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ABSTRACT

The use of double hull construction is commonplace within the shipping industry though it is
largely unexploited within naval vessels. The Impact and Crashworthiness Lab at MIT has
proposed the use of adaptive sandwich structures to improve the blast resistance of naval
hulls. This project will address two main areas of investigation through the use of simplified
analytical models: the integration of hardening and softening plastic core responses in the
crushing of a rigidly supported sandwich panel; and the deformation analysis of a sandwich
panel supported by non-rigid connections. The analytical solutions were utilized to perform
a series of parametric studies to evaluate both the useable range of the models as well as to
investigate the general behavior of a sandwich panel under a uniform load when supported by
crushable connections. This initial investigation provides the simplified tools to begin and to
validate a more detailed, numerical analysis.

Thesis Supervisor: Tomasz Wierzbicki
Title: Professor of Applied Mechanics
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Chapter 1

INTRODUCTION

1.1 Overview

The use of large double hulls is soon to be law within the oil transport industry. The
implementation of a double-hull configuration is intended to increase a tankers ability to
remain intact after an accidental loading such as a collision or grounding. Although the use
of a double-hull is wide spread in civilian ships, the benefits remain largely untapped in the
Navy. The damaging of the USS Cole (figure 1) was a sobering example of the new threat
that naval forces face. Naval vessels have traditionally relied upon compartmentalization and
rapid response to avert sinking and minimize the damage due to blasts. Although, this
arrangement provides for a robust level of survivability, it does not provide any protection to
personnel or equipment in the vicinity of the blast, nor does it allow for the absorption of
higher energy incidents that may jeopardize the ship's overall structural integrity.

Figure 1 - Damaging of the USS Cole.

The Impact and Crashworthiness Lab has extended its work in automotive crash
resistance to the investigation of the effect of adaptive cores within a sandwich plate
construction that may re-distribute and/or absorb increased energy and reduce the incidence
of punch through in the presence of a proximity blast.

An adaptive core structure has been numerically modeled and has initially
demonstrated increased fracture resistance when compared to a single plate as well as when
compared to a unidirectionally stiffened panel, see figure 2. These results indicate the
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Adaptive Core Sandwich Structure

Unidirectionally Stiffened Double Hull

Figure 2 - Sandwich Core Configurations.

potential benefit of using an adaptive core hull structure. The current numerical model is
arranged in a clamped-clamped configuration simulating the plate's attachment to the rigid
upper and lower decks and the two rigid transverse bulkheads. This arrangement necessarily
limits the deformation to a single watertight section with the two rigid transverse bulkheads
acting as stress risers. In order for a ship's hull to further benefit from the adaptive core
structure it is proposed that the blast energy may be spread out over adjacent sections through
the use of a crushable interface between the hull and the transverse bulkhead as shown in the
following figure, figure 3. The implementation of a crushable stool will add a secondary
means for the absorption of energy and will allow the double hulled structure to potentially
deform over greater spans, thus reducing the possibility of fracture and further increasing the
overall level of blast damage survivability

Crushable Connection - Transverse Bulkhead
(Stool)

Figure 3 - Proposed Sandwich Panel Attachment Displaying Crushable Connection.

1.2 Motivation

It is the goal of this thesis to describe, through the use of simplifying assumptions and
an analytical model, the deformation associated with a sandwich panel supported by a
crushable stool under quasi-static loading. More specifically, what will be modeled is a
single ship's section, which will be defined as extending between two main transverse
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Figure 4 - Definition of a Ship's Hull Section.

bulkheads and two main decks as indicated in figure 4. This section essentially makes up a
single panel, supported around its periphery by the decks and the main transverse bulkheads.
However, it is at these points of connection for which it is proposed that a crushable support
be included between the hull panel and the surrounding decks and transverse bulkheads. The
analytical analysis for such a problem can span from a very simple beam approximation to a
higher order three dimensional interpretation with core crushing. The aim of this thesis is to
investigate the phenomenon without excessive complication to obtain an understanding of
the first order behavior of a sandwich panel on crushable supports. The analysis of the
crushing of a rigidly supported sandwich panel will be derived in closed form for a quasi-
static indentation using both a knife edged punch and a rectangular punch. The solution will
utilize a kinematic boundary condition to model the moving zone of plastic deformation with
respect to which the total resisting force will then be minimized, similar to an analysis carried
out by Wierzbicki and Suh [1]. This analysis will be repeated for both softening and
hardening responses of the core followed by a parametric analysis of the deformation
associated with differing core properties. The analysis of the sandwich panel will follow
through successive levels of complexity making use of standard variational/energy methods
and plastic yield-line deformation mechanisms.

The main goal of this research was to produce the initial characterization and
quantification of the response of a sandwich panel; therefore, no consideration was given to
the practical implementation of the results found herein. That is, the design and
manufacturing requirements for a sandwich panel along with the associated weight
implications were not addressed. Furthermore, the geometric design of the crushable stool
and its proper integration with the sandwich panel was left for further study with the support
of numerical tools.

17



Chapter 2

CRUSH RESPONSE OF A
SANDWICH PANEL

2.1 Introduction

The initial background work of this project involved the production of an analytical
description of the crushing of general sandwich panel on a rigid base. The panel was
described as consisting of a face sheet of thickness h on top of a crushable core of thickness
H. This general configuration was then mathematically exposed to two different force
applications. The first load was a knife edge punch indentation as shown in figure 5. This
point load can be seen to represent a collision or grounding loading of a ship's hull.

P

N 7N

H

Figure 5 - Geometry of Rigidly Supported Sandwich Panel Subject to a Knife Edge
Punch Indentation.

The nomenclature displayed within Figure 5 includes the location of a moving plastic hinge
(, the sandwich core's crushing load q, the membrane force N, within the face plate and the
maximum displacement of the face plate w. This nomenclature was retained throughout this
thesis, while this model formed the initial basis from which the subsequent, more
complicated models were derived.

Altering the application of the load from a knife edge to a flat or rectangular punch
helped to create a scenario which could be seen as more closely resembling a localized blast
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Figure 6 - Geometry of Rigidly Supported Sandwich Panel Subject to a Rectangular
Punch Indentation.

loading. The assumed configuration for the flat punch model is shown in figure 6 where the
notation remains the same as was previously described for the knife edge punch. In order to
evaluate various characteristics of this model, different attributes were give to the core's
material, that is, q was treated as a function of the shear strain produced by the deformation
of the face plate. The response function of the core was thus varied through three different
constitutive models as shown in figure 7. The rigid-perfectly plastic response was chosen,

q q q

---------- ------------------ .. ... ...

(a) (b) (c)

Figure 7- Assumed Limiting, Hardening and Softening Responses for Sandwich Core.

due to its simplicity, as the initial limiting case. In order to gain more advanced insight into
the problem of the crushing of a sandwich plate linear hardening and softening responses
were also analyzed.

The following section describes the formulation of the general problem for the knife
edge punch loading versus the limiting response. The work then expands to include the more
complicated hardening and softening functions as well as introducing the added complication
of a rectangular, flat faced punch.
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2.2 Formulation of the Problem and General Solution

As initially described, the evaluation of the crush response of a sandwich panel was
developed through increasing levels of complexity to provide insight into the behavior of the
mathematics of an analytical solution as well as to provide a sound base upon which more
complicated solutions could be compared in the limit. Wierzbicki, de Lacruz Alvarez and
Hoo Fatt [2] describe the essential development of an indentation with radial symmetry
utilizing a moving plastic boundary. Their work provided the basis for the formulation of
this plane stress background study. To begin with a limiting case was examined; it is
described in figure 5: a knife edge punch indentation using a rigid-perfectly plastic core
response relationship, as shown in figure 7(a), for the behavior of the sandwich material.

To determine the governing equation for the deflection of the face plate under a knife
edge loading a unit element, as shown in figure 8, was examined. The membrane force, No,
is decomposed into horizontal and vertical components with the vertical shear component
labeled Q and the local slope of the face plate, designated as a. The resisting force per unit
length q arises from the crushing of the sandwich core whose behavior is defined according
to figure 7(a).

No

~'Q+dQ

I N0

dx -

Figure 8 - Unit Element of Deformed Face Plate.

From a vertical force balance of a plate strip a relationship between the shear Q and the core
crush resistance q can be found as

dQ= q (2.2.1)
dx

For smaller deformations the slope of the face plate w' and the relationship between Q and No
can be approximated as

dw
= a and Q = N -a (2.2.2)

dx

By combining these equations and substituting into equation (2.2.1) the following governing
equation is defined

d (dw~
N -- = q (2.2.3)

dx dx

20



The fully plastic membrane force N, will be constant with respect to x; therefore, the general
governing equation becomes

N0 -" = q (2.2.4)

where the double prime denotes differentiation with respect to the coordinate x-axis. This
differential equation can now be solved utilizing the relationship in figure 7(a) for q. Since q
is constant in this limiting case we can simplify equation (2.2.4) by defining

q = (2.2.5)

to yield the final governing equation for the limiting case

W" = q (2.2.6)

The second order governing equation will be subject to two boundary conditions: the
displacement of the panel w at the edge of the plastic region ( as shown in Figure 7 must be
zero; and the total shear force developed in the face plate must equilibrate the difference
between the indentation force P and the crush resistance of the core q. The knife edge
loading produces a point load at x = 0 which is initially resisted only by the vertical
component of the membrane force No. Thus, the governing equation is subject to the
following boundary conditions

w=O at x (2.2.7)

and

-P
W = at x= 0 (2.2.8)

By integrating equation (2.2.6) twice and utilizing the above boundary conditions the
deformation of the panel w is described by equation (2.2.9) where the subscript L denotes the
limiting condition:

1 2 P
W=- qx --. x+ N -q (2.2.9)

2 NO N,

Within equation (2.2.9) the boundary of plastic deformation ( is a function of the load P and
varies throughout the loading process. In order to reduce the variables in equation (2.2.9),
Wierzbicki and Suh [1] showed that a relationship between P and ( can be derived by
minimizing the resisting force with respect to C. The minimization is carried out at x=O such
that w(0)=w, and removing dependence on x. Substituting x=O into equation (2.2.9), noting
that w(0) =wO and rearranging to solve for P():

Pi = 2-w N"_ +No- (2.2.10)

Through the minimization of P with respect to ( a relationship between the maximum
deflection wo and the extent of plastic deformation ( is found to be:

wie = q- 2 (2.2.11)
2
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This solution for w, can be used in equation (2.2.10) to find a force-boundary (P-() equation
for a sandwich panel subject to a knife edge loading:

P1, = 2 -No -q -4 (2.2.12)

This solution for a minimized force-boundary equation can be used to simplify equation
(2.2.9), the deflection profile, to:

w=- q (x -) (2.2.13)
2

and normalizing by the equation for maximum deflection w, the limiting normalized
deflection profile for a point loading with a constant core reaction becomes:

wnor = 2 (2.2.14)

2.3 Solution for a Hardening/Softening Core Model

After the initial limiting case was solved, hardening and softening characteristics of
the core were added to the mathematical model. The same force application geometry was
used as in figure 7 however the assumed sandwich core reaction force q was refined to
include either a hardening or a softening response during plastic deformation as shown in
figure 7(b) and (c) respectively. In order to make use of these reactions an engineering strain
, will be defined as the ratio of the displacement of the face plate, which varies with x, to the

thickness of the core H:

= (2.3.1)
H

Therefore, the sandwich core's reaction force q will be approximated using equation (2.3.1)
as

E
q = q E, - = q -w (2.3.2)

H

Substituting the assumed hardening and softening responses into equation (2.2.4), using the
definition for q in equation (2.2.5) and defining

k2 Etk2-=F (2.3.3)
N0H

the governing equation for a knife edge punch indentation with a hardening and softening
core responses becomes, respectively,

-k w= and w" k2 w=q (2.3.4)

The governing equations are subject to the same boundary conditions as in the initial limiting
case developed in Section 2.2, that is

w=0 at x =4 (2.3.5)

22



and

-PW'= at x = 0 (2.3.6)
2. N,

Solving the governing differential equation for a knife edge indentation with
hardening yields an exponential solution for the deflection profile WH, where the subscript H
denotes a hardening core response:

WH =Cek +C ek -q (2.3.7)

and where,

2N k e2'< - Pk a e 2N e-k< + Pk)e 2k<
C1 = q ' P and C2 =

C 2NOk 2 (i+ e21.<) 2Nok 2 (1 + e2k.)

Once again to ensure that the kinematic condition that exists at the boundary ( is maintained
the load P at x=O where w=w, is minimized with respect to ( to arrive at a relationship
between the maximum deflection w, and the moving plastic boundary (. For the hardening
case it can be shown that after minimization

WH - 2k 2 ek< (2.3.8)

Equating equation (2.3.8) to equation (2.3.7) evaluated at x=O a compact expression for the
load P as a function of the boundary ( is found to be

PH k. ek< - 2k1 (2.3.9)

Furthermore, when taken in the limit as E, -> 0 (k -+ 0) equation (2.3.9) becomes equivalent
to the load-boundary relationship, equation (2.2.12), for the limiting case.

Although the load and maximum deflection are important factors, the deformation
function wH also provides insight into the nature of the mathematics. The deformation as
solved for in equation (2.3.7) is a function of x, P and (, to reduce this number of variables
equation (2.3.9) can be utilized to produce a succinct equation in x and (

- k(x-4-)

WH = 2 e-k(x-4) 1)2 (2.3.10)

Normalizing equation (2.3.10) by the maximum deflection w, solved for in (2.3.8), further
simplifies the deformation function to

rm e k ' -x) 1)2

W""' ek . (k; ) 2 (2.3.11)

To solve the governing differential equation for a knife edge indentation with
softening an identical process is followed. The general solution, in complex exponentials,
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was found to be

W5 = C, -e' x +c "e +q (2.3.12)
2 k2

with the following constants determined from the boundary conditions in equation (2.3.5)
and (2.3.6)

-(2Nq -ie; -- i -Pk)_ -(2Nq -_e_-_ +i-_Pk_-ei_2k.
2Nok2 ( +e i.2k ) and 2 = 2N. 2 (1+e i 2k)

The maximum deflection wo as a function of the moving boundary ( is then a cosine function

WS) = 1 - cos(k (2.3.13)

which, when equated to the differential solution evaluated at x=0, gives a simple expression
for the load P as a function of the boundary (

P = k sin (k.-) (2.3.14)
k

As with equation (2.3.9) when taken in the limit, equation (2.3.14) can also be shown to be
equivalent to P(() for the limiting case.

Substituting equation (2.3.14) into the solution for the deflection under a knife edge
punch loading with a softening core response, equation (2.3.12), will reduce the number of
variables to only x and :

wN = q {1- cos[k (x-). (2.3.15)

As with the hardening response, this simplified equation can be further reduced by
normalizing with respect to the maximum deflection wo in equation (2.3.13) to produce

norm cos [k (x -)-1
= - cos(k() -1(2.3.16)

By suitably non-dimensionalizing the above equations and utilizing some appropriate
values, graphical comparisons of the hardening, softening and limiting reactions can be
made.

2.4 Solution for a Hardening/Softening Model with a Rectangular Punch

The addition of a rectangular punch for the indentation of the panel will more closely
reflect the geometry of the force from a close proximity blast. As shown in figure 6 and
again here in figure 9 the rectangular punch is described by a width of 2r. Making use of
symmetry, the punch will be described as extending from x=O to x=r where the x-origin,
quite naturally, is coincident with the centre of the punch. In order to mathematically
evaluate the response of the sandwich panel under this type of loading, an identical process
will be followed as was previously outlined for the knife edge punch. Moreover, the same
assumed responses for the sandwich core material as illustrated in figure 7 will be used.
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The initial governing differential equation remains the same as that determined in
equation (2.2.4):

N, -w" q (2.4.1)

and the sandwich core's assumed hardening and softening shear responses shown in figure 7
will be the same as for the knife edge punch in equation (2.3.2):

E
q = q E, - = q --. (2.4.2)

P
x

h

---- - - - - --- --- - -.. .. .. ..
W(x)

--- - --- -- H

Crushable Core

Figure 9 - Geometry of Rigidly Supported Sandwich Panel Subject to a Rectangular
Punch Indentation.

Furthermore, combining of these equations will be simplified by defining q and ki as before

in equations (2.2.5) and (2.3.3) respectively. This will result in the specific governing
equations for hardening and softening, respectively:

-"---k2---- =q-and w" +k 2 .-w =q. (2.4.3)

These equations are identical to those shown for the knife edge indentation in equation
(2.3.4). The integration of the punch is achieved through the boundary conditions specific to
this problem. The displacement-plastic boundary condition remains the same:

w =0 at x ;(2.4.4)

however, the presence of the rectangular punch alters the force balancing boundary
condition. With reference to figure 10 it can be shown, through a summation of the
vertical forces and by making use of equations (2.2.2) and (2.4.2), that for a hardening core
response the following relation exists from equilibrium:

E
2(N0 -w')+P+2r-q0 +2r. ' w=0 (2.4.5)

H
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No No

Figure 10 - Boundary Condition Based on Force Balance at x = r.

and for a softening core response:

E
2(N -w')+P+2r-q --2r- -'-.w=0. (2.4.6)

H

This boundary condition can be simplified by requiring it only at x=r where w=w, and
assuming that deformation from x=O to x=r is parallel to the face of the rectangular punch as
illustrated in figure 10. Therefore, the second boundary condition for the hardening case
becomes:

1=(P
W' = ,+q.r+k2.r.wj at x= r , (2.4.7)

while for the softening case, its second boundary condition becomes:

W'=- - +q-r-k2 .r.w, at x=r (2.4.8)
2N,

The general solution for the rectangular punch indentation with hardening will take
the form:

WH Ce kx +C -ey (2.4.9)

which, with the use of the boundary conditions in equations (2.4.4) and (2.4.5), can be easily
solved. As with the knife edge punch indentation, equating w(x=r)=wo and solving for the
load P one can minimize the loading with respect to the moving boundary of plastic
deformation ( to determine the maximum displacement w, as a function of the plastic
deformation (. In this way it can be found that for the hardening core response:

WHo 2k. ek(r ) [ek(r ) _1]2 (2.4.10)
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This solution can then be substituted into the previously found equation for the load P to
arrive at an equation for the loading as a function of the plastic boundary (:

q_ _ ek(r-,) -2k(r- )] k i 2k(r-,) (..1
PH k N+ - e- 1-e2r>+k-r 11+e . (2.4.11)

In both equation (2.4.10) and equation (2.4.11) it can be shown that in the limit as r -> 0 and
E, -> 0 these equations reduce to the solutions found for the limiting condition.

Having solved for w, and P as functions of the boundary these functions can be
substituted back into the solution for the deflection profile w, equation (2.4.9). This
substitution significantly simplifies the constants C and C2.

q2k
=H 2k e 1x)[e~ 12 (2.4.12)

Further variable reduction can be achieved by normalizing the deflection profile w by the
maximum displacement w0, yielding the final normalized equation for the deflection of a
hardening sandwich core under a rectangular punch indentation:

n" = e k(x-r) e _ (2.4.13)W ;7 [ek(,;r) Ij_

The same solution sequence can be employed for the sandwich core with a softening
response to generate the following results:

= C, -e " + C2 -e- " +q (2.4.14)
k2

=sq2=1-cos[k(r-,)]}; (2.4.15)

Ps= 2Nq{k-r-cos[k(r--)]-sin[k(r- ;)]-2kr ; (2.4.16)

ws = 1- cos[k (x -4)] (2.4.17)

orm cos[k(x -)]-1
= cos[k(r -)]-1 (2.4.18)
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2.5 Comparison of Hardening Softening and Limiting Core Responses

In order to fully evaluate the solutions above it is essential to utilize a practical
numerical example. Numerical evaluation will give a better understanding of how hardening
and softening core constitutive equations affect the overall solution. To simplify the analysis
several natural normalized parameters were defined based on the equations as follows:

Jh-.H

r
r=H

-,h -H

_w- = W
", H

-~ PP = 
.a,4-H*

To enable numerical solution the following values were chosen:

r
H

H
-=10
h

Et 1

O, 100
q 1
E,

These values are both practical in terms of magnitude and simplified to enable easy
calculation. Beginning with the knife edge loading the parameters were normalized and the
numerical values above were substituted into the equations of maximum displacement, and
load-displacement to arrive at functions of (, the normalized moving plastic boundary.

Comparison of Maximum Deflection for Knife Edge Loading
- Hardening, Softening and Limiting Core Reactions-

6I 1 1 1

Hardening

WHO

WSO

im ixnng

10 15 20 25

Nonnalized Plastic Boundary, T

Figure 11 - Comparison of Maximum Deflections for Knife Edge Loading.

From figure 11 the differences in the maximum deflection of the face plate can be seen with
increasing values for the normalized plastic boundary (. It is clearly demonstrated that for a
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hardening response a larger maximum displacement would be required to produce the same
amount of plastic deformation. Moreover, the function graphed for H2 is an increasing

exponential function which is what would be expected for a system in which hardening takes
place with increased deformation. Conversely, the softening response in figure 11

demonstrates a decreasing trend as compared to the limiting case with increasing i.

Similarly, a plot of the normalized loading P reveals the expected results; from figure 12 the
loading required for increased plastic deformation increases for the hardening core reaction
and decreases for the softening core reaction.

Comparison of Normalized Force for Knife Edge Loading
- Hardening, Softening and Limiting Core Reactions-

1.5 I I I

L Hardermng

PH-

4 1 --

riPSiB dy

11.5

Softe Yjng

0 5 10 15 20 25

Nonnalized Plastic Boumdary, C

Figure 12 - Comparison of the Normalized Force for Knife Edge Loading.

An identical analysis can be conducted for the rectangular punch in which the
maximum extent of deformation and loading are compared for hardening, softening and
limiting core reactions. The presence of the rectangular punch limits the interval over which

the equations are valid. That is, for values of < < F the equations are no longer valid and it

is assumed that the face plate during deformation remains parallel to the rectangular punch as

shown in figure 9. From the assumed physical values identified previously, r = V'I0 and the
evidence of the presence of this rectangular punch is readily seen in figure 13. Referring to
the inset in figure 13, which is an exploded view of the functions, it can be seen that the three

functions are essentially equal and the maximum deflection is zero at the point 10 . For
all values less than this the function is not valid and would be represented by zero as shown
in the full size plot. In figure 13 it is once again obvious that the hardening core
characteristic forces the maximum displacement to be larger for a given plastic deformation
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while the softening core's deflection is less than the limiting case for the same plastic
deformation.

The plot of the normalized loading P versus the plastic boundary is shown in
figure 14. Once again the hardening and softening functions are easily differentiated and
show very similar natures, albeit offset and of much lower magnitudes, to those shown for
the knife edge punch in figure 12. In figure 14 it is interesting to note that the plastic
boundary initially sets itself up at a distance of approximately 2- r.

Comparison of Maximum Deflection for Rectangular Punch Loading
- Hardening, Softening and Limiting Core Reactions-

3.5 1 1 1
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2
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Figure 13 - Comparison of Maximum Deflection for Rectangular Punch Loading.
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Comparison of Normalized Force for Rectangular Punch Loading
- Hardening, Softening and Limiting Core Reactions-

0 .6 I I I I
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Figure 14 - Comparison of Normalized Force for Rectangular Punch Loading.

2.6 Parametric Analysis of Crush Response Models

The second investigation into the behavior of the crushing equations was a parametric
study of the equation's reactions to varying material properties. This parametric study was
conducted on the normalized deflection profiles to give a sense of the effect that increases in
material properties have on the crushing of a sandwich panel. As with the analysis of the
previous section a series of dimensionless parameters were defined

h- H

r

r hH

x
s -H

and numerical values were assigned as follows:

r
H

-=10
h

4;= 1.96
r

t=1

From these assumptions the remaining variables in each of the normalized displacement
profiles were x and K = E, /o . By varying K, the only material property, a normalized

side profile of the indentation could be produced over a range of values. Figure 15 and
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PARAMETRIC ANALYSIS OF VARYING ESo0 RATIO ON NORMALIZED DISPLACEMENT PROFILE

-- Rectangular Punch Indentation, Hardening --

1 0.5 1 1.5 2 2.5 3 3.5 4

Normalized Distance from Center of Punch,i

4.5 5 5.5 6 e

Figure 15 - Parametric Analysis of Varying Et/To for Hardening Core Response.

PARAMETRIC ANALYSIS OF VARYING ESU. RATIO ON NORMALIZED DISPLACEMENT PROFILE

-- Rectangular Punch Indentation, Softening --
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Figure 16 - Parametric Analysis of Varying Et/uo for Softening Core Response.
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figure 16 show the results of the variance of K in both the hardening and softening core
response assumptions, respectively. Both plots strongly show the anticipated shape of

asymptotic approach to zero deflection and a sharp discontinuity at Y = F (F = ,l0 for this
example). While the hardening core response's exponential dependence allows for a large
variance in K the softening core response is limited by its periodic cosine dependence. It can
be plainly seen in figure 16 that for a value of K greater than approximately 1.0 (as shown by
the line furthest right in the figure) that the mathematical model no longer represents what we
intuitively understand to occur. The sharp discontinuity at x = F is inverted due to the
periodicity of the cosine function and signals a breakdown of the equation's relevance.

2.7 Equation Summary

The two-dimensional crushing of a sandwich panel under quasi-static loading has
been described. Utilizing a continuum constitutive model for the behavior of the core
material, the following equations were derived to describe the plate's crushing behavior.

CHAPTER 2 - EQUATION SUMMARY

LIMITING CASE

2 2

2

form (x-4)2
K L E 2

KNIFE EDGE PUNCH

Hardening Core Response

WHo = 2k 2 ek.,2

PH k . k- l_ -2kke e

- k(x-4)

WH - q 2k 2  (ek(x-12)

(e -) 2

Softening Core Response

q (I (- cos (k.)

s 2 N sin(k-)

ws = {1-cos[k(x -)]

nor cos [k(x -;)
ws cos(k)-1

Table 1 - Summary of Equations for Sandwich Plate Crushing
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CHAPTER 2 - EQUATION SUMMARY, CON'T

RECTANGULAR PUNCH

Hardening Core Response

WHO = -e r -k(r-)

kH k(r-] -2k~x-kk

WH = * 2.e e
2k2

IJ

norm k(x-r) e
WH = e ek(,-r)

Softening Core Response

wO = 1-cos[k(r- )]

s =Ni (k -r -cos [k(r-) -sin [k(r -{ 2k -r

Table 1, Cont'd - Summary of Equations for Sandwich Plate Crushing
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Chapter 3

CRUSH RESPONSE OF SUPPORTS

3.1 Introduction

The addition of crushable supports for the connection of the shell plating to the
transverse bulkheads and decks is intended to reduce stress concentrations and to allow for
load sharing between adjacent plate sections as well as to reduce the total load experienced
by the plate. These crushable supports, an example of which is shown in figure 17, should
delay the onset of fracture and increase the total energy absorbed in an accidental loading
scenario.

Wierzbicki and Abramowicz [5] have proposed a series of analytical equations to
describe the crushing of several different cross-sections. These equations have been
validated with the use of extensive numerical modeling and will be used to describe the crush
response of the proposed connection.

Crushable Connection Transverse Bulkhead

Figure 17 - Proposed Sandwich Panel Attachment Displaying Crushable Connection.

3.2 Analytical Solutions for Simple Cross-Sections

Wierzbicki and Abramowicz [3], Abramowicz [4] and Wierzbicki and Abramowicz
[5] have described analytical solutions for the large strain, plastic deformation of thin walled
structures. Some of the general shapes that were examined are shown in figure 18. In this
project generic linear hardening and linear softening reactions, similar to those assumed for
the core, will be investigated along with the analytical solutions for the un-braced circular
and diamond cross-sections. These two shapes were chosen due to their relative similarity in
response to what would be expected of the support modeled in figure 17 and their continuous
nature. Moreover, the circular cross-section shows a clear hardening response while the
diamond cross-section exhibits softening, thus they will provide good contrast to the assumed
linear hardening and softening models. The square and rectangular cross-sections, along

35



with the braced sections, present varying modes or phases of failure and/or discontinuous
crushing responses which unnecessarily complicate the mathematics.

Un-Braced Sections

Braced Sections

H
Figure 18 - Idealized Cross-Sections from Wierzbicki and Abramowicz [5].

The linear hardening and linear softening models are exactly the same as those
presented for the core response of a sandwich panel; however, they are described as:

Q, (w2)=Qo +k-w2

Q2 (w2 )= Q, -k-w 2

(a)

(b)

(3.2.1)

where Q0 is the initial rigidity and +k is the constant hardening or softening for the crushing
W2.

The crushing of a ring between two rigid plates was described by Wierzbicki and
Abramowicz [3] based on a concept of moving plastic hinges. Their research led to the
following load-displacement equation:

P

2 R

where, P = 2 M 0 "L
R

For this equation, =W2 and R is the radius of the ring. This equation provides a superior
description of the actual ring resistance as compared to a solution utilizing stationary hinges
as evidenced in figure 19 and figure 20. Figure 19 shows the difference between
assumptions of moving or stationary hinges in the stiffening of a circular ring. The moving
hinge creates a smooth curve (dashed line in figure 19) which agrees very well with the
numerical solutions shown graphed in figure 20.
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Figure 19 - Load-Displacement Characteristics of Rings with Stationary and Moving Hinges.
From Wierzbicki and Abramowicz [3]
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Figure 20 - Numerical Load-Displacement Versus Analytical Solution (Dashed Line) for
Crushing of a Ring with Moving Hinges. From Wierzbicki and Abramowicz [5]
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P

b

Figure 21 - Crushing of an Un-braced Diamond Cross Section. From Wierzbicki and
Abramowicz [5].

The second shape of interest is the un-braced diamond. The analytical solution of the
open diamond section was found from a collapse mechanism based on the assumption of four
plastic hinges, one at each corner of the diamond, graphically represented in figure 21. The
analytical equation for the crushing force was then shown to be:

ML
where, P,~ =8 "

b
(3.2.3)2 - P"

6)2
2-(1 b

The displacement 6 is equal to w2 in this analysis, while b indicates the initial height of the
diamond which is also the maximum available crush distance. This equation shows a strong
softening tendency as can be seen in figure 22 with the non-dimensionalized load decreasing
from 1.0 to 0.707.

Pb
8MQL

1.0

Pay 0.78

0

...........

1

0.7

8
b

Figure 22 - Load-Displacement Curve for an Un-braced Diamond Cross-Section.
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The crush response of the supports will be integrated independently into the beam and
plate models discussed in the subsequent chapter. That is, the crushing of the springs will be
assumed to occur independently of the sandwich beam/plate. In this way two load-
displacement equations will be revealed to act simultaneously.
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Chapter 4

MODELLING OF SUPPORTED
SANDWICH PANEL

4.1 Introduction

The principal component of this research is to analytically quantify the effects of
introducing a crushable connection between a double hull shell structure and its supporting
transverse bulkheads. It is proposed that the addition of crushable connections will increase
the amount of energy that can be absorbed by a ship's structure and, perhaps more
importantly, crushable connections will help to delay the onset of fracture. As stated in the
report's introduction, simple analytical techniques will be employed to explore the relative
benefits of crushable connections. The aim of this report is neither to comment on the costs
associated with the added complexity nor to address issues of producibility. Rather, the
simplified analytical models will allow for tractable mathematics and readily achievable
solutions that can be used to evaluate design merit as well as offering the possibility to aid in
the validation finite element models.

Two approaches will be taken in the quantification of the effects of flexible
connections: a two-dimensional beam or strip model of a sandwich plate on crushable
supports; and a three-dimensional plastic analysis of a sandwich panel supported by
crushable connections around its periphery. Xue and Hutchinson [6] have conducted
numerical analysis on sandwich plate beam models and their results will provide a basis for
validating the analytical results as well as allowing for a comparison between the load-
displacement curves for rigidly and flexibly connected sandwich panels.

4.2 Standard Beam Bending Model

The beam model of a sandwich plate was created through the use of variational
energy methods. The response was decomposed into a superposition of the membrane
resistance of the face sheets, the constant shear resistance of the core modeled as a continuum
and the crush resistance of the flexible bulkhead connections. The basic model is shown in
figure 23. Each component of the internal energy absorbed can be separately derived,
summed and then equated to the total external work done on the beam. Two independent
displacement functions are assumed: one for the sandwich plate, w1; and one for the
crushable connections, w2. By assuming a symmetric linear deflection profile as shown by a
dashed-line in figure 23, w1 can be represented by:

w, (x) = w - 1 (4.2.1)
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where w, is the maximum deflection for the plate at x=O. This form of the shape function
wj(x) was chosen so as to produce a constant shear strain in the core material, reflecting the
initial assumption of the core's reaction. Furthermore, if the core is assumed to experience

p z X

4 4 Y......4 4 Jr 4 4 4 4
17. -

- - - -

w r(y)=const.1

Plastic Spring

hf

Hc

T
h~f

2L

Figure 23 - Beam Bending Model.

only shearing and not crushing then a simple relation
be found from equation (4.2.1) to be:

dw w
dx L

for the shear strain and its variation can

w
L

(4.2.2)

Also using the assumed deformation the strain in the face plates due to membrane forces can
be determined. Using an equation for arc length it can be shown that the strain in half of one
of the face plates would be:

6 = dx.
L f 2 dx

(4.2.3)

Multiplying equation (4.2.3) by two to capture the symmetry of the plate, integrating and
then differentiating with respect to time will yield the variational strain in a face plate to be:

Se=2 ( 2 " .Sw)

L L
(4.2.4)

In order to formulate the total internal energy, each component described above must
be included. The core will be approximated as providing a constant shear resistance, ro , the

second component is the incremental energy associated with the membrane action of the face
plates, while the crushing of the flexible connections will be approximated as plastic springs
acting according to a general load-displacement function Q(w2). The variational internal
energy was then written as:
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,U5= Jro5 - dV + JJ8o -. dV + f Q(w2 )-.w2 -dz (4.2.5)
Vol 101 Depth

Substituting in equations (4.2.2) and (4.2.4) then integrating over the beam as shown in
figure 23, the total variational internal energy becomes:

8U=(2HcrOo)sw( + 8 -cOwOjwO+2 -Q(w2)5w2 (4.2.6)
(L

The external energy expended on deforming the beam is entirely due to the constant
distributed load P. The variational external energy can be written as:

SV= Jfp.-v-dA (4.2.7)
A rea

In equation (4.2.7) v is the total vertical displacement which is the sum of w] and w2 ;
therefore, the variation of v will be:

8v = 5woY 1jL +5W2 (4.2.8)

By substituting equation (4.2.8) into equation (4.2.7) and integrating over the area for which
p acts, the total external work is:

(V = 2p (_2 w +2 pL - 5w2  (4.2.9)
2

Equating the internal energy (equation (4.2.6)) to the external energy (equation (4.2.9)) and
grouping similar terms, two independent equations for the load-displacement behavior of the
beam model are achieved. The deflection of the sandwich plate is described by:

PP= 8L w+2r,. (4.2.10)

While the crushing of the flexible connections modeled as plastic springs is:

A Q (W 2  (4.2.11)
L

To investigate the validity of this model, the results for the load-displacement
function for the sandwich plate, equation (4.2.10), were compared against numerical data
published by Xue and Hutchinson [6]. They produced constitutive stress-strain diagrams for
various core configurations. Utilizing the available data for a square honeycomb core
illustrated in figure 24 the constant core shear was modeled using upper and lower bounds of

Upper Bound: _2 (eI) - 2.15
0'2 (0)

Lower Bound: ) -1.1
UI2 (0)

Where from the report: 072 (0) = 2.367MPa
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Figure 24 - Description of Modeled Square Honeycomb Core. From Xue and
Hutchinson [6].

'I. ~.AI.

' 23Shear: r2

Shear: T1AW

Compressive: U 22

0.1 0.2 0.3 0.4

i

Figure 25 - Stress-Strain Representation of Honeycomb Core. From Xue and
Hutchinson [6].
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taken from the equivalent plot of core properties in figure 25. Assuming pure shearing the

plastic shear stress will be a-E, (Ce,) -0 &,,; therefore, the lower and upper bound shear

stresses become:
pper = 2.938 MPa "Lower = 1.503 MPa

&12 12 -

Utilizing these values for rz in equation (4.2.10) a plot of the load-displacement curve was
made. In order to facilitate comparison with Xue and Hutchinson's data the load pp must be
normalized by a reference pressure defined by Xue and Hutchinson [6] as:

(2 h + peHe)2
PC = ( 2 , (4.2.12)

which represents the limiting pressure in bending of a solid, clamped, elastic-perfectly plastic
plate having the same mass per area as the sandwich plate where P. is the relative density of

the core. For their given model defined as:

H h
304 Stainless Steel: a- = 205 MPa C = 0.1 / = 0.08 P = 0.04

L H"

equation (4.2.10) reduces to:
Upper

=S6016 " +7.17 (a)
PC" (4.2.13)
Lower

=160 +3.67 (b)
PC, )

These two linear functions are plotted against the published results in figure 26. Examining
figure 26 on the following page it is initially clear that the slope of the upper and lower
bound lines are very similar to that produced by Xue and Hutchinson [6] using extensive
numerical modeling. The slope is entirely a function of the membrane stress, as can be seen
in equation (4.2.10), and thus it's similarity to Xue and Hutchison's model is a testament to
the extent that membrane forces dominate the process. The initial rigidity of the upper and
lower bounds is slightly larger than the initial elastic phase shown by Xue and Hutchinson.
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Comparison of Load Displacement Curves
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Figure 26 - Comparison of Load Displacement Curves.

4.3 Plate Bending Model With Crushable Connections

Expanding on the beam analysis, the model was increased to a three-dimensional
description of a sandwich plate undergoing plastic deformation. The proposed mathematical
model is shown in figure 27 where the sandwich plate is supported on all four edges by
plastic springs and is exposed to a constant distributed load over the upper face plate.

Mathematically, the three-dimensional plate deformation model was described using
variational energy methods by equating a superposition of plate resistance to bending and
stretching, core shear reaction resistance and the resistance of the crushable connections to
the external energy produced by the deformation force. It was assumed that the top and
bottom plates deformed under a fully plastic regime described by fixed plastic hinges and
rigidly rotating plates. As with the beam model, the resistance from the core was assumed to
be entirely a result of shearing within the core. As a result of this assumption, the distance
between the upper plate and lower plate remains constant throughout the deformation
incident as described by this mathematical model.

The energy absorbed by the deformation of the upper and lower face plates was
calculated through the use of a failure mechanism similar to one postulated by plastic hinge-
line theory. A thesis by Wiernicki [7] has an exceptionally thorough derivation for the
internal energy absorbed by a plate undergoing deformation as shown in figure 28. For this
model, the plate is clamped along all edges causing the large plastic deflections to be
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dominated by membrane stretching. Furthermore, the elastic deformation of the plate is
taken to be negligible resulting in the material being approximated as rigid-perfectly plastic.

Uniform Load, P

2X

H
1T

Figure 27 - Theoretical Set-up for a Sandwich Plate on Crushable Supports.
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Figure 28 - Assumed Plastic Hinge-Line Deformation.
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In Wiernicki [7], the four plate areas remain flat while all deformation occurs in the
plastic hinge lines which are assumed to be straight. The moment behavior is then uncoupled
from the membrane forces in each direction, thus allowing the internal energy dissipated
within the plate to be decomposed into a summation of the x- and y-components of the
energies of each plastic hinge. With these simplifications it can be shown that the increment
of internal energy dU along an increment of hinge line dl is:

SU = (M, 80, sin/ + N wO, sin/3)dl +(M 3O, cos/ + No wmO cos,6)dl (4.3.1)

where,
M0 , M, - Yield Moments in x- and y-directions;

No, N - Membrane Yield Moments in x- and y-directions;

w - Vertical plate displacement as a function of x and y; max deflection = wo.

The solution for the internal energy dissipated through this plastic deformation can be further
decomposed into a superposition for each of the five hinge-lines and four boundary lines.

The internal energy dissipated in of each of the four angled lines will be a summation
of the x- and y-components for each hinge-line. Beginning with the x-direction: for one of
the angled hinges:

dU AG (M O5 sin + No w,50, sin P)dl (4.3.2)

where, substituting in:

23w0  2w"' dx
(50X= "5w W = (w)x dl=d

A XYA cosg

and integrating over the interval from x=O to x=A/2 yields,

(U = M,5w(tan3 p+ -x w tan,6) (4.3.3)
M 2

Since the assumed problem is symmetric the energy dispersed in each of the angled hinges in
the x-direction will be equal; therefore, the x-component of the total internal energy absorbed
by the angled hinges will simply be four times equation (4.3.3):

5U = 4M0 w0 (tan/p + N w0 tangp) (4.3.4)M 2

Similarly in the y-direction, the increment of internal energy will be:

3USANGLE =(M 50 , cos + No, w,50, cos/J)dl (4.3.5)

substituting,

= 2w 0  =2w 0 y dl= dy

A-tanp ' A -tan, singp
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integrating and multiplying by four to capture the symmetry of the deformation, the y-
component of the internal energy absorption of angled hinges will be:

,U =4M w V 1 + N w ). (4.3.6)
ANGLE 0' tang Mo 2 tan f

The energy dispersion component of the centerline hinge where /=900 and w=wo is
described by:

3UCENTER = (M 'Ox + No w90x,) dl (4.3.7)

Here, at the centerline hinge, the angle is 180 0-26 as deformation occurs symmetrically on
both sides of the centerline, therefore, using

40 = dl = dyA

equation (4.3.7) reduces to:
3 UENE=( 0 43w0  43w

UCENTER =(M + No w ) dy (4.3.8)

In order to determine the total internal energy equation (4.3.8) must be integrated over the
length of the centerline, which can be shown to be B - A -tangp. This produces the following

equation for the internal energy dissipated along the centerline hinge:

U =4M0 3iw 0 [B -tan g + x w< _tan,8 4.j9
'UCENTER ( 4 .3(9)

The boundaries can be divided into boundaries extending in the y-direction and
boundaries extending in the x-direction. For the boundaries extending in the x-direction
P=00 and w=O. This consequently reduces equation (4.3.1) to

3UxBOUND = (MoY4 0, )dl (4.3.10)

By defining the following

MY= 2w dl=dx
A -tan/p

and integrating over the length of the boundary (-A/2 to A/2), the energy dissipated within
one boundary line will be:

2M g
XU =B - (4.3.11)

tan8 0

As with the angled hinge-lines the energy dissipated in the two parallel boundary lines
running in the x-direction will be equal. Thus, multiplying equation (4.3.11) by two gives
the total internal energy dissipated within the x-direction boundary hinge-lines as:

4M
9U = - 0 3w (4.3.12)

xBOUD tan
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For the y-direction boundaries where p=900 and w=O the increment of internal energy
can be written as:

8UYBOUND = (M 6 , )dl (4.3.13)

where,

28w0
90, = dl = dy

A

Once again due to symmetry the total energy dissipated by the two parallel boundaries will
be equal, thus doubling equation (4.3.13) and integrating over the interval from -B/2 to B/2
gives:

B
(U N = 4M 8w - (4.3.14)

Now that each individual component of the deformed plate's energy absorption is
solved for, equations (4.3.4), (4.3.6), (4.3.9), (4.3.12), and (4.3.14) can be summed to arrive
at the total incremental internal energy absorption for a plate undergoing plastic deformation
as shown in figure 28. Furthermore, since the sandwich panel is constructed of upper and
lower face plates, each deforming identically, the total energy for both plates will be twice
that of a single plate; therefore:

(UPLATE = \UxANGLF + Y4UANGLE +5UCENTER +5UXBORDER + UYBORDER

Fr B 8M0  B ___
AUE 2- t 8M + 'J +2w N 2 --tan6 +/. (4.3.15)

A tan 8 A tan 9

By assuming that each plate is isotropic, M = M = Mo and N, = N = No, then

equation (4.3.15) can be reduced to its final form:

UPLA TE =2.w 0 8M j j+ ta)>+2Now 2--tanfi+ 1 (4.3.16)
1 (A tan 8 A tan P

Having determined the total energy dissipation contributed by the deformation of the
two face plates, the reaction due to the presence of the core can be investigated. Similar to
the beam model the core is assumed to contribute only through shear, thus there is no
crushing of the core taken into account. This approximation is valid for cores which exhibit
very low in plane shear resistance and whose crushing reaction will be negligible compared
to the membrane forces created in the face sheets. By assuming a constant shear resistance ro
and identifying four zones in which shearing occurs a relationship for the energy dispersed
through shearing can be formed; the zones correspond to the assumed deflection profile for
the sandwich panel. Figure 29 illustrates the core shearing zones and the related shear
components associated with each along with a plot of the assumed constant shear resistance.
Utilizing the same nomenclature displayed in figure 28 the shear strain components y,
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Figure 29 - Assumed Shear Response and Related Shear Zones of Core.

and Y, can be solved for. Assuming y, =9, and y, = 0, it can be shown that:

Y = " and Y=2w, (4.3.17)
aA A .tanfl

The energy dissipated within the core due to shear resistance can be solved from:

=UCORE JJ(zxz xz + ,r5y)dV (4.3.18)
V

Once again taking advantage of symmetry there are two sets of identical zones, shown in
figure 29 as isosceles trapezoids and triangles, thus equation (4.3.18) can be divided into two
separate integrations over these areas. In addition by using equation (4.3.17) and setting

r, = r, = r, the internal energy dispersed by the core becomes:

SUCORE=2 jjj(ro 2 6w )dV + 2 fff (r 2 -w0)dV (4.3.19)
Triangle Atanfl Trapezoid A

The integration over the triangular zone can be performed over the following ranges and
doubled:

x 0 A y
x: 0 + -___

2 tan/p

A
Y: 0 - - tan/p

2
z: 09 H
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while the trapezoid can be integrated over the following ranges and doubled:

A
x: 0 -+ 

2
B

y: 0 -> -- x -tan/J.
2

z: 0 -> H

Performing the integration over the prescribed intervals yields the final equation for the
contribution from the core due to shear,

B
5UC.,ORE= HA -,row 1+2--tan 8 (4.3.20)

A

The final element to add to the internal energy dissipation equation is the contribution
due to the crushable connections, illustrated as plastic springs in figure 27. The addition of
these crushable supports is the central improvement to this quasi-static model. It is
anticipated that the extra energy absorption provided by the crushable supports will aid in the
practical delay of fracture and increase the overall loading that a sandwich panel may
experience prior to punch through. For a simplified representation, the plastic springs will be
modeled as initially rigid, transitioning to a linearly softening plastic deformation as shown
in figure 30; however, any of the models described in Chapter 3 would be appropriate. In

Q1

Q(w2) = Q0- Ew

sW2

Figure 30 - Assumed Softening Response and Equation for Crushable Connections.

order to accommodate this secondary crushing mechanism a second displacement w2 is added
to reflect the extent of crush experienced by the plastic springs in the z-direction. The energy
dissipated or absorbed by the crushing of the plastic springs is described by:

gUSPPJNGS =j[Q(w 2 ) .W2]dl (4.3.21)

Using the equation for the reaction of the crushable spring in figure 30, and the notation from
figure 28, equation (4.3.21) becomes:

A/ 2 .B/2

(USPRINGS =2j(Q- Esw2)4 '5W2dx + 2 (Qo - E,w2 ')5W2dy (4.3.22)
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Integrating equation (4.3.22) will produce the final solution for the additional energy
absorbed by the crushable supports:

8USPRINGS W2 (2 (A+ B)(Q- E~w2)] (4.3.23)

Having determined each component of the internal energy, the total internal energy
dissipated can be calculated as the summation of each component. That is,

SUTOTAL = UPLATE +8UCORE +USPRINGS - (4.3.24)

Substituting equations (4.3.16), (4.3.20), and (4.3.23) into equation (4.3.24) yields the final
equation for the total internal energy for this system:

SUTOTAL =16M -+ I +4NwO 2 _tan + I WOA tan /, A tan p

- B
HA -r0 1+2 tan8 0 Ow (4.3.25)

+ [2(A + B)(Q - Ew2 )]8w 2

To complete the analysis the internal energy must be balanced by the external energy
input into the system. The external work is produced by a constant distributed load acting on
the face of the sandwich plate and moving through a w(xy) as the plate deforms and W2 as the
supports collapse. The variation of external energy can therefore be written as a sum of the
contributions due to the deformation of the plate and due to the deformation of the supports:

8V= P tw dA+ P tw2 dA (4.3.26)
A A

For constant external pressure P and using the deformed shape of the plate as shown in figure
28, equation (4.3.26) becomes:

8V = JA 3 B_ tanfl two + PAB - w2  (4.3.27)
6 (A

By equating the total internal energy dissipated with the total external work, a
relationship for the load-displacement behavior of the present model can be found.
Therefore, equating (4.3.25) to (4.3.27) and matching terms based on the variational
displacements ow and 8w2 two equations are produced:

96M, B+ A +6HA -r,(A+2B- Atan )+24N 2B- Atan 8+ A wo
P,=tan/i Optan/p(i) .8

A 2 (3B-Atanp8) (4.3.28)

S 2 (A+B) (QO - Ew2) (4.3.29)
AB

where Pp represents the load displacement function for the sandwich plate while Ps is equal
to the load displacement function of the crushable connections. Both equation (4.3.28) and
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equation (4.3.29) are linear functions of displacements wo and w2 , respectively. Therefore,
rearranging the equations to clarify:

24N, 2B- A tan j+ 1
tanB a ) +

A2 (3B - A tan p) "

96M0 B+ A + 6 HA - r, (A + 2B- A tan 8)
tan ( 

))

A 2 (3B - A tan p)

=2 (A B) 2 E, W2.
AB AB

(4.3.30)

(4.3.31)

4.4 Analysis of Quasi-Static Load Response

Further analysis of the models will continue with the beam bending model. Since the
plate model outlined in the previous section decomposes into two independent, linear
functions of w, and w2, the same form as for the beam model, the basic mathematics will
develop in the same manner although carrying many more variables. Since the goal of this
thesis was not to design the connections themselves, but rather to conduct simple analytical
investigations into the general behavior of the proposed system, the load-displacement
functions will also remain general. Therefore, to explore the potential benefits of including a
crushable connection the beam model will be used in conjunction with the four general load-
displacement functions Q(w 2) described in Chapter 3. That is, linear hardening and linear
softening functions were selected to form the basic, limiting conditions, while the more
advanced analytical crush response models, based on numerical validation, were added to
provide more insight into practical response characteristics. The load-displacement functions
are described as follows:

(a) Linear Hardening:

(b) Linear Softening:

(c) Circular Cross-Section:

(d) Diamond Cross-Section:

Q, (w 2) = Q, + k- W2

Q2 (w 2 ) Q - k -w2

Q3 (W2)= Q,"

2 R

W9

Q4 (W2) W2 

2 F- -_b

where, Q, represents an initial rigidity. Equation (4.4. 1)(c) was described in Chapter 3 as
relating to the crushing of an open circular cross-section where 2R is the diameter of the
circle or the total crushable height of the connection. Whereas equation (4.4.1)(d) is an
analytical approximation for the crushing of a diamond section with an initial height, or total
crushable height, b. Plots of these four functions are shown in figure 31 where the linear
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hardening and softening responses increase or decrease, respectively, with a slope of k.
figure 31(c) demonstrates a hardening response that asymptotically approaches the locking
point at w2=2R and figure 31(d) is a softening response that locks at w2=b. In order to retain

Q

Q()

Q

k
Q,

W2

(a)

Q

Q)

Q

2R

(C)

k

W2

(b)

b

(d)

Figure 31 - Crushable Connection Load-Displacement Functions.

generality, the response of the three functions in equation (4.4.1) will be added to the
sandwich panel's response in equation (4.2.10) for each of two cases:

Case 1:

Case 2:

QH
90> 2r H'
L " L

"O < 2,r, H
L L

These cases will be described qualitatively and then a simple numerical example will
compare the results to the previous model described in Section 3.2.

Beginning with the hardening response for Case 1 in which Q0 /L > 2-CO H, /L it is
obvious that the sandwich plate will begin to yield and deform prior to the crushable
connections. With reference to figure 32, one can see that deformation of the sandwich plate
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will continue until the load exceeds the initial rigidity of the connections at point (i). From

this point on, continued increase in the applied load P will cause shared deformation between

both the sandwich plate and the crushable connection until the crushable connection is fully
collapsed. At this point the load carrying capacity of the connections themselves becomes

infinite and their deformation w ;prf"" ceases. Therefore, at point (ii) the sandwich plate will

once again carry the full load P and will continue to deform alone until fracture.

P

~
L 2 +

- - -((i)

PP = \o w +L 2 r L

____________________________________________________________ I _____________________________________________________________

Figure 32 - Load-Displacement for Hardening Crushable Connections, Case 1.

P

Q+2"
L

(ii)

()

P' 8 0- ) w + 2 L Hf L

_____________________________________________________________ I _____________________________________________________________

Figure 33 - Load-Displacement for Hardening Crushable Connections, Case 2.
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For Case 2, in which Q, /L < 2r, H, /L, the combined response of the sandwich plate
and crushable connection is very similar to that described above. However, as shown in
figure 33 the connections are the first to deform until reaching point (i) at which time the
load exceeds 2z-, H /L. Continued deformation will be experience by both the sandwich
plate and the crushable connections until the connection reaches locking at point (ii), here,
the loading is transferred entirely to the sandwich plate which continues to deform until
fracture.

In both cases the presence of the crushable connections will delay the onset of
fracture by reducing the deformation of the sandwich plate and will increase the amount of
total energy that may be absorbed by the hull.

The softening connection response, illustrated in figure 31(b), has a more interesting
response when coupled with the sandwich plate. The two cases are shown in figure 34 and
figure 35. For Case 1 the sandwich plate will begin to deform initially until such point as the
load overcomes the initial rigidity of the crushable connections, point (i). Since the

P

~-~-~-~-~-~-~~-~--- -- (ii')
W 2 + "1

L L

P, =j80 jwo + 2 z

Spring _ Platew2 0

Figure 34 - Load-Displacement for Softening Crushable Connections, Case 1.

connection does not harden under increasing loads, it will fail catastrophically, point (ii),
until it is completely crushed, at which point the connection will lock and its load carrying
capacity will be infinite for this idealized model. Further increasing the load will cause the
sandwich plate to continue to deform beyond point (i) until failure occurs. In this scenario
the presence of the softening crushable connection reduces the energy dissipated and under
the quasi-static assumption the deformation of the sandwich plate would be carried out
essentially uninterrupted by the crushing of the connections. Furthermore, the presence of
the crushable connections will also help to spread the load absorption out over multiple
sections through membrane stretching.

The second case, shown in figure 35, produces much the same results; that is, the
crushable connection will fail without delaying the deformation of the sandwich plate. After
the initial rigidity of the connections is overcome at point (i) the connections dynamically
collapse and the load is then carried by the sandwich plate until yielding begins at point (ii).
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- -- (iii)

(ii))

_( w 8-,, Jw,+ 2 r
L). 0 L

(1)

w Plate
0

Figure 35 - Load-Displacement for Softening Crushable Connections, Case 2.

The sandwich plate then continues to deform until failure.
The third pairing is a combination of the sandwich plate and the analytical solution

proposed by Wierzbicki and Abramowicz [3] for a circular cross-section as shown in
equation (4.4.1)(c), Due to its hardening behavior as it advances asymptotically toward
locking, this system behaves in a similar fashion to the linearly hardening model. From

P

Spring
2

-w2S R
2R TW

(i)

P R ahLI'+2 Hc
p 0 f2

2R

Figure 36 - Load-Displacement for Circular Section Crushing, Case 1.
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figure 36 it can be seen that the sandwich plate will initially deform until point (i) where the
load increases above the initial rigidity of the crushable connection. At this load the
crushable support will begin to deform along with the sandwich plate, reducing the energy
absorbed by the plate and helping to carry the load. By further increasing the load P the
maximum deflection of the crushable connection W2 will approach 2R the total available
crushable height of the support. Once the support has fully crushed and locked, its load
carrying capacity becomes infinite (point (ii)) and the sandwich plate continues to deform
under the entire load until fracture occurs.

P

----------- - - --- - --- ---(ii)

P hf H,
P= 8ao". L2wo+2z,L

Spring Plate

22 2R

Figure 37 - Load-Displacement for Circular Section Crushing, Case 2.

The load-displacement relationship in figure 37 shows the second case where the
crushable connections deform prior to the sandwich plate. The connections will begin to

yield when P = Q0 /L and will continue to deform until point (i). Once the initial rigidity of

the sandwich plate is exceeded, the panel will begin to deform. Both the crushable supports
and the sandwich plate will deform together until the crushable supports lock. Once the
supports no longer deform, at approximately point (ii) the sandwich plate itself absorbs the
energy of the loading P until it reaches the point of fracture. This loading configuration, as
shown in figure 37 offers the same benefits that the linear hardening load-displacement
function provided. By deforming along with the sandwich plate, the load experienced by the
panel and consequently the deformation experienced by the panel would be reduced. This
reduction in deformation would allow such a structure to absorb more energy and withstand
higher loadings prior to the onset of fracture.

The final practical loading curve examined was for the crushing of a diamond shaped
cross-section. This shape was identified in Chapter 3 and its combination with a sandwich
panel will yield very similar results as for that of a linear softening model. With reference to
figure 38, for a Case 1 configuration the initial rigidity of the sandwich panel is overcome

first and the panel begins to deform plastically. Once the load has increased above Q0 /L, at

point (i), the connections begin to crush. Since the diamond shaped connections have a
softening crushing reaction the supports will deform dynamically and catastrophically until
locking is reached. At this point, as with all of the previously described configurations, the
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load carrying capacity of the supports is assumed to be infinite and the load is
instantaneously transferred entirely to the sandwich plate at point (i) and continues to be
carried by the sandwich plate until failure.

P

Spring
2

2 Q- 1 -

-- ---- -- -- (ii)

H)

0 L
2

)
"> " L

Plate

0b

Figure 38 - Load-Displacement for Diamond Section Crushing, Case 1.

The second case for a hollow diamond cross-section is a configuration in which the
crushable connections begin to yield prior to the load overcoming the sandwich plate's initial
rigidity. The load displacement diagram for this scenario is shown in figure 39. From the
figure, it can be seen that at point (i) the supports will begin to collapse. Once again, due to

P

w Spring
2

1 Q0IL

r2 =2

2- _ -

b

Figure 39 - Load-Displacement for Diamond Section Crushing, Case 2.
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the softening response of the crushable connections a dynamic deformation will occur in
which the connections crush to locking. As the load continues to increase the sandwich plate
will begin to deform and will carry the full load until such time as the plate fails.

4.5 Numerical Example

A numerical example was also solved to further quantify the relationship between the
crushing of the supports and the deformation of the sandwich panel. Similar to the previous
section, the sandwich beam model will be used, not only for the simplicity of the
mathematics but also due to the availability of a core shear stress value from Xue and
Hutchinson [6]. Using the notation introduced in figure 23 and the following values from
Xue and Hutchinson for a sandwich panel made of 304 Stainless Steel:

a = 205 MPa Averae = 2.22 MPa H =h. = 0.08
L H,

where r"""g" is the average of the lower and upper bound shear values previously reported

from figure 25. Substituting these values into equation (4.2.10) produces an equation for the
deflection of a sandwich panel as a function of the dimensionless displacement wy/L:

p, = ( 13 .12 ) ' 0 +(0.44) [MPa]. (4.5.1)
L

For the crushable support the above stated quantities can be substituted into equation
(4.2.11). If it is assumed that the connections have a response similar to that shown in
equation (4.4.1)(c) for a circular cross-section and a height equal to the thickness of the core
(2R = H> ) the following relation can be found:

P, = , . (4.5.2)
L 11L l10 j2

As in Section 4.4, the ratio between the initial rigidity of the sandwich panel and the initial
rigidity of the crushable supports differentiates the varying design configurations. To
examine a broad range these two initial values can be parameterized such that the initial
rigidity of the crushable support is some constant multiple C of the initial rigidity of the
sandwich plate:

L = (0.44) [MPa]. (4.5.3)
L

Substituting equation (4.5.3) into equation (4.5.2) yields:

PS C [MPa]. (4.5.4)

1-_10( )
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Making use of the same graphical representation used in the previous section, figure 40
shows a parametric depiction of the relationship between the crushing of the supports and the
deformation of the sandwich plate under quasi-static loading. The plot was created by
varying C and plotting equation (4.5.1) and equation (4.5.4) against their respective non-
dimensionalized displacements.

Parametric Analysis of Varying Initial Rigidity of Crushable Connections

P"A P

C= 1.

C -.
8 C =0.5

C = 0.2

2

1.5

1 _.3 C(0.44)
P-1

rloIi

P, = (

0.050.1

Figure 40 - Parametric Analysis of Varying Ratio of Initial Rigidity of Crushable
Connections to Initial Rigidity of Sandwich Panel

Figure 40 demonstrates the same behavior as was previously discussed for crushable
supports with a hardening response characteristic. The plot illustrates that by increasing the
value of QI/L not only is the interaction between the supports and the sandwich panel
changed but that the supports stiffen, providing more resistance to crushing. Balancing the
locking point, the ratios of initial rigidity and the rate of increasing or decreasing stiffness
will all be important variables to consider in the implementation of such a system.

4.6 Summary of Relevance to Hull Failure

Although the preceding discussion identified a variety of methods in which the
crushable supports can interact with the sandwich panel during a loading event, the most
important aspect, with regards to this project, is the increase in energy dissipation and
delaying of fracture that will occur. The addition of crushable supports increases the total
energy that the system is capable of absorbing prior to failure. Figure 41 shows a load-
displacement curve for a sandwich panel continuing until the point of failure defined by a
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Figure 41 - Energy Dissipation for a Rigidly Supported Sandwich Panel.

displacement of (wo)f. The energy dissipated by the sandwich plate Ek during this event is
equivalent to the area under the curve. If a crushable support is now introduced and designed
in such a way that it deforms along with sandwich panel, as we have previously assumed,
then the total energy dissipated is going to increase. From figure 42 it is plain to see that the
total energy absorbed by such a system would be the sum of El and E2. Due to the addition
of the crushable supports and the increased energy absorption that they provide, the sandwich
panel will deform less for a given loading P and thus fracture will be delayed.
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2

2R

Ed

(W)f
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0

Figure 42 - Combined Energy Dissipation for a Sandwich Panel on Crushable Supports.
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Chapter 5

CONCLUSIONS AND
RECOMMENDATIONS

5.1 Conclusions

Analytical investigations have been carried out into two main areas: the crushing of a
sandwich panel on a rigid base; and the deformation of a sandwich panel on crushable
supports. The plane stress crushing of a sandwich panel on a rigid base was solved for both a
knife edge indentation and a flat punch indentation. The knife edge indenter can be seen to
simulate the crushing of a double hull due to a loading which may be caused by the pinnacle
of a submerged rock or by collision with another ship. In order to simulate the shock front of
a close proximity blast the flat punch indenter was used; however, it could also quite capably
represent a collision with a blunt object. In both cases, very compact solutions, summarized
at the end of Chapter 2, were found for both the deformation shape normalized by the
maximum displacement as well as for the particular load-displacement curve for such an
incident. These analytical solutions can provide quick and effective means for validating
finite-element solutions as well as giving initial engineering approximations.

The addition of crushable connections to support double-hull or sandwich panel
construction was analytically quantified for a single panel section. Two mathematical
models were solved: a two-dimensional, plane stress beam/strip model; and a three-
dimensional, fully supported plate model. In solving the beam/strip model representation
independent linear load-displacement functions were found for both the sandwich panel and
the crushable supports. The analytical solution for the sandwich panel was contrasted with
previously published numerical solutions and was shown to closely reproduce the load-
displacement behavior.

The three-dimensional model was solved using a plastic hinge-line approximation for
the deflection profile and assuming identical crushable supports fixed around its periphery.
With simplifying assumptions, the load-displacement behavior of a plastically deforming,
three-dimensional plate, experiencing a constant distributed load was found. The resulting
function, similar to the beam/strip model, showed a linear relationship.

Recognizing that since both the beam/strip model and the plate model deformed
according to a linear relationship, the much simpler beam model could be examined for its
interaction with the crushable supports without any loss of generality. A solution using the
plate model would interact in a very similar manner although mathematically the coefficients
of the linear load-displacement function would be more complicated. A graphical
representation of the interaction between the sandwich panel and the crushable supports
under quasi-static loading allowed for a thorough understanding of the design choices that
will become import in such a problem. The crushable supports that demonstrated a
hardening characteristic were shown to delay fracture by reducing the deflection of the
sandwich panel for a given load. Furthermore, they increased the overall energy absorption
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of the system allowing a ship's hull to withstand higher energy events prior to failure.
Similarly, the crushable supports which displayed a rigid-linear softening behavior under
loading would also increase the total energy dissipated by the ship's hull, although they are
not likely to delay fracture as much as similar supports which demonstrate a hardening
response.

From these simplified analytical investigations, solutions which explain and quantify
the first order behavior of sandwich panels on crushable connections were found. These
solutions will help to validate numerical modeling which is already being carried out in the
Impact and Crashworthiness Lab. Furthermore, the benefits of such a system were clearly
shown through the interaction of the sandwich panel with the crushable supports.

5.2 Recommendations

The analytical investigation of such a problem is very simply the first step in
researching a new application. Although further refinement of the analytical model is not
likely to produce significant gains in understanding, creation and exploration of numerical
models will. The interaction between the crushable connections and the sandwich panel
itself is seen to be an interesting area of further inquiry. There is an exceptionally large range
of plausible support shapes and responses as well as myriad ways in which the support's
reaction can vary in comparison to the sandwich panel's reaction. In parallel to the
theoretical design of this system the physical design will also present many challenges in way
of costs and producibility that must be thoroughly researched and investigated.

64



Bibliography

[1] Wierzbicki, T. and Suh, M.S. "Indentation of Tubes under Combined Loading."
International Journal of Mechanical Science. 1988; Vol. 30, No. 3/4: pp.2 2 9 -2 4 8 .

[2] Wierzbicki, T., de Lacruz Alvarez, A., and Hoo Fatt, M.S. "Impact and Energy
Absorption of Sandwich Plates with Crushable Core." Impact, Waves and Fracture.
1995; AMD-205, pp.391-411. (ASME)

[3] Wierzbicki, T. and Abramowicz, W. The Mechanics of Deep Plastic Collapse of Thin-
Walled Structures. In: Wierzbicki, T., Jones, N. editors. Structural Failure. John Wiley
& Sons; 1989. 281-329.

[4] Abramowicz, W. Crush Resistance of "T", "Y" and "X" Sections. Joint MIT - Industry
Project on Tanker Safety. January 1994.

[5] Wierzbicki, T. and Abramowicz, W. Development of a Superelement for Laterally
Crushed Components of a Car Body. Impact and Crashworthiness Lab, May 2001.

[6] Xue, Z. and Hutchinson, J.W. Constitutive Model for Metallic Sandwich Cores.
Division of Engineering and Applied Sciences, Harvard University. 2004.

[7] Wiernicki, C.J. Damage Assessment of Ship Plating Subjected to Hydrodynamic
Impact Loading. Cambridge, MA: Massachusetts Institute of Technology; Ocean
Engineering Thesis, 1985. 147 p. MIT Barker Library - Microforms.

[8] Hoo Fatt, M.S. and Wierzbicki, T. "Damage of Plastic Cylinders under Localized
Pressure Loading." International Journal of Mechanical Science. 1991; Vol. 33, No.
12: pp. 9 9 9 -10 16 .

[9] Wierzbicki, T. and Doyoyo, M. "Determination of the Local Stress-Strain Response of
Foams." Journal ofApplied Mechanics. 2003 March; Vol. 70, pp. 204-211.

[10] Rodd, J.L. and McCampbell, S. Double Hull Tanker Grounding Experiments. The
Advanced (Unidirectional) Double-Hull Technical Symposium; 1994 October 25-26;
Gaithersburg, Maryland. Sponsored by the United States Navy and the Maritime
Administration.

[11] Rodd, J.L., Phillips, M.P. and Anderson, E.D. Stranding Experiments on Double Hull
Tanker Structures. The Advanced (Unidirectional) Double-Hull Technical Symposium.
Sponsored by the United States Navy and the Maritime Administration. 1994 October
25-26; Gaithersburg, Maryland.

[12] Vinson, Jack R. The Behavior of Sandwich Structures of Isotropic and Composite
Materials. Lancaster, PA: Technomic Publishing Company; 1999. 378 p.

[13] Frostig, Y. and Baruch, M. "Bending of Sandwich Beams with Transversely Flexible
Core." AIAA Journal. 1990 March; Vol. 28, No. 3: pp.5 2 3 -5 3 1.

[14] Frostig, Y., Baruch, M., Vilnay, 0., and Sheinman, I. "High-Order Theory for
Sandwich-Beam Behavior with Transversely Flexible Core." Journal of Engineering
Mechanics. 1992 May; Vol. 118, No. 5: pp. 1 0 2 6 -10 4 3 .

[15] Frostig, Y. and Baruch, M. "Localized Load Effects in High-Order Bending of
Sandwich Panels with Flexible Core." Journal ofEngineering Mechanics. 1996
November; Vol. 122, No. 11: pp.1069-1076.

65




