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Abstract

In this thesis, I present Nemertes System, a software suite to control an embedded
autonomous mass spectrometer. I first evaluate previous control systems for the hard-
ware and evaluate a set of software design goals. The NSystem software builds upon
the previous functionalities by offering text-file based scheduling and subroutines, as
well as customizable scanning and data reporting. I also implement a new calibra-
tion technique that is suitable for auto-calibration while in autonomous operation.
Overall, the system is designed to be modular and flexible with the expectation of
hardware upgrades and changing needs.
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Chapter 1

Introduction

In Physics, Heisenberg argued that the more information you measure the position of

an atom, the less you know about its momentum[4]. In Environmental Engineering,

up to this point, the more you want to know about the chemical composition of a

body of water, the more you know where graduate students will have to be: in the

field, taking samples. With the vastness of our oceans, you can understand that there

simply aren't enough researchers or resources to canvas the hydrosphere for data.

Given that 37% of the world's population lives within 100 km of an ocean[3], and that

many live along rivers and tributaries, mankind interacts with this poorly understood

chemical transport system on a daily basis. We actively deposit pollutants, perturb

sediments, and use water as a thermal sink. We feel the affects of our actions as

well as those that occur simply due to nature, including temperature stratification,

methane generation, and denitrification. Our vision is to develop a model for chemical

transport in bodies of water, To achieve our vision, we're going to have to change the

way we collect data. Discrete sampling isn't feasible and it isn't accurate. We need

to build an in-situ sensor network capable of gathering the world's continuous data.

This thesis will take you through a design of a system that will gather continu-

ous data about the hydrosphere to help us build a 3 dimensional model of chemical

transport. Chapter One gives you a background of Upper Mystic Lake, our testing

ground, and the peculiar nature of something called a pycnocline. Here, I outline the

major components of our overall project, a sensor network, and then go into detail
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about the Autonomous Underwater Vehicle that carries the Nereus Mass Spectrom-

eter. My major contribution to this project is the Nereus control software that runs

on the embedded computer in the Nereus sphere. I will plunge, so to speak, into

that in Chapters Two and Three, where I evaluate the system needs and present

my solution. Chapter Four focuses on test routines and results, while Chapter Five

finishes the thesis with a look towards the future of the system and a statement of my

accomplishments. This thesis is designed for those of you who might use NSystem to

control Nereus or will modify it to suit your architecture. Enjoy.

1.1 Background

1.1.1 Upper Mystic Lake

Researchers have been studying Upper Mystic Lake for years, ever since the facto-

ries along Massachusetts' Mystic River churned out pollutants in the early 1900's as

byproducts of activities like leather tanning. Specifically, Upper Mystic Lake con-

tains an abnormal amount of arsenic in it's sediment. All of the suburban lawns

and industrial waste lead to there also being a large amount of nutrients in the lake.

These nutrients lead to enhanced algae growth, making the lake strongly eutrophic.

The sediment, with dead algae and decomposing organisms, generates a great deal of

methane. In terms of global warming and human health, we'd prefer the arsenic and

methane to never reach the surface or enter the water supply. Upper Mystic Lake

serves as a strong test bed for a sensor system as it has peculiar chemistry of its own

and undergoes many changes in temperature and chemical concentrations throughout

the year.

1.1.2 Thermal Stratification

Lakes undergo drastic changes due to numerous meteorological factors including tem-

perature, wind, and air humidity fluctuations. In temperate areas, including the

Northeast, most inland bodies of water track an annual cycle of warming and cool-
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ing. Such a cycle leads to stratification of temperature zones within the water, i.e.

a sharp vertical gradient in water temperature known as a pycnocline. Thus lakes

and reservoirs in temperate zones often have a surface layer of warm lessdense water

and a sharply distinct lower layer of more dense cold water. The vertical density

stratification inhibits vertical chemical transport in the water. Thus, two distinct

chemical zones evolve, especially in respect to dissolved oxygen and methane. Since

both oxygen and methane control a great deal of biological and chemical functions in

the ecosystem, their flux across the density gradient interests our group quite a bit.

Since their flux is, again, by no means discrete in respect to time, we need to imple-

ment a more continuous sensing network to capture important flux events. Only then

can we gain a full picture of how oxygen and the greenhouse gas methane transport

through and out of lakes and reservoirs.

Wind and air humidity changes have some very interesting affects on these bodies

of water as well. Low temperatures and low humidity cause cooling along the surface

of lakes. Since this pool of water is much denser than the surrounding warm water,

the cold water falls down to the lower depths in columnar fluxes. Also, wind causes

similar effects through the creation of turbulence. These plunging thermals carry

the chemical concentrations of the surface layer, meaning high oxygen levels, down

to the lower methane rich levels. This oxygen could oxidize, via methanotrophs,

the methane before it ever reaches the surface and escapes from the water. Up to

this point, limnologists have found capturing this process quite difficult, as their

intermittent nature does not match well with a discrete sampling process.

1.1.3 Mass Spectroscopy

The science of mass spectroscopy is the ability to separate chemicals and count chemi-

cal concentrations based on mass-to-charge ratios after ionization. The fundamentals

of mass spectroscopy are well understood. J.J. Thomson, 1913 [6] combined his

earlier work on electron deflection with W. Wein's 1898 discovery that Goldenstein

rays, positively charged ion beams, could be deflected by electric fields, to establish

that different hydrocarbons and polyatomic molecules could be separated based on

11
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Figure 1-1: Sensor Network Architecture

their mass-to-charge ratio, (I). The result of his work was something called a mass

spectrograph, a device that employed a photographic plate to record the presence of

ion beams deflected at different angles. By replacing the photographic plate with a

Faraday cup and an electrometer, you can actually measure the specific ion current

for a specific mass-to-charge ratio. When you combine the relationship between ion

concentration and the particular inlet membrane in use, you can generate very accu-

rate data on the presence of even traces of many different chemical compounds. In

the particular design of cycloid tube we are using, a modified CEC 21-620, all you

have to do is change the potential on a set of plates to select of a particular (!!).

Its behavior is defined in Bleakney and Hipple, 1938[1]. This leads to a spectrum

output, where each voltage applied to the system returns back a different ion current

readout. Where (!)'s are present, this spectrum exhibits a "peak", the size of which

is related to the chemical concentration of a particular chemical. The relationship

between voltages on the plates and the (!) differs for each mass spectrometer design.
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1.2 Vision

Our vision is to create an in-situ chemical sensing network to capture the continuous

and intermittent changes in the aqueous environment. Chemical sensing must occur

in many different locations at the same time. A set of fixed sensors enables excellent

vertical data capture when anchored on mooring lines. To capture horizontal data,

Nereus employs a mobile AUV that can move throughout the sensor network to both

capture data and calibrate the fixed sensors. In terms of cost, each fixed sensor must

be relatively inexpensive if we plan to employ a lot of them. We can enable very

high precision measurements by giving the AUV a suite of quite powerful sensors,

including a mass spectrometer. Figure 1-11 displays a visual model of such a design.

We hypothesize that the scale, cost, and performance limitations of each type of

sensor can be overcome by networking small numbers of more sophisticated mobile

sensors with extensive arrays of low-cost fixed sensors.

1.3 Implementation

1.3.1 Buoy Network

The foundation for our system is a constellation of 3 buoys deployed on Upper Mystic

Lake. The buoy is a platform for a computer, communications, fixed sensors, and

plays a large role in submarine navigation. Each buoy includes:

1. Technologix Systems TS-5000 Series 586 PC-104 Computer

2. Woods Hole Oceanographic Institute (WHOI) MicroModem Acoustic Modem

3. 802.11b Wireless With Hyperlink 1 Watt Power Amp and 6 dBi Omni Antenna

4. Thermistor String With 6 Thermistors At 2m Intervals And ADC Board

5. Xemics GPS Model RPSM002

'Courtesy Heidi Nepf, Nereus NSF Proposal, 2002
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Figure 1-2: 2 Sphere Odyssey Vehicle With Mass Spectrometer Payload

6. Hydrolab MiniSonde With DO, pH, Turbidity, Conductivity Modules

Each buoy is capable of communicating with each other as well as back to the base

station computer, graciously housed at the Medford Yacht Club, in order to post

sensor data and execute remote commands. As the AUV also has a WHOI Micro-

Modem, each buoy is capable of relaying information to and from the submarine. In

these data transmissions, the modem is capable of calculating a range, enabling exact

long baseline navigation with a network of at least 3 buoys. The network is not size

limited much at all, as the wireless links to the buoys enable enormous bandwidth

compared to transmitted data.

1.3.2 Autonomous Underwater Vehicle

To enable our sensor system to deliver a capable high-accuracy mass spectrometer

to continuous locations in Upper Mystic Lake, we work in conjunction with MIT's

SeaGrant AUVLab to redeploy an Odyssey Ild to house a sphere-enclosed mass spec-

trometer. The current design for this craft includes such environmental sensors as a

Hach Environmental Hydrolab MiniSonde 5 that includes dissolved oxygen, turbidity,

pH, temperature, and conductivity probes. The craft is about 2 meters long, is pow-

ered by shore-rechargeable batteries, and is positively buoyant. The craft shell floods,

so all components, including the payload, must be in water tight housing rated to the

14



Figure 1-3: Long Baseline Navigation: Each Black Dot Represents A Buoy. The

Center Darkest Area Represents The Best Guess Location Of The Submarines Based

On An Intersection Of 3 Ranges. Note Too That This Is An Intersection In 3-Space

So The Sub Position Is Fully Defined

depth of a mission. This Odyssey holds two 17" spheres, one housing the Nereus mass

spectrometer, the other holding the computer system which controls the submarine.

This PC-104 stack handles communication, submarine navigation, and gathers data

from attached sensors over serial connections. The sub also communicates with the

Nereus sphere via a tx-rx RS-232 serial line connection.

The submarine navigates using a long baseline navigation algorithm updated by

measurements taken from acoustic pings in between WHOI micromodems. This re-

quires a constellation of at least 3 known points within range of the submarine. Es-

sentially, LBL intersects 3 range circles and finds the single common point, as shown

in Figure 1-3. This has the capability to locate the submarine in 3 dimensions, when

in sight of 3 buoys. The SeaGrant group has developed an implementation of an

algorithm for updating a location guess for when the submarine may be out of range

of one of the MicroModems or is simply dead reckoning. The temperature gradient

causes much of the acoustic signal to either be reflected, absorbed, or corrupted when

traveling through the thermocline. Therefore, routing the submarine with a constella-

tion of 3 MicroModems requires thoughtful mission commands and possible different

vertical positioning of the MicroModems on in the water in order to guarantee at

least one capable communication and navigation link. The submarine is also capable

of communicating over 802.11b when at the surface and navigating via its own on
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board GPS - yet, for those of you unfamiliar with GPS, it does sometimes take some

delay to get a locked position.

1.3.3 Nereus Mass Spectrometer

The critical payload aboard Kemonaut II is the Nereus mass spectrometer. The hard-

ware behind this system was designed and specified in R. Camilli, 2002 [2]. Camilli, a

PhD student in the Hemond Lab, repackaged a "backpack" mass spectrometer based

on the work of Hemond, 1991 [5] published in the Review of Scientific Instruments.

This repackaging enabled the system to be compatible with the Odyssey Class AUV,

fit inside a 17 inch diameter Benthos sphere, and travel to depths of 100 meters or

more (with minor modifications.) The system, as designed by Camilli, is capable of

240 samples per hour, weighs 22 kilograms, has no moving parts, and had a basic

somewhat adaptable software package. Drawing 20 watts when running, and much

less when off, this system suits the deployability requirements for week long missions

aboard an AUV.

As I mentioned before, one controls (1) by tuning the voltages on a series of

plates. In this design, the architecture has been designed to output a single voltage

from a DAC conversion and have a Scan Board establish a set of 8 potentials based

on that input. These potentials set the plates up in the cycloid tube of the mass

spectrometer to scan for a particular (a). The relationship between the scan voltage

and (!j!) for this design is

Vscan= m + offset (1.1)
z
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Chapter 2

Software Design

The major contribution I have made in this thesis is the software that controls and

guides the Nereus mass spectrometer in its scans, calibrations, reports, and interaction

with other computers. With the understanding of the science from the last chapter,

I now examine the previous work done on the mass spectrometer control software

and analyze the user needs for a mass spectrometer control suite. The result of

this chapter is a set of design principles, priorities, and usage patterns that serve as

constraints for my engineering of the system.

2.1 Previous Systems

The previous systems that controlled Nereus were lightweight, easy to use, and re-

quired very little time to learn how to use them. Their major drawbacks are that

they are difficult to modify, are somewhat monolithic processes, and offer the user

only a limited amount of flexibility.

2.1.1 Backpack Mass Spectrometer

In Hemond, 1991 and in unpublished data, Hemond designed a system to allow a

human user to operate a "Backpack" based mass spectrometer. The compact and

effective 629 lines of QBasic control code enabled the user to do the following tasks:

17



1. Full Spectrum Scan

Scans the (M) ratios between two user specified inputs at a requested interval.

2. Single Ion Monitor

Allows the user to continuously monitor a single (E) with the ability to change

that value up or down using the keyboard of the control computer. This is

particularly useful if trying to find a peak, as you can scan (g)'s and do your

own first derivative test.

3. Calibrate

Requests information on two (M) peaks from the user. This requires the user to

have looked at a scan of two spectrum peaks and to identify two relationships

between a particular scan voltage and (M) ratio. The from these two peaks,

the system calculates two variables, slope and offset where the relationship

between Vca, and (!) is exactly Equation 1.1.

With two unknowns, slope and offset, the relationship between (M) and Vcan

for two peaks fully specifies a calibration.

4. Display Spectrum From Disk

This function acts somewhat like a GUI, enabling the user to visualize on a

monitor a saved spectrum scan.

5. Repeat Previous Scan

The system does remember its previous scan request for a full scan, so if you

want to repeat the same range and interval, you can command the system to

do this.

These commands are entered at a console-like interface, requiring constant user

attention and command. Considering one may want to calibrate every few minutes,

you cannot let the system just continue to scan without attention or you will suffer

from drift.

18



This software, though, was simple and designed with a sizeable amount of func-

tionality in a compact package. It required no programming knowledge by a system

user, but it did require their constant attention, and not just in passively monitoring,

but actively identifying calibration peaks. It can sit on one peak and scan it contin-

uously, monitoring a particular chemical for example. It is limited, though, to either

scanning a particular requested range or a single (s), but for what the system was

designed to do, enable scanning, this software fits the bill.

2.1.2 Nereus Mass Spectrometer

With the Camilli design came the requirement that the system exist in embedded

environments. These were mainly alongside a boat as a float or aboard an autonomous

underwater vehicle. The link to the system would be a RS-232 serial communication

TX-RX pair, allowing user supervision when attached to a computer. Aboard the

AUV, which does not necessarily have a viable communications channel to the surface,

the system had to be able to execute routines and scan accurately without human

input. This was a much larger QBasic program, encompassing over 1100 lines of code.

The changes from the Backpack included:

1. Automatic Calibration

In an embedded environment, the system had to calibrate itself based on peaks

it found during scans. In the aqueous environment the Nereus is designed for,

3 peaks are guaranteed to be present. Aqueous calibration peaks include

m
(-)Water = 16 (2.1)

(-)Nitrogen : 20 (2.2)z

(-)Argon.= 40 (2.3)

The nitrogen, in case you're curious, is dissolved N2. Camilli's technique for

finding a calibration differed from Hemond in that he attempted to minimize

the error of the sum of predicted peak voltage location across all three peaks

19



simultaneously. His method was to calculate a set of 3 predicted voltages using

something similar to Equation 1.1. His equation was

Vacan = (slope(--))w'r' (2.4)
z

He then used a global slope and warp variables and attempt to minimize the

difference between the sum of the three predictions and the actual Vcan for each

peak. To find this minimum, Camilli took the approach of starting by scanning a

range of warp's from 0.995 to 1.020 and slope's from 45.00 to 47.50, attempting

to find the first minimum of the error function. Upon discovery, the algorithm

checked the error against a reference maximum allowable error, and upon suc-

cess, returned the global calibration variables. To note, the SmallestError was

0.01 and the system would try again up to 5 times before using the previous

calibration.

2. Routines

This feature gives you the ability to send a small serial string to the system

and have the system go into a mode of executing a specific routine repetitively

without any further user interaction. The Backpack design was capable of

looping and remembering the previous scan, but this system establishes different

scanning modes and continues to repetitively scan in that mode until ordered

to stop.

3. Peak Jumping

One of Camilli's routines is that of "peak jumping." After calibration, we are

curious about the data returned from a full spectrum scan, but there are only a

certain set of chemicals we're really interested in for every specific mission. His

set was hard coded into an array and included 31 listings.

4. Gradient Tracking

This feature the (L) with the largest change in between multiple scans and

reports back to the user about that information.
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5. Noise Reduction: Signal Averaging

In development, Camilli documents several issues with noise in the readings

coming off the electrometer. His technique to solve this problem involved signal

averaging to try to capture the DC component of any noise. In routine com-

mands, the user could specify 8 different averaging amounts, depending on the

time they were willing to have the system sacrifice in every scan versus scanning

more different locations.

6. Thetis Graphical User Interface

As a complement to the embedded software, Camilli also presents a Thetis GUI

interface to view the data generated by the embedded system. This software is

designed in Visual Basic and interacts with the embedded system via a serial

communication link.

2.2 Evaluation Of Previous Systems

2.2.1 Calibration

The Hemond algorithm fully specifies the calibration based on 2 peaks, but is limited

in that it specifies the calibration for the entire scan range based on only two peaks.

The Camilli algorithm looks at 3 peaks, and uses the warp variation instead of a

simple exponent of -1 allowed for a better chance of finding some local minimum

of the calibration error using his global search algorithm, as the offset in Equation

1.1 changes along the (!). While this method produced a suitable approximation,

using Equation 1.1 and 2 measured peaks completely specifies a calibration near those

peaks. A better design for calibrating on 3 or more peaks would lead to n -I different

calibrations for n peaks depending on the requested (s).
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2.2.2 Scan Routines

The Backpack design is much more basic but serves as a foundation for the codebase

in the Nereus embedded system. Its routines are quite basic as discussed. The Nereus

design builds in some hard coded routine options as well as some noise reductions

using signal averaging. The system is only capable of simple gradient tracking, one

peak-jumping array, and full scans at user specified intervals. The user cannot specify

a departure from any of those routines without changing the code itself.

2.2.3 Design Flexibility

The previous systems are relatively inflexible in the face of the possibility that the

mass spectrometer hardware, its interface, and logging requirements may change in

the very near future. When the Backpack was originally envisioned, computing was

a much different stage. DOS systems were the norm, wireless networking was barely

on the horizon, and the design of even the chips on the Nereus hardware components

differed greatly than what you can get today. Faster processors and larger amounts

of memory have opened up more opportunities to do software-based analysis and

signal processing, whereas previously much of that has always been done in analog

circuitry. Current self-monitoring outputs, such as emission regulator current, may

be converted into digital signals so the computer system could react to abnormalities.

The inflexibility lie in the fact that the code is one major module that shares

dependencies on hardware, disk storage format, and I/O. If you ever want to change

a single interface, you have to understand this entire monolithic block to know what

might fail due to the change. Also, the code is limited by the DOS operating system,

forcing a single thread and lacking much of the network support possibly required in

the future.
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2.3 User Analysis

2.3.1 User Skills

To be on the safe side, many of the users of the Nereus mass spectrometer will

probably be more expert in either water chemistry or programming, probably not

both. Therefore, the ability to scan for a particular chemical and receive information

about its concentration should not be a programming chore nor should it return data

that cannot immediately be used by a water chemist without serious post-processing.

The normal user should not have to be an expert in how to program in any

particular language to use the system. They should know how to execute a program on

a computer as well as use serial terminal emulation programs such as Hyperterminal

or Minicom when the system is connected to a PC.

2.3.2 Desired Tasks

The user should be able to scan whatever (M) they want, whenever they want, and

receive the data they care about and only the data they choose to care about along

their I/O link to the sphere. There are usually only a specific group of possible scans

one might care about, and it should be easy to look at specific chemicals or groups of

chemicals. You should not have to change actual code to change a scan routine and

if you ever increase the sensitivity of the machine, you should be able to add scan

points easily.

There are a few basic tasks, but it should also be possible to schedule a routine of

tasks and reports. For example, you want the system to scan for the Nitrogen, Carbon

Dioxide, Argon, and Methane peaks 5 times, tell you about the Methane each time,

calibrate, do a full scan, log the full scan on disk but don't tell you about it over the

I/O link, and repeat. A good metaphor to apply is how easy shampoo manufacturers

make it to "rinse, lather, repeat," and apply that to routine scheduling.

Calibration should be automatic and as exact as possible. The user will be required

to interact with the system on the initial calibration, or at least give the system a
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guess where to look for a the center of a peak, and the routine should be stable from

there on out. If the system becomes un calibrated, it should be because of system

failure and not due to the instability of a calibration routine. This would make it

appropriate to notify the user or the host system that assistance is needed. The

system should be able to notify the user or host system of emergency conditions and

the specific assistance needed.

2.3.3 Upgrade Process Requirements

Only a power user would consider upgrading the system. By power user, I mean

someone with an intimate understanding of the theory of operation (to get that, keep

on reading the thesis.) The upgrader should not have to understand all the code

that was written before, though. He or she should only need to understand how to

interface to the previous functionalities that they need.

2.4 Modular Design

The major issues with the previous code were that we needed a better automatic

calibration routines for the full spectrum, the ability to schedule a routine without

knowledge of programming, and the ability to easily upgrade the system if necessary.

At first, I considered designing the system along the same lines as the Backpack

and Nereus Embedded. The major problem with that was that I would be directly

interacting with functionalities that already work and could be encapsulated into their

own foundational modules. The inspiration of control systems like MOOS and the

projects I had worked on in object oriented software led me to a different approach.

2.4.1 An A/V Example

Let's use an example, if you want to add a CD player to a stereo system, you don't

want to have to change the way the tape deck works too at the same time. All you

want to know is what type of wire to plug into the amplifier, the interface, and leave
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the tape deck be. Now this new component may be a CD-R recorder as well, so it

should know how to receive an input from other A/V equipment. The tape deck

records, so it knows how to receive those A/V inputs as well. The tape deck doesn't

need to know when, if, or how the CD-R plugs in. The two work in very different

ways, but share a similar interface. But, say you want to transfer tapes onto CD's,

now, and only now, do you have to make sure your tape player and CD-R recorder

know how to communicate with each other. When you start doing this, you recognize

a dependency between the CD-R and the tape player's function. But, if you abstract

out the functionality of reading a particular media, whether it be a tape, CD, record,

or even 8-Track, and settle on a common interface, multiple A/V companies can

design all sorts of components without calling each other up to see how to connect

them together.

2.4.2 Modules In Software

So, one of the things I want to do is design in the capability to cache a set of recent

(-) results so that the user can schedule a report of a specific group of them, I

shouldn't have to change the way the system interacts with the mass spectrometer

hardware to do that. If I want to design a new calibration routine, all I should have

to do is know how to request the interface to the Nereus hardware scan at a specific

voltage and return back a result.

Therefore, if I migrate the system to a modular design, adding functionality with-

out affecting the stable base is simple. Each module contains abstractable function-

alities. That means you don't have to know how the system works internally, that

information is abstracted away by the well specified interface. As long as the module

meets the interface specification, it can exist within the system framework.

The result is that I took the existing functionalities in the Backpack code and

Nereus Embedded and ported them over to an object oriented language, C++, which

could better support the module architecture that I'd like to implement. I added

functionalities to the system beyond those in the previous systems by creating new

components. There are many major advantages to this type of system, not just
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making it easier to do my own work. For example, if a new user wants to create a

component, the rest of this thesis will tell them exactly how simple that is and the

interface specification that these components have to meet. Second, from a debugging

standpoint, if ever there is a problem with a component in the system, you don't have

to ever go into code that doesn't relate at all to the problem to find a solution. Since

each functionality is abstracted, each potential internal issue is isolated. Think of

what happens when your CD player breaks - you don't have to fix your tape player

too. The trickiness comes in the interconnect between components, so I will spend a

good deal of time detailing potential pitfalls that could occur.
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Chapter 3

NSystem Implementation

In the previous chapters, I presented a scientific foundation for the project as a whole

and the background for the engineering decisions I took. In this chapter, I present

the result of these evaluations, along with a user and system analysis, is a modular

component based design. Here, I present a set of 3 elements of the system, how they

interact, and how they enable the scheduling and function of a mass spectrometer.

In this chapter, I stay above the nitty gritty code level and talk about what the code

actually does. The coding has all been done in C++, and there are Classes which

represent NMessage, NComponent, and NControl. To know what's on the horizon,

the next chapter details the components I built for this system, how they interact with

each other, and some examples of how to use the system. All of the NComponents, as

well as all of the code I wrote is in the "nemertes" folder in the Hemond group's web

locker, available publicly online.1 This locker also contains example code and turnkey

instructions with expected outputs in case you somehow miss place this thesis.

3.1 Nereus Nemertes System: NSystem

I named the system Nemertes as she was one of the daughters of the Greek figure

Nereus. While Thetis was their leader, and one of Camilli's projects, Nemertes was

the wisest of the sisters.
1http://web.mit.edu/hemond/nemertes
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3.1.1 Their Interface: NMessages

The most important aspect of a modular design is the interface between the modules.

In this design, I wanted to try follow the notion of having the interface be a tangible

item so that non-programmers could understand what's going on internally and even

debug problems by looking at the inter-component communication. The result is that

I decided to make the inter component communication a "Message." Each component

is capable of receiving messages and a few are capable of generating them. For

example, a log component is a passive element that watches actions and calculations

done by the other components. The interface to the mass spectrometer is active as

it must report back to the system the result of a scan at a requested voltage. There

are multiple types or names of NMessages, each one referring to a different type of

data communication within the system. The entire list of messages is enumerated in

Appendix A. That list may serve as a valuable tool for the rest of the thesis, so if

you can make a copy of it and keep it alongside, it will be easier to reference.

Specifically, each NMessage is capable of holding:

1. MessageName Name of that type of message - Required

2. CreatorName Name of the creator of the message - Optional

3. DestinationName Name of the destination of the message - Optional

4. StringArguments A variable length list of string arguments who's size is deter-

mined by the type of message

5. DoubleArguments A variable length list of double2 arguments who's size is de-

termined by the type of message

6. Embedded NMessage This is a message contained within a message, allowing for

messages themselves to be passed if necessary - Optional

2A double is a C++ term for a double precision floating point variable, represented in memory
with 8 bytes, and essentially a +/- 15 digit floating decimal point number.
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Figure 3-1: Dependencies of a few NComponents

If messages have a specific name for the type of data they carry, any component

that receives a message can check what type of message has been sent and react to

that message. Each component also has the ability to send messages. So, for example,

there is a message that contains an (M) report, namely MZR. An MZR contains such

information as the (M) requested, the scan time, and the Vsan actually requested to

get that value. Multiple different components could be able to receive this message

and do what they wish. One could log all the MZR's to disk. Another could cache

them and upon request send out specific ones. Since components react to messages

as well as create them, that request would also be in the form of a message, to be

specific a MZC message.

One of the nice things about these messages is that a person can understand the

data that is contained within. Our speed requirements and the scale of the software is

not so great that the overhead of packaging messages outweighs the ability to debug

and have knowledge of what's happening in the system when a problem occurs. The

idea is to design to debug.

3.1.2 The Modules: NComponents

The idea is that each NComponent contains an abstractable set of functionality or

dependencies. Figure 3-1 gives you a basic idea of the individual dependencies of each
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module. Note how no two components share dependencies to the outside world, and

that the CalibrationComponent, being a purely code-based component, does not rely

upon any outside interface.

To keep the idea of components as simple as possible, There are only two specifi-

cations an NComponent has to meet.

1. The NComponent must be able to accept an NMessage. Upon accepting an

NMessage, it must be able to respond with messages of its own if it would like

to communicate back to the system.

2. The NComponent must be able to advertise the types of NMessages it would

like to/can receive.

So far, I have decided that NComponents should not be able to randomly send

messages out into the system without being messaged/polled themselves. This re-

duces the complexity and possible randomness that may occur if each component

was timed differently, all outputting information to a shared "bus." That bus is the

message distribution and collection system.

The cool thing about using messages is that the logging options are quite infinite

as building passive components, components that do not send any messages, is trivial.

Simply look at the DelayComponent as an example.

3.1.3 NControl: NMessage Distribution and Collection

So, we have all these messages, and a bunch of components. We need a distribution

system between the messages to make sure that each component gets the messages

it needs and can then send out proper responses. NControl handles the distribution

of messages so that the certain components that only "care" about certain messages

receive only those messages. If you would like to create an "omniscient" component,

meaning it gets passed and therefore knows every message, that is a special allowance.

As long as NControl has registered every NComponent and knows what messages each

one wants to receive, data and commands are guaranteed to get to all the parts of

the system that require them.
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Figure 3-2: Message Passing Example: Note the "Omniscient" LogComponent re-

ceives every message

For example, the CalibrationComponent will need to request that the mass spec-

trometer scan a particular set of voltages to figure out the location of a peak. This

is all illustrated in Figure 3-2. This means it sends at least one DAC message that

the NereusComponent, and only the NereusComponent, will want to receive. This

DAC message requests that the NereusComponent set a specific voltage on its DA

converter. The Nereus responds with a message, DLU, which says how many mi-

croseconds the system should wait to be able to accurately scan at this new location,

based on its knowledge of where the last scan was in relation to this new request.

If there is a component that knows how to delay the system for a specific time, the

DelayComponent, it will handle that message, but not send any new messages out.

After the delay, the CalibrationComponent will want to make sure the NereusCompo-

nent does an analog-to-digital conversion of the return voltage from the electrometer.

This takes the form of an ADC message request. This message is read in by the

Nereus Interface, which responds using a report of that AD conversion, an ADR mes-
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Figure 3-3: Stack Example Related To Figure 3-2

sage. The CalibrationComponent wants to hear about the ADR message and when

it does it gets one of the data points necessary to perform a calibration. Note, the

LogComponent is "omniscient", so it receives every message.

3.1.4 NComponent Interaction: The NMessage Stack

The next important architecture decision is to decide the organization of how NCon-

trol should distribute the messages. Whenever a component receives a message, it has

the opportunity to respond with messages of its own. Three issues come up: multiple

systems may respond to input messages, multiple components are often needed in a

process, and the order of one sub-process should not affect the order of another unless

intentionally. For example, the CalibrationComponent should be able to pretty much

control the NereusComponent during calibration, without too much interruption and

extraordinary efforts by the component designer.

To solve the problem of two components interacting with each other, I have de-

cided to utilize a "Stack" system in order to give individual processes the ability to

occur. What I mean by this is that the last message put on the stack is the first one

distributed out to the components. Let's go back to the example used in Figure 3-2

and look at this example in terms of the NMessage Stack. Say we request a calibrate

now from the CalibrationComponent, or CBN. For simplicity, let's assume that the

CalibrationComponent is trying to figure out if the calibration peak for a specific

(M) occurs at VA or VB. Figure 3-3 shows what happens on the stack. Each grayed
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out message is the current message being passed. After the CalibrationComponent

receives CBN, it sends out 4 messages which are pushed onto the stack. These are the

DAC's and ADC's associated with scanning at 2 different voltages and returning the

results. After the DACA is received by the NereusComponent, a DLUA for delaying

before scanning at VA is returned. That is pushed onto the stack. Since it was the last

one on, it is the first one to get "popped" and distributed. Since the DelayCompo-

nent doesn't respond to DLU's with any return messages, the next request that is

processed is the ADCA that the CalibrationComponent had returned T = 1 upon

receiving the CBN. As you can see, the NereusComponent returns an ADRA, which

contains information relating (M) = A to VA.

As a component designer, having a stack design makes it possible for a process to

know that if it sends a group of messages, those messages will be the first one distrib-

uted in the order that they were sent out. While this could cause some headaches, at

least the NComponent designer knows exactly what to expect from each message be-

ing sent. He or she does not have to worry about unknown other actions being taken

before their sent messages are delivered. This is specifically designed around the idea

of calibration, during which the system should not also be scanning for particular

(m)'s. There is a slight danger in this design, in that if you design a "malicious"

component, it could take over the system by continuously asking itself to do things.

3.1.5 NComponent Interaction: Order Of Distribution

Notice, though, that if another process also responds to DACA messages, that mes-

sage would get pushed onto the stack in some relation to the DLUA. Say another

hypothetical component, the XComponent, responded to the DACA with an XXXA

message. The order of distribution depends on the order you register NComponents

with the NControl - it's as simple as that. If XComponent was registered after the

DelayComponent, you would see a T = 3 in Figure 3-4 as the last on was the mes-

sage response from XComponent. The designer determines the order. You may start

to notice a pattern that I am trying to reduce complexity and enforce deterministic

system behavior. That effort is intentional.
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3.1.6 Making or Inserting New NComponents

Making and inserting new NComponents has the following levels of difficulty:

1. New Passive NComponent A passive component pretty much just listens to

messages sent to it. This does not mean that it is passive in function. A

good example of such a component is an EREnable component. It listens to

Emission Regulator Enable messages and if it receives them, turns on the emis-

sion regulator. If it receives and ER Off message, it turns that off. It is only

passive because, as an NComponent, it does not send out any messages into

the system. A good example template to use for a passive component is the

DelayComponent.

2. New Active NComponent If you are creating a new component that actively

responds to existing messages, you must make sure not to place it in the wrong

order with other components that react to the same existing messages. Other-

wise, if it reacts only to a new message type that you are defining, just make

sure this new NComponent meets the specifications of any of the existing types

of messages it receives/sends. The most basic active component to use as an

example if you are building an NComponent is actually the GSLComponent.

It simply takes in 2 messages, passes that information to a backend, and then
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returns a single message.

3. Modify Active NComponent All you have to do is make sure that the specification

for the messages that come in and out of the system looks the same. A good

example of a modifiable component is the Peak Max Component which does

the peak maximum calculation for peak-finding. You could replace the internal

algorithm and not touch any of the external interface.

3.1.7 NSystem As A Platform

From what you've read, you might ask how is this control system specific to mass

spectroscopy. The answer is that the system is customized only by the components

one decides to use. If you would like to have an interface to a thermistor/temperature

gauge added to the system, and have that component be incorporated into your

calibration routine by sending a message to the calibration system upon request, it's

relatively simple. All you have to do is build a component that accepts requests

for information in the form of an NMessage and is capable of returning the desired

information. The actual interface to the temperature gauge could be a serial port,

digital I/O, or something even more exotic. All that is abstracted away from the rest

of the system using the component idea.

3.2 NMessages Enable Scheduling and Commands

There are a few questions that must have arisen by now, including, "if the components

only respond to messages, how does the whole process start?" Or, "if the NMessage

stack is empty, what happens then?" One of the most important features of the idea

of messages being commands is that you can create a schedule of messages to be sent

to the system whenever the local stack is empty. In fact, if you build a component

that holds a list of messages and how many times that they should be sent out,

you have yourself a scheduling system. It is actually the NMessages serving as the

interface amongst components that enable the user of the system to schedule exactly
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Figure 3-5: Schedule Of Desired Functions

what they want to happen. In this section, I also show that the user can designate

routines without ever going into the code of the actual executable. In fact, all you

have to know is the specification of the command messages in order to change the

scanning and reporting pattern.

3.2.1 ScheduleComponent And The GNE Message

Take a look at Figure 3-5. This is a short example of what the user might want

the system to do. When it starts up, the system should calibrate itself one time

and then continue doing the remaining 4 items until turned off. The system should

automatically check its calibration during runs, so as a schedule, all the user should

have to tell the system to do is the types of scans a calibrated system should do.

Now, imagine a component that stores a list of messages, ready to dispense them

somewhat like a PEZ-dispenser. Simply send this component a message, Get Next

Event (GNE,) and receive the next message. This component keeps track of an order

that the user has specified and how many times each item in that order should be

"dispensed" before not dispensing that item.

I have implemented this listing component as the ScheduleComponent. This is a

special component that is always registered with the NSystem as the NSystem itself

can send it a message whenever the message stack is empty. The ScheduleComponent

responds to the GNE by sending any message that the user has loaded into the
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schedule.

3.2.2 ScheduleFileLoader And The LSF Message

To load a message into the ScheduleComponent, the system can either read schedule

files from disk or get them from the serial terminal. The NComponent that knows

how to parse my specification for a schedule file is ScheduleFileLoader. This takes

files in text form, parses them to create a schedule, and sends these items to the

ScheduleComponent to be listed in the schedule. Each line in a schedule file represents

a message to be sent to the system and how many times the message should be sent.

A specification for schedule files appears in the appendix

To load a schedule file, all you have to do is send a LSF, or Load Schedule File

message to the component. Schedule files themselves can contain "sub-schedules", or

LSF messages to load other schedule files. For example, you could create a routine

that scans one set of (L)'s related to each other another to look at the shape of the

peaks themselves. These can be kept separate and called somewhat like subroutines

or macros.

When the user starts the system up and run the executable on the embedded

computer, he or she supplies an initial schedule file. This is automatically parsed by

the ScheduleFileLoader and the events are scheduled in order by the ScheduleCom-

ponent. If the user requests an LSF in the initial schedule file, the events inside this

new schedule file will be inserted into the schedule.

Note, and this is important, do not make an LSF an infinitely run event and any

events in the file loaded infinite as well. If you do, the LSF will keep on adding

an event that never gets exhausted from the ScheduleComponent's schedule and the

system will eventually creep towards only performing those events that are infinitely

added. For examples of schedule files, please see Appendix B.
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3.2.3 Serial Control: LSR Messages

The SerialComponent is polled with a Load Serial message before every GNE message

is sent to the ScheduleComponent. This sees if the system should change its behavior

by following a command sent over the serial line. The user can send a message into

the system via this I/O Channel, such as a LSF message to perform a particular

routine, or simply a 1 message command. A pair of instructions could have the

ScheduleComponent erase its current schedule and then load a new LSF, changing

the behavior of the system entirely to reflect the new schedule file. I will describe this

in the appendix. One has a great deal of control over the system with the serial line

as currently designed. That does put a burden on the operator not to send malicious

messages into the system, but that would mean the operator also has physical access

to the sphere.

3.3 Design Decisions And Considerations

There were a few alternate designs that I did consider, including a few that would go

along the same lines as the previously written code.

3.3.1 The Same Interface: NMessages

You may be wondering why I made the interface between all the components using the

same data type - NMessages. I did this to make it easy to add new functionalities that

we might not be even able to envision. The other major benefit is that it is very simple

to design passive components to log exactly what you want to log because everything

speaks the same language. If I made the interface to the Nereus different than the

interface to the calibration system, the logging scheme would have to be dependent on

exactly those specifications or both the calibration system and the Nereus interface

would have to be dependent on the single logging scheme. If a developer ever wanted

to extend the system, their logging scheme would have to either become cognoscenti

of the new way to interact with the new functionality or the old systems would have
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to become aware of how to send data to the new system.

There is also a strength in having a set of similar code examples for new developers

to use. Judging by the usual years of programming experience amongst new graduate

students, having to learn one specification will get the designers off the ground much

faster than learning multiple systems.

3.3.2 The Same Interface: Viewing Messages

Using the MessageViewComponent, you can set the message that the system outputs

to the serial console. These settings are dynamic. A curious user can change the

settings to see how a specific process is being executed. By settings, I mean the

user can select the NMessages which are broadcast to the user as well as the system.

The MessageViewComponent is one of those "Omniscient" systems, and could output

every message if you told it to with the keyword ALL, but that is probably very rarely

useful, so by default it's silent. A GUI interface on the other end of a serial line can

request information and turn on the toggle for the types of message output it wants

to see for visual representation.

3.3.3 Speed and Size

By using "messages," I do slow down the communication between different function-

alities. Size is not increased dramatically unless the messages a component generates

uses very long lists of strings. Please avoid using lots of strings in any message type

you design. In terms of numbers, at some point you're going to have to pass data

between different functions anyways, so using the messages to encapsulate that data

shouldn't take up too much more space over the lifetime of the system (which is longer

than the lifetime of the messages.) Some messages do stay in the system for a great

deal of time, and those are the ones in the schedule with unexhausted run-cycles.

That information would be kept in any scheduling system, so the software is still

relatively lightweight.

The message stack should never get that big if you design components to not spit
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out infinite amounts of messages. Again, as I reminded in the section on schedule

files, do not schedule any infinite LSF's with non-limited events in the schedule file

to which they refer. This will cause major size issues as the schedule will grow at an

infinitely/unbounded rate. I may design a way to check for that, so please refer to

the code and just avoid doing it if you can.

3.3.4 MOOS

MOOS is the Mission Oriented Operating System employed by SeaGrant's AUV lab

to run many of the processes aboard Odyssey class submarines and other computer

controlled devices. It was initially designed by Paul Newman for underwater vehicles.

My colleagues in the Hemond Lab also use it to run our buoy system as described in

Chapter 1. It is essentially a multithreaded lightweight OS designed to host multiple

sensor processes. In many ways its better features - in terms of modularity and

upgradeability - inspired what I did. MOOS is specifically designed to control a

number of asynchronous and synchronous sensors, gather and log that data, and

have the capability of transmitting using built in network support. I decided to avoid

using MOOS for a few reasons. First, it has a steep learning curve for beginning

programmers, and the major support for the system is an AUV Lab research engineer.

This is a dangerous route for support if the Nereus hardware is not specifically always

going to be used with SeaGrant support. The independent documentation is relatively

poor and experience working with MOOS' experts is the best way to learn the system.

It is, though, an excellent system design. I did not desire new researchers on the

project who wanted to develop for the Nereus sphere to have to learn MOOS. While

they have to learn a little bit about the system I developed, the NSystem's basic

functionality is at a more tangible lower level with less overhead. It is therefore less

powerful, but that is intentional. Second, I felt that the Nereus sphere itself, being

essentially 1 sensor, did not need the complexities associated with a multithreaded

data gathering system designed for multiple instruments. I wanted the system to

be as transparent as possible to the novice user with easy system scheduling and

debugging. The last major reason I designed my own system is to be able to have
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simple access to schedule any particular functionality. The tangible idea of NMessages

and ScheduleComponent enable this power.

3.3.5 Threading

I decided not to use a multithreaded main system due to the fact that I wanted to

reduce complexity and enforce deterministic behavior in this first version of the code.

I have done nothing to prevent a new designer from adding threaded systems in,

in fact the SerialInterface accepts asynchronous communication in a hardware based

cache and polls that for new incoming data whenever asked. An NComponent could

create its own background thread for processing, especially if trying to do Digital Sig-

nal Processing which could take up a lot of main system time. Also if asynchronous

threaded components wanted to be designed, the only addition a developer might

make is to have a special class of asynchronous components that are polled for mes-

sages even if they do not receive a message. It's not a difficult modification to make

and I have commented the lines of code in NSystem where you would most likely

make that change.
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Chapter 4

System Tests, News, And Results

In this section I take you through our first scans, some data, and some of the pro-

cedures and commands I used to generate that data. For specifics on the commands

used and example commands, please see the appendix. For some interesting spectral

data, keep on reading here.

4.1 Bench Testing

4.1.1 The Simulator

During April and May 2005, I was able to start testing my system on the lab bench.

The first major set of tests I did was to make sure I could control Vcn aptly and

record voltages using the analog-to-digital conversion module. This pretty much was

an isolation test of the "DAQ" data acquisition board that Camilli had designed and

built. The board is designed to take two byte (8 bit) values off the parallel port in

series and multiplex them on the input of an 16 bit Analog Devices AD569 DAC.

The simulator itself is a voltage measuring multi-meter connected to a DOS based

PC over a GPIB interface. The DOS computer runs a QBasic program which reads

in the voltage and reports the M/Z it believes that voltage to be referring to onscreen

while simultaneously outputting a simulated electrometer voltage signal. This signal

is interpreted by a digital-to-analog module and fed into the analog input of the DAQ
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Figure 4-1: Result of Scan Voltage Range Command, SVR, Between -1 And -5 Volts.
The Tall Peak Around -2.81 Is Mainly Water Vapor. The Peak At -1.26 Is Argon

Board. My system is then able to read in this return voltage by commanding an

Analog Devices AD7884 ADC to multiplex 16 bits of two's-complement output onto

the parallel bus. To command the system to set a scan voltage and read a voltage

back, please reference the DAC and ADC requests in the appendix.

4.1.2 The First Spectrum

On May 1 3 th, 2005, we started the mass spectrometer hardware for the first time in

over 2 years and 2 major laboratory moves. Some issues that arose included flaky

edge connectors to the scan board, degassing effects, and a leak was confirmed in the

vacuum envelope. The leak itself is confirmed by the scan we took as shown in Figure

4-1. The peaks, especially those at voltages near those we'd expect for water vapor,

C0 2 , and Argon gas, are prime components of the atmosphere.

At first, our output was very noisy and the DAQ board did not seem to be acquir-

ing the signal properly. Our response was to do as all engineers should do, break out

the chart recorder and oscilloscope and use an analog method to see if the scanning

hardware itself was working properly. Having never used a chart recorder, let me tell

you, it is a work of genius if you're trying to prove whether a digitally acquired signal
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Figure 4-2: Result of Calibrating On The Water And Carbon Dioxide Peaks In Mi-

crosoft Excel

is what is actually the same as what an electrometer is putting out.

4.1.3 Mass Scan Examples

When the system got running, I was able to calibrate on a scan and produce Figure

4-2. I calibrated this scan using Microsoft Excel to make sure I was actually getting

legitimate data. Specifically, I calibrated the entire scan on 2 peaks to see how well

the outermost peaks would line up. I chose the largest, (in) = 18 and (!!) = 28. When

I felt comfortable (and saw that there was in fact a peak lining up at 40, Argon,) I

requested the system scan all masses between 15 and 45, using the Scan Mass Range,

SMR, command. The system remembers the data for these peaks until queried or

scheduled to report the peaks you want using the Mass List Request, or MLR. If I

request peaks 15, 28 , 32, 40, and 44 - referring to H20, C2, 02, and Argon
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Figure 4-3: Result Of A Mass List Request, MLR, And System Autocalibration On
Water And Argon Peaks

found in air vapor, we get the data displayed in Figure 4-3. This is a nice feature

because while the system, if you want, could tell you about every mass it scans, can

wait until you schedule or request specific information be sent to you (such as after

the completion of a full scan.) In this way, you can easily track a set of compounds,

either with a GUI, an interface to a host system (aka the Odyssey,) or simply on the

command line of a terminal emulator. You are never bombarded with data you don't

want to see.

For the scan in Figure 4-3, the system calibrated itself given initial guesses for

the Argon peak and the H20 peak taken from 4-1. The calibration was done by

scheduling the add at least two calibration peaks, CBA command, then a calibrate

now command, CBN, to have the system calibrate both of those peaks. The system

requires at least 2 calibration peaks in order to perform any (M) related scans. You

do not have to specify any calibration information if you are doing voltage only scans.
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Figure 4-4: Electrometer Noise - Signal Versus Time In Seconds

4.1.4 Noise Profile

The major things you can notice are the baseline that exists in the scan and the

amount of noise in the scan. I decided to try to sample the noise as fast possible to

both see the DC component and possibly profile the noise in the frequency domain.

Since we were doing bench testing, surrounded by labs, and plugged into a wall, Figure

4-4 displays a signal that is heavily affected by a near 60 Hz noise pattern. I have

even plotted a 60 Hz signal to show you instead of simply displaying the frequency

spectrum. The spectrum, as Camilli noted in his thesis, has constant low level noise

throughout. The only major component that spiked was this 60Hz noise, but I do

not believe it to be as much of a problem when out in the field.

4.1.5 Signal Averaging Versus Signal Processing

Due to the fact that there is this 60 Hz signal noise, one thing I had to consider

is whether we wanted to do any digital signal processing on the incoming signal.
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Having looked at the profile of the noise and done some averaging techniques, if

we are simply trying to get rid of 60 Hz noise, then signal averaging works pretty

well in comparison to running an FFT on a set of samples and selecting out the

DC component, especially with the 66 MHz 486 processor we have aboard the Mass

Spectrometer. Matrix operations are deceptively much faster on the 1.4 GHz Mobile

Pentium 4 on which I also run test routines. I haven't built this out of the system

though - if you wanted to process the information coming from the NereusComponent,

simply change the message it returns after an Analog To Digital Conversion message,

ADC, to something that contains a listing of all the samples it took and possibly

time step information. Then, build another NComponent that reads in this message

and releases the Analog to Digital Report as the current specification for the ADR

message is - you won't have to change any components that rely on the ADR if you

still meet its specification and make sure that message is sent back as a result of an

ADC.

4.2 Calibration Evaluation

My particular method for calibrating was to scan around a previously known or user

guessed peak and attempt to best fit a parabola around it using a least squares

method. Upon completion of the linear algebra, which the system does using the

GNU Scientific Library, the calibrated peak is set to the center of the best fit curve.

While the peaks themselves are not actually parabolic in shape, but are actually flat-

topped, this is a good first modeling to fitting some form of statistical shape around

the curve to pick out the peak. You could easily substitute for the best-fit algorithm,

which lies in GSLComponent, with another algorithm that takes in the scan data

around the peak contained in the messages PM1 and PM2, and output your own

Peak Max Report, PMR. Here is a set of results for what I did, and some techniques

for getting even better performance from the approach I took.
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Figure 4-5: Calibrating Against Shifting Peaks - After Every Calibration, The Peak
Is Shifted By 0.01 Volts - Note The "Tail Effect"

4.2.1 Calibration Performance

Overall, I was impressed by the calibration ability of the system. Its calibration

stayed stable when the peak did not move, and was able to track peak movements in

as little as one calibration. As a test, I forced the peak to move by 0.01 Volts around

the V1 8 ~~ 2.81 peak. I only let the system calibrate 1 time on each subsequent moved

peak and then shifted again, somewhat of a worst case scenario for continuous shifting.

Just as a reference, a change of AVsca = 0.01 around 2.18 means a A(2) = .05. What

was interesting is that the calibration actually caught up after getting what I would

consider behind. This is all shown in 4-5. I ran these test routines on a set of cached

static data, so if the results look quite discrete, they are. I did build a simulator

component, called FakeMassSpec, that can fill in for the mass spectrometer itself if I

need to try my procedures out while the hardware itself is unavailable.

The major detractor from calibrating was the "tail effect" that exists if you scan

too large of a range in a calibration routine. There are a couple of methods to
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Figure 4-6: Graphical Example Of A Zoom
Too Far" Effect

In Calibration Routine And The "Zoom

eliminate the "tail effect". First, have a higher baseline on samples taken in the

area where you expect the peak to be and only fit the curve to these samples, thus

eliminating any weight the "tail" has on the parabolic fit. You have in fact eliminated

the "tail" itself. Second, if you must scan a wide range, I have come up with a "zoom

in technique."

4.2.2 Improved Calibration Routines

The calibration routine is stable and tracking performance is decent. The system

would stabilize on a peak when I ran multiple calibrations in one place and the seed

calibration was in the nearby ballpark of the original peak. Getting curious, and also

looking at how wide the best fit curves were for some of my samplings, I wondered

about a more effective calibration routine. Specifically, I thought about using the

first attempt as a wide area attempt, to zone in on the basic area of the peak. I

noticed that the flat area of any scan, the baseline, affected the least-squares quite a

bit. Knowing that area, you can zoom in, so to speak, and the best fit curve becomes
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more along the exact shape. I put together Figure 4-6 in Excel to get a graphical idea

of whether this might would work. Each scan reduces the are sampled by one half.

In fact, in this example, the number of samples taken per (M) was not increased in

each scan, so the samples in each scan decreased by 1/2 as well. Since I allow you

to set the calibration width and resolution using messages, you can write a schedule

for a zoom in calibrate without ever going into the code itself. This seems to be

much more effective, especially when the peaks could move around so much that they

could get lost in between scheduled calibrations. These images don't even change

the center of the scan, which would update and improve on each scan. An example

of what a zoom in calibration schedule could look like is in the Appendix. You just

have to make sure not to zoom in too much or you'll lose a peak and get a curve like

the lower right element in Figure 4-6. This effect becomes visible if you don't get a

proper recentering, something I wanted to show. Another interesting approach if the

peak is lost might be to find the intersection of two parabolas fit to the outsides of

a peak. If you make sure not to actually pick up the peak, the intersection may be

over the area of the peak, allowing you to regain stability in the calibration if it gets

lost.

If we used a zoom in technique, the system may still calibrate faster and more

accurately than Camilli's approach. His system attempted to find a calibration 5 times

and then started over. This system, in all trials, seems to be able to calibrate in the

ballpark of the peak in one shot, and with a zoom in, may get progressively better in

what could be logarithmically smaller samples. This would improve upon calibration

time so much that you could conceive of running short and accurate calibrations

more often instead of having to worry about sacrificing a great deal of time with a

consuming routine.
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Chapter 5

Accomplishments

5.1 Contributions

First, with the ScheduleComponent and Schedule Files, I have delivered user con-

trolled scheduling of all system routines without any C++ coding knowledge. What

I have given is somewhat like a specific language to very flexible scanning and report-

ing. All the user needs to do is create a text file with the NMessages they want sent to

the system, the order in which the messages should be sent, and how many times they

should be sent in an event loop. This also enables much simpler embedded routine

creation, as the user does not ever have to work with the executable once it is loaded

aboard the embedded flash. The user can simply upload over serial file transfer text

based schedule files. The system does not have much I/O bandwidth, so this feature

saves a lot of hassles and opening the sphere to change mission plans.

Second, I have enabled the system to report data in a scheduled and compact

fashion, tunable to the user's desires. Specifically, a user can request items like full

scans and then have the system report back only selected/priority masses. It also

saves scan time because we only scan for what we need. This information is valuable

both to the user at the terminal emulation screen and the interface designer who

only wants specific information for their information processing needs. It reduces the

complexity of the interface to exactly what is needed and nothing more. Hence, if a

robot wants to scan for a certain set of chemicals, the system can be specified to only
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output that information, and nothing else, if the interface wants that.

Third, I have demonstrated the scanning control capabilities of the system and its

calibration routine performance. I have presented examples of the system scanning in

Spring 2005, and delivered a calibration routine which, in its current basic form, works

decently for small peak shifts. For larger peak shifts, I have suggested a routine, easily

implementable in scheduling and not code, that could help with high drift situations.

Fourth, I have given the developer an easy way of adding functionality if they so

choose to do it, and to modify existing pathways. As long as the current parts see

the same interface to the current parts, whether that be getting an ADR for a sent

ADC message or a CBR report coming back from a CBN calibration request, nothing

should break or need changes upon addition.

5.2 The Future

5.2.1 Unfinished Business and New Ideas

If you've made it this far, there's a good chance you're probably taking this project

even further. Some specific things I plan on doing are designing a Java based Swing

GUI to control the system over a serial interface. Given that I've designed with a GUI

in mind as a future project, the system can be put in a great deal of hosts and put

out a plethora of information about how it's working. Because of that, I'd suggest

improving the I/O link into the sphere by switching out the embedded PC for one

with wireless capability. Second, I'd probably go for a processor with greater speed in

order to enable full digital signal processing without any concern about clock cycles

taken up. Considering a few cycles on chips running in the megahertz range is about

the same time as a sample intake from the DAQ board, brute force wins out now if

it means less processing burden.

I would like to put together some full mission length template schedule files,

and subroutines for proper shutdown of the system. These will come when mission

objectives are defined as soon as a week after this document's publish date. The other
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addition to templates which would be cool is to make a Component that can take

the argument of one message and make it an argument of an outgoing message where

both are parts of a subroutine pair. Currently that is not implemented, but could

be powerful if you would like to create high level routines based on the scheduling

language as a core. It would also be cool to design in the ability for schedules to have

inner loops, "for i" constructions, and "while" executions to make schedules not just

lists but miniature programs.

5.2.2 Best Wishes

To finish up, I'd like to wish everyone good luck who's using the Nereus Sphere and

NSystem. The oceans are a wonderful body of knowledge that we have not even come

close to understanding. Through this project I've had the chance to learn a great

deal about water sciences and the scale of some of the problems we're working on in

environmental engineering. I'd highly recommend to anyone to work on an applied

engineering project versus purely theoretical. Murphy's Law strikes more often but

seeing tangible results is a great feeling. I've enjoyed working on this project quite a

bit and wish Nereus safe travels on the sea.
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Appendix A

NMessages

These appendices are mainly useful for how you might use the system yourself and

to demonstrate the functionalities that I have built. This appendix gives you a good

reference for the different types of NMessages available to use to command the system

and those that are internally communicated and should only be used when testing

the response of the system.

A.1 Message Specifications

In the following three Figures, Figures A.1 through A.1 you can see the specifications

for the NMessages the system understands as of May 2005. These charts map out the

commands you can use, either in designing your own NComponents, or in commanding

the system to do certain routines. The specifications for what you can consider doing

are pretty wide open using this instruction set. Please use this section as a reference

in understanding what the arguments are for each message and a command set. I

have ordered them in the probable order you will need them, Calibration, Scanning,

and then miscellaneous utility functions.
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Appendix B

Schedule Files

B.1 Entry Format

To understand these with schedule files and specifically the ScheduleFileLoader, sim-

ply use the 3 letter initials for the message you would like to send, a semicolon, the

string arguments or % if there are no string arguments, another semicolon, the double

arguments, or a % to signify no double arguments, and the number of times you want

the message to be sent in the event sending loop. This is illustrated in Figure B-1. If

the number is initialized as a negative, it is sent an infinite amount of times.

B.2 Example Schedules

To see how I actually got the data displayed in Chapter 4, Figures B-2 to B-4 are

some example schedules. Note the use of the MVS to select for specific information

to be returned to the user. Figure B-2 scans all the voltages between -5 Volts And 0

M ige Bi: Ic du File E Frmat

Figure B-1: Schedule File Entry Format Templates
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MSV;ADR;1; 1
ERE;%;t;1F
SVR;-5, 0, 0 .001;1

Figure B-2: Scan Voltage Range

M1V;MLO,CBR;1;1
EREr%;%;1
CBA;%;18, -2. 1871
CBA;%;40;-1.26;1
CBNr %;%;-l
SMR;%;15, 100, 0 .5;-1
MLR;%;16, 18,20, 28, 40, 44;-1

Figure B-3: Calibration And Mass List Example

Volts, outputting only the ADR reports that record the voltage at each point. This

is done only once, as you can see that the number-of-times argument is 1. Figure

B-3 demonstrates the system's ability to add calibration points with initial guesses,

calibrate, and scan many masses in a range. It then only reports what you specifically

want to see as specified by the Mass List Request, MLR, message. The system can

log the rest internally or wait until you ask about them. As you can see, the initial

calibration items are done once, while the rest of the items are done with infinite

repetition. Figure B-3 shows the sequence of commands to produce a zooming in

calibration. Using CSW's to change the width, you see that the system is so flexible

that you can even change the calibration routine in a meaningful way without ever

getting down to the code level

CBR;%;O. 1
sW ;%;O. .;1

CSW;%;O .12;1

Figure B-4: A Prototype Zoom In Subsequence
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Appendix C

The Embedded System

C.1 Ampro CoreModule 410

The embedded computer we use to run the Nereus Sphere is an Ampro CoreModule

410 x86 compatible machine running an STPC Elite 486 processor with 16MB of

RAM. It has 2 serial ports, one of which is used for terminal command of the PC due

to its lack of video support and no Ethernet or wireless network hardware.

C.1.1 OS Choice: Debian Linux

We originally attempted to use the supplied Ampro TimeSys GNU/Linux distribu-

tion with the computer, but the entire support structure is designed around systems

with network support and large hard drives. Our disk is a 512 MB CompactFlash.

Specifically, we are using a high speed Sandisk UltraIl CF card in order to deliver

the read/write times we need. While the 410 does not have onboard CompactFlash

support, The supplied distribution would not run on such a small disk so I attempted

to find a linux distribution that could be easily loaded without network support and

have a small footprint. Many installers like to have network access for embedded

systems as it makes the task of selecting installed components dynamic.

The result of a lot of hard work trying other OS's was to get a very basic Debian

GNU Linux running on the machine. In the end, the basic Debian disk based installer
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was by far the easiest solution out there. A technique I used to transfer files to the

Flash so the floppy could see them was to create the partitions on the flash using a

desktop pc, load the proper files for the installer, and mount these partitions when

the installer was running using the installer's interface.

You must note that if you want to use console mode with Debian, you have to spec-

ify the CONSOLE keyword in the kernel arguments. The Debian installer has a dialog

for setting the kernel arguments run by LILO and you can find more information about

the specific settings you want the serial to have at http://www.tldp.org/HOWTO/Remote-

Serial-Console-HOWTO/ .

C.1.2 File Transfer

While the sphere is sealed, we do not have any io access into or out of the system.

My choice of file transfer, when necessary, is to use ZModem over the serial console

connection. If you download the lrzsz-0.12.21-4 or newer package onto the embed-

ded PC, it can either "SZ" to you or "RZ" whatever you send it using Minicom or

Hyperterminal on your host computer (depending on whether you're using linux or

windows.) Note, the speeds may be shockingly low as serial UARTS are much slower

than today's commonplace gigabit Ethernet.

C.2 Compiling NSystem

Since I only used C++ code from the Standard Template Library, with the exception

of the GNU Scientific Library in the backend of GNUComponent, loading the glib

C++ libraries such as the following list allowed for normal compilation of all but the

GSL reliant code. For that, simply compile with the -static flag to make sure the

compiler does not dynamically link to the GSL. You can install the GSL libraries on

the embedded computer, which I will probably do before departing for the summer,

so that you never have to worry about dynamic versus static linking while compiling

61



STL and GSL compliant code.1

1. libstdc++6 3.4.3

2. gcc-3.4-base 3.4.3

3. libc6_2.3.2

Do remember that the compilation target architecture is by no means i686, and

must be at least i486. If you use the architecture compilation flag in gcc for i386, the

compiler will also optimize for size and speed on limited resource machines.

C.3 Running NSystem

To run NSystem, all you have to do is, on the command line, send the string "./NSys-

tem *initfile*" as super user, where initfile the name of a schedule file that contains

the first things you want to run. If *initfile* does not exist, the system will still

run but be in limbo just waiting for your command. To change the way the system

behaves, simply change the schedule files to the routine you want and run the exe-

cutable with the newer files. You do not have to recompile. You need to be super

user to access control of the parallel and serial ports.

'The GSL is available as a library package download at
http://packages.debian.org/testing/math/libgslO for Debian linux and documentation for what
you can do with it, including FFT's and Linear Algebra, is at http://www.gnu.org/software/gsl/.
Please be aware that the GSL is GNU Licensed Software so anything built with it must also be
freely distributed as open source software under those license terms.
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