fluid pressure was significantly reduced in MCaIY tumors.

Data are represented as mean:!: S.E.M.

DCtOt increased BSA penetration in tumors.

Movement of molecules across vessel walls occurs by diffusion and convection.

Diffusion is governed by the concentration gradient across the vessel wall, whereas

convection is governed by the pressure gradient. To test if the DC 10I-induced pressure

gradient across the vascular wall improved the penetration of large molecules, we

injected fluorescently-labeled BSA intravenously into MCaIY tumor-bearing mice one

hour before tumor fixation (Figure 7.8).

Using immunostaining, we observed the pattern of BSA extravasation. We identified

functional blood vessels using biotinylated lectin. To quantify the results, 10 rings with

increasing fixed distance from the vessels were drawn and the average intensity of

extravasated BSA was calculated in Image J (http://rsb.info.nih.gov/ijl). The
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extravasation of BSA was quantified by fitting the intensity profiles to an exponential

function to yield a characteristic penetration length (n = 9 sections; 3 sections per tumor;

5 tumors per group; P<O.05). The characteristic penetration lengths were 7.26 :t 1.11 J..lIIl

(mean :t S.E.M) and 11.23 :t 1.41 J..lmfor the control and DC10l groups, respectively.

Quantitative analysis showed that DCIOI produced a significantly deeper penetration of

BSA molecules into the tumor.
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Figure 7.8: DClOl increased penetration of macromolecules from blood vessels.

Mice bearing s.c. MCaIV tumors were injected with tetramethylrhodamine isothiocyanate

(TRITC)- BSA one hour before perfusion fixation. Examples of frozen sections of

MealY tumors with perfused biotinylated lectin (A) and extravasated TRITC-BSA (B)

were prepared. Vessels were identified (C); and using an automated routine in ImageJ,

we quantified the average intensity of extravasated TRITC-BSA as a function of distance

from the blood vessels wall (D and E).
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DC101 reduced hypoxia in tumors

Inefficient delivery of oxygen in tumors lead to hypoxia and hypoxia significantly

decreases the efficacy of radiotherapy. Thus, we hypothesized that DC101 also induced

improvement in tumor oxygenation, which could explain the enhanced radiation response

seen by our group and other researchers (See Discussion and Appendix 2). To measure

tumor hypoxia, 60 mg/kg pimonidazole was injected i.v. 1 hour before the brain was

rapidly frozen at -800 C. The hypoxyprobe-l was used to detect pimonidazole-protein,

which labels hypoxic regions in tumor sections. During DC 101 treatment, tumor hypoxia

dropped significantly on day 2, was almost abolished by day 5, and increased again by

day 8 (Figure 7.9).
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Figure 7.9: DCIOI reduced tumor hypoxia.
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Tumor hypoxia (pimonidazole staining, red) was severe in control tumors, but decreased for

a limited time during monotherapy with OC10l at 40 mglkg i.p. every three days. Hypoxia

reached a minimum at day 5, and a partial relapse occurred at day 8. * P < 0.05, compared

to untreated control; + P < 0.05, compared to control IgG treatment (day 2): # P < 0.05,

compared to day 2 after initiation ofOC101 treatment.

DCIOI increased RBC velocity in tumors

Since DC101 affected both vascular architecture and vascular permeability, we suspected

that it might also affect red blood cell (RBC) velocity in tumor blood vessels. In the past,

our lab used either the four slit method or the fluorescent bead method to measure RBC

velocity (Yuan et al. 1994). However, since these techniques were based on one photon

fluorescent microscopy, the resulting images did not have high resolution or deep depth
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penetration. Brown et al. introduced a line scan method, based on two photon

microscopy, to measure RBC velocity in tumors (Brown et al. 2001). This technique was

valid for the majority of blood vessels, with the exception of the vessels that have fast

flow rates (>1000 gm/s). Using the normal scanning procedure, blood vasculature was

imaged (Figure 7.10). Since red blood cells absorb fluorescent image, they appear as

dark spots under fluorescent microscopy. By scanning the same region (the white line in

Figure 7.10) with a known scan rate, a line scan output was generated (right panel of

Figure 7.10). Line scans generated high-resolution t versus x images of RBC streaks.

Unlike the single photon technique, blood flow was readily visible at depths over 300 glm

in the brain and glioblastoma. By measuring the slope of the RBC streaks in t versus x

images, the RBC velocities were calculated.
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Figure 7.10: Line scan method.

(left) A two photon image of normal brain vasculature. White line showed

the region where line scan method was applied. The two photon laser was

continuously scanning the region with a known scan rate. (right) A line

scan image with t versus x. By measuring the slope of the RBC streak, one

could calculate RBC velocity of that particular vessel. Image width (left) =

700 JlIll.

First, we examined the RBC velocity in normal brain using the cranial window model.

Maximum intensity projection images of normal brain vasculature were captured using

two-photon microscopy (Figure 7.11). Ten vessels were picked randomly, and these

vessels were monitored on Day 0 and 3 and 5 days after control IgO or DCIOI treatment.

Both vascular diameter and RBC velocity were measured for each of these vessels at each

time point. Two line scan files were created per vessels, so that the measurement time

could cover the bio-variability of red blood cell velocity due to normal heart beat. Five

red blood cell velocity measurements were done per each line scan, thus ten

measurements were done for each vessels.
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Figure 7.11: Normal brain vessels after control IgG treatment.

Maximum intensity projection of brain vasculature in nude mice. Normal brain vessels

did not change after control IgG treatment. Image width = 700 J.Ull.

Regardless of whether the mice were treated with control IgG or DC 101, overall there

were no changes in vessel diameter. Interestingly, while there were fluctuations in RBC

velocity for some vessels, on average there was no difference during the 5 days period in

both treatment groups.

By plotting RBC velocity versus vessel diameter, one could easily see that in general, as

vessels became bigger, the RBC velocities were faster (Figure 7.12). As expected,

arteries had much higher RBC velocities than veins and capillaries. As mentioned earlier,

the line scan method was not accurate for vessels with fast flow rate, and this was

reflected in the huge error bars for arteries with fast RBC velocities. The error bars for

vessel diameter represented the measurement error. The measurement error for this

experiment was roughly 3 microns.
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Figure 7.12: RBC velocities of normal brain vessels.

Arteries had a much higher RBC velocities than veins or capillaries. In general, RBC

velocity was correlated with vessel diameter in the normal vascular network.

Before measuring tumor vessel RBC velocity, the variability in RBC velocity of a single

vessel was assessed by making measurements in the same vessels over a period of 60

minutes. As shown in Figure 7.13, there were some small fluctuations in the RBC

velocity for some vessels over that period. The fluctuations occurred for a variety of

reasons. First of all, there could be changes in RBC velocity within minutes time scale,

and this could be due to the effects of anesthesia, body temperature, changes in heart rate,

etc. Furthermore, tumor vessels were known to have fluctuating blood flow (Jain 1988).

Finally, the location of the scanning region could be slightly different from measurement

to measurement. One would expect that the centerline of the blood vessels had the

fastest RBC velocity. While great care was made to ensure all measurements were done
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at the centerline, such measurements might be slightly off from time to time.

Nevertheless, as shown in the figure, these fluctuations in general were no greater than

the fluctuations that occurred during the two line scans and measurement error. Thus,

measurements of RBC velocity using two separate line scans (ten measurements) were

valid.
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Figure 7.13: RBC velocities as a function of time.

The same vessels were measured at different time

points. While there were some fluctuations within the

60 minute period, these fluctuations were within the

errors of individual measurement.

To measure the effect of OCIOI on RBC velocity, mice implanted with U87 glioblastoma

tumor in the cranial window were divided into either control IgG or OCIOI treatment

group. Once the tumor reached 2 rom in diameter, control IgG or DC 101 was injected i.p.

on Day 0 and Day 3. RBC velocity was measured on Day 0, Day 3, and Day 5. As

shown in Figure 7.14, the tumor vasculature became less tortuous and the diameter

became smaller shortly after OCtOI treatment. Ten vessels were followed throughout
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the treatment. On Day 3 and Day 5, not all vessels were traced since some of the vessels

either were pruned away or could be located.

~O ~3 ~5
Figure 7.14: US7 glioblastoma tumor vasculature during DC101 treatment.

(top) Maximum intensity projection of the tumor vascular network. (bottom) A single

optical slice out of the 3D image stack. White arrow points to a sample vessel that was

traced during the DC 101 treatment. Image width = 700 J.lIIl.

Figure 7.15 and 7.16 showed the RBC velocity and diameter for all traced vessels in the

control IgG and DC10l groups, respectively. Unlike normal vasculature, the RBC

velocity of most vessels was much slower in general. There was also a lack of

correlation between RBC velocity and vessel diameter.
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Figure 7.15: RBC velocity and vessel diameter ofU87 tumors in the control IgG-

treated group.

There was lack of correlation between RBC velocity and vascular diameter.

After DCIOI treatment, there was still a lack of correlation between RBC velocity and

vascular diameter. Thus, DCIOI did not restore the correlation between RBC velocity

and vessel diameter, as in the normal brain vasculature.

- 90-



RBC Velocity vs. Vessel Diameter
(DC101 group)

7060

~ • I

.0ayO
Oay3

.08 5

50

I • I

• I

-v ..........

2010

I la. I

.... ~:

1400

1200

~
1000

E
~ 800
&;-
u 6000
G)
>
0 400m
0::

200

0
0 30 40

Diameter (JIm)

Figure 7.16: RBC velocity and vessel diameter ofU87 tumors in the DCIOI-treated

group.

There was lack of correlation between RBC velocity and vascular diameter.

To better understand the effects of DCIOI on vessel diameter, vessel diameters of all

measured vessels were grouped together depending on the treatment groups and time

points. As shown in Figure 7.17, DCIOI significantly lowered vessel diameter. This

result confrrmed the previous finding in MCaIV tumors implanted in the dorsal skinfold

chamber. Since the same vessels were traced throughout the treatment, a normalized

diameter could be calculated for each individual vessel by dividing the diameter at Day 3

or Day 5 by the diameter at Day O. Similarly, this showed that DCIOI reduces vascular

diameter.
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Figure 7.17: DCIOllowered vascular diameter in orthotopic US7 glioblastoma

model.

(left) Using Wilcoxon testt DCIOI was shown to reduce vascular diameter compared to

the control group. (right) Vascular diameter on Day 3 and Day 5 was normalized by the

value on Day O.

SimilarlYt RBC velocities of all vessels were analyzed based on the treatment group and

time. While the RBC velocity did not seem to be different between the two treatment

groupst the normalized RBC velocity was significantly higher in the DCIOI treated group

on both Day 3 and Day 5 (See Appendix 3 for the analysis).
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Figure 7.18: Effect of DC101 on RBC velocity ofU87 tumor vessels.

(left)RBC velocity on Day 0, 3 and 5 of mice treated with either control IgG and DC 101.

The Wilcoxon test indicated no significant difference between control IgG group and

DC 101 group on all three days. (right) RBC velocity on Day 3 and Day 5 was

normalized by the RBC velocity of the same vessel on Day O.

Discussion

Young et al. were the firstto show that IFP in tumors was higher than IFP in normal

tissue (Young et al. 1950). Since then, many studies demonstrated an increase in IFP in

both animal and human tumors. Elevated IFP constituted a major barrier for drug

delivery in tumors (Jain 1989). Here we showed that blocking VEGF signaling by

DCI0l, a VEGFR2 antibody, decreased IFP - not by restoring lymphatic function - but

by producing a morphologically and functionally "normalized" vascular network. We

have recently shown that an anti-VEGF antibody can lower IFP in transplanted tumors in

mice (Lee et al.2000) and in rectalcarcinomas in patients (Willett et al.2004). However,

the mechanisms of IFP reduction and how this reduction affects drug delivery are not

known. In normal tissues, the excess fluid filtered from blood vessels is drained by
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lymphatic vessels to maintain the IFP close to zero (mmHg). In tumors, IFP homeostasis

is perturbed due to impaired lymphatic function (Leu et al. 2000; Padera et al. 2002) and

abnormalities in vascular structure and function (Jain 2003). Because of the high

vascular permeability and the impaired lymphatic drainage, the oncotic and hydrostatic

pressures in the microvascular and interstitial spaces are at equilibrium in tumors

(Boucher and Jain 1992; Stohrer et al. 2000). To unravel the mechanism of IFP reduction

induced by blocking VEGF signaling, we examined the effect of DC101 on the

determinants of interstitial hypertension: including changes in the vascular morphology,

vessel wall structure, lymphatic vessels and function of tumor vasculature during the

course of treatment.

I showed that DC101 reduced IFP in multiple tumor models. The reason that IFP in

MCaIV was lower than in 54A and U87 was probably because MCaIV was implanted in

the dorsal skinfold chamber, while 54A and U87 were implanted in the leg. The blood

circulation and the environment of the dorsal chamber might cause tumors to have a

lowered interstitial fluid pressure compared to those implanted in the leg. Nevertheless,

the IFP value was similar to the published result of LS174T human colon

adenocarcinoma implanted in the dorsal skinfold chamber (Leunig et al. 1992).

As shown in Figure 7.5, we demonstrated that the reduction in IFP was associated with a

decrease in vascular permeability. Two possible mechanisms could explain this decrease

in vascular permeability. First, DC101 could induce the regression of vessels with less

pericytes that have a higher permeability. Recent in vitro and in vivo studies suggested

that the interaction between endothelial cells and mural cells controls vascular

permeability and integrity. Endothelial cells co-cultured with smooth-muscle-like cells
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had tighter junctions and a lower permeability than cultures of endothelial cells only

(Kurzen et al. 2002). In PDGF-B and PDGF receptor-B deficient mice the lack of

pericytes in angiogenic blood vessels had been associated with edema and morphological

signs of increased endothelial permeability (Hellstrom et al. 2001). Alternatively,

because VEGF enhanced vascular permeability, blocking VEGF signaling with DC101

might reduce the effective vascular permeability of most tumor vessels (Yuan et al. 1996;

Dvorak et al. 1999).

Even though DC101 reduced vascular permeability, the permeability of the normalized

vasculature was still significantly higher than that of normal tissues (Jain 1987; Yuan et

al. 1996). The small drop in oncotic pressure from 19 to 17 mmHg induced by DC101,

was also indirect evidence that the vascular permeability of DC101-treated MCaIV

tumors was still elevated. For example, in subcutaneous tissue, the oncotic pressure was

approximately 8 mmHg (Stohrer et al. 2000). Thus, macromolecules were still able to

freely pass through normalized tumor blood vessels.

The exchange of fluid and plasma proteins between blood vessels, interstitial space, and

lymphatic vessels plays a crucial role in balancing fluid within the body. It also plays an

important part in determining the effectiveness in the delivery of chemotherapeutic agent

during anti-cancer therapy. Due to the complexity of the system and limited information,

mathematical models have been developed to simplify and describe the movement of

molecules in tumors. In this study, I focused on transvascular transport since DC101

mainly affected the endothelial cells and the integrity of the vascular wall (Chapter 5).

To gain more insights into the effect of DC101 on fluid and solute transport in tumors, I

employed a mathematical model developed by Baxter and Jain to describe the
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macroscopic fluid and solute transport in tumors (Baxter and Jain 1989). This model

aims to examine the overall interstitial fluid pressure and interstitial fluid velocity profile

throughout the entire tumor. It assumes the tumor is spherical. This is a macroscopic

model, and the length scale of the pressure and concentration profiles is on the order of

the tumor radius. Thus, microscopic features such as blood vessels, cells, and the

interstitial matrix are not considered explicitly. The model assumes a continuous,

spatially distributed source throughout the tumor.

First, the transport of fluid in the tumor interstitium is described by Darcy's law.

ui = -KVPi

where K is the hydraulic conductivity of the interstitium (cm2/mmHg/s) and ui is the fluid

velocity (cm/s).

This equation is then combined with the continuity equation for steady-state

incompressible flow:

V ui = v(r)

where bv (r) is the fluid source term (s'- ) given by the Starling's Law.

J S S
Ov(r)= V = L (P- - -r,))

V V

where Jv is the fluid flux across the vascular wall (cm/s), S/V is the surface area of vessel

wall per unit volume of tissue (cm-l), Lp is the hydraulic conductivity of the vessel wall

(cm/mmHg/s). P is the microvascular pressure (MVP), and Pi is the interstitial fluid

pressure (IFP) as displayed in the result section. The hydrostatic pressure gradient (Pv -

Pi) is balanced by the oncotic pressure gradient (the difference between 2r, plasma

oncotic pressure and rni, interstitial oncotic pressure), and the reflection coefficient, o,
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determines the effectiveness of the oncotic pressure gradient across the vascular wall. Lp

and a depend on the properties of solute (i.e. size, charge, configuration) and

physiological properties of the vascular wall (pore size, charge). P, Pi, and the two

oncotic pressures also depend on the properties of the tissue, blood and lymphatic

vasculature.

This equation implies that the fluid source term is uniformly distributed throughout the

tumors. This model assumes that there is no functional lymphatic vasculature inside the

tumor to drain interstitial fluid (Padera et al. 2002).

The equation for Darcy's Law is then combined with the continuity equation to give:

- V. KVPI = v (r)

Assuming all parameters except for Pi are constant, the equation can be simplified to:

a'
V2P R2 (Pi-'), where a= R I

The effective pressure, Pe, is the interstitial fluid pressure that would yield zero fluid flux.

Pe is equal to [Pv - a (v - i)].

As for the boundary conditions, it satisfies the no flux boundary condition at the center of

the tumor due to symmetry:

VPIr= =0

At the surface of the tumor, two boundary conditions were used for this analysis. For

tumors implanted in the dorsal skinfold chamber (Case I), since the tumor surface was

exposed to atmosphere, where we calibrated P = 0, the boundary condition became:

gPIr=R =0
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When the tumor was implanted in the subcutaneous space (Case II), i.e. surrounded by

normal tissue, the pressure decayed over some distance in normal tissue. Thus, the

continuity of pressure and interstitial velocity hold:

Pir=R- = Pi r=R+ and -K dP d = -KN
dr r=R dr r=R+

where R and R+ represent the tumor-host boundary at the tumor and host side,

respectively. KT and KN is the hydraulic conductivity of tumor and normal tissue,

respectively. The remaining boundary condition of Case II was that Pi becomes 0 as R

approaches infinite, assuming that blood vessels and lymphatic vessels in normal tissue

will eventually drain all excess interstitial fluid.

Solving the differential equations using the appropriate boundary conditions, pressure

and interstitial velocity profiles can be solved analytically.

Case I: Tumor implanted in the dorsal skinfold chamber

Pi= 1 _1sinh(ar)

Pe r sinh(a)

A =UR 1 (sinh(ar)

KPe r sinh(a)

Case II: Tumor implanted in the subcutaneous space (i.e. surrounded by normal tissue)

A -i (1 + aN) sinh(aTP) r<R
(1 + a) sinh(aT ) + K. [aT cosh(aT )- sinh(a)]

K [aT cosh(aT) - sinh(aT)] . e- N' '

P[KcxT=- .cosh^aT) sinhaT)+(1+a i; nhr>Rr [K . aT cosh(aT ) - sinh(a ) + (1 + aN ) sinh(aT ) ] e-"N
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where P, i, and are dimensionless interstitial pressure, dimensionless interstitial velocity

and dimensionless radial position (r/R). Subscript T stands for tumor and N stands for

normal tissue and K is equal to KT/KN.

While Pv, v,, and i have been measured in both the control and DC101-treated groups,

several parameters such as Lp, K, a and SN need to be estimated before calculating Pi

using the mathematical model.

Estimation of a

There are no published values of a for tumors in the literature, however, a for normal

tissue has been measured (Jain 1987). The value of ( for albumin varies between 0 for

the liver (with a high vascular permeability) and 1 for the impermeable brain vessels, and

lung has a a of 0.5 (Parker et al. 1984; Aukland and Reed 1993). For albumin in normal

muscle, a was measured to be 0.91 for subcutaneous tissue (Ballard and Perl 1978). This

is the value (for normal tissue) we used for the model. To estimate a for tumors, a solid

solute/cylindrical pore model was employed. In this model, BSA was modeled as a solid

sphere, and vascular wall was assumed to have cylindrical pores (Anderson and Malone

1974; Deen 1987). can be estimated as:

a = [1 -(1 - )2]2

where X = rs (solute radius)/ro (pore radius). BSA is reported to have a hydrodynamic

radius of around 3.5 nm (Pluen et al. 2001; Alexandrakis et al. 2004). The vascular pore

cutoff size of MCaIV tumors implanted in the dorsal skinfold chamber has been shown

be between 1.2 and 2 microns (Hobbs et al. 1998). Based on scanning electron

microscopy images, intercellular openings have an average of 1.7 microns in diameter

and transcellular holes have an average of 0.6 microns in diameter (Hashizume et al.
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2000). Thus, for this analysis, it was estimated that the pore size of MCaIV vessels was

around 500 nm. Based on the solute radius and pore radius, the calculated a was 0.0001.

This was a reasonable value because MCaIV tumor vessel was extremely leaky, thus one

would expect a really low o.

To date no one has measured vessel pore size after anti-angiogenic treatment. However,

it has been shown that hormone withdrawal leads to a drop in pore cutoff (to about a fifty

of its original value) in Shionogi tumors, a hormone dependent tumor (Hobbs et al. 1998).

Hormone withdrawal leads to a decrease in VEGF level, similar to VEGF blockade by

DC101 (Jain et al. 1998). Thus, the pore size of normalized blood vessels was estimated

to be 100 nm (one fifth of the value before DC101 treatment), and the calculated a was

0.005. Even if the pore size decreased to 50 nm (ten times reduction), the calculated a

was still extremely small (0.02). This implied that there was negligible effect of oncotic

pressure gradient in determining fluid flux across the vascular wall.

Estimation of Lp and K

To date, there is no value of Lp reported for tumors. On the other hand, Lp has been

measured in various normal tissues in a variety of animals (Jain 1987; Baxter and Jain

1991). For capillaries in skeletal muscle in rats, Lp was calculated as 0.36x 10 - 7

cm/mmHg-s (Rippe and Haraldsson 1986). In this model, Lp in tumors was estimated to

be 2.8x10- 7 cm/mmHg-s, same as what was estimated in the Baxter and Jain model

(Baxter and Jain 1989).

It has been shown that there is a 5-fold increase in Lp in monolayers of endothelial cells

in vitro after the addition of VEGF (Chang et al. 2000). Therefore, we estimated that Lp

would decrease at least 5 times compared to control treatment when tumors were treated
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with DC101 (VEGF blockade) compared to control treatment. Thus, Lp of vessels in the

normalization time window was estimated to be 0.56x10-7 cm/mmHg-s. As shown in

Chapter 6, after DC101 treatment there was significant increase in both perivascular cell

and basement membrane coverage. Thus, one would predict that Lp would decrease even

more.

Since no additional information was available for K, and we did not expect DC101

affected the interstitial matrix, the value for hydraulic conductivity would be the same as

in the Baxter and Jain model (Baxter and Jain 1989).

Estimation of S/V

S/V (surface area of blood vessels per volume of tissue) was calculated based on two

photon microscopy images. Two photon images of normal brain vasculature and

glioblastoma tumor vasculature treated with either control IgG or DC101 were obtained

after injecting a fluorescent tracer i.v. In collaboration with Alex Tyrell and Dr. Badri

Roysam at the Rensselaer Polytechnic Institute, a computer algorithm was written to

trace the 3D vascular network. Briefly, by combining active contour and super-Gaussian

fitting, entire vessel segments could be traced starting from multiple seed points. The

cross section of each vessel segment was fitted by an ellipse, and thus, the perimeter of

the vessel segment could be obtained. By applying the convex hull technique, the

outermost detectable vessels provided the boundary of tissue that needed to be analyzed.
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Normal brain Tumor (before OCtOt
Figure 7.19: Computer traces of 3D vascular network.

Maximum intensity projection of 3D two photon images of blood vasculature: (left)

normal brain, (center) U8? tumor before OCtOt treatment, and (right) same region of

U8? tumor after OCtOt treatment. Green dotsllines were computer traces of the vascular

network. Each dot contained information such as vascular diameter by fitting the cross

sectional area with ellipse.

Based on these images, values of SN for three different cases were calculated (-250 cm-

for normal vasculature, -250 cm-1 for tumor vasculature, and -t50 cm-1 for normalized

tumor vasculature). These values were the same order of magnitude as the values used in

Baxter and Jain model (200 cm-1 for normal tissue, 90 cm-1 for tumor), but slightly higher.

The difference could be due to the increased sensitivity of two photon images.

Interestingly, even though tumor vessels were dilated compared to the normal vessels,

they had the same SN, presumably due to the lower vascular density.
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Parameter Normal Tumor Normalized Reference

Lp (cm/s/mmHg) 0.36 x 10-' 2.8 x 10-' 0.56 x 10-' See text, (Rippe and

Haraldsson 1986; Baxter

and Jain 1989)

K (cm 2/s/mmHg) 8.53 x 10- 4.13 x " 4.13 x 10- (Swabb et al. 1974; Baxter

and Jain 1989)

S/V (cm- ) 250 250 150 See text

Pv (mmHg) 15.6 5.9 5.3 See text, (Baxter and Jain

1989)

nv (mmHg) 20 19.8 19.2 See text, (Baxter and Jain

1989)

xi (mmHg) 10 17.3 15.1 See text, (Baxter and Jain

1989)

a (BSA) 0.91 0.0001 0.005 (Ballard and Perl 1978;

Baxter and Jain 1989)

Figure 7.20 and Figure 7.21 showed the calculated interstitial fluid pressure and

interstitial fluid velocity profiles as a function of distance from the center of the tumor.

The radius of the tumor was assumed to be 4 mm. Figure 7.20 represented the boundary

condition used for Case I (dorsal skinfold chamber tumors) while Figure 7.21 represented

the boundary condition used for Case II (subcutaneous tumors). Due to technical

difficulties, MVP and IFP measurements were done in tumors implanted in dorsal

skinfold chambers, while other experiments were done in subcutaneous tumors (see
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Material and Methods section). For each case, pressure and velocity profiles were given

for both the control group (red) and the DC 10 I-treated group (blue).

6 -W)
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E ~~m
E >- "~ ~

~2 =;! 0.01
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Figure 7.20: Calculated pressure and interstitial profiles (Case I).

The boundary conditions used in this model were valid for tumors implanted in the dorsal

skinfold chamber (Case I). Red line was a tumor treated with control IgG, while blue line

was a tumor treated with DC 10 1.

Using the parameters and the mathematical model, pressure and interstitial fluid velocity

profiles were calculated. The tumor in the control group had similar pressure profile as

the previously published experimental results (Boucher et al. 1990). It predicted a

reduction in IFP throughout the tumor (blue line). This result confirmed the IFP finding.

Interestingly, this model also predicted higher interstitial fluid velocity in most regions of

the tumor, possibly due to the induced hydrostatic pressure gradient.

For subcutaneously tumors, the profiles were similar (Figure 7.21), with the exception

that both pressure and velocity did not abruptly terminate at the tumors' edge.
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Figure 7.21: Calculated pressure and interstitial profiles (Case II).

The boundary conditions used in this model were valid for tumors implanted in

subcutaneous space (Case m. The red line indicated a tumor treated with control IgG,

while the blue line indicated a tumor treated with DC 101.

The mathematical model, for both cases, predicted a reduction in IFP after DCIOI

treatment. It also predicted a higher interstitial fluid velocity in most region of the tumor.

This implied that the interstitial fluid was not as stagnant as in the control group, and this

would enhance the delivery of molecules in tumors.

We previously showed that angiotensin n could increase the systemic blood pressure in

mice, and could create a pressure gradient across the vessel wall in tumors (Netti et al.

1999). Unfortunately, interstitial pressure caught up with vascular pressure, and the

pressure gradient across the vessel wall dissipated in less than one minute. Nevertheless,

even these short-lived gradients could increase the delivery of specific antibodies in

tumors (Netti et al. 1999). Thus the sustained hydrostatic pressure gradient across the

tumor vasculature, induced by DCIOl, could increase the transvascular convection of

large molecules, despite a drop in vascular permeability to macromolecules, as shown by

the predictions based on the mathematical model.
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To test if reduced tumor hypoxia improved radiation response, we conducted a systematic

evaluation of five treatment schedules using a combination of DC101 and y radiation to

treat U87 tumors growing orthotopically in the mouse brain (Figure 7.22). We found that,

when used as a monotherapy, DC101 (given at 40 mg/kg on days 0, 3, and 6) produced a

small, statistically insignificant tumor growth delay of -2.5 days, while radiation (three

daily fractionated doses of 7 Gy each) significantly delayed the growth by -12.5 days.

When DC101 was given in non-optimal combinations with radiation (RT1, RT2, RT3,

RT5), the combined therapy had no more than an additive effect. However, giving

radiation therapy on days 4 to 6 after DC101 treatment began (RT4) produced a

synergistic effect in which the tumor growth delay significantly exceeded the expected

additive effect. Collectively, these results demonstrated that DC101 led to improved

vascular function (reduced tumor hypoxia) and enhanced response to radiation therapy.
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Figure 7.22: Combination of radiation and anti-angiogenic therapies was

only synergistic during the normalization time window.

Tumor growth delay of orthotopic U87 glioblastoma was shown for untreated

controls (C), monotherapy with DCI0l (three injections, three days apart),

local radiation for three consecutive days (RT), and five different combination

schedules where radiation was given before, during, or after DCI01 therapy

(RTI-RT5; see diagram for schedules). The dashed lines showed the range of

the expected additive effect (EAE) of DCI0l and radiation. * P < 0.05,

compared to RT; + P < 0.05, compared to EAE.

In tumors, the abnormally high leakiness of the vasculature hindered drug delivery by

inducing blood flow stasis (Netti et al. 1996; Baish et al. 1997), whereas normalized

vessels were less leaky to macromolecules. As shown in Figure 7.18, we showed that

- 107 -



there was a significant increase in the normalized RBC velocity. However, it appeared

that there was no difference in the absolute RBC velocity. One reason we did not see any

changes in the absolute RBC velocity was because both intra-sample variability and

between-sample variability were high. To minimize intra-sample variability, we should

measure RBC velocity of most tumor blood vessels for a long period of time; however,

due to technical limitations (i.e. the length of the experiment was limited by the

anesthesia time, and the number of RBC scans was limited by the possibility of photo-

damage), only a few vessels per mouse could be measured. To account for the

randomness of between-sample variability, mixed models was used to analyze the data

(Appendix 3). Based on this model, it was shown that the RBC velocity in DC101

treatment group was significantly higher than in the control group. Thus, both analyses

suggested that DC 101 affected RBC velocity in tumors.

Since we had data for both RBC velocity and diameter, we could estimate the effects of

DCI01 on blood flow. Mean blood flow rates of individual vessel (Q) could be estimated

based on vessel radius (R) and mean RBC velocity (vmean):

Q = X * r2 * Vmean

and Vmean was estimated from the empirical relationship:

Vmean = Vcenterline/a

where the value of a depends on vessel diameter (a = 1.3 for blood vessels < 10 gim;

linear extrapolation 1.3 < a < 1.6 for blood vessels between 10 and 15 gim; and a = 1.6

for blood vessels > 15 jgm (Leunig et al. 1992). Since all line scans were positioned at

the center of vessels, the measured velocities were vcenterline. The calculated blood flow

values of individual vessel were analyzed using the mixed models. No difference was
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found after DC101 treatment. This data suggested that blood flow of the remaining

network after DC101 treatment was not compromised even though RBC velocity was

increased. Unfortunately, due to the limitations the line scan method, further studies will

be needed to form a definitive conclusion on the effects of anti-angiogenic therapy on

blood flow.

In conclusion, our results showed that DC101 reduced the IFP while maintaining MVP,

and as a result, it induced a positive hydrostatic pressure gradient across the tumor

vasculature. The induced hydrostatic pressure gradient across the vascular wall could

improve the penetration of small and large therapeutic agents in tumors. Furthermore, we

showed that the RBC velocity of remaining vessels increased 3 days and 5 days after

DC101 treatment in U87 orthotopic model, and this could partly explain the reduced

tumor hypoxia during the normalization time window. In the next chapter, I examine the

molecular changes during DC 101 treatment.
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Chapter 8: Molecular Changes during DC101

Treatment

Portions of this chapter have been taken from:

Tong, R. T., Boucher, Y., Kozin, S. V., Winkler, F., Hicklin, D. J., and Jain, R. K. (2004).

Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces

a pressure gradient across the vasculature and improves drug penetration in tumors.

Cancer Res 64, 3731-3736.

Winkler, F.*, Kozin, S. V.*, Tong, R. T., Chae, S. S., Booth, M. F., Garkavtsev, I., Xu,

L., Hicklin, D. J., Fukumura, D., di Tomaso, E., Munn, L. L., and Jain, R. K. (2004).

Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response

to radiation; Role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer

Cell 6, 553-563. * These authors contributed equally.
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Introduction

In Chapters 6 and 7, I demonstrated that tumor vasculature was highly abnormal, in both

its structure and its function. The imbalance between angiogenic and anti-angiogenic

molecules in tumors led to tortuous and dilated blood vessels. Furthermore, perivascular

cells were often detached from the blood vessels, and many of the tumor vessels had

incomplete pericyte coverage. Similarly, basement membrane coverage of tumor vessels

was incomplete. The abnormalities in vascular wall structure and endothelial-endothelial

cell junction led to high permeability. In turn, high vascular permeability coupled with

the lack of functional lymphatic vessels led to high interstitial fluid pressure. These

abnormalities both in the tumor vasculature and microenvironment impeded uniform

delivery of oxygen and molecules in tumors.

During vascular development, the formation of mature vessels requires that numerous

molecular signals work harmoniously at the appropriate level and with correct timing.

Studies have shown that disruption of certain molecules such as VEGFs, PDGFs, and

angiopoietin often lead to abnormal vascular development (Jain 2003). Similarly, in

adults many of these pathways are not regulated appropriately in tumors, leading to

abnormal vasculature and tumor microenvironment. Interestingly, despite the drop in

vascular density, the pericyte coverage improved significantly after DC101 treatment.

Consequently, the modified vascular wall structure led to the improved barrier function

of tumor blood vessels. To dissect the molecular mechanism involved in this

normalization process, I collected total RNA and protein from MCaIV tumors 3 days

after the completion of treatment with DC101 or control IgG. By unraveling the

molecular mechanism on how the vascular normalization proceeded, we might be able to
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develop strategies to extend the window of normalization in the future. This would

enable improved delivery of oxygen and therapeutic agents to a greater extent and for a

longer period of time. This knowledge will also allow the development of better anti-

angiogenic agents and treatment strategies.

Results

Gene array analysis

SCID mice with MCaIV tumors were treated with either control IgG or DC101 for three

days. Five tumors per group were collected for the gene array analysis. Total RNA was

extracted from tumors of 4-5 mm diameter using TRIzol Reagent (InVitrogen). Total

RNA concentration of each sample was measured and mixed together in equal amount.

To screen for relative differential expression of multiple genes, cDNA array containing

96 genes involved in angiogenesis and vessel maturation were used according to

manufacturer's instructions (GEArray Q Series, SuperArray, Bethesda, Maryland).

Chemiluminescent spots were quantified by densitometry and normalized with 13-actin

(FluoroChem 8800 system).

-112-



..
• •,.

•• ..
•

• •• ...

...•••• " ••
Figure 8.1: DNA MicroArray.

The array contained 96 genes involved in angiogenesis and vessel maturation.

Control IgG group (left) and DClOl-treated group (right)

While most of the genes did not differ much between the control IgG and DC 10 I-treated

groups, the expression level of some genes were modified after DClOl treatment. The

following was the summary of genes that change as a result of DC 101 treatment.
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Table 8.1: Gene Array Data

Gene Expression (DC 101/Control)

Angiopoietin-2 0.457

VE-Cadherin 0.518

PECAM 0.386

Epidermal Growth Factor 0.224

Ephrin B2 1.254

PDGFB 0.461

PDGFRP 0.394

HIFIa 0.864

Thrombospondin 2 0.292

MMP2 0.386

MMP9 0.135

Angiopoietin-2 expression was found in numerous tumors (Table 9.1). Ang-2 is a natural

antagonist for Ang-1 for binding the Tie2 receptor present on endothelial cells, and is

known as a factor that destabilizes blood vessels (Maisonpierre et al. 1997). VE-

Cadherin and PECAM are adhesion molecules that express on the endothelial cells (Jain

2003). Epidermal Growth Factor (EGF) is a growth factor expressed in some tumors, and

it stimulates tumor growth through the EGFR signaling pathway. The ephrin/Eph

signaling pathway is important for the determination of arterial and venous endothelial

specialization, while PDGF/PDGFR promotes proliferation, migration and recruitment of

mural cells. HIF1 a is a transcription factor that is upregulated in hypoxic condition, and

Matrix Matelloproteases (MMPs) degrade various kinds of collagen.
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Real-time PCR data

We quantified the mRNA levels of various candidate molecules that were identified by

cDNA gene array analysis using real-time PCR. Real time PCR primer sequences were

designed using LUX Online Primer Software (LUX system, Invitrogen, Carlsbad,

California). Quantitative RT-PCRs were performed on the ABI 7700 sequence detection

system (Applied Biosystems). Eight animals per group were used for the Real-time PCR

experiments. All experiments were performed in duplicate, and a standard curve for the

specific cDNA of interest was run with every PCR reaction. The amount of cDNA was

expressed relative to this standard curve. The final quantification of each cDNA sample

was relative to its ~-actin level.
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Figure 8.2: Real time-PCR. DCtOt reduced the Ang-2 gene expression.

Eight animals per group were used for the real-time PCR analysis. Each gene

expression level was normalized by ~-actin level. * P<0.005 Data are represented

as mean:f: S.E.M.

Out of the genes that were tested for real-time PCR, only Ang-2 expression showed

significant difference between the control (n = 8, 10.39 :f: 1.34) and the OCIOI-treated
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group (n = 8, 2.25 :t 0.52). (P < 0.005) Interestingly, MMP9 also showed a trend

towards a reduced expression after DC10l treatment. (MMP expression of the control

group (n=8) is 13.70:t 8.88, while the DC 10I-treated group (n=8) is 3.37 :t 1.18).

Ang-2 Western Blot

Western Blot Analysis was used to further confirm the downregulation of Ang-2 in

protein levels. Five animals in the control and four animals in the DC 10 I-treated group

were used. Protein was isolated, and NuPAGE (InVitrogen) was used to run the Western

Blot. Goat anti-human Ang-2 antibody (1: 1000; R&D AF623) and Goat anti-~-actin

antibody (1:500; Santa Cruz) were used to identify Ang-2 and ~-actin proteins.

According to the manufacturer, the Ang-2 antibody also cross-reacts with mouse protein.

Control

AnQ21 1.JJ? 'Il- ), J 1"'l~ !Jf' I I

(3-Actin

Figure 8.3: Ang-2 Western Blot.

DC10110wered Ang-2 protein level in tumors.

DC101

~~I

As shown in Figure 8.3, DC10llowered the protein level of Ang-2 in tumors. These data

agreed with the gene array and real-time PCR data.

Ang-2 Immunostaining

To identify the distribution of Ang-2 protein in tumors, immunostaining was performed

in control and DC101-treated tumors. Goat anti-human Ang-2 antibody (1:100; R&D

AF623) was used to label Ang-2 protein in tumors. While some tumor and stromal cells

were stained positive with Ang-2, most of the Ang-2 staining was associated with tumor

blood vessels.
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Figure 8.4: Ang-2 Immunostaining on MeaIV tumors.

Control IgG (left) and DC 10 I-treated (right) tumors. The arrow points to the Ang-2

positive blood vessel. Image width = 356 microns.

Discussion

Angiogenesis and vascular development involves a complex senes of events during

which endothelial cells differentiate, proliferate and migrate (Yancopou10s et al. 2000).

Furthermore, the endothelial cells also undergo morphological organization and interact

with the surrounding cells and tissue, such as the interstitial matrix and pericytes. The

maturation of vasculature requires recruitment of perivascular cells, generation of an

extracellular matrix and formation of vessel wall with good structural support and

appropriate regulation of vessel function (Jain 2003). In recent years numerous new

pathways and ligand/receptor systems have been found to be crucial in the process of

angiogenesis and vascular maturation.

In addition to the VEGF receptors, a second class of endothelial-specific tyrosine kinase

receptors has been implicated in vascular growth and development. These are the Tie-l

and Tie-2 receptors (Sato et al. 1995). The angiopoietins were identified via secretion

trap and homology cloning techniques as a family of structurally related proteins that

bind to Tie-2 receptor (Davis et al. 1996; Maisonpierre et al. 1997). Ang-1 acts as an

agonist, activating the Tie-2 signaling pathways (Davis et al. 1996; Suri et al. 1996);
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while Ang-2 acts as antagonist in the context of the endothelium, specifically blocking

the Ang-1 dependent activation of these pathways (Maisonpierre et al. 1997). Ang-1

seems to be important in maintaining the quiescence and stability of the mature

vasculature. Ang-1 deficient mice display deficits in vascular development (Suri et al.

1996). Mice lacking Ang-l seem to exhibit a simplified and less complex vasculature.

Endothelial cells are poorly associated with the underlying matrix and do not properly

recruit and associate with perivascular cells. Experiments with transgenic mice

overexpressing Ang-2 show a phenotype similar to Ang-1 deficient mice, demonstrating

that Ang-2 probably acts as a Tie-2 antagonist (Maisonpierre et al. 1997). Ang-2 is

postulated to be a key destabilizing factor involved in initiating angiogenic remodeling.

In a rat C6 glioma model, researchers show progressive detachment of aSMA-positive

cells coincides with Ang-2 upregulation (Holash et al. 1999). Interestingly, some studies

suggest that Ang-2 function depends on the availability of VEGF (Lobov et al. 2002). In

the presence of VEGF, Ang-2 promotes angiogenesis, remodeling of the basal lamina,

and proliferation and migration of endothelial cells. In contrast, in the absence of VEGF,

Ang-2 leads to endothelial cell apoptosis and vessel regression.

As mentioned above, Ang-2 is upregulated in many human tumors (Table 9.1), as well as

during development at sites where blood vessel remodeling is occurring. Similar to other

studies, the immunostaining shows Ang-2 protein localizes around blood vessels (Krikun

et al. 2000; Pichiule and LaManna 2002). To date, little is known about the regulation of

angiopoietin gene expression. Promoter analyses have not been undertaken, and most

information in this area is derived from observations of changes in expression following

specific treatment. Many studies show that hypoxia results in an increase of Ang-2 levels
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(Oh et al. 1999; Krikun et al. 2000; Ray et al. 2000; Pichiule and LaManna 2002;

Pichiule et al. 2003), while a few studies also show increases in Ang-1 level (Ray et al.

2000). Some studies also show that Ang-2 levels can be increased by VEGF and other

growth factors (Mandriota and Pepper 1998). Results in this thesis (Chapter 7)

demonstrated that DC101 reduced hypoxia in U87 tumors due to vascular normalization.

This finding strongly suggested that blocking the VEGFR2 pathway would induce a

change in Ang-2 expression either by intermediate signaling molecules or by improved

oxygenation in tumors. Interestingly, the expression level of Ang-2 had also been shown

to be decreased in mammary adenocarcinoma model after the treatment of endostatin, an

endogenous anti-angiogenic molecule generated by the cleavage of collagen XVIII

(Calvo et al. 2002). However, further studies are needed to dissect the mechanism.

Of interest, in the Winkler et al. study (Winkler et al. 2004), we had shown that DC101

led to up-regulation of Ang-1 during the normalization time window (Figure 8.5). Thus,

in U87 tumor model, DC101 led to upregulation of Ang-1 during the normalization time

window, while in MCaIV tumor model, it led to downregulation of Ang-2. This

suggested that the ratio between Ang-1/Ang-2 might be important in the normalization

process.
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Figure 8.5: Ang-l protein level increased after DClOl treatment.

Ang-I protein (red) co-localized with perfused vessels (green) 2 and 5 days

after initiation of DC 101 treatment. A low level of Ang-I near perfused vessels

was observed in control tumors, at day 1 and at day 8 after initiation of DC 101

treatment. Ang-I protein production was blocked in tumor cells transfected

with Ang-I siRNA. Scale bars, 100 microns. *p < 0.05 compared to untreated

control; + P < 0.05 compared to control IgG group (day 2); # P < 0.05

compared to day 2 after initiation of DC 10 1 treatment. Data are represented as

mean:t S.E.M. (Winkler et al. 2004)

In addition, Ang-2 was shown to stimulate the expression of MMP9 in cultured retinal

endothelial cells (Das et al. 2003). Similar to other studies, the authors showed that Ang-

2 was upregulated during the development of the normal retinal vasculature. The

authors used muTek delta Fe (the extracellular domain of murine Tek receptor fused to

the Fe portion of murine IgG) to block the binding of Ang-I and Ang-2 to Tie-2 receptor.

Interestingly, mice treated with Tek-delta Fe were shown to have a significant decrease in
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MMP9 mRNA expression compared with the IgG-treated control animals. In a separate

study, both Ang-2 and MMP2 had been shown to be upregulated in the invasive area in

human glioma biopsies (Hu et al. 2003). Moreover, Ang-2 over-expressing tumors had

also shown to have higher levels of MMP2 activation and increased angiogenesis. These

studies suggested that there was cross-talk between Ang-2 signaling pathway and MMPs

expression. Based on the gene array and real-PCR data, we also observed a tendency

towards decreased MMP9 expression after DC101 treatment. Both MMP2 and MMP9

can degrade the basement membrane (Kalluri 2003). Downregulation of Ang-2 could

affect MMP expression, and hence reduced the degradation of basement membrane in

tumors. Further studies are needed to dissect the molecular cross talk between Ang-2 and

MMPs.

- 121 -



Chapter 9: Bevacizumab Phase I Human Clinical

Trial

Portions of this chapter have been taken from:

Willett, C. G., Boucher, Y.*, Di Tomaso, E.*, Duda, D. G.*, Munn, L. L.*, Tong, R. T.*,

Chung, D. C., Sahani, D. V., Kalva, S. P., Kozin, S. V., Mino, M., Cohen, K. S., Scadden,

D. T., Hartford, A.C., Fischman, A. J., Clark, J. W., Ryan, D. P., Zhu, A. X.,

Blaszkowsky, L. S., Chen, H. X., Shellito, P. C., Lauwers, G. Y., and Jain, R. K. (2004).

Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in

human rectal cancer. Nature Medicine 10, 145-147. * These authors contributed equally.
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Introduction

In the previous three chapters, I described the structural, functional and molecular

changes during DC101 treatment in animal models. To determine whether these results

based on pre-clinical models could translate into clinical practice, we initiated a Phase I

clinical trial that integrated the VEGF-specific antibody bevacizumab (Avastin,

Genentech, South San Francisco, CA) into a contemporary treatment program of

preoperative chemotherapy and radiation therapy followed by surgery, for patients with

primary and non-metastatic rectal cancer. This was a Phase I escalation trial, approved

from the Cancer Therapeutics Evaluation Program of the National Cancer Institute as

well as the Internal Review Board of Dana-Farber Partners Cancer Care. Two different

doses (5 mg/kg and 10 mg/kg) of bevacizumab were given to two groups of patients. The

patients with primary and locally advanced adenocarcinoma of the rectum were given

bevacizumab alone for 2 weeks, which was the approximate half-life of bevacizumab in

circulation. The treatment schedule was then followed by three two-week cycles of

bevacizumab, 5-fluorouracil (5-FU) and external beam radiation therapy (EBRT) to the

pelvis. All patients then underwent surgery uneventfully 7 to 9 weeks after completion of

all preoperative therapy. Tumor biopsies were obtained before and 12 days after the first

dose of bevacizumab infusion, which allowed for evaluation of the specific effects of

bevacizumab alone on the tumors, as 5-FU and EBRT treatment was not initiated until

the third week of the protocol. A number of measurements such as interstitial fluid

pressure, blood flow and blood volume based on CT data, the number of circulating

endothelial and progenitor cells, and FDG uptake were measured in this study. For my

thesis work, I examined the microvascular density, pericyte coverage, and Ang-2
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expression in tumor sections from biopsies and evaluated any potential normalization

effects in human tumors.

Results

Microvascular density

Tumor biopsies obtained before and 12 days after the first bevacizumab infusion were

assessed for microvascular density (MVD). Blood vessels were labeled using an

antibody against human PECAM (Dako, Carpentria, CA). Digital images were taken to

cover entire tissue sections. Out of the six pairs of biopsy samples, five of them had

analyzable biopsies that permitted accurate determination of the number of vessels per

micrometer square in areas of invasive adenocarcinoma with desmoplasia.
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Figure 9.1: Microvascular density.

All patients showed a significant decrease in microvascular density (MVD) after

bevacizumab treatment (P < 0.05 by t-test). Pink: pre-treatment; blue: 12 days post

bevacizumab treatment. Data are represented as mean::f::S.E.M.

The PECAM staining showed that the vascular density in rectal tumors decreased after

bevacizumab treatment. Five of 5 analyzed patients showed a significant drop in vascular
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density. Pooling the 5 patients together, the vascular density dropped from 13.0+3.2 to

6.9±1.8 after the treatment (P < 0.003). This set of data provided direct evidence of the

anti-vascular effects of bevacizumab in human tumors, which was in line with preclinical

findings.

Pericyte coverage

Pericyte coverage of the tumor vessels was assessed by double staining the biopsies for

PECAM (Dako, Carpentria, CA) and aSMA (clone 1A4, Dako, Carpentria, CA). The

concentration of SMA (1:5000 dilution) was optimized to differentiate between the

myofibroblasts present in the desmoplastic areas and the perivascular cells. Since the

color of PECAM staining (DAB, brown) was quite close to the color of aSMA staining

(Fast Red, pink), the pericyte coverage was counted by myself and another independent

observer directly through a microscope. A vessel was considered covered when aSMA-

positive cells covered -75% of the perimeter of that vessel.
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b

c

Figure 9.2: Perivascular cell coverage.

..

The tissues were double stained for PECAM (DAB, brown) and aSMA (Fast

Red, pink). Double staining in adenoma (a). Most vessels were covered by

perivascular cells. Representative fields depicting the variation in pericyte

coverage before (b) and 12 days (c) after bevacizumab treatment in patients. The

arrow points to a vessel surrounded by perivascular cells. Image width: (a): 712

microns, (b) and (c): 356 microns.

The immunostaining showed that while rectal adenocarcinomas had more vessels before

bevacizumab treatment, most of these vessels were not covered by aSMA-positive cells.
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Figure 9.3: Fraction of vessels with pericyte coverage.

Four of five patients showed increased pericyte coverage.

By counting the total number of vessels with and without aSMA-positive cell coverage,

we calculated the fraction of vessels with pericyte coverage. In 4 of 5 patients, the

pericyte coverage increased. The limited number of patients and one outlier (Patient 2, as

identified by the Extreme Studentized Deviate (ESD) test), indicated that while there was

a trend, the increase in pericyte coverage with bevacizumab was not statistically

significant (P = 0.09).

Ang-2 expression

To evaluate the effects of bevacizumab on Ang-2 expression in tumors, goat anti-human

Ang-2 (1:200, AF623 , R&D Systems Inc.) was used to stain biopsy samples pre- and

post-bevacizumab treatment. Due to our limited number of samples, only 3 patients

(Patients 1, 3 and 6) treated with 5mglkg bevacizumab were analyzed. We had also

analyzed 3 additional patients (Patients 8, 9 and 11) treated with 10 mg/kg bevacizumab.
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b

c

Figure 9.4: Angiopoietin-2 immunostaining.

ost bevacizumab treatment
~

(a) Ang-2 was localized using a goat anti-human Ang-2 antibody (brown). (b) Tumor

nodules were identified by two independent observers, and were manually deleted using

Adobe PhotoS hop. (c) Ang-2 stained area was identified and outlined by red lines, and

the total stromal area was outlined by purple lines using a computer macro in NIH

Image. Most of the Ang-2 signal is associated with blood vessels.

To quantify the Ang-2 signal, digital images were taken to cover the entire section. Ang-

2 staining was mostly associated with blood vessels, but some tumor and stromal cells
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were also stained positive for Ang-2 (Figure 9.4a). The stromal and tumor nodules were

identified by myself and another independent observer, and only the stromal area was

selected for the quantification (Figure 9.4b). A computer macro was used to quantify the

total stromal area and Ang-2 positive area for each individual image (Figure 9.4c). The

fraction of the Ang-2 stained area was calculated as the ratio of the two areas.
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Figure 9.5: Quantification of Angiopoietin 2

immunostaining.

Fraction of Ang-2 staining is the ratio of Ang-2

area to total stromal area. Data are represented as

mean :t S.E.M.

Ang-2 immunostaining analysis was performed before and 12 days after the patients were

treated with either low- (patients 1, 3 and 6) or high-dose (patients 7, 9 and 11)

bevacizumab. In 4 of 6 analyzable patients treated with low- or high-dose bevacizumab,

the fraction of Ang-2 positive area in the stromal compartment decreased after

bevacizumab treatment (P < 0.05). Due to the limited number of patients and samples,

only the low-dose bevacizumab group demonstrated a statistically significant reduction in
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the fraction of Ang-2 stained area. Nevertheless, for the 6 patients treated with

bevacizumab, Ang-2 expression was significantly decreased overall (P < 0.05).

Discussion

Bevacizumab is the first anti-angiogenic agent to enter the clinic, and is currently used

with chemotherapy as the first line of treatment for colorectal cancer patients. At the

molecular level, this recombinant, humanized monoclonal antibody targets VEGF, which

is over-expressed in rectal cancer and is associated with disease progression and reduced

survival (Ferrara et al. 2004). Genentech filed an Investigational New Drug Application

for bevacizumab, and Phase I clinical trials were initiated in April 1997. In February of

2004, bevacizumab was approved by the FDA based on the results of a randomized Phase

III clinical trial for patients with metastatic colorectal cancer (Hurwitz et al. 2004). In

this trial, low-dose-bevacizumab (5 mg/kg) in combination with irinotecan-5 fluorouracil

(5-FU)-leucovorin chemotherapy prolonged survival by 5 months. In a randomized

Phase II clinical trial for renal cancer patients, bevacizumab as a mono-therapy

significantly increased the time to progression. The effect of bevacizumab was more

pronounced at a high-dose (10 mg/kg) compared to a low-dose (3 mg/kg) of bevacizumab,

but neither dose achieved an improvement in survival (Yang et al. 2003). Despite these

unprecedented successes for a drug targeting the vasculature, the mechanism of action of

VEGF blockade in human cancer patients remains unknown, largely because of the lack

of correlative markers in trials targeting VEGF. Furthermore, the optimal dose of

bevacizumab and treatment scheduling are yet to be defined for combined regimens for

cancer patients. In a pilot Phase I dose escalation trial, we addressed some of these

questions by designing a regimen consisting of an initial bevacizumab infusion followed
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by three cycles of bevacizumab, 5-FU and external beam radiation treatment for locally

advanced, non-metastatic rectal cancer patients (Willett et al. 2004). Six to nine weeks

after completion of the combined treatment, patients underwent surgical resection of the

tumor. Using an array of functional, cellular and molecular investigations, we showed

that bevacizumab exhibited antivascular effects on rectal cancer in patients. I was

involved with measuring microvascular density and pericyte coverage, as well as

angiopoietin-2 staining using the biopsy samples obtained pre- and 12 days post-

bevacizumab treatment.

Based on the PECAM staining, we showed that vascular density decreased significantly

after bevacizumab treatment. These data supported pre-clinical findings that after DC101

treatment, tumor vascular density dropped significantly (Kadambi et al. 2001; Izumi et al.

2003; Tong et al. 2004; Winkler et al. 2004). Studies have shown that anti-angiogenic

therapy reduces microvascular density via the induction of endothelial cell apoptosis

(Sweeney et al. 2002). Bevacizumab, similar to DC101, blocks VEGF signaling. As

suggested in Chapter 6, we hypothesized that anti-angiogenic treatment normalized the

tumor vasculature by targeting immature blood vessels. Since many of the immature

blood vessels lack perivascular cell coverage, one would expect an increase in pericyte

coverage after anti-angiogenic treatment as VEGF withdrawal pruned immature blood

vessels preferentially (Benjamin et al. 1999). In fact, the increase of pericyte coverage in

human tumors confirmed the pre-clinical results of Chapter 6 and of other published data

(Tong et al. 2004; Winkler et al. 2004; Vosseler et al. 2005). Thus, increased pericyte

coverage is one of the indications of vascular normalization.
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Besides the decreased microvascular density and increased pericyte coverage, we also

confirmed that IFP dropped after bevacizumab treatment in this Phase I clinical trial

(Figure 9.6) (Willett et al. 2004). This result confirmed the pre-clinical finding that after

anti- VEGF treatment, IFP dropped significantly (Chapter 7). The decrease in IFP might

be a result of the vascular normalization, as the tumor blood vessels resume part of the

normal vascular function (Jain 2001). The decrease in IFP and the indication of a

pressure gradient with DCIOI (Chapter 7) might enhance the delivery of therapeutic

agents to tumors, and this might explain the synergistic effects seen in the bevacizumab

Phase illclinical trials (Hurwitz et al. 2004).

Human IFP data
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Figure 9.6: Interstitial fluid pressure pre- and post-bevacizumab

treatment.

Red: pre-bevacizumab treatment. Blue: post-bevacizumab treatment. Patients

3 to 6 were treated with 5 mg/kg bevacizumab, while Patients 7 to 10 were

treated with 10 mg/kg. Data are represented as mean :i: S.E.M. (Willett et al.

2004).

Chapter 8 showed that DCIOI lowered the expression level of Ang-2 in tumors. As

expected, bevacizumab also reduced the Ang-2 expression level in human colorectal
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tumors. Studies have shown that Ang-2 is overexpressed in many different types of

tumors that are examined (Table 9.1). Thus, VEGF blockade might able to revert Ang-2

levels (or Ang-2/Ang-1 ratio) back to normal values. The pre-clinical studies (Chapter 8)

and clinical data (Chapter 9) suggested that Ang-l and Ang-2 levels might represent the

molecular signature for vascular normalization. Further studies are needed to support this

hypothesis. Table 9.1 summarized the Ang- I and Ang-2 level in human colorectal, breast,

and brain tumors. This table showed higher Ang-2 levels in the three tumor types (colon,

breast, and brain tumors) that were examined in this thesis (breast and brain tumors in

Chapter 8; rectal tumor in Chapter 9).

Table 9.1: Summary of Ang-1 and Ang-2 expression profiles in human colon, breast, and

brain tumors.

Tissue Tumor type Change in Change in Change in Reference

Ang- 1 Ang-2 ratio Ang-

level level 2:Ang-1

Colon Carcinoma

Metastatic

colorectal cancer

Colorectal cancer

Breast Inflammatory

breast cancer

Invasive ductal

cancer

Carcinoma

I

T

tt
Tt

t t

N/A t

I

I

t

N/A

N/A

(Ahmad et al. 2001)

(Ogawa et al. 2004)

(Yoshida et al. 1999)

(Shirakawa et al. 2002)

(Stratmann et al. 2001)

(Sfiligoi et al. 2003)
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Carcinoma

Breast cancer

Brain Glioblastoma

Astrocytoma

Glioblastoma

Glioblastoma

Astrocytoma

Glioblastoma

4

N/A

I

I

N/A

I

4

T

t

T

T

I

1

t

t (Currie et al. 2001)

N/A (Carter and Ward 2000)

N/A (Zagzag et al. 1999)

N/A (Zagzag et al. 1999)

N/A (Stratmann et al. 1998)

N/A (Holash et al. 1999)

T (Audero et al. 2001)

I (Audero et al. 2001)

·. . a a . · * / 1-TI \ ___ _ 1-_
Increased (T), decreased (4), no change (=), or not available/not conclusive (N/A) are aenc

for each Ang-1 and Ang-2.

Interestingly, human glioblastoma consistently show a correlation of Ang-2 signal with

alterations of oaSMA-positive perivascular cells (Zagzag et al. 1999). Ang-2 is associated

with smaller tumor blood vessels, which also have less perivascular cell coverage

(Stratmann et al. 1998). These studies suggest that Ang-2 expression might promote

perivascular cell dropoff. The connections between VEGF, angiopoietins, and pericyte

coverage will be crucial in understanding the process of vascular normalization.

In summary, the decrease in IFP, microvascular density and stromal Ang-2, as well as the

increase in perivascular cell coverage further supported the hypothesis that VEGF

blockade normalizes the tumor vasculature and enhances tumor drug delivery.

Bevacizumab might also sensitize the endothelium to cytotoxic agents. Collectively,

these mechanisms might explain the efficacy of bevacizumab in recent clinical trials, as

well as the possible additive or synergistic interaction between anti-angiogenic and

cytotoxic therapies that had been observed both in clinical and preclinical settings for
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more than a decade (Teicher 1996). The results of this thesis and the phase I study will

hopefully facilitate and stimulate future research in this area.
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Chapter 10: Discussion and Future Perspective
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The data presented in this thesis provide compelling evidence in support of the

normalization hypothesis - that judicious application of anti-angiogenic treatment can

return the abnormal tumor vasculature to a phenotype more like that of normal blood

vessels by pruning the immature vessels and fortifying the remaining ones (Jain 2001).

We showed that the normalized tumor vasculature was less tortuous and the vessels were

more uniformly covered by pericytes and basement membrane (Chapter 6 and Figure

10.1). This result implied that vessels with less mural cell and basement membrane

coverage were more vulnerable to DC101-induced regression, which was consistent with

previous findings that tumor vessels without mural cells tend to regress after VEGF

withdrawal (Benjamin et al. 1999).
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Tumor blood vessels in the control group (treated with a non-specific IgG antibody) were

tortuous, hyperpermeable, and immature. The elevated vascular permeability and the

lack of functional lymphatics led to an elevated interstitial fluid pressure (IFP) and

oncotic pressure. DCIOI (anti-VEGFR2 treatment) pruned immature blood vessels,

decreased the diameter of residual vessels, reduced the tortuosity of the vasculature, and

remodeled the vasculature into a more organized network with improved perivascular

cells and basement membrane coverage. Furthermore, DC 101 decreased vascular

permeability and induced a hydrostatic pressure gradient that improved drug delivery

(Tong et al. 2004).

Our functional data demonstrated for the first time that a drop in vascular permeability

was associated with increased transvascular gradients in oncotic and hydrostatic pressure

in tumors. An increased hydrostatic pressure gradient improved the penetration of large

molecules into tumors (Chapter 7). We further showed that DC I0 I increased RBC

velocity in the remaining tumor vasculature, and this could partly explain the reduced
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tumor hypoxia during the normalization time window. We had also clearly demonstrated

that the gene expression and protein levels of angiopoietin-2 were lowered after DC101

treatment (Chapter 8).

The original rationale for combining anti-angiogenic and cytotoxic therapies was to target

two distinct cell populations within solid tumors: cancer cells and endothelial cells.

When endothelial cells are targeted, blood vessels should be destroyed, and thus

compromise the delivery of therapeutics. However, several preclinical studies clearly

demonstrate that delivery of therapeutics is not compromised by anti-angiogenic agents

(Wildiers et al. 2003), but is even increased in several cases (Teicher 1996). The

restoration of pressure gradients induced by VEGF-blockade may explain the

uncompromised or increased uptake of cytotoxic agents in tumors. For a cytotoxic agent

to be effective, it must reach all cancer cells in effective quantities. Anti-angiogenic

therapy, as shown by this study, might facilitate the delivery of therapeutic agents to

cancer cells, particularly those that were farther from the vessels. This mechanism might

contribute to the potentiation of conventional therapies by anti-angiogenic agents

(Teicher 1996; Browder et al. 2000; Klement et al. 2000; Kozin et al. 2001; Baker et al.

2002; McCarthy 2003). Furthermore, after we published our work on vascular

normalization, several studies conducted by other research groups confirmed our results

(Table 10.1).
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Table 10.1: Pre-clinical evidences supporting normalization of the tumor vasculature

Anti- Target/action Other Tumor Results Reference
angiogenic therapies
agent
Anti-VEGF VEGF CPT-1 I Mice implanted * Decreased vascular (Wildiers et al.
mAb with human density 2003)
(A.4.6. 1) colon * Increased intratumoral

adenocarcinoma CPT- 11 concentration
* Increased tumor

perfusion (Hoechst
33342)

Thalidomide Inhibits X-ray Mice implanted * Thalidomide induced (Ansiaux et al.
bFGF and with tumor reoxygenation 2005)
VEGF fibrosarcoma * Lowered IFP

* Increased perfusion
* Vascular remodeling
* Radiosensitization

occurred in a narrow
time window

Bevacizumab VEGF Two Mice implanted * Combination treatment (Bang et al.
different with human provided additive anti- 2005)
immuno- mesothelioma tumor activity
toxins and Burkitt's
(SS1P and lymphoma
HA22)

Gleevec Blocks N/A Mice implanted * Lowered IFP (Vlahovic et
PDGFR3, with human lung * Improved oxygenation al. 2005)
but also adenocarcinoma
inhibits
VEGF level

AG013736, VEGFRs, N/A Mice with islet- * Decreased vascular (Inai et al.
VEGF-Trap VEGF cell tumors or density 2004)

implanted with * Decreased endothelial
Lewis lung fenestrations
carcinoma * Improved perivascular

cell coverage
DC101 VEGFR2 N/A Mice implanted * Decreased vascular (Vosseler et al.

with squamous density 2005)
cell carcinoma * Improved perivascular

cell coverage
* Improved basement

membrane coverage
with down-regulation
of MMP9 and MMP13

Finally, by performing immunostaining on human biopsy samples pre- and post-

bevacizumab (anti-VEGF therapy) treatment, we confirmed some of our pre-clinical

findings in clinical setting (Chapter 8, Table 10.1).
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Table 10.2: Effects of VEGF blockade in both pre-clinical and clinical data.

Properties Pre-clinical data Clinical datat

Control Treated Change Before BV After BV Change

Blood volume 19.3 ± 2.2' 5.4 ± 1.0 l (-72%) 6.8 ± 2. 12 5.0 0.9 1 (-26%)

Vascular 52.1 ± 4.63 41.9 ± 3.0 4 (-19%) 13.0 ± 3.24 6.9 - 1.8 4 (-47%)

density

Permeability 7.3 ± 0.8s 2.8 ± 0.8 l (-62%)

PS product 14 + 26 12.9 3.1

Interstitial fluid 6.1 ± 1.0 7 3.1 ± 0.5 4 (-49%) 14.0 ± 1.28 4.0 ± 1.5 4 (-71%)

pressure

Perivascular 0.67 ± 0.049 0.81 ± 0.04 T (21%) 9.9 ± 3.8' 1 17.8 ± 1.5 T (80%)

cell coverage

Ang-2 level 10.4 ± 1311 2.2 ± 0.5 (-79%) 0.046 - 0.020 ± 4 (-57%)

0.00212 0.001

Tumor 0.86 + 0.2413 2.50 + 0.31 T (190%) 1.7 + 0.214 3.6 + 0.7 1 (112%)

apoptosis

Plasma VEGF Non- 182.5 + 22.5 + 8.316 272 ±+ 22.5 1

level detectable 135.8'15 (1109%)

Progenitor -1.3' 7 0.1 4 (--92%) 0.0011 0.0010 (-9%)

cells/WBC (0.0006 - (0.0005

0.21)8 0.075)

(Tong et al. 2004; Winkler et al. 2004)

t (Willett et al. 2004) and Willett et al. 2005 In preparation.

(m 3 blood volume/gm 2 of image field). Based on intravital microscopy image.

2 (ml/100 g tissue). Based on CT data.

3 (cm vessel length/cm 2 of image field). Based on intravital microscopy image.

4 (number of vessels/field). Based on CD31 staining.
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(10- 7 cm/s) effective permeability of BSA. Based on intravital microscopy data.

6 Permeability-surface area product (ml/min/100 g tissue). Based on CT data.

7 (mmHg). Measurement is done by using micropipette technique.

8 (mmHg). Measurement is done by using wick-in-needle technique.

9 (% of ocSMA-positive vessels). Based on immunostaining.

10 (% of aSMA-positive vessels). Based on immunostaining.

I Real-time PCR data. Normalized by -actin expression level.

12 (fraction of stromal region stained positive with Ang-2). Based on immunostaining.

13 (% of apoptotic cells)

14 (% of apoptotic cells).

15 (pg/ml). Plasma human VEGF levels in MDA-MB-231 tumor-bearing SCID mice. Measurement is

done by using ELISA. (Bocci et al. 2004)

16 (pg/ml). Measurement is done by using multiplex protein array technology (Meso-Scale Discovery,

Gaithersburg, MD)

17 Number of viable circulating endothelial progenitor cells per ml of peripheral blood in MDA-MB-231

tumor-bearing SCID mice. Viable CEPs are defined as CD13+NEGFR2+/CD45-/CD117+/7AAD- cells.

(Shaked et al. 2005)

18 Measured by flow cytometry. Progenitor cells are identified as CD31+AC133 + cells, and WBCs are

identified as CD45+ cells.

Bold represents the data I measured in this thesis work.

This thesis examined the possibility of vascular normalization by VEGF blockade. It also

opened up many exciting research avenues in the field of anti-angiogenic therapy.

Further studies will be needed to dissect the molecular mechanisms behind vascular

normalization. It will also be important to understand whether vascular normalization

occurs, and to what extent, in other tumor types. Besides DC101 and bevacizumab, other

molecules/signaling pathways may able to provide a longer, better normalization time

window. Clinically, it will be important to come up with a set of parameters that quantify
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and describe the normalization effects so that physicians will know when to combine

conventional therapy after the initiation of anti-angiogenic therapy. Understanding the

underlying mechanism of vascular normalization not only will benefit cancer patients, but

it will also benefit patients with other vascular diseases such as diabetes and macular

degeneration (Jain and Carmeliet 2001; Jain 2005).

- 143-



References

- 144-



Abramsson, A., P. Lindblom, et al. (2003). "Endothelial and nonendothelial sources of
PDGF-B regulate pericyte recruitment and influence vascular pattern formation in
tumors." J Clin Invest 112(8): 1142-51.

Ahmad, S. A., W. Liu, et al. (2001). "Differential expression of angiopoietin- and
angiopoietin-2 in colon carcinoma. A possible mechanism for the initiation of
angiogenesis." Cancer 92(5): 1138-43.

Alexandrakis, G., E. B. Brown, et al. (2004). "Two-photon fluorescence correlation
microscopy reveals the two-phase nature of transport in tumors." Nat Med 10(2):
203-7.

Anderson, J. L. and D. M. Malone (1974). "Mechanism of osmotic flow in porous
membranes." Biophys J 14(12): 957-82.

Ansiaux, R., C. Baudelet, et al. (2005). "Thalidomide radiosensitizes tumors through
early changes in the tumor microenvironment." Clin Cancer Res 11(2 Pt 1): 743-
50.

Arora, N., R. Masood, et al. (1999). "Vascular endothelial growth factor chimeric toxin is
highly active against endothelial cells." Cancer Res 59(1): 183-8.

Audero, E., I. Cascone, et al. (2001). "Expression of angiopoietin-1 in human
glioblastomas regulates tumor-induced angiogenesis: in vivo and in vitro studies."
Arterioscler Thromb Vasc Biol 21(4): 536-41.

Aukland, K. and H. M. Johnsen (1974). "A colloid osmometer for small fluid samples."
Acta Physiol Scand 90(2): 485-90.

Aukland, K. and R. K. Reed (1993). "Interstitial-lymphatic mechanisms in the control of
extracellular fluid volume." Physiol Rev 73(1): 1-78.

Baish, J. W. and R. K. Jain (2000). "Fractals and cancer." Cancer Res 60(14): 3683-8.
Baish, J. W., P. A. Netti, et al. (1997). "Transmural coupling of fluid flow in

microcirculatory network and interstitium in tumors." Microvasc Res 53(2): 128-
41.

Baker, C. H., C. C. Solorzano, et al. (2002). "Blockade of vascular endothelial growth
factor receptor and epidermal growth factor receptor signaling for therapy of
metastatic human pancreatic cancer." Cancer Res 62(7): 1996-2003.

Ballard, K. and W. Perl (1978). "Osmotic reflection coefficients of canine subcutaneous
adipose tissue endothelium." Microvasc Res 16(2): 224-36.

Baluk, P., S. Morikawa, et al. (2003). "Abnormalities of basement membrane on blood
vessels and endothelial sprouts in tumors." Am J Pathol 163(5): 1801-15.

Bang, S., R. Hassan, et al. (2005). "Additive anti-tumor effect of Avastin and
immunotoxin combination therapy on tumor-bearing mouse models." Proc Amer
Assoc Cancer Res 46: 4989.

Baxter, L. T. and R. K. Jain (1989). "Transport of fluid and macromolecules in tumors. I.
Role of interstitial pressure and convection." Microvasc Res 37(1): 77-104.

Baxter, L. T. and R. K. Jain (1991). "Transport of fluid and macromolecules in tumors.
IV. A microscopic model of the perivascular distribution." Microvasc Res 41(2):
252-72.

- 145 -



Benjamin, L. E., D. Golijanin, et al. (1999). "Selective ablation of immature blood
vessels in established human tumors follows vascular endothelial growth factor
withdrawal." J Clin Invest 103(2): 159-65.

Bocci, G., S. Man, et al. (2004). "Increased plasma vascular endothelial growth factor
(VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2
monoclonal antibodies." Cancer Res 64(18): 6616-25.

Boehm, T., J. Folkman, et al. (1997). "Antiangiogenic therapy of experimental cancer
does not induce acquired drug resistance." Nature 390(6658): 404-7.

Boucher, Y., L. T. Baxter, et al. (1990). "Interstitial pressure gradients in tissue-isolated
and subcutaneous tumors: implications for therapy." Cancer Res 50(15): 4478-84.

Boucher, Y. and R. K. Jain (1992). "Microvascular pressure is the principal driving force
for interstitial hypertension in solid tumors: implications for vascular collapse."
Cancer Res 52(18): 5110-4.

Boucher, Y., J. M. Kirkwood, et al. (1991). "Interstitial hypertension in superficial
metastatic melanomas in humans." Cancer Res 51(24): 6691-4.

Browder, T., C. E. Butterfield, et al. (2000). "Antiangiogenic scheduling of chemotherapy
improves efficacy against experimental drug-resistant cancer." Cancer Res 60(7):
1878-86.

Brown, E., T. McKee, et al. (2003). "Dynamic imaging of collagen and its modulation in
tumors in vivo using second-harmonic generation." Nat Med 9(6): 796-800.

Brown, E. B., R. B. Campbell, et al. (2001). "In vivo measurement of gene expression,
angiogenesis and physiological function in tumors using multiphoton laser
scanning microscopy." Nat Med 7(7): 864-8.

Brown, L. F., B. Berse, et al. (1993). "Expression of vascular permeability factor
(vascular endothelial growth factor) and its receptors in adenocarcinomas of the
gastrointestinal tract." Cancer Res 53(19): 4727-35.

Bruns, C. J., W. Liu, et al. (2000). "Vascular endothelial growth factor is an in vivo
survival factor for tumor endothelium in a murine model of colorectal carcinoma
liver metastases." Cancer 89(3): 488-99.

Burke, P. A., S. J. DeNardo, et al. (2002). "Cilengitide targeting of alpha(v)beta(3)
integrin receptor synergizes with radioimmunotherapy to increase efficacy and
apoptosis in breast cancer xenografts." Cancer Res 62(15): 4263-72.

Calvo, A., Y. Yokoyama, et al. (2002). "Inhibition of the mammary carcinoma
angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human
endostatin." Int J Cancer 101(3): 224-34.

Carmeliet, P. (2003). "Angiogenesis in health and disease." Nat Med 9(6): 653-60.
Carmeliet, P., V. Ferreira, et al. (1996). "Abnormal blood vessel development and

lethality in embryos lacking a single VEGF allele." Nature 380(6573): 435-9.
Carmeliet, P. and R. K. Jain (2000). "Angiogenesis in cancer and other diseases." Nature

407(6801): 249-57.
Carter, W. B. and M. D. Ward (2000). "HER2 regulatory control of angiopoietin-2 in

breast cancer." Surgery 128(2): 153-8.
Chang, Y. S., L. L. Munn, et al. (2000). "Effect of vascular endothelial growth factor on

cultured endothelial cell monolayer transport properties." Microvasc Res 59(2):
265-77.

- 146-



Chaplin, D. J. and S. A. Hill (1995). "Temporal heterogeneity in microregional
erythrocyte flux in experimental solid tumours." Br J Cancer 71(6): 1210-3.

Cheng, S. Y., H. J. Huang, et al. (1996). "Suppression of glioblastoma angiogenicity and
tumorigenicity by inhibition of endogenous expression of vascular endothelial
growth factor." Proc Natl Acad Sci U S A 93(16): 8502-7.

Cotran, R. S., V. Kumar, et al. (1999). Robbins pathologic basis of disease. Philadelphia,
W.B. Saunders Company.

Cross, M. J. and L. Claesson-Welsh (2001). "FGF and VEGF function in angiogenesis:
signalling pathways, biological responses and therapeutic inhibition." Trends
Pharmacol Sci 22(4): 201-7.

Currie, M. J., S. P. Gunningham, et al. (2001). "Angiopoietin-1 is inversely related to
thymidine phosphorylase expression in human breast cancer, indicating a role in
vascular remodeling." Clin Cancer Res 7(4): 918-27.

Darland, D. C. and P. A. D'Amore (1999). "Blood vessel maturation: vascular
development comes of age." J Clin Invest 103(2): 157-8.

Das, A., W. Fanslow, et al. (2003). "Angiopoietin/Tek interactions regulate mmp-9
expression and retinal neovascularization." Lab Invest 83(11): 1637-45.

Davis, S., T. H. Aldrich, et al. (1996). "Isolation of angiopoietin-1, a ligand for the TIE2
receptor, by secretion-trap expression cloning." Cell 87(7): 1161-9.

Deen, W. M. (1987). "Hindered Transport of Large Molecules in Liquid-Filled Pores."
Aiche Journal 33(9): 1409-1425.

Devineni, D., A. Klein-Szanto, et al. (1996). "Uptake of temozolomide in a rat glioma
model in the presence and absence of the angiogenesis inhibitor TNP-470."
Cancer Res 56(9): 1983-7.

Dvorak, H. F., J. A. Nagy, et al. (1999). "Vascular permeability factor/vascular
endothelial growth factor and the significance of microvascular hyperpermeability
in angiogenesis." Curr Top Microbiol Immunol 237: 97-132.

Fadnes, H. O., R. K. Reed, et al. (1977). "Interstitial fluid pressure in rats measured with
a modified wick technique." Microvasc Res 14(1): 27-36.

Fenton, B. M., S. F. Paoni, et al. (2004). "Pathophysiological effects of vascular
endothelial growth factor receptor-2-blocking antibody plus fractionated
radiotherapy on murine mammary tumors." Cancer Res 64(16): 5712-9.

Ferrara, N. (2002). "Timeline: VEGF and the quest for tumour angiogenesis factors." Nat
Rev Cancer 2(10): 795-803.

Ferrara, N., K. Carver-Moore, et al. (1996). "Heterozygous embryonic lethality induced
by targeted inactivation of the VEGF gene." Nature 380(6573): 439-42.

Ferrara, N., H. P. Gerber, et al. (2003). "The biology of VEGF and its receptors." Nat
Med 9(6): 669-76.

Ferrara, N., K. J. Hillan, et al. (2004). "Discovery and development of bevacizumab, an
anti-VEGF antibody for treating cancer." Nat Rev Drug Discov 3(5): 391-400.

Folkman, J. (1971). "Tumor angiogenesis: therapeutic implications." N Engl J Med
285(21): 1182-6.

Folkman, J. (1995). "Angiogenesis in cancer, vascular, rheumatoid and other disease."
Nat Med 1(1): 27-31.

Fong, G. H., J. Rossant, et al. (1995). "Role of the Fit-1 receptor tyrosine kinase in
regulating the assembly of vascular endothelium." Nature 376(6535): 66-70.

- 147 -



Fong, T. A., L. K. Shawver, et al. (1999). "SU5416 is a potent and selective inhibitor of
the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine
kinase catalysis, tumor vascularization, and growth of multiple tumor types."
Cancer Res 59(1): 99-106.

Gazit, Y., J. W. Baish, et al. (1997). "Fractal characteristics of tumor vascular
architecture during tumor growth and regression." Microcirculation 4(4): 395-402.

Geng, L., E. Donnelly, et al. (2001). "Inhibition of vascular endothelial growth factor
receptor signaling leads to reversal of tumor resistance to radiotherapy." Cancer
Res 61(6): 2413-9.

Gerber, H. P., A. McMurtrey, et al. (1998). "Vascular endothelial growth factor regulates
endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal
transduction pathway. Requirement for Flk-1/KDR activation." J Biol Chem
273(46): 30336-43.

Gorski, D. H., M. A. Beckett, et al. (1999). "Blockage of the vascular endothelial growth
factor stress response increases the antitumor effects of ionizing radiation."
Cancer Res 59(14): 3374-8.

Hashizume, H., P. Baluk, et al. (2000). "Openings between defective endothelial cells
explain tumor vessel leakiness." Am J Pathol 156(4): 1363-80.

Hellstrom, M., H. Gerhardt, et al. (2001). "Lack of pericytes leads to endothelial
hyperplasia and abnormal vascular morphogenesis." J Cell Biol 153(3): 543-53.

Hlatky, L., P. Hahnfeldt, et al. (2002). "Clinical application of antiangiogenic therapy:
microvessel density, what it does and doesn't tell us." J Natl Cancer Inst 94(12):
883-93.

Hobbs, S. K., W. L. Monsky, et al. (1998). "Regulation of transport pathways in tumor
vessels: role of tumor type and microenvironment." Proc Natl Acad Sci U S A
95(8): 4607-12.

Holash, J., P. C. Maisonpierre, et al. (1999). "Vessel cooption, regression, and growth in
tumors mediated by angiopoietins and VEGF." Science 284(5422): 1994-8.

Hu, B., P. Guo, et al. (2003). "Angiopoietin-2 induces human glioma invasion through
the activation of matrix metalloprotease-2." Proc Natl Acad Sci U S A 100(15):
8904-9.

Hurwitz, H., L. Fehrenbacher, et al. (2004). "Bevacizumab plus irinotecan, fluorouracil,
and leucovorin for metastatic colorectal cancer." N Engl J Med 350(23): 2335-42.

Inai, T., M. Mancuso, et al. (2004). "Inhibition of vascular endothelial growth factor
(VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of
tumor vessels, and appearance of basement membrane ghosts." Am J Pathol
165(1): 35-52.

Inoue, K., M. Chikazawa, et al. (2003). "Docetaxel Enhances the Therapeutic Effect of
the Angiogenesis Inhibitor TNP-470 (AGM-1470) in Metastatic Human
Transitional Cell Carcinoma." Clin Cancer Res 9(2): 886-99.

Inoue, K., J. W. Slaton, et al. (2000). "Treatment of human metastatic transitional cell
carcinoma of the bladder in a murine model with the anti-vascular endothelial
growth factor receptor monoclonal antibody DCI101 and paclitaxel." Clin Cancer
Res 6(7): 2635-43.

Inoue, K., J. W. Slaton, et al. (2000). "Paclitaxel enhances the effects of the anti-
epidermal growth factor receptor monoclonal antibody ImClone C225 in mice

148 -



with metastatic human bladder transitional cell carcinoma." Clin Cancer Res
6(12): 4874-84.

Izumi, Y., E. Di Tomaso, et al. (2003). "Responses to antiangiogenesis treatment of
spontaneous autochthonous tumors and their isografts." Cancer Res 63(4): 747-51.

Jain, R. K. (1987). "Transport of molecules across tumor vasculature." Cancer Metastasis
Rev 6(4): 559-93.

Jain, R. K. (1987). "Transport of molecules in the tumor interstitium: a review." Cancer
Res 47(12): 3039-51.

Jain, R. K. (1988). "Determinants of tumor blood flow: a review." Cancer Res 48(10):
2641-58.

Jain, R. K. (1989). "Delivery of novel therapeutic agents in tumors: physiological barriers
and strategies." J Natl Cancer Inst 81(8): 570-6.

Jain, R. K. (1994). "Barriers to drug delivery in solid tumors." Sci Am 271(1): 58-65.
Jain, R. K. (1998). "The next frontier of molecular medicine: delivery of therapeutics."

Nat Med 4(6): 655-7.
Jain, R. K. (2001). "Normalizing tumor vasculature with anti-angiogenic therapy: a new

paradigm for combination therapy." Nat Med 7(9): 987-9.
Jain, R. K. (2003). "Molecular regulation of vessel maturation." Nat Med 9(6): 685-93.
Jain, R. K. (2005). "Normalization of tumor vasculature: an emerging concept in

antiangiogenic therapy." Science 307(5706): 58-62.
Jain, R. K. and P. F. Carmeliet (2001). "Vessels of death or life." Sci Am 285(6): 38-45.
Jain, R. K., N. Safabakhsh, et al. (1998). "Endothelial cell death, angiogenesis, and

microvascular function after castration in an androgen-dependent tumor: role of
vascular endothelial growth factor." Proc Natl Acad Sci U S A 95(18): 10820-5.

Jemal, A., T. Murray, et al. (2003). "Cancer statistics, 2003." CA Cancer J Clin 53(1): 5-
26.

Jemal, A., R. C. Tiwari, et al. (2004). "Cancer statistics, 2004." CA Cancer J Clin 54(1):
8-29.

Johnsen, H. M. (1974). "Measurement of colloid osmotic pressure of interstitial fluid."
Acta Physiol Scand 91(1): 142-4.

Kabbinavar, F., H. I. Hurwitz, et al. (2003). "Phase II, randomized trial comparing
bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in
patients with metastatic colorectal cancer." J Clin Oncol 21(1): 60-5.

Kadambi, A., C. Mouta Carreira, et al. (2001). "Vascular endothelial growth factor
(VEGF)-C differentially affects tumor vascular function and leukocyte
recruitment: role of VEGF-receptor 2 and host VEGF-A." Cancer Res 61(6):
2404-8.

Kalluri, R. (2003). "Basement membranes: structure, assembly and role in tumour
angiogenesis." Nat Rev Cancer 3(6): 422-33.

Kato, T., K. Sato, et al. (1994). "Enhanced suppression of tumor growth by combination
of angiogenesis inhibitor O-(chloroacetyl-carbamoyl)fumagillol (TNP-470) and
cytotoxic agents in mice." Cancer Res 54(19): 5143-7.

Kendall, R. L. and K. A. Thomas (1993). "Inhibition of vascular endothelial cell growth
factor activity by an endogenously encoded soluble receptor." Proc Natl Acad Sci
U S A 90(22): 10705-9.

-149-



Kerbel, R. and J. Folkman (2002). "Clinical translation of angiogenesis inhibitors." Nat
Rev Cancer 2(10): 727-39.

Kerbel, R. S. (1997). "A cancer therapy resistant to resistance." Nature 390(6658): 335-6.
Kim, K. J., B. Li, et al. (1993). "Inhibition of vascular endothelial growth factor-induced

angiogenesis suppresses tumour growth in vivo." Nature 362(6423): 841-4.
Klement, G., S. Baruchel, et al. (2000). "Continuous low-dose therapy with vinblastine

and VEGF receptor-2 antibody induces sustained tumor regression without overt
toxicity." J Clin Invest 105(8): R15-24.

Kozin, S. V., Y. Boucher, et al. (2001). "Vascular endothelial growth factor receptor-2-
blocking antibody potentiates radiation-induced long-term control of human
tumor xenografts." Cancer Res 61(1): 39-44.

Kramer, G. C., L. Sibley, et al. (1986). "Wick sampling of interstitial fluid in rat skin:
further analysis and modifications of the method." Microvasc Res 32(1): 39-49.

Krikun, G., F. Schatz, et al. (2000). "Expression of angiopoietin-2 by human endometrial
endothelial cells: regulation by hypoxia and inflammation." Biochem Biophys
Res Commun 275(1): 159-63.

Kuenen, B. C., L. Rosen, et al. (2002). "Dose-finding and pharmacokinetic study of
cisplatin, gemcitabine, and SU5416 in patients with solid tumors." J Clin Oncol
20(6): 1657-67.

Kunkel, P., U. Ulbricht, et al. (2001). "Inhibition of glioma angiogenesis and growth in
vivo by systemic treatment with a monoclonal antibody against vascular
endothelial growth factor receptor-2." Cancer Res 61(18): 6624-8.

Kurzen, H., S. Manns, et al. (2002). "Tightening of endothelial cell contacts: a
physiologic response to cocultures with smooth-muscle-like 10T1/2 cells." J
Invest Dermatol 119(1): 143-53.

Lee, C. G., M. Heijn, et al. (2000). "Anti-Vascular endothelial growth factor treatment
augments tumor radiation response under normoxic or hypoxic conditions."
Cancer Res 60(19): 5565-70.

Lee, K., E. Erturk, et al. (1987). "Efficacy of antitumor chemotherapy in C3H mice
enhanced by the antiangiogenesis steroid, cortisone acetate." Cancer Res 47(19):
5021-4.

Lehne, G., E. Elonen, et al. (1998). "Challenging drug resistance in cancer therapy--
review of the First Nordic Conference on Chemoresistance in Cancer Treatment,
October 9th and 10th, 1997." Acta Oncol 37(5): 431-9.

Leu, A. J., D. A. Berk, et al. (2000). "Absence of functional lymphatics within a murine
sarcoma: a molecular and functional evaluation." Cancer Res 60(16): 4324-7.

Leunig, M., F. Yuan, et al. (1992). "Angiogenesis, microvascular architecture,
microhemodynamics, and interstitial fluid pressure during early growth of human
adenocarcinoma LS 174T in SCID mice." Cancer Res 52(23): 6553-60.

Lobov, I. B., P. C. Brooks, et al. (2002). "Angiopoietin-2 displays VEGF-dependent
modulation of capillary structure and endothelial cell survival in vivo." Proc Natl
Acad Sci U S A 99(17): 11205-10.

Ma, J., S. Pulfer, et al. (2001). "Pharmacodynamic-mediated reduction of temozolomide
tumor concentrations by the angiogenesis inhibitor TNP-470." Cancer Res 61(14):
5491-8.

- 150-



Maisonpierre, P. C., C. Suri, et al. (1997). "Angiopoietin-2, a natural antagonist for Tie2
that disrupts in vivo angiogenesis." Science 277(5322): 55-60.

Mandriota, S. J. and M. S. Pepper (1998). "Regulation of angiopoietin-2 mRNA levels in
bovine microvascular endothelial cells by cytokines and hypoxia." Circ Res 83(8):
852-9.

Mauceri, H. J., N. N. Hanna, et al. (1998). "Combined effects of angiostatin and ionizing
radiation in antitumour therapy." Nature 394(6690): 287-91.

McCarthy, M. (2003). "Antiangiogenesis drug promising for metastatic colorectal
cancer." Lancet 361(9373): 1959.

McCarty, M. F., W. Liu, et al. (2003). "Promises and pitfalls of anti-angiogenic therapy
in clinical trials." Trends Mol Med 9(2): 53-8.

Millauer, B., L. K. Shawver, et al. (1994). "Glioblastoma growth inhibited in vivo by a
dominant-negative Flk-1 mutant." Nature 367(6463): 576-9.

Morikawa, S., P. Baluk, et al. (2002). "Abnormalities in pericytes on blood vessels and
endothelial sprouts in tumors." Am J Pathol 160(3): 985-1000.

Murata, R., Y. Nishimura, et al. (1997). "An antiangiogenic agent (TNP-470) inhibited
reoxygenation during fractionated radiotherapy of murine mammary carcinoma."
Int J Radiat Oncol Biol Phys 37(5): 1107-13.

Netti, P. A., D. A. Berk, et al. (2000). "Role of extracellular matrix assembly in
interstitial transport in solid tumors." Cancer Res 60(9): 2497-503.

Netti, P. A., L. M. Hamberg, et al. (1999). "Enhancement of fluid filtration across tumor
vessels: implication for delivery of macromolecules." Proc Natl Acad Sci U S A
96(6): 3137-42.

Netti, P. A., S. Roberge, et al. (1996). "Effect of transvascular fluid exchange on
pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow
heterogeneity." Microvasc Res 52(1): 27-46.

Niethammer, A. G., R. Xiang, et al. (2002). "A DNA vaccine against VEGF receptor 2
prevents effective angiogenesis and inhibits tumor growth." Nat Med 8(12): 1369-
75.

O'Brien, T., D. Cranston, et al. (1995). "Different angiogenic pathways characterize
superficial and invasive bladder cancer." Cancer Res 55(3): 510-3.

Ogawa, M., H. Yamamoto, et al. (2004). "Hepatic expression of ANG2 RNA in
metastatic colorectal cancer." Hepatology 39(2): 528-39.

Oh, H., H. Takagi, et al. (1999). "Hypoxia and vascular endothelial growth factor
selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells."
J Biol Chem 274(22): 15732-9.

Padera, T. P., A. Kadambi, et al. (2002). "Lymphatic metastasis in the absence of
functional intratumor lymphatics." Science 296(5574): 1883-6.

Padera, T. P., B. R. Stoll, et al. (2004). "Pathology: cancer cells compress intratumour
vessels." Nature 427(6976): 695.

Parker, J. C., M. A. Perry, et al. (1984). Permeability of the Microvascular Barrier.
Edema. N. C. Staub and A. E. Taylor. New York, Raven Press: 143-87.

Peters, W., M. Teixeira, et al. (1980). "Microcirculatory studies in rat mammary
carcinoma. I. Transparent chamber method, development of microvasculature,
and pressures in tumor vessels." J Natl Cancer Inst 65(3): 631-42.

- 151 -



Pichiule, P., J. C. Chavez, et al. (2003). "Hypoxic regulation of angiopoietin-2 expression
in endothelial cells." J Biol Chem.

Pichiule, P. and J. C. LaManna (2002). "Angiopoietin-2 and rat brain capillary
remodeling during adaptation and deadaptation to prolonged mild hypoxia." J
Appl Physiol 93(3): 1131-9.

Pinheiro, J. C. and D. M. Bates (2000). Mixed effects models in S and S PLUS. New
York, Springer.

Plate, K. H., G. Breier, et al. (1992). "Vascular endothelial growth factor is a potential
tumour angiogenesis factor in human gliomas in vivo." Nature 359(6398): 845-8.

Pluen, A., Y. Boucher, et al. (2001). "Role of tumor-host interactions in interstitial
diffusion of macromolecules: cranial vs. subcutaneous tumors." Proc Natl Acad
Sci U S A 98(8): 4628-33.

Prewett, M., J. Huber, et al. (1999). "Antivascular endothelial growth factor receptor
(fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth
of several mouse and human tumors." Cancer Res 59(20): 5209-18.

Ramakrishnan, S., T. A. Olson, et al. (1996). "Vascular endothelial growth factor-toxin
conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in
vitro and angiogenesis in vivo." Cancer Res 56(6): 1324-30.

Ray, P. S., T. Estrada-Hernandez, et al. (2000). "Early effects of hypoxia/reoxygenation
on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: implications
for myocardial angiogenesis." Mol Cell Biochem 213(1-2): 145-53.

Rippe, B. and B. Haraldsson (1986). "Capillary permeability in rat hindquarters as
determined by estimations of capillary reflection coefficients." Acta Physiol
Scand 127(3): 289-303.

Rossler, J., S. Breit, et al. (1999). "Vascular endothelial growth factor expression in
human neuroblastoma: up-regulation by hypoxia." Int J Cancer 81(1): 113-7.

Ruoslahti, E. (1996). "How cancer spreads." Sci Am 275(3): 72-7.
Saleh, M., S. A. Stacker, et al. (1996). "Inhibition of growth of C6 glioma cells in vivo by

expression of antisense vascular endothelial growth factor sequence." Cancer Res
56(2): 393-401.

Sato, T. N., Y. Tozawa, et al. (1995). "Distinct roles of the receptor tyrosine kinases Tie-
1 and Tie-2 in blood vessel formation." Nature 376(6535): 70-4.

Senger, D. R., S. J. Galli, et al. (1983). "Tumor cells secrete a vascular permeability
factor that promotes accumulation of ascites fluid." Science 219(4587): 983-5.

Sfiligoi, C., A. de Luca, et al. (2003). "Angiopoietin-2 expression in breast cancer
correlates with lymph node invasion and short survival." Int J Cancer 103(4): 466-
74.

Shaked, Y., F. Bertolini, et al. (2005). "Genetic heterogeneity of the vasculogenic
phenotype parallels angiogenesis; Implications for cellular surrogate marker
analysis of antiangiogenesis." Cancer Cell 7(1): 101-11.

Shalaby, F., J. Rossant, et al. (1995). "Failure of blood-island formation and
vasculogenesis in Flk-1-deficient mice." Nature 376(6535): 62-6.

Shirakawa, K., M. Shibuya, et al. (2002). "Tumor-infiltrating endothelial cells and
endothelial precursor cells in inflammatory breast cancer." Int J Cancer 99(3):
344-51.

- 152-



Shweiki, D., A. Itin, et al. (1992). "Vascular endothelial growth factor induced by
hypoxia may mediate hypoxia-initiated angiogenesis." Nature 359(6398): 843-5.

Simmonds, M. A. (2003). "Cancer statistics, 2003: further decrease in mortality rate,
increase in persons living with cancer." CA Cancer J Clin 53(1): 4.

Stohrer, M., Y. Boucher, et al. (2000). "Oncotic pressure in solid tumors is elevated."
Cancer Res 60(15): 4251-5.

Stratmann, A., T. Acker, et al. (2001). "Differential inhibition of tumor angiogenesis by
tie2 and vascular endothelial growth factor receptor-2 dominant-negative receptor
mutants." Int J Cancer 91(3): 273-82.

Stratmann, A., W. Risau, et al. (1998). "Cell type-specific expression of angiopoietin-1
and angiopoietin-2 suggests a role in glioblastoma angiogenesis." Am J Pathol
153(5): 1459-66.

Suri, C., P. F. Jones, et al. (1996). "Requisite role of angiopoietin-1, a ligand for the TIE2
receptor, during embryonic angiogenesis." Cell 87(7): 1171-80.

Swabb, E. A., J. Wei, et al. (1974). "Diffusion and convection in normal and neoplastic
tissues." Cancer Res 34(10): 2814-22.

Sweeney, C. J., K. D. Miller, et al. (2001). "The antiangiogenic property of docetaxel is
synergistic with a recombinant humanized monoclonal antibody against vascular
endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial
growth factors." Cancer Res 61(8): 3369-72.

Sweeney, P., T. Karashima, et al. (2002). "Anti-Vascular Endothelial Growth Factor
Receptor 2 Antibody Reduces Tumorigenicity and Metastasis in Orthotopic
Prostate Cancer Xenografts via Induction of Endothelial Cell Apoptosis and
Reduction of Endothelial Cell Matrix Metalloproteinase Type 9 Production." Clin
Cancer Res 8(8): 2714-2724.

Takahashi, A., H. Sasaki, et al. (1994). "Markedly increased amounts of messenger
RNAs for vascular endothelial growth factor and placenta growth factor in renal
cell carcinoma associated with angiogenesis." Cancer Res 54(15): 4233-7.

Takahashi, N., A. Haba, et al. (2001). "Antiangiogenic therapy of established tumors in
human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin
(CD 105) monoclonal antibodies, and synergy between anti-endoglin antibody and
cyclophosphamide." Cancer Res 61(21): 7846-54.

Takahashi, Y., Y. Kitadai, et al. (1995). "Expression of vascular endothelial growth factor
and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of
human colon cancer." Cancer Res 55(18): 3964-8.

Teicher, B. A. (1996). "A systems approach to cancer therapy. (Antioncogenics +
standard cytotoxics-->mechanism(s) of interaction)." Cancer Metastasis Rev
15(2): 247-72.

Teicher, B. A., N. P. Dupuis, et al. (1995). "Antiangiogenic treatment (TNP-
470/minocycline) increases tissue levels of anticancer drugs in mice bearing
Lewis lung carcinoma." Oncol Res 7(5): 237-43.

Teicher, B. A., S. A. Holden, et al. (1995). "Influence of an anti-angiogenic treatment on
9L gliosarcoma: oxygenation and response to cytotoxic therapy." Int J Cancer
61(5): 732-7.

- 153-



Teicher, B. A., S. A. Holden, et al. (1996). "Comparison of several antiangiogenic
regimens alone and with cytotoxic therapies in the Lewis lung carcinoma."
Cancer Chemother Pharmacol 38(2): 169-77.

Teicher, B. A., S. A. Holden, et al. (1994). "Potentiation of cytotoxic cancer therapies by
TNP-470 alone and with other anti-angiogenic agents." Int J Cancer 57(6): 920-5.

Teicher, B. A., E. A. Sotomayor, et al. (1992). "Antiangiogenic agents potentiate
cytotoxic cancer therapies against primary and metastatic disease." Cancer Res
52(23): 6702-4.

Teicher, B. A., J. I. Williams, et al. (1998). "Potential of the aminosterol, squalamine in
combination therapy in the rat 13,762 mammary carcinoma and the murine Lewis
lung carcinoma." Anticancer Res 18(4A): 2567-73.

Tong, R. T., Y. Boucher, et al. (2004). "Vascular normalization by vascular endothelial
growth factor receptor 2 blockade induces a pressure gradient across the
vasculature and improves drug penetration in tumors." Cancer Res 64(11): 3731-6.

Veikkola, T., M. Karkkainen, et al. (2000). "Regulation of angiogenesis via vascular
endothelial growth factor receptors." Cancer Res 60(2): 203-12.

Vlahovic, G., Z. Rabbani, et al. (2005). "Inhibition of PDGFR beta in non-small cell lung
cancer is associated with decrease in IFP and improvement of tumor
oxygenation." Proc Amer Assoc Cancer Res 46: 541.

Vosseler, S., N. Mirancea, et al. (2005). "Angiogenesis inhibition by vascular endothelial
growth factor receptor-2 blockade reduces stromal matrix metalloproteinase
expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in
surface heterotransplants." Cancer Res 65(4): 1294-305.

Wachsberger, P. R., R. Burd, et al. (2005). "Effect of the tumor vascular-damaging agent,
ZD6126, on the radioresponse of U87 glioblastoma." Clin Cancer Res 11(2 Pt 1):
835-42.

Wiig, H., L. Sibley, et al. (1991). "Sampling interstitial fluid from rat skeletal muscles by
intermuscular wicks." Am J Physiol 261(1 Pt 2): H155-65.

Wildiers, H., G. Guetens, et al. (2003). "Effect of antivascular endothelial growth factor
treatment on the intratumoral uptake of CPT-1 1." Br J Cancer 88(12): 1979-86.

Willett, C. G., Y. Boucher, et al. (2004). "Direct evidence that the VEGF-specific
antibody bevacizumab has antivascular effects in human rectal cancer." Nat Med
10(2): 145-7.

Williams, K. J., B. A. Telfer, et al. (2004). "ZD6474, a potent inhibitor of vascular
endothelial growth factor signaling, combined with radiotherapy: schedule-
dependent enhancement of antitumor activity." Clin Cancer Res 10(24): 8587-93.

Winkler, F., S. V. Kozin, et al. (2004). "Kinetics of vascular normalization by VEGFR2
blockade governs brain tumor response to radiation; Role of oxygenation,
angiopoietin-1, and matrix metalloproteinases." Cancer Cell 6(6): 553-63.

Yancopoulos, G. D., S. Davis, et al. (2000). "Vascular-specific growth factors and blood
vessel formation." Nature 407(6801): 242-8.

Yang, J. C., L. Haworth, et al. (2003). "A randomized trial of bevacizumab, an anti-
vascular endothelial growth factor antibody, for metastatic renal cancer." N Engl J
Med 349(5): 427-34.

Yoshida, Y., Y. Oshika, et al. (1999). "Expression of angiostatic factors in colorectal
cancer." Int J Oncol 15(6): 1221-5.

-154-



Yoshiji, H., D. E. Gomez, et al. (1996). "Expression of vascular endothelial growth factor,
its receptor, and other angiogenic factors in human breast cancer." Cancer Res
56(9): 2013-6.

Young, J. S., C. E. Lumsden, et al. (1950). "The significance of the tissue pressure of
normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the
rabbit." J Pathol Bacteriol 62(3): 313-33.

Yuan, F., Y. Chen, et al. (1996). "Time-dependent vascular regression and permeability
changes in established human tumor xenografts induced by an anti-vascular
endothelial growth factor/vascular permeability factor antibody." Proc Natl Acad
Sci U S A 93(25): 14765-70.

Yuan, F., M. Dellian, et al. (1995). "Vascular permeability in a human tumor xenograft:
molecular size dependence and cutoff size." Cancer Res 55(17): 3752-6.

Yuan, F., M. Leunig, et al. (1993). "Microvascular permeability of albumin, vascular
surface area, and vascular volume measured in human adenocarcinoma LS 174T
using dorsal chamber in SCID mice." Microvasc Res 45(3): 269-89.

Yuan, F., M. Leunig, et al. (1994). "Microvascular permeability and interstitial
penetration of sterically stabilized (stealth) liposomes in a human tumor
xenograft." Cancer Res 54(13): 3352-6.

Yuan, F., H. A. Salehi, et al. (1994). "Vascular permeability and microcirculation of
gliomas and mammary carcinomas transplanted in rat and mouse cranial
windows." Cancer Res 54(17): 4564-8.

Zagzag, D., A. Hooper, et al. (1999). "In situ expression of angiopoietins in astrocytomas
identifies angiopoietin-2 as an early marker of tumor angiogenesis." Exp Neurol
159(2): 391-400.

Zhang, L., D. Yu, et al. (2002). "Combined anti-fetal liver kinase 1 monoclonal antibody
and continuous low-dose doxorubicin inhibits angiogenesis and growth of human
soft tissue sarcoma xenografts by induction of endothelial cell apoptosis." Cancer
Res 62(7): 2034-42.

Zhu, Z., P. Rockwell, et al. (1998). "Inhibition of vascular endothelial growth factor-
induced receptor activation with anti-kinase insert domain-containing receptor
single-chain antibodies from a phage display library." Cancer Res 58(15): 3209-
14.

- 155 -



• •

•

•

• •

-5
'~

c
c .!2,- .....
... ('(lo c
0:.0
c e

S:l 0
('(l U

•

• ••

•

•

•

•

c
Ti
:.0
2o
l<oo

a-Uo
•

•

•

•

G
0'1
0'1

o
"0'soo
Noe
B

• •

••

•

••

•

•

•

•

o
"0'soo
Noe
B

•••

•

•

•
l")

co~o
~
01)

:::t
8~
CXl "0

-o



00-
0\
0\......

N
0\
0\......

•••••••

• • • •

• • • • • • • • • • • • • • • • • ••• •••• •

• • • • •

•• •• • • • • ••• ••••



•

>.~
"0
Co

••

••

•

•

•

•

•

•

•



• • • • • • • • • • • • • • •

>. v
t1:S ~>~ >. v

"0 t.+::v N

~= t1:S~ ~ ... > t1:S~ ~ =00 e >.ON0 V V VCI)V V V "0 .... "bb32
u (.) V >~"OV~ (.) V u t c2 e ~ "a~.- ~ ~va-5t.+:: .~ ~vi ~<o;tN vi-5- ~ ....V

c.. -5 CI) ....bO CI) .... <o;t 111 o V
bO bO.- N <o;t V bO~

~
..... >. ...:....6 c2.5 6 ..... ~ v .... -~c2 t1:S .9"c2 ~o (.)

~t1:S.- "0 ~ c2.;:3 CI).=.;:3 "0 .~e bO~ .... CI)(.)~(d(.) bO~

e .~~ CI)
a ... e ~e V V 8 ~.~"O e.v e ~r--- 111 ~~

>. >. 111 :> o e111 t1:S t1:S~- N "0 .5 <o;t e .5 ~ -CI)"O"O 00 •..: 111.;:3



•

•

o
\0......



d)
CIl

Co

•

•

•

•

o
\0
C'l

E......

o
Vi
C'l

•

•

•

•

•

,-.,
0\
0\
0\

:a
CIl

'"'oo
'-'

d)

E
='
"0
>
'"'o
E
2
.s
o
~
d)

.g
CIl.60
'"'d)
c
>.
CIl

•

•

•

•

•

•

•

•

•

•

•

o

•

00
0\
0\

c
";j
5
CIlo.60
c
<

••

•

• •

•

•

5'oo
C'l

.0

~
tI..
o
UJ
>
.,!..
c
<

•

•

•

• •

o
Uo



....oe
B
'-o
~....

••••• ••
~
u
CJ.~...
u
vi

~e~
8 8- ~



Appendix 3 - RBC Velocity Analysis

Analysis of RBC velocity

The analysis of RBC velocity employed mixed models that encompass both fixed effects,

which are parameters associated with an entire population or with certain repeatable

levels of experimental factors, and random effects, which are associated with individual

mouse drawn at random from a population (Pinheiro and Bates 2000). This approach

simplifies many common statistical analyses, including those involving random effect

and random coefficient. A number was assigned for each individual animal (bi) as one of

the parameters in the regression model. The model is:

log (yj) = P0 + 1 [group] + P2 log (yo) + bi + £j

And each variable stands for:

Parameters Description

yj Red blood cell velocity on jth day

Y0 Red blood cell velocity on day 0 (pre-treatment)

Bo, p3, and P2 Coefficients

Group "0" for control IgG treated group and "1" for DC101

treated group

bi A random variable representing between-mouse

variability, assuming it has a normal distribution with

zero mean and variance c 2

£j Variability associated with the entire population
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A log transformation was used for the red blood cell velocity data since the data have a

skew distribution (the distribution skews toward smaller diameter). After the log

transformation, red blood cell velocity had a normal distribution. Ten measurements

were made for each vessel at each time point, and the median value was used to represent

the red blood cell velocity for that blood vessel at that particular time point. Statistical

package called NLME (Nonlinear mixed effects) for R statistical systems was used to

estimate the parameters using iterative numerical procedures. Briefly, the calculation

was based on maximization of restricted likelihood function (Pinheiro and Bates 2000).

There were a total of 121 vessels that had both Day 0 and Day 3 red blood cell velocity

measurements, and 82 vessels that had both Day 0 and Day 5 red blood cell velocity

measurements.

After fitting all the data into the model, coefficients were calculated:

Coefficient Day 3 Day 5

13o0 2.236 2.193

p1 0.701 0.901

12 0.442 0.416

Importantly, 1 was statistically significant (P < 0.035 on Day 3 and P < 0.005 on Day 5),

suggesting that there was a statistically significant difference between the control group

and treated group.
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Another approach to analyze the data was to use the median value of all red blood cell

velocity values to represent each mouse. The median was used to minimize the outliers'

effect. The following were the median values of red blood cell velocity for each mouse.

Red blood cell velocity (median) gm/s

Mouse Day 0 Day 3 Day 5

Control 1 72.9 59.3 143.0

Control 2 208.8 104.0 133.5

Control 3 88.6 33.9

Control 4 450.0 89.2 84.9

Control 5 216.3 299.1 102.7

Control 6 57.2 207.3 39.5

Control 7 282.7 138.0 320.5

Control 8 286.3 103.4 127.2

DC101 1 95.8 109.1 166.6

DC101 2 49.1 146.2 174.5

DC101 3 94.6 101.2 89.0

DC101 4 90.9 204.8 102.7

DC101 5 53.9 92.1 78.3

DCI01 6 124.6 152.3 344.5

DC101 7 152.2 68.7 192.8

Note: Day 5 data of Control 3 is missing because the mouse was dead before Day 5.
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Using the Wilcoxon test, there were no differences in red blood cell velocity between the

control group and DC101 treated group in all three days. However, this analysis did not

account for vessel-specific changes over time, so the treatment effect was more difficult

to assess. In order to extract more meaningful data, I normalized the red blood cell

velocity on Day 3 and Day 5. Since the same vessels were traced, one could normalize

the red blood cell velocity on Day 3 and Day 5 by the red blood cell velocity on Day 0.

The normalized red blood cell velocities were shown as follow:

Normalized red blood cell velocity

Mouse Day 3 Day 5

Control 1 0.61 0.55

Control 2 0.68 0.44

Control 3 0.63

Control 4 0.15 0.20

Control 5 1.07 0.36

Control 6 3.49 0.88

Control 7 0.28 0.59

Control 8 0.29 0.44

DC101 1 1.99 1.39

DC101 2 3.23 2.72

DC101 3 1.08 0.75

DC101 4 1.32 1.67

DC101 5 1.59 1.69

DC101 6 1.02 3.77
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DC101 7 1.08 1.26

Based on the Wilcoxon test, the normalized red blood cell velocities were significantly

different on both Day 3 (P < 0.05) and Day 5 (P < 0.005). Thus, these analyses suggested

that DC101 increased red blood cell velocity in U87 tumor blood vessels.
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