
Run Manager Module for CORAL Laboratory

Management

by

Jeffrey G. Klann

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

c© Jeffrey G. Klann, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

August 8, 2002

Certified by. .
Vicky Diadiuk

Principal Research Engineer, MTL
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Run Manager Module for CORAL Laboratory Management

by

Jeffrey G. Klann

Submitted to the Department of Electrical Engineering and Computer Science
on August 8, 2002, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes a new module, the Run Manager (RM), for Stanford Nanofabri-
cation Facility’s Common Object Representation for Advanced Laboratories (CORAL).
CORAL is the lab manager with which MIT’s Microsystems Technology Laborato-
ries hopes to replace its outmoded, fifteen-year-old lab manager. RM will be used
to collect and store parameterized information about each step in the device fabrica-
tion process, which labs will use to automatically generate accounting, maintenance,
and lot history reports. RM consists of an XML (Extensible Markup Language)-
configurable Common Object Request Broker Architecture (CORBA) application
server, database storage, and a Graphical User Interface (GUI) module which will
be integrable with the existing CORAL Java client.

Thesis Supervisor: Vicky Diadiuk
Title: Principal Research Engineer, MTL

3

4

Acknowledgments

Thank you to Vicky Diadiuk, Thomas Lohman, and Ike Lin at MTL, whose design

and requirements-gathering assistance was invaluable in ensuring the success of this

project. Also, many thanks to John Shott and Bill Murray at SNF for their additional

insights and suggestions.

5

6

Contents

1 Background 15

1.1 MTL and CAFE . 15

1.2 Collaboration with other schools . 16

1.3 Previous work . 18

2 System Requirements 19

2.1 Motivation summary . 19

2.2 Goals . 20

2.2.1 Flexible . 20

2.2.2 Maintainable . 21

2.2.3 Easily Integrable . 22

3 Design 25

3.1 CORAL Architecture . 25

3.2 Overview . 25

3.3 Configuration and Database Design 27

3.3.1 XML Configuration Language 28

3.3.2 Run-data Storage Format . 31

3.3.3 Castor . 32

3.4 Server Design . 33

3.4.1 The RmHandlers . 34

3.4.2 RmServer . 35

3.4.3 RmRemoteInterfaceImpl . 36

7

3.4.4 Conclusion . 37

3.5 Client Design . 38

3.5.1 Graphical components . 38

3.5.2 Internal components . 42

3.5.3 Conclusion . 43

3.6 Admin Tool Design . 44

3.7 Project Management Design . 46

4 User Manual 51

4.1 Using the Run Manager . 51

4.2 Administering the Run Manager . 54

5 System Evaluation 57

5.1 Non-technical Evaluation . 57

5.1.1 Project Management Tools . 57

5.1.2 User Satisfaction (MTL and SNF) 58

5.1.3 Improvements on previous work 59

5.2 Technical Evaluation . 60

5.2.1 Database and Configuration Design 60

5.2.2 Server Architecture . 63

5.2.3 Client and Admin Tool architecture 64

6 Suggestions for further work 67

A Definitions 71

B Detailed Database Layout 73

B.1 rundata . 73

B.2 rundata tuples . 74

B.3 rm globals . 76

C Task List 79

8

D Run Manager Example Configuration 81

E Run Manager Schema 85

F IDL 93

9

10

List of Figures

3-1 High-level overview of the Run Manager. 26

3-2 XML Architecture: Configuration file overview. 28

3-3 XML Architecture: UML layout of configuration file Java data struc-

tures (Castor-converted from XML Schema). 30

3-4 Server Architecture UML Overview. 35

3-5 Client Architecture UML Overview. Note that inheritance from Swing

classes is not included in this diagram. 39

3-6 Client Architecture UML Instance Diagram. Shows an example in-

stance structure when a simple process step is being edited in the

run-data editor. 40

4-1 The CORAL Tool window. 52

4-2 The main Run Manager window. 52

B-1 Database Architecture: SQL tables. 74

B-2 Database Architecture: UML Java data-structures which map to the

database tables (Castor-converted from the XML Schema). 75

11

12

List of Tables

B.1 Two sample run-data entries stored by the Run Manager. 77

13

14

Chapter 1

Background

1.1 MTL and CAFE

The MIT Microsystems Technology Laboratories (MTL) is an Interdepartmental Lab-

oratory established in 1984 to support education, teaching, and research in areas that

could involve microelectronic and microfabrication technology. MTL houses more

than a hundred pieces of equipment used by nearly 40 research groups. Over 350

students use the lab each year, and MTL facilities provide critical support for the re-

search done by students, resulting in 30 PhD and 30 SM and MEng degrees awarded

in the 1998-1999 academic year [7, 4]. The plethora of lab resources is managed by

a technical staff that includes Dr. Vicky Diadiuk, nine research engineers, and three

research technicians. This Operations Group is in charge of maintaining the machines

and their processes and training students to use them. Scheduling machine reserva-

tions and tracking machine maintenance is facilitated by a computer lab manager.

MTL currently uses a 15 year-old home-grown lab manager called CAFE (Computer

Aided Fabrication Environment) that allows users to make machine reservations and

report maintenance problems. Also, a sophisticated billing subsystem is coupled to

CAFE and is designed to charge users only for the work they have done and re-

sources consumed, and not simply time at the machine. CAFE is a first generation

lab manager, and while it served as an excellent proof-of-concept for a sophisticated

computer lab manager, it is lacking in features and functionality. For one, its user

15

interface is a teletype terminal, which many users find cumbersome and confusing.

More importantly, CAFE is technically outmoded. It lacks a distributed, three-tiered

architecture and is thus not as scalable or expandable as a second generation lab

manager could be. It cannot interlock the machines or validate user identity, and

therefore it relies almost entirely on user honesty for billing, usage, and reservation

tracking. Finally, CAFE has little functionality to collect data on how the machines

are used, though these data are important for billing and scheduling maintenance.

Instead, CAFE users are asked to voluntarily add syntactically cryptic comments to a

comment field when they operate a machine, describing how they used the machine.

This comment-adding process is suboptimal for collecting accurate, complete data

and creating a pleasant user experience. It also requires many manual interventions

for accounting purposes [4, 9].

Another major failure of CAFE is that it is not flexible enough to allow for changes

in processes often called for in research. For example, a user might add wafers (see

definition in Appendix A) to their lot as their research progresses, but CAFE doesn’t

support this change. PFR, or Process Flow Representation, is an extension of CAFE

that tries to obviate the need for in-process changes by asking users to design their

entire set of process steps ahead of time. However, this pre-planned approach is

infeasible for unique runs, which is normally the case in research. Thus, CAFE’s

inflexibility is actually worsened by PFR, which was therefore abandoned in 1996

[4, 9].

1.2 Collaboration with other schools

CAFE is the result of joint work among a group of fabrication research laborato-

ries who have collaborated in developing computer automation tools since the mid

1980s. The core of CAFE was original developed at the University of California Berke-

ley (UCB), and it evolved into separate proprietary packages at each school which

adopted it: CAFE at MTL and Crystal at the Stanford Nanofabrication Facility at

Stanford University (SNF) [4, 9]. SNF, MIT, and UCB are equal in sophistication.

16

SNF, for example, has over 400 researchers who logged about 50,000 hours last year

[18]. It is not surprising, then, that SNF and UCB have also been feeling burdened

by their cumbersome CAFE-like lab managers in recent years. Therefore, SNF has

launched development of a second-generation lab manager, which is already in use

(though not nearly feature-complete) at SNF. UCB has also begun developing a new

lab manager, but it will not be complete until 2005, which is not within MTL’s time-

frame for a lab manager upgrade [4]. Therefore MIT has chosen to collaborate with

SNF again to contribute software enhancements and implement CORAL at MIT by

the end of 2002. This new lab manager is SNF’s Common Object Representation for

Advanced Laboratories (CORAL), currently being developed by Bill Murray and John

Shott at Stanford and Thomas Lohman and Ike Lin at MIT. The acronym CORAL

was selected in part because “while [both the system and ocean coral] appear to be

stable and lifeless, each is, in fact, a living and growing organism [16].” CORAL

is constantly under development, which is intended both to better serve the SNF

community and to make CORAL the lab manager of choice for other nanofabrication

research facilities. As a second-generation lab manager, CORAL is designed to be

flexible, extensible, and scalable. It is based on a three-tiered client/server/database

architecture that uses CORBA application server technology (see definition in Sec-

tion A) and a powerful client-side Java GUI. It supports interlocking machines and

verifying users [16, 4, 9].

Currently, CORAL has four implemented functional abilities: 1) tracking equip-

ment usage, 2) managing equipment reservations, 3) allowing communication of equip-

ment problems for scheduling maintenance, and 4) user management [16]. While these

four functions provide the basis of lab management at MIT, CORAL still lacks many

of the features MTL requires and desires. CORAL cannot produce statistical reports

of machine logs and repair history. CORAL lacks a key feature in CAFE which al-

lowed users to produce a report of which machines operated on their wafers (called

a traveller’), which is useful when trying to recall how a correct wafer was produced.

These travellers are essentially a lab notebook, which reconstruct a process flow (as

in PFR) after the fact, rather than before [4, 9]. Most importantly, CORAL lacks

17

the ability to collect information on machine use and then bill users based on the

tasks performed using the equipment. CORAL’s tracking system is based only on

time spent at a machine, which is even weaker than CAFE’s already cryptic and

trust-dependent system. Because users can use a machine for two hours in very dif-

ferent ways, MTL considers CORAL’s tracking system insufficient, and it would be

a step backward in technology to use the comment-field tracking hack currently used

in CAFE [4].

Although CORAL already supersedes CAFE in its flexible design, scalability, user

interface, and security features, MTL’s needs require further development and design

before CORAL can replace CAFE at MTL. As a joint project, everything that is

developed at MTL and SNF will be kept synchronized at Stanford and will be useful

to Stanford and other universities as CORAL becomes the research lab manager of

the new millennium.

1.3 Previous work

CAFE and Crystal were first-generation fabrication lab managers developed jointly

in the 1980s between SNF, MTL, and UCB. These products have been in use at

these three labs for over 10 years, and other labs (such as MIT’s Lincoln Lab) have

picked them up more recently. However, these products have become technically out-

moded for reasons just described and need to be replaced by a second-generation lab

manager. Commercial lab managers, such as PRI Automation’s Promis, have been in

development for many years, but their focus is on production fabrication, not research

fabrication. Consequently, they are designed for one process to be run thousands of

times, rather than for thousands of processes to be run one time, as research fabs

require. Promis has no concept of reserving machines, because commercial labs staff

each machine with a factory employee. Therefore Promis and other commercial lab

managers have inflexible (or no) accounting, reservation, and process design and are

inappropriate for research purposes [14, 4, 9]. The lack of commercial lab managers

useful to research labs was a major motivation in developing CORAL.

18

Chapter 2

System Requirements

2.1 Motivation summary

MTL has a long wishlist of items it would eventually like added to CORAL, but the

one key piece is the ability to collect customized information on tool usage in the

lab. MTL uses this information not only to bill users but also to schedule machine

maintenance and provide lot history reports to researchers. Because SNF bills its

users only by time spent, they have no motivation to design a machine-usage-collector

module.

Therefore MTL needs the CORAL Run Manager module (RM), the design of

which is the topic of this thesis. RM must minimally provide for CORAL the same

data-collection capability as CAFE, but also it should supersede CAFE in that: it

must guarantee data-completeness and must be user-friendly (by not requiring users

to enter data into a preexisting comment field which is never parsed for errors), and

it must be flexible (i.e. easy for a lab administrator to update RM to reflect new tools

and new tool capabilities).

The following detailed goals were discussed over a period of weeks at the start of

this project, and the system design was chosen with its primary focus on these goals.

By meeting these goals, this thesis project contributes a new CORAL module with

greater flexibility and extensibility than previous modules, by meshing new technolo-

gies (which will be discussed in detail in the next chapter) with the existing CORAL

19

framework. This contribution demonstrates that careful research and design mixed

with CORAL’s already flexible structure can significantly extend the capabilities of

the lab manager. This thesis also demonstrates the power of thoughtful design, mod-

ern project management, and extensive documentation to create quality tools quickly

and with positive user reaction.

2.2 Goals

RM has three major goals, each with subgoals. It must be flexible (i.e. easy for an

administrator to configure support for new lab capabilities), it must be maintainable

(i.e. easy for a programmer to understand, update, and add capability long after

the initial implementation is complete), and it must be easily integrable (i.e. easy

for a programmer to incorporate the module into the CORAL system in a matter

of weeks). Refer to the terminology definitions in Appendix A when studying these

goals.

2.2.1 Flexible

• Customized forms for any tool: RM must collect run-data from each tool in

the lab, providing a unique input form customized for each tool’s process steps.

Tools can be any object that performs a process, from machines to abstract

ideas such as training courses.

• Separation of process step from tool: The concept of process step should be

decoupled from the tool used to perform those steps. This prevents general

process ideas from being unnecessarily tied to specific tools.

• Inheritance in process steps: The specification of process steps should be extensi-

ble and flexible. Specifically, process step definitions should support derivation

from more basic step definitions (i.e. inheritance). This will allow partial-

definition-reuse; all machines, for example, have some fields in common.

20

• Variety of field types: Process steps should support a variety of configurable

field types. Minimally, text fields, integer numbers, floating-point numbers, and

multiple-choice selections must be supported. All fields must have the ability

to be optional and provide a default value.

• Multiple copies of a field: Every supported field must be configurable such that

it can be repeated, with different values, a minimum and maximum number of

times. (i.e. a configuration could specify that some process step supports two

to five materials).

• Easy configuration updates: It must be possible to update RM’s configuration

on-the-fly, without shutting down all the clients or modifying code on the server,

using a provided administration tool. This administration tool should also be

extensible to support future configuration-maintenance tasks.

2.2.2 Maintainable

• Easily enhanced: RM must be designed with future enhancements in mind,

making design decisions to modularize code and easily support augmentation

wherever feasible.

• No redundant changes when enhancing code: It should be possible to enhance

the code (i.e. make significant but non-structural changes, such as adding new

field types to input forms) without making redundant changes (i.e. changing a

data structure’s definition in three different places).

• Easy to write accounting/reporting scripts that use RM-collected data: Collected

data should be validated and stored in a database. The database should provide

enough information on the data’s meaning (i.e. datatypes, etc.) that it can be

reconstructed by a future accounting or reporting script (such as a traveller or

machine-maintenance report).

• Documentation: Documentation often is a forgotten piece of software design and

implementation [9]. Thorough technical documentation is essential for easy

21

maintenance. Therefore, accurate JavaDoc (API documentation in-line with

the code), installation documentation, and a set of technical overview slides are

required.

• Project management: The system and its design must be maintainable from the

start, in that it must be clear to the MTL team what is occurring at all times.

A constant review of requirements and detailed progress reports must always be

available, so that the system meets the goals it was intended to meet. Timely

code releases should also be available for inspection.

2.2.3 Easily Integrable

• Follow the CORAL Paradigm: RM must integrate into the existing CORAL ar-

chitecture. The constraints of the CORAL architecture are discussed in Section

3.1.

• Easy client integration: Additionally, the RM client must be nearly trivial for

a programmer to plug into the CORAL client in a few days. Specifically: the

package structure should mesh with that of CORAL (so the build can be easily

integrated), and the additions to the client should have a simple API that

integrates easily with CORAL.

• Committed/uncommitted record model: RM’s run-data must mesh with CORAL’s

enabled/disabled tool paradigm. Specifically, while a tool is enabled in CORAL,

its usage parameters could be changed by the lab user. Therefore, its run-data

in RM must be editable and not yet available to accounting records (as it is not

yet complete). This is an uncommitted state. Once a tool is disabled, a lab

user cannot affect it, so its run-data must be fixed permanently and available

to accounting. This is a committed state.

• View locks: Because CORAL may be used by a single user on many client

terminals at once, and each client terminal can access all machines in the lab,

22

it is important that editing RM on one terminal not create corruption on an-

other terminal. This could occur, for example, if a user displays RM data on

two terminals, and then edits the data and saves it on only one; in the most

straightforward design, the other terminal will not reflect the changes. To pre-

vent this, a design goal was added to only allow a user to edit their run-data

for a single tool on one terminal at a time.

• Approval of SNF: The software team at SNF must be satisfied with the system,

so that they will include RM in their main CORAL CVS tree and it will be

distributed with future releases. Beyond meeting the other goals in this sec-

tion, good communication with SNF and a demo specifically for their team is

anticipated.

The following chapter will discuss the detailed design of the Run Manager, touch-

ing on how each of the above design goals was met.

23

24

Chapter 3

Design

3.1 CORAL Architecture

Before delving into the details of the Run Manager’s design, it is important to under-

stand the CORAL technology into which RM will integrate. CORAL is a three-tiered

(client/server/database) architecture. The client is a Java Graphical User Interface

(GUI) application which provides users access to the various elements of lab man-

agement (such as making machine reservations and enabling machines). The client

connects via CORBA to a number of Java application servers which each provide a

piece of CORAL functionality (i.e. tracking machine reservations, tracking equipment

status). This modular server design allows CORAL to be somewhat easily extended,

because the server applications are essentially independent. The servers store data in

a relational database; currently both Postgres and Oracle are supported.

To integrate with CORAL, the Run Manager must provide client code that hooks

into CORAL’s existing Java GUI, and it must provide a complementary CORBA

server application that supports both Postgres and Oracle.

3.2 Overview

As with CORAL, the Run Manager is based on a three-tiered (client/sever/database)

architecture. Additionally, RM uses the Extensible Markup Language (XML) to allow

25

Architectural Overview

DB

Server Application

Client
App

CORBA

Figure 3-1: High-level overview of the Run Manager.

administrators to define processes, tools, and the connections between them. The data

flow of the Run Manager is as follows:

1. An administrator defines the lab configuration in XML, and he notifies the

Run Manager server of this via a Run Manager administration tool (i.e. the

Admin Tool in Section 3.6).

2. The Server loads the lab configuration into memory.

3. On request from the Run Manager client (Client), the Server sends a relevant

portion of the configuration to the client via a remote method call.

4. The Client generates a Graphical User Interface (GUI) to collect data from the

user.

5. The Client translates user-entered data to a database-compatible structure and

sends it back to the Server, again via a remote method call.

26

6. The Server stores the data in the database with a level of completeness such

that it can be reconstructed independently of the configuration by future ac-

counting scripts.

The high-level interactions between the Client, Server, database, and XML con-

figuration can be seen in the overview in Figure 3-1. This architecture provides an

easy integration path with CORAL. The Server can be reused as a CORAL server (as

discussed in Section 3.4.4), and the Client is built on a reusable portion of code which

can be plugged in to the existing CORAL client application (as discussed in Section

3.5). This CORAL-integrable design is essential to meeting the easy integration goals

discussed in Section 2.2.3.

The rest of this chapter will discuss the components of RM’s data-flow in detail:

XML configuration/database design, Server design, Client design, Admin Tool design,

and project management. Throughout this chapter, refer to the XML Schema (in

Appendix E) for data-structure definitions, the included figures for Java class layout,

and the definitions (in Appendix A) for some terminology explanations.

3.3 Configuration and Database Design

The foundation of RM is its configuration-definition language and its run-data storage

paradigm. Most of the flexibility goals in Section 2.2.1 are possible because of an

extensible XML language used for defining lab tools, process steps, and connections

between them. This language is supplemented by a database storage format that

is not tied to any specific field names or even field types, so that modifying the

configuration (and often, adding to its capabilities) will not change the database

structure. Finally, the XML configuration and the database tables are mapped to

Java with a powerful object mapping tool called Castor. This tool provides translation

between Java objects, XML tags, and SQL (defined in Appendix A) tables. Castor

will be discussed in more detail in Section 3.3.3.

27

XML Architecture
Textual Structure

<rmConfig>
<process>

<parentId/>
<description/>
<tuples/>*

</process>
<CORAL_Tools id=“[tool]”/>*
<map>

<mapping objectId=“[tool]”>*
<processId>[process]</>

</mapping>
</map>

</rmConfig>

Define the content of the run-data
form. A ‘tuple’ corresponds to an
input field in the form.

Define the id of each CORAL
tool (ex. a machine). Easily
extensible.

Map each tool to a set of
processes it can perform.

Figure 3-2: XML Architecture: Configuration file overview.

3.3.1 XML Configuration Language

RM has a configuration which defines what data it collects. This configuration is writ-

ten in XML and consists of a text file stored in the database, which can be updated by

the Admin Tool (see Section 3.6). The configuration’s language is XML, constrained

by an XML Schema (listed in Appendix E) which defines an rm namespace. XML with

XML Schema was chosen on recommendation from Stanford [15, 11], because XML

with XML Schema allows quick definition of human-readable, customized languages

and is quickly becoming the standard for configuration languages [20, 15, 11]. The

Schema defines three sections: a process library, tool references, and tool mappings.

• The process library is an object hierarchy of process step definitions not tied

to a specific tool. Each object in the hierarchy may derive from multiple other

objects, and each object defines the unique (non-derived) part of the input form

for its process step, using the input-field tags provided by the Schema.1 When a

1The current implementation supports input-fields of strings, integers, multiple-choice pulldowns,

28

process step is displayed by the client, the content of all its ancestor objects are

also displayed. This library structure achieves the goal of supporting inheritance

in process step-definitions.

• Tool references are simple objects which begin with a tag describing the tool’s

type (i.e. machines are described by the <machine> tag). They usually contain

the id of a tool (for linking the tool back to CORAL) and a tool name (for

display in parts of the RM client). Each tool type can extend this structure

with additional fields. Because they are so trivial, these tool references could

have been integrated directly with the tool mappings. Instead, they were defined

separately, because SNF seemed interested in eventually extending the Schema

to use the configuration to store additional tool-related information.

• Tool mappings are several-to-several mappings of tools to the process steps

they can perform in the process library. Each tool is allowed to collect run-data

for any of the processes for which a mapping exists. This way, each tool can

perform multiple process steps, and the same process step can be associated

with several tools. This meets the goal of separating process step from tool,

allowing the construction of complex, extensible process hierarchies separate

from tool definitions.

These three pieces comprise an XML Configuration Language that is the key

element for the goal of providing customized input forms for each process. The lan-

guage allows the complete specification of those input forms. Additionally, using

XML Schema is an important design element in having easily-updatable configura-

tions (only the human-readable XML file need change) and simply supporting software

enhancements (adding new object types to the XML Schema is not a complex task,

as it is written in human-readable XML itself).

Figure 3-2 shows the overall structure of a configuration file, and Figure 3-3 shows

a UML diagram of the associated Java data-structures. Also, see Appendix D for a

and floating-point numbers; this meets the minimum requirements of the variety-of-field-types goal
(see Section 2.2.1), though it can be easily extended.

29

XML Architecture
UML Schema Inheritance

Figure 3-3: XML Architecture: UML layout of configuration file Java data structures
(Castor-converted from XML Schema).

30

sample configuration and Appendix E for the entire XML Schema.

3.3.2 Run-data Storage Format

To meet the goals in the previous chapter, RM needs to store run-data in a persistent

store accessible to future accounting scripts. To fit with CORAL’s current design,

the Oracle and Postgres databases must be supported.2 However, the database struc-

ture may not be tied to a specific configuration, or the flexibility goals would not

be achieved. Ideally, the database structure must be flexible enough to not only

seamlessly support configuration modifications but also to support new input fields

without modification (to meet the easily-enhanced goal in Section 2.2).

RM’s design achieves this flexible structure by carefully defining two tables to

store data in a configuration-independent format: rundata and rundata tuples.

Whenever a piece of run-data is saved, a single rundata entry is stored in the database.

This entry contains common information such as: what process was performed?, which

tool was used?, what user performed the process?, when was the process performed?.

Also, every rundata entry is assigned a unique Transaction Id (tid), which is never

reused. The content of the input form is stored in the other table, rundata tuples.

An entry is stored in this table for each input-field in the input form, and each entry

is associated with the aforementioned tid, to link it back to its rundata entry. The

rundata tuples entries contain information such as the name of the field and its input

type (i.e. string, integer, etc), and they also contain several generic data-storage fields,

which are used variously by the different input types. With this structure, run-data

size is effectively unlimited and not tied to a specific input type.3

See Appendix B for a detailed specification of the database.

2Thankfully, as far as the features RM uses, these two databases are essentially the same. See
Appendix B to view the differences in data-types between the two, and see Section 3.4.1 for a
discussion on Oracle-specific changes needed to make one feature work.

3Currently, only an integer and string field are defined, but this is not necessarily a limitation;
string fields can be used to store virtually any type of simple Java type. The only loss is some speed
in conversion time, but blazing execution speed is not a goal.

31

3.3.3 Castor

Castor is a Java data-binding framework which is “basically the shortest path between

Java objects, XML documents, SQL tables and LDAP directories [5].” RM uses

two Castor packages: Castor XML and Castor Java Data Objects (JDO). Castor

XML translates XML Schemas into a package of Java data-structures, and then it

unmarshalls instances of those Schemas into instances of the Java data-structures.

Castor JDO supports user-defined mappings between Java data-structures and SQL

tables, which can be used to load and save Java objects to a relational database.

These two tools are used to almost completely eliminate code redundancy and

organize code more cleanly (contributing significantly to the easily-enhanced and no-

redundancy goals from Section 2.2). All data-structures are defined only in the XML

Schema4, including both the structures needed to write an RM configuration and those

used to store run-data. Therefore, modifying data-structures requires only modifying

the Schema and rebuilding. Without Castor XML, the data-structures would need

to be defined in the XML Schema (for verification) and equivalent structures would

need to be defined in Java (for processing). Even the CORBA Interface Definition

Language (IDL) takes advantage of Castor, by using XML strings to transmit complex

data across the wire, which is unmarshalled to Java on either end of the remote

connection. Therefore not even the IDL need change when the configuration structure

does. In fact, changing the structure of the configuration or the database often

requires changes only to the XML Schema and a Castor JDO mapping file, with a

few modification to the Java code which manipulates the generated data-structures.

Castor JDO and XML, together with RM’s database and XML Schema design,

provide a framework for the rest of the client and server, which only needs to ma-

nipulate and display the Java data-structures generated by Castor. Castor handles

all the data-storage details. For example, RM configuration updates can occur al-

most automatically; a single method call unmarshalls the updated configuration from

XML into Castor’s data-structures. Similarly, when run-data is saved, RM builds up

4This isn’t quite true. As mentioned in the evaluation chapter (see Section 5.2.1), Castor JDO
requires an additional definition file, describing how Java structures map to SQL statements.

32

a RmRunData object (which is defined in the Schema and describes the content of the

run-data) and uses Castor JDO to map this field-for-field into the database.

Castor is not a perfect out-of-box solution (see Section 5), but its advanced Java-

data-binding ability provides a redundancy-eliminating framework for the client and

server which is simple to build upon.

3.4 Server Design

The Server uses the Castor XML data-structure framework to provide information

to the client and store information in the database. It fits within the CORAL server

paradigm, in that it:

• Is CORBA-based.

• Shares tables in a single relational database with other CORBA servers.

• Runs on a central server and is accessed (again, via CORBA) by client appli-

cations running remotely.

• Is one of several server applications which run concurrently to provide various

functional components to client applications.

The Server is a Java application which uses CORBA to export the following

functionality:

• Get global information, such as the configuration’s version string.

• Inspect the configuration (i.e. available tools, processes supported by a given

tool, process information).

• Store and retrieve run-data.

• Additional administration (i.e. reset the server; set and release view locks, as

discussed in Section 3.5).

33

The entire IDL specification is available in Appendix F. Using the XML Schema

design above, Castor obviates many of the most challenging aspects of server design;

the Java code is mostly a front end for Castor’s tools that also performs some data-

structure manipulation.

As the Java code is discussed in the following subsections, refer to Figure 3-4 to

study the class relationships.

3.4.1 The RmHandlers

The Server code is built on the RmHandler interface. An RmHandler is nothing more

than a class which has methods to provide descriptive information on itself, but it

acts as a base class for objects which provide server functionality. The Server provides

the following handler objects:

RmConfigHandler Uses Castor XML to load a new configuration, validate it, and

provide the configuration-inspection capabilities to the remote interface.

RmRunDataHandler Uses Castor JDO to map RmRunData objects to and from the

database, providing run-data storage and retrieval capabilities to the remote

interface. (This task is not entirely trivial, as it requires some burdensome de-

tails: commitment-checks5; transaction-id propagation when saving6; and care

to leave placeholders when deleting the last element, so transaction ids will not

be reused.)

RmGlobalContainerHandler A third database table, rm globals, is used to store

character large objects (CLOBs) in the database, and RmGlobalContainerHandler

uses Castor JDO to map the Java structure RmGlobalContainer7 to and from

this SQL table (see definition in Appendix A). RmGlobalContainerHandler’s

5Data can be flagged as committed or uncommitted (as required in Section 2.2.3), and
RmRunDataHandler must not allow committed data to be updated arbitrarily. The database struc-
ture (see Appendix B) explains the committed flag’s implementation.

6The transaction id must be copied from the rundata entry to each rundata tuples entry (see
Section 3.3.2 for more information).

7Like other structures, this is defined in the XML Schema.

34

Server Architecture:
(UML Associations, Java Classes)

RmRemoteInterface

RmConfigHandler
RmServer

RmGlobalContainerHandler

XML Schema

To client (CORBA)

Castor
XML

0..1 0..1

0..1
RmRunDataHandler

DB

Castor
JDO

Castor
JDO

Figure 3-4: Server Architecture UML Overview.

functionality is used primarily to store and load the configuration in the database.

This handler exports functionality to the remote interface to load and save con-

tainers. RmGlobalContainerHandler is also not trivial, because Oracle only

allows 4-kilobyte CLOBs, many configurations will be greater than 4-kilobytes,

and Oracle support is necessary to meet with the CORAL-Paradigm goal stated

in Section 2.2.3. Therefore, this Handler can optionally splice CLOBs into ar-

bitrarily large chunks before saving and can load both spliced- and non-spliced-

records.

3.4.2 RmServer

A main class, RmServer, loads the configuration, instantiates these RmHandlers,

and passes the Handlers to an RmRemoteInterfaceImpl (which implements the IDL

in Appendix F), which it then registers with CORBA. RmServer then simply waits

until it receives a signal from RmRemoteInterfaceImpl to either shutdown or re-

35

initialize itself (via the inter-thread communication capabilities of Object.notify()).

This way, a remote application (such as the Admin Tool described in Section 3.6)

can command the server to reset, which implicitly loads any configuration updates.

RmGlobalContainerHandler additionally provides the remote interface to load and

save configurations remotely, opening the door for the Admin Tool and satisfying the

server part of the goal of easy configuration updates (defined in Section 2.2.1).

As an added measure of protection, RmServer has a last-known-good configura-

tion functionality. That is, if RmConfigHandler cannot validate the main config-

uration, RmServer tries to load the last successfully validated configuration. Once

a configuration is validated, it becomes the last-known-good configuration. This

small addition provides significant protection against administrators bringing down

the Server by installing an invalid configuration.8

3.4.3 RmRemoteInterfaceImpl

The final piece of the server, RmRemoteInterfaceImpl, as previously mentioned, im-

plements the IDL remote interface. It is initialized with an array of RmHandlers

and uses Java’s reflection technology (described in Appendix A) to determine the

RmHandler’s capabilities and to automatically pass calls through to them. When-

ever a remote method is called, RmRemoteInterfaceImpl searches through the pub-

lic method lists of all available RmHandlers (again, using reflection), and calls the

first method it finds with the same signature. If no method exists, a CORBA ex-

ception is thrown back to the client. Also, RmRemoteInterfaceImpl automatically

converts between Strings of XML and Castor-generated Java objects. This means

that if a method has a String in its signature, RmRemoteInterfaceImpl automat-

ically searches for a Handler method with a Castor-generated Java object at that

point in the signature, and it unmarshals that String to Java. Similarly, return

types that are Castor-generated Java objects are automatically converted to XML

8Note that an XML Schema-aware programmer’s editor, such as jEdit, can provide significant
configuration validation before it is sent to the server [17]. However, jEdit is unable to check for
information that cannot be specified in the Schema, for example that every tool mapping references a
valid tool id. Therefore, the added protection of a last-known-good configuration backup is beneficial.

36

Strings. Lastly, RmRemoteInterfaceImpl catches null returns before they are re-

turned through CORBA (which generates a general CORBA exception that has sev-

eral meanings) and throws an RM NullReturnException through CORBA, which

is defined in RM’s IDL (listed in Appendix F). This way, the client can determine

whether a null was returned (which could be a legal return value in some cases)

or whether an actual communication failure occurred. These several pieces of func-

tionality together make RmRemoteInterfaceImpl a powerful tool to wrap CORBA

around the complex functionality in the various RmHandler objects.

3.4.4 Conclusion

Together, the Server functions as a standalone CORBA application server that is

approximately compatible with CORAL. Very few modifications are anticipated to

integrate this module with CORAL. Possible changes that will need to be made

include:

• Changing the way the Server registers with the CORBA nameserver in order to

be compatible with the http-based protocol that was used when the CORAL

core was developed.

• Modifying the Server to store a copy of some of its data in existing CORAL

tables. (Most likely this will entail copying the transaction id of inputted run-

data to an entry in the existing CORAL accounting tables.)

• Possibly partially using the CORAL Persistence Engine to store some data.9

All of these changes should not take more than a week of developer time to someone

who is familiar with the code layout, thanks to the modular Handler-oriented design

of the Server.

9The Persistence Engine is SNF’s alternative to Castor JDO, written before Castor JDO was
developed. It will probably not be necessary to support it, as there is no hard requirement that all
CORAL modules must use the Persistence Engine.

37

3.5 Client Design

The Client is divided into two halves: the graphical components and the internal

components. Central to the graphical components is RmDemo, a large class (with

several inner classes) which defines all aspects of the Graphical User Interface (GUI)

which will not be directly reused in CORAL. These include a login window (which

does not authenticate users, but merely passes a user id to the RM GUI), a Tool List

window which allows the user to enable and disable tools (mimicking the CORAL

Object Hierarchy), and a Configuration Management window which puts a graphical

front-end on RmTool’s configuration-update capabilities, as described in the Admin

Tool Design section. The innards of RmDemo will not be discussed in this thesis, as

its design is incidental to the project, providing only essential wrapping to test the

Run Manager as a stand-alone system. It is worth noting, however, that RmDemo

was able to take advantage of some technology developed for other parts of RM;

specifically, RmDemo is able to store its tool-state (enabled/disabled) directly into the

database by remote calls into RmGlobalContainerHandler. This ensures consistent

enabled/disabled information at all clients.

As the Client’s code structure is discussed in the following subsections, refer to

to Figure 3-5 to study the class relationships. Also, Figure 3-6 shows a sample UML

instance diagram that can help one understand how the classes described below are

instantiated to collect run-data.

3.5.1 Graphical components

RmGui is the heart of the reusable graphical components which have been designed

to be integrated into CORAL. RmGui is a Swing JFrame which provides the skele-

ton GUI for collecting run-data and acts as both a process-selector and a run-data

collection form. RmGui is designed to be easily integrable with CORAL. Interaction

between a client container (i.e. the RmDemo or, eventually, the CORAL client) and

the RM GUI consists mainly of initializing an instance of RmGui with a user id, tool

name, and a copy of the CORBA Run Manager remote object (from the server). The

38

Internal

Client Architecture
(UML Associations)

RmGuiInputForm

RmDemo

RmGui RmRunDataCollector

RmRunData
CollectorValue

GUI
RmRemoteInterface

ClientWrapper

RmGuiForm
Callback

RmGui
Callback

To server (CORBA)

Castor
XML

*

**

*

XML Schema

Figure 3-5: Client Architecture UML Overview. Note that inheritance from Swing
classes is not included in this diagram.

39

Client Architecture
(Sample UML Instance Diagram)

etching:
RmGuiInputForm

:RmDemo

centura:RmGui

etching:
RmRunDataCollector

Gas Type:
RmRunData

CollectorValue

:RmRemoteInterface
ClientWrapper

etching:
RmGuiForm

Callback

centura:
RmGui

Callback

Mask Material:
RmRunData

CollectorValue

Figure 3-6: Client Architecture UML Instance Diagram. Shows an example instance
structure when a simple process step is being edited in the run-data editor.

40

only additional necessary work is to register the client container as a callback with

RmGui and to respond to the events in the RmGuiCallback interface, which include

notifications of fatal errors, successful save, and successful commit. RmGui also pro-

vides some optional public methods which can change its state as the client container

desires. These include the ability to force the current run-data collection to abort and

to transition from collecting data to finalizing data (see next paragraph). Because of

this simple interaction model with a client container, the goal of easy integration is

also met on the client side.

RmGui is essentially a simple state machine. It can be in one of four states at any

given time: process selection, collecting data, finalizing data, and finished. Process

selection occurs just after initialization, when the RmGui knows what tool is being

used, but not what process the tool is performing; this step is skipped if only one

process is available. Collecting data occurs next, displaying an input form and a

Save button, and it is used to save a draft of collected data to the server. Finalizing

data occurs only on explicit call from the client container, as previously described; it

should occur just before a machine is disabled. This state looks approximately the

same as collecting data, except that saving the data commits it so that it cannot be

changed. This committed/uncommitted model achieves the client-side aspect of the

committing-model goal (see Section 2.2.3). Collecting data can occur many times, but

finalizing data can occur only once, after which the record is marked as committed in

the database, RM will refuse to edit it, and it can be used by accounting scripts.

RmGui also achieves the view-lock goal, described in Section 2.2.3. The Server

provides remote methods to set and release view-locks on a piece of run-data. When

a user is collecting or finalizing data, RmGui tries to set the viewlock on their run-

data. If it fails, that user is editing data on another terminal, and RmGui refuses to

open.

The only other graphical element of the RM GUI is RmGuiInputForm, which fills

in the most complex graphical piece. This class is a Java JPanel which displays

the actual run-data input form and error messages. Therefore RmGuiInputForm gets

process information from the server and displays it in a custom form on screen. It

41

also informs RmGui via a callback whenever its state changes.

Note that only display logic is included in RmGuiInputForm; the logic to convert

a process description into an RmRunData object (which can be saved via the server;

see Section 3.4) is handled in separate, internal client components (which are dis-

cussed below). In software development terms, this design separates the model from

the view, which makes it easy to write a new user interface on top of the internal

client components. In fact, for early testing, the author wrote a simple text-based

user interface to test the internal components. Additionally, this model-view design

helps the system meet the easily-enhanced goal from Section 2.2, because the model-

view code separates internal complexity from display logic, making the code easier

to understand. It also helps meet the quick-integration goal, in that rewriting parts

of the GUI, should that be necessary, would not necessitate throwing out any of the

internal client logic.

Details on how the GUI is used can be found in the User Manual in the next

chapter. Pictures of the RM GUI can also be found there. The remainder of this

section will be dedicated to discussing the internal client components.

3.5.2 Internal components

RmRunDataCollector is the model in the model-view design. It is the bridge between

an RM Process object (which describes a process-step and is retrieved from

the XML configuration through the server; see Process in the Schema listing

in Appendix E) and an RmRunData object (which is stored in the database).

This class creates RmRunDataCollectorValue objects for each input field in

the process-step. These objects provide inspection and validation methods on

inputted data. Together, RmRunDataCollector and its collection of RmRunData-

CollectorValue objects can validate inputted data and output an RmRunData

object to be stored in the database. In RmGuiInputForm, validation errors

(faults) are displayed as red messages below the input field, and they are caused

42

when an invalid value is entered in a field according to the configuration.10 Re-

call that the goals in Section 2.2.1 included the requirement that fields optionally

allow multiple copies (see Section 2.2.1). Only one RmRunDataCollectorValue

exists for all copies of a field, and public methods exist to add and remove

copies from that RmRunDataCollectorValue. RmGuiInputForm takes advan-

tage of this to provide add/remove buttons next to fields when appropriate.

RmRemoteInterfaceClientWrapper wraps around an RmRemoteInterface remote

object retrieved through CORAL, and it helps achieve the no-redundancy goal

by providing much of the same functionality as RmRemoteInterfaceImpl, which

was described in the Server design section (3.4). Specifically: the class automat-

ically marshals/unmarshalls XML strings to and from Castor-generated Java

objects before sending across the wire, and it converts the RM CORBA Ex-

ceptions (i.e. NullReturnException and ServerErrorException) back to an

appropriate non-remote form (i.e. a null return value and a local exception). A

RmRemoteInterfaceClientWrapper is passed to RmGui on initialization, which

uses it for all its Server communication.

3.5.3 Conclusion

By providing a Client which interprets and displays the language defined in the XML

Schema (see Section 3.3.1), the Java-side of the flexibility goals (see Section 2.2.1),

which the XML Schema language defines, are implicitly met. Also, because RmDemo

is so easily severable from RmGui (and because of RmGui’s simple API), the easy

integration goals in Section 2.2.3 are also met.

Note that all of these classes depend on the Java objects which Castor generated

from the XML Schema (see the top of this chapter), because these are used to ex-

amine subsets of the configuration which are sent across the wire (i.e. process-step

descriptions).

10Common faults include a number which was not within minimum/maximum bounds or a non-
optional field which has no value. See the input-type definitions in the Schema listing in Appendix
E for a fuller understanding of the available restrictions.

43

3.6 Admin Tool Design

Another goal of RM is to provide functionality to update the configuration painlessly

(see Section 2.2.1). As discussed before, the Server supports remote method calls to

update the configuration and reset the server (see Section 3.4), which provides the

framework to support this goal. The other necessary piece is a client tool that puts

this functionality in an adminstrator’s toolbox.

Therefore an Admin Tool is provided which can update the configuration in the

database from a local file and also signal a Server reset (causing it to load the new

configuration). Because simplifying future enhancements is also a goal (see Section

2.2.2), the Admin Tool was designed to be easily extensible to provide new function-

ality.

The Admin Tool consists of two classes: ToolBase and RmTool. ToolBase de-

fines a Java Reflection-based framework for writing command line tools (see Appendix

A for a brief explanation of Reflection), and RmTool uses ToolBase to provide Run

Manager administration abilities.

ToolBase defines a set of rules for writing method signatures, which, when fol-

lowed, allow ToolBase to determine the capabilities of any administration tool, pro-

vide descriptions of each ability to the command prompt, and execute any number

of these capabilities in one line, by parsing command-line options and executing each

capability in order.

Specifically, to create a derived class (a tool) using the ToolBase framework, these

rules must be followed:

1. A description of the tool must be provided in a global String descr.

2. Every tool capability should consist of a method of the form public boolean

tool [name](String *) (that is, a method with any number of String inputs).

The method must return true on success or false if the program should termi-

nate without processing any more command-line options and instead System-

.exit(1).

44

3. Every method should have a corresponding global String descr [name] which

describes it.

4. Each method may have some corresponding String descr [name] [arg#],

which describes the purpose of an argument, where arg# is numbered 1 to

n.

RmTool uses ToolBase to implement the Admin Tool and provide the following

command-line options:

debug : Turns on debugging information.

nameserver iiop://-name-:port- : Sets the CORBA nameserver used to find the

remote object.

getxml <xml keyname> <local filename> : Retrieves xml from the database with

the given key.

putxml <xml keyname> <local filename> : Stores xml with the given key into

the database.

cycleserver : Tells the server to reset itself.

Updating the configuration on the server is as simple as running RmTool with the

command line options:

-nameserver iiop://[name]:[port] -putxml instance [filename] -cycleserver

Here filename is the name of the new configuration file.11 Alternately, RmDemo pro-

vides a graphical front end to select a file and execute exactly this set of command

line parameters, to simplify updates for those not savvy with the commmand line.

RmTool can be easily updated to provide new capabilities. For example, MTL

developers are discussing storing the configuration in multiple containers (i.e. sepa-

rating each process step definition into its own container), so that individual pieces

11“Instance” on the command line above is the key name used for the configuration in the database,
which is defined among other constants in a utility class.

45

could be updated independently. Writing a new method tool putpartialxml() to

store only a part of a given XML file in the database and adding a few Strings to

describe the method would automatically add this capability to the host of command

line options.

3.7 Project Management Design

Technical design aside, project management design was the most critical element in

determining the success of this thesis. Because this thesis was defined in an isolated

environment (i.e. only one developer/designer), developing methods for good com-

munication was essential, so that the author’s progress was always available to the

MTL Operations team. Additionally, because this thesis project was designed for

integration into a larger system and did not begin with a detailed pre-defined spec-

ification, the MTL team needed the ability to review requirements and code on a

regular basis. Finally, because it was essential that SNF be satisfied enough with RM

to integrate it into their CVS tree (see Section 2.2.3), communication with them was

also important. For all these reasons, the following project-management tools were

implemented:

Initial specification: Before any code was written, over a month was spent in dis-

cussions with Dr. Diadiuk (this thesis project’s advisor) and developers at SNF

and (primarily) MTL to determine the system’s requirements and to create a

high-level specification. During this time, many important goals and design-

decisions were made that saved the author from many try, delete, repeat cycles

during development. For example, many of the flexibility goals were decided in

this initial time period (see Section 2.2.1), including the decisions to use XML,

XML Schema, and a process-step hierarchy.

Weekly status reports / status meetings: Early every week, the author updated

the MTL team on the project’s progress via email. This was followed by a weekly

design meeting with other developers, where design questions could be resolved.

46

It is the author’s opinion that the quick-turnaround time on design issues yielded

a higher-quality product than would have been possible with completely inde-

pendent design. For example, some database-related issues were discussed and

solved at the weekly meetings. At one meeting, the team suggested adding

fully-reconstructable database records to the list of goals (see Section 2.2.2).12

Quick code cycle / weekly testing: A new code release was made available nearly

every week, together with a test application that put the newest release through

its paces. Although the other developers seldom looked at the intermediate code

releases, writing new test applications every week also ensured a high-quality

system, as many obscure errors were discovered early that might not even have

been apparent with integration testing. For example, the client model acciden-

tally allowed some illegal input values that could not be entered in the client

view, so the error in the model would not have been caught without separate

testing.

Online research and task lists: A Swiki (defined in Appendix A) was used to

provide more immediate and detailed progress feedback than the weekly reports.

The author posted his research, design decisions, and updated a task list several

times a week. Others on the MTL Operations team could log in with read-

only access and post comments. Although the design decisions were not often

reviewed online, the task list became a fundamental centerpiece to the thesis

design. It listed all the top-level technical tasks (including design research)

needed to complete the project, their completion percentage, and the number

of hours spent. A copy of the task list can be found in Appendix C. Not only

did the task list help the author track time spent so as to improve his time-

estimation skills, it also assured Dr. Diadiuk that progress was being made and

that the project would be completed on-time. This was especially helpful to

Dr. Diadiuk, as she is not familiar with all of the detailed tasks necessary in

12This was chosen as opposed to an earlier, poorer alternative which allowed the configuration to
change or data to be reconstructed but not both.

47

software design [4]. After the initial project was completed at the beginning of

June, a “Laundry List” was added to the task list, which was a more free-form

bug-tracking list. By posting it publicly on the Swiki, the MTL team felt more

able to discuss solutions and add additional bugs.

Major Design Reviews / Demos: Twice during the project’s design, demonstra-

tions were presented as an opportunity for design review. The first demonstra-

tion was for the MTL team on June 5th, just after completion of the initial release

of the finished project. During this demonstration, several design changes were

recommended, which helped ensure the final project would mesh with MTL’s

needs. Most significantly, viewlocks were recommended (see Sections 2.2.3 and

3.5 for more information), as was the ability to enable multiple machines per

client computer (which is supported in CORAL, but was not supported at the

time in RM). The second demonstration was for the SNF team on June 26th, just

after the design changes from the first demonstration had been implemented.

The demonstration did not result in many suggestions for change, but it did

present an attitude of openness from SNF which certainly contributed to their

positive reception of RM.

Heavy documentation: As design completed, a focus was placed on documentation

(see Section 2.2.2). Several weeks were spent adding JavaDoc API documen-

tation to the code where it was lacking and redesigning portions of the API

so that it was easier to understand.13 Besides adding some ninety pages of

JavaDoc, which thoroughly describes how a programmer can use RM’s technol-

ogy, a detailed technical slide presentation was made, describing RM’s design.

The slides use the Unified Modeling Language (UML) to signify class interac-

tions and include detailed notes. These slides were provided to SNF for the June

26th demo, and they will certainly be used by the MTL team as they integrate

(and, someday, refactor) parts of RM’s code. Additionally, many of the UML

13The most significant redesigns were the interactions between the reusable RmGui and the tem-
porary RmDemo class, as it was critical for these to be simple for future integration with CORAL to
eventually succeed. (See Section 2.2.3.)

48

slides are reused in this document.

Together, these project-management tools helped to ensure a high-quality prod-

uct by ensuring good communication between RM’s author, other developers, and

potential users of RM.

49

50

Chapter 4

User Manual

The following sections describe the two use cases of the Run Manager: a user entering

data and an adminstrator updating the configuration. These use cases are based

on RM running within RmDemo, but the steps will be similar when integrated with

CORAL (and all steps involving the Run Manager window will be equivalent). A

picture of the RmDemo tool window and the Run Manager main window (in data-

entry mode) are provided in Figures 4-1 and 4-2.

4.1 Using the Run Manager

This section describes the use of RM as a normal (non-administrator) user.

1. Log in: When you start up RM, you will see a login window. Enter any

username you like, though preferably one unique to yourself. It is used to store

your run-data in the database.

2. CORAL Tool Window. This is a ‘fake’ tool enabling window that mimics

the behavior of how the Run Manager will integrate with CORAL. It displays

the list of tool names from the server configuration file. When you ‘Enable’ a

tool, the run-data collector window (also called the Run Manager window) will

appear and the tool will become highlighted. You can enable as many tools as

you like, unless they are already enabled at another terminal (in which case,

51

Figure 4-1: The CORAL Tool window.

Figure 4-2: The main Run Manager window.

52

they will already be highlighted). If you previously enabled a tool, have not yet

disabled it, and its run-data window is not currently visible, you may choose

“Edit Run-Data” (see step 5).

3. Run Manager Window: Choose a Process. If you enabled a tool with mul-

tiple processes, pick the process you will perform now. If the machine supports

only one process, this step is performed automatically for you.

4. Run Manager Window: Enter Data. Enter data into the provided fields.

Note that some fields can be duplicated or deleted, because you might want

to enter multiple answers; notice the appropriate “Add a new...” and “Delete”

buttons. When you are finished, click “Save”. If your data has errors, it will

display them and ask you to correct them. Otherwise, the data will be copied

to the server and the window will close.

5. Run Manager Window: Edit Data. You may edit data you have entered

as long as a tool is still enabled. To do this, select a tool you’ve enabled and

for which you’ve saved some initial data. Choose “Edit Run Data” from the

CORAL Tool Window and the Run Manager Window will reappear. You may

continue to update your data and save it until you are finished with the machine.

If you click save, the window will close again, and you may repeat this editing

step by choosing “Edit Run-Data” in step 2. (You can also edit your run-data

on a different terminal via the same process, provided you are logged in with

the same user id.)

6. CORAL Object Window: Disable Machine. When you are finished with

a tool, return to the CORAL Tool Window and “Disable” the tool you enabled

earlier. The window will ask you to confirm your run data and click “Commit”,

which has temporarily replaced the “Save” button in the Run Manager window.

When you have done this, the system will commit your data on the server and

close the Run Manager window. Repeat this process for all machines you have

enabled. You will no longer be able to change your run-data after this step, so

53

ensure that it is correct.

Premature Exit. At any point, you may exit the application by choosing

either “Logout” from the Admin menu or closing the CORAL Object Window.

When you log in again (with the same user name), your data will be restored

as you left it, and you may continue from the Edit Data step.

View locks. Note that many users may be logged in at once, and a single

user may be logged in on several terminals. However, MTL Operations have

decided that any user will be allowed to edit a single piece of run-data on only

one terminal at a time (as described in Section 2.2.3). Try to edit run-data on

two terminals and notice the protection against this.1

4.2 Administering the Run Manager

The Run Manager demo provides a partial front-end to RmTool (described in Section

3.6), so a lab administrator can graphically update the server’s configuration.

1. Log in: The same as step 1 above, except your login name will also be used to

lock the configuration manager.

2. CORAL Tool Window: The same as step 2 above, except choose “Modify

configuration” from the Admin menu.

3. Lock warning: If someone else seems to be using the Configuration Manager,

a warning will appear; you would not want to overwrite what they are working

on. If you’re sure no one else is using the Configuration Manager, override the

lock. Otherwise try again later.

1Note that you may save your run-data on one terminal, causing the run-data collector to dis-
appear, and then you may edit it (via step 5) on another terminal. The limit is one terminal at a
time.

54

4. Configuration Manager: Retrieve Configuration. A small window with

three buttons will appear.2 First, you will want to retrieve the configuration

file from the server. Click on the “Get...” button and pick a location to save

the configuration file.

5. Edit the configuration: Leave the configuration manager window open, and

use your favorite XML editor to change the configuration.3 jEdit is the recom-

mended editor, because it is free and because it can validate against the XML

Schema language specification in order to catch errors more easily [17]. Add

some new fields to a process, for example.

6. Configuration Manager: Replace Configuration. Click on the “Put...”

button and choose the file you just modified. A message will appear in a moment

explaining that it has been put on the server.

7. Test configuration: If you are editing run-data and it seems that your con-

figuration has not changed, your configuration probably had a bug in it and

the server reloaded the last-known-good configuration (see Section 3.4.2). If

you try to close the configuration window and it complains that the server is

not responding, then the server could not load a last-known-good configuration.

In either case, check the server log4 to figure out why the server has failed. If

you get really stuck, click on the “Reset” button in the configuration manager

window, and it will reload the first configuration that was installed.5

2Note that on some platforms, you might need to click “Cancel” to the “No floppy disk in drive..”
message; this appears to be a problem with Java’s File Chooser.

3Note: You might need to reformat the XML in your editor; it doesn’t always appear correctly
when downloaded from the server. This only seems to happen when Postgres is running under
Windows.

4The server log is the text output of the Server, which gives detailed messages about configuration
errors.

5This functionality is provided by using RmTool to load a predefined container which was saved
the first time the Server booted, and then again using RmTool to save this container as the new
configuration.

55

56

Chapter 5

System Evaluation

The following sections evaluate the success of this project against the goals in the

first chapter, from both technical and non-technical perspectives, and they consider

how the system is an improvement to CAFE.

5.1 Non-technical Evaluation

5.1.1 Project Management Tools

As discussed in the previous chapter, the various methodologies used to manage the

project significantly improved the quality of the design and ensured communication

between the author and the MTL team. The MTL Operations team agreed that

status updates, demonstrations, and weekly meetings were essential to ensure good

project design that would meet with the evolving project specification [4, 9, 8]. It

became clear from the project managements methodologies that complex software

design research is best done collaboratively, or at least with significant input from

those with more experience in the project’s particular research area.

Dr. Diadiuk was especially pleased by the on-line task list, because it gave her

a good perspective on how work was coming along [4], and the other methodologies

(access to code, status updates, incremental testing) ensured that the team was always

aware of the author’s progress. Also, the MTL developers are happy that a large

57

amount of documentation exists, and this will certainly be useful as the code is

integrated into CORAL and maintained over the years [9, 8].

On the other hand, the team did not make use of the Swiki collaborative web

environment to a great degree. While Dr. Diadiuk did examine the progress reports

and on-line task list, no design discussions occurred on the Swiki. Rather, design

changes were always suggested in-person at the weekly meetings, perhaps because

it was a convenient time when everyone was together. This issue only emphasizes

the importance of weekly meetings, but it does suggest that for projects with only

one developer, read-only access to on-line information is sufficient; comments on the

Swiki were an unnecessary complexity.

On the whole, however, the project management methodologies were essential in

producing a quality product, showing that new, Extreme Programming-like method-

ologies [2], such as evolving specifications (rather than detailed specifications at the

beginning of a project) and constant feedback, are good directions for the software

development process.

5.1.2 User Satisfaction (MTL and SNF)

The two teams are quite satisfied, in large part due to the good communication

engendered by the software design methodologies.

Because the MTL team was given ample opportunities to give feedback and ask

for design modifications, the results met their expectations. The system has the

functionality necessary to integrate with CORAL at the MTL site. It is difficult to

measure system performance and stability until it is integrated in the larger CORAL

context side, but, thanks to both weekly testing and integration testing, no crashes

or performance glitches have been found during MTL’s exploration of RM.1 Because

of the MTL team’s satisfaction, RM will be integrated into CORAL, meeting the

primary goal of this thesis.

1The one exception is an obscure error that occurs when initializing the XML SAX (Simple API
for XML) parser on some clients with some Java Runtime Environments (JRE), and only when
Client logging is turned off. However, this appears to be less an error in RM than in certain version
of the Java Runtime Environment (JRE).

58

The SNF team will not be using the Run Manager per se, but their satisfaction was

also a primary concern because they control the CORAL CVS repository; therefore,

the SNF team’s satisfaction with the project was the determining factor in whether

RM would eventually be integrated with mainline CORAL releases. The SNF team

was afraid that a student developer, because he lacks real-world experience, would

have poor design methodologies, unrealistic expectations, and too much focus on

client-side and GUI code, ignoring the critical (and more difficult) back-end server

code [15, 11]. The MTL team knew this at the beginning of the project and therefore

emphasized the importance of project management goals from the outset. Therefore,

the author put these design methodologies in place and started designing the system

with the back-end first not only because these are increasingly proven design strategies

[2], but also to satisfy the SNF team. The strategy worked; SNF was very pleased

with the design process and its results, and they have not only agreed to add RM to

their CVS repository, but Bill Murray at SNF will take the lead role in integrating

RM into CORAL.

5.1.3 Improvements on previous work

As discussed in Section 2.1, meeting the listed criteria would put RM far beyond its

predecessor, CAFE, and indeed it has. Not only does it provide a modern graphical

user interface, it also uses human-readable and easily updatable configuration files

which obviates the need to put critical information in unchecked comment fields.

RM’s design is significantly more flexible than the data-collection implementation in

CAFE.

Additionally, RM goes far beyond the existing capabilities in CORAL. CORAL

currently only tracks tool usage time, whereas RM provides a customized set of fields

for tracking many details in any tool’s processes.

59

5.2 Technical Evaluation

The following subsections will touch on important design decisions in each area and

discuss their success, keeping in mind the goals in Section 2.2.

5.2.1 Database and Configuration Design

The choice of a flexible XML language for configuration specification seems the per-

fect choice, because it provides a human-readable, portable, and easily maintainable

language for specifying configurations. The language was defined to be as separate

from Java and database design as possible, which has advantages and disadvantages.

On the one hand, it means a configuration language that is not fixed to any specific

implementation and is free to describe configurations without tying itself to the ter-

minology of any specific language. On the other hand, tying the system to a Java

GUI would have allowed Java-like parameters in the field types, such as specifying

event-capturing events; rather than having a <tooltip> tag, the alternate design

might have had a <mouseOverEvent> tag. Though in some ways the latter design

has more power, it would not have allowed the same level of flexibility; for example,

the client’s model/view design would not have been possible if the language had been

tied to a GUI environment.

Another important design decision in the XML language design was the separation

of process steps into a hierarchy of derivable types, to which tools could “map”. This

separation saved a lot of configuration redundancy (for example, etching only needed

to be defined once, despite the fact that nearly ten machines in the lab support

etching). The derivable-types decision also saved a lot of configuration redundancy;

because all machines have a few fields in common (such as “In-use Time”), a root

process step for all lab machines can be defined from which all other process-steps

derive. This derivable-types decision also prevented redundancy in defining a certain

set of process-steps in the photolithography group, because several of these process-

steps also shared fields. Although these decisions increased Server complexity (to

parse the complex structures), they decreased configuration complexity significantly.

60

Configuration complexity turned out to be a good area to minimize, because the

configuration will be maintained by a technician, not a software developer. Borrowing

object-separation and derivation from object-oriented programming ideas created a

more powerful and compact configuration language than would have otherwise been

possible.

Using Castor XML to build Java data-structures out of the XML configuration

was a suggestion from O’Rielly’s Java & XML book [10], and it worked out well. It

eliminates the redundancy of modifying Java code, IDL, and the XML Schema defini-

tion when data-structures change. Instead, Castor XML generates Java code from the

XML Schema, and the IDL passes text strings between client and server, which Cas-

tor automatically converts to and from XML on-the-fly in RmRemoteInterfaceImpl

and RmRemoteInterfaceClientWrapper. If this were not the case, the IDL would

need to specify complex data structures to hold pieces of the configuration, which

would need to be maintained along with the Schema. This unexpected benefit has a

slight run-time performance hit (parsing XML is not extremely quick), but it saves

so much trouble in maintainability and development time that it seems well worth

the small cost. Castor XML also saved development time by essentially writing the

XML parser automatically. The Castor XML-based design already saved significant

maintenance time when updating the Schema definitions after the June 5th demon-

stration; significant design changes were made in hours fewer time thanks to this

design decision.

The database design was a bit more problematic. The hope was that Castor JDO,

because it is integrated with Castor XML, could significantly smooth the transition

from XML-input to SQL-output. To some degree, it fit the bill. It can automatically

load complex data from tables in the database and convert them to easily manipulable

Java objects, which can be re-saved to the database. Unfortunately, there were so

many restrictions on how data could be saved and loaded that JDO often became

cumbersome. For example, if an object is loaded and the current database transaction

is committed and then modified, that modified object can no longer be saved into the

database. Rather, the object must be reloaded in a new transaction, the modifications

61

must be copied to the newly-loaded object, and then the record must be committed.

Castor gives reasonable arguments about how these design decisions ensure database

integrity [5], but it would be nice to turn off some of these security functions when

the server is designed to be the only application writing to certain tables. Another

burdensome restriction involves writing an object to the database with an array of

JDO-mappable objects inside. In this case, JDO does not automatically write the

array; these must each be written to the database manually. Although neither of

these restrictions create unsolvable design issues, they do increase code complexity

and thus implicitly reduce maintainability.

Castor JDO raises more significant red flags in the areas of redundancy and porta-

bility. In Castor XML, data-structures are defined only once in the Schema, and Java

objects are built from that definition. Castor JDO, on the other hand, requires an ad-

ditional set of definitions, describing how Java classes are mapped into the database.

Castor JDO does provide an undocumented mapping-file generator, which can be

used to help the developer get started, but it does not produce a complete mapping

file, and thus the generator cannot be integrated into the automatic build process.

Also, Castor JDO supports translation to and from both Oracle and Postgres (which

are both required for this project to meet the goals described in Section 2.2), but not

entirely automatically. Field types vary from database to database, and Castor JDO

supports many of the variations, but the mapping file must be modified to reflect

the changes. A better design might have been to use generic names for field types in

the mapping file, which Castor JDO could convert on-the-fly to match the appropri-

ate database-specific type. (See Appendix B for more information on database type

differences in Oracle and Postgres.) Despite these deficiencies, Castor JDO did pro-

duce more maintainable code more easily than using straight JDBC (Java Database

Connectivity). Most importantly, all of its code is transaction-safe, and changing the

database structure only requires changes to XML files; no Java code need be touched.

A final design decision related to configuration and database design is the choice to

store the XML configuration as a CLOB on the server. This has advantages and dis-

advantages. On the one hand, the configuration is less easily accessible (because it is

62

hidden in the database). On the other hand, requiring an administration tool to read

and write the configuration has the advantage that the tool can also notify the server

of a configuration update at the same time. Were this not the case, an administrator

might update the configuration and fail to notify the server that it should reset itself,

meaning that the configuration changes would not be loaded by the server. Another

advantage is that the configuration need not be on the same computer as the server,

so access to it is not a requirement in administering the configuration; however, other

CORAL servers store their configuration on the server machine, so CORAL sites

already must be designed such that this concern is not a problem. Overall, stor-

ing the configuration in the database is more advantageous than disadvantageous,

even though it did increase code complexity (writing RmGlobalContainerHandler).

Overall, the availability of new technologies such as XML, XML Schema, freely avail-

able SQL databases, and data-binding toolkits like Castor allow the creation of sim-

pler, more robust, more maintainable, and more flexible software designs than were

possible a few years ago. Even though the full path from XML to Java to SQL is still

somewhat rocky, even with the best freely-available tools, the author feels that the

tools discovered for this project allowed it to boast a design far superior (and more

easily-implementable and enhancable) than that of its predecessors a few years ago.

5.2.2 Server Architecture

The Server architecture is relatively straightforward compared to the complex design

decisions made in developing the configuration language and database architectures.

One important design decision was the use of an RmHandler-based remote-object

architecture which relies on Java Reflection technology (see Appendix A), because it

provides automatic marshalling/unmarsahlling of Castor-XML objects on the client

and server. This decision significantly simplified code maintainence. By using Re-

flection and RmHandler objects, providing a new remote capability is nearly triv-

ial. It involves just adding a method to the RmHandler class where it best fits and

then adding simple one- or two-line stubs to the IDL, RmRemoteInterfaceImpl, and

RmRemoteInterfaceClientWrapper. Before this Reflection-based structure was in

63

place, complex code to convert null values, exceptions, and Castor Java objects to

their CORBA equivalents needed to be written every time a new remote method was

added. By using Reflection, only simple stubs need be written and all the complex

code can be placed in an appropriate RmHandler. This Reflection-based automation

could save nearly an hour of development time every time a remote method is added

to the system.

The rest of the Server simply implements, with proper error handling and valida-

tion, the design decisions made in the previous section.

5.2.3 Client and Admin Tool architecture

The RM client’s architecture attempts to simplify and modularize what is actually

a complex assortment of user operations on data retrieved from the server. This

is partly accomplished by the model/view design, which separates the user interface

from the actual logic which manipulates data retrieved from the server (and pending

save to the server). This is a design pattern utilized by Swing, Java’s GUI architec-

ture, and overall it created a modularized design that sped development time, aided

maintainability, and helped ensure stability (by being able to test the model sepa-

rate from the view). However, due to time constraints, the model was not totally

separated from the view. Specifically, because RmRunDataCollectorValue objects

are lightweight wrappers around database Element objects (single fields inside an

RmRunData object), the view must contain logic on how to store its view into an

Element. This essentially involves deciding whether to store its data as an integer

or string or both. This logic is really part of the model and ought to be fully sep-

arated from the view. Nonetheless, despite the limitations due to time constraints,

this design decision created a more maintainable and stable system.

Another important design decision in the Client was the designed severability of

RmGui from RmDemo, the latter of which will be replaced by the existing CORAL

client. This partially meets the easy-integration requirement (see Section 2.2.3), in

that the programming interface (API) of RmGui is simple enough that it is easy to

plug a new GUI “container” around it. This design decision slowed development time,

64

in that care was taken to write a simple interface in RmGui. However, the decision

will significantly speed up integration, which will be done by a developer other than

the author (who is therefore not as familiar with the RM codebase). Therefore this

design decision, whatever the cost, was necessary to meet the goals of RM.

A final important Client design decision was the implementation of viewlocks.

As discussed in Sections 2.2.3 and 3.5, viewlocks meet the purpose of preventing a

single user from editing data for the same tool on two different terminals at once

(because one terminal will inevitably become inconsistent). While viewlocks are a

necessary feature, they were implemented on RmRunData records to simplify design.

That is, an RmRunData record can be locked by a specific user; if it is locked, it

cannot be edited on another terminal. This has the odd side-effect that a single user

could be viewing RmGui in process selection mode on two terminals at once, because

no run-data record yet exists for the tool until a process has been selected. This

side-effect cannot be countered, because run-data records are tied to a process-step

name, so before a process is selected, no run-data record can exist, and therefore no

viewlock can be set. This is a recoverable issue, though, as it does not cause any

damage; when a process is selected on both terminals, the one selected second will

close, because it notices an RmRunData record was already created for its process-

step/user-id combination. It might have been a cleaner design decision to implement

viewlocks separately from RmRunData records, but because a record does exist for the

majority of the life-cycle of a run-data form, the side-effects of this minor design flaw

are almost unnoticeable.

Overall, the Client has a modular and clean design with an easily-integrable API,

despite a minor design flaw in the viewlocks. Supporting compatibility with CORAL

slowed development and made the task of writing the Client more difficult, but the

Client was able to take advantage of the newest technologies (including use of Castor

XML) without being ultimately hindered by backwards compatibility. In the author’s

opinion, this indicates a good design that mixes compatibility well with innovation.

65

66

Chapter 6

Suggestions for further work

CORAL is a next-generation lab manager, and the Run Manager module met all of

the design requirements in compatibility and features to provide a next-generation

data-collection system which will integrate seamlessly with CORAL. However, tech-

nology changes quickly, and new technologies are both available and on the horizon

which could allow even better designs in the future, sacrificing only a modicum of

compatibility.

SNF has recently considered replacing CORBA with the Simple Object Access

Protocol (SOAP) in future CORAL modules. SOAP is slower than CORBA in regard

to data transmission, but it supports the http protocol and is therefore accessible

behind firewalls.1 This could make CORAL usable to a greater number of remote

users, who currently must use CORAL either at the lab or on an Internet connection

without a firewall.

Additionally, both SNF and MTL are starting to explore writing a new client

(or perhaps just some new client modules) using a language that will run within a

web browser. This will eliminate the large initial download of the Java Runtime

Environment (JRE) and the Client software, which currently takes almost an hour

on a modem connection. There are several server-side languages, such as Java Server

1Firewalls are common on many commercial networks to prevent unwanted Internet traffic, but
they also often block desired Internet traffic such as CORBA.

67

Pages (JSP) and PHP: Hypertext Preprocessor (PHP)2, which generate HTML on-

the-fly and give the application the appearance of a web page. JSP is based on (and

heavily compatible with) Java, and would therefore not entail a huge learning curve

for developers. Additionally, client-side languages exist which can interact with the

web-browser on the client side and provide increased interactivity. These include

JavaScript and Microsoft’s VBScript, but neither language is both standardized and

cross-platform capable. SNF and MTL have some questions on how the existing

Java client will interact with the new web client during the transition, but for the

moment they intend to write some stand-alone reporting modules using these new

technologies.

Also on the horizon are new technologies for connecting Java with databases and

XML. Castor is a step in simplifying those interconnections, but new packages are

appearing which may offer even more advanced capabilities. Sun is now offering a Java

XML Binding (JAXB) toolkit, which promises to do the same things Castor XML

does, only with the additional benefits of corporate support from Sun, the designers

of Java. However, JAXB is still a new product (and hence largely untested by the

public), and it is not compatible with XML Schema at the moment. Technologies

improving on Castor JDO’s data-binding functionality are also becoming available.

Sun is developing their own JDO engine, and several commercial JDO engines are

coming into availability, each with their own capabilities and pitfalls. Unfortunately,

none of the other JDO engines are currently mature and/or free, and therefore these

technologies are not yet in common use. However, replacing RM’s current technology

with the capabilities of new data-binding engines could be an important step forward

in building an even more modular, quick, and maintainable data-collection system

than RM is currently.

Finally, further out on the horizon, the fabrication facility at University of Califor-

nia Berkeley (UCB) has evolutionary ideas on building a third-generation lab manager

to replace CORAL, which they expect to have in use by 2005. Their design will in-

2Yes, this is correct. PHP is a recursive acronym. According to their website: “PHP stands for
PHP: Hypertext Preprocessor... This type of acronym is called a recursive acronym [1].”

68

volve a flexible XML language to specify bindings directly between Java GUI elements

and database tables, using stored procedures in the database to fill in much of the

server logic. Significant work will be required to build custom Java GUI components

and to write complex stored procedures, but eventually the currently complex array

of CORAL modules could be replaced by a single, general module to which XML code

and custom GUI components are added. Unfortunately, such a design does tie the

XML language almost inevitably to Java (which RM avoids by defining a less general

language designed for a specific purpose), and it ties the whole system to a particular

relational database design. These technologies have not yet been field-tested in many

real-world applications, and many details have not been thought through. Nonethe-

less, UCB’s designs do point to a future where writing (relatively) low-level code in a

language like Java will be a thing of the past; many enterprise applications may one

day simply be interpreters for a higher-level language specifically designed to define

client and server logic. The Run Manager explored the external-language idea, and

UCB may be taking it to the next logical step.

69

70

Appendix A

Definitions

CORBA: Common Object Request Broker Architecture. CORBA is a “distributed-
object architecture.” It allows objects written in various language to interoper-
ate transparently across networks [13].

CVS: Concurrent Versions System. A collaborative tool that enables controlled shar-
ing of source code across a group of users. It also provides the ability to store,
retrieve, and share development versions of software [19].

field: A single element of run-data for a given process step. Sometimes called a tuple.

IDL: CORBA’s Interface Definition Language, used to define interfaces for CORBA
objects [13].

Java Reflection: Reflection is a standard Java API (Application Programming In-
terface) which defines capabilities to perform “introspection” on objects. “In-
trospection” means gaining details on the underlying structure of an object.
For example, one could use Reflection to list an object’s public methods and
their parameters.

process flow: The collection of steps that make up the research/fabrication on a
lot.

process step: A single step in the fabrication process. Usually corresponds to use
of a single tool to perform a task; i.e. etching or deposition. Note that in
some of the code in the appendices, a process step is called an “augmented
process.” This refers to the inheritance structure of the XML configuration; an
“augmented process” is a process-step containing all its parents’ information
from the configuration file. In general, the two terms are equivalent.

run-data: The data collected at a particular process step by the Run Manager.

SQL: Simple Query Language. A language used to store and retrieve data in rela-
tional databases such as Postgres and Oracle.

Swiki: An open-source collaborative project-management website [3].

71

tool: A lab tool is any machine or non-machine entity in the lab that is used for re-
search and tracked for accounting or maintenance. Non-machine entities might
include renting a uniform, buying wafers, or receiving training.

traveller: A lot history report; essentially a lab notebook describing what a re-
searcher did with the wafers in this lot. This describes the run-data of the
research process after-the-fact. A traveller can be used if the user wants to
repeat a past process (e.g., to make more identical devices).

UML: Unified Modeling Language. This is a “general-purpose notational language
for specifying and visualizing complex software” [6], which defines standards
for describing object-oriented programs at a class-hierarchy level. It is used for
several of the figures in this text. Note that in this text lightning bolts are used
in UML figures to indicate abstracted detail.

wafer: “A thin slice of semiconducting material, such as a silicon crystal, upon which
microcircuits are constructed by diffusion and deposition of various materials
[12].” This is the main object in the fabrication process.

72

Appendix B

Detailed Database Layout

Figure B-2 shows the UML structure for RmRunData and RmGlobalContainer, which
Castor JDO translates field-for-field to SQL when loading and storing in the database.
Because the use of these structures are described in Section 3.3.2, and because the
fields match closely with the SQL field names, they are not described in detail here.

Figure B-1 shows the database layout. RmRunData objects are translated into
rundata entries; Element object are translated to rundata tuples entries; and Rm-

GlobalContainer objects are translated into rm globals entries. When there are
two datatypes given for a single field, the first is the Postgres type and the second is
the Oracle type. The meaning of each field is described in detail below.

Finally, Table B.1 shows two sample run-data entries as they are stored in the
database. Cross-reference this Table with the field descriptions below to better un-
derstand the structure of stored data.

B.1 rundata

tid: Transaction Id. Each record is assigned a Transaction Id (tid), which remains
constant even after updates; this tid connects rundata tuples entries to a
rundata entry.

process, coraltoolid: Process id and CORAL tool id from the configuration, for
data reconstruction by accounting scripts.

userid: The user’s id that generated this entry. Only one uncommitted entry can
exist for a single user id using a single CORAL tool.

viewlock: As discussed in the Goals section and the Client section (see Sections 2.2.3
and 3.5), a user may only edit run-data on one terminal at a time, to avoid
inconsistency problems. Thus viewlock contains the user’s id of the current
viewer of this record, or null/‘‘<none>’’ if it is not locked.

73

tid (bigint/integer)
process (varchar)
userid (varchar)

coraltoolid (varchar)
viewlock (varchar)
timestamp (char)

creation_timestamp (char)
version (varchar)

version_timestamp (char)
committed (boolean/integer)

rundata

Database Architecture:
SQL Table Overview

rundata_tuples

tid (bigint/integer)
elid (bigint/integer)

key (varchar)
stringval (varchar)

intval (integer)
fieldsubtype (varchar)

fieldtype (varchar)

key (varchar) timestamp (char)
intval (int) stringval (text/clob)

rm_globals

Figure B-1: Database Architecture: SQL tables.

timestamp/creation timestamp: The last modified time and the creation time, stored
as a string outputted from Java SQL Timestamp format.1

version/version timestamp: The version string describing this configuration (from
the XML), and the timestamp of when that configuration was last modified.
These are needed so the Run Manager can determine whether the configuration
was modified since the data was last edited.2

committed: True when the record is committed. After it is committed, it can no
longer be edited and should consequently be counted in accounting records.

B.2 rundata tuples

tid: A transaction id in the rundata table to which this tuple corresponds.

elid: An element id (elid), which has no meaning whatsoever and changes every time

1Storing as a SQL date instead of a string is not possible due to the limitations in Castor
XML/Castor JDO. Castor XML cannot generate Java classes with types to which Castor JDO can
translate to a SQL date.

2Actually, only the timestamp is strictly necessary, but a version string seems like a potentially
useful addition.

74

Database Architecture:
UML Schema Inheritance

RunData
Global

Container

Figure B-2: Database Architecture: UML Java data-structures which map to the
database tables (Castor-converted from the XML Schema).

75

the run-data is updated, but is required by Castor JDO, because JDO requires
a unique id field in every table.

key: The field id from the configuration (e.x. “process-time”).

stringval, intval : A string and an integer storage field, which each data type
uses differently to store the entered data. Other storage fields could be added
to handle other data types.

fieldsubtype: In the example configuration in Appendix D, the contents of type=“[...]”
in InputChoice fields is copied here. This will be used for data reconstruction
by accounting scripts, which need to know what type of data a multiple-choice
field contained.

fieldtype: The field type (i.e. InputChoice, InputInt, etc).

B.3 rm globals

key: Corresponds to a “filename” for this data.

timestamp: A last-modified timestamp, stored in the same format as rundata times-
tamps, described above (in Section B.1).

stringval/intval: A string and an integer storage field, which can be used in any
arbitrary way to store data attached to this key.

Additional note: The Run Manager is careful not to reuse tids, but holes of
unused tids can result from this3, and elids are incremented every time a tuple is
updated. Therefore, even though bigints are used for ids, the database should be
“vacuumed” every few weeks by an administrative script to compress the id space.
The author doesn’t feel that this is a design flaw, only a minor inconvenience.

3Holes in tid numbering will occur whenever a record is deleted, because the Run Manager will
refuse to reuse that tid number in order to ensure uniqueness.

76

Table B.1: Two sample run-data entries stored by the Run Manager.

tid process version userid coraltoolid view-
lock

timestamp creation-
timestamp

version-
timestamp

com-
mitted

14 dep 0.134 jklann icl:endura jklann 2002-07-17

16:34:29.273

2002-07-16

01:55:00.512

f

13 etch 0.134 jklann icl:pecvd-rie 2002-07-18

00:04:23.626

2002-07-16

01:55:00.512

f

tid elid key stringval intval fieldsubtype fieldtype
14 212 inuseTime 10 InputInt
14 213 processTime 10 InputInt
14 214 numWafers 10 InputInt
14 215 sizeWafers 6 2 int InputChoice
14 216 recipe InputString
14 217 material Dep material #1 1 string InputChoice
14 218 thickness 47 InputInt
13 228 inuseTime 10 InputInt
13 229 processTime 10 InputInt
13 230 numWafers 10 InputInt
13 231 sizeWafers 6 2 int InputChoice
13 232 recipe InputString
13 233 depth 10 InputInt
13 234 gas Gas #1 1 string InputChoice
13 235 mask string InputChoice
13 236 rf 2.0 InputFloat

77

78

Appendix C

Task List

The task list has been copied from the Swiki (see Section 3.7) used for this thesis in
its state after the project completed. This task list was continually updated week-to-
week as goals and tasks evolved and as tasks were completed. Not included here is
the “laundry list”, which is mentioned below as a 55-hour item. However, the task
list is only included as an example of a project management tool; the “laundry list”
was structured similarly and so is not included.

Note that the task list is not a complete assessment of time spent on this project,
as it does not include time spent on: writing this thesis document and the associated
proposal, meetings, and administrative and setup tasks. Moreover, all times are “on-
task-time,” as opposed to “actual time,” so coffee breaks, meetings, and other general
interruptions are not included.

Compare estimated to actual time and notice that the author learned how much
longer tasks take than expected time, in many cases.

Task Estimated

Time

Completion Actual

Time

Setup:
Set up laptop 10hrs DONE 20hrs
Learn ant (needed to set up a development
environment)

DONE 5hrs

Set up initial dev environment (with Castor
support)

DONE 5hrs

Modify dev environment to support
CORBA/RMI

5hrs DONE 7hrs

Modify dev environment to support SQL, set
up SQL

8hrs DONE 7hrs

Set up local build of CORAL (with Ike’s help) 10-15hrs 90% 16hrs

XML:

Learn XML Schema (notes: XML Schemas) 5hrs DONE 10hrs
Design and implement XML Schema 5hrs DONE 12hrs
Create sample instance document DONE 2hrs

79

Task Est.

Time

Completion Actual

Time

XML/
Java:

Read about XML parsing and choose a Java
parsing tool (i.e. Castor)

5hrs DONE 5hrs

Set up Castor and modify the XML code to
mesh with it

5hrs DONE 5hrs

Write initial & implement server-side interface
to get process information

3hrs DONE 6hrs

Write extra validation for XML (makes both
code-writing and xml-writing easier)

5hrs 90% 5hrs

Java/
CORBA:

Read about remote interface techniques (vari-
ations on CORBA that will keep code main-
tainable) verify their reasonableness, and
choose one

10hrs DONE 14hrs

Learn IDL & CORBA/RMI stuff 10hrs DONE 8hrs
Implement final remote interface using learned
techniques

8hrs DONE 7hrs

rundata:

Write code to interpret augmented process,
get inputs, validate them against process def-
inition see (sample run 5-28)

10hrs DONE 10.5hrs

Write remote interface to store run-data 5hrs DONE 5.5hrs
Learn some PostgresSQL/JDO stuff 10hrs DONE 7.5hrs
Set up run-data storer to actually store run-
data

5hrs DONE 8.5hrs

GUI:

Make the ’dialog box’ using existing interfaces 15-
20hrs

DONE 23hrs

Wrap dialog box in fake ’login’ and ’activation’
windows to test it

DONE 7hrs

Misc:

Add: load xml from database (& command-
line utility)

2hrs DONE 7hrs

Build demo for June 5th (make a gui a we-
bapp, add admin tools)

8hrs DONE 12.5hrs

Work on the laundry list of small changes Pro-
totype Todo List, prepare for SNF demo

?hrs (continuous) 55hrs

Keep this swiki updated, write emails, make
UML, JavaDoc, other docs

30hrs (continuous) 50hrs

Continually write test code as development
continues

30hrs (continuous) 20hrs

80

Appendix D

Run Manager Example
Configuration

<?xml version="1.0"?>

<rm:rmConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:rm="http://www.jeffklann.com/rmconfig1"

version="0.134"

versionSchema="0.6"

xsi:schemaLocation="http://www.jeffklann.com/rmconfig1

/Users/jklann/dev/rm/labnet/recipe/xml/rmschema.xsd">

<!-- Sample rmconfig Instance v.0134 - Jeff Klann

This is a sample instance document for an ’rmconfig’. It defines a lab environment

with only ’dep’ and ’etch’ processes, based on my thesis proposal. Despite the simple

lab environment, it should show off the power and compactness of the schema, and be

a good testbed to discover where features are lacking/overblown.

Note that the schema currently requires qualified names in item tags. This clarifies

the XML a bit, but it adds a lot of bulk (i.e. all the ’rm:’s). Since it’s unlikely

mixed namespaces will be used in a lab configuration, it might be reasonable to turn this

off.

Some documentation is below, but see the Schema for more detailed notes.

Note that the xsi:schemaLocation tag ought to point to the actual location of the

Schema file. This isn’t necessary, but if it does, then editors like jEdit will

automatically validate your xml against it.

changelog:

1.3->1.3.1: fixed a duplicate machine reference, got rid of (now unnecessary)

instance-time typing.

1.3.1->1.3.2: several changes to keep up with schema, including adding tool names

1.3.2->1.3.3: just updated reference to schema version and filename and some comments

1.3.3->1.3.4: added wafer size

-->

<!-- 1. Process Library -->

<!-- Note the use of all three input types and multiple repitions of some inputs (like

gas in etch). Notice also the process hierarchy (and that everything derives

from a root object), and the use of optional components like tips, units, categories,

and min/max/default input values, where appropriate. -->

<!-- Also note that in some places default values are used, in some places fields are

marked as optional, and in other places the run-data window will by default require

a value to be entered before saving. -->

<rm:process id="root">

81

<rm:description>This is the root process desription.

Everything should be derived from it, but it

should not be used directly.

</rm:description>

<rm:inputInt id="inuseTime" default="10" min="0" max="unbounded">

<rm:description>Total in-use time</rm:description>

<rm:tip>This is the total time this process took you to complete.</rm:tip>

<rm:units>minutes</rm:units>

</rm:inputInt>

</rm:process>

<rm:process id="rootMachine">

<rm:parentId>root</rm:parentId>

<rm:description>This is the root machine process description.

All machine processes should be derived from it,

but it should not be used directly.</rm:description>

<rm:inputInt id="processTime" default="10" min="0" max="unbounded">

<rm:description>Process time</rm:description>

<rm:tip>This is the total time equipment was used to complete this process.</rm:tip>

<rm:units>minutes</rm:units>

</rm:inputInt>

<rm:inputInt id="numWafers" default="10" min="0" max="100">

<rm:description># of wafers</rm:description>

</rm:inputInt>

<rm:inputChoice id="sizeWafers" type="int" default="2">

<rm:description>Wafer size</rm:description>

<rm:units>inches</rm:units>

<rm:choice id="1">4</rm:choice>

<rm:choice id="2">6</rm:choice>

</rm:inputChoice>

<rm:inputString id="recipe" cat="optional">

<rm:description>Recipe</rm:description>

<rm:tip>Optionally enter a string describing the machine’s recipe

used here, for your own record.</rm:tip>

</rm:inputString>

</rm:process>

<rm:process id="etch">

<rm:parentId>rootMachine</rm:parentId>

<rm:description>etching</rm:description>

<rm:inputInt id="depth" default="10" min="0" max="100">

<rm:description>Depth</rm:description>

<rm:units>inches</rm:units>

</rm:inputInt>

<rm:inputChoice id="gas" type="string" default="1" maxOccurs="unbounded">

<rm:description>Gas type</rm:description>

<rm:choice id="1">Gas #1</rm:choice>

<rm:choice id="2">Gas #2</rm:choice>

<rm:choice id="3">Gas #3</rm:choice>

</rm:inputChoice>

<rm:inputChoice id="mask" type="string">

<rm:description>Mask material</rm:description>

<rm:choice id="1">Mask #1</rm:choice>

<rm:choice id="2">Mask #2</rm:choice>

</rm:inputChoice>

<rm:inputFloat id="rf" cat="optional" min="0" max="unbounded" default="2">

<rm:description>RF Power</rm:description>

<rm:units>mW</rm:units>

</rm:inputFloat>

</rm:process>

<rm:process id="dep">

<rm:comment>You can put a parsed comment in your process description if you like.</rm:comment>

<rm:parentId>rootMachine</rm:parentId>

<rm:description>deposition</rm:description>

<rm:inputChoice id="material" type="string" maxOccurs="5">

<rm:description>Deposition material</rm:description>

<rm:choice id="1">Dep material #1</rm:choice>

82

<rm:choice id="2">Dep material #2</rm:choice>

<rm:choice id="3">Cheese</rm:choice>

</rm:inputChoice>

<rm:inputInt id="thickness" min="1" max="50">

<rm:description>Deposition thickness</rm:description>

<rm:units>microns</rm:units>

</rm:inputInt>

</rm:process>

<!-- 2. CORAL Tool references (i.e. machine names) -->

<!-- These are almost trivial. -->

<rm:machine id="icl:ebeam">

<rm:name>ICL E-beam evaporator</rm:name>

</rm:machine>

<rm:machine id="icl:endura">

<rm:comment>This illustrates the ability to put parsed comments

in a machine description.</rm:comment>

<rm:name>ICL Endura</rm:name>

</rm:machine>

<rm:machine id="icl:centura">

<rm:name>ICL Centura</rm:name>

</rm:machine>

<rm:machine id="icl:ame5000">

<rm:name>ICL AME5000</rm:name>

</rm:machine>

<rm:machine id="icl:pecvd-rie">

<rm:name>ICL PECVD-RIE</rm:name>

</rm:machine>

<rm:machine id="icl:plasmaquest">

<rm:name>ICL Plasmaquest</rm:name>

</rm:machine>

<!-- 3. Map of CORAL Object references to a set of processes. -->

<!-- Notice the compactness with which a map can be specified. There is only

one map here because only ’machineType’ was used when defining CORAL

Object references above. -->

<rm:map object="rm:machineType">

<rm:comment>This maps machines to processes.</rm:comment>

<rm:mapping objectId="icl:ebeam">

<rm:processId>dep</rm:processId>

</rm:mapping>

<rm:mapping objectId="icl:endura">

<rm:processId>dep</rm:processId>

</rm:mapping>

<rm:mapping objectId="icl:centura">

<rm:processId>etch</rm:processId>

</rm:mapping>

<rm:mapping objectId="icl:ame5000">

<rm:processId>etch</rm:processId>

</rm:mapping>

<rm:mapping objectId="icl:pecvd-rie">

<rm:processId>etch</rm:processId>

<rm:processId>dep</rm:processId>

</rm:mapping>

<rm:mapping objectId="icl:plasmaquest">

<rm:processId>etch</rm:processId>

<rm:processId>dep</rm:processId>

</rm:mapping>

</rm:map>

</rm:rmConfig>

83

84

Appendix E

Run Manager Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.jeffklann.com/rmconfig1"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.jeffklann.com/rmconfig1"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="0.6">

<xsd:annotation>

<xsd:documentation>

Recipe Manager Schema v0.6 by Jeff Klann

This schema describes a document type for defining run-data to be collected in the

Common Object Representation for Advanced Laboratories (CORAL). This is done by defining

an XML lab configuration and placing inside processes, CORAL tool references, and mappings

between them. The processes are a hierarchy of objects that define the run-data to be

collected, and the CORAL tool references and mappings tie those processes to machines

in the database.

The general form of a configuration is as follows:

<rmconfig>

<process id="[id]">*

<description>[description]</description>

<tip>[description]</tip>?

<some_input_type id="[id]"

other_options_depending_on_input_type="[various]">*

<description>[description]</description>

<tip>[description]</tip>?

<units>[description]</units>?

</some_input_type>

</process>

<machine id="string">*

<name>[name]</name>

<description>[description]</description>

</machine>

[other CORAL tool types here]

<map object="[derivitive_of_coral_object_type]">*

<mapping objectId="[id]">*

<processId>[id]</processId>*

</mapping>

</map>

</rmconfig>

This, of course, leaves out much detail. There are several kinds of inputs that can

85

appear in a process description, and several types of CORAL tools that can be

referenced (and the set is extensible, of course!). Comments are allowed, and some

optional components have been left off the above sketch. But it should give you an

idea of the Schema’s design. Read the details of the Schema for more information;

documentation is embdedded. Also, a sample instance document is included.

The schema is flexible enough to allow an extensible set of CORAL tools; a

multiple-inheritance hierarchy of processes with repeatable inputs of strings,

numbers, and multiple-choices; and an arbitrary number of mappings between them.

XPaths are used throughout to do whatever sanity checking Schema 1.0 allows.

Further, the ’venetian-blind’ design was used for this schema, showing off the

power of using type libraries to build a schema, rather than less-powerful model

groups or the Russian Doll design.

One other important note: many types have ’ids’, ’descriptions’ and ’tips’. Ids are

only used internally for cross-referencing in the XML, and hence should be short -

they’re the programmer’s identifier. Descriptions are what are intended to be shown

to the user when they want to know what this object is, and therefore should be short

but not unintelligeble to the average human user. Finally, a tip is extra information

a confused user might want about how to use the type - along the lines of a tooltip.

</xsd:documentation>

</xsd:annotation>

<!-- .. -->

<!-- simple type elements................. -->

<!-- .. -->

<!-- Extensions of strings: ’description’ and ’units’ collapse whitespace (note

that ’units’ is defined separately from a ’description’ type so it’s

easy to restrict it to only certain types of units in the future); ’id’

only allows basic alphanumeric characters and no spaces (so it can be

used in xsd:list); unboundableNonZeroIntType is a string which represents

a nonzero integer but could also contain the string ’unbounded’,

representing an infinite number (this is a Schema convention). -->

<xsd:simpleType name="descriptionType" id="descriptionType">

<xsd:restriction base="xsd:string">

<xsd:whiteSpace value="collapse"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="unitsType" id="unitsType">

<xsd:restriction base="xsd:string">

<xsd:whiteSpace value="collapse"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="idType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="32"/>

<xsd:whiteSpace value="replace"/>

<xsd:pattern value="[0-9a-zA-Z_!-.:]*"/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="unboundableNonZeroIntType">

<xsd:restriction base="xsd:string">

<xsd:maxLength value="32"/>

<xsd:whiteSpace value="replace"/>

<xsd:pattern value="([1-9][0-9]*)|unbounded"/>

</xsd:restriction>

</xsd:simpleType>

<!-- ’Category’ defines categories an input type can belong to. Currently I’ve hard-coded

this to the category ’optional’, which means the input does not need to be entered.

However, it is easy to add more categories, or generalize it so the configuration

designer can input whatever category they like, or even base it on a hierarchy of

objects in the configuration instance which define categories - which seems

overkill for our purposes. Note: this is a ’list’ - Castor doesn’t support real

lists currently, and I didn’t feel like having multiple elements rather than a

single attribute. -->

<xsd:simpleType name="inputCategoryListType">

86

<xsd:restriction base="xsd:string">

<xsd:pattern value="(optional()*)*"/>

</xsd:restriction>

</xsd:simpleType>

<!-- .. -->

<!-- complex type elements................ -->

<!-- .. -->

<!-- 1. Process definitions-->

<!-- A process derives from some set of parent processes and contains a description and

any number of inputs, which define the run-data to be collected for this process.

Note that I’ve hard coded the input-type set here, but this is the cleanest way

of representing it in an instance (otherwise you’d have to write

<input xsi:type="inputStringType"> in an instance, rather than just <inputString>).

If a future designer of this Schema might want to add input types but not have

access to this section of the Schema (which doesn’t make much sense), they

shouldn’t be hard-coded here, despite the added clarity in instance documents. -->

<xsd:complexType name="processType">

<xsd:sequence>

<xsd:element name="comment" type="descriptionType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="parentId" type="idType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="description" type="descriptionType" />

<xsd:choice minOccurs="0" maxOccurs="unbounded">

<!-- Note: I enumerate the input types explicitly below to make

instances clearer. It’d be perfectly reasonable to do it in the

more general way I did machine. This method does allow me to set

up some nice XPath constraints on the choice type, however. -->

<xsd:element name="inputInt" type="inputTupleIntType"/>

<xsd:element name="inputFloat" type="inputTupleFloatType"/>

<xsd:element name="inputString" type="inputTupleStringType"/>

<xsd:element name="inputChoice" type="inputTupleChoiceType">

<xsd:unique name="choiceIdUnique">

<xsd:selector xpath="choice"/>

<xsd:field xpath="@id"/>

</xsd:unique>

<xsd:key name="choiceIdKey">

<xsd:selector xpath="choice"/>

<xsd:field xpath="@id"/>

</xsd:key>

</xsd:element>

</xsd:choice>

</xsd:sequence>

<xsd:attribute name="id" type="idType" use="required" />

</xsd:complexType>

<!-- 1.1. Input elements in a process description -->

<!-- The following elements define the three input types: string, int, and choice.

Each allows setting various special attributes, like a default value and

possibly a min/max value. They all derive from a base input type, which

require a description and id, and allows you to add a category, tip, units,

and number of occurrences (a configuration designer might want a user to be

able to repeat input some number of times, i.e. ’what gas was used in this

process?’ - several gases could have been used). Note that I allow entering

’units’, because the general best-practices for Schema is to force whatever

might be needed to be entered explicitly; even though it would seem alright

to just let this be part of the description for this implementation, as one

never knows what the future holds. -->

<xsd:complexType name="inputTupleBaseType" abstract="true">

<xsd:sequence>

<xsd:element name="description" type="descriptionType" />

<xsd:element name="tip" type="descriptionType" minOccurs="0" />

<xsd:element name="units" type="unitsType" minOccurs="0" />

87

</xsd:sequence>

<xsd:attribute name="id" type="idType" use="required" />

<xsd:attribute name="cat" type="inputCategoryListType" use="optional"/>

<xsd:attribute name="minOccurs" type="xsd:int" default="1" />

<xsd:attribute name="maxOccurs" type="unboundableNonZeroIntType" />

</xsd:complexType>

<xsd:complexType name="inputTupleIntType">

<xsd:complexContent>

<xsd:extension base="inputTupleBaseType">

<xsd:attribute name="default" type="xsd:int" use="optional" />

<xsd:attribute name="min" type="xsd:int" />

<xsd:attribute name="max" type="unboundableNonZeroIntType" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="inputTupleFloatType">

<xsd:complexContent>

<xsd:extension base="inputTupleBaseType">

<xsd:attribute name="default" type="xsd:float" use="optional" />

<xsd:attribute name="min" type="xsd:int" />

<xsd:attribute name="max" type="unboundableNonZeroIntType" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="inputTupleStringType">

<xsd:complexContent>

<xsd:extension base="inputTupleBaseType">

<xsd:attribute name="default" type="xsd:string" use="optional" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="inputTupleChoiceType">

<xsd:complexContent>

<xsd:extension base="inputTupleBaseType">

<xsd:sequence>

<xsd:element name="choice" type="choiceTupleType"

minOccurs="0" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="default" type="xsd:string" use="optional" />

<xsd:attribute name="type" type="xsd:string" use="required" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<!-- 1.2. Multiple choice element type. -->

<xsd:complexType name="choiceTupleType">

<xsd:simpleContent>

<xsd:extension base="descriptionType">

<xsd:attribute name="id" type="xsd:integer" use="required" />

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<!-- 2. CORAL tool references (for mapping between CORAL tools and processes) -->

<!-- The following types allow you to create references to CORAL Tools. These

references then allow the configuration designer to map processes to

these references. Currently the only supported type of object reference

is ’machine’. Note that I’ve gone with the more general approach here (as

opposed to input types): you have to explicitly use xsi:type to specify a

CORAL tool type in the instance. This was done because: a) it doesn’t make

the instance much uglier, and b) it allows a clean separation of CORAL

tool-reference types from the rest of the Schema, should the Schema split

into multiple files down the road. -->

88

<!-- Note: this is the only occurence of a model group in the Schema. The reason

I used it here is this: I want to separate CORAL Tool references from the

rest of the Schema, because Stanford seemed interested in keeping this

portion as a separate object library from the main configuration. However,

Castor doesn’t currently supported instance typing (e.g. xsi:type="machineType"

attribute in CORAL Tools), so I use a model group to specify the valid CORALTools

here, separately maintainable from the instantiation of that group further down. -->

<xsd:group name="CORALToolGroup">

<xsd:choice>

<xsd:element name="machine" type="machineType">

<xsd:key name="machineIdKey">

<xsd:selector xpath="."/>

<xsd:field xpath="@id"/>

</xsd:key>

</xsd:element>

<xsd:element name="instruction" type="instructionType">

<xsd:key name="instructionIdKey">

<xsd:selector xpath="."/>

<xsd:field xpath="@id"/>

</xsd:key>

</xsd:element>

</xsd:choice>

</xsd:group>

<xsd:complexType name="CORALToolType" abstract="true">

<xsd:sequence>

<xsd:element name="comment" type="descriptionType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="name" type="descriptionType"

minOccurs="0" maxOccurs="1" />

</xsd:sequence>

<xsd:attribute name="id" type="idType" use="required" />

</xsd:complexType>

<xsd:complexType name="machineType">

<xsd:complexContent>

<xsd:extension base="CORALToolType">

<xsd:sequence>

<xsd:element name="description"

type="descriptionType" minOccurs="0" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<!-- NOTE: this is only here as an example to show the power of derivation! -->

<xsd:complexType name="instructionType">

<xsd:complexContent>

<xsd:extension base="CORALToolType">

<xsd:sequence>

<xsd:element name="classmateCount" type="xsd:int" />

<xsd:element name="courseName" type="xsd:string" />

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<!-- 3. Mapping between CORAL tools and process descriptions -->

<!-- The ’map’ is a very condensed piece of XML that maps CORAL tool references to

processes. ’map’s are just pairs of <mapping> which have an id for a CORAL tool

and a list of ids corresponding to the processes they perform. Properly, each CORAL

object should only appear once. The map is tied to a particular CORAL tool type

(via the ’object’ attribute), so multiple maps should be used for multiple CORAL

object types. -->

<xsd:complexType name="mapTupleType">

89

<xsd:sequence>

<xsd:element name="processId" type="idType" maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="objectId" type="idType" use="required" />

</xsd:complexType>

<xsd:complexType name="mapType">

<xsd:sequence>

<xsd:element name="comment" type="descriptionType"

minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="mapping" type="mapTupleType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="object" type="xsd:QName" use="required" />

</xsd:complexType>

<!-- 4. RM config -->

<!-- The root element, which contains any number of processes,

CORAL tool references, and maps, in that order. I chose

this ordering because it ought to be easier to parse a map

after the other pieces have been parsed, if SAX is used. -->

<xsd:complexType name="rmConfigType">

<xsd:sequence>

<xsd:element name="process" type="processType" minOccurs="0" maxOccurs="unbounded"/>

<xsd:group ref="CORALToolGroup" minOccurs="0" maxOccurs="unbounded" />

<xsd:element name="map" type="mapType" minOccurs="0" maxOccurs="unbounded">

<xsd:unique name="objectIdUnique">

<xsd:selector xpath="mapping"/>

<xsd:field xpath="@objectId"/>

</xsd:unique>

</xsd:element>

</xsd:sequence>

<xsd:attribute name="version" type="xsd:string" use="required" />

<xsd:attribute name="versionSchema" type="xsd:string" use="required" />

<!-- Version reflects an internal version number for the Schema, whereas

versionSchema reflects the minimum compatible schema version the

configuration is compatible with. -->

</xsd:complexType>

<!-- 5. Run data config -->

<!-- Here we define xml structures for passing around information on run-data.

It’d be perfectly fine to define this in Java and a Castor XML mapping

file, since run data never goes in the instance anyway, but this is a

beautiful way of keeping all type information inside the Schema. -->

<!-- Implementation note: I wanted to supply default values for required

parameters, which forces me to declare them as ’optional’ in the

Schema (which makes sense, I suppose). So parameters with default

values should be considered mandatory, except in the case of the

id fields which are filled in by the data handler in Java. -->

<!-- These fields reflect what is stored in the database, and between

examining some sample saved data and reading the JavaDoc for the

code which translates between the configuration and the rundata,

most of these fields are straightforward to understand and are analogs of

what is documented in rmConfig. Hence they are not documented in detail here. -->

<xsd:complexType name="rmRunDataType">

<xsd:sequence>

<xsd:element name="element" type="runDataTupleType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="process" type="xsd:string" default="dummy" />

<xsd:attribute name="version" type="xsd:string" default="-1" />

<!-- ^ a version number -->

<xsd:attribute name="versionTimestamp" type="xsd:string"/>

<!-- ^ a version timestamp string -->

<xsd:attribute name="userId" type="xsd:string" default="unknown" />

<xsd:attribute name="CORALToolId" type="xsd:string" default="unknown" />

90

<xsd:attribute name="viewLock" type="xsd:string" />

<!-- ^ user currently viewing this data -->

<xsd:attribute name="creationTimestamp" type="xsd:string"/>

<xsd:attribute name="timestamp" type="xsd:string" />

<!-- ^ it’s be nice to use xsd:data and xsd:time, but jdo doesn’t

support them, so we have to keep it simple. -->

<xsd:attribute name="transactionId" type="xsd:long" default="-1"/>

<!-- ^ unique id, filled in by the server on create. -->

<xsd:attribute name="committed" type="xsd:boolean" default="false" />

<!-- ^ a transaction id to be assigned when committed. -->

</xsd:complexType>

<xsd:complexType name="runDataTupleType">

<xsd:sequence>

<xsd:element name="key" type="xsd:string" default="dummy"/>

<xsd:element name="stringValue" type="xsd:string" minOccurs="0" maxOccurs="1" />

<!-- ^ string storage field for inputted data -->

<xsd:element name="intValue" type="xsd:int" minOccurs="0" maxOccurs="1"/>

<!-- ^ int storage field for inputted data -->

<xsd:element name="units" type="unitsType" minOccurs="0"/>

<xsd:element name="fieldType" type="xsd:string" minOccurs="0" maxOccurs="1"/>

<!-- ^ i.e. type of input tuple represented here -->

<xsd:element name="fieldSubtype" type="xsd:string" minOccurs="0" maxOccurs="1"/>

<!-- ^ used by choice tuples where a subtype was def’d -->

</xsd:sequence>

<xsd:attribute name="transactionId" type="xsd:long" default="-1"/>

<!-- ^ the transaction id must be duplicated in the tuples for

implementation-dependent reasons-->

<xsd:attribute name="elementId" type="xsd:long" default="-1"/>

<!-- ^ a unique id for this element, to be filled in on create by the server. -->

</xsd:complexType>

<!-- 6. Another non-user type, defined for internal consumption. Describes a container

for global objects in the database. -->

<xsd:complexType name="rmGlobalContainerType">

<xsd:sequence>

<xsd:element name="key" type="xsd:string" default="dummy"/>

<xsd:element name="stringValue" type="xsd:string" minOccurs="0" maxOccurs="1" />

<xsd:element name="intValue" type="xsd:int" minOccurs="0" maxOccurs="1"/>

<xsd:element name="timestamp" type="xsd:string" minOccurs="0" maxOccurs="1"/>

</xsd:sequence>

</xsd:complexType>

<!-- instantiation: the only time we actually create an element in the Schema’s

global section, showing off the power of the venetian blind design. -->

<xsd:element name="rmConfig" type="rmConfigType">

<xsd:unique name="processIdUnique">

<xsd:selector xpath="process"/>

<xsd:field xpath="@id"/>

</xsd:unique>

<xsd:key name="processIdKey">

<xsd:selector xpath="process"/>

<xsd:field xpath="@id"/>

</xsd:key>

<xsd:unique name="mapObjectTypeUnique">

<xsd:selector xpath="map"/>

<xsd:field xpath="@object"/>

</xsd:unique>

</xsd:element>

<!-- we must also instantiate a database types (even though you shouldn’t use

them in an instance) so it can be used when we send data across the wire.

I don’t set up any xpath constraints here, because I don’t want to take

the time to validate when sending across the wire. This type is never written

by a human. -->

<xsd:element name="rmRunData" type="rmRunDataType"/>

<xsd:element name="rmGlobalContainer" type="rmGlobalContainerType"/>

91

</xsd:schema>

92

Appendix F

IDL

**
This module defines the remote interactions of the Run Manager over CORBA.
**

module labnet {
module idl {

** An exception to raise if a null value results from a method call.
* RmRemoteInterfaceImpl always sets the error code to 0.
* 10

exception NullReturnException {
string description;
short errorCode;

};

** An exception to raise if any error occurs on the server.
* These errors are re−thrown RmExceptions from the server.
* RmRemoteInterfaceImpl sets the error code to match that
* of the RmException which threw it.
* 20

exception ServerErrorException {
string description;
short errorCode;

};

* We need this because there is no unsized array of strings in idl. *
typedef sequence<string> stringVector;

interface RmRemoteInterface {
* 30

* Note that some of these methods cannot actually throw NullReturnExceptions
* (as they return primitive types or void), and others will never throw
* ServerErrorExceptions (as the underlying methods do not throw exceptions)
* in the Java implementation. However, they are included in the ’raises’ clause
* to simplify the interface spec. Clients should be prepared to catch these
* exceptions in case a different implementation lies underneath the idl.
*

93

********************** Retrieving recipe information *************************
** 40

* Returns the string name of the loaded container for the configuration,
* or <none> if no configuration is loaded.
* Use container names in Util to determine whether the returned string
* is last−known−good or current.
* @return String name of the loaded container for the configuration
* @exception NullReturnException Thrown if the return value is null.
* @exception ServerErrorException Thrown if an error occurs in processing the
* request.
**
string getConfigurationContainerName() 50

raises (NullReturnException, ServerErrorException);

**
* Returns the instance version number.
* @return String containing version number.
* @exception NullReturnException Thrown if the return value is null.
* @exception ServerErrorException Thrown if an error occurs in processing the
* request.
**
string getInstanceVersion() 60

raises (NullReturnException, ServerErrorException);

**
* Returns the instance version timestamp (a java.sql.Timestamp converted to a string).
* @return String containing version number (converted from a java.sql.Timestamp).
* @exception NullReturnException Thrown if the return value is null.
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
string getInstanceVersionTimestamp()

raises (NullReturnException, ServerErrorException); 70

**
* Returns set of CORAL Tool Reference ids which are referenced in some map.
* @return Array of strings
* @exception NullReturnException Thrown if the return value is null (won’t actually be
* thrown here)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
stringVector getCORALToolIds()

raises (NullReturnException, ServerErrorException); 80

**
* Returns set of CORAL Tool Reference names which are referenced in some map.
* If no name is specified for some tool, the id is returned.
* @return Array of strings
* @exception NullReturnException Thrown if the return value is null (won’t actually be
* thrown here)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
stringVector getCORALToolNames() 90

raises (NullReturnException, ServerErrorException);

94

**
* Returns the CORAL Tool description with given id (as xml).
* @param id An id string for a CORAL Tool.
* @return CORAL Object description (not the object group) as xml.
* @exception NullReturnException Thrown if the return value is null (i.e. no CORAL
* Tool exists with given id)
* @exception ServerErrorException Thrown if an error occurs in processing the request
* (won’t actually be thrown here) 100

**
string getCORALToolById(in string id)

raises (NullReturnException, ServerErrorException);

**
* Returns the set of process ids a CORAL Tool can perform.
* @param id An id (not the tool name) for a CORAL Tool
* @return An array of process ids
* @exception NullReturnException Thrown if the return value is null (i.e. the given
* id cannot perform any processes) 110

* @exception ServerErrorException Thrown if an error occurs in processing
* the request (won’t actually be thrown here)
*
**
stringVector getProcessesByCORALToolId(in string id)

raises (NullReturnException, ServerErrorException);

**
* Returns the set of process descriptions a CORAL Object can perform.
* @param id An id string for a CORAL Object 120

* @return An array of process descriptions.
* @exception NullReturnException Thrown if the return value is null (i.e. the given
* id has no associated process descriptions)
* @exception ServerErrorException Thrown if an error occurs in processing
* the request (won’t actually be thrown here)
*
**
stringVector getProcessDescriptionsByCORALToolId(in string id)

raises (NullReturnException, ServerErrorException);
130

**
* Returns the ’augmented ’ process description, given a process id as xml
* (i.e. a version of the process with all the contents of its parent included)
* @param Any valid process id string
* @return An augmented process description in xml.
* @exception NullReturnException Thrown if the return value is null (i.e. no
* process exists with the given id)
* @exception ServerErrorException Thrown if an error occurs in processing
* the request (won ’t actually be thrown here)
** 140

string getAugmentedProcessById(in string id)
raises (NullReturnException, ServerErrorException);

***************************** Storing run−data *****************************

** The following methods allow the client to store run−data. The standard

95

* use−case is as follows: run−data is created, at some time later it is
* updated, and finally it is either committed (so it can no longer be
* updated) or canceled. In case the client closes his or her application
* in−between steps 1 and 2, a method is provided to retrieve uncommitted 150

* run−data by the user ’s login name. A user may have only one piece of
* uncommitted run−data in existence at a time for a single CORAL Tool.
**

**
* Sends a run−data element back to the server for saving, given that
* RmRunData object as a string. Stores this object as ’uncommitted ’, so
* it can still be modified or canceled. The create fails if this user has
* any other open uncommitted rundata.
* @param rundata An xml string representing an RmRunData object 160

* @return Assigned tid on success, −1 otherwise
* @exception NullReturnException Thrown if the return value is null
* (won ’t ever actually be thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing
* the request.
**
long long createRunData(in string rundata)

raises (NullReturnException, ServerErrorException);

** 170

* Sends a run−data element back to the server for update, given that
* RmRunData object as a string. Replaces an ’uncommitted ’ piece of
* rundata in the database, and fails if this piece of rundata hasn ’t
* been create()d or is already committed. The rundata passed to this
* method must be fully filled in with valid transaction id and
* element ids (i.e. it must have been loaded from the db, not created manually).
* @param rundata An xml string representing an RmRunData object
* @exception NullReturnException Thrown if the return value is null (won ’t
* actually be thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request. 180

**
void updateRunData(in string rundata)

raises (NullReturnException, ServerErrorException);

**
* Commits an existing piece of rundata, given its transaction id. After this is done,
* it can no longer be canceled or updated. It is now an official piece of accounting
* information. The transaction id can be found in a loadedcommitted piece of rundata
* in using getTransactionId().
* @param tid A transaction number assigned by createRunData to an RmRunData object. 190

* @exception NullReturnException Thrown if the return value is null (won ’t actually be
* thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
void commitRunData(in long long tid)

raises (NullReturnException, ServerErrorException);

**
* Sets the viewlock on an existing piece of rundata. Will fail if it is already set.
* @param tid A transaction number assigned by createRunData to an RmRunData object. 200

96

* @param userId User name to lock with.
* @exception NullReturnException Thrown if the return value is null (won ’t actually
* be thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
void setRunDataViewLock(in long long tid, in string userId)

raises (NullReturnException, ServerErrorException);

**
* Releases the viewlock on an existing piece of rundata. Will fail if the supplied 210

* userid is not the owner of the viewlock.
* @param tid A transaction number assigned by createRunData to an RmRunData object.
* @param userId User name that should currently have the lock.
* @exception NullReturnException Thrown if the return value is null (won ’t actually
* be thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
void releaseRunDataViewLock(in long long tid, in string userId)

raises (NullReturnException, ServerErrorException);
220

**
* Cancels an existing piece of rundata given its tid. This removes the rundata from the
* database. Will fail if this rundata is already committed (no deletion will occur in the
* failure case).
* @param tid A transaction number assigned by createRunData to an RmRunData object.
* @return true on success, false otherwise.
* @exception NullReturnException Thrown if the return value is null (won ’t actually be
* thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
** 230

void cancelRunData(in long long tid) raises (NullReturnException, ServerErrorException);

**
* Retrieves the single piece of uncommitted rundata any user is allowed to have for a
* given Coral tool.
* @param userid A user ’s id for which to retrieve rundata.
* @return A string representing a rundata object as xml.
* @exception NullReturnException Thrown if the return value is null (i.e. no uncommitted
* rundata exists)
* @exception ServerErrorException Thrown if an error occurs in processing the request. 240

**
string getUncommittedRunDataByUserAndToolId(in string userid, in string objectid)

raises (NullReturnException, ServerErrorException);

***************************** Administrative tools ***************************

**
* Retrieves the contents of an RmGlobalContainer object as xml, given a key name.
* @param id A key name. 250

* @return An RmGlobalContainer object as xml.
* @exception NullReturnException Thrown if the return value is null (i.e. no global
* container with this key name actually exists)
* @exception ServerErrorException Thrown if an error occurs in processing the request.

97

**
string getGlobalContainerById(in string id)

raises (NullReturnException, ServerErrorException);

**
* Stores an RmGlobalContainer object unconditionally − the existing object is 260

* replaced if an object with this object ’s key already exists.
* @param container An RmGlobalContainer object as an xml string.
* @exception NullReturnException Thrown if the return value is null (won ’t
* actually be thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
void saveGlobalContainer(in string container)

raises (NullReturnException, ServerErrorException);

** 270

* Retrieves a run−data object back from the server, given a transaction id.
* @param tid A transaction id
* @return a string representing a rundata object as xml, or null
* @exception NullReturnException Thrown if the return value is null (i.e. no
* run−data exists with this transaction id)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
string getRunDataByTransactionId(in long long tid)

raises (NullReturnException, ServerErrorException);
280

**
* Causes the server to reinitialize, thus reloading all of its
* configuration and making a new connection to the database.
* @exception NullReturnException Thrown if the return value is null (won ’t
* actually be thrown by this call)
* @exception ServerErrorException Thrown if an error occurs in processing the request.
**
void cycleServer()

raises (NullReturnException, ServerErrorException);
}; 290

};
};

98

99

100

Bibliography

[1] Apache Software Foundation. PHP: General Information - Manual, August 2002.

http://www.php.net/manual/en/faq.general.php.

[2] Kent Beck. Extreme Programming Explained. Addison-Wesley, Boston, Mas-

sachusetts, 2001.

[3] Collaborative Software Laboratory. Swiki Swiki, August 2002.

http://minnow.cc.gatech.edu/swiki.

[4] Vicky Diadiuk. Personal interviews, February-August 2002.

[5] Exolab, Inc. The Castor Project, June 2002. http://www.castor.org.

[6] INT Media Group, Inc. Webopedia, August 2002. http://www.webopedia.coml.

[7] Microsystems Technology Laboratories. MTL annual report. Technical report,

Massachusetts Institute of Technology, June 2001.

[8] Ike Lin. Personal interviews, February-August 2002.

[9] Thomas Lohman. Personal interviews, February-August 2002.

[10] Brett McLaughlin. Java & XML. O’Reilly, Cambridge, Massachusetts, 2001.

[11] Bill Murray. Personal interviews, February-August 2002.

[12] National Telecommunications and Information Administration. Federal

Standard 1037C: Glossary of Telecommunication Terms, August 1996.

http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm.

101

[13] Perttu Sliden. CORBA, August 2002. http://www.student.oulu.fi/˜psliden/corba.html.

[14] PROMIS Software. PRI Automation, Inc., February 2002.

http://www.pria.com/products/fms/pr promis.htm.

[15] John Shott. Personal interviews, February-August 2002.

[16] John Shott, Bill Murray, and Mike Bell. CORAL Usage Guide. Stanford

Nanofabrication Facility, 2000. http://snf.stanford.edu/About/Overview.html.

[17] Slava Pestov et all. jEdit - Open Source programmer’s text editor, June 2002.

http://www.jedit.org.

[18] Stanford Nanofabrication Facility. About SNF, February 2002.

http://snf.stanford.edu/About/Overview.html.

[19] TechTarget Network. searchVB: The VB Specific Search Engine, August 2002.

http://www.searchvb.com.

[20] Chelsea Valentine, Lucinda Dykes, and Ed Tittel. XML Schemas. Sybex, San

Francisco, California, 2001.

102

