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ABSTRACT

This work has two primary goals. The first is to advance our fundamental
understanding of grain boundaries by making direct measurements of grain
boundary thermodynamic properties using ultrafine-grained materials. The second
is to explore possible deviations from conventional behavior at ultrafine grain sizes,
specifically in regards to grain boundary thermodynamic properties and solute
segregation to grain boundaries.

The first direct measurements of grain boundary thermodynamic properties in an
oxide have been made. The excess enthalpy and excess heat capacity of grain
boundaries in TiO2 were measured by the calorimetric monitoring of grain growth
in samples with an initial mean grain size of 30-70 nm. These samples contain a
sufficiently large amount of grain boundary area such that the heat release upon
grain growth can be measured accurately by commercial calorimeters. High
density, fully oxygenated, phase-pure rutile (TiO2) with a mean grain size <50 nm
was prepared by a chemical method and was found to be more appropriate for these
measurements han highly defective fine-grained TiO2.x prepared by the inert gas
condensation process.

Results show a clear temperature and/or grain size dependence of the excess grain
boundary enthalpy of TiO2 . The specific grain boundary enthalpy, Hgb, increases
from -0.5-1 J/m2 at low temperatures and very fine grain sizes (600-780°C, - 30-
200 nm) to a value of - 1.3-1.7 J/m2 averaged over a much larger temperature and
size range (600-1300°C, 30 nm-2gm). Size and temperature effects on Hgb are
inextricable. Additional evidence of a temperature- or size-dependent Hgb is
obtained from measurements of the excess heat capacity of ultrafine-grained
samples. The trend in Hgb is not due to experimental artifacts; extraneous
contributions from heat-dissipating processes other than grain growth, including the
anatase-rutile phase transformation, sintering, and relief of lattice strain, are shown
to be negligible.
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It is proposed that the most plausible explanation for a specific grain boundary
enthalpy that increases with temperature or grain size is a size-dependent
nonstoichiometry of rutile due to the impingement of space charge layers in the
grain size and temperature range of the experiments. Debye lengths of 165 nm and
33 nm are estimated for intrinsic, slightly reduced TiO2 at 800° and 1000°C,
respectively.

Direct measurements have been made of size-dependent solute segregation at fine
grain sizes. TiO2 powder was doped with 0.34 mole% Ca, and samples ranging in
grain size from 50 nm to -0.75 .m were prepared. Using a STEM microanalysis
technique to quantify the grain boundary coverage of calcium, segregation below
grain sizes of 200-400 nm was found to deviate from conventional segregation
isotherms, exhibiting a clear size dependence. Below this threshold grain size, there
is an excess of boundary sites relative to the supply of solute, and the lattice is
almost entirely depopulated of solute. In the present material system, boundaries
were found to become saturated with calcium when the coverage reached
approximately one half of an equivalent monolayer.

These experimental results are modeled with a statistical thermodynamical treatment
of segregation which takes into account the large density of grain boundary sites in
this size range (Colbourn et al, 1983). The threshold grain size, below which
segregation is size-dependent, is calculated as a function of the heat of segregation,
temperature, doping level, and saturation coverage.

The measurements of Ca segregation, along with observations of CaTiO3
precipitates upon coarsening, support a mechanism of equilibrium enhancement of
total solid solubility due to grain boundary segregation. A weakly temperature-
dependent total solid solubility of - 1 mole% Ca in TiO2 with a mean grain size of
50 nm is estimated using the observed segregation behavior.

Calcium was observed to be an effective grain growth inhibitor in ultrafine-grained
TiO2. The present samples, both with and without calcium additions, show more
resistance to grain growth than other ultrafine-grained TiO2 reported to date. The
effective activation energy for grain growth indicated by a Kissinger analysis of
grain growth exotherms is 1.3-1.5 eV in both Ca-doped and Ca-free samples. The
observed effect of calcium on grain growth exotherms is discussed in light of the
size-dependent segregation behavior in these samples.

Thesis Supervisor: Professor Yet-Ming Chiang
Title: Kyocera Associate Professor of Ceramics
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ORGANIZATION OF THESIS

This research divides rather readily into subtopics, and as such, this

document is a combination of three manuscripts that have been prepared for

publication in refereed journals. Chapters 2 and 3 describe the measurements of

excess thermodynamic properties of grain boundaries in TiO2. Chapter 4 describes

the investigation of size-dependent solute segregation phenomena, and Chapter 5

contains results and discussion of grain growth inhibition in ultrafine-grained TiO2

due to solute additions. Each of these chapters contains its own introduction and

summary. Wherever possible, redundancies between the chapters have been

eliminated. Sample preparation and TEM characterization of grain size and grain

boundary area are described fully only in Chapter 2, and a full description of the

STEM microanalysis technique is contained only in Chapter 4. An overall

introduction, conclusions, and suggestions for future work are contained in Chapters

1, 6, and 7 and encompass all topics.
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CHAPTER 1

BACKGROUND AND RESEARCH OBJECTIVES

This work is based on the proposition that by studying ultrafine-grained

materials we can advance our understanding of the fundamental properties of grain

boundaries. The measurement of grain boundary properties has traditionally been

limited by the need for extremely high resolution methods. But as grain size

decreases and the volume fraction of interfaces increases, grain boundary properties

begin to contribute significantly to the macroscopic properties of a material and

reach a magnitude that is within the sensitivity of many experimental techniques. In

particular, a primary objective of this work was to exploit the high density of grain

boundary area in an ultrafine-grained material to make measurements of grain

boundary thermodynamic properties.

Among the fundamental properties of grain boundaries, excess

thermodynamic properties are less studied than chemistry and structure, and are

difficult to measure experimentally. Furthermore, while experimental and

theoretical studies have provided some insight into structure-energy relations of

special, short-period grain boundaries in metals and oxides, 1 '11 knowledge about the

general, high angle boundaries that are more relevant to most technological

applications is decidedly lacking.l12 13 Particularly for oxides, the computational

task of modeling a general high angle grain boundary at finite temperatures is

exceedingly difficult, and experimental work has focused almost exclusively on the

measurement of dihedral angles, which are only an indirect indication of grain

boundary tension relative to that of a free surface.

In contrast with dihedral angle measurements, the calorimetric measurement

of grain boundary properties is direct and absolute; since the driving force for grain

growth is the elimination of grain boundary area, the heat released during grain
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growth is a direct measure of the enthalpy of the average grain boundary. While the

enthalpy release upon grain growth of a coarse polycrystal is so small that its

measurement is impracticable, for ultrafine-grained materials the total heat release is

within the sensitivity of commercial calorimeters. In addition, an excess heat

capacity of ultrafine-grained materials can be measured which, in concept, enables

calculation of grain boundary entropy and the temperature dependence of the grain

boundary enthalpy. Thus, a unique feature of the calorimetric measurement of grain

boundary thermodynamic properties is the ability to measure independently the

enthalpic and entropic contributions to the grain boundary free energy.

The accuracy of calorimetric measurements of grain boundary

thermodynamic properties is entirely dependent on the appropriateness of the

material for these measurements. Many other heat-dissipating processes can occur

simultaneously with grain growth and are thus a potential source of artifacts in the

measurements. For example, measurements of the excess enthalpy and excess heat

capacity of grain boundaries in ultrafine-grained metals have been complicated by

large lattice strain energies, sintering, and adsorbed gases. Therefore, this work

was initially centered on an iterative process of sample preparation and

characterization, until it could be shown that contributions from extraneous heat-

dissipating processes were negligible relative to the excess heat from grain

boundaries.

TiO2 (rutile) was the material used throughout this work, and a brief note

about the reasons for and the implications of its selection is appropriate. Initially,

preparation of fine-grained Si and MgO thick films was attempted using electron

beam evaporation. These are more simple, model material systems, but they were

not pursued because of processing difficulties and very small DSC signals due to
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low sample mass. In comparison, synthesis of appropriate ultrafine-grained TiO2

samples was more readily accomplished, but TiO2 is a more complex model system.

For example, in any ionic system there exists the possibility of space charge

formation at grain boundaries.l14 15 If the formation energies of oppositely charged

defects at grain boundaries are not equal, grain boundaries have a net charge which

is compensated by the formation of a space charge layer adjacent to the boundary,

enriched in oppositely charged defects from the bulk to maintain overall

electroneutrality. Another dimension of complexity in TiO2 is due to its intrinsic

nonstoichiometry (TiO2 x),16 most pronounced at high temperatures and low oxygen

partial pressures, the source of which is the dual valence states of the titanium ion

(Ti4 + , Ti3 +). In addition, a long-standing controversy in studies of the defect

chemistry of rutile has been whether Schottky or Frenkel defect pairs

predominate;16,17 which of the two is energetically favored determines whether

negatively charged defects are compensated by oxygen vacancies (Vo') or titanium

interstitials (Tii ....). The introduction of aliovalent solutes further complicates the

defect equilibria, and mixed ionic and electronic compensation of defects may

occur. Thus, the complexity of grain boundaries in TiO2 is clear; this is both a

challenge during interpretation of our grain boundary thermodynamic property

measurements and an opportunity to use these measurements to learn more about

grain boundaries in this complicated yet technologically important ionic system.

Associated with the use of ultrafine-grained materials to study grain

boundary properties is the possibility that these properties are distinct from those in

conventional coarse-grained materials. Such claims have been common in the recent

flurry of activity in nanocrystalline materials research. Thus, an additional

objective of this work was to explore possible deviations from conventional behavior
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at ultrafine grain sizes. Specifically, the effect on the grain boundary enthalpy of

impinging space charge layers at fine grain sizes is hypothesized, and solute

segregation at fine grain sizes is investigated.

Several theoretical studies have predicted a deviation from conventional

solute segregation isotherms1 8,19 and an enhanced total solid solubility20 as grain

size decreases. This departure from conventional behavior can be attributed simply

to the very large number of grain boundary sites at ultrafine grain sizes rather than

to a unique nanocrystalline" behavior. To the best of our knowledge, these

predictions had never been quantified experimentally, and preparation of Ca-doped

fine-grained TiO2 along with the use of a recently developed, highly quantitative

STEM microanalysis technique has allowed us to do so.

A secondary objective of this work was to evaluate the effectiveness of solute

segregation as a means of inhibiting grain growth at very fine grain sizes; extending

the stability of nanostructures to higher temperatures is believed to be critical if

these materials are to be used in widespread technological applications.21 ,2 2 The

grain growth exotherms of ultrafine-grained Ca-doped and Ca-free TiO2 are

compared and analyzed using methods developed by Chen and Spaepen2 3 to give

some information about the kinetics of grain growth. We then seek to make

correlations between the characteristics of the grain growth exotherms and the size-

dependent segregation behavior that was observed by STEM.

The final import of this research is twofold. The first direct measurements

of the excess thermodynamic properties of general, high angle grain boundaries in a

complex, nonstoichiometric oxide have been made and should be of interest to those

studying the fundamental science of grain boundaries. In addition, these

measurements of grain boundary thermodynamic properties and characterization of

18



solute segregation and resulting grain growth inhibition at ultrafine grain sizes are of

paramount importance to researchers working on the control of thermal stability,

microstructural development, and properties of nanocrystalline materials.
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CHAPTER 2

MEASUREMENTS OF THE EXCESS ENTHALPY OF
GRAIN BOUNDARIES USING ULTRAFNE-GRAINED TiO2

2.1 INTRODUCTION

The direct calorimetric measurement of specific grain boundary enthalpy

appears to have been first attempted in the 1950's by Astr6m,1 who used metals

with grain sizes of 100 gim or more. The accuracy of this technique is greatly

improved by the use of ultrafine-grained materials (10-100 nm), which have a grain

boundary area per unit volume that is three to four orders of magnitude larger than

Astrom's. The tremendous amount of grain boundary area also makes these

measurements feasible using commercial calorimeters. Chen and Spaepen seemed to

revive interest in this technique several years ago when they used calorimetry as a

means of differentiating between nucleation and growth and grain growth processes2

and demonstrated that the grain growth exotherm can be analyzed to give

information about the kinetics of grain growth.3

Despite the apparent simplicity and elegance of this approach, in practice the

calorimetric measurement of grain boundary thermodynamic properties is not

trivial, in large part due to heat release from processes that occur simultaneously

with grain growth. Most calorimetric studies of nanocrystalline metals and alloys

have measured a combination of grain boundary energy and lattice strain energy 4 6

or have been complicated by the presence of multiple phases.7 Furthermore, many

of these studies have used samples that are less that 90% of bulk theoretical density,

and thus the excess enthalpy is likely to be a combination of grain boundary and

surface energies. After attempting to subtract contributions from lattice strain,

researchers have reported specific grain boundary energies that are sometimes

typical of4 '6 and in other cases much greater than5 their coarse-grained counterparts.
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Although these studies have provided useful information about total excess

properties and the thermal stability of nanocrystailine metals and alloys, most "grain

boundary" enthalpies derived from them cannot be interpreted unambiguously

because of the likelihood of other contributions. In order to make absolute

measurements of grain boundary properties, these artifacts must be eliminated.

Compared with the calorimetric studies of metals just cited, the work on

ultrafine-grained TiO2 described herein more closely approaches unadulterated grain

growth and thus is a more accurate measurement of specific grain boundary

enthalpy, the first such measurement in an oxide. Special attention has been given

to sample preparation and thorough characterization to eliminate potential artifacts.

It is shown that extraneous heat dissipation from the anatase-rutile phase

transformation, sintering, and relief of lattice strain is negligible relative to the

excess heat of grain boundaries. The measurements clearly indicate a temperature

or grain size dependence of the specific grain boundary enthalpy (Hgb, J/m2 ).

Possible origins of this trend are discussed, including solute segregation, an intrinsic

dependence of boundary structure and energy on temperature or grain size, and

grain boundary triple junctions. However, the most plausible explanation is shown

to be a size-dependent nonstoichiometry of TiO2 due to impinging space charge

layers in high purity materials at very fine grain sizes.

2.2 EXPERIMENTAL METHODS

2.2.1 Sample Preparation

Nanocrystalline TiO2 powder made by the inert gas condensation process

was provided to us by J.A. Eastman at Argonne National Laboratory, and some was

also obtained from a commercial source.* Details of this process are best described

* Nanophase Technologies Corporation, Darien, IL
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by others,8 ' 9 but a brief outline will be given here. Titanium metal is evaporated,

using either Joule-heating or an electron beam, into a high vacuum chamber

backfilled with an inert gas, usually helium, to a pressure of several hundred Pa.

Titanium clusters collide with gas molecules, condense, and are carried either by

natural convection or forced gas flow to a collection point, typically a rotating liquid

nitrogen cold finger. The chamber is then evacuated and oxygen is introduced. The

oxidized clusters are then scraped off the cold finger and collected. Subsequent

anneals in oxygen are sometimes used to oxidize the powder further.

Ultrafine TiO2 powder was also synthesized in our own laboratory using a

solution-chemical process. High purity (99.999%) TiC 4 and SnCI4* were added in

the desired proportions to deionized water initially at 0°C. The addition of tin at a

level equivalent to - 1.1 mole % SnO2 accelerates the anatase-to-rutile phase

transformation such that phase-pure rutile is obtained while retaining a primary

crystallite size on the order of 20 nm. (Details about the effect of dopants and

processing methodology on the anatase-rutile phase transformation are contained in

Appendix B.) The aqueous solutions of chlorides were co-precipitated by adding

7.4 M reagent-grade ammonium hydroxide under rapid stirring. The

precipitate/water mixture was given at least five washing cycles consisting of

stirring, sedimentation, decantation of supernatant, and dilution with deionized

water. The mixture was then sprayed into liquid nitrogen and freeze-dried.**

Powders were calcined in air on platinum foil for one hour at temperatures between

550-600°C. Chemical analysis of calcined powders was accomplished using

inductively-coupled plasma emission spectroscopy (ICP), the results of which

are shown in Table II-1. The starting titanium tetrachloride and titanium metal are

* All chemicals from Johnson-Matthey, Alfa Chemicals, Ward Hill, MA
** Virtis Co., Gardiner, NY

*** Union Carbide Corp., Tarrytown, NY
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tMeasured by ion chromatography.
N.A. =not analyzed
ANL=inert gas-condensed powder produced at Argonne National Laboratory

probably the sources of minor silicon impurity that is present; alternatively, it could

be an artifact of the ICP measurement. The only other impurity detected in the

chemically-derived powders was < 260 ppm of residual chlorine and a small amount

of boron in one of the batches.

Powders were hot pressed in air inside a WC/Co die* into -- 5 mm diameter

pellets. The temperature outside the die was maintained at 7000 C; inside the die the

temperature was estimated to be 600-6250 C at steady state. To achieve bulk

densities >95 % of the theoretical value, a pressure of -400-700 MPa and pressing

times of 2-4 hours were sufficient for chemically-derived powders; inert gas-

condensed powders required 1.1-1.3 GPa and 6-10 hours to reach a similar density.

Following removal from the die, pellet surfaces were ground to remove a thin

discolored layer from die contamination. Pellets were then annealed in air for

24 hours at 5000 C. The mean grain size after this treatment was generally on the

order of 35-50 nm, and samples were phase-pure rutile by x-ray diffraction.

* Southern Carbide Die Co., Oak Park, MI
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TABLE II-1. Chemical analysis of chemically-derived and inert gas- condensed
ultrafine TiO2 powders, as measured by inductively-coupled plasma emission
spectroscopy.

Mole%
Powder Batch Sn Si Clt Other (ppm)

S1i 0.56 0.10 N.A. B(370)
S2 1.15 0.38 32 ppm
S3 1.07 0.37 258 ppm

ANL 54 ppm 0.58 N.A. Al(888), Fe(153), Ca(54)
- -



2.2.2 Differential Scanning Calorimetry

All of the calorimetry was conducted using a Netzsch DSC 404,* which

operates up to 1400°C with a stable baseline due to the temperature uniformity of its

platinum-wound furnace. This instrument measures the temperature difference

between a sample and a reference (given by a voltage difference, AV, between

thermocouples), which upon calibration can be converted to heat flow (mW), thus

enabling quantitative measurements of enthalpy and heat capacity. A calibration

begins with measurement of the baseline, which is the temperature difference

between the sample and reference platforms, each containing an empty platinum

crucible with lid. A synthetic sapphire disk of known heat capacity** is then placed

in the sample crucible, and the run is repeated under identical conditions of heating

rate and atmosphere, which in all cases was compressed air flowing at 20 cc/min.

The heat flow H (mW) into this inert sample of known heat capacity at temperature

T is calculated as:

HI(T) = Cp (T) mass -a (2-1)

where a is the heating rate (Ks-l). The AV signal of the baseline run is subtracted

from that of the sapphire run, and a "sensitivity" (a calibration constant) in laV/mW

is computed as a continuous function of temperature. (A more common but less

accurate calibration procedure is to compare measured and known heats of fusion of

two or three different metals, and then assume a linear interpolation and/or

extrapolation over the entire temperature range of interest.) The sensitivity of the

instrument decreases non-linearly from a value slightly less than 1 tV/mW at room

temperature to -0.3 gV/mW at 13000C; the sensitivity-temperature function is

highly reproducible and is independent of heating rate. The temperature difference

* Netzsch, Inc., Pickering, PA
** National Institute of Standards and Technology, Standard Reference Material 720.
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in !V between an unknown sample and the reference can then be converted to heat

flow in mW by dividing by the sensitivity at each increment in temperature.

Each measurement of the heat flow during grain growth of an ultrafine-

grained TiO2 sample proceeded as follows. A piece of the pellet was cut and

reserved for TEM observation of the as-prepared microstructure. The remaining

sample was rinsed successively in acetone, methanol, and deionized water, then

dried and weighed on a microbalance which was regularly calibrated. A typical

sample mass for calorimetry was 50-100 mg. After a calibration of the DSC was

completed, the sample was given a "cleaning run" to 500°C to remove any surface

residue. (There is insignificant grain coarsening during this step since samples were

previously annealed at 500°C for 24 hrs. following hot pressing.) To measure the

enthalpy release during grain growth, both "scanning" and "isothermal" runs were

conducted. Scanning runs were conducted at heating rates of 10-40°/min to

1300°C, and thus result in a specific enthalpy (J/m2) averaged over that temperature

and grain size range. "Isothermal" experiments were accomplished by scanning at

20°/min to the temperature of interest (generally 650-800°C) and holding for 30

minutes. These measurements thus give an excess enthalpy averaged over a much

smaller temperature and grain size range. After completion of the first run (either

scanning or isothermal) a second run was made under identical conditions, without

lifting the furnace or disturbing the sample, to serve as a baseline. Selected

experiments showed no detectable change in baseline upon conducting a third run,

indicating that no detectable thermal changes occurred after the first measurement.

The calorimetric signal in mW of the second run (coarsened, inert sample) was

subtracted from that of the first run (nanocrystalline sample undergoing grain

growth), and the resulting exotherm was integrated to give a total enthalpy release,

AHto, in J/g. The specific grain boundary enthalpy (J/m2) is then Hgb=AHtot/ASV
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where ASv is the change in grain boundary area, the measurement of which is

discussed in the next section.

2.2.3 Determination of Grain Size and Grain Boundary Area by TEM

An accurate determination of the change in grain boundary area upon

coarsening is critical to the conversion of total excess enthalpy (J/g) to specific grain

boundary enthalpy (J/m2 ). Since the grain boundary area per unit volume (Sv)

decreases by almost two orders of magnitude during some of our DSC

measurements, the accurate measurement of Sv for the as-prepared ultrafine-grained

structure is particularly important. One means of measuring Sv is the well-known

"linear intercept method," SV=2.PL, where PL is the number of grain boundary

intersections per unit length of test line.10,11 This method is attractive in that no

assumptions about grain shape or size distribution are necessary, but it is applicable

only to a two-dimensional surface, which is quite difficult to prepare and observe

for a sample with grain size < 100 nm. When the grain size is less than the TEM

foil thickness, TEM images are projections of a volume of material, and the linear

intercept method would overestimate SV since the true length of the test line would

be greater than assumed. (The test line in reality would zig-zag through the foil

thickness.) Thus, an alternative method for determining Sv which uses the mean

value of maximum grain dimensions was applied since it is more accurate at very

fine grain sizes.

The average grain size and total grain boundary area of as-prepared and

coarsened samples were obtained directly from TEM micrographs. Samples were

prepared by mechanically thinning a small piece of the pellet to a thickness of

- 251m, followed by cold-stage ion thinning using Ar + ions with a 5-6 kV

accelerating voltage. The microscopy was conducted in bright-field mode using a

JEOL 200CX, and fifteen to twenty micrographs were taken at random from the
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thinned area of each sample. TEM negatives were enlarged onto a point grid, and

the maximum projected dimension of the grain at each grid point was measured; at

least five hundred grains in each sample were measured.

Two criteria must be satisfied in order to equate the maximum projected

dimension of a grain with its maximum dimension. First, the grains must be

equiaxed; we found this to be the case from TEM observations. Second, the grains

must be contained in their entirety within the TEM foil. This assumption is

reasonable when the grain size is much less than the foil thickness and a number of

grains can be seen overlapping through the foil, as was the case in our as-prepared

samples. (At the finest grain sizes, three grains were often seen through the cross

section of the foil, decreasing to two in coarser-grained samples, which suggests a

foil thickness range of - 120-500 run.) In the post-scan (13000 C) microstructures,

the maximum projected dimension of grains is typically 1-4 Alm, larger than the foil

thickness, in which case the grains are truncated and the maximum projected

dimension underestimates the maximum grain dimension. However, since the

change in grain boundary area is insensitive to the final grain size, no further

corrections were made. (For example, a final grain size of 10im rather than m

causes <2.5% difference in the change in boundary area when the initial grain size

is 35 nm.) The grain size range between 100-500 nm is an awkward area in which

neither the use of projected dimensions or the linear intercept method is entirely

appropriate; both tend to underestimate grain size and overestimate Sv when the

critical assumptions begin to fail. As a test, both methods were used on a sample

with a mean grain size of - 500 nm, and the linear intercept method indicated an S v

- 30% greater than that calculated using projected dimensions. Thus, even at this

larger grain size the projected dimension method appears to overestimate Sv by less

than the linear intercept method.
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The calculation of grain boundary area using the mean maximum dimension,

D, requires knowledge of the grain shape. We have assumed regular

tetrakaidecahedra, for which the surface-to-volume ratio is SV=2.3675/L, where L

is the edge length.l If one examines possible projections of a tetrakaidecahedron,

the largest projected dimension lies in the range 2.8L-3.2L. Indeed, the statistical

average for randomly-oriented tetrakaidecahedra is 3.OL.11 Therefore, the surface-

to-volume ratio of a single tetrakaidecahedron expressed in terms of its largest

projected dimension, D, is 7.1025/D. For identical contiguous tetrakaidecahedral

grains, the grain boundary area per unit volume is SV=3.5513/D since each

interface is shared by two grains.

This estimation of grain boundary area can be made more accurate if one

accounts for a size distribution about the mean. By plotting cumulative probability

versus normalized grain size on a log scale (see Fig. 2.3), our samples were found

to have lognormal grain size distributions. A correction in surface-to-volume ratios

to account for a lognormal distribution rather than identical-sized grains has been

evaluated previously 12 to be exp[-2.5(ln a) 2], where Inc is the standard deviation

of normalized grain sizes ln(D / D). Thus, the grain boundary area per unit volume

was calculated from the expression:

grain boundary area = 3.5513exp[-2.5(ln) 2 ] (2-2)

total volume D

It should be noted that the approach just outlined is not entirely self-

consistent in that it assumes all grains to have a single geometrical shape yet allows

a size distribution, which strictly speaking would preclude space-filling. In a recent

review,l 3 Atkinson has pointed out that this paradox is implicit in most theories of

normal grain growth (for example, those due to Feltham, Wagner-Hillert, Louat.)
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Despite the topological inconsistency, inclusion of a correction for size distribution

about the mean was judged to be important for accurate determination of Sv .

In their analysis of grain growth exotherms, Chen and Spaepen3 defined a

geometric variable, g, by which grain boundary area per unit volume can be

expressed in terms of mean grain radius, r:

Sv = g. (2-3)r

Chen and Spaepen estimated g to be 1.3±0.2, depending on grain shape (spherical,

cubic, tetrakaidecahedral) and size distribution (i.e. identical grains, lognormal

distribution, Wagner-Hillert or Louat distributions). Several studies in the

literature4 '6' 14 '1 5 have thus assumed the value g= 1.3. Since in the present work we

measure directly the grain size distribution, before and after grain growth, a more

accurate determination of the change in grain boundary area is possible. For

comparison, however, a g can be computed from our grain size distribution data

(comparing Eqs. 2-2 and 2-3):

g = 2 13 exp[-2.5(in a) 2 ] (2-4)

Values of g in our samples vary from 1.05 to 1.54, in line with Chen and Spaepen's

1.3±0.2 estimation. The g value for as-prepared samples was 1.42-1.54, indicating

narrow size distributions. Size distributions broaden somewhat as grain growth

progresses (g= 1.3-1.43 in coarsened chemically-derived samples, 1.05-1.35 in inert

gas-condensed samples), indicating that a departure from normal grain growth

occurs in some of the samples studied.
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2.3 EXCLUSION OF POSSIBLE ARTIFACTS IN THE DSC
MEASUREMENTS

In many prior measurements of excess thermodynamic quantities of

nanocrystalline materials, 4' 6 a variety of thermal contributions are included. The

possibility needs to be considered that extraneous heat-dissipating processes are the

source of trends observed in the present measurements. Here we discuss the

anatase-rutile phase transformation, relief of lattice strain, sintering, oxidation, and

gas desorption. Table II-2 contains a summary of these potential artifacts in the

DSC measurements of our chemically-derived TiO2 and how they were addressed.

The effect of residual anatase on the grain growth exotherm is illustrated by
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TABLE 11-2. Identification and resolution of potential artifacts in the calorimetric
measurement of grain boundary thermodynamic properties in chemically-derived
ultrafine-grained TiO2.

Material Process Contribution Resolution

Anatase-rutile exotheic Dope with Sn to stabilize rutile phase.
phase transformation exoermic No anatase by XRD (<5%).

Relief of lattice strain exothermic <0.04% rms strain indicated by XRD.
Lattice strain energy < 1 J/mole.

(intering f f f ) exothermic High density samples.(energy of free surfaces)

Oxidized prior to experiments.
Yellow/white samples.
No CSP's observed by TEM.

Oxidation due to exothermic No change in color or excess enthalpy
initial nonstoichiometry after 500°C x 24h anneal in > 2000 psi

of pure oxygen.
Weight gain during DSC run is below the

detection limit of standard TGA.

Intrinsic reduction in air at 600-1100°C isReduction endothermc negligible. 16

Desorption of gaseous endothermic Low residual chlorine (30-300 ppm).
specieso ofgaseous endothermic Dense, pre-annealed samples.

No desorption observed by TGA.
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curve (a) in Figure 2.1. X-ray diffraction indicated that this sample, doped with

0.56 mole% SnO2 , contained - 10% residual anatase, and dual peaks were resolved

using differential scanning calorimetry. Increasing the doping level to - 1.1 mole%

was effective in accelerating the formation of the rutile phase during calcination

such that consolidated pellets were phase-pure rutile by x-ray diffraction. These

samples always showed a single exotherm. A total enthalpy release (for combined

phase transformation and grain growth) of -4.2 kJ/mole was measured upon

transformation of dense, nanocrystalline, phase-pure anatase (no Sn dopant) to

coarse-grained, phase-pure rutile.* Taking the detection limit of x-ray diffraction to

be -5 %, the heat of phase transformation should be negligible in comparison to

that for grain coarsening. Furthermore, all of the powders doped with

- 1.1 mole% SnO2 were hot pressed at a higher temperature and for a longer time

than that at which they were calcined. Since the phase transformation is

temperature-dependent and is aided by pressure (rutile having a smaller molar

volume than anatase), the hot-pressed samples should be very close to 100% rutile.

Thus, for samples showing a singular exotherm and no detectable anatase by XRD,

we believe the contribution from the heat of transformation to be negligible.

The effects of using tin as a dopant must of course be considered. Tin and

titanium ions are isovalent and TiO2 (rutile) and SnO2 are not only isostructural but

have similar nonstoichiometry and lattice defect chemistry. Furthermore, STEM

measurements showed no detectable segregation or depletion of Sn at grain

boundaries, which will be discussed further in a subsequent section. For these

reasons, we do not believe Sn doping influences the current measurements.

* The heat of transformation in the nanocrystalline anatase sample was less than that
measured by Navrotsky and Kleppa (-6.57 kl/mole) for coarse anatase,l 7 for reasons which
are presently unclear.
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Figure 2.1. Effects of several different experimental artifacts on the "grain growth"
exotherm measured by differential scanning calorimetry. The right side heat flow
scale is for curve (c) only. (a)- I0% residual anatase, (b) Combined sintering and
grain growth of a cold-pressed green pellet, (c) Combined oxidation and grain
growth of some inert gas-condensed TiO2 . All exotherms are normalized for
sample mass and heating rate, but not for initial grain size.
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Because the samples were consolidated using a very high pressure which was

likely to be non-uniform due to wall friction, the possibility that the samples

contained residual strain was addressed. An estimate of lattice strain in several as-

prepared samples (after the 500C x 24h anneal) was made by analyzing x-ray line

broadening according to the method described by Klug and Alexander. 18 Step scans

of the six most intense rutile reflections were made using a Rigaku RU300

diffractometer and monochromatic Cu Koz radiation. Each peak was corrected for

Ka 2 broadening19 and instrumental broadening prior to calculation of its integral

breadth (integrated area/peak intensity). Methods for separating size and strain

contributions to line broadening make use of the fact that strain broadening scales

with the reciprocal space variable s (s=2sin0/,) while size broadening is

independent of s. The equivalent of these relations on the (20) scale is that strain

effects scale as 1/tanO while size effects scale as /cose. 18 Assuming a Gaussian

distribution for the profile due to strain broadening and a Cauchy distribution for the

profile due to size broadening, the convolution of the two effects is expressed by: 18

(620)2 KX 820 25(e) (2-5)

tan2 0 L tane0 sin00

where (620) is the integral breadth after correction for Ko2 and instrumental

broadening, 00 is the Bragg angle, K is a constant taken as unity, A is the x-ray

wavelength, L is the crystallite size, and <e2>1/2 is the root mean square strain.

Thus the rms strain is found as the y-intercept of a plot of (620)2/tan200 versus

(620)/tan0esin00 . Using this method, annealed fine-grained samples were found to

have zero strain, with an error limit of 0.04% considering the uncertainty in the

linear regression analysis. (The rms strain of nanocrystalline metals and alloys can

vary from 0.2-3%.4-6,20,21) Approximating the strain energy as : Ee2 and using a

calculated aggregate value for the Young's modulus, E, of rutile,22 the maximum
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contribution to the total excess enthalpy from relief of lattice strain is < 1 J/mole,

certainly negligible in comparison to the total excess enthalpies that were measured.

In incompletely dense samples the heat of sintering may be an additional

exothermic contribution since the specific enthalpy of a free surface is expected to

be larger than that of a grain boundary. Curve (b) in Figure 2.1 shows the

normalized heat flow upon the combined sintering and grain growth of a cold-

pressed green compact of ultrafine rutile powder. This extraneous contribution

from sintering was minimized by imposing the requirement that all samples be

> 95 % of theoretical density. In general, the change in density of the samples

during the DSC runs was below the error of the Archimedes measurement

technique.

Curve (c) in Figure 2.1 shows the heat flow obtained upon simultaneous

oxidation and grain growth of a nanocrystalline TiO2. x sample prepared by inert gas

condensation. Note the much larger heat flow scale for curve (c) in comparison to

the others. As described in section 2.2.1, inert gas-condensed nanocrystalline TiO2

is prepared by the oxidation of titanium clusters, which is an inherently exothermic,

rapid, and sometimes incomplete process. Unless oxidation is controlled, the

resulting powder can be quite oxygen-deficient, as has been observed by several

researchers. 23 25 The samples we prepared using inert gas-condensed powders were

generally dark gray in color, which is a common manifestation of nonstoichiometric

TiO2. Oxygen anneals at temperatures below the onset of grain growth only

partially oxidized the samples, and after the DSC runs they remained mottled with

gray and black regions. Furthermore, areas with a high density of intragranular

planar defects were observed by TEM,2 6 some of which were identified as

crystallographic shear planes (CSP's) known to accommodate nonstoichiometry in

rutile.2 7 Thus, the excess enthalpies of inert gas-condensed TiO2 (reported in
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Table II-3) are likely to include a significant contribution from oxidation and the

removal of planar defects, and use of these materials for measurement of grain

boundary properties was not pursued further.

Several observations suggest that our chemically-derived samples are fully

oxygenated in the as-prepared condition. The samples are uniformly light yellow or

off-white which is consistent with highly oxidized rutile, and no crystallographic

shear planes were observed by TEM. A sample saturated with oxygen by annealing

at 5000C for 24 hours in 2000-2500 psi of pure oxygen showed no change in color,

and its grain boundary enthalpy was in line with that of samples annealed in air.

Thus, we are confident that the as-prepared samples are in an "equilibrium"

oxidation state. However, as discussed later in relation to the size/temperature

dependence of Hgb, an intriguing possibility is that this equilibrium state is

intrinsically off-stoichiometry due to the very fine grain size. The heat of oxidation

of TiO2 x is large enough such that a small amount of nonstoichiometry can

contribute a non-negligible excess enthalpy.

Even though no endotherms were observed, two endothermic phenomena

deserve mention. First is intrinsic reduction of TiO2, which is negligible in coarse

rutile crystals in the temperature range and oxygen partial pressure of our

experiments. 16 Second, desorption of gaseous species is also endothermic, and the

presence of adsorbed gaseous species would inflate the heat capacity of as-prepared

samples. This artifact was likely to be a factor in the initial reports of excess heat

capacities of 20-30% of the single crystal value (and resulting claims of large excess

entropy) in low density nanocrystalline metals.2 8 29 The desorption of these species

at high temperatures was later observed using differential scanning calorimetry as an

endotherm following the grain growth exotherm. 30 This extent of desorption is not

likely in our samples, which are dense, pre-annealed, and have low levels of
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residual chlorine (30-260 ppm). No endotherms were observed up to 1300°C, and

no desorption was evident by thermal gravimetric analysis (Perkin-Elmer TGA7).

2.4 RESULTS

An example of a scanning DSC measurement of chemically-derived TiO2

with an initial mean grain size of 34 nm is shown in Figure 2.2. The onset of grain

growth occurs between 600-650°C, near the hot pressing temperature. In all cases

the peak appears to be singular; using heating rates from 10-400 /min, no shoulders

or inflection points were resolved that would suggest more than one thermally-

activated process.

Figure 2.3 shows an example of an isothermal DSC measurement in which

TiO2 with an initial mean grain size of 39 nm was heated at 20°/min to 750°C and

held isothermally for 30 minutes. Once the isothermal segment begins, the heat

flow signal decays monotonically, which is characteristic of normal grain growth,3

as well as any general relaxation process.3 1 ' 32 (Thus, this decaying signal is a

necessary but not sufficient condition to identify the thermal event as grain growth.)

Representative TEM images of the as-prepared and coarsened microstructures of this

sample are shown in Figure 2.4, along with the grain size histograms and

cumulative probability plots from which the change in grain boundary area was

calculated. The linearity of the cumulative probability plot of the as-prepared

sample indicates a lognormal distribution of grain sizes. In most cases, the

cumulative probability plots before and after grain growth were superimposed,

which is one indicator of a normal grain growth process in which the initial grain

size distribution is maintained throughout. The example shown is one of several

cases in which the upper end of the distribution changed slightly during coarsening

due to a subpopulation of clustered, large grains such as those shown in Figure 2.5.
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Figure 2.2. Heat flow measured during a scanning DSC run (20°/min) of TiO2
with an initial mean grain size of 34 nm.
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Figure 2.3. Heat flow measured during an isothermal DSC measurement of TiO2
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750°C and held isothermally for 30 minutes.
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Figure 2.5. An example of a pocket of discontinuous grain growth that was
observed occasionally in as-prepared and coarsened microstructures.
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The source of these clusters could be topological or chemical (perhaps Si)

inhomogeneities in the TiO2 powders and consolidated samples. However, the

subpopulations of these abnormal grains were so small (< - 1%, Fig. 2.3(d)) that

we can conclude that normal grain growth was predominant in all of the samples.

The measurements of grain boundary enthalpy for both chemically-derived

and inert gas-condensed TiO2 are summarized in Table 11-3, from which four key

observations can be made:

1. The apparent grain boundary enthalpies of the inert gas-condensed samples

are about three to five times larger than those of chemically-derived samples

measured by the isothermal technique in the same temperature range. The

source of this excess is likely to be the large nonstoichiometry of the inert-

gas condensed samples, as discussed in the preceding section.

2. The specific grain boundary enthalpies of the chemically-derived samples

measured in scanning runs to 13000C (1.3 -1.7 J/m2) are considerably

larger than those measured in isothermal runs between 650°C and 780°C

(0.4- 1.0 J/m2).

3. For isothermal measurements of the chemically-derived samples, Hgb

increases as the isothermal temperature increases. Since the initial grain

sizes of these samples are quite similar, this trend can also be thought of as

an increasing Hgb with increasing final grain size.

4. The specific grain boundary enthalpy measured in scanning runs over the

same temperature range (600-13000C) increases as the initial grain size

increases. Viewed another way, if a median temperature for scanning runs is

defined as the temperature at which one half of the total excess enthalpy has

been released, the specific grain boundary enthalpy measured by scanning

runs tends to increase with the median temperature of the exotherm.
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TABLE II-3. Summary of excess enthalpy measurements of ultrafine-grained
TiO2 .

Temperature of
Sample measurements

Isothermal measurements:
at _ _a_ _!__j__r_

Cneml

S3A
S3G
S3H
S3J
S3B

Inert 2

ally-oerved samples:

6700 C
7000 C
7100 C
7500 C
780°C

is-condensed samples: 
650°C
6700 C
689 0°C

Scanning measurements:

hm;ifI ll, ArvPAI h eYomnle-

S3D
S2B
S2I*
S2A
S2G
Sic

7960 C

851°C
886 0°C

855 0°C

8890 C
8850 C

AH
(J/mole)

-391
-274
-484
-597
-1092

-717
-2260
-3250

-2190
-1410
-1425
-1480
-1072
-1060

Mean grain size (nm)
initial

.I

39.6
35.0
35.0
39.4
37.8

33.8
31.2
32.4

33.6
45.9
53.8
57.2
75.6
76.6

final

75.3
55.5
63.3
84.9
193

65.4
87.8
75.7

I

I
I

t All scanning measurements occurred in the temperature range 600-13000 C. A
median temperature is reported, at which one half of the excess enthalpy had been
released.
t NT refers to powder from Nanophase Technologies Corporation (Darien, IL);
ANL refers to powder from Argonne National Laboratory.
* This sample was annealed in 2000-2500 psi of pure oxygen at 500°C for 24 hr.
prior to the DSC experiment. All other samples were annealed in air for the same
period.
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NT1
ANL1
ANLO

Hgb

(J/m2 )

0.50
0.42
0.64
0.76
0.94

1.29
2.00
3.22

1.29
1.34
1.43
1.50
1.69
1.55

Y

I , , .- I I I L 

1,1 l.lil IQIAs U -%&%, & II %lo.



The trends in Hgb that are apparent in Table 1-3 are illustrated graphically in

Figures 2.6 and 2.7, both of which emphasize the apparent size and/or temperature

dependence of the specific grain boundary enthalpy. Grain size and temperature

effects cannot be separated because of the inextricable link between them. For

example, comparison of two isothermal measurements conducted with an identical

heating schedule but with different initial grain sizes might seem to allow separation

of the two effects, but since the onset of grain growth is a function of grain size, the

median temperature of the two measurements would vary as well.

Recalling previous discussion, at larger grain sizes the projected dimension

method may tend to overestimate Sv . However, this would result in ASv's that are

too large and thus Hgb's (J/m2 ) that are too small. Therefore, the trend of

increasing Hgb with increasing grain size cannot be explained by overestimates of

SV at larger grain sizes.

2.5 ORIGIN OF A SIZE OR TEMPERATURE DEPENDENCE OF THE
GRAIN BOUNDARY ENTHALPY

2.5.1 Size-Dependent Nonstoichiometry

Theoretical studies have shown that defect formation energies at grain

boundaries are lower than those within the bulk,3 3-35 resulting in an enhanced

equilibrium concentration of defects near grain boundaries. Hence, oii expects the

total defect concentration of any polycrystal (and thus the total heat of grain growth

and oxidation) to increase with total grain boundary area. However, this effect is

intrinsic to all grain boundaries and would be contained within the excess properties

normalized to area; it would not appear as a size-dependent quantity unless the grain

boundary defect formation energies also varied with size. Since our measurements

of specific grain boundary enthalpy are normalized to the change in grain boundary
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Figure 2.6. Isothermal measurements of the grain boundary enthalpy, Hb, of
chemically-derived samples as a function of either (a) isothermal temperature or
(b) final grain size. These measurements indicate a size and/or temperature
dependence of the grain boundary enthalpy.
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F'gure 2.7. Grain boundary enthalpy measured by scanning runs from room
temperature to 1300°C, as a function of (a) initial grain size or (b) median
temperature of the grain growth exotherm.
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area (Hgb=Htot/AS), this effect seems unable to explain the size- or temperature-

dependent Hgb. That is, if an excess of defects is to explain the results, this excess

must scale with volume rather than grain boundary area (i.e. Ax ac r-3 rather than

r 2). On the other hand, a reasonable explanation for a size dependence of the

excess enthalpy is a size-dependent nonstoichiometry of TiO2 . We now demonstrate

qualitatively that the impingement of space charge layers at very fine grain sizes is a

plausible explanation for a size-dependent nonstoichiometry of TiO2 , and thus a

size/temperature-dependent Hgb.

TiO2 is an intrinsically nonstoichiometric oxide (TiO2x )16 because of the

dual valence states of the titanium ion (Ti4 +,Ti 3 +). Since oxidation of TiO2,x is an

exothermic process, were more oxidation to occur (larger Ax) as temperature and

grain size increase, Hgb would appear to increase correspondingly. The fact that

one of our as-prepared samples showed no change in color and no decrease in excess

enthalpy after a high pressure oxygen treatment (500°C x 24 h. in 2000-2500 psi of

pure oxygen) suggests that the initial stoichiometry has reached an extremely stable,

if not equilbrium, value for the initial grain size and temperature. Using an average

literature value for the heat of oxidation of TiO2.x (-544 kJ/mole),3 6 ' 3 7 the complete

oxidation of an initial nonstoichiometry of x -0.027 in a grain boundary region of

1 nm thickness would be sufficient to account for the difference in grain boundary

enthalpy (- 0.5 to 1.3 J/m2) between an isothermal measurement at 6700C and a

scanning measurement. Alternatively, a difference in initial and final bulk

nonstoichiometry of x -0.0025 would account for the difference as well. This level

of nonstoichiometry would be much greater than that which occurs in pure, coarse-

grained rutile in air at these temperatures. 16

It is well recognized384 2 that since grain boundaries in ionic systems are a

source and sink of defects, they often have a net charge due to unequal formation
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energies of individual defects. In extrinsic materials, the sign and magnitude of the

potential is determined by defects due to doping or nonstoichiometry. For overall

charge neutrality, space charge layers are formed adjacent to boundaries, comprised

of oppositely charged defects from the bulk. The Debye length of the space charge

layer is given by:

0 k 11/2
8 e= )kT (2-6)

e2 (Nizi)J

i

where e is the static dielectric constant of TiO2,4 3 co is the permittivity of free

space, e is the elementary charge, and Ni and zi are the total concentration (cm-3)

and effective charge of defect species i. Thus, defect concentrations, which are

governed by either intrinsic or extrinsic disorder, are the most influential factors

determining the distance that space charge layers extend into the bulk; low defect

concentrations yield large Debye lengths.

ICP analysis of our calcined TiO2 powders (Table II-1) indicates no

significant aliovalent impurities above the detection limit (for example, < 100 ppm

Al, <50 ppm Fe). Due to the high purity of this TiO2 , combined with the large

amount of grain boundary area acting as a sink for any impurities (see Chapter 4), it

is likely that the bulk defect chemistry in these samples is governed by intrinsic

disorder. For intrinsic reduction of TiO2, there is slightly more evidence that

titanium interstitials are favored energetically over oxygen vacancies.42 Assuming

this to be the case, a quasi-chemical defect reaction for reduction and oxidation can

be written using Krfger-Vink notation as:

Tii + 200 -+ Tii- + 4e' + 02(g) (2-7)

with a mass-action equilibrium constant given by:
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K = [Tii-]n 4po 2. (2-8)

Ikeda and Chiang44 have conducted a review of defect equilibrium constants for

TiO2 from previous literature studies, from which we extrapolate a K of 9.9-1076

and 2.3-1084 atm.cm- 15 at 8000 and 1000°C, respectively. Assuming electrons and

titanium interstitials to be the dominant defects, the overall electroneutrality

condition is given as n=4[Tii"' ] , and n and [Tii'- ] can be calculated using Eq. 2-8

for a p02 of 0.21 atm (air). Debye lengths of 165 nm and 33 nm at 800° and

1000°C, respectively, are then calculated using Eq. 2-6. Thus, it is clear that if

disorder is governed by intrinsic reduction, space charge layers impinge at the fine

grain sizes of the current materials.

Several theoretical and experimental studies have examined space charge

effects when the characteristic sample length (usually a thin film) is of the same

order as the Debye length.45 '4 8 Figure 2.8 illustrates the effect schematically for

simplified, two-dimensional grains and a Debye length of 33 nmn. The charge

distribution is sensitive to grain size, and it can be seen that to maintain overall

charge neutrality, the grain boundary defect concentration compensating the space

charge must scale with grain size. Furthermore, it is apparent that the concentration

of grain boundary defects in this size regime does not scale simply with the grain

boundary area. As space charge fields impinge, the defect concentration per unit

volume scales with grain size. Thus, we hypothesize that when the total excess

enthalpy due to grain growth and oxidation is normalized to the change in grain

boundary area, the volume effect of impinging space charge layers is manifested in a

size-dependent Hgb.

In an initial experiment to explore the possibility of oxidative weight gain

during grain coarsening, an as-prepared sample was coarsened in a Perkin-Elmer
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Figure 2.8. Schematic illustration of the effect of impinging space charge layers on
defect concentrations within the bulk and at grain boundaries for a grain size of 50,
100, or 200 nm when the Debye length is 33 nm. The defect concentration range of
the y-axis is identical for all three cases.
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TGA7 using a heating schedule identical to that of a scanning DSC run. No

detectable weight gain was observed, but the weight gain associated with the

expected amount of oxidation is close to the sensitivity of the instrument. High

sensitivity thermogravimetry would help to clarify this issue.

2.5.2 Solute Segregation

One source of size-dependent grain boundary thermodynamic properties in

ultrafine-grained materials with a considerable amount of solute is likely to be grain

boundary segregation. For TiO2 doped with 0.34 mole% calcium, we have used

STEM microanalysis to show that at grain sizes < 200-400 nm, grain boundary

coverage (Ca ions/cm2 ) increases with grain size and is insensitive to temperature

(see Chapter 4). In such a case, a change in grain boundary enthalpy with grain size

would not be unexpected. However, STEM microanalysis of our Sn-doped samples

indicates negligible interaction between Sn and grain boundaries. The average

excess Sn density at grain boundaries was measured as 1.3(±2.5)1013 cm' 2 for a

mean grain size of 63 nm and -5.7(±2.0)-1013 cm '2 for a mean grain size of

587 nm. These coverages/depletions are equivalent to just a few percent of a

monolayer (one monolayer=1.01-1015 cm '2 for TiO2 ), and as such, a change in

grain boundary chemistry can be eliminated as an explanation for the large size or

temperature dependence of Hgb in Sn-doped TiO2.

2.5.3 Grain Boundary Structure

Little is known about the temperature dependence of the grain boundary

enthalpy. Modeling of grain boundaries at finite temperatures is quite complex, and

most experimental methods that have been used to measure grain boundary energy

(zero creep, dihedral angles) are limited to temperatures near the melting point. 49

Furthermore, experimental measurements of the change in dihedral angle with
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temperature are a reflection of the temperature dependence of the grain boundary

free energy, not the grain boundary enthalpy. Recently, Sutton has calculated the

thermodynamic properties of a Z= 13 (001) twist boundary in Au at 600 and 1200K

using temperature-dependent interatomic forces within a molecular statics relaxation

algorithm.5 0 The results indicate a temperature-dependent enthalpy, entropy, and

specific heat. Although the calculated temperature dependence of the enthalpy of

this special coincidence boundary in Au was less than what we have measured for

TiO2, it would not be surprising if the enthalpy of a general high angle boundary,

with its larger excess volume, exhibits a steeper temperature dependence.

The possibility of an intrinsic size dependence of Hgb has been a subject of

some interest in the literature. Fecht has made the argument5 1 that larger grain

boundary enthalpies are to be expected in nanocrystalline materials due to evidence

from many vibrational spectroscopy studies that the excess volume of grain

boundaries increases as grain size decreases, coupled with computations that show

excess volume to be the most important determinant of energy for general high

angle grain boundaries. 52 However, this intuitive trend is opposite that indicated by

our Hgb measurements.

Lu and coworkers have measured interfacial excess enthalpies of Ni-P alloys

with different grain sizes, by means of the calorimetric measurement of the

amorphous-to-nanocrystalline transformation in their samples.5 3 In contrast with

Fecht's theoretical work and similar to ours, Lu et al found the excess enthalpy to

increase linearly from 2.23 kJ/mole for a grain size of 7 nm to 8.84 Uk/mole for a

grain size of 60 nm (where the data have been normalized to moles of grain

boundary atoms). Interestingly, Lu et al also use the coupling of excess volume and

excess energy to explain their results, since they found evidence by positron

annihilation spectroscopy and density measurements that in their samples, the excess
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volume of grain boundaries increases with grain size, opposite to what one would

expect intuitively. Lu et al suggest that an increasing boundary enthalpy with

increasing grain size may be a common feature of nanocrystalline materials that

would explain their unusual resistance to grain growth (in spite of the large driving

force) and abnormal Hall-Petch behavior that has frequently been reported.

2.5.4 Grain Boundary Triple Junctions

At very fine grain sizes, grain boundary triple junctions begin to comprise a

significant fraction of the total intercrystalline volume. Modeling grains as regular

tetrakaidecahedra and grain boundaries and triple junctions as hexagonal and

triangular prisms, respectively, Palumbo and coworkers have shown54 that at grain

sizes <10 nm, if properties are observed to be grain size-dependent, the primary

contribution is from triple junctions rather than grain boundaries. However, using

the relations derived by Palumbo et al for a grain size of 30 nm and a grain

boundary and triple junction thickness of 1 nm, triple junctions comprise only

-0.3% of the total volume and only -3% of the total intercrystalline volume

(grain boundaries and triple junctions). Thus, the influence of triple junctions is

negligible in our experiments and is not likely to be a contributing factor to a size-

dependent Hgb.

2.6 SUMMARY

Direct measurements of the excess thermodynamic properties of grain

boundaries in TiO2 have been made by calorimetrically monitoring grain growth in

ultrafine-grained samples. These measurements indicate a clear size or temperature

dependence of the specific grain boundary enthalpy, which increases from -0.5-

1.0 J/m2 at fine grain sizes and low temperatures (30-200 nm, 600-7800C) to 1.3 -

1.7 J/m2 when measured over a much larger grain size and temperature range
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(30 nm-2pun, 600-1300°C). Extraneous heat contributions from the anatase-rutile

phase transformation, sintering, and lattice strain have been shown to be negligible.

Solute segregation, grain boundary structure, and grain boundary triple junctions

have been considered as origins of a size- or temperature-dependent Hgb, but the

most plausible explanation is shown to be a size-dependent nonstoichiometry of

TiO2 due to the impingement of space charge layers in this grain size and

temperature range. Debye lengths of 165 nm and 33 nm are estimated at 800° and

1000"C, respectively, assuming that disorder is governed by intrinsic reduction. It

is shown that when space charge layers overlap, the grain boundary defect

concentration scales with volume rather than grain boundary area. Oxidation of

grain boundaries as grain growth occurs would then result in a size-dependent Hgb.
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CHAPTER 3

MEASUREMENTS OF THE EXCESS HEAT CAPACITY
OF ULTRAFNEGRAINED TiO2

3.1 INTRODUCTION

Grain boundaries are expected to have an excess heat capacity due to the

wider range of vibrational modes which are available to atoms located in the more

open environment of a grain boundary than to atoms confined in a perfect lattice.

Experimental measurements or theoretical calculations of grain boundary heat

capacity have been rare, and ultrafine-grained materials provide an opportunity to

measure this fundamental thermodynamic property for general, high angle grain

boundaries. Just as an average grain boundary enthalpy can be measured directly

from the heat released during coarsening of a fine-grained material, an average

grain boundary heat capacity can be measured from the difference in heat capacity

between fine-grained and coarse-grained structures, if the change in grain boundary

area is known and if no other structural or chemical changes have occurred

simultaneously. This chapter reports on our efforts to measure the excess heat

capacity of ultrafine-grained TiO2 . For all samples, a positive excess heat capacity

has been detected. The results are analyzed by normalizing the excess heat capacity

to the change in grain boundary area to allow for comparison between samples, and

by comparing the temperature dependence of Hgb predicted by these heat capacity

measurements with direct measurements of Hgb as a function of temperature that

were discussed in the previous chapter.

3.2 EXPERIMENTAL METHOD

All ultrafine-grained TiO2 samples were given a 500°C, 24 hour anneal after

hot pressing. The excess heat capacity of these samples was measured as follows.
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After baseline and sapphire runs, the as-prepared sample was placed in the DSC and

heated from room temperature to 400-500°C at 10°/min. This run was then

repeated to ensure that no relaxation had occurred during the first run. Because of

the prior anneal at 500°C, negligible grain growth occurs during this Cp

ileasurement. The sample was then coarsened in-situ (using either a scan to 1300°C

or an isothermal hold at an intermediate temperature), lowed to cool, and the

10°/min scan to 500°C was repeated (now for the coarsened microstructure) without

disturbing the sample or furnace. Selected samples were given an additional fourth

run, and the Cp-T functions measured by the third and fourth runs were

indistinguishable from one another.

Heat capacity is calculated by comparing the DSC signal of the baseline

(Vbl), the signal of a sapphire standard (Vsaph) whose Cp-T function is known, and

the signal of the sample whose heat capacity is to be determined (Vsample). At

temperature T, the heat capacity is given as:

Csmple(T) = Msaph Vsampl(T)- Vb(T) T) C (3-1)
P Msample Vsaph(T)- Vbl(T) 

where Msaph and Msample are the mass of the sapphire and sample, respectively.

This Cp-T data was then fitted using a least-squares algorithm to the function:

Cp=A+BT+CT - 2 (3-2)

where A,B, and C are constants and T is in °K. The excess heat capacity of the

nanocrystalline structure relative to the coarsened structure was calculated from the

least-squares fits of the Cp-T data as:

ACp(T) = Can"°(T) - CCase(T) (3-3)

where ACp is in units of Jg-lK-l.
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3.3 INSTRUMENTAL ERROR

The magnitude of ACp that can be attributed to instrumental error was

determined by conducting the identical sequence of measurements and calculations

using dense polycrystalline A120 3 (inert over the temperature range of interest) of

approximately the same thermal mass as the TiO2 samples. Figure 3.1 shows the

raw data of two consecutive heat capacity measurements of A12 03 , along with the

least-squares fits to the data. When the second measurement is subtracted from the

first, a difference of - -0.2-0.05% of the heat capacity is indicated. Thus, 0.2% is

used as an estimate of the precision of two consecutive heat capacity measurements

of an inert sample, and only ACp measurements >0.4% of the heat capacity should

be considered significant.

3.4 RESULTS

The raw data of four heat capacity measurements are shown in Figure 3.2.

The mean grain size of the microstructure during each heat capacity measurement is

also indicated, along with the change in grain boundary area (ASv) between

measurements and the thermal history of the samples. In some cases an excess heat

capacity of the ultrafine-grained structure is quite obvious (Fig. 3.2(a),(b)), while in

others it is much less so (Fig. 3.2(c),(d)).

Figure 3.3(a) plots ACp (Jg-1K-1) as a function of temperature for each of

the samples shown in Fig. 3.2. The error bar in Fig.3.3(a) indicates the magnitude

of ACp that may be due to instrumental error; it can be seen that some, but not all,

of the variation in magnitude and temperature dependence of the excess heat

capacity between different TiO2 samples can be attributed to instrumental error.

Particularly noteworthy in Figs.3.2 and 3.3(a) is the small difference in the

nanocrystalline and coarsened Cp's of samples (c) and (d), even though the
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Figure 3.1. Two consecutive heat capacity measurements of dense, polycrystalline
A120 3, which is inert over the temperature range of interest. When the second
measurement is subtracted from the first, as is done to determine the excess heat
capacity of a nanocrystalline sample, a difference of approximately ±0.2% of the
heat capacity is indicated over the temperature range of interest.
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Figure 3.2. Four examples of excess heat capacity measurements of ultrafine-
grained TiO2 samples. The mean grain size of the microstructure during each heat
capacity measurement is indicated, along with the change in grain boundary area
(ASv) between measurements and the thermal history of the samples.

58

0.90
-

I 0.85
-

" 0.80
td

cJ
U

0.75
Q)
Xd

rn f%
U. U

300

-1

l-

900

0.90

1 0.85

· 0.80
Cd

co

0.75

d)

0.70

300

-1

900

w 

I I i . i i, I 

r . -. -- ~~ -

l

J

I I I I I I

J 

P

F

l
I

-

1
-

F

F

I-

I

- ! -



I 0 I I I

400 500 600

Temperature (K)

400 500 600

Temperature (K)

Figure 3.3. (a) Excess heat capacity, Cp nan°Cpc°ars e in units of Jg-lK 1, of the
four samples (a,b,c,d) shown in Fig. 3.2(a,b,c,d) respectively. The error bar
indicates the magnitude of ACp which may be due to instrumental error. (b) Excess
heat capacity of the same four samples, no m ized to the change in grain boundary
area. Thus, the units of ACp are now Jm'K' .
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difference in grain boundary area between thair nanocrystalline and coarsened

structures (ASv) is larger than those of samples (a) and (b). Indeed, a more

meaningful comparison between samples is made after normalizing for the change in

grain boundary area between the first and second heat capacity measurements. The

excess heat capacity at a particular temperature is then calculated as:

nO -Coarse

where SV is the grain boundary area (m2/g) measured by TEM. Figure 3.3(b)

replots the ACp data normalized to change in grain boundary area; variation of ACp

between samples is still observed.

The excess heat capacity due to grain boundaries can be used to predict the

temperature dependence of Hgb by applying the fundamental relation:

T2

HT = HT + ACp(T)dT. (3-5)
T,

Figure 3.4 compares our direct measurements of Hgb as a function of temperature

(Chapter 2) with the temperature dependence of Hgb predicted by the four

measurements of excess heat capacity shown in Fig. 3.2. The measurement of Hgb

(670°C)= 0.5 J/m2 has been chosen as the reference point, HgT in Eq.3-5. The

main point to be made from Fig. 3.4 is that the Hgb-T relation predicted by the

largest ACp measurement is still not as steep as the temperature dependence

indicated by direct measurements of Hgb.
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Figure 3.4. Specific grain boundary enthalpy as a function of temperature, as
measured directly by isothermal and scanning DSC measurements (,0O), and as
predicted by the four measurements of excess heat capacity. A grain boundary
enthalpy of 0.5 J/m2 at 670oC has been chosen as a reference point for the
calculations using heat capacity.
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3.5 DISCUSSION

First it should be emphasized that, consistently (including a number of

samples not shown in Fig. 3.2), a positive excess heat capacity due to grain

boundaries has been measured in the 50-400°C temperature range which, in and of

itself, indicates a temperature dependence of the grain boundary enthalpy and

entropy; these thermodynamic values are often assumed to be invariant with

temperature in many different types of studies. But two other observations remain

to be discussed: the considerable variation of ACp (Jm 2 K1 ) between samples and

the apparent inconsistency, as illustrated in Fig. 3.4, between direct measurements

of Hgb as a function of temperature (Chapter 2) and the temperature dependence

predicted by these ACp measurements.

Regarding the variation in ACp between samples, recall that ACp is the

difference in heat capacity measurements of two microstructures; the first

measurement is of a 30-60 nm grain size sample that has been equilibrated at 5000C,

and the second measurement is of the same sample but with a larger grain size

obtained by a scan to 1300°C or an anneal at an intermediate temperature. Thus,

ACp at temperature T (50-4000C) can be expressed as:

AcT = Cp(D,T = 500C) - Cp(D2,T2) (3-6)

where Di and D2 are the sample's mean grain size during the first and second Cp

measurements, and T2 is the ultimate temperature to which the sample was exposed

prior to the second Cp measurement, which varies from 670° to 1300°C. Since the

ACp measurements shown in Figure 3.3(b) have already been normalized to the

change in grain boundary area, the variation in ACp between samples may very well

stem from changes in grain boundary or bulk structure with temperature (T*) or

grain size (D1,D2). One such change may be due to oxidation, if there is an
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intrinsic size-dependent nonstoichiometry of TiO2, as discussed in Chapter 2. The

extent of oxidation would tend to increase with T2, and the excess heat capacity

(due to contributions from grain boundaries and point defects) would vary

accordingly. Oxidation would increase the difference in heat capacity which is

measured here, since the heat capacity of the initial, reduced structure would be

larger due to its higher defect concentration. Alternatively, the contribution of grain

boundaries to the total excess heat capacity may vary with DI, D2, or T2 if there is

an irreversible change in structure of the average grain boundary with grain size or

temperature. **

Regardless of the source of variations in the ACp measurements, the excess

enthalpy and excess heat capacity measurements, ideally, should be self-consistent;

that is, the temperature dependence of Hgb predicted by ACp measurements should

correspond to that indicated by direct measurements of Hgb. (For example, if

oxidation contributes to the steep temperature dependence of Hgb, ACp should

increase correspondingly such that the same temperature dependence is predicted.)

Thus, the fact that the enthalpy and heat capacity measurements are not self-

consistent (Fig. 3.4) is noteworthy, and at least two explanations can be postulated.

First, it is possible that any structural or chemical changes responsible for the higher

Hgb's measured in-situ at high temperatures are not preserved upon cooling, and

thus are not reflected in the low temperature heat capacity measurement of the

coarsened microstructure. Second, recall that, of necessity, the heat capacity

measurements were terminated at 400-500°C to avoid the onset of grain growth, yet

the measurements of Hgb occurred at temperatures between 670-1300'C. Thus, the

** There is a subtle but important distinction to be made between the fundamental variation
in grain boundary heat capacity with temperature due to reversible chages in boundary
structure (for example, due to thermal expansion) and the effect that T2 may have in
introducing variation in our measured ACp's due to irreversible changes in boundary
structure with temperature or grain size.
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comparison of Fig. 3.4 is based on an extrapolation of the ACp measurements to

much higher temperatures than at which they were made. (The potential perils of

such extrapolation are illustrated by sample (c) in Fig. 3.4, whose ACp-T function

extrapolates to negative values beyond the temperature range of the Cp

measurement.) An average grain boundary heat capacity that increases abruptly at

temperatures > 500°C would also explain the inconsistency between ACp and Hgb

measurements illustrated in Fig. 3.4.

In the final analysis, these measurements of excess heat capacity do little to

further our understanding of the size/temperature-dependent Hgb reported and

discussed in Chapter 2, due primarily to the limitations of the ACp measurements

just discussed (limited temperature range, unquenched samples). The intrinsic grain

boundary heat capacity cannot be separated from a possible contribution due to

composition changes. However, the magnitude of the largest ACp's measured

renders it unlikely that the intrinsic grain boundary heat capacity was the sole

contribution in those samples.

3.6 SUMMARY

An excess heat capacity of ultrafine-grained TiO2 relative to coarser-grained

TiO2 has been measured in many samples. Much of this excess heat capacity

(JgK- 1) is due to the larger amount of grain boundary area in the ultrafine-grained

samples, and its measurement implies a temperature dependence of both the grain

boundary enthalpy and entropy. After being normalized for the change in grain

boundary area, a variation in the magnitude of ACp (Jm' 2K' 1) between samples

remains, which suggests that differences in composition or grain boundary structure

between fine and coarse microstructures may also affect the excess heat capacity.

Furthermore, the fact that the ACp measurements under-predict the temperature
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dependence of Hgb reinforces the likelihood of either a change in defect chemistry

or boundary structure at high temperatures that is not preserved upon cooling, or of

an abrupt change in grain boundary heat capacity at temperatures beyond the 50-

500C range in which it was measured.
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CHAPTER 4

SIZE-DEPENDENT SOLUTE SEGREGATION PENOMENA

IN ULTRAFINE POLYCRYSTALS: Ca IN TiO2

4.1 INTRODUCTION

The segregation of solute to grain boundaries in single phase materials and

resultant changes in fracture behavior, corrosion, grain growth kinetics, and other

transport phenomena are well documented. 14 Thus it is not surprising that given

the recent interest in nanocrystalline materials, 5,6 solute segregation to internal

interfaces is being explored as a means of engineering structure, composition, and

properties to a greater extent than is possible in conventional coarse-grained

materials. For example, one consequence of the large number of grain boundary

sites in fine-grained materials should be an enhancement in total solid solubility due

to grain boundary segregation. This effect was discussed many years ago by

McLean7 and has been qualitatively observed in a number of nanocrystalline

metals.8-11 Solute segregation is also being used with some success to stabilize

ultrafine-gra;ned structures to higher temperatures. 1-17

For Gibbsian adsorption of solute at interfaces in coarse-grained materials,

temperature and composition are the principal variables influencing the excess solute

at the interface. In ultrafine-grained materials, deviation from this conventional

behavior is expected since the number of surface or boundary sites is not negligible

in comparison to the number of bulk sites.* Using a statistical thermodynamical

model which considers the large number of boundary sites in small crystals,

Colbourn et a118 predicted that segregation would deviate from conventional

* A rough calculation illustrates this point: if all solute were to segregate to boundaries,
only about 100 ppm would be sufficient to fill all grain boundary sites in TiO 2 at a grain
size of 10 am, whereas approximately 2 mole% would be required at a grain size of 50 nm.
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isotherms and exhibit a size dependence. For ionic systems in which space-charge

segregation is also important, 2 3 19, 2 0 deviations from ideality at ultrafine grain

sizes are expected not only due to the excess of grain boundary sites and limited

aliovalent solute concentrations, but due to the confinement of space-charge fields as

well.21 In this chapter we consider the first of these issues; some of the

implications of space charge confinement were discussed in Chapter 2.

Segregation in the fine grain size regime has been studied using Ca-doped

TiO2 and a STEM microanalysis technique, recently developed by Ikeda et al, 2 2

which enables the accurate quantification of solute coverage at grain boundaries.

This work represents a clear, and possibly first, direct confirmation of size-

dependent solute segregation phenomena at ultrafine grain sizes.

4.2 EXPERIMENTAL METHODS

4.2.1 Sample Preparation

TiO2 powder, co-doped with Sn and Ca, was synthesized using the solution-

chemical process described in section 2.2.1. Ca2+ was chosen as a dopant due to

its large ionic size mismatch with Ti4 + , which results in a considerable elastic strain

energy driving force for segregation. CaC12-6H20* was used as the source of

Ca2 +. Since calcium hydroxides are soluble in water, one modification to the

precipitation step of the processing methodology was required. Ammonium oxalate

was added to the aqueous solution of 7.4 M ammonium hydroxide, in an amount

sufficient to precipitate all the Ca2+ in solution. Thus, he precipitates are expected

to be an intimate mixture of titanium and tin hydroxides and calcium oxalate.

Powders were calcined in air on platinum foil for one hour at 750°C. Chemical

analysis of calcined powders was accomplished using inductively-coupled plasma

* Johnson-Matthey, Alfa Chemicals, Ward Hill, MA
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emission spectroscopy (ICP), the results of which are shown in Table IV-1 for

three representative powders. The results reported herein are for samples made

from powder batch 1 only (0.34 mole% Ca).

Powders were hot pressed as described in section 2.2.1, using a pressure of

- 1.1 GPa and pressing time of 6 hours to achieve a density >95 % of the

theoretical value. Pellets were then annealed in air for 24 hours at 5000 C. The

mean grain size after this treatment was generally on the order of 50 nmn, and

samples were phase-pure rutile by x-ray diffraction.

4.2.2 Characterization of Grain Size and Internal Surface Area

The average grain size of nanocrystalline and coarsened samples was

characterized directly from projected grain dimensions on TEM micrographs; a

discussion of the details and critical assumptions of this method is contained in

section 2.2.3. At the larger grain sizes (400-700 nm) overlap of grains through the

Composition (mole%)

Batch Sn Ca Si Cl

1 1.25 0.34 0.13 T

2 1.20 1.31 0.12 32 ppmt

3 1.14 3.69 0.55 [

tMeasured by ion chromatography for a Sn-doped
powder batch prepared identically.

** Dr. Walter Zamachek, Union Carbide Corp., Tarrytown, NY
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aqueous chloride solutions.



foil thickness was still observed, but due to the possibility that grains were

truncated, the maximum projected dimension is likely to underestimate the

maximum dimension of the grain. However, due to the inverse grain size

dependence of the area to volume ratio (shown below), errors at the larger grain

sizes have little impact on our results and conclusions.

A quantitative treatment of size-dependent grain boundary segregation

requires knowledge of Sv , the grain boundary area per unit volume, as a function of

the grain size. The relation developed in section 2.2.3 is repeated here for clarity:

S = grain boundary area _ 3.5513 ep[-2.5(ln)] (4-1)
total volume D

where D is the average of maximum grain dimensions and lna is the standard

deviation of normalized grain dimensions, In(D/D). In the Ca-doped samples, the

size distribution correction factor was found to decrease from a value of -0.86 at

grain sizes on the order of 50 nm to -0.7 at grain sizes of 400-700 nm. To enable

smooth modeling of the dependence of segregation on grain size, the experimental

data were fit to a continuous function:

exp[-2.5(ln )2] 0.45 exp(-2.08 10-2 D)+ 0.7 (D > 50nm) (4-2)

where D is in nm. This function has no particular physical meang-., but describes

the experimental grain size distribution data quite well. To model the size regime

D <50 nm, the limiting value of 0.86 at D =50 nm was used. Figure 4.1 shows a

TEM micrograph of as-prepared Ca-doped TiO2 , along with its grain size histogram

and a cumulative probability plot, the linearity of which is indicative of a lognormal

grain size distribution.
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versus In(normalized grain size) plot indicates a lognormal distribution.
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4.2.3 STEM Microanalysis

A STEM microanalysis technique recently developed by Ikeda et wa20s22 was

used to quantify the excess solute coverage at grain boundaries for as-prepared

samples (grain size - 50 nm) and samples coarsened in a calorimeter using the heat

treatments listed in Table IV-2. Measurements were made using a Vacuum

tAll samples were given an initial 500C x 24hr anneal.
*FC=furnace cool inside a calorimeter (- 20°C/min)

WQ=water quench from a vertical tube furnace

Generators HB5* dedicated scanning transmission electron microscope operating at

100 kV and equipped with a Link Systems** thin window energy dispersive x-ray

detector. X-ray spectra were collected in scanning mode from a reduced area raster

(170 x 133 A at a magnification of 2Mx) containing the grain boundary plane (see

Figure 4.2). Only grain boundaries that were oriented parallel to the electron beam

were selected. To characterize the bulk solute level, x-ray spectra were then

collected from the same reduced area positioned at the center of each of the two

* Vacuum Generators, East Grinstead, U.K.
** Link Systems, now Oxford Instruments, Oak Ridge, TN.
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TABLE IV-2. Thermal history and resulting mean grain
size of samples used for STEM measurements of excess
solute coverage.

Thermal historytMean grain size

Temp. (C) Time (hr) Cooling* (nm)

500 24 FC 51
900 0.5 FC 120
1000 2 FC 383
1000 2 WQ 509
1000 8 FC 477
1050 2 FC 731
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grain 1

plan( t

1

Figure 4.2. Schematic of the STEM microanalysis technique showing (a) location
of the reduced area raster for the three x-ray spectra comprising a grain boundary
solute coverage measurement, and (b) a cross-sectional view of the volume sampled
by the electron beam.
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neighboring grains. Spectra from large area scans (50-100kx) containing many

grains and boundaries were used as an internal composition standard. To ensure

adequate counting statistics, counting times sufficient to acquire 1.3x105 to 2x1O&

counts of the TiKa line were used. Typical spectra from a grain boundary and grain

interior are shown in Figure 4.3.

Solute concentrations were quantified as follows. First, the integrated

intensities of the three relevant peaks (TiKa, CaK';, SnLa) were obtained after

background stripping and deconvolution of the CaKcl and SnL,2 peaks using

reference spectra. Conversion of intensities into mole fraction requires knowledge

of the "k-factor" for each element referenced to Ti, which can be calculated using

the ratio method of Cliff and Lorimer:2 3

(Ci CP

ki = (4-3)

IT; )

where i is either Ca or Sn, (Ci/CTi) is the overall composition determined by

inductively-coupled plasma emission spectroscopy (Table IV-1), and (Ii/ITi) is the

mean intensity ratio acquired from several large area scans averaging over many

grains and boundaries. The mole fraction of solute at a grain boundary or within a

grain is then given as:

Ci = i (4-4)
ITi

and the excess solute coverage at a particular grain boundary (atoms/cm2) is

calculated as:

Fi = (C$b _ Culk)- V (5)F. 1 (4-5)A
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Figure 4.3. Examples of x-ray spectra collected from a) a grain boundary, and b) a
grain interior.
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where C"ulk is the average composition of the two neighboring grains, N is the

cation site density (3 .2 1x1022 cm' 3 for rutile), V is the volume of material analyzed

(l.w.t), and A is the boundary area analyzed (t). The thickness, t, of the foil thus

drops out of the equation and does not need to be measured. It is shown in

Appendix A that x-ray absorption corrections were not necessary for the

characteristic lines of interest in the experimental foil thickness range (the thin film

limit being - 950 nm). A calculation of the error due to counting statistics is also

contained in Appendix A.

4.3 RESULTS

The results from STEM microanalysis are illustrated in Figure 4.4, plotted

as mole% Ca in the analyzed volume, as a function of grain size. Quite clearly,

calcium segregates strongly to grain boundaries, and the concentration in the grain

boundary raster increases with increasing grain size. Furthermore, the bulk

concentration of calcium is observed to be much lower than the overall doping level

of 0.34 mole%, is frequently undetectable, and does not change significantly over

the entire grain size range.

When the results in Figure 4.4 are reduced using Eq. 4-5 to show the

coverage of Ca and Sn at grain boundaries (atoms/cm2 ) as a function of grain size,

Figure 4.5, a clear grain size dependence of calcium segregation is seen. Within the

error limits, no segregation or depletion of tin is observed. The variations in solute

coverage between different boundaries in the same sample (Fig. 4.4) were found to

be within the counting statistics error of one another (see Appendix A), excepting

special cases as discussed below. The solute density for each grain size shown in

Figure 4.5 is an average of five boundary analyses. The error bars do not indicate

the spread in the measurements, but rather, the average value of the 95% confidence
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Figure 4.4. Calcium concentration within STEM-analyzed volume containing a
grain boundary and within grains as a function of mean grain size. Each point
represents the analysis of one boundary or grain. Some points are offset for clarity.
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igure 4.5. Excess solute density of Ca and Sn at grain boundaries in TiO2 as a
function of grain size. Each point represents the average of five measurements,
with the error bars indicating the average 95 % confidence level (see Appendix A).
The open square symbols () represent two grain boundaries that showed a
significantly lower level of calcium segregation.
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interval for each datum.

Also included in Figure 4.5 are measurements for two boundaries in

coarsened samples that showed a statistically significant lesser degree of calcium

segregation. In their study of space charge segregation in coarse-grained

(Al or Ga+Nb)-doped TiO2, Ikeda et al found that approximately one in every ten

boundaries showed no detectable segregation, and one of these was found to be a

twin boundary. 20 Our two observations of anomalously low calcium segregation

might also be due to the dependence of segregation on boundary structure. These

data points have not been included in the averaged r values since they lie many

standard deviations outside the others. Not enough boundaries have yet been

analyzed to determine accurately the fraction of "special" boundaries (which is

perhaps a function of grain size) in these samples. If, however, this fraction is on

the order of 10% as measured by Ikeda et al in coarser-grained samples of TiO2, the

overall trend of a. size-dependent solute coverage would be largely unaffected by

including these anomalous points in the average.

A monolayer of cation segregation at grain boundaries, assuming each cation

site to be available for substitution by the solute, has an average value given by

N2/3 where Nv is the lattice cation site density. This monolayer level (1.01x101 5

cm 2 for rutile) is shown in Figure 4.5. It is evident that as grain size increases, the

excess calcium density not only saturates, but saturates at approximately one-half of

an equivalent monolayer.

Unusual microstructural features were observed in one sample at a larger

grain size of D =509 nm. Isolated CaTiO3 precipitates were identified by STEM,

providing clear evidence for exsolution upon coarsening. This result is consistent

with a grain size-dependent total solid solubility, as will be discussed later. A

second microstructural feature in this sample was the appearance of planar faults
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within grains, an example of which is shown in Figure 4.6. STEM microanalysis

indicated no calcium segregation at the faults. Furthermore, no difference in grain

boundary coverage or calcium concentration within grains was observed between

highly faulted and fault-free grains in this sample. The identity and formation

mechanism of these faults is not presently known. They may be crystallographic

shear defects of the type formed to accommodate oxygen deficiency in TiO2,x.

While intrinsic reduction would be negligible at these temperatures and in air,2 4 Ca

doping may provide the necessary defects since Ca in solid solution in TiO2 must be

charge compensated by oxygen vacancies and/or titanium interestitials. The

incipient precipitation of CaTiO3 may also help to nucleate these planar defects,

whatever their identity.

4.4 DISCUSSION

4.4.1 Theory of Segregation in Fine Crystallites

Statistical thermodynamical methods have been widely used to model

interfacial segregation.7 25 ,26 Extension of the theory to small crystallites has been

treated in the catalysis literature,2 7 as well as by Colbourn, Mackrodt, and Tasker 18

whose treatment we follow here. The free energy of a multicomponent polycrystal

can be expressed as:

G = C nPg + nbgf b kT In Q (4-6)
i i

where k and T have their usual meaning, n and nb are the number of ions of

species i in the bulk and at grain boundaries, respectively, and gand gb are the

corresponding individual free energies of the ions in these positions. Contributions

from vibrational entropy are neglected, and all boundary sites are assumed to be

equivalent. The configurational entropy is given by:
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Figure 4.6. Bright-field TEM image of faults in coarse-grained TiO2 (D =509 nm)

doped with 0.34 mole% Ca.
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L = Ngb Nb! (4-7)

nb! nnl
i i

where Nb and Ngb are the total number of bulk and grain boundary sites. When the

free energy is minimized subject to the following constraints for site and species

conservation,

n = Nb = constant

n$b = Ngb = constant (4-8)

np + nr = ni = constant

one obtains

nb = (4-9)

I + exp 
kT

where X is a Lagrange multiplier ensuring site and species conservation, given by

' 1+exp I
kT

For coarse polycrystals, the number of grain boundary sites is small

compared to the number of ions of the segregating species (Ngb< < ni); the bulk

composition is largely unaffected by segregation of solute to grain boundaries.

Using this simplifying assumption for a two component system (with component 1

as the segregating species), Eqs. 4-9 and 4-10 reduce to the familiar Arrhenius

expression:

n n2 ( kT) (

where H is the heat of segregation given by

H (gb g)- ( _(gb - g) (412)
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if changes in vibrational entropy upon segregation can be neglected. Equation 4-11

can be rearranged to solve for the grain boundary concentration:

nb = (n /n2 ).exp(-H/kT)
Ngb 1+(n / n2) exp(-H/ kT)'

This equation can be compared directly with the result of McLean:7

Cgb = + Cb exp(Q / kT) (14)
1+ Cb exp(Q / (I14

where Cgb and Cb are the grain boundary and bulk concentrations in mole fraction,

and Q is the difference in energy for a solute atom in the bulk versus at a grain

boundary.* The derivation of Eq.4-14 includes the assumption that Cb< < 1. (In

our notation, ngb/Ngb=Cgb and nb/Nb=Cb.) Thus, it can be seen that the two

results are equivalent if nl/n2 n1/Nb, which is the case for large grain sizes where

the number of solute ions segregated to boundaries is negligible compared to those

remaining in the bulk.

As grain size decreases, the total number of grain boundary sites increases to

where they are no longer negligible in comparison to the available number of

segregant ions. Under these conditions, Eqs. 4-9 and 4-10 can be solved explicitly

to give grain boundary coverage as a function of grain size. Colbourn et al do so by

defining a new variable,

y = exp -9 - 92 (4-15)

which allows simplication of Eq. 4-11 to

+ n2 = Ngb(D). (4-16)
1 + yexp[ ) + y

* Note that H and Q as defined by Colbourn et a/18 and McLean,7 respectively, have
opposite sign conventions; a negative H or positive Q indicates enrichment of solute at
grain boundaries.
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Assuming an appropriate model for the variation in Ngb(D), the total number of

boundary sites as a function of grain size, one can solve Eq. 4-16 for y as a function

of grain size. The size-dependence of segregation can then be calculated from

Eq. 4-9, now written more simply as:

n (D) nl H (4-17)
1 + y(D)exp(kT

For convenience in the calculations, we now define all sites and species (ni,

nb, Ngb) on a per unit volume basis. Ngb(D) in Eq.4-16 is thus the total number

of grain boundary sites per unit volume as a function of grain size, which we

calculate as:

Ngb(D) (sites/cm 3) = SV(D) (cm 2/cm 3) NA (sites/cm 2) (4-18)

where SV(D), the grain boundary area per unit volume, is obtained from Eqs. 4-1

and 4-2. The grain boundary site density, NA, is expressed as m.Nv2 /3 , where

m = 1 may be considered to represent a full monolayer of adsorption. Size-

dependent segregation under conditions where saturation of grain boundaries occurs

at less than an equivalent monolayer is therefore modeled using m < 1.*

From the expression for nb(D) in Eq. 4-17 we can calculate two quantities

of interest. Experimentally, we measure the grain boundary solute coverage F 1

(cm 2 ) as a function of grain size, which is equivalent to nfb(D)/Sv (D). A second

quantity of interest is the fraction of solute ions segregated to grain boundaries,

which can be calculated directly from Eq.28 as nfb(D)/nl . Figure 4.7(a) plots the

* A distinction should be made between conditions of saturation where all available
boundary sites are occupied, as opposed to saturation where only a fraction of a larger
number of available sites can be occupied at one time, for instance due to ion crowding.
The present solution treats the former condition. For the latter an exact solution requires
that the difference in configurational entropy, which is greater than that given by Eq. 4-7,
be accounted for. This type of saturation could possibly also be modeled with a coverage-
dependnt heat of segregation28
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Figure 4.7. Calculations of size-dependent segregation following the theory of
Colbourn et al. (a) Grain boundary coverage (solute ions/cm2) as a function of
grain size for three heats of segregation at 900C, assuming the grain boundary site
density to be N2 /3 = 1.01.1015 cm-2. (b) Fraction of the solute ions that are

segregated to grain boundaries as a function of grain size. Note the nearly complete
depletion of olute from the bulk at very fine grain sizes for all three heats of
segregation.
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solute coverage rl as a function of grain size, for various values of the heat of

segregation at a constant temperature of 900°C. Figure 4.7(b) shows the

corresponding fraction of solute that is located at the grain boundaries (nlb/n l) as a

function of grain size. Notice that even for the smallest heat of segregation, theory

predicts that the bulk is almost entirely depleted of solute at the finest grain sizes;

solute atoms tend to fill the lower energy boundary sites up until saturation. Thus,

the increase in rl with grain size is due to a decrease in boundary area rather than

segregation of additional solute atoms to the boundary.

The heat of segregation for Ca in TiO2 is approximately -1.1 eV, based on a

calculation of the elastic strain energy due to cation size mismatch. 29 Figure 4.8

shows rl and ngb /n l calculated as a function of grain size for this heat of

segregation, our overall doping level of 0.34 mole%, and three of the annealing

temperatures used in our experiments. For this relatively large heat of segregation,

one sees that the transition from conventional behavior to size-dependent behavior is

quite sharp. Below a grain size of -200 nm, coverage is expected to drop linearly

with grain size and the lattice is purged of solute. Figure 4.8 also shows that for a

lower grain boundary site density (in this case O.5NV2/3), the boundaries saturate at

a finer grain size and at the lower solute coverage.

A common feature of the segregation isotherms in Figs.4.7(a) and 4.8(a) is a

threshold grain size below which segregation is size-dependent. This grain size is a

function of the H/T ratio, the solute doping level, and the coverage of the

boundaries at saturation. Along the plateau there exists a sufficient supply of solute

to allow the boundaries to reach the equilibrium coverage predicted by conventional

segregation isotherms. Below the threshold grain size, there is an excess of

boundary siter relative to the supply of solute. This behavior is shown in a

segregation map, Figure 4.9, which gives the threshold grain size as a function of
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Figure 4.8. (a) Calculation of grain boundary solute density as a function of grain
size for a heat of segregation of -1.1 eV and three temperatures. Also shown is the

effect of a decrease in the grain boundary site density from N2/3 to N2/3

resulting in saturation at half of an equivalent monolayer. (b) Fraction of the
segregating species located at grain boundaries as a function of grain size and
temperature for two limiting coverages.
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Figure 4.9. Segregation map showing the threshold grain size, below which
segregation is size-dependent, as a function of the solute doping level and the ratio
of heat of segregation to temperature. The region below each curve corresponds to
a size-dependent segregation regime. The curves shown here are for a lattice site
density of 3.21.102 cm-3 and a monolayer saturation level (m= 1). They can be
generalized to other site densities and saturation coverages using Eq.4-19 in the text.
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doping level and H/T ratio. For the purposes of these calculations, the threshold

grain size is defined as the size at which the coverage has reached 95 % of the

equilibrium value for an infinite crystal at the same H/T and overall doping level.

The curves in Fig. 4.9 have been calculated using the lattice cation site density of

rutile (Nv =3.21-1022 cm' 3) and a monolayer saturation level. (Here we assume

that the oxygen sublattice is invariant.) The critical grain size at other saturation

coverages and in other materials can be calculated from the results in Figure 4.9

using:
D = D*.. NV (cm ) (19)- /3

= ( 413.21 109)

where Dc is the threshold grain size in Fig. 4.9 at the doping level and (HIT) of

interest, m is the saturation coverage (fraction of a monolayer), and NV is the lattice

site density of the compound of interest.

Figure 4.10 compares our experimental results for the size dependence of the

calcium coverage at grain boundaries (FrC) with the above calculations. Saturation

in FCa is observed with increasing grain size at slightly less than half of an

equivalent monolayer; a grain boundary site density of 0.48. N2 / 3 yields the best fit

to the data at large grain sizes. The good agreement between experiment and theory

emphasizes the key and distinctive feature of grain boundary segregation in the

nanocrystalline size range-- that below a threshold grain size, one is in an entirely

different regime of behavior in which the effects of grain size can easily overwhelm

those of temperature in determining the degree of segregation.

While saturation at a partial monolayer is observed here, it should be pointed

out that multilayer Ca segregation is in principle possible if a broader range of Ca

activity were accessible. However, even in the instance where CaTiO3 precipitates

were seen (D =509 nm), and the bulk Ca activity was clearly saturated at the
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Figure 4.10. Experimental measurements of excess density of calcium at grain
boundaries in TiO2 as a function of grain size, along with the theoretical predictions
for a heat of segregation of -1.1 eV and the four annealing temperatures used in our

experiments. A grain boundary site density of 0.48. N2/3 was used in the

calculation, consistent with the observed saturation of the boundaries at slightly less
than half a monolayer.

89

1.0

0.8

S
0

LO

0
C.

0.6

0.4
Qt

L)

0.2

0.0

-- 500°C
------- 9000 C
---------............... 1000oc

-- 10500C

0 1000

-ia lir 
a

. _ _ _ _._ ___ ._ ... ,_ ..... 
I

-I



phase boundary limit, the same grain boundary coverage (-0.5 monolayer) was

observed. This supports the existence of a partial monolayer saturation level for the

segregation of Ca in TiO2, and shows that for the temperature range examined,

equilibrium multilayer segregation does not occur for all Ca activities up to the

solubility limit.

4.4.2 Thermal History Effects on Segregation

While most samples studied were furnace-cooled (-20 0/min) from their

annealing temperature Table IV-2), no difference in segregation was observed

between a sample that was water-quenched and those that were furnace-cooled.

Upon examining the issue of segregation upon cooling, we find that it presents an

interesting paradox. Because of the nature of segregation in the nanocrystalline

regime, segregation of Ca upon cooling is of no concern at very fine grain sizes,

while at "large" grain sizes (still <1 gm) it is virtually impossible to avoid.

One arrives at the first of these conclusions in the following manner.

Figure 4.8 shows that at very fine grain sizes and for large heats of segregation, the

temperature dependence of equilibrium segregation is weak, providing little driving

force for solute segregation upon cooling. Even so, were one at larger grain sizes,

nonequilibrium multilayer segregation and incipient precipitation could occur upon

cooling. However, since at fine grain sizes and sizeable heats of segregation

virtually all solute ions are located at boundary sites (Figs.4.7(b), 4.8(b)), negligible

solute is available within the bulk to segregate upon cooling. Thus, below the

threshold grain size for a particular H, T, and doping level, segregation upon

cooling does not occur, and the equilibrium distribution of solute is preserved.

At "large" grain sizes (in this case, - 400-700 nm), the effect of thermal

history on segregation is entirely different. i`!gures 4.7(b) and 4.8(b) show that at

equilibrium in this size range, a significant concentration of solute ions does exist
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within the bulk, even for low temperatures and large heats of segregation. The

diffusion lengths upon cooling from our annealing temperatures of 1000°C and

1050°C can be approximated using:30

L2 kBDaTa (4-20)
aQ

where kB is Boltzmann's constant, a is the linear cooling rate, and Da and Q are the

diffusion coefficient and activation energy for diffusion of solute in the lattice. For

estimation purposes we have used the lattice self-diffusion of Ti in TiO2 ,31 for

which Q=2.9 eV and Da6.5-exp(-Q/kBTa) cm2/s. These estimated diffusion

lengths upon cooling exceed a sizeable fraction of the grain size, even when using a

water quench (ca-500/sec). Thus, at the larger grain sizes the equilibrium

distribution of solute is unquenchable at current cooling rates, and segregation of

solute from the bulk upon cooling cannot be avoided. The fact that the calcium

concentration measured within the grains (Fig.4.4) does not increase with grain size

as predicted by the model (Fig.4.7(b),4.8(b)) is consistent with some segregation

upon cooling at the larger grain sizes. A check for mass balance in the coarser

samples shows that use of the measured grain boundary coverage r (cm-2 ), the

boundary area per unit volume Sv , and the STEM-detected lattice concentration of

Ca is insufficient to account for the total Ca concentration of 0.34 mole%, which

also indicates exsolution of CaTiO3 upon coarsening.

4.4.3 Enhanced Total Solid Solubility at Fine Grain Sizes

McLean recognized that one implication of solute segregation to internal

interfaces should be an increase in the equilibrium total solid solubility above the

lattice solubility limit. 7 The present measurements of calcium segregation along

with observations of CaTiO3 precipitation upon coarsening support such a

mechanism of solubility enhancement. Results in powder batch #3 (Table IV-1),

91



which contains 3.69 mole% Ca, are additional support for this mechanism of

enhanced solubility. CaTiO3 precipitation within this powder was detected by x-ray

diffraction after a long grain coarsening anneal at 800°C. Increased solubilities have

also been reported for numerous mechanically-alloyed and inert gas-condensed

nanocrystalline metal alloys,8' 10 but it is not always clear whether these are

equilibrium solubilities. It has been suggested that one possible contribution is grain

boundary segregation; 8 however, other mechanisms for solubility enhancement may

be operative, for example a size-dependent lattice solubility due to residual strain.

Here we restrict discussion to solubility enhancement due to grain boundary

segregation, an equilibrium phenomenon which assumes that the lattice solubility

does not change in this size range.

The total solid solubility in mole fraction is the sum of the lattice solubility

(Cb) and the grain boundary solubility, which is a function of the interfacial

area/volume ratio (Sv) and the grain boundary site density (NA), assuming an

infinite source of solute:

Ctotal C NV + CgbSVNA (421)
NV

where the equilibrium dependence of Cgb on Cb is determined by McLean's relation

(Eq. 4-14). In the present system the grain boundary coverage is known, but the

bulk solubility is not. Thus we have assumed for purposes of illustration a value of

100 ppm at 500C and 1900 ppm at 1000°C (corresponding to a heat of solution of

0.5 eV) . The result is shown in Figure 4.11 for the H=-l.1 eV and the one-half

monolayer saturation level of our system. A 500-fold and 25-fold increase in total

solubility is predicted upon decreasing grain size from 1 m to 10 nm at 500°C and

1000"C, respectively. This enhancement would double if a full monolayer of solute

segregation were allowed. For this large heat of segregation, the total solid
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Figure 4.11. Total solubility as a function of grain size at 500 and 100 C,
calculated assuming a lattice solubility of 100 ppm and 1900 ppm, respectively, and
grain boundary saturation at one-half of an equivalent monolayer.
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solubility is a much stronger function of grain size than of temperature in this grain

size range.

As a final comment, the present work shows that size-dependent segregation

is an important phenomenon at very fine grain sizes and consequently can be either a

boon or a bane for engineering and controlling material properties. On one hand,

this phenomenon may be an important factor in development of novel

nanocrystalline materials, such as extended solid solutions of normally immiscible

elements. However, we have seen that small changes in grain size in the

nanocrystalline regime result in quite large changes in solute coverage at grain

boundaries for constant overall composition. Many properties, most notably

mechanical and electrical, that are sensitive to grain boundary composition will thus

be size-dependent in this grain size range. This reality can be viewed as an

opportunity to "tune" materials to the needs of specific applications or as a challenge

in the attempt to provide materials with predictable and stable properties.

4.5 SUMMARY

A STEM microanalysis technique has been used to make quantitative

measurements of excess solute coverage at grain boundaries as a function of grain

size in fine-grained Ca-doped TiO2 . Calcium segregates strongly to grain

boundaries, and this segregation deviates from conventional behavior below grain

sizes of 200-400 nm, exhibiting a strong size dependence. The bulk is almost

entirely devoid of calcium in the as-prepared nanocrystalline state (- 50 nm). With

increasing grain size, the excess calcium density at grain boundaries increases, but

this is due to a decrease in boundary area rather than the segregation of additional

solute from the bulk. At a grain size of - 400 nm, the boundaries have become

saturated, at approximately half of an equivalent monolayer of Ca, and upon
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increasing grain size to -500 nm, a few CaTiO3 precipitates are observed. The

experimental observations are modeled using a statistical thermodynamical treatment

of grain boundary segregation which accounts for the large number of grain

boundary sites in a nanocrystalline material. A generalized segregation map

showing the threshold grain size, below which segregation is size-dependent, is

calculated as a function of doping level, heat of segregation, temperature, and

saturation coverage. The equilibrium enhancement of total solid solubility due to

grain boundary segregation is demonstrated. The size-dependent segregation

phenomena illustrated herein are expected to have implications for the processing,

structure, transport phenomena, and mechanical properties of ultrafine-grained

materials.
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CHAPTER 5

GRAIN GROWTH INHIBITION FROM CALCIUM ADDITIONS
TO ULTRAFINE-GRAINED TiO2

5.1 INTRODUCTION

The addition of solutes to nanocrystalline materials has become a common

strategy among efforts to extend their stability to higher temperatures. 81 4 When

success has been achieved, it has been attributed at least in part to conventional

solute drag and Zener drag mechanisms, as well as to other factors not directly

related to impurity effects, including an additional drag force due to triple

junctions, 7' 10 and a decrease in interfacial energy with decreasing grain size.11 One

issue that has not often been discussed is the distinctive nature of solute segregation

in the nanocrystalline regime. The STEM microanalysis results discussed in

Chapter 4 confirm that below a threshold grain size there is a deviation from

conventional segregation isotherms due to the excess of grain boundary sites relative

to a limited source of solute ions, which results in a size-dependent grain boundary

coverage in this size range. One of the primary repercussions of this departure

from ideality is expected to be size-dependent grain boundary properties in the

nanocrystalline regime. In particular, if grain boundary migration is limited by

solute drag, the boundary mobility should decrease with increasing grain size. Size-

dependent segregation may be the source of a size-dependent grain boundary energy

as well.

This chapter reports on our efforts to inhibit grain growth in ultrafine-

grained TiO2 and describes the use of differential scanning calorimetry (DSC) to

measure the enthalpy release rates of Ca-doped and Ca-free samples. These grain

growth exotherms are analyzed to give information about the kinetics of grain

growth, using methods developed by Chen and Spaepen. 12 We then seek to make
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qualitative correlations between the results of the DSC measurements and the size-

dependent segregation observed by STEM.

5.2 EXPERIMENTAL METHODS

Sn-doped and (Ca+Sn)-doped TiO2 powders were synthesized and

consolidated into pellets as described in sections 2.2.1 and 4.2.1. Grain growth

exotherms were measured at heating rates of 10-40/min, using the same procedures

outlined in section 2.2.2. As will be described in section 5.4, proper use of the

Kissinger analysis to determine activation energy from the shift in peak temperature

with heating rate requires that all parameters other than heating rate be identical.

Because peak position is sensitive to initial grain size, ideally all DSC runs should

be conducted using pieces of the same sample. Since the diameter of the DSC

sample pan and our self-imposed requirement for highly dense samples limited pellet

mass to < 110 mg, cutting a pellet into four pieces would have resulted in an

unacceptably high noise level due to a small DSC signal. Thus, two pellets were

prepared using ideaic_! conditions of temperature, time, and pressure, and each was

divided in half for the Kissinger anaiysi; measurements.

The mean grain siz of samples before and after grain growth was

characterized by transmission electron microscopy (JEOL 200CX), using the

procedure and assumptions described in section 2.2.3. A possible underestimate of

the grain size for sizes > 100 nm is considered during analysis of our results and

does not affect the overall conclusions.

5.3 GRAIN GROWTH INHIBITION

A comparison of the grain growth exotherms of a Sn-doped and a (Ca+Sn)-

doped sample, each with an initial grain size of about 50 nm, is illustrated in
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Figure 5.1. While enthalpy release in the two samples begins at approximately the

same temperature (that of hot pressing), the onset is more gradual in the Ca-doped

sample. In addition, its peak is slightly lower in magnitude and shifted to a higher

temperature. These differences indicate that the addition of calcium at the level of

0.34 mole% inhibits grain growth in nanocrystalline TiO2 . This conclusion is

reinforced by Figure 5.2, which shows grain growth data in perhaps a more familiar

manner; for example, a Sn-doped sample annealed for 30 minutes in the DSC at

780°C had an average final grain size of 193 nm, while a (Ca+Sn)-doped sample

annealed for the same time at the higher temperature of 900°C had a smaller final

grain size of 120 nm.

Hahn et al have prepared nanocrystalline TiO2 by the inert gas condensation

process 13 and found that the addition of 6% Y reduced grain growth and enhanced

densification such that samples could be pressureless sintered to > 95 % of

theoretical density while maintaining a grain size < 100 nm.1 However, no pure

grain growth data in the Y-TiO2 system is provided with which we could compare

to our own. Hfler and Averback have reported grain growth data for undoped

nanocrystalline TiO2 also prepared by inert gas condensation. 14 Their samples are

reported to be 89-94% of theoretical density with a mean grain size of 14 nm.

Hofler and Averback fit their data for anneals at 700° and 825°C to an equation of

the form:

D2 - D2 = atnexp(-Q/RT) (5-1)

with a=1.05.10 1 4 nm2 /s-n, n-0.75, and Q=230 kJ/mole (2.4 eV).14 This

equation is not a conventional grain growth law and should not be the basis for any

interpretation. (Note in particular that the "n" in equation 5-1 is not the same as the

grain growth exponent in a normal grain growth law, which has a value of 2 for

parabolic growth.) We use Eq. 5-1 only as a means of comparing the
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Grain growth exotherms (20°/min) of a Sn-doped and a (Ca+Sn)-
sample with approximately the same initial grain size.
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"macroscopic" grain growth behavior of our materials with that of H6fler and

Averback's inert gas-condensed TiO2 . Table V-1 lists the initial grain sizes,

annealing treatments, and final groin sizes of our samples, along with the final grain

size that would be expected using H6fler and Averback's growth law (Eq. 5-1).

Quite clearly, calcium is effective as a grain growth inhibitor, and our chemically-

derived samples have more resistance to grain growth than H6fler and Averback's

inert gas-condensed TiO2.

In Table V-1, our measurement of a mean grain size of 193 nm (780°C

anneal) has the largest error associated with it due to the likelihood that not all

projected grain dimensions were maximum grain dimensions, as discussed

previously. However, even if the TEM foil could be considered a two-dimensional

surface (grain size> >foil thickness), the actual average grain size would be - 1.56

times greEter than our measurement, 15 which results in a grain size still less than

that predicted by the growth law in Ref. 14. The slower growth kinetics of our Sn-

doped samples are magnified upon consideration that they are less likely to be

limited by pore drag in the early stages of growth due to their higher density.

TABLE V-1. Comparison of our grain size measurements after several different
annealing treatments with predictions of final grain size using the growth law for inert
gas-condensed nanocrystalline TiO2 measured by H6fler and Averback. 14

Mean initial Annealing Mean final Predicted final grain
Dopant| grain sz (nm) treatment (°C) Meai fialm) size using growth law

grain size (nm) t=0.5 h. grain size (nm) of ref. 14 (nm)

t 40 670 75 83

l 35 700 56 120

Sn 35 710 63 137

l 39 750 85 233

4$ 38 780 193 336

Ca+Sn 49 900 120 1281
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STEM microanalysis (Chapter 4) has indicated strong segregation of Ca to

grain boundaries but no significant segregation or depletion of Sn that might explain

the slow growth kinetics of our Sn-doped samples relative to H6fler and

Averback's. One possibility is that a high concentration of defects due to

nonstoichiometry in inert gas-condensed TiO2
1 6 results in more rapid transport

phenomena. Some support for this explanation is contained in a study of the

dissociative adsorption of H2 S over inert gas-condensed nanocrystalline TiO2,17 in

which it was found that the high activity of the samples was due in part to oxygen

deficiency, and specifically, oxygen vacancies. Annealing in oxygen at high

temperatures lowered the activity, even after normalizing for the lower surface area

of the annealed sample.

5.4 DETERMINATION OF ACTIVATION ENERGY BY A KISSINGER
ANALYSIS

Chen and Spaepen 12 have demonstrated that the Kissinger analysis, 18 a

common method of determining the activation energy of chemical reactions or of

nucleation events, can also be applied to grain growth. Kissinger established that

for differential thermal analysis of a single, thermally-activated process, the peak

position (Tp) varies with linear heating rate (a) according to the expression:

dlnp Q
TP)_ Q (5-2)

d(1/Tp) - kB

where Q is the activation energy and kB is Boltzmann's constant. The results of this

analysis for samples heated at 10, 20, 30, and 400/min are shown in Figure 5.3 and

indicate an activation energy of 1.45±.07 eV and 1.34±.4 eV for the Ca-doped and

Ca-free TiO2, respectively. The error bars at each point represent the uncertainty in

the peak temperature due to noise in the DSC measurements. The uncertainty in the
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(Tp) with heating rate. Error bars indicate uncertainty in the peak
due to noise in the DSC measurements.
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ln(a/Tp 2 ) values due to Tp is negligible in comparison to those shown. A definitive

conclusion about the relative values of the Ca-doped and Ca-free activation energies

is difficult because of the poor fit of the Sn-doped data, but they appear to be close

in value.

The activation energies for grain growth obtained by the Kissinger analysis

must be viewed as effective or average values over a wide temperature range in

which the mechanism of grain growth almost certainly evolves from a process

limited by the intrinsic boundary mobility or by solute drag to one limited by pore

drag. Nevertheless, we can make two general observations with certainty. First,

the magnitude of both effective activation energies is small, about half that for

lattice self-diffusion of either species.19-21 Second, the proximity of the activation

energy in the Ca-doped samples to that of the Ca-free samples can be shown to be

consistent with either the temperature-independence of segregation in the

nanocrystalline regime or an approach to intrinsic drag-limited growth at very high

boundary velocities. These issues will now be discussed in turn.

Since the diffusion studies in references 19-21 were conducted at high

temperatures, their activation energies for lattice self-diffusion include contributions

for defect formation and for defect migration. Thus, the activation energy of 1.3-

1.5 eV indicated by this work may be for lattice defect migration only, or

alternatively, could be interpreted as the activation energy for grain boundary

diffusion. Our low activation energies for grain growth contrast with results of the

study by H6fler and Averback, 14 who found an activation energy for grain growth

in undoped n-TiO2 of -2.4 eV using conventional methods rather than the

Kissinger analysis. As previously mentioned, nanocrystalline TiO2 prepared by the

inert gas condensation of Ti clusters tends to be oxygen-deficient,16 and in some

cases contains crystallographic shear planes (Magneli phases TinO2n.1). The oxygen
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content is sensitive to details of the oxidation procedure and any post-oxidation

anneals, and H6fler and Averback do not completely specify their procedures.

However, their grain growth anneals were conducted in pure oxygen, and thus it is

possible that the activation energy they measured was a superposition of the

individual values for grain growth and oxidation. Since their samples were less

dense, it is also possible that grain growth began in a pore drag-limited regime,

which is less likely to be the case in our samples.

Regarding the second observation from our Kissinger analysis, there are

several possible explanations for the proximity of the effective activation energies of

the Sn- and (Ca+Sn)-doped samples. If grain growth is occurring in the low-

velocity/low driving force regime22 and is limited by solute drag, the temperature

dependence of boundary migration includes contributions from two thermally-

activated processes: solute atom diffusion in the near-boundary region, and solute

segregation to the boundary. The apparent activation energy for boundary

migration then includes the activation energies of both individual processes. This

increase in apparent activation energy for solute drag-limited boundary migration

has been observed experimentally in metals. 23 However, we have established (see

Chapter 4) that for grain sizes <200-400 nm at this doping level (0.34 mole% Ca),

virtually all Ca atoms are located at grain boundaries, and thus very little additional

segregation from the bulk can occur. As grain growth begins, the increase in solute

coverage at grain boundaries is the result of a decrease in boundary area and is not a

reflection of thermally-activated segregation of additional solute. Thus in the early

stages of grain growth, little difference in the effective activation energy for

boundary migration should be expected between nanocrystalline samples with and

without solute if grain growth in the former is limited by solute drag.
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Another possible explanation for the proximity of the Sn- and (Ca+Sn)-

doped samples' activation energies is not a consequence of size-dependent

segregation in the nanocrystalline regime. Grain growth could be in the high

velocity, high driving force regime described by Cahn,2 2 in which the boundary

sweeps through so rapidly that most solute is left behind and the velocity approaches

the intrinsic value. In this case, the activation energy is associated primarily with

intrinsic drag and is generally on the order of the activation energy for grain

boundary self diffusion.2 2 The slower growth rate of the Ca-doped samples might

still be explained by a lower grain boundary diffusion coefficient of the rate-limiting

species. Since the diffusivity is dependent on concentration, if enough calcium ions

are still occupying boundary sites but are not rate-limiting, the grain boundary flux

of titanium or oxygen could be decreased accordingly due to a decrease in the

available sites for migration.

5.5 MODELING OF THE CALORIMETRIC SIGNATURE OF GRAIN
GROWTH

Chen and Spaepen have modeled the enthalpy release rate upon grain growth

using normal grain growth theory. 12 They show that dH/dt, the quantity measured

by a DSC, for a linear heating rate experiment can be written to a good

approximation as:

dHgHgbV K(T)
dT n I' n+ 

[ kBT2 .K(T) 

where K(T) is a rate constant of the form (K0/T)exp(-Q/kBT), r is the initial grain

radius, a is the heating rate, Q is the activation energy, n is the grain growth

exponent, Hgb is the specific grain boundary enthalpy (J/m2), V is the sample

volume, and g is a geometric constant related to the grain shape and size
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distribution. Thus, in concept one can model grain growth exotherms if the kinetic

parameters and Hgb are known, or estimate one or more unknown kinetic

parameters from a multiple non-linear regression analysis. The reader is referred to

Ref. 12 for a full derivation of Eq.5-3.

Reexamining the grain growth exotherms of Ca-doped and Ca-free samples

in Fig. 5.1, one can see that the effect of calcium is to decrease the slope of the

leading edge of the curve, decrease the magnitude of the peak, shift it to a igher

temperature, and broaden the entire curve. Figure 5.4(a) is a simulation calculated

using Eq.5-3 which shows that if, indeed, the presence of calcium slightly increases

the activation energy for grain growth and all other parameters are unaffected, the

grain growth exotherm shifts to a higher temperature and decreases in magnitude.

However, the slope and breadth of the peak show little change, and the onset of the

exotherm is delayed, which was not observed in our samples.

Many years ago Brook2 4 demonstrated theoretically that size-dependent grain

boundary and bulk solute concentrations should induce a change from a t11/2 (n=2)

to a t1/ 3 (n=3) growth law at fine grain sizes. However, it can be seen from Figure

5.4(b) that, all else being equal, if the Ca-doped samples had a larger n than the Ca-

free samples the peak of the former would occur at a lower temperature, which is

contrary to what we observe. Therefore, if n increases due to a size-dependent

boundary coverage it must be accompanied by changes in other kinetic parameters to

explain the change in our grain growth exotherms.

Direct use of Eq. 5-3 for modeling grain growth exotherms assumes kinetic

and thermodynamic parameters (n, Q, KO, Hgb) that are constant with temperature

and grain size. However, in the early stages of grain growth in a nanocrystalline

material in which there is size-dependent solute segregation, a rapidly increasing

grain boundary solute coverage will result in size-dependent kinetic parameters if
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exponent, n. All other parameters remain constant (Q= 1.5 eV).
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growth is limited by solute drag. Furthermore, our own measurements of excess

enthalpy of grain boundaries in Sn-doped TiO2 indicate a significant temperature-

andior size-dependence of the specific grain boundary enthalpy, Hgb (Chapter 2).

Size- and/or temperature-dependences of multiple variables in the expression for

dH/dt (Eq. 5-3) make definitive modeling intractable. Nevertheless, introduction of

a simple functionality for one parameter at a time is feasible and informative; two

examples are shown in Figure 5.5. For convenience only, a sigmoidal function has

been chosen to simulate the effect of a one order of magnitude decrease in Ko over

the temperature range (and thus grain size range) of the exotherm. In Figure 5.5(a)

the resulting exotherm is compared to one obtained maintaining the initial value of

K0 over the entire temperature range. With all other parameters held constant, this

scenario is intended to simulate the effect of a gradual approach to a one order of

magnitude difference in the grain boundary mobility of two samples due to a size-

dependent grain boundary solute coverage in one of them. Qualitatively, the two

exotherms of Figure 5.5(a) show similar features as the exotherms of our Sn-doped

and (Ca+Sn)-doped samples in Figure 5.1. Introduction of the temperature/size

dependence of Hgb that we have measured in separate experiments on Sn-doped

samples (Chapter 2) also broadens the exotherm and shifts the peak very slightly

(Fig.5.5(b)). The addition of Ca would need to introduce a steeper dependence of

the grain boundary enthalpy on size or temperature to be the sole explanation for the

exotherm positions in Fig. 5.1. Of course, a combination of some or all of these

temperature or size dependences is likely and could only be determined from further

study.
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5.6 SUMMARY

The addition of 0.34 mole% Ca to ultrafine-grained TiO2 significantly

inhibits grain growth. Furthermore, comparison with a report on grain growth

kinetics in nanocrystalline TiO2 prepared by the inert gas condensation process

indicates that both our Sn- and (Ca+Sn)-doped samples have more resistance to

grain growth. Estimation of the apparent activation energy for grain growth by a

Kissinger analysis of grain growth exotherms indicates a value of 1.3-1.5 eV for

both Sn- and (Ca+Sn)-doped samples. The relative positions of the grain growth

exotherms of Ca-doped and Ca-free samples could be explained by a size-dependent

mobility due to size-dependent segregation of Ca, or by a combination of

temperature and size dependences of kinetic and thermodynamic parameters of grain

growth.
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CHAPTER 6

CONCLUSIONS

Excess Thermodynamic Properties of Ultrafme-grained TiO2

(1) There is a clear temperature or grain size dependence of the specific grain

boundary enthalpy, Hgb, of TiO2; the temperature and size effects are

inextricably linked. Measured values increase from -0.5-1 J/m2 at grain sizes

of - 30-200 nm and temperatures of 600-780C to 1.3-1.7 J/m2 averaged over a

much larger grain size and temperature range (30 nm- 2pm, 600-1300°C).

(2) The increase in Hgb with temperature or grain size is not due to experimental

artifacts. Extraneous contributions to Hgb from the anatase-rutile plase

transformation, sintering, and lattice strain have been shown to be negligible.

(3) A positive excess heat capacity of ultrafine-grained TiO2 has been measured and

confirms the trend of an increasing Hgb with temperature or grain size. The

variation between samples of the normalized excess heat capacity (J/m2K) is due

to a complex interplay between thermal history, grain size, and (possibly)

oxygen content.

(4) The most plausible explanation for a size- or temperature-dependent Hgb is a

size-dependent nonstoichiometry of rutile due to the impingement of space

charge layers in the grain size and temperature range of these experiments.

Debye lengths of 165 nm and 33 nm are estimated for intrinsic, reduced TiO2 in

air at 800° and 1000°C, respectively. It is shown qualitatively that when space

charge layers overlap, the grain boundary defect concentration scales with

volume rather than interfacial area, resulting in a size-dependent Hgb.

Solute Segregation at Ultrafine Grain Sizes

(1) Quantitative measurements of Ca coverage at TiO2 grain boundaries using

STEM microanalysis show that for a doping level of 0.34 mole% Ca,
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segregation deviates from conventional isotherms at grain sizes below 200-

400 nm and is as strong a function of grain size as of temperature or

composition. The lattice is almost entirely depleted of solute at all grain sizes

examined. As grain size increases, solute coverage at grain boundaries increases

due to a decrease in boundary area rather than segregation of additional solute

from the lattice.

(2) Grain boundaries in TiO2 become saturated with Ca at approximately one half of

an equivalent monolayer.

(3) The experimental results can be modeled with a statistical thermodynamical

treatment of segregation that accounts for the excess of grain boundary sites at

fine crystal sizes. This theoretical treatment has also been used to calculate a

generalized segregation map from which the threshold grain size, below which

segregation is size-dependent, can be found as a function of doping level, H/T

ratio, and saturation coverage.

(4) An equilibrium size-dependent total solid solubility due to grain boundary

segregation has been observed. Evidence for this effect includes the

precipitation of CaTiO3 upon coarsening as well as the incorporation of up to

3.69 mole% Ca into ultrafine TiO2 powders.

Grain Growth Inhibition

(1) The addition of 0.34 mole% Ca inhibits grain growth in ultrafine-grained TiO2.

Furthermore, the Sn-doped TiO2, in addition to the (Ca+Sn)-doped TiO2,

exhibits more resistance to grain growth than ultrafine-grained TiO2 prepared by

inert gas condensation.

(2) A Kissinger analysis of grain growth exotherms has shown that the effective

activation energy for grain growth is between 1.3-1.5 eV for both Sn- and
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(Ca+Sn)-doped samples. It is shown that for solute-drag limited grain growth

below the threshold grain size (where segregation is independent of

temperature), solute will not have the usual effect of increasing the effective

activation energy for grain growth.

(3) The presence of calcium at grain boundaries in ultrafine-grained TiO2 affects the

grain growth exotherm measured by differential scanning calorimetry. The shift

in position and the broadening of the exotherms of the Ca-doped samples relative

to those of Ca-free samples is shown to be consistent with a grain boundary

mobility that decreases with increasing grain size, which is expected due to the

observed size-dependent Ca coverage if growth is limited by solute drag.
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CHAPTER 7

SUGGESTIONS FOR FUTURE WORK

(1) The most intriguing finding of this research is the rather large size and/or

temperature dependence of the specific grain boundary enthalpy of TiO2 , and we

have hypothesized that this trend is the result of a size-dependent

nonstoichiometry of TiO2 due to impingement of space charge layers.

Additional support for this hypothesis could be obtained using high sensitivity

thermogravimetry. There are quite interesting implications regardless of the

outcome:

(a) If there is a size-dependent nonstoichiometry of TiO2 (and by extension,

many other nonstoichiometric oxides), one would expect enhanced ionic

conduction at very fine grain sizes, which may have important

technological implications.

(b) If no weight gain is detected by high sensitivity thermogravimetry, the

suggestion would be a very steep temperature dependence of the average

enthalpy of general, high angle boundaries that has not yet been

demonstrated by theoretical calculations.

(2) A more rigorous analysis of the effect of impinging space charge layers on grain

boundary defect concentrations should be undertaken. In particular, the addition

of aliovalent solutes could be modeled and the resulting effect on Hgb could be

predicted and compared with calorimetric measurements. Measurements of the

grain boundary enthalpy of (Ca+Sn)-TiO 2 (acceptor-doped) and one

measurement of (Nb+Sn)-TiO 2 (donor-doped) have indicated a larger Hgb due

to Ca and a smaller Hgb due to Nb, relative to that of Sn-doped samples of

comparable initial grain size. It would be interesting to see if this difference is
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supported by additional measurements and if it is predicted by modeling of

impinging space charge layers.

(3) Low temperature (100-300K) heat capacity measurements might clarify some of

the unanswered questions regarding the temperature dependence of Hgb and

might enable nearly absolute measurements of grain boundary entropy, Sgb.

(4) Size-dependent segregation at fine grain sizes suggests several possibilities for

future work:

(a) How is space charge segregation affected by size-dependent coverages?

In particular, one might see some interesting effects due to depletion of

solute from the bulk; the bulk's defect chemistry will be forced into the

intrinsic regime.

(b) A careful study of the kinetics of grain growth in the size-dependent

regime might indicate a self-stabilizing effect as coverage increases

toward saturation.

(c) We now have some level of predictability as to the solute coverage versus

grain size curve for a particular material system, doping level, and

temperature. This capability to tune grain boundary coverages may allow

design of some interesting experiments to test our understanding of

segregation effects on fracture mechanisms and grain boundary cohesion.

(5) The primary obstacle for superplastic deformation of fine-grained ceramics is

usually dynamic grain growth. We have successfully extended the stability of

nanocrystalline grain sizes by doping with Ca or Nb, perhaps enough to allow

for diffusional creep measurements at low temperatures with minimal grain

growth.
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APPENDIX A

Errors Associated with the Measurement of Excess Solute Density

Error in the quantitative STEM measurement of excess solute density at

grain boundaries is due primarily to counting statistics. Possible errors due to x-ray

absorption are also briefly discussed. A more detailed analysis of each of these

issues appears in references 1,2, and 3.

Standard Error due to Counting Statistics

Furdanowicz has calculated the standard deviation due to propagation of

errors when composition is computed as a fraction of the total:4

s) ( +ck (A)

(Ci +Cj +Ck) 2

where ci = Iiki /Ai and 8 i = IfkTi /A i.

Si is the standard deviation in mole fraction for element i (Ca or Sn), Ii is the

integrated peak intensity for characteristic emission for element i, If is the standard

error in Ii, kTi is the "k-factor" for element i, and Ai is its atomic weight. The

standard deviation associated with each measurement of excess solute density F (see

Equation 4-5 in section 4.2.3) is then:5

S= N-w. (Ssb2 +4[(S$1)2 +(S$2)2]

where i is Ca or Sn, Sb is the standard deviation in composition of i at the grain

boundary from equation Al, S 1 and S$2 are the standard deviations in composition

of i in each of the neighboring grains, N is the cation site density of rutile, and w is

the width of the reduced area scan.
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The results of this error analysis are shown in Figures A1-A6, where the

error bars indicate the 95% confidence level (±2S[) for each measurement of r.

With the exception of two data believed to be from "special" boundaries (data

point 6 in Fig. A5 and data point 3 in Fig. A6), the variation in r between grain

boundaries within the same sample is statistically insignificant. However, the trend

of an increasing solute density with grain size is statistically significant.

Errors due to X-ray Absorption

Errors in quantitative x-ray microanalysis due to absorption of x-rays in

thick samples or in samples with large variations in thickness or composition can be

corrected for, in the Cliff-Lorimer equation (Eq. 4-3 in section 4.2.3), by a

multiplying factor:6

T ·1_ -expt csc .Pt]
f(xi) = i, P TiO2 (A3)

f'~Ti )=l-e·ex- '' - J' cc t T niO
1 Lcsca .tJ P

TiO2 O

where a is the detector takeoff angle (120), p is the sample density, t is the foil

thickness, and ( / piO) is the overall mass absorption coefficient (cm 2/g) for

element i in TiO2, calculated from elemental mass absorption coefficients:

i i i

9 -| *XTi + *XO (A4)

P 1 0 2 P Ti

where (i /PTi is the mass absorption coefficient of Ti for the i line (in our case,

either CaKa, SnLa, or TiKa) and X is the weight fraction of titanium or oxygen in

TiO2 .

In sufficiently thin samples absorption corrections are not necessary. The

"thin film criterion" is often applied, which states that below a particular foil
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thickness, absorption is negligible in that it will not alter the true ratio of IA/IB more

than 5-10%.6 This criterion for two elements A and B is:

0.2 (AS)

csca * p(tP TiO 2 )

where A / PITiO2 is the difference in mass absorption coefficients for elements A

and B in TiO2 .

Applying Eq. A5 to the worst case (largest differential absorption) of the

elements Sn ( / pSnL, 194 cm2 /g) and Ti ( / plTia 90 cm2 /g), a thin film limit
eleents Sn (~t /P lTiOz

of 9430 A is calculated for x-ray analysis of cations in this material system. This

thickness is well above the electron transparency limit for 100 kV electrons. Thus,

errors due to x-ray absorption are negligible in comparison to the error from

counting statistics.
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Figure A2. Measurement of excess calcium and tin density at five grain boundaries
in TiO2 with a mean grain size of 120 nm. Error bars indicate a 95 % confidence
level.
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Figure A3. Measurement of excess calcium and tin density at five grain boundaries
in TiO2 with a mean grain size of 383 nm. Error bars indicate a 95 % confidence
level.
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Figure A4. Measurement of excess calcium and tin density at six grain boundaries
in TiO2 with a mean grain size of 477 nm. Error bars indicate a 95 % confidence
level.
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level.
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APPENDIX B

Observations on the Effect of Dopants and Preparation Method
on the Anatase-Rutile Phase Transformation

As it became apparent that physically-derived nanocrystalline TiO2 was not

suitable for calorimetric measurement of excess grain boundary properties, much

effort was diverted into working with a solution chemical method that had been used

in our laboratory for several years to synthesize TiO2 powders homogeneously

doped with Al and Nb. 1 Preliminary experiments showed that these powders (in

particular, a batch doped with - 0.2 mole% Nb) could be hot pressed into dense

pellets with an average grain size between 30 to 50 nm. However, these pellets

contained both the anatase and rutile phases. Modifications in the calcining

treatment of the Nb-doped powder (higher temperature, reducing atmosphere)

resulted in modest increases in the rutile content of the powders, but always with a

concomitant increase in the particle size. It seemed obvious that further

improvements could be made only by making changes in the dopant chemistry or

processing methodology.

The effects of various impurities and atmospheres on the anatase-rutile

transformation have been reported rather extensively in the literature. A review by

Shannon and Pask2 summarizes the work of many researchers and offers the

hypothesis that the effect of a particular dopant or atmosphere hinges on whether its

introduction is accompanied by the creation of oxygen vacancies. Since the

transformation involves a shrinkage or collapse of the oxygen sublattice in anatase

and cooperative rearrangement of Ti4 + and 02- ions, oxygen vacancies would

provide additional space for this collapse to occur, whereas intersititals would be a

barrier. Additions of CuO,2 '3 Fe2 03,3' 4 NiO, CoO, and MnO2
3 have been

reported to promote the anatase-rutile transformation. These are all acceptor
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dopants and might be expected to substitute for Ti4 + ions with the creation of

oxygen vacancies for electroneutrality. Similarly, reducing atmospheres have been

observed to accelerate the transformation, 2 4 again by the introduction of oxygen

vacancies or perhaps by reduction to a TinO2n1 Magneli phase which could act as a

nucleation agent.2 The presence of S6+, W6 +, or P5+ ions inhibits the

transformation, 2' 3' 7 as might be expected since substitution for Ti4 + would reduce

the number of oxygen vacancies.

The effect of dopants is still not entirely clear, however. Rao and coworkers

reported that Zn2 + and A13+ ions, both acceptors, stabilize the anatase structure.7

Rao also reported that CI- impurities stabilize anatase, whereas Gamboa and

Pasquevich found that a C12 atmosphere or to a lesser extent, adsorbed Cl-, greatly

accelerates the phase transformation. 8 One reason for the confusion is that none of

these studies on the effect of dopants on the phase transformation has been

accompanied by experiments (or even much discussion) to shed light on how they

are incorporated into the structure. In addition, some of the contradictions about the

effect of dopants on the transformation may be rooted in the observation of lida and

Ozaki that the method of preparation plays an important role in the transformation. 3

In their work, the transformation temperature during calcination seemed to correlate

with the "crystallinity" of the prepared titanium hydroxide. Titanium hydroxide that

was well crystallized had the highest transformation temperature, whereas poorly

crystallized hydroxide had the lowest.

Effect of Dopants

The x-ray diffraction patterns shown in Figure B-1 illustrate the effect of Sn,

Ca, Al, and Nb dopants on the phase content of TiO2 powders after a 600°C x

1 hour calcining treatment. It should be noted that a strict comparison can be made
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Mole %

Sn Al Nb Ca

- 1.39 1.31

- 0.50 -

- 0.19

0.56 -

1.15 - -
1.07 - -
1.25

1.20

1.14

1.20 C

1.19

- - 0.34

- - 1.31

- - 3.69

).43 -

- 0.44 -

26 28 30

20

Figure B-. Powder x-ray diffraction patterns of doped TiO2 powders given a
600°C x 1 hour calcination in static air. (R) indicates the (110) rutile reflection, (A)
indicates the (101) anatase reflection, and (S) the reflection of the internal standard.
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only for those powder batches shown in bold print, since they were all synthesized

using my own "baseline" method (described in section 2.2.1). The other batches

were synthesized by colleagues in my research group using, nominally, the same

process; however, details of solution formation, precipitation, washing, and freeze

drying may differ enough to affect phase content and particle size.

Table B. 1 summarizes weight % rutile and crystallite size of these same

calcined powders. Phase content was quantified using the ratio of the rutile (110)

and anatase (101) peak intensities and the calibration formula given in reference 9.

Crystallite size was estimated using the Scherrer equation, after correcting for

instrumental broadening using the line width of a coarse internal standard. It can be

seen that Sn, particularly at the level of - 1 mole %, is quite effective in

TABLE B.1 Effect of dopants on phase development and particle size of
chemically-derived powders.

Mole (ICP) 600°C x 1 hour calcine
Batch Sn Ca Al Nb Weight % Rutile Particle size (nm)

T1 - - 1.39 1.31 0 23

T2 - - 0.50 - 0 24
T3 - - 1.32 1.43 0 20

0.1 Nb - - - 0.19 19 33

Note: Gray area indicates powder batches that were prepared using the identical
'baseline" method. Remaining batches were prepared by other researchers.
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accelerating the formation of rutile. Powder batches with no Sn developed from

zero to - 20 weight % rutile during this calcining treatment. Dr. Howard Jacobsen

of E.I. DuPont de Nemours suggested the addition of Sn. With the benefit of

hindsight, tin is a natural candidate to promote the transformation since SnO2 is

isostructural with rutile and does not have an anatase analogue.

The addition of Al, Nb, or Ca on top of Sn lessens tin's effectiveness in

promoting the phase transformation. Of these three, calcium had the largest

retarding effect on the phase transformation, perhaps because of its comparatively

large ionic radius. Calcium was also quite effective as a barrier to grain coarsening.

Comparison of batches TSA1 and TSN1 show that, in our case, Al doping inhibits

the phase transformation more than niobium doping. If both are incorporated

substitutionally into the titanium sublattice, the interpretation of the phase

transformation by Shannon and Pask2 suggests that Al-doping should promote the

transformation since oxygen vacancies must be introduced for charge compensation.

Possible explanations for this discrepancy are that their interpretation is incorrect or,

more likely, that at least at the relatively low calcination temperature of 600°C, the

solubility of aluminum in TiO2 is minimal, and thus it is not incorporated

substitutionally. (Therefore, it might be segregated at free surfaces and interfaces

or, less likely, incorporated into the lattice as interstitials.) Comparison of batches

S2 and TSN1 shows that niobium has only a very small deleterious effect on the

phase transformation.

The preceding discussion is, of course, based on the phase transformation

during only one heat treatment (600°C x 1 hour). For example, of the three

calcium-doped batches, the one with the least calcium (SC3) had the lowest rutile

content after the 600°C x 1 hour calcine, yet it required the shortest time at 750°C

to transform almost completely to rutile (1 hour versus 4 hours for batch SC1). A
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real understanding about the effect of these dopants would require a kinetic analysis

of the transformation as well as analysis of the surface versus bulk chemistry of the

developing powders.

Effect of Preparation Method

The literature contains some guidance, albeit mostly anecdotal, about the

effect of preparation method on the phase of TiO2 .3 '10- 12 As was already

mentioned, ida and Ozaki found that when titanium hydroxide is the precursor to

TiO2 , its crystallinity has a large effect on the onset of the phase transformation?.3 It

is well known that TiO2 produced by precipitation of titanium sulfate solutions is

usually anatase that is stable up to 8000 C, presumably because of the presence of

residual sulfate ions.

Three alternative preparation methods were attempted in this work, and the

results are summarized in Table B.2. In the first, the only step that was changed

from the "baseline" method was the rate of addition of the NH40H. Rather than

adding at the controlled rate of a burette (t- 30 sec), an amount calculated to bring

the solution to its equivalence point was added rapidly to the TiCl4 solution

(t <3 sec). The idea here was to "shock" supersaturate the solution so that many

more nuclei would be formed prior to the onset of growth. This batch was called

"S3," and as can be seen in Table B.2, this powder did contain more rutile and with

a finer particle size than the powder produced using the baseline method (batch S2).

Use of x-ray diffraction at increments in the calcining treatment indicated that,

although anatase was the first phase to nucleate in both batches, rutile began to form

in the S3 batch about 100°C earlier. However, it is not at all likely that this success

was due to the intended "shock nucleation" effect; qualitative observations suggest

that the rapid addition of NH4 0H changed the surface chemistry of the solution.
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First, the pH of the supernatant of this batch was between 3-4 for the entire rinsing

process, compared to a pH of 6-7 for the "baseline" batch S2. The supernatant was

also cloudy rather than the usual clear, suggesting that more very fine particles were

dispersed. Furthermore, chromatographic analysis (Union Carbide Corp.,

Tarrytown, NY) indicated a significantly larger residual Cl- content in the S3

batch- 258 ppm compared to 32 ppm in the baseline S2 batch. An infra-red study

of rutile surfaces has shown that a surface chloride concentration of > - 150 ppm

changes the characteristic spectrum of a sample at room temperature. 13

Furthermore, in light of evidence that the anatase-rutile transformation is sensitive

to both adsorbed chlorine and chlorine in the atmosphere,8 it is possible that the

higher chlorine content detected in batch S3 is the primary factor in its earlier

transformation, and thus finer particle size. A more effective means of increasing

the nucleation rate may be to add the cation solution to the NH4 0H solution. 14

Precipitation should be instantaneous and, for multicomponent solutions, atomic-

scale mixing should be more closely approached since the solubility limit of both

components would be exceeded at the same time.

The second alternative preparation method was to use NaOH as the

precipitant rather than NH40H, following a rough description given by Wilska10

who reported that TiO2 prepared by this method contained 72% rutile and 28%

anatase after 1 hour at 300°C. Figure B-2 shows x-ray diffraction patterns at

increments in the calcination of our powder batch S4 which was prepared by this

method. It can be seen that by 428°C, either rutile nucleates so rapidly on the first-

formed anatase as to make detection of anatase difficult, or rutile forms directly

from the amorphous phase. Table B.2 shows that this batch of powder was entirely

rutile with a crystallite size of - 15 nm after a 600°C x 1 hour calcine. Although

this batch was the best in terms of particle size and rutile content, it was not used in
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Figure B-2. Powder x-ray diffraction patterns of batch S4 at increments during
calcination. Powder was heated at 100/min to the temperature indicated and then
furnace-cooled. (R) indicates rutile reflections, (A) anatase positions, (N) NaCI
reflections, and (S) reflections of the internal standard (which was present in the
600°C x 1 hour powder only).
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this work because of the residual NaCI that was detected by x-ray diffraction (see

Figure B-2). Unlike residual NH4CI that can sometimes be detected in freeze-dried

baseline-prepared powders if rinsing is inadequate, NaCI does not decompose prior

to melting. Therefore, this powder probably has significant amounts of Na+ and

Cl- impurities, although this has not been confirmed by ICP. This preparation

method could hold promise if the rinsing step can be improved such that NaCI is

dissolved more completely unless the extremely rapid transformation is due solely to

a high Cl- content in the powder.

Wilska describes a preparation method "hydrolysis by adding a 10% aqueous

HCI-acid solution to a large volume of boiling water" as producing rutile by

500°C. 10 This was attempted as the third alternative preparation method, but was

by far the least successful. Precipitation could not be detected after several hours at

- 100°C. Thus, the solution was cooled slightly and 7.4 M NH4 0H was added to

precipitate the solution. Although this batch at a first glance seems to be an

improvement over the baseline method in terms of rutile content and crystallite size

(see Table B.2), other observations indicated that it was not suitable for powder

preparation. There was an aging process in which the supernatant of this batch

became very cloudy after the final rinse (even though the pH was 6-7), so much so

that the sediment layer in the beaker was difficult to detect. (A sol-gel process may

have occurred.) There were brown patches in the freeze-dried powder, and it had

such a large specific volume and was so light and fluffy that it could easily blow

away in the natural air currents of our laboratory.

In summary, modifications were made in the powder preparation method that

proved to be successful in producing rutile at low enough temperatures such that the

particle size remained approximately •20 nm. By far the most effective change was
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the addition of - 1 mole% SnO2. However, the powder processing has certainly

not been optimized. Further improvements can almost certainly be made after a

more methodical and rigorous study of the precipitation and rinsing steps of the

process.
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