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ABSTRACT

Regulation of gene expression occurs largely through the binding of sequence-
specific transcription factors (TFs) to genomic DNA binding sites (BSs). This thesis
presents a rigorous scoring scheme, implemented as a C program termed
"ModuleFinder", that evaluates the likelihood that a given genomic region is a cis
regulatory module (CRM) for an input set of TFs according to its degree of: (1)
homotypic site clustering; (2) heterotypic site clustering; and (3) evolutionary
conservation across multiple genomes. Importantly, ModuleFinder obtains all
parameters needed to appropriately weight the relative contributions of these
sequence features directly from the input sequences and TFBS motifs, and does not
need to first be trained. Using two previously described collections of experimentally
verified CRMs in mammals as validation datasets, we show that ModuleFinder is able
to identify CRMs with great sensitivity and specificity. We also evaluated
ModuleFinder on a set of DNA binding site data for the human TFs Hepatocyte
Nuclear Factor HNF1 a, HNF4 a and HNF6 and compared its performance with
logistic regression and neural network models.
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1. Introduction

Recent technological advances have enabled both the sequencing of a large number of

genomes and also the generation of expansive gene expression datasets for various

organisms for many different cell types under a number of cellular and environmental

conditions. Still, little is known about how these gene expression patterns are precisely

regulated through the binding of sequence-specific transcription factors (TFs) to their

DNA binding sites (BSs). Of particular interest is the organization of TF binding sites

(TFBSs) into cis regulatory modules (CRMs) that coordinate the complex spatio-

temporal patterns of gene expression, and to use that information to identify the CRMs

themselves.

The problem of mapping TFs to their CRMs and thus to their target genes, however, is

significantly complicated in higher eukaryotic genomes by the large proportion of non-

protein-coding sequences, as they frequently contain a very large number of matches to a

given set of TFBS sequences, with many of the site occurrences presumably not directly

regulating gene expression. Since the BS for a typical TF can be as short as -5 base pairs

(bp), a sequence match can occur on average every few hundred bp just by chance alone.

Therefore, a central challenge that must be overcome in mapping TFs to the CRMs is

distinguishing functional TFBSs from spurious TFBS motifs matches.

To date, three indicators have been used to identify functional TFBSs. First,

functional BSs for some TFs tend to occur in clusters, with multiple BSs occurring in

close proximity (homotypic clustering). Second, searching for clusters containing BSs for

2 or more TFs that are believed to co-regulate can enrich for likely CRMs (heterotypic

clustering). Finally, functional TFBSs are frequently conserved across evolutionarily
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divergent organisms. Cross-species sequence conservation in particular has enormous

potential for filtering sequence space, as many genomes have recently been sequenced,

and many more are slated to be sequenced (http://www.genome.gov/10002154). The

discriminatory power of phylogenetic footprinting for identifying cis regulatory elements

is therefore expected to continue to increase through the use of more genomes2 '6. In order

to appropriately incorporate information on conservation across multiple genomes,

however, a measure of TFBS conservation is required that weights each alignment

genome according to its evolutionary distance not only from the query genome, but also

relative to the other alignment genomes. For example, given a candidate TFBS in the

human genome, observing conservation in chicken should be weighted more heavily than

conservation in mouse, as mouse is evolutionarily closer to human. Moreover, if the

candidate site were also conserved in rat, then this additional conservation should be

weighted only slightly, given the evolutionary proximity of mouse and rat.

While numerous groups have developed approaches for the prediction of CRMs, none

is optimized for practical applications. Specifically, many approaches7'9 have been based

on binary scoring schemes, wherein all regions containing a threshold number of

occurrences for a given combination of TFBSs are returned. These approaches suffer

from the limitation that they do not prioritize among the predictions, an important feature

for experimentalists as only a limited number of candidate CRMs can feasibly be

validated. Additionally, the threshold value determined in any given biological system is

unlikely to be generalizeable from one set of TFs and CRM type to another; thus, the

appropriate discriminatory criterion must be re-discovered with each application.

Alternatively, among existing continuous scoring schemes, many require large training
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sets°' 1 1. Such approaches cannot be applied to a system in which there are only a handful

of known examples, as is frequently the case in practical applications. Finally, among

approaches that employ continuous scoring schemes and do not require training'2 -, most

do not systematically integrate BS clustering and conservation. We are aware of only one

other approach that combines all three indicators'6 , but it is computationally rather slow

and requires the user to specify a single sequence window size for the search. Since

CRMs are known to vary greatly in size, a scoring scheme is needed that evaluates

clustering and conservation over windows of varying sizes,.

We have developed a statistically rigorous scoring scheme that for any given genomic

region integrates into a single score the degree of: (1) homotypic clustering; (2)

heterotypic clustering; and (3) evolutionary conservation across multiple genomes.

Similar to programs such as BLAST1 7, our score is an objective measure of the statistical

significance of the observed degree of clustering and conservation that is independent of

the genome and TFBSs under consideration. Thus, the scoring scheme obtains all

parameters needed to appropriately weight the relative contribution of each input

alignment and TFBS motif directly from the sequences and motifs themselves, and so

does not need to first be trained. We have implemented this scoring scheme as a C

program called "ModuleFinder," (MF) that is algorithmically efficient and has an

intuitive interface. ModuleFinder, along with pre-processed genomes and alignments for

common model organisms (human, mouse, fruit fly, worm, and yeast), can be obtained

from our website (http://the brain.bwh.harvard.edu/PSB2005MFSuppl/index.html).

The remainder of this thesis is constructed as follows: Chapter 2 shows the model in

details in statistics methods and implementation. Chapter 3 and Chapter 4 are dedicated
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to the applications of ModuleFinder to metazoan genomes. Using previously described

collections of experimentally verified mammalian skeletal muscle CRMs' 8, we show in

Chapter 3 that ModuleFinder is able to identify CRMs with -95% sensitivity and -95%

specificity. In Chapter 4, we evaluated ModuleFinder on a set of ChIP-chip (genome

wide location analysis) binding data for the TFs HNF1 a, HNF4 a and HNF61 9 , and

compared its performance with logistic regression and neural networks variable selection

models. Finally Chapter 5 presents a summary and possible future work to improve

ModuleFinder.
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2. Methods

This section is essentially the same as the methods section in:
Philippakis AA, He FS, Bulyk ML. ModuleFinder: a tool for computational discovery of
cis regulatory modules. Pacific Symposium on Biocomputing. 2005; p. 519-530. (AA
Philippakis and FS He contributed equally to this work)
This paper was written by Anthony A. Philippakis and Martha L. Bulyk. I did research on
string searching algorithms and decided to use a modified version of suffix arrays20' 21 as
our fast string searching algorithm. I implemented the ModuleFinder software in C code.

2.1. Overview and previous work

Methods for evaluating conservation among multiple genomes can be divided into two

broad classes: those that evaluate the overall degree of conservation for a given region as

a whole, and those that evaluate the conservation of specific TFBSs within the given

region. In the first method, multiple sequences are simultaneously aligned using a metric

that evaluates the overall degree of conservation for the region of interest. Although this

has been successfully applied by numerous groups2' 6 to identify regulatory elements in

metazoan genomes, it does not necessarily identify the CRMs through which a given set

of TFs are exerting their regulatory roles (i.e., the TF's "target" CRMs).

Since our ultimate goal is to identify candidate CRMs that are targets of a given set of

TFs that are known or suspected to be important in transcriptional regulation for a

particular biological system, a scoring scheme that specifically considers the conservation

of the input BSs is needed. To date, most approaches have focused on the case of one

alignment genome, in part because of the only recent availability of additional,

sufficiently closely related, alignment genomes. Additionally, several statistical

difficulties must be addressed in order to account for correlations within the multi-species

alignments. This question has recently been addressed by several groups. Blanchette et al.

formalized the "substring parsimony problem", which seeks to find the set of all substring
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of a given length with a certain parsimony score (i.e. level of conservation)22. They

presented a rigorous and efficient algorithmic procedure for efficiently solving the

substring parsimony problem for multiple species; however, their procedure required the

simplification of ignoring relative branch lengths within the phylogenetic tree. For

example, conservation among human, chimp and chicken would be treated identically to

conservation among human, mouse and chicken. In a later approach, Moses et al. used

mixture models to evaluate conservation within a tree. This approach was developed and

optimized for the problem of beginning with a set of co-expressed genes in order to

identify candidate DNA sequence motifs responsible for the genes' co-expression23 .

Prakash et al. also presented a similar approach for motif finding using conservation24

Here we present a conceptually similar approach for the inverse problem of beginning

with a set of TFBSs motifs in order to identify candidate CRMs.

2.2. Scoring scheme

We define a word to be a short sequence on the DNA alphabet {A, C, G, T}, and a motif

to be a collection of words all of the same length. ModuleFinder takes as input a

collection of arbitrarily many motifs {ml. . .mm}, where each motif mi is composed of

arbitrarily many words of length ii. It also takes as input a set of sequences G = {gj,...gn}

corresponding to genomic regions that are to be searched for instances of these motifs, as

well as two sets of genomic sequences, A = {al,...,an} and B = {b1,...,bn}, extracted from

evolutionarily divergent organisms and then aligned to the sequences of G. Here, we

primarily illustrate the scoring scheme for the case of two alignment genomes, but

include comments on the extension to fewer or more alignments. For any gj, let gj.k
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denote the base at the kth position and (gj,k ...gj,k+l) denote the subsequence of length 

beginning at position k. If there is a match to a given motif mi at position k of sequence gi,

we define it to be conserved in A (respectively, B), if it is true that the subsequence

(aj,k...ajk+l) (respectively, (bjik...b. k+l)) is also a word in motif mi. Note that we are not

assuming that gj,k . gjk+l = aj.k...aik+l, but merely that they are both words in mi.

Our basic approach is to scan each sequence in G with a series of nested windows (i.e.,

overlapping windows of differing sizes). In each window we count the number of

occurrences of each motif and the number of these that are conserved in A and B. We

then evaluate the likelihood of observing this number of matches and conserved matches

under the appropriate null hypothesis, and return those windows that are statistically

significant. Specifically, let X = (XI,..., Xm) be the vector whose components indicate the

number of occurrences for each motif individually in a given window, and let Y= ( Yl,....

Y) and Z = (Zl,..., Zm) be the corresponding vectors indicating that Yi and Zi out of Xi

occurrences are conserved in A and B, respectively. The window score is obtained by

finding the probability of observing (X,Y,Z). This quantity will vary according to the

likelihood of conservation in A and/or B, the motif frequency, and the window width.

Thus, this probability can be represented by:

Pr, (X,Y,Z) (1)

where F parameterizes conservation likelihood, a parameterizes motif frequencies, and

w is the window width. Observe that:

Pr,, (X, Y, Z) = P (Y, Z I X)P (X) (2)
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where the relevant parameters can be split between terms in the Markov decomposition,

as Pa w(X) is unaffected by conservation likelihood, and Pr(Y,Z IX) is unaffected by

motif frequency and window size.

For a single motif mi, the term Pa w(X) of Eq. (2) is the likelihood of observing Xi

occurrences under the null hypothesis that the motif matches are distributed at random.

This has been proved to be well-approximated by a Poisson distribution, provided the

motif occurs infrequently and the words comprising it do not exhibit extensive self-

overlap 25. Thus, Paw(Xi)= e-g (iXi' /xi!), where ,i==ai*w. The value of ai will itself be

determined by both the words comprising mi, as well as genomic word frequencies. To

obtain it, we estimate the frequency of each word in mi by a seventh order Markov

approximation based on genomic word frequencies, and then sum these frequencies for

all words in the motif.

For multiple motifs, the joint probability is given by assuming independence:

Pa,. (Xlv,. Xm )= (Paw (Xi))
i=l

This is a simplifying assumption to make the computation tractable; the error in this

approximation has, however, been proved to be bounded.

The computation of the second term of Eq. (2), Pr(Y, Z I X), is complicated by two

factors. First, the score must reflect not only the evolutionary distances of A and B to G,

but also the distances of A and B to each other. Thus, r must re-parameterize Pr(Y,Z I X)

so that it becomes smaller as A and B grow more distant from G, and as the correlation

between A and B decreases. Second, the quantity P,(Y,Z IX) will depend not only on the

phylogeny of A, B and G, but also on the degeneracy of the motifs mi. Since we have
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defined a given motif match to be conserved in A or B if there is a motif occurrence (but

not necessarily an exact word match) at the same position in these aligned sequences, a

more degenerate motif has a greater likelihood of being conserved.

We account for these difficulties as follows. Define r to be the covariance matrix

representing the relative proportions of A and B that can be aligned against G; thus, r0,

gives the proportion of sequence in G for which neither A nor B could be aligned, r,', and

r,., give the proportion for which either A or B (but not both) could be aligned, and r,',

gives the proportion for which both A and B could be aligned. Similarly, for each motif

mi, define r 2 to be the covariance matrix representing the relative likelihoods of exact

conservation of li positions (i.e., (g,. . ..gj,k+l) = (aj.k.. .ajk+l)) in A and/or B. Here, we have

observed non-independence of exact conservation likelihood between adjacent positions,

so we model it as a first order Markov chain.

Conservation of a completely degenerate motif is parameterized by rAB , and

conservation of a motif composed of a single word is parameterized by rAB 2. The

parameterization of a generic motif is between these extremes; for this, let Pij.k be the

matrix giving the frequency of nucleotideje {A,C,G,T} at position k E { 1,...,li} in motif

mi, and let Ei be the average entropy of the motif:

E =-'% E P/i,k log 2 Pij,k
2li k=l jtA,C,G,T}

Hence, Ei=I for a completely degenerate motif, E,=-O for a motif composed of a single

word, and Ei increases monotonically and smoothly between these extremes as the motif

15



degeneracy increases. Therefore, we take our parameterization of Ji for mi to be a

weighted average of r}AB and r:

F' = Ei'B + (1- Ei)FAB

We then use Fr to compute Pr, (Y, Z, I Xi) . In a sequence window containing Xi matches to

motif mi, let ai be the number that are not conserved in either A or B, let bi and ci be the

number conserved in either A or B (but not both), and let di be the number that are

conserved in both A and B. The following equations hold:

ai +bi + i + d = Xi

b, +d, = Yi

(3-5)

Ci + di = Zi

P(Yi,ZilX) is therefore given by the following multinomial:

(6)

where the summation is performed over all values of ai, bi, ci and di satisfying Eqs. (3)-

(5). To achieve computational efficiency, we make use of the following 1-dimensional

parameterization, where Xi, Y, and Zi remain fixed as di is varied:

a, = X, - Y - Z, + di

b = Y- di

(7-9)

Ci = Z i - d i

Thus, the summation of Eq. (6) can be performed by simply taking each value of di in the

16
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range 0 < di < min(Yi, Zi).

If one desires to only input one genome, it is sufficient to set A=B. The relevant

parameters then simplify, and the preceding multinomial distribution collapses to a

binomial distribution with parameter y = Piw

This parameterization can also be easily generalized to more than 2 alignment genomes

by replacing the matrix ' with an appropriate tensor.

This derived value of Praw(X, Y, Z) alone is insufficient for determining statistical

significance, since a measurement of distance into the appropriate tail of the distribution

is also required. Therefore, we perform a summation of Pr.aw(X, Y, Z) extending from the

observed value of (X, Y,Z) and including all values of (X, Y,Z) with an increased degree of

clustering and conservation (we use log values to simplify the numerical analysis):

Y=,= , Y (Pt (10)

(i=l . , Yj=';72,=Z, '" ,=1

Therefore, the output score Sr , (X, Y, Z) for a given window is the linear sum of scores

for the input motifs, Sri .a.,.(Xi, Y,,Z) ,) where each such term has been automatically

weighted so that more degenerate motifs contribute less. Observe also that

Sra,,,iw(Xi., z, Z)= if and only if Xi=0, and that Sr a, (Xi,Y,,z,) increases monotonically

with increasing values of (Xi, Yi,Zi), as desired.
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2.3. Implementation

2.3.1. String searching algorithm

To minimize the runtime, we pre-process each sequence of G with a refined suffix array 20

in order to efficiently identify the locations of all motif matches. Irving and Love has

defined suffix binary search tree (SBST)2 1, which is competitive in practice with classical

suffix trees and suffix arrays to facilitate efficient on-line string searching. A SBST of a

string ar is essentially a binary search tree with n = Ia1 nodes, with each node

representing a suffix of a. Given two strings a and oa, a is a substring of a if and only

if a is a prefix of a suffix of c. It follows that to find a position of a where a occurs as

a substring, it suffices to search an SBST of a to find a string with a prefix that matches

the string a. Then the suffix array can be viewed as a perfectly balanced SBST and can

be constructed from the SBST. Using this method, the construction of the tree can be

accomplished in O(nh) where the n is the length of string a and h is the height of the tree.

The substring a with length m can be searched in O(m+logn) time on average.

2.3.2. Window score look-up method

The sequences of A and B are only searched for motif matches at those positions for

which G has a motif match, and a look-up table is kept as ModuleFinder runs that

contains a list of scores for all window sizes w and values (X, Y,Z) for observed motif

matches. Thus, when encountering each subsequent window, ModuleFinder checks to see

if the corresponding score has already been computed.

18



2.3.3. Additional features

Our implementation also contains two additional features designed to improve the

practical applicability of the program. First, it is known that transcription factors

frequently bind to DNA as homo- and hetero-dimers. We have therefore added to

ModuleFinder the ability to take pairs of TFBSs as input, along with minimum and

maximum values for the spacing between sites. The score of the dimer is computed by

first evaluating the probability of each motif in the dimer as in Eq. 1, and taking the

probability of observing the dimer to be the product of the individual motif probabilities

at a given spacing and then summing these values over all spacings in the user-specified

range. These probabilities are then summed as in Eq. (17) to give the score for each

dimer.

Second, while applying ModuleFinder we observed that small adjustments to the

stated locations of insertions and deletions in the alignment files often resulted in the

creation of new conserved binding sites. Therefore, ModuleFinder allows a certain

amount of "wiggle room" to compensate for the potential existence of small, local mis-

alignments. Specifically, ModuleFinder takes a user-specified parameter r, and calls the

given motif match (gj,k . .gj,k+l) conserved in A if there is any subsequence of (aj,k-

r...aj,k+r+l) that is a word in mi. Although this does increase the likelihood of conservation,

it has been our experience that this effect is miniscule for small values of r (1< r < 5), and

has frequently helped to identify many potentially conserved binding sites that would

have been missed otherwise.
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2.3.4. Software interface and performance

ModuleFinder has been implemented in C. It has an intuitive interface, and takes as input

FASTA-formatted sequences. It returns all windows scoring above a user-defined cutoff

in each sequence. Adjacent and overlapping windows scoring above this cutoff are fused

into longer regions, and the fused region coordinates, along with the location and score of

the maximum scoring sub-window are returned as output.

ModuleFinder can scan approximately 120 Mb/hr using window sizes ranging from

300 to 700 bps with an increment size of 50 bps on a Pentium 4 computer.

The compiled code, along with README files and appropriately formatted genomes

and alignments based on the latest UCSC assemblies are available for download at our

website.
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3. Evaluation of ModuleFinder on Human Skeletal Muscle
CRMs

This section is essentially the same as the results section in:
Philippakis AA, He FS, Bulyk ML. ModuleFinder: a tool for computational discovery of
cis regulatory modules. Pacific Symposium on Biocomputing. 2005; p. 519-530. (AA
Philippakis and FS He contributed equally to this work)
This paper was written by Anthony A. Philippakis and Martha L. Bulyk. I pre-processed
the positive controls and negative controls, and wrote Perl scripts that we ran
ModuleFinder on these datasets.

3.1. Dataset

3.1.1. Positive controls

In order to evaluate ModuleFinder, we used a set of positive control regions previously

compiled by Wasserman et al. 18. This test dataset comprises 2 7a skeletal muscle CRMs

that have been demonstrated to direct transcription in skeletal muscle or a suitable cell-

culture model system' 8. Each region contains a validated BS for at least one of the

following 5 TFs: the Myf family (total of 39 TFBSs in the positive control set), Mef2 (26

TFBSs), SRF (20 TFBSs), Tef (12 TFBSs) and Spl (13 TFBSs). Each region was

searched against human genome 16 using UCSC BLAT program2 6 to find the region

location on the human genome. Of these 27 regions, 23 are located upstream of

translation start, and 4 are located within introns (we used translational start/stop, as

transcriptional start/stop are more poorly annotated in human at present).

3.1.2. Negative controls

As negative controls, 1000 regions of size 200 bp were randomly selected to positionally

match the positive control regions: 852 (=(23/27)* 1000) regions were within 5 kb of

a The original collection gave 28 genes, but we removed the gene Rb as there were no confirmed TFBSs for
the listed TFs.
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translational Start for a randomly chosen RefGene26 gene, and the remaining 148 were

within introns. This matching of chromosomal locations was performed as ModuleFinder

accounts for local word frequencies, which vary throughout the genome; in particular,

promoter regions are known to be GC-rich.

3.2. Results

We ran ModuleFinder on the positive and negative control regions with window sizes of

100-200 bp (increment size = 10 bp), using human sequence alone, human/mouse/rat

(H/M/R) alignments and human/mouse/chicken alignments (H/M/C) obtained from

USCS Genome Browser, hg1626. Currently, two alternative strategies for representing

TFBSs have been used by various groups in computational searches for CRMs: exact

word matches to known BSs9 15 , and position weight matrices (PWMs)7 "10 '1 3, which allow

for extrapolation to additional BSs. To determine which of these representations had

greater discriminatory power, we performed our searches both ways, using a PWM

threshold value of 1 standard deviation (SD) below the motif average27 . We used a "jack-

knife" strategy" for these searches, whereby the BSs for each CRM were excluded from

the construction of the PWM used to search that CRM, and similarly the exact word

matches from each CRM were excluded in the search of that CRM. In addition, since in

vitro selections (SELEX) had been performed for Mef228 and SRF2 9, we also added those

BSs to both searches.
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Table 3-1: ModuleFinder results on a human skeletal muscle dataset

The results of these evaluations are shown in Table 3-1. Here, we have reported those

values for sensitivity and specificity which maximally discriminate between the positive

and negative control sets (i.e., using the threshold score such that the difference between

the sensitivity and specificity is minimized). Since there was great variability in score

among the positive control regions (see Figure 3-1; i.e., the top positive control region

received a score of-11.23 and the worst positive control region scored only -1.22

(positive controls: mean = -4.69, SD = 2.24; negative controls: mean = -0.42, SD = 0.81)),

we also performed a t-test on the positive and negative control region means, in order to

measure the effectiveness of ModuleFinder on regions falling far from the threshold score.
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Human Alone Human/Mouse/Rat Human/Mouse/Chicken

Exact PWM Exact PWM Exact PWM

Sens. 88.9% 92.6% 92.6% 96.3% 92.6% 92.6%

Spec. 90.1% 89.2% 88.8% 94.4% 87.4% 94.4%

p-val 1.19x10 -8 6.5x10-'0 2.5x10l- 1.4x10' 0 4.5x10'0 - 7.1x10'0®
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Figure 3-1: Sensitivity and specificity of ModuleFinder on skeletal muscle test regions

On this dataset, ModuleFinder achieved a maximum sensitivity of 96.3% and

specificity of 94.4% on the H/M/R PWM searches. Moreover, the PWM approach

consistently gave better discrimination than exact word matches. Much of this improved

discrimination, however, is an artifact of the jack-knife procedure, which has a stronger

effect on exact match searches. Here, using the complete set of BSs (i.e., without the

jack-knife), exact word matching achieves 100% sensitivity and 95.1% specificity (we

removed degenerate flanking sequences for all searches with exact words). In addition,

these results indicate that the H/M/R searches reliably outperformed the H/M/C searches.

There are two possible explanations for this: 1) the chicken genome is not yet complete,

and the appropriate alignment regions may not have been sequenced yet; 2) the

underlying mechanisms of transcriptional regulation are not actually conserved in an
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organism as distant as chicken. Neither of these hypotheses can be ruled out until the

completion of the chicken genome.

Since ModuleFinder was specifically developed to integrate homotypic clustering,

heterotypic clustering, and conservation, we wanted to determine which of these features

were most contributory to discriminatory power. In order to assess this, we ran

ModuleFinder on the positive and negative control regions using no alignment genomes,

one alignment genome (each of mouse, rat and chicken), and two alignment genomes

(H/M/R and H/M/C). These searches were repeated with each TF individually, as well as

with all 5 TFs together. In Figure 3-2, we show the negative logarithm of the p-values

obtained from t-tests on the positive versus negative control regions for each of these

searches. Here the mouse and rat alignments improved discriminatory power, but little

was gained by using both genomes, because of their evolutionary proximity. Somewhat

surprisingly, using chicken actually reduced discrimination relative to human alone. This

was unexpected, as it implies that our negative controls are more likely to be conserved

than these 27 regions. However, this effect could be an artifact of the small size of the

positive controls and gaps in the chicken genome (only 13/27 positive controls had any

alignable chicken sequence).
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Figure 3-2: Negative log of p-values obtained from t-test between positive and negative
controls

Finally, at least four other algorithms have used overlapping subsets of this dataset as

positive controls, achieving sensitivities between 59% and 66%, and specificities between

95.3% and 97.1% (see Table 3-2). Thus, ModuleFinder appears to have comparable

specificity but greater sensitivity. However, note the following caveats for this

comparison. First, because ModuleFinder uses evolutionary conservation as a central

component and because few vertebrate genomes have been sequenced, we limited our

searches to the subset of the original compilation for which human/rodent alignments

were available. The other algorithms tested on this dataset did not consider conservation,

and thus used the original, larger compilation that included CRMs obtained from diverse

organisms including chicken, hamster, rabbit, pig and cow. Frith et al. trimmed this larger

set to a subset of 27 regions, but their subset overlapped with ours by only 15 genes.
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Second, each group used a different set of negative controls. The original paper by

Wasserman et al. used a set of negative control regions similar to our set; it was

composed of 200 bp regions selected from the Eukaryotic Promoter Database. Comet and

Cister were each tested on 300 bp regions that were selected to overlap well-

characterized transcriptional Starts. Finally, MSCAN3 0 measured specificity by looking at

the "hit rate" in contiguous stretches of the Fugu genome.

Table 3-2: Relative performance of ModuleFinder
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Algorithm Sensitivity Specificity
Logistic Regression" 60% 96%

Cister' 2 59% 97.1%

COMET' 3 59% 95.3%
MSCAN30 66% N/A

ModuleFinder 96% 94%



4. Evaluation of ModuleFinder on HNFs ChIP-chip Binding
Data

4.1. Background

The genome-wide location analysis method3 1(also called ChIP-chip) allows protein-DNA

interactions to be monitored across the entire genome. The method combines a chromatin

immunoprecipitation (ChIP) procedure, with DNA microarray (chip) analysis. Briefly,

cells are fixed with formaldehyde, harvested, and disrupted by sonication. The DNA

fragments crosslinked to a protein of interest are enriched by immunoprecipitation with a

specific antibody. After reversal of the cross links, the enriched DNA is amplified and

labeled with a fluorescent dye (Cy5) with the use of ligation-mediated-polymerase chain

reaction (LM-PCR). A sample of DNA that was not enriched by immunoprecipitation is

also subjected to LM-PCR, in the presence of a different fluorophore (Cy3), and both

immunoprecipitation (IP) enriched and unenriched pools of labeled DNA are hybridized

to a single DNA microarray containing intergenic sequences of the genome.

Extensive studies revealed that the Hepatocyte Nuclear Factor (HNF) HNF1 a (a

homeodomain protein), HNF4 a (a nuclear receptor), and HNF6 (a member of the onecut

family) often operate cooperatively in the liver and pancreatic islets, and are required for

normal function of liver and pancreatic islets. Mutations in HNFs are causes of the type 3

and type 1 forms of the maturity-onset diabetes of the young (MODY3 and MODY1), a

genetic disorder of the insulin-secreting pancreatic beta cells. Odom et al. performed

ChIP-chip on HNF1 a, HNF4 a, and HNF6, using microarrays containing the proximal

promoter regions of the liver and pancreatic islet genes whose expression is regulated by

these transcription factors to identify systematically the genes occupied by HNF1 a,
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HNF4 a and HNF6 (Figure 4-1). They then used this information to map the

transcriptional circuitry in human liver and pancreatic islets9.
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Figure 4-1: ChIP-chip analysis of HNF regulators in human tissues

(Reproduced from Odom et al.'9)

To evaluate how well ModuleFinder can predict the genes regulated by these three

transcription factors, we ran ModuleFinder on the -7400 proximal promoter regions

sequences printed onto the hul 3k array and compared the results of ModuleFinder with

the ChIP-chip binding data. We also used logistic regression and neural networks as

alternative prediction models, and compared their performances with that of

ModuleFinder.
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4.2. Datasets

4.2.1. Promoter region sequences

In the ChIP-chip experiment, a custom DNA microarray containing portions of promoter

regions of-13,000 human genes (Hu13K array) was constructed to identify enriched

DNA fragments. Because a significant percentage of TFBSs in proximal promoters are

located within 1 kb of transcription start site, primers in the Odom et al. 19 study were

designed to amplify the genomic region -750 bp to +250 bp relative to the transcriptional

start sites. Each of these sequences was BLATed against the hu16 genome and -7400

sequences were found to be actually located at the promoter regions. For our evaluation

of' different computational models, we took sequences within 2 kb upstream of the

transcriptional starts of these -7400 genes and their mouse alignment sequences.

4.2.2. HNFs transcription factor binding site data

We used the HNFs transcription factor binding sites compiled in the TRANSFAC

database29 to search for motif matches in the -7400 promoter regions. Figure 4-2 shows

the sequence logos for HNF1 a, HNF4 a and HNF6 generated by WebLogo32 33. A

sequence logo is a graphic representation of an aligned set of binding sites. It displays the

frequencies of bases at each position, as the relative heights of letters, along with the

degree of sequence conservation as the total height of a stack of letters, measured in bits

of information content3 4, which is defined to be

T

i = 2 + b,i log 2 fb,i
b=A
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where i is the position with the site, b refers to each of the possible bases, and fb,i is the

observed frequency of each base at that position. Ii is between 0, at positions that contain

the four base with equal frequency, and 2 bits for positions that permit just one particular

base.
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HNF6 TRANSFAC binding site sequence logo

Figure 4-2: Sequence logos of TRANSFAC binding sites for HNFs
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Two alternative representations of TFBSs (exact word matches and PWM) could be

used in this analysis. To determine which one had better discriminatory ability and

therefore to determine which representations of TFBSs we should use, we ran

ModuleFinder on human/mouse/rat alignments to perform searches with the three HNFs

together, using exact word matches and separately using a PWM threshold value of 2 SD

below the motif average.

Table 4-1: ModuleFinder results on HNFs ChIP-chip binding data using two motif representations

Exact PWM
Sensitivity 0.59 0.56
Specificity 0.65 0.55

-value 0.17 0.21

The results are shown in Table 4-1. We used the ModuleFinder threshold score that

minimizes the difference between the sensitivity and specificity and reported the values

for sensitivity and specificity which maximally discriminate between HNFs ChIP-chip

positive regions and HNFs ChIP-chip negative regions. We also performed t-tests on

these two regions, in order to measure the effectiveness of ModuleFinder on regions

falling far from the threshold score.

Since exact word matches had slightly higher sensitivity and specificity, although

none of the results showed significant discriminatory power of ModuleFinder, we chose

to use the exact word matches as our motif representation. Note that the HNF1 motif has

a palindromic pattern, with forward half-sites having good matches to the consensus

GTTAAT, while the reverse half-sites appear to be more degenerate. The original HNF1

sites from TRANSFAC were then constructed as dimer motifs; each contains words of

length 6.
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4.3. Logistic regression and neural networks Models

4.3.1. Logistic regression

Logistic regression (LR) (Figure 4-3) models the dependence of a dichotomous (yes/no)

outcome variable on a set of observed variables that may be continuous, discrete,

dichotomous, or a mix of any of these. The dependent variable can take the value 1 with a

probability of success 0, or the value 0 with probability of failure 1 - 0.

Logistic regression makes no assumption about the distributions of the independent

variables. They do not have to be normally distributed, linearly related, or of equal

variance within each group. Logistic regression also provides knowledge of the

relationships and strengths among the variables. The relationship between the predictor

and response variables is not a linear function in logistic regression; instead, the logistic

regression function is used, which is the logit transformation of 0:

Logite
1 e Logit

where the logit function is
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Figure 4-3: Logistic regression model

4.3.2. Neural networks

Neural networks (NN) are analytical techniques modeled after the hypothesized processes

of learning in the cognitive system and the neurological functions of the brain. They are

capable of predicting new observations (on specific variables) from other observations

(on the same or other variables) after executing a process of so-called learning from

existing data.

Inspired by the structure of the brain, a neural network consists of a set of highly

interconnected entities, called nodes or units. Each unit is designed to mimic its
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biological counterpart, the neuron. Each accepts a weighted set of inputs and responds

with an output.

A simple network has a feedforward structure (Figure 4-4): signals flow from inputs,

forwards through any hidden units, eventually reaching the output units. A typical

feedforward network has neurons arranged in a distinct layered topology. The input layer

serves to introduce the values of the input variables. The hidden and output layer neurons

are each connected to all of the units in the preceding layer.

When the network is executed, the input variable values are placed in the input units,

and then the hidden and output layer units are progressively executed. Each of them

calculates its activation value by taking the weighted sum of the outputs of the units in

the preceding layer, and subtracting the threshold. The activation value is passed through

the activation function to produce the output of the neuron. When the entire network has

been executed, the outputs of the output layer act as the output of the entire network.
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Figure 4-4: Neural networks model

4.3.3. Variable selection

As stated in the first chapter, three indicators have been used to identify functional

TFBSs (homotypic clustering, heterotypic clustering and evolutionary conservation

across multiple genomes). To evaluate how interaction between the HNF under

consideration and other two TFs can influence the model's predictive power, each HNF

factor was modeled individually using LR and NN. The heterotypic clustering was not

considered to be a predictor; instead, this information was encoded by the TF interaction

scores of the other two TFs (see below). We used the following two variables to quantify

the degree of homotypic clustering and evolutionary conservation:

Homotypic Clustering: each promoter region was scanned by searching the word

matches (occurrences) of the HNFs TRANSFAC TFBSs, and the number of matched

sites was used as a measurement of degree of clustering for each particular HNF factor.
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Evolutionary Conservation: the number of the HNF TFBSs motif matches in the

human sequence that were conserved in the mouse sequence.

Furthermore, we were interested in investigating the degree of binding affinity in the

TFBSs prediction and therefore included this variable as another predictor. Note that we

don't have the actual binding affinity data for these DNA-protein interactions. Instead,

we used PWM score as a proxy for affinity; this approach has been used before27'3 5:

Binding affinity:

Let be the motif length for the HNF factor. Each possible -mer in the promoter

sequences was scored according to the following scoring function:

log( M[i, bi] + \)
i=1 N + 4/-N

where len is the length of motif, N is the number of compiled binding sites in the

TRANSFAC database, and M[i, bi] is the entry in the motif PWM for nucleotide bi at

position i. We then measured the binding affinity using the maximum score.

Among the regions bond by HNF1/4/6 in vivo, we examined those sequences that had

HNF1 a / HNF4 a /HNF6 TRANSFAC binding site motif matches and plotted the

binding sites positional bias for all three HNF TFs (Figure 4-5). The binding sites appear

to be enriched within the upstream 1 kb from the transcriptional start site.
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Figure 4-5: Distribution of HNF1 a /4 a /6 TFBS motif matches among ChIP-chip hits
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To evaluate whether this offset information can influence the prediction of HNF

regulatory regions, we encoded this information as an offset likelihood ratio:

Let offset_bound be a vector of size 2000 that denotes an offset distribution of the site

with highest affinity score among the regions bound by an HNF TF in vivo. For example,

offset_bond[i] = k means that there are k promoter sequences that were bound by a given

HNF TF at position i, with the site having the highest affinity score. Likewise,

offset_nbond is a vector of size 2000 that denotes an offset distribution of the site with

highest affinity score among the regions not bound by an HNF TF in vivo. To overcome

the problem that most elements in these vectors have zero values due to under sampling,

we used a smoothing function to approximate the offset distribution using a sliding

window method. Specifically, s_offset_bond and s_offset_nbond denote the "smoothed"

offset distribution. Then

j=i+50

2 offset _ bond[j]

soffsetbond[i]= =i-so
100

j=i+50

I offset _ nbond[j]

soffsetnbond[i] = j=i-o5 if 50 < i < 1950 (1)
100

j=i+50

' offset _ bond[j]

s_offset_bond[i] = ij= 50
i+50

j=i+50

Z offset _ nbond[j]

s_offset_nbond[i] = -o if i < 50 (2)
i+50

1999

E offset _ bond[j]
soffset bond[i] = j=i-so

2050 - i
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1999

A offset _ nbond[j]

s_offset_nbond[i]= j=i50 ifi > 1950 (3)2050-i

where the offset likelihood ratio was calculated as:

1999

s _ offset _ bond[i] / s _ offset _ bond[i]
w[i]= 1999 (4)

s _ offset _ nbond[i] / s _ offset _ nbond[i]
i=O

Here, we used a sliding window of size 100 bp arbitrarily. When the position i is

between 50 and 1950, the window size is 100. When the position i is at the left edge

(i-50), the window size corresponds to the length between the left most position (i.e., 0)

and 50 bp to the right of position i (i.e., i+50); when the position i is at the right edge

(i:>1950), the window size corresponds to the length between 50 bp to the left of position

i (i.e., i-50) and the right most position (i.e., 1999) (Figure 4-6). Therefore, the

denominator is i+50 when i<50 in equation (2) and 2050-i when i>1950 in equation (3).

window si:indow size: transription
i450 I0(l 205 oi- start

*- -i-· --- , f · i 7 - 4--- 4f A
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{) 501 40 I 4)99

Figure 4-6: Window size calculation for the offset variable in the upstream 2 kb of
transcription start site.
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The final predictor is the TFs interaction which was calculated as the best binding

affinity score of the other two HNFs.

These six predictors for HNF1, HNF4 and HNF6 are summarized in table 4-2:

Table 4-2: Predictors in the LR and NN models

Predictors parameters for parameters for parameters for
HNF1 a HNF4 a HNF6

Homotypic Occ Occ Occ
Clustering
Evolutionary Con Con Con
Conservation
Binding affinity Score Score Score
Binding site offset Offset Offset Offset
TF1 interaction HNF4Score HNF 1 Score HNF 1 Score
TF2 interaction HNF6Score HNF6Score HNF4Score

4.3.4. Data randomization

One dataset containing 7425 genes (records) was generated for each HNF. Each record

consisted of six predictors and a binary outcome variable indicating whether the given

gene was regulated by the given HNF. For both the LR and NN model building, the

dataset of 7425 cases was randomly split into five non-overlapping sets. To build the

five-fold cross-validation, each time one of the five sets (1485 cases) was held out as the

test set and the remaining four sets (5940 cases) were used as training set. A t-test was

performed on each predictor among the training and test datasets, and random splitting

was continued until there was no significant difference (p-value > 0.05) on any of the

variables between the training and test datasets.
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4.3.5. Variable selection models

R for Windows, version 1.8.036 was used for building the LR models. We first built six

LR models using the six predictors individually. Based on the result, we used different

combinations of the predictors to build five additional models (Table 4-3 to 4-5).

NevProp3 version 337 was used for building the neural network models. NevProp3

requires a user-supplied random initialization seed to set the initial weights in the

network, and also to randomly split the training set for the "AutoTrain" option. For all

neural network models, we built two-layer networks using the same variable selection as

used in LR models. The number of inputs and hidden units varied within each model. We

used NevProp's "AutoTrain" option with NSplit = 10, which randomly splits the allotted

training data into training and holdout sets 10 times, and takes the average of all of the

runs to obtain a target error. The final model is then built by training on all training data,

using the target error as the stopping criterion to stop the optimization.

42



Table 4-3: Variable selection models of LR and NN for HNF1 a

Table 4-4: Variable selection models of LR and NN for HNF4 a

Model Occ Con Score HNFlScore H
1 x

2 x
3 x
4 X
5
6

7 x x x X
8 X
9 x X

10 x X
11 x x X

x
x

x

X

X
X
X

INF6Score Offset

x
X

x X
X
X

x X
x X

Table 4-5: Variable selection models of LR and NN for HNF6

Con Score HNF1Score HNF4Score
1

2
3
4
5
6
7
8
9

10
11 x1 

x

x
x

x x
x
x
x
x

X

x

x
x
x
x
x
x
x
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Model Occ Con Score HNF4Score HNF6Score Offset
1 x

2 x
3 x
4 X
5 x
6 x
7 x x x X x x
8 x x
9 x x x

10 x x x x
11 x x X x

Model Occ Offset

x



4.4. Results

We used the Receiver Operating Characteristic (ROC) curve and the C-index to evaluate

model accuracy. The ROC curve is a commonly used tool for evaluating the performance

of prediction models3 8' 39. The ROC curve is a plot of sensitivity (i.e., true positive rate) vs.

(1-specificity) (i.e., false positive rate) over a range of threshold values. The area under

the ROC curve is a standard measure of discrimination, which is one measure of the

accuracy of a model. The greater the area under the ROC curve, the greater the ability of

the test to discriminate between two cases. The C-index is equivalent to the area under an

ROC curve, which can range from 0.5 (no discriminating ability) to 1.0 (perfect

discrimination).

The results shown are average C-index values from 5 different randomization splits

for each of the variable selection models. The best average C-indices (0.638) for the

HNF1 a dataset (Table 4-6) were obtained by model 10 (built on binding affinity, offset,

HNF6 interaction and homotypic clustering) and model 3 (built on binding affinity alone)

from LR and NN, respectively. Since higher C-index indicates better discrimination

ability of the model, model 10 is the best LR model and model 3 is the best NN model for

HINF1 dataset. From the average C-index for each individual predictor, we can see that

binding affinity (Score) alone had almost the same discrimination ability as the best

models. ModuleFinder had a C-index of 0.549 in predicting genes bound by HNF1 a.

(Figure 4-7).

Table 4-7 shows the LR and NN results from the HNF4 a dataset. The best LR model

that obtained by model 9 (built on binding affinity, HNF1 a interaction and offset) had

C-index 0.5454 and the best NN model that obtained by model 10 (built on binding
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affinity, HNF1 a interaction, HNF6 interaction and offset) had C-index 0.545.

ModuleFinder had a C-index of 0.5006. Figure 4-8 shows ROC curves of the best LG,

NN models and ModuleFiner.

Both model 9 (built on binding affinity, offset and HNF1 a interaction) of LR and NN

gave best C-index for HNF6 dataset (Table 4-8). ModuleFinder, in this case, had a C-

index of 0.55. ROC curves of best LG and NN model and ModuleFinder are shown in

Figure 4-9.
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Table 4-6: LR and NN C-indices for HNF1 a dataset

Model

1: Occ

2: Con

3: Score

4: HNF4Score

5: HNF6Score

6: Offset

7: All

8: Score + Offset

9: 8+ HNF6Score

10: 9 + Occ
11:10 +
HNF4Score

LR C-index

0.5470

0.5200

0.6380

0.5230

0.5618

0.5890

0.6366

0.6379

0.6358

0.6386

0.6371

NN C-index

0.5479

0.5204

0.6383

0.5062

0.5609

0.5895

0.6259

0.6263

0.6326

0.6268

0.6219

- Lk Cindex 0.647

- NN C-index 0.640

- MF, C-index 0.550

Figure 4-7: ROC curves

Figure 4-7: ROC curves
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Table 4-7: LR and NN C-indices for HNF4 a dataset

Model

1: Occ

2: Con

3: Score

4: HNF1 Score

5: HNF6Score

6: Offset

7: All
8: Offset+
HNF1 Score

9: 8+ Score

10: 9 + HNF6Score

11: 10 + Occ

LR C-index

0.5029

0.5009

0.5146

0.5152

0.5046

0.5403

0.5436

0.5421

0.5454

0.5452

0.5440

NN C-index

0.5014

0.5006

0.5120

0.5040

0.5026

0.5403

0.5435

0.5420

0.5449

0.5450

0.5437

- Lk

- NN,

- MF,

I ' I I

0.0 0 2 0.4 6 0.8

- Specificity

Figure 4-8: ROC curves of LR, NN and MF for HNF4 a
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Table 4-8: LR and NN C-indices for HNF6 dataset

Model

1: Occ

2: Con

3: Score

4: HNF1Score

5: HNF4Score

6: Offset

7: All

8: Score + Offset

9: 8+ HNF1Score

10: 9 + Occ

11: 10 + HNF4Score

LR C-index

0.5491

0.5130

0.6079

0.5675

0.5209

0.5979

0.6340

0.6270

0.6360

0.6358

0.6359

NN C-index

0.5491

0.5130

0.6079

0.5676

0.5216

0.5979

0.6296

0.6291

0.6386

0.6346

0.6368

I I

t3 ::,- 1 0

I I I

i ~ ~ ~ ~~~~ 1 I

~~~~~.Figure 4-9: ROC curves of LR, NN and.,
Figure 4-9: ROC curves of LR, NN and MF for HNF6
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4.5. Discussion

All three approaches had very poor performances on HNF1/4/6 datasets. This is

surprising since these regions should in theory have experimentally determined binding

sites for these three transcription factors. It is also known that TFs can regulate

transcription via two types of DNA binding mechanisms, involving direct binding and

indirect binding via cross-talk with other TFs. In direct binding, a TF binds directly to

promoter sequence of the regulated gene. In contrast, in indirect binding, a TF may

cooperate with an unknown factor (or factors) which in turn binds to the promoter region

of'the gene being regulated. In the ChIP-chip experiment, the formaldehyde cross-links

both proteins with each other as well as to DNA and the experiment reports both direct

and indirect binding of proteins to DNA. Therefore, the positive ChIP-chip HNF

promoter regions do not necessarily contain binding sites of the given HNF.

The C-indices of all models including ModuleFinder and all the variable selection

models of logistic regression and neural networks that were built on the three

TRANSFAC TFBS data for HNF1 a /4a /6, ranged from 0.50 to 0.64. Among these

methods, ModuleFinder had the worst performance.

ModuleFinder works by scoring homotypic clustering, heterotypic clustering and

binding site conservation. In these ChiP-chip datasets, these three indicators seem less

important than other variables such as binding site affinity and location, which

ModuleFinder currently does not consider. In the variable selection models of LR and

NN, the models built on the homotypic clustering variable (Occ) alone had C-indices that

indicated the models had no discriminative ability. We then examined the ChIP-chip data

for HNF1 a /4 a /6, and found that only a small percentage of the ChIP-chip HNF
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positive promoter regions ("hits") had matches for the TRANSFAC HNF 1 a /4 a /6

binding sites (Table 4-9 to Table 4-11). Specifically, among 209 promoter regions bound

by HNF1 a, 49 (23.4%) had exact matches to the TRANSFAC HNF1 a sites. Only 1.2%

(22 out of 1820) of the HNF4 a ChIP-chip hits contain exact matches to the TRANSFAC

HNF4 a sites, and 31.2% (72/231) had such exact HNF6 matches in the HNF6 ChIP-

chip hits.

Table 4-9: HNF1 a site matches in HNF1 a ChIP-chip positive regions

Site matches
No site matches

Regions bound by ChIP-chip
49
160

Regions not bound by ChIP-chip

1021 1070
6195

209

Table 4-10: HNF4 a site matches in HNF4 a ChIP-chip positive regions

Regions bound by ChIP-chip Regions not bound by ChIP-chip
Site matches 22 62 84
No site matches 1788 5553

1810

Table 4-11: HNF6 site matches in HNF6 ChIP-chip positive regions

Regions bound by ChIP-chip Regions not bound by ChIP-chip
Site matches 72 1530 1602
No site matches 159 5664

231

Furthermore, we found that only -10% of binding sites in the 2 kb promoter regions

were conserved in the mouse genome. This finding is consistent with the fact that adding

conservation (Con) variable to the LR and NN variable selection models does not

improve the model performance.
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The low number of occurrences and cross-species conservations of TRANSFAC

HNF 1 a /4 a /6 sites in promoter region may be partly due to the fact that the

TRANSFAC binding sites we used are not a complete representation of these TFs' DNA

binding site specificity. Indeed, TRANSFAC is continually updated as more experimental

data become available. The protein-binding microarray4 041 (PBM) technology could be

applied to determine the in vitro binding specificities of HNF1 a /4 a /6 by assaying the

sequence-specific binding of these individual transcription factors directly to double-

stranded DNA microarrays spotted with a large number of potential DNA-binding sites.

Studies of muscle transcription factors reveal that the interactions between Mef-2,

Myf, SRF, TEF and Sp are needed for muscle transcription regulation . Clustering of

functional sites was found in muscle regulatory sequences. We did literature searches on

HNF 1 a /4 a /6 regulation, but did not find evidences of binding sites clustering in the

regulatory regions of these TFs.

Since none of these known CRM sequence features that were integrated into

ModuleFinder seem to be present in the HNF 1 a /4 a /6 ChIP-chip binding data, it is not

surprising that ModuleFinder does not appear to perform well in this dataset.

The best variable selection LR and NN models obtained better C-indices than that of

ModuleFinder. This is partially based on the fact that LR and NN use the training data to

"learn" the relationship between the outcome and a set of observed variables and predict

the outcome of new data based on the existing data, while ModuleFinder does not require

training data as they are often unavailable. Moreover, LR and NN incorporated both

binding affinity and binding site offset information, which turned out to be the two most

informative predictors in the model structure. Binding affinity is a continuous

51



measurement for the probability of the TF binding site. Incorporating this information

could enhance the model performance especially when the binding site is more

degenerate27 35. The result of this analysis inspired us to integrate the binding affinity

information into our newer version of ModuleFinder.
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5. Conclusions and Future Directions

We have presented a statistically rigorous approach for scoring windows of genomic

sequence according to their likelihood of containing BSs for a collection of input TFs.

The approach systematically integrates homotypic clustering, heterotypic clustering and

evolutionary conservation across multiple genomes into a single, objective scoring

scheme that does not require training. Additionally, our algorithm, implemented as a C

program called "ModuleFinder," is publicly available for download, along with pre-

processed genomes and alignments for yeast, worm, fly, mouse, rat, and human, at our

lab website (http://the_brain.bwh.harvard.edu/PSB2005MFSuppl/index.html).

We have tested ModuleFinder on a set of human skeletal muscle CRMs using a

variety of genome alignments and TFBSs, and have achieved a maximum sensitivity and

specificity of 96% and 94%. On this dataset, improved sensitivity and specificity were

achieved by using mouse and rat alignments in the searches, whereas chicken alignments

actually decreased sensitivity and specificity. Furthermore, PWMs resulted in improved

sensitivity and specificity over exact TFBS matches.

We also have tested ModuleFinder on HNFs (HNF1 a, HNF4 a and HNF6)

transcription factors binding data from Odom et al., and compared its performance with

logistic regression and neural network variable selection models. The poor performance

of all three models may due to some unknown binding specificities of these transcription

factors. The results of this study also show that the TFs' binding affinity seems to be a

potential additional indicator that can be integrated into ModuleFinder to identify

functional TFBSs.
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The current version of ModuleFinder considers up to two alignment genomes as input,

and we are currently expanding it to accept arbitrarily many genomes. We expect that in

the future we and others will use ModuleFinder to further refine transcriptional regulatory

models for CRMs in particular biological systems and thus discover how the associated

TFBSs are organized to confer specific gene expression patterns.
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