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Abstract

We discuss topological issues that arise when differential equations and finite
automata interact (hybrid systems). In particular, we examine topologies for
achieving continuity of maps from a set of measurements of continuous dynamics
to a finite set of input symbols and from a finite set of output symbols into the
control space for those continuous dynamics.

Finding some anomalies in completing this loop, we discuss a new view of
hybrid systems that may broach them and is more in line with traditional control
systems. In fact, the most widely used fuzzy control system is related to this
new view and does not possess these anomalies. Indeed, we show that fuzzy
control leads to continuous maps (from measurements to controls) and that all
such continuous maps may be implemented via fuzzy control.
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Abstract map proposed in [3]. We verify that the map is indeed
continuous, developing enough technical lemmas to

We discuss topological issues that arise when differ- easily add the fact that the symbol space topology
ential equations and finite automata interact (hybrid they constructed is the same as the quotient topol-
systems). In particular, we examine topologies for ogy induced by their AD map.
achieving continuity of maps from a set of measure- In Section 3, we discuss what happens if we try
ments of continuous dynamics to a finite set of input to impose continuity from the measurement to the
symbols and from a finite set of output symbols into control spaces. We first illuminate why this is un-
the control space for those continuous dynamics. reasonable given the fact that the measurement and

Finding some anomalies in completing this loop, control spaces are normally connected metric spaces.
we discuss a new view of hybrid systems that may We then impose a new topology on the control space
broach them and is more in line with traditional con- that gives rise to continuous maps.
trol systems. In fact, the most widely used fuzzy In Section 4, we introduce a new view of hybrid
control system is related to this new view and does systems. This view allows us to meaningfully discuss
not possess these anomalies. Indeed, we show that continuity of maps from the measurement to control
fuzzy control leads to continuous maps (from mea- spaces without introducing new topologies. We also
surements to controls) and that all such continuous show that the most widely used fuzzy logic control
maps may be implemented via fuzzy control. structure is related to this form and that it indeed

is a continuous map from measurements to controls.
1 Introduction It is further demonstrated that these fuzzy logic con-

trollers are dense in the set of such continuous func-
In traditional feedback control systems-continuous- tions.
time, discrete-time, and sampled-data-the maps We end with a short summary and conclusions.
from output measurements to control inputs are con- The Appendix collects the proofs of parts of a tech-
tinuous (in the usual metric-based topologies). When nical lemma.
dealing with hybrid systems, however, one immedi-
ately runs into problems with continuity using the
"usual" topologies. Whereby we begin ... 2 Continuous AD Maps

In this paper, we discuss some results relating to
the topology of hybrid (mixed continuous and finite 2.1 General Discussion
dynamics) systems. We begin with a model of a In this section, we will discuss continuity of maps
hybrid system as shown in Figure 1. We are inter- from the measurement space of the continuous plant
ested in maps from the continuous plant's output or into the finite symbol space. Such continuity is de-
measurement space into a finite set of symbols. We sirable when implementing control loops, since we
call these AD maps. We are also interested in the want, roughly, small changes in measurement to lead
map from this symbol space into the control or input to small changes in control action.
space of the continuous plant (DA map). In many The basic problem we have in going from the con-
control applications, both the measurement and con- tinuum, M, into a finite set of symbols, I, is that
trol spaces are (connected) metric spaces. Therefore, I usually comes equipped with the discrete topology
we will keep our discussion germane to such assump- and the only continuous maps from M to I in this
tions. case are constant (since M is connected and any sub-

The paper is organized as follows: In the next sec- set of I with more than one point is not). Therefore,
tion, we discuss AD maps. First, we illuminate the we must search for topologies on I which are not
general issues. Then, we examine at length an AD the discrete topology. At first, we may be disheart-
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Computer Science. Research supported by Air Force and ARO and even T1 topologies, from consideration. However,
grants, Center for Intelligent Control Systems the topologies associated with (finite) observations



are naturally To [4]. Fortunately, there do exist To Here is a simple example of the construction:
topologies other than the discrete topology on any
finite set of more than one point: Example 2 Let our measurement space be M =

[0, 3] and the open cover of this measurement space
Example 1 Suppose X is a finite set having n > 1 be
elements. There exists a To topology on X that is Al = [0 2) A = (13]
not the discrete topology (and hence neither T1 nor
Hausdorff). The small topology generated by this subbasis can be

enumerated as follows: B1 = 0, B2 = (1,2), B3 =
Proof Take as a basis the following subsets of X: [0,2), B4 = (1,3], B5 [0,3]. Next, we find the

0, (XZ1}) { xn-}, X . ° non-empty join irreducibles:
Using this idea, a way of getting around the prob-

lem above is to append the symbol space, I, with a C= [0,2), C2 = (1,3], C3 = (1,2)
single new symbol, I. Then, we place the follow-
ing topology on I' = I U f1}: 2', I U (I}, where 2' Thus, we let our set of symbols be I = {1, 2, 3} and
is the power set of I. This topology on I' makes it define the function AD as follows:
homeomorphic to X in the proof above (when X and
I' have the same number of elements). Therefore, 1m [0, 1]
it is To, but not T1. Now, we can create continu- AD(m) , mE [,]
ous maps from a continuum, M, into I' as follows: 3, m (1, 2
Let Ai be N mutually disjoint open sets not covering
M. Let I = {1,...,N), and define f(Ai) = i and
f (M - Ui Ai) = i. We claim f is continuous. It is
enough to check the basis elements of the topology D1 = {1,3}, D2 = {2,3}, D3 = 3
on I', which are the singleton sets of elements of I
plus the set I' itself. We have f- 1(i) = Ai, open, for and the resulting topology on I, T
each i E I. Further, f-1(I') = M, which is open.

Another topology which works is the following: 0, 3}, 1 32,3}, 1,2,3}
0, {U u {I} I U E 2'}, with the Ai closed instead
of open (see Section 3 for a use of a topology like One can readily check that T, is To and that AD
this). There are presumably many other choices one is continuous. O
can make. Below we examine at length one espoused
in [3]. 2.2.2 Filter Interpretation: Here, we give

an intuitive interpretation of the Nerode-Kohn ap-
2.2 AD Map of Nerode-Kohn proach to hybrid systems as described in [3] (herein,

2.2.1 Definition: The AD map is a map from N-K) in terms of bandpass filters. Our discussion
the measurement space, M, into a finite set of sym- covers both AD and DA maps.
bols, I. Nerode and Kohn [3] create a continuous AD The starting point of the N-K approach is an as-
map as follows: sumption that one can only realistically distinguish

points up to knowing the open sets in which they are
1. First, take any finite open cover of the measure- contained. Thus, one takes small topologies on the.en space: M U' Ai, where the Ai arecontained.' Thus, one takes small topologies on the

iment space: M = A, where the are measurement (a.k.a. plant output) and control (a.k.a.
open in the given topology of M. plant input) spaces. The open sets in these topolo-

2. Next, find the so-called small topology, TM, gen- gies correspond to events that are distinguishable and
erated by the subbasis Ai. This topology is finite achievable, respectively. For example, they represent
(as we will argue below) and its open sets can be measurement error or actuator error (or equivalence
enumerated, say, as Bi1,..., BP. classes that are adequate for the task at hand).

A good way to think of the open sets in the small
3. Next, find all the non-empty join irreducibles in topology is as notch filters. On the input side, we

the collection of the Bi (that is, all non-empty can pass our measurements through these filters.
sets Bj such that if Bj = Bk U Bt, then either The level of information that we glean is, Did it go
Bj = Bk or Bj = B1). Again, there are a finite through the filter or not? Now, the total informa-
number of such join irreducibles, which we will tion from our sensors is summarized in the string of

denote C1,. · · ·, CN. 1However, the theory developed from this principle is des-

4. Let the set of symbols be I = {1,... , N}. Fur- tined to contradict itself. In particular, we have seen that

ther, define the function AD(m) = i if Ci is the closed sets may be distinguished (these arise from the parti-
tion of the measurement space into symbol pre-images, the

smallest open set containing m. so-called "essential parts.") More provocatively, we can dis-

tinguish single points in the measurement space. Consider as
5. Create a topology, T,, on I as follows. For each a representative example zero in [-1, 1]. Then the open sets

i E I, declare Di {j Cj C Ci) to be open. [-1,1], (0,1], and [-1,0) give us information to exactly deduce
Let 71 be the topology generated by the Di. x = 0.
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Yes/No answers.2 (Of course, we also implicitly have A u B where A 0 U, and B 5 Ur. Then we must
the filters themselves, that link these binary sym- have that m E A or m E B, or both. Without loss of
bols with real regions of measurement space.) By generality, assume m E A. But, since A is an element
taking the intersection of all filters which had a Yes of the topology generated by the Ai, it must be of
answer, we obtain the join irreducible from which the form A = UiE nijEJ, Aj, where Ji C {1,..., n},
the measurement came. The input symbols of the fi- for each i E I, that is, an arbitrary union of finite
nite automaton are simply "names" given to join irre- intersections of elements of the subbasis. Since m E
ducibles. By also taking into account the No answers, A, it must be in at least one of the sets in the union,
we obtain a partition of the measurement space into say, the kth: m G nfEJl Aj. However, this means
what N-K call "essential parts." m E Aj for each j E Jk. By definition, Jk C J(m),

Likewise, on the output side one constructs the so that Ur C A. But, since Ur = A U B, we also
join irreducibles. The output symbols of the finite have U, D A. So that A = Ur, a contradiction. O
automata are exactly "names" given to these join ir- Thus, AD is a well-defined function, with
reducibles. Now, the finite automata controller is AD(m) = i where Ci is the smallest join irreducible
simply a map from input symbols to output symbols containing m. In fact, Ci equals the Ur defined in
(modulated by its internal state). To fix ideas, let's the lemma. Now, it is easy to see that the set of non-
say that the output symbol corresponds to join irre- empty join irreducibles is finite: there are at most
ducible Kj. 2' - 1 distinct non-empty sets that can be written

Again, we can think of the control space small in this manner. Thus, the topology generated by the
topology as a set of notch filters. Here, we imagine Ai has less than 22 elements (since each element is
some broadband source signal (which is not exactly a union of basis sets).
fiat) which we use to produce our control in the fol-
lowing way: Instead of choosing a single output from Lemma 5 1. The non-empty join irreducibles Ci
the named join irreducible deliberately (normal AD form a basis of the topology, TM, which they gen-
conversion), we simply construct one in the correct erate.
equivalence class. We do this by using as a control
signal the signal that results from passing our broad- 2. The sets Di are a basis for the topology, T7,
band source through each of the filters (open sets) which they generate.
which intersect to form the join irreducible K,.

It is also interesting to note that N-K seem to
have adopted the idea (cf. Appendix II of [3]) that 4. Iff is surjective, f(f -(X)) = X.
the finite automaton and small topologies are used
to construct approximations to maps from the mea- 5. Cj = AD -1 (Dj)
surement to control spaces, the approximation (of a
continuous control law) necessarily approaching that Proof The detailed proofs appear in the Appendix.
law as the cover becomes finer. Items 1 through 3 are straightforward. (For those

2.2.3 Verification of Continuity: One of the with a knowledge of lattice theory, the Ci and Di are
results of [3] is the fact that their AD map is continu- lower closures in their respective lattices and give rise
ous from (M, TiM) to (I, fi-). Namely, they give (with- to the (dual) Alexandrov topologies thereupon [4].)
out proof) the following proposition, whose proof we Item 4 is in [2, p. 20]. Item 5 is almost immediate in
outprovide for completeness: propositionwhoseproofwthe D-direction and follows with the help of Lemmaprovide for completeness: 4

4 in the C-direction. 
Proposition 3 ([3]) AD : M -+ I is continuous. Now, we are ready to prove the proposition:

Proof (of Prop. 3) Lemma 5 says the Dj are a basis
We will need several technical lemmas first, which and that AD-1(Dj) = Cj, which is open in M. 0
will also be used to prove later results:

2.2.4 T, is the Quotient Topology: Next,
Lemma 4 The non-empty join irreducibles of the we want to show that the AD topology of Nerode and
topology generated by the (subbasis) Ai are exactly Kohn, T1 , is exactly the quotient topology of their
those sets which can be written as AD map. This is accomplished by proving that T7

is both coarser and finer than the quotient topology.
Um= n Aj The following is well-known [2, p. 143]: Let X be a

jEJ(m) space; let A be a set; let p : X -+ A be a surjective
map. Then the quotient topology on A induced by

where J(m) is the set of all j such that m E Aj. p is the finest (largest) topology relative to which p
is continuous. Since the AD map is continuous

Proof Pick m E M arbitrarily. Then Um is non- in 71 and surjective, we trivially have: T1 is coarser
empty since it contains m. Next, suppose that U, is than the quotient topology, TQ, corresponding to AD.
not join irreducible, so that it can be written as Um = Now, it remains to show that 7T is finer than TQ.

2
That is, we can basically do peak detection (now allowing Proof Suppose J is open in TQ. Then AD- 1 (J) is

nonideal filters). Biological auditory and olfactory systems open in TM. Finally, it can be written as AD-1(J) =
may work like this [1]. U/EB CO, where B is some subset of {1,..., N}, since
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the Cd are a basis for TM. We want to show that C' = C U {I), that is, we append a single element,
J E 7i. But note that since AD is surjective I, to C. Next, we define a topology, T', on C'

as follows: T' = 0, {U U } U E 7-)}. Suppose
we wish to have image points cl , ... , CN in C. Let

J= AD(A(D-1(J))AD U C: = U AD(C,3) f-l(ci) = Ki be disjoint closed sets not covering M.

J(EB FEB Let f(M _- UN Ki) = I. Then

Now, we have from Lemma 5 that Co = AD- 1 (D/). Remark 8 f is continuous.
Since AD is surjective, this implies AD(C) = Proof f(0) 0 hich is open. Now, suppose U

AD (AD -1 (D,)) = Do So that .J = U,3 EB Dg,, which is any non-empty open set of C'. Then U' = Uu( ),
is open in T1, being a union of basis elements. where U is open in C. Therefore,where U is open in C. Therefore,

Summarizing, we have shown

Theorem 6 The AD topology of Nerode and Kohn, f-l(U) = f(U) f 1({I})
Ti, is exactly the quotient topology of their AD map. UK\U M

We have also gotten something else along the way. U K iI
In the last proof we showed that AD(Cp) = Do3.
From Lemma 5, we have AD- 1(D/3) = C,3 and that = M- U Ki
D,3 and Cp, are bases for T7 and TM, resp. Thus, AD ieI-J

is a homeomorphism between the topological spaces
(M, TM) and (I, T7). (This homeomorphism was also (where J is the set of indices j for which cj E U, and
noted without proof in [3].) I = 1, . . ., N}) which is open since its complement

is closed; the formula is well-defined if J : I. If

3 Completing the Loop J = I, then f-1 (U') = M, which is open. O

3.1 Problems Completing the Loop 4 A New View of Hybrid Systems
In this section, we discuss problems which arise when We wish to propose a new view of hybrid systems as
considering continuous mappings from the measure- shown in Figure 2. The difference between this and
ment to control spaces (see Figure 1). Specifically, the previous prototypical hybrid system is that there
we have is feedback on the signal level. This feedback modu-

Remark 7 If M is connected and C is Ti, the only lates the symbols coming down from the higher level.
continuous maps from M to a finite subset of C (i.e., Alternatively, one can view the symbols as specifying
f(M) = {ci,...,CTN}, ci,... ,CN E C) are constant one of several controllers whose output is to be the
maps. control signal.

The most widely used fuzzy control scheme is re-
Proof First, constant maps are always continu- lated to this model in the sense that it achieves con-
ous, and their image is a single point of C, hence tinuous maps-despite a finite number of so-called
finite. Next, suppose for contradiction that f is a fuzzy rules-by utilizing the continuous measurement
non-constant continuous map from M into C and information. We discuss this in more detail below.
the image f(M) = {cl,.. ., CN }, where the ci are dis-
tinct points in C for some finite N greater than or 4.1 Why the New View?
equal to two. Since C is Ti, we can construct open Before, we had a natural fan-in of sensory informa-
sets Ui3j for i : j such that Ui,7 contains ci but not tion from the signal to symbol levels. This models
cj. Thus, there is an open set about cl not contain- abstraction and reduction. In our new view, we also
ing c 2 ,..., cN, viz., U =nN 2 U,1 -. Also, we can have an analogous, natural fan-out of control com-
construct an open set which contains each c,. .h.,e c mands from the symbol to signal level that was not

yet does not contain cl: ni = UN present before. Basically, we are saying that the fi-
yet doe(M)=is not conntai c t. i=2 Uii· Therefore, nite description of the plant's dynamics as seen from
f(M) = U U V is not connected. O automaton's point of view is not an exact aggregation

of the plant's dynamics. Therefore, one should utilize
3.2 Topologies Completing the Loop the continuous information present at the lower level
In the previous subsection, we saw that, under mild as well as the discrete decision made above in order
assumptions, there are no non-constant continuous to choose a control input for the lower level. There
maps from the measurement to control spaces. In is no need to arbitrarily pick a member from the set
this subsection, we wish to give a topology on the of controls (fixed for normal AD conversion, always
(augmented) control space which allows us to con- arbitrary in the Nerode-Kohn view). Instead, the set
struct a non-constant continuous map. is given by the automaton, while the member of that

We make no assumptions on M and C (except set is chosen using information from the lower level.
those implicit in the definition of f below). Sup- Thus, the aggregated and continuous dynamics are
pose that the topology on C is T. Then we let related, but the first is not a substitute for the latter.
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If it were, the plant could have been modeled directly 5 Summary and Conclusions
as a finite automaton.

In this paper, we discussed some of the topological

4.2 Fuzzy Control Systems issues that arise when differential equations and fi-
nite automata interact in hybrid systems. We con-

4.2.1 The Control Scheme: A fuzzy control centrated on the maps from a continuum to a finite
scheme is given by the commuting diagram of Figure symbol space and back again that such systems pos-
3, where F denotes fuzzification, G the inference map sess. We illuminated the general difficulties with the
of the fuzzy rule base, and D defuzzification. Here, usual topologies in allowing continuous AD maps,
the fuzzy controller has M rules of the form constructed several topologies which bypassed them,

and examined at length one such topology from [3].
RULE~i: IF x is Ai, THEN y is Bi, 1 = 1,. .. , M We showed that there are inherent limitations

present when one desires continuous maps from con-
and FM is a cross product of the space of fuzzy tinuum to continuum through a finite symbol space,
sets on Y. The most widely used inferencesets on Y. The most widely used inference viz., one must equip the continua with new topolo-
rule computes LBU (Z) = minJ{Ai(X), l Bi(z)}, gies. We constructed a control space topology allow-
for all z E Y, and defuzzifies using the cen- ing a continuous map which "completes the loop."
troid: y = (EiM1 Vi AB (Vi))/(ZE Ml= (Bi)), We ended with a new view of hybrid systems that
where yi equals the centroid of jB': yi = may broach these problems. As an example, we

iii '(z~dz~I(C showed that the most widely used fuzzy logic con-
(f¥y Z AlB(z)dz)/(f¥ AlBs(z)dz).

im L at- \J !B (zd) ,. trol structure is related to this new view and thatThe finite rule base is related to the finite symbols
of our hybrid model. For instance, the rules which ct indeed is a continuous map from measurements to
fire are akin to the filters which passed data in our controls. We further demonstrated that these fuzzy

discussion of the . approach. Hlogic controllers are dense in the set of such continu-discussion of the Nerode-Kohn approach. However,
here one utilizes the underlying continuous informa- ous functions.
tion (represented in theu continuous membership fun- The full power of a hybrid, hierarchical structure istion (represented in the continuous membership func- unknown at this stage. The popularity of fuzzy con-unknown at this stage. The popularity of fuzzy con-tions for the measurement space) in order to con- trol seems due in part to the fact that humans dealstruct the precise control output. Thus, it fits into inct 

~~~~~~~our new view. ~better with-creating, constructing, modifying-a fi-our new view.
nite set of rules than with the continuous maps that

4.2.2 Producing Continuous Maps: We they represent. Perhaps it is this aspect of a hybrid
will deal with the prototypical case where X and Y system, as an interdependent, hierarchical decompo-
are closed intervals in R (for specificity, [a, b] and sition with feedback at various levels of abstraction,
[c, d], resp.). The case where X is a multi-interval in that will inevitably lead to truly intelligent control.
R" is a straightforward extension. The case where
y is a multi-interval in Rn then follows from consid- Acknowledgements
ering each dimension componentwise. We claim that
the induced map g = D o G o F is continuous from I have had numerous fruitful discussions with Dr.
X to Y. We will assume, for the proof, that the LA, Charles Rockland and my advisor, Prof. Sanjoy Mit-
and sBi are continuous on X and Y, resp. This is ter. The filter interpretation of the Nerode-Kohn ap-
fairly typical (e.g., triangular functions). proach arose from discussions with Anil Nerode.

Proof If the 1 Ai are continuous, then F is con-
tinuous. It is also easy to see that centroid defuzzifi- Appendix
cation, D, is continuous. It remains to show that G
is continuous. Well, a fuzzy inference rule gives rise This appendix collects the full proofs for statements
to the following situation: H,,f(y) = min{a, f(y)}, 1-3 and 5 in Lemma 5. They are listed as separate
where Ha,f, f, and a are playing the role of fixed lemmas for convenience.
ABt), sBii, and lpAi(x) resp. Thus, by assumption,
f(y) E C([c, d -+ [0,1]). Now, we need G to be Lemma 5.1 The non-empty join irreducibles Ci
continuous as a map from, componentwise, [0, 1] to form a basis of the topology, 7M, which they generate.
C([c,d] -X [0,1]). But, if lai - a 21 < e, then

[llH.L,f - H 2,f 11 < e where [- It denotes the sup Proof Each m E M is contained in such a set since
norm. [ the Ai are a cover of M. The intersection of two such

sets that contain the point m is a superset of U,. EC
4.2.3 Approximating Continuous Maps:

Fuzzy control maps are also dense in the set of con- Lemma 5.2 The sets Di are a basis for the topology,
tinuous functions from X to Y. It is enough to note 7T, which they generate.
that triangular functions, which are prevalent for de-
scriptions of fuzzy membership sets, are so dense. To Proof Each i E I is contained in Di since Ci c Ci,
more easily see this, note that triangular functions so there is a basis element containing each i E I.
can be combined to construct arbitrary piecewise lin- If i E I belongs to the intersection of two basis ele-
ear functions. ments, say Dj, and Dj,, then we need a basis element

5



Dj3 containing i such that Dj3 C Dj, n Dj2. But
then Ci C Cj, and CiC Cj,2 . So that Ci c CCj n Cj,2.
From this, we want to show that Di is contained in
Dj, n Dj2. But this is evident from the definition of Symbol, Symbol,
Di: i E I v E V

Di = {jCj C Ci} I Finite Automaton

So, if j E Di, then Cj C Ci C Cj,, so that j E Dj,.
Likewise, Cj C Ci C Cj2, so that j E Dj2. Therefore,
Di C Dj, n Dj2, is the required basis element. n AD DA

Lemma 5.3 AD is surjective.

Proof Pick i E I. By construction, there exists
m E M such that Ci is the smallest non-empty join Plant
irreducible containing m. AD(m) = i. D Measurement, Control,

Lemma 5.5 C, = AD- l(D j) mEM c E C

Proof Figure 1: Prototypical Hybrid System

1. Cj AD-l(Dj).

AD-1(Dj) = AD-1(UkEDjk)

= U AD-l(k) C U Ck C Cj
kEDj kEDj

The last inequality follows from the fact that Symbol, Symbol,
Ck C Cj for all k E Dj. i E I v E V

2. Cj C AD-'(Dj). Suppose m E Cj. Then either Finite Automaton
Cj is the smallest non-empty join irreducible
containing m, in which case we are done, or there
is some other smallest non-empty join irreducible AD
Ck containing m. We claim Ck C Cj, in which
case k E Dj and m E AD-`(Dj), which is the
desired result.

. Controllers, Kv DA
Therefore, it remains to show that Ck C C.Controllers, K
The smallest join irreducible containing m is (see
Lemma 4) is U, = njEJ(m) Aj where J(m) is
the set of all j such that m E Aj. However, Cj
is also a join irreducible, so that it can be writ-
ten C, = njEJ Aj for some J C {1,..., n}. But Plant
Cj contains m, so that each of the Aj in the in- Measurement, Control,
tersection must contain m. So that by definition m E M c E C
J C J(m), whence Ck = U, C Cj.

0 Figure 2: New Prototypical Hybrid System
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