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ABSTRACT

Opportunistic routing has the potential to substantially
increase wireless network throughput. Prior work on oppor-
tunistic routing, however, requires tight node coordination.
Different nodes in a network must have knowledge of which
packets other nodes have received. Furthermore, the nodes
have to agree on which nodes should transmit which pack-
ets. Such coordination becomes fragile in dense or large net-
works.

This paper introduces MORE, a new opportunistic rout-
ing protocol that avoids node-coordination. Our design is
rooted in the theory of network coding. Routers code pack-
ets going to the same destination and forward the coded
versions. The destination decodes and recovers the origi-
nal packets. This approach needs no coordination and prov-
ably maximizes network throughput. We have implemented
our design and evaluated it in a 25-node testbed. Our results
show that MORE provides an average throughput increase
of 60% and a maximum of 10-fold, demonstrating that the
theoretical gains promised by network coding are realizable
in practice.

1 INTRODUCTION

Opportunistic routing exploits the broadcast nature of
the wireless medium to increase network throughput [6].
Traditional routing protocols determine the next-hop of a
packet before transmission [5, 27, 16]. But wireless is a
broadcast medium with dynamic characteristics. Each time
a node transmits, a different subset of the nodes may receive
the packet. There is always some probability a packet is
heard by nodes much closer to the destination than the prese-
lected next-hop. A traditional routing protocol ignores these
fortunate receptions and continues forwarding the packet
hop-by-hop on the chosen route. In contrast, opportunistic
routing does not commit the packet to a particular next-hop;
among the nodes that happen to hear the packet the one clos-
est to the destination is picked as the next hop. Hence, op-
portunistic routing exploits fortunate receptions and multi-
ple paths towards the destination to increase the throughput.

Opportunistic routing, however, is challenging because
of the potential for spurious transmissions. Many intermedi-
ate nodes may hear the same transmission, and thus forward

Dina Katabi
dk@mit.edu

Sachin Katti

the same packet, wasting wireless resources, and outweigh-
ing the potential throughput gain.

This paper proposes MORE, a network-coding approach
to opportunistic routing.! The key feature in MORE is that,
though intermediate nodes forward packets they hear with-
out consulting with each other, they do not generate spuri-
ous transmissions. MORE achieves this feature by building
on the theory of network coding. Instead of solely forward-
ing packets they receive, intermediate nodes forward ran-
dom linear combinations of packets going to the same desti-
nation. The theory shows that such randomly coded packets
contain independent information with high probability [13].
To deliver N packets to the destination, it becomes suffi-
cient to deliver any N such coded packets, and thus none of
the coded packets is redundant. Furthermore, under simpli-
fied assumptions of Poisson traffic from source to destina-
tion and static loss characteristics, this approach is proven
to maximize the throughput [23].

To grasp the intuition underlying MORE, consider the
example in Fig. 1, where we would like to deliver a 10-
packet file from source to destination. When the source
transmits these 10 packets, the destination receives some of
them (say the odd packets), while nodes A and B receive all
packets. Without coding, nodes A and B need to learn which
packets the destination has already received to abstain from
transmitting redundant packets. Furthermore, they need to
coordinate with each other to ensure that they do not for-
ward the same packets. However, one can recover the 10
original packets from any 10 linearly independent combina-
tions of these packets (a basic result in linear algebra [30]).
The destination in our example already has 5 original pack-
ets, i.e., 5 linearly independent combinations. Thus, it can
recover the file by acquiring any additional 5 linearly in-
dependent combinations. Hence, in MORE, A and B broad-
cast random linear combinations of the packets they receive.
Because they are randomly generated, these linear combi-
nations are very likely independent [13]. Once the destina-
tion receives 5 additional such coded packets, it recovers the
whole file at once using a simple matrix inversion. It also
broadcasts an acknowledgement, which causes potential for-
warders to stop forwarding packets from this file. Thus, with
MORE, potential forwarders need not coordinate or wait to
learn who has what.

'MORE stands for Multi-path Opportunistic Routing Engine.
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Figure 1—A comparison between ExOR and a network coding
approach to opportunistic routing. With ExOR, A and B need
to coordinate among themselves and with the destination on
which packets to forward and the order of forwarding. Oth-
erwise, they might generate spurious transmissions. With net-
work coding, A and B transmit random linear combinations of
the packets they received (p’ = rip; + ...+ rigpio, where r; is a
random number). They do not need to know which packets the
destination received because the destination can retrieve the 10
original packets from any 5 randomly generated linear combi-
nations plus the 5 packets it has already received.

The design of MORE builds upon prior foundational
work on opportunistic routing, particularly upon the ExXOR
protocol [6]. However, MORE departs from prior work in
that it does not require potential forwarders to coordinate
or consult each other. ExOR, on the other hand, requires
tight node coordination. To prevent spurious transmissions,
nodes in the network have to coordinate on the following is-
sues. First, they need to exchange information to learn which
packets other nodes have received. Second, they must agree
on which node should forward which packet. Third, can-
didate forwarders have to transmit their packets in a par-
ticular order. While a forwarder transmits the packets it re-
ceived, the medium is reserved and other forwarders cannot
access it. Such tight coordination becomes fragile in large
networks.

This paper makes the following contributions:

e It introduces MORE, a network-coding approach to op-
portunistic routing. MORE has a few desirable features:
It does not require node coordination and thus can easily
scale to large networks; it provides reliable data delivery;
and its design is supported by theoretical analysis [23].

e The paper presents a prototype implementation and field
tests of MORE on a 25-node wireless network, showing
that MORE substantially increases wireless throughput.
On our testbed, the median throughput gain with MORE
is 1.6, while the maximum gain exceeds 10-fold.

e Finally, MORE is the first implementation of wireless
network coding with general linear codes. To the best
of our knowledge, there is one prior implementation of
wireless network coding; it XORs packets going to dif-
ferent destinations [17]. In comparison, our implemen-
tation is the first to demonstrate the benefits and practi-
cality of general random linear network codes.
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Figure 2—Illustration of the benefits of opportunistic routing. In
(a), each of the source’s transmissions has many independent
chances of being received by a node closer to the destination.
In (b), though the chosen route has 4 hops, node B or C may
directly hear some of the source’s transmissions, allowing these
packets to skip a few hops.

2 MOTIVATING DISCUSSION

This section provides some background and motivates a
network coding approach to opportunistic routing.

2.1 Benefits of Opportunistic Routing

Opportunistic routing defers the selection of the route
until after the packet has been transmitted. Among the nodes
that received the transmission, it selects the one with the best
route to the destination as the next forwarder. This approach
produces two types of gains. First, each transmission has
many chances to be received by a node closer to the destina-
tion (where distance is measured using loss rate). It has been
observed that the losses on the wireless links are approxi-
mately independent [26], and we make use of this assump-
tion throughout the paper. Consider the contrived scenario
in Fig. 2-a. which we took from [6]. The delivery proba-
bility between the source and each of the 100 intermediate
nodes is 10%, whereas the delivery probability between an
intermediate node and the destination is 100%. Tradition-
ally routing would select one of the intermediate hops as the
forwarder. This choice requires each packet to be transmit-
ted an average of 10 times before reaching the intermediate
node. The intermediate node forwards the packet using one
extra transmission. The total throughput is about 9% of the
medium’s capacity. In comparison, opportunistic routing re-
quires about two transmissions per packet; one transmission
to reach any of the intermediate nodes, which happens with
probability 1 — 0.9 ~ 0.999, and a second transmission
to reach the destination. Thus, in this scenario, opportunis-
tic routing can potentially increase the throughput by 5-fold,
from 9% to 50% of the medium capacity. In more realistic
examples, the gain will be less, but continue to be substan-
tial.



The second throughput gain is caused by the ability of
opportunistic routing to use long and relatively low-quality
links. Consider the scenario in Fig. 2-b, where the best path
between the source and destination is SRC-A-B-C-DST. Be-
cause of the dynamic and random nature of the wireless
medium, some of the source’s transmissions may be directly
received by node C or the destination itself. A traditional
routing protocol ignores these fortunate transmissions and
keeps trying to send these packets along the predetermined
route. Opportunistic routing on the other hand exploits these
happy occurrences to skip some hops, reducing the number
of transmissions and increasing the throughput.

2.2 ExOR: Prior Opportunistic Routing Protocol

There is only one prior protocol for opportunistic rout-
ing in wireless multi-hop networks. Proposed in [6], EXOR
is best described using the topology in Fig. 2-b. The source
transmits a batch of packets (10-100 packets). Each packet
contains a header that lists all potential forwarders ordered
according to their distance from the destination, e.g., C, B, A.
Distance is measured using a function of the packet deliv-
ery probability. The candidate forwarders buffer the packets
they receive and await the end of the batch. Once the source
is done transmitting the batch, the forwarders forward the
packets in their buffer according to their order in the for-
warding list. In our example, node C is the first to trans-
mit the packets it has overheard, followed by node B, then
node A. Forwarded packets contain a batch-map that is used
by each transmitter to inform the rest of the nodes of its
knowledge of which packets have been received by which
nodes. The forwarders use the information in the batch-map
to abstain from forwarding packets that have already been
received by nodes closer to the destination.

The design of ExOR requires tight node coordination.
The coordination is imposed using two methods: (1) batch-
maps used to exchange information about which nodes re-
ceived which packets; and (2) a strict order on when a node
can forward the received packets. While a forwarder trans-
mits the packets it has received, the medium is reserved and
other forwarders cannot access it. Imposing such tight coor-
dination leads to the following undesirable effects:

e It is unclear how long a candidate forwarder should wait
before it starts forwarding the packets it received. ExOR
requires a forwarder to wait to learn which packets have
been received by some downstream forwarders. If the
path is long, many downstream forwarders may have re-
ceived no packets at all, and thus will not generate any
batch-maps. In this case, a forwarder has to timeout. But
itis difficult to decide on a timeout value. The main gains
of opportunistic routing arise from using long but low-
quality links. Given the low delivery probability of such
links and the dynamism of the loss characteristics in the
wireless environment, it is unclear how long a forwarder

should wait to ensure that downstream forwarders have
not heard any packets.

e Even if the forwarder can estimate a reasonable time-
out value, waiting to ensure that downstream forwarders
have no packets introduces an unnecessary delay and in-
creases the transfer time.

e Imposing a strict order on the forwarders prevents them
from forwarding packets in parallel. This prevents spa-
tial reuse of the bandwidth and reduces the overall
throughput.

The contributions of ExOR, as the first opportunistic
routing protocol, are highly valuable. But the difficulty of
providing tight node coordination in dense or large networks
instigates a need to explore alternative approaches to oppor-
tunistic routing.

2.3 Network coding is superior to source coding

The description of MORE in §1 might remind some
readers of erasure codes [22](e.g., Reed-Solomon codes),
a coding scheme that has been successfully used in many
systems [8, 7]. Erasure coding is a form of source coding,
where to deliver n original packets, the sender codes them
into m > n packets. The destination can recover the n origi-
nal packets from any n coded packets.

Erasure coding at the source, however, suffers from
the same limitations as ExOR. Specifically, the destination
needs n distinct coded packets to recover the original n pack-
ets. Even if the packets are coded using erasure codes, can-
didate forwarders still have to coordinate to ensure that they
do not unnecessarily transmit the same coded packet.

MORE acquires its effectiveness from building on net-
work coding. Here the routers themselves can generate new
distinct packets by forming random linear combinations of
the packets they receive. Since random coding at the routers
has been proven to generate distinct and independent coded
packets (with an exponentially high probability [12]), the
routers do not have to coordinate which node forwards
which packets.

3 DEFINITIONS

We start with a few definitions that are used throughout
the paper.

(a) Native Packet: a non-coded packet.

(b) Batch: MORE sends packets between a source-
destination pair in batches. Only packets in the same batch
can be coded together. The batch size, K, may vary from one
batch to another.

(c) Coded Packet: a linear combination of native pack-
ets belonging to the same batch—i.e., a coded packet is
p’ = > ,cipi, where ¢; is some number, and the p;’s are
native packets from the same batch. Multiplying a packet
by a number ¢; implies multiplying each byte of the packet



with ¢;.> Addition of 2 packets is done by XORing the cor-
responding bytes in each packet. Thus a linear combina-
tion of packets is created by first multiplying each packet
with its corresponding coefficient and then XORing all the
packets together. Note that though coded packets are created
at a node by linearly combining previously coded packets,
they are also linear combinations of the native packets them-
selves. In particular, assume we create coded packets by lin-
early combining native packets p; = 3, ¢;ip;, where p; is a
native packet. Then we linearly combine these coded pack-
ets to create more coded packets as follows: p" = 3. rip},
where r; is some number. The resulting coded packet p’
can be expressed in terms of the native packets as follows
p = Zj(rj Zi Cj,‘p,') = Zi(Zj I"I‘Cj,')p,‘, i.e., it is a linear
combination of the native packets themselves.

(d) Code Vector of a Packet: This is the vector of coeffi-
cients that describes how to derive the coded packet from
the native packets. More precisely, if the coded packet is
expressed as p’ = ) .cip;, where ¢; is a number and the
pi’s are native packets, then the code vector of this packet
is ¢ = (e1,...,¢i,...,¢k). A native packet, p;, is a spe-
cial case of a coded packet, for which the element ¢; is
1 and the remaining elements are 0’s. When a new coded
packet is formed by linearly mixing other coded packets,
p=> i rjpjl-, where r;j is a random number, its code vector
is obtained as ¢ = >, r;¢j, where ¢j is the code vector of
packet p!.

(e) Linearly Independent Packets: We say that a set of
packets are linearly independent if their corresponding code
vectors are linearly independent.

(f) Innovative Packet: We say that a node has received an
innovative packet if the new packet is linearly independent
from the previous packets the node has received. Innovative
packets contain new useful information as opposed to lin-
early dependent packets whose information can be extracted
from previously received packets. Packets can either be in-
novative or non-innovative, and non-innovative packets can
be safely discarded.

(g) Closeness to Destination: We define the distance from
node x to node y as the expected number of transmissions re-
quired to deliver a packet from the first node to the second.
This distance metric has been widely used in prior wireless
routing protocols. In particular, the ETX metric estimates
the above distance [10]. Similar to other routing protocols,
MORE uses periodic pings to measure the average deliv-
ery probability between any pair of nodes and uses these
estimates in a form similar to ETX to measure closeness to
destination.

(k) Downstream/Upstream: If node x is closer to the des-
tination than node y, we say that x is downstream of y, and y

2 All operations are done in finite fields of size 28 allowing us to operate on
bytes instead of arbitrary blocks.

Packet Type
Dest. IP
Batch sequence no.

MAC Header
MORE Header

Source IP

Code Vector

Closeness to destination

Figure 3—MORE packet header format.

is upstream of x.

4 MORE IN A NUTSHELL

MORE is an opportunistic routing protocol. Its design
is based on the theory of network coding [2]. Routers code
packets going to the same destination together and forward
these coded versions. The destination decodes and recovers
the original packets.

MORE’s current design targets stationary multi-hop
wireless networks, such as Roofnet and community wireless
networks [1, 29, 3]. Nodes in such networks are normally
not limited by memory or processing power. We show in §7
that coding and decoding can be done easily on the kind of
machines typically used in this environment.

For simplicity, we explain MORE using a single flow.
The description extends naturally to multiple flows.

(a) The sender: In MORE, the source sends batches of K
packets, where K may vary from one batch to another. When
the 802.11 MAC permits, the source creates a random lin-
ear combination of the K packets in the current batch and
broadcasts the coded packet. Each MORE packet contains
the code vector that describes its contents with respect to na-
tive packets, the batch sequence number, the distance of the
transmitter from the destination, and a type field that iden-
tifies data packets from acks (see Fig. 3). The sender keeps
transmitting coded packets from the current batch until it
receives an ack from the destination acknowledging that it
has received K linearly independent combinations, and thus
is able to decode the original packets in the batch. At this
time, the sender can move on to the next batch.

(b) A forwarder: Nodes listen to all transmissions. When
a node hears a packet, it checks whether the packet is inno-
vative, i.e., linearly independent from the ones it has previ-
ously received from this batch. This check can be done using
simple algebra (Gaussian Elimination [18]). If the packet is
not innovative, then it does not add any new information be-
yond what the node has already heard, and thus it is ignored.
Otherwise the node buffers the packet with previously re-
ceived packets from the same batch. Next, the node checks
whether it is closer to the destination than the previous hop
of the overheard packet. If it is, then the arrival of this new
packet triggers the node to broadcast a linear combination of



packets from the same batch as the recently received packet.

(c) The destination: For each packet it receives, the desti-
nation checks whether the packet is innovative, and discards
non-innovative packets. Once the destination has K inno-
vative packets, it can decode the original K packets using
simple matrix inversion:

—1 /
P1 Cl1 ... Clx pl

/
Pk CK1 CKK Pk

where, p; is a native packet, and p! is a coded packet whose
code vector is ¢; = ¢j1, . . ., Cig-

Additionally, once the destination receives enough in-
novative packets to decode the batch, it sends an acknowl-
edgment along the shortest path toward the source. The ack
causes the source to stop transmitting any further packets
from that batch. As a result, the forwarders stop receiving
innovative packets from the batch and consequently stop
transmitting linear combinations of that batch. Eventually,
the batch will timeout and be purged from the memory of
the forwarders.

5 PRACTICAL ISSUES

In §4, we have described the general design of MORE.
But for the protocol to be practical, MORE has to address 3
additional challenges, which we discuss in detail below.

5.1 Fast Network Coding

Network coding, implemented naively, can be expen-
sive. As outlined above, intermediate nodes forward lin-
ear combinations of the packets they receive. Combining N
packets of size S requires NS multiplications and additions.
Due to the broadcast nature of the wireless medium, inter-
mediate nodes could receive many packets from the same
batch. If a router codes all these packets together, the cod-
ing cost may be overwhelming, creating a CPU bottleneck.

MORE employs three techniques to produce efficient
coding and ensure the routers can easily support very high
bit rates.

e Code only Innovative Packets: The coding cost scales
with the number of packets coded together. But coding
non-innovative packets is not useful; they do not add any
information content. Hence, when a MORE forwarder
receives a new packet, it checks if the packet is innova-
tive, and throws away non-innovative packets. Since the
number of innovative packets in any batch is bounded
by the batch size K, discarding non-innovative packets
bounds both the number of packets the forwarder buffers
from any batch, and the number of packets combined to-
gether to produce a coded packet.

e Operate on Code Vectors: MORE checks whether
packets are innovative using an efficient algorithm that

operates only on code vectors. When a new packet is re-
ceived, checking for innovativeness implies checking if
the received packet is linearly independent of the set of
packets from the same batch already present at the node.
But it is not necessary to perform any operations on the
data packet itself. The forwarder node simply checks if
the code vectors are linearly independent.®> The data in
the packet itself is not touched; it is just stored in a pool
to be used later when the node needs to forward a linear
combination from the batch. Thus, operations on indi-
vidual data bytes happen only occasionally at the time
of coding or decoding, while checking for innovative-
ness, which occurs for every overheard packet, is fairly
cheap.

e Pre-Coding: When the driver is ready to send a packet,
the node has to generate a linear combination of the
buffered packets and hand that coded packet to the wire-
less card. Linearly combining packets involves multiply-
ing individual bytes in those packets, which could take
hundreds of microseconds. MORE cannot simply cre-
ate coded packets and make them available to the MAC
for forwarding by storing them in an output queue. If it
did, it would run the risk of transmitting coded packets
that do not contain the most recently received innova-
tive information. On the other hand, creating these lin-
ear combinations once the MAC signals the availability
of the medium inserts a delay before the transmission of
every packet, and thus reduces the achievable through-
put. To avoid this complication, MORE exploits the time
when the medium is not available to pre-compute one
linear combination, so that the coded packet is ready
when the medium becomes available. However, if the
node receives an innovative packet before the prepared
packet is handed over to the driver, the packet is updated
by multiplying the new packet with a random coefficient
and adding it to the pre-coded packet. This consumes
significantly less time than creating a coded packet from
scratch, which requires multiplying and adding all stored
packets form that batch.

5.2 How Much to Send on Each Path?

Opportunistic routing uses multiple paths to forward
packets instead of restricting itself to the shortest path. Not

3Checking independence uses basic algebraic operations. The forwarder
maintains a matrix that is formed via incremental Gaussian elimination of
code vectors of the packets in the same batch. It is a triangular matrix of K
rows, but some of these rows are empty (i.e., all zero). To check if the code
vector of the newly received packet is linearly independent, the non-empty
rows are multiplied by appropriate coefficients and added to it in order so
that consecutive elements of the vector become 0. If the vector is linearly
independent, then one element will not be zeroed due to a missing row,
and the modified vector can be added to the matrix in that empty slot. This
process requires only NK multiplications per packet, where N is the number
of non-empty rows. A similar technique is used for decoding, requiring 2NS
multiplications per packet in order to obtain the identity matrix at the end,
where S is the packet size.
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Figure 4—Candidate forwarders should not send the same
amount of traffic. The figure shows a wireless topology, where
the edges are labeled by their deliverly probability. Though
nodes A and B receive on average the same number of pack-
ets, node B has a much better path to the destination, and thus
should forward more traffic than node A.

all paths, however, are equally useful. Consider the scenario
in Fig. 4. Nodes A and B receive on average the same num-
ber of packets. But since the link from A to the destination is
much worse than the link from B to the destination, it would
be wasteful to have A forward as many packets as B. Node
B is in a much better position to forward most of the flow
to the destination. Node A should just supplement the extra
information that was received by A but not by B.

Note that the problem outlined above is a general mul-
tipath routing problem; it is not created by network coding.
Indeed it is analogous to the shortest path problem in single
path routing. In the shortest path problem, one would like
to find the path that minimizes some cost function. In the
multipath case, one would like to divide the traffic among
all paths connecting the source to the destination as to min-
imize some cost function. Further, in both cases the natural
choice of cost function is the average number of transmis-
sions required per packet.

5.2.1 Minimizing the number of transmissions

MORE addresses the above problem using an optimiza-
tion framework. It divides the traffic flow between the paths
connecting the source and destination as to minimize the ex-
pected number of transmissions per packet. Formally, con-
sider the delivery of a single packet from source to destina-
tion. Let N be the number of forwarders, z; be the number
of transmissions made by candidate forwarder, i, and x;; is
the optimal number of packets that the routing should de-
liver from i to j. We would like to minimize the total num-
ber of transmissions made by all forwarders subject to the
constraint of delivering the packet, i.e.:

argminZzi, (1)
ieN

Subject to the constraints:

1 if i is the source,
Z Xjj — ij,- = ¢ —1 ifiis the destination, 2)
JEN JEN 0 otherwise.

>0 (i) 3)

ap(id) > x. )

jeJ

The first constraint, expressed in Eq. 2, refers to the con-
servation of information flow. Each forwarder sends out as
much flow as it receives, while the source sends out 1 packet
and the destination receives 1 packet. The second constraint,
expressed in Eq. 3, just states that the traffic flow cannot be
negative.

The third constraint embodies the opportunism of wire-
less networks, which we want to exploit to our advantage.
In opportunistic routing, it is sufficient to ensure that when
a node transmits a packet, the packet is received by at least
one node closer to the destination. For example, in Fig. 4,
when the source transmits a packet, it is sufficient to ensure
that either A or B gets the packet. Let J be a set of nodes
closer to the destination than i, and p(i,J) the probability
that at least one node in J receives a packet transmitted by i.
The routing has to ensure that despite the lossy nature of the
environment, i transmits enough to push the required traf-
fic to downstream nodes, i.e., z; p(i,J) > > .., x;j. Assum-
ing that wireless losses are independent, p(li, J) is simply
1 — ][, (1 = pyj), where pj; is the delivery probability from
i to j. Therefore the value can be obtained by probing in-
dividual links. Notice that in general p(i,J) > py, for any
node j € J. In Fig. 4 for e.g., the probability that a packet
transmitted by the source is received by at least one of the
forwarders A or B is 0.96, which is greater than the deliv-
ery probability to either forwarder, i.e., 0.8. Thus, traditional
routing would have picked one of the forwarders, achieving
a smaller traffic flow.

The optimization problem laid out above has two impor-
tant characteristics. First, each node can solve the optimiza-
tion locally using any standard min-cost flow algorithm.
Furthermore, given the assumption that the link losses are
independent, the problem is no more expensive to solve than
the shortest path problem. The node needs only the pairwise
delivery probabilities to find the solution. Second, similarly
to the shortest route computation, the solution of the opti-
mization depends only on the topology and does not change
based on traffic. The solution needs to be updated only when
the average delivery probability between the nodes changes.

The above optimization setup is relatively standard in
multipath wireless routing [24]. Our approach, however, dif-
fers from prior work in this area in that we do not use the so-
Iution of the optimization problem to find the optimal flow
on each path and send traffic according to the optimal flow.
Rather, MORE triggers packet forwarding by the reception
of a packet (as is the case for current single path forward-
ing). A node uses packet reception from an upstream node
as a signal that it should transmit; the number of transmis-
sions the node should attempt is defined by a triggering ra-
tio. Since different nodes have to transmit different numbers



of packets, their triggering ratios differ. The triggering ratio
for A, for example, should be lower than that for B, since B
transmits more packets. We compute the triggering ratio for
node i as,

Zi
Zjeupstream(i) ij(j’ l)

The above formula estimates the triggering ratio as a ra-
tio of the number of expected transmissions a node is sup-
posed to make versus the number of expected packets it will
receive from upstream nodes. The triggering ratio is there-
fore an estimate of how aggressive a candidate forwarder
should be in attempting to send a linear combination of a
recently received innovative packet.

T; = (&)

5.2.2 Example

Let us explore how the above algorithm works in the
topology in Fig. 4. Nodes A and B solve the optimization
problem locally using their knowledge of the pairwise de-
livery probabilities. The solution of the optimization for the
simple topology in Fig. 4 is: z4 = 0.28, zz = 0.93, and
Zsre = 1.04. Note that the source has to perform slightly
more than one transmission per packet to make up for wire-
less losses. Next, each forwarder uses Eq. 5 to compute its
triggering ratio, i.e., the average number of transmissions it
should make for each packet it overhears. In this scenario,
both forwarders receive on average 0.83 transmissions from
src, therefore T4 = 0.34 and T = 1.12. Thus, as expected
node B would forward most of the packets. Every innova-
tive packet that A hears from the source increase A’ss credit
counter by 0.34. Once the credit counter is larger than 1,
node A broadcasts a random linear combination of the pack-
ets it has overheard, and decrements its counter. B does the
same but it increases its credit counter by 1.12 for each in-
novative packet it receives.

5.2.3 Pruning

MORE ’s solution to the linear optimization above might
include forwarders that make very few transmissions (z; is
very small), and thus have very little contribution to the
routing. In a dense network, we might have a large num-
ber of such low contribution forwarders. Since, the over-
head of channel contention increases with the number of
forwarders, it is useful to prune such nodes. MORE prunes
forwarders that are expected to perform less than 10% of
all the transmissions for the batch (more precisely, it prunes
nodes whose z; < 0.1 7))

5.2.4  Sensitivity to delivery probability measurements

Clearly, the paths that MORE takes and the amount of
traffic it pushes on each of them will be affected by the mea-
sured delivery probabilities. Thus, the accuracy of the esti-
mate of the delivery probability between a pair of nodes af-
fects the optimality of our solution. Since the delivery prob-

ability in a wireless environment is dynamic and hard to ac-
curately measure, any practical implementation of MORE
will not be optimal. Such loss of optimality is the norm for
any practical implementation of a wireless routing protocol.
Consider current wireless routing protocols that try to send
along the shortest path, i.e., the path that requires the min-
imum number of transmissions [5]. These protocols suffer
from the same inaccuracy because they rely on measure-
ments of pair-wise delivery probability, which are inaccu-
rate. But in all cases, using these best estimates of delivery
probability produces much better performance than ignoring
them.

5.3 Stopping Rule

In MORE, traffic is pumped into the network by the
source. The forwarders do not generate traffic unless they
receive new packets. Thus, it is important to throttle the
source’s transmissions as soon as the destination has re-
ceived enough packets to decode the batch. Thus, once the
destination receives the K™ innovative packet, and before
fully decoding the batch, it sends an acknowledgment to the
source. To expedite the delivery of acks, they are sent on
the shortest path from destination to source. Furthermore,
acks are given priority over data packets at all nodes and are
reliably delivered using local retransmission at each hop.

When the sender receives an acknowledgment for the
current batch, it stops forwarding packets from that batch.
If the transfer is not complete yet, the sender proceeds to
transmit packets from the next batch.

The forwarders are triggered by the arrival of new pack-
ets, and thus stop transmitting packets from a particular
batch once the sender stops doing so. Eventually the batch
will timeout and be flushed from memory. Additionally,
forwarders that hear the ack while it is being transmitted
towards the sender immediately stop transmitting packets
from that batch and purge it from their memory. Finally, the
arrival of a new batch from the sender causes a forwarder
to flush all buffered packets with batch sequence numbers
lower than the active batch.

5.4 Where does MORE fit in?

MORE ’s performance gains are highest for medium to
long file transfers. For short transfers smaller than even 16
packets, gains will be insignificant. Hence for such trans-
fers, traditional shortest path routing can be used, while for
any transfer greater than 16 packets, MORE can be used.
Note that MORE can co-exist with traditional routing, in-
deed MORE uses traditional routing to send its ACKs to the
source.

6 EXPERIMENTAL ENVIRONMENT

(a) Testbed Characteristics: We have a 25-node wireless
testbed that spans three floors in our building connected via



Figure 5—The topology of the testbed. The width and opacity of
a link reflect its quality.

an open lounge. Paths between nodes are between 1 and 5
hops in length, and the loss rates of links on these paths
range between 0 and 60%.

(b) Hardware: Each node in the testbed is a PC equipped
with an 802.11 wireless card attached to an omni-directional
antenna. The cards are based on the NETGEAR 2.4 & 5
GHz 802.11a/g chipset. They transmit at a power level of 18
dBm, and operate in the 802.11 ad hoc mode, with RTS/CTS
disabled.

(¢) Software: Nodes in the testbed run Linux, the Click
toolkit [19] and a the Roofnet software package [1]. Our im-
plementation runs as a user space daemon on Linux, which
sends and receives raw 802.11 frames from the wireless de-
vice using a libpcap-like interface.

(d) Compared Protocols: Ideally one would like to com-
pare MORE with ExOR [6], but the code for ExOR is cur-
rently not available. Comparison with ExOR’s numbers are
also not possible, since throughput is highly dependent on
the topology used, but MORE ’s throughputs and gains are
in the same range as ExOR. Thus, we compare MORE with
Srcr [5], a state-of-the-art routing protocol for wireless mesh
networks. The protocol uses Djikstra’s shortest path algo-
rithm on a database of link weights. The weights are as-
signed based on the ETX metric [5], which is an estimate of
the number of transmission required to successfully transmit
a 1500-byte packet on that link, including the expected num-
ber of MAC level retransmissions. The protocol also source-
routes the packets to avoid routing loops when link metrics
change.

(e) Conducted Experiments: Each of our experiments in-
volves a run of Srcr immediately followed by a run of
MORE, between the same source destination pair. We lever-
age the ETX implementation provided with the Roofnet
Software to measure the link delivery probability. Before
running an experiment, we run the ETX measurement mod-
ule for 2 minutes to compute pair-wise delivery probabilities
and the corresponding ETX metric. These measurements are
then fed to both Srcr and MORE, and used by the two rout-

Operation Avg. Time [pus] | Std. Dev. [us]
Independence check 6.0 1.5
Coding at the source 180 10
Decoding 180 15

Table 1—Computational cost of packet operations in MORE.
Note that the coding cost is highest at the source because it has
to code all K packets together. The coding cost at a forwarder
depends on the number of innovative packets it has received,
and is always bounded by the coding cost at the source.

ing protocols for their route selection. Each node then runs
the Srcr (Roofnet) routing protocol for 2 minutes and tries
to transfer as many packets as possible between the selected
node pair(s). MORE runs immediately afterwards and tries
to transfer as many packets as possible.

Unless stated differently, the batch size of MORE is set
to K = 32 packets. The packet size in both MORE and Srcr
experiments is 1500B. The queue size at Srcr routers is 50
packets. In contrast, MORE does not use queues; it buffers
at most K packets from each active batch.

Finally, most experiments are performed over 802.11b
with a bit-rate of 5.5Mb/s. In §7.2.3, we allow traditional
routing (i.e., Srcr) to exploit the auto-rate feature. For
MORE, the concept of auto-rate is not meaningful because
MORE broadcasts every transmission to many potential re-
ceivers. Thus, we compare Srcr with auto-rate to MORE
with a fixed bit-rate of 11Mb/s.

7 IMPLEMENTATION RESULTS

This section presents the results of running MORE in a
25-node wireless testbed. It shows that MORE substantially
improves wireless throughput.

7.1 Efficient Coding

Since network coding requires multiplying individual
data bytes, it is often a concern whether it could create a
CPU bottleneck. MORE provides an efficient implementa-
tion of network coding that bounds the number of packets
coded together and checks independence by processing code
vectors. The cost of coding/decoding packets is incurred pri-
marily when every byte of a packet has to be multiplied with
a random number (in a finite field of size 2%). To optimize
this operation, our implementation reduces the cost by us-
ing a 64KB lookup-table. The lookup table caches results of
all possible multiplications, hence multiplying any byte of a
packet with a random number is simply a fast lookup.

Table 6 summarizes the computational cost of using
network-coding in MORE. The measurements are taken on
a Pentium 4 machine with a 3.2GHz CPU and 512KB of
cache. The micro benchmarks indicate that coding and de-
coding are equally costly. They require on average K finite-
field multiplications per byte, where K is the batch size. This
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Figure 6—Cumulative distribution of the throughput gain of

MORE when compared to Srcr. MORE achieves a median

throughput gain of 60%, while some source-destination pairs

show as much as 12x increase in throughput.
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Figure 7—Scatter plot of average throughput attained by
MORE and Srcr. Each point represents the throughput of a
particular source destination pair. Points above the 45-degree
line indicate improvement with MORE. In comparison to Srcr,
MORE either improves the flow’s throughput or does not af-
fect it. Node pairs which have low absolute throughput with
Srer show the maximum gain with MORE .

ties the choice of K with the maximum achievable through-
put. In our setting K = 32 and decoding takes on average
180pus per 1500B packet. This limits the effective through-
put to 66 Mb/s, which is much higher than the bit rate of
current wireless mesh networks.

7.2 MORE Throughput Gains

We would like to examine whether MORE can ef-
fectively exploit opportunistic receptions to improve the
throughput. We define the throughput gain as the ratio of
the throughput under MORE to the throughput under tra-
ditional routing, i.e. Srcr, for the same topology and traffic
demands.

Fig. 6 plots the CDF of the throughput gain MORE has
over Srcr. The CDF is computed over 75 randomly selected
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Figure 8—Impact of different batch sizes on MORE’s through-
put. The figure shows the CDF of the throughput taken over 20
random node pairs. Though larger batch sizes slightly improve
the throughput, MORE is relatively insensitive to batch size.

node pairs. The figure shows that the median throughput
gain achieved with MORE is about 1.6 —i.e., for our topol-
ogy, MORE increases the throughput in half of the cases by
at least 60%, when compared to state-of-the-art best path
routing. It is worth noting that the maximum throughput im-
provement can be much more than the median. In particular
a few node pairs experienced a throughput improvement of
Sxto 12x.

We try to identify the scenarios in which MORE is
particularly useful-i.e., when should one expect to see a
huge throughput gain? Fig. 7 shows the scatter plot for
the throughputs achieved under Srcr and MORE for the
same source-destination pair. Points on the 45-degree line
have the same throughput under both schemes. The fig-
ure shows that for the vast majority of source-destination
pairs in our testbed, MORE improves the throughput. Even
when it does not improve the throughput, using MORE does
not really hurt the performance. Also, the figure reveals
that the high gain happens at low absolute throughput. This
is expected and consistent with the experiments in [6]. A
source-destination pair that achieves low throughout under
Srcr does not have any special path with substantially better
quality. There are usually many low-quality paths connect-
ing the two nodes. By using the combined capacity of all
these low-quality paths, MORE manages to greatly boost
the throughput of such source-destination pairs. On the other
hand, when the best path has very high link quality, oppor-
tunistic receptions by nodes not on the best path is of little
value.

7.2.1 Batch Size

We picked K = 32 as default batch size. However, as
shown in Fig. 8, MORE is relatively insensitive to the ex-
act value of batch size. The figure examines the throughput
of MORE for batch sizes of 16, 32, and 64, and compares
it against the throughput achieved with traditional routing.
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Figure 9—Comparison of end-to-end reliability for MORE and
Srcr. The figure shows the CDF of loss rate taken over various
source destination pairs. MORE is 100% reliable, Srcr on the
other hand exhibits loss rates ranging from 0 to 92%. MORE
therefore achieves high throughput as well as perfect reliabil-
ity.

The figure shows that a larger batch size slightly increases
MORE’s throughput. But the differences are insignificant.
MORE may get a few spurious transmissions between the
time the destination decodes a batch and when the source
and forwarders stop transmitting packets from that batch. A
bigger batch size allows MORE to amortize the cost of these
spurious transmissions over a larger number of packets, in-
creasing the overall throughput.

Insensitivity to a range of batch sizes allows MORE to
vary the batch size to accommodate different transfer sizes.
We expect that for any transfer size larger than 7-10 pack-
ets (i.e., a batch larger than 7-10 packets), MORE will show
significant advantages. Shorter transfers can be sent using
standard single path routing.* Also, note that the larger the
batch size, the more costly the coding/decoding. Thus, de-
pending on the wireless bit-rate, there will be a bound on
how big the batch can be. Transfers larger than the maxi-
mum batch size have to be sent using multiple batches.

7.2.2  Reliability

MORE ensures reliable delivery of packets; it keeps
transmitting until the destination can decode. This is a sig-
nificant departure from traditional routing which assumes
that reliability will be ensured by end-host retransmissions.
MORE'’s reliability is both a necessity and a feature. It is a
necessity because network coding does not allow the des-
tination to decode partial information in a batch. In many
cases, it is a feature because wireless errors can cause a drop
probability too high even for applications that do not require
strict reliability. In traditional routing, each forwarder tries
to retransmit the packet a fixed number of times at the MAC
layer, if the packet still cannot get through it is discarded.

4MORE benignly co-exists with shortest path routing. Indeed, MORE uses
shortest path routing to send batch acks.
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Figure 10—Comparison of throughput achieved by MORE run-
ning at 11 Mb/s and Srcr using automatic bit-rate selection,
for 10 randomly selected source-destination pairs. MORE out-
performs traditional single path routing even when we activate
802.11 smart rate selection to improve the quality of the links.
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Such lost packets have to be recovered via end-to-end re-
transmissions; these are quite expensive in wireless.

Figure 9 plots the CDF of the loss rate for both MORE
and Srcr. The MAC level retransmissions for the Srcr exper-
iments are set to 11. Despite of the large number of MAC re-
tries, traditional routing shows significant packet loss, 60%
of the node pairs show loss rates ranging from 1% to 37%,
and 20% of the node pairs experience a loss rate larger than
80%. The high loss rates expressed by Srcr comply with
prior results [5]; they are explained by Srcr’s tendency to
pick links with relatively high loss rate in order to reduce the
number of hop,s and thus improve the overall throughput.
MORE shows no end-to-end loss for all node pairs. Note
that for path with error rates larger than 20%, TCP trans-
missions are likely to halt. In contrast, MORE can cope with
such lossy environments and provide reliable data transmis-
sion. MORE therefore achieves higher throughput gains as
well as high reliability.

7.2.3  Autorate selection

Wireless networks use automatic rate selection [4] for
each link to maximize throughput. MORE on the other hand
does not have the concept of a link, it uses a single bit-rate
for all nodes. We compare the performance of MORE with
traditional routing using automatic bit-rate control. We com-
pare it against a state of the art bit-rate selection algorithm
present in the Madwifi [25] driver.

Figure 10 compares the throughputs obtained by Srcr
with automatic rate selection and MORE for 10 randomly
selected node pairs. MORE achieves better throughput even
when traditional routing is combined with automatic rate
selection. Paths with low absolute throughput in traditional
routing once again show the largest gains. Such paths have
low quality links irrespective of the bit-rate used, therefore
auto-rate selection does not help these paths.



8 RELATED WORK

Related work spans the following two areas.

(a) Network Coding: Recent years have seen a substantial
advancement in the theory of network coding. Ahlswede et
al. started the field with their pioneering paper [2], which
shows that having intermediate nodes in the network mix
information from different flows increases the throughput
and allows the communication to achieve broadcast capac-
ity. This was soon followed by the work of Li et al., who
showed that, for the multicast case, linear codes are suffi-
cient to achieve the maximum flow bounds [21]. Koetter and
Médard [18] showed that network coding can be cast into
an algebraic framework and polynomial time matrix mul-
tiplication and inversion algorithms can be used encoding
and decoding. Ho et al. extended these results to random
codes [13]. Some recent work has studied network coding
in the wireless environment [11, 28]. In particular, Lun et
al. have studied network coding in the presence of omni-
directional antennae and shown that the problem of mini-
mizing the communication cost can be formulated as a lin-
ear program and solved in a distributed manner [24]. All of
this work, however, is mainly theoretical; Further, most of it
assumes multicast traffic, known sender and receivers, and
smooth traffic. In contrast, this paper focuses on a practical
implementation and measured throughput improvements.

The closest work to ours is a recent paper by Katti et

al. [17] that shows via simulation and a prototype imple-
mentation that having the routers intelligently XOR packets
going to different destinations substantially improves net-
work throughput. Our work provides a complementary per-
spective on wireless network coding; it shows that coding
packets going to the same destination also greatly increases
the overall throughput. Future work should explore the po-
tential of combining the two schemes to further boost net-
work throughput.
(b) Diversity in wireless networks: Opportunistic routing
has been introduced by Biswas and Morris, whose paper
explains the potential throughput increase and proposes the
ExOR protocol as a means to achieve it [6]. Our work builds
on this foundation but adopts a fundamentally different ap-
proach; It shows how to employ network coding to provide
a flexible and robust approach to opportunistic routing.

A number of proposals exist for intelligently picking
next hops in wireless networks. Many of them rely on sig-
nal strength measurements as an indicator of the quality of
the link. Larsson [20] uses RTS/CTS packets to measure re-
ceived signal strength. Nodes that receive RTS packets reply
with their signal strength in the CTS packets. The sender
picks the node with the best signal strength as the next hop.
CTS packets could collide though, hence modifications have
been proposed [15] to impose an order on the transmission
of the nodes’ replies to RTS packets. Other proposals [9, 31]
use historical measurements or geographical distances as an
approximation of link quality. The above proposals rely on
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measurements to pick next hops before a packet is trans-
mitted, MORE picks forwarders after the packets have been
received at the forwarders.

Cooperative diversity [14] techniques use opportunistic
receptions in wireless networks to provide higher diversity
gains. Essentially different nodes receiving the transmission
are used as multiple antennas to retransmit the same bits.
This leads to duplicate transmissions, which is a problem
in dense networks. Further it assumes orthogonal channels
or time division multiplexing, which are unrealistic assump-
tions in practice.

9 CONCLUSION

Opportunistic routing and network coding are two pow-
erful ideas which may at first sight appear unrelated. Our
work combines these ideas in a natural fashion to provide
opportunistic routing without node coordination. We design
a practical system, MORE, that plugs random linear network
coding into the current network stack, exploits the oppor-
tunism inherent in the wireless medium, and provides sig-
nificant performance gains. Field tests on a 25-node wire-
less testbed show that the median throughput gain of MORE
compared to traditional single-path routing is 1.6, while the
maximum exceeds 10-fold.
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