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ORGANIC TRANSFORMATIONS

by

Scott Charles Berk
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requirements for the degree of Doctor of Philosophy at the

Massachusetts Institute of Technology

ABSTRACT

A new titanium-catalyzed hydrosilylation of esters is described. The procedure is

experimentally simple and efficient, and uses inexpensive materials to convert esters

into the corresponding primary alcohols. The reaction also displays a moderate level of

tolerance toward other easily reducible organic functional groups such as olefins,

epoxides and halides. A modification of the reaction conditions is described in which

five- and six-membered-ring lactones are converted to the corresponding lactols in

high yields.

A second-generation catalyst system is presented which cleanly hydrosilylates

esters to silyl ethers at 40-55 C. These intermediates can be easily converted to the

corresponding primary alcohols via aqueous acid or alkaline hydrolysis in excellent

overall yield. The reaction is catalyzed by several early transition-metal alkoxides. It

can be carried out in the air, without solvent, and displays a high level of functional

group compatibility.

The first early transition-metal catalyzed enyne cyclization reaction is described.

The system converts enyne substrates to bicyclic iminocyclopentenes through the use

of 10 mol % of Cp2 Ti(PMe 3 )2 in the presence of a silyl cyanide. Subsequent

hydrolysis produces the corresponding bicyclic cyclopentenones in good overall yield.

The cyclization reaction is tolerant of polar function groups such as ethers, amines, and

esters and is diastereoselective for certain chiral enyne substrates.

Thesis Supervisor: Professor Stephen L. Buchwald
Title: Professor of Chemistry
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ABBREVIATIONS

Cp rl5-cyclopentadienyl

d doublet

DIBAL diisobutylaluminum hydride

DMAP 4-dimethylaminopyridine

DMPU dimethylpropyleneurea

DMSO dimethylsulfoxide

EBTHI r 5-4,5,6,7-ethylene- 1 ,2-bis(tetrahydroindenyl)

equiv equivalent(s)

GC gas chromatography

h hour(s)

HRMS high resolution mass spectroscopy

IR infrared

min minute(s)

NMR nuclear magnetic resonance

PMHS polymethylhydrosiloxane

ppm parts per million

PPTS pyridinium p-toluenesulfonate

q quartet

quint quintet

r.t. room temperature

s singlet

sat. aq. saturated aqueous

t triplet

THF tetrahydrofuran

TLC thin-layer chromatography

TMS trimethylsilyl
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INTRODUCTION

The past 60 years have seen organometallic chemistry emerge from its infancy to

become a powerful method for discovering novel organic transformations. As the field

has matured, its major challenges have grown from the study of new reactivity ("What

can we do?") to include the refinement of these discoveries into efficient and practicable

synthetic organic methods ("How can we do it better?"). To this end, a tremendous

amount of effort has gone into the development of metal-mediated organic

transformations which would proceed under the mildest possible conditions, and which

would ideally utilize a catalytic amount of the metal complex. Aside from simply

reducing the cost of materials and the amount of metal waste generated in the reaction,

catalysis lends itself to the development of both large scale continuous flow processes

and reagent-controlled asymmetric synthesis. In the latter, a small amount of an

enantiopure organometallic compound may be used to convert hundreds of equivalents of

prochiral substrates into useful enantiopure products. For this reason, the rational design

and development of such metal-mediated catalytic cycles now stands in the forefront of

interest in the field of organometallic chemistry. Some of the important advances that

have been achieved in this area over the past several decades include:

* The evolution of the hydroformylation reaction from a high temperature,

high pressure processla (eq 1) to a low pressure variant which proceeds at 600 C,

can tolerate a wide range of functional groups and is highly regiospecific l b (eq 2).

+ CO + H2 cat. Co 2(CO) 8 + CHO (
120-170 C
200-300 atm

cat. RhLn CHO (2)+ CO + H2 ~-C (2)FG 60 c FG

70 psig

FG includes: ketone, ester, acid, amide, nitrile, halide, alcohol, ether, acetal, thioacetal, imide
Ln = a specialized bis-organophosphite ligand
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* The development of stoichiometric reactions of 13 -allyl complexes of

palladium2 a (eq 3) into the palladium(0)-catalyzed nucleophilic substitution

reaction of allylic compounds,2 b (eq 4) which is now widely used in the synthetic

organic community.

2 Ph 3P

-CH(CO 2 R)2

CH(CO2 R)2

Pd

Ph3 P / PPh3

cat. Pd(O) Nuc (4)

Nuc

X = OAc, 0 2CR, OCO 2R, OPh, OH, NR2, SO 2Ph, NO 2, epoxide

* The development of the vanadium-catalyzed stereoselective epoxidation

reaction 3 a (eq 5) into the now famous titanium-catalyzed asymmetric epoxidation

process3 b (eq 6). Although not technically an organometallic reaction, the

discovery and optimization of this process still stands as an example of the

application of intuition and mechanistic insight into developing workable catalytic

cycles.

V(V) catalyst

t-BuOOH, CH 2C12

R

Ho r._

>95

cat. Ti(O-i-Pr) 4 , (-)-Diethyl Tartrate
t-BuOOH

CH2C12, -20 OC

R

+ HOAo

: 5

X OH
>90% ee (6)

The discovery of new metal-mediated organic reactions and their design and

development into general and workable methods for organic synthesis is one of the major

10

Pd

2

(3)

R

X-OH

(5)



aims of research in the Buchwald group. In particular, the work presented in this thesis

focuses on three novel catalytic transformations mediated by organotitanium reagents.

Chapter 1 discusses the development of ester reduction catalyst systems. The first

generation catalyst, presented in Chapter 1, Part 1, grew out of the discovery of an

interesting titanium-catalyzed silane disproportionation reaction. Based on several

mechanistic assumptions about this new process, we were able to design a mild and

efficient carbonyl reduction system. Through analysis of the proposed catalytic cycle, we

have succeeded in modifying the conditions of this reaction to reduce lactones to the

corresponding lactols. We have also exploited the mechanistic model of the reaction to

design an air-stable, second generation catalyst system. Chapter 1, Part 2 describes this

ester reduction system, which displays a greater functional group tolerance, is more

efficient in most cases, and can be run without solvent. Chapter 2 presents the first early

transition metal-catalyzed enyne cyclization reaction to produce bicyclic

cyclopentenones. In this case, the catalytic cycle was constructed via the marriage of

several key results from studies of stoichiometric, titanium-mediated processes such as

reductive cyclization, isocyanide insertion and reductive elimination.

For each of these transformations, novel reactivity was first discovered, followed

by a mechanism-based approach to the construction of a workable catalytic cycle. An

additional guiding principle of this research was its applicability to organic synthesis.

Thus, issues such as experimental simplicity, high yields, reproducibility, and safety were

of utmost importance in the design and implementation of the processes presented herein.

This rational, applications-oriented approach has been quite successful in providing the

novel reactions described herein, and will hopefully offer new tools to the synthetic

chemist.
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CHAPTER 1

DEVELOPMENT OF TITANIUM-CATALYZED ESTER REDUCTION REACTIONS

Part 1. The Cp2TiC12 / 2 n-BuLi Reduction System

12



Background

Carbonyl reduction reactions are an important class of transformations which,

taken together with the myriad of other functional group manipulation reactions, make up

the "tool chest" of the synthetic organic chemist. While mild conditions exist for the

reduction of simple ketones and aldehydes, the reduction of esters has typically required

more powerful hydride reagents. 4 By far, the most well known reagents to effect this

transformation are aluminum hydrides, such as lithium aluminum hydride (LAH) and a

variety of alkoxy aluminum hydrides.5 There are several shortcomings associated with

the use of these compounds. Of primary concern is their extreme pyrophoricity. This

becomes an almost overwhelming problem when the reaction is run on an industrial

scale, and has led to some companies barring the use of LAH entirely. Other problems

include the lack of chemoselectivity (LAH also reduces halides, alkynes and epoxides4)

and the possibility of forming insoluble aluminum-bound salts of the desired products,

especially with chelating products such as diols.

The hydrosilylation reaction presents a useful alternative to aluminum hydride

mediated carbonyl reductions. As the name implies, the reaction proceeds by the addition

of a silicon-hydrogen bond across a unit of unsaturation, usually catalyzed by a

transition-metal complex (eq 7). While the transition metal-catalyzed hydrosilylation of

R'1 HSiR"3 R H
> X >LXSiR" 3 (7)

R catalyst R

X =Oor C

olefins, alkynes, and ketones has been the subject of much study,6 relatively little is

known about the hydrosilylation reaction of esters. All the systems investigated require

harsh reaction conditions or a stoichiometric amount of metal reagent. Calas has

demonstrated the reduction of lactones by triethylsilane in the presence of ZnC12 at

elevated temperatures.7 Frainnet has achieved similar results using NiC128 (eq 8).

13



y-Irradiation has also been shown to induce the reaction of trichlorosilane with esters to

form ethers 9 (eq 9).

0

R'OO
.__

R

ZnCl 2
or

NiC1 2

Et 3SiH
>100 °C

HSiC1 3

y-rays

Corriu and co-workers have developed much milder conditions by activating

triethoxysilane with stoichiometric quantities of fluoride salts in the absence of

solvent.l0a b They were also able to use an inexpensive polymer,

polymethylhydrosiloxane, in the place of triethoxysilane as the stoichiometric reductant,

but this modification required the use of DMSO as the solvent and heating the reaction

mixture to 80 C.l0a,c Corriu implicated a pentavalent anionic silicon species 1 as the

active reducing agent (Scheme 1). To support this claim, hydridosilicate species 2 was

synthesized and shown to rapidly reduce esters in THF at room temperature4 9b (eq 10).

Scheme 1

CsF [OR ] __

HSi(OR) 3 * .H-S....OR Cs R OR

1

H H

(RO)3SiO--<
R'

+ R"OSi(OR)3
repeat

OR
RO'.. ..H-' OR" 

Si.., Cs +

F ~,~ R1

H OR"

(RO)3SiO-< + CsF

14

(8)

II

RO>

R

+ SiCI4 (9)I I

-t3

Mn



THF H +II ' + [HSi(OEt)4]-K+ O.H3 RCH2OH + R'OH (10)
R., O'r.t., 8-15 h

2

We became interested in ester reduction as a result of a discovery made by

Kristina Kreutzer. As part of a study on the reactive intermediates involved in silane

oligomerization processes, she was attempting to synthesize the titanocene silyl hydride

complex 4 by the reaction of silane 3 with the phosphine-stabilized titanocene equivalent,

Cp2Ti(PMe3)2 (Scheme 2).11 Instead of the desired product she observed only the silane

redistribution products 5 and 6.12 She also noticed Cp2Ti(PMe3)2 present in the product

mixture, which led her to try the redistribution reaction using only a catalytic amount of

Cp2Ti(PMe3)2. She found that under these conditions, the reaction still went to

completion rapidly at room temperature. Kreutzer also found that an active catalyst

system could be conveniently generated in situ by the reaction of 2 equiv of n-BuLi with

Cp2TiC12 ,1lb,1 3 an inexpensive, air-stable and commercially available solid. Since

Cp2Ti(PMe3)2 is very air-sensitive and must be stored and handled in a dry box, this

practical modification allowed the reaction to be run using standard air-free organic

laboratory techniques.

Scheme 2
OMe

Cp2T .. OMe

%I~" 'J I'"2

4

Me 2(MeO)Si- H

3

Me2Si(OMe) 2 + Me2SiH 2

5 6

While a titanium-catalyzed conversion of an expensive, complex starting material

into two inexpensive, simple products had little practical value, Kreutzer realized that the

15



reaction proceeded through a potentially novel mechanism (Scheme 3). The proposed

catalytic cycle begins with oxidative addition of the silicon-oxygen bond of 3 to reactive

"titanocene" 7 to afford titanocene silyl alkoxide 4. Reaction of this d complex with

another molecule of 3 may then proceed through a four-centered, a-bond metathesis

reaction1 4 to afford product 5 and titanocene silyl hydride 845. A reductive elimination

reaction of this intermediate produces the second silane product, 6 and regenerates the

active titanocene catalyst.

Scheme 3
SiMe2 (OMe)

Si(H)Me 2 H a-bond H
"Cp2Ti" ) ox. addition Me metathesis Cp2Ti + Me2 Si(OMe)2

OMe CpiCT7 O8e Cp2Ti Si(H)Me2
3 4 Si(H)Me 2

Ired. eliminationMe2 SiH2
6

An intriguing aspect of this mechanism was that it involved the making and

breaking of strong titanium-oxygen1 5 and silicon-oxygen16 bonds (106 kcal/mol and 115

kcal/mol, respectively) rapidly at room temperature. Pivotal to the success of the reaction

is the easy interconversion between a Ti-O bond and a Ti-H bond. With this in mind, we

began to envision other more useful organic transformations which could potentially

exploit this cycle. It had been demonstrated that early transition metal hydrides were

more hydridic than protic in nature.17 One potential reaction of such a metal hydride 9 is

protonation by an alcohol1 8 to produce H2 and the corresponding metal alkoxide 10

(Scheme 4). Based on Kreutzer's proposed mechanism, we envisioned a catalytic cycle

where the alkoxide 10 could further react with a silane 11 via a a-bond metathesis

reaction to produce the silyl ether 12 and to regenerate the active hydride catalyst.

Kreutzer and Benjamin Warner demonstrated the viability of such a process. They found

16



that the combination of 5 mol % of Cp2TiC12 and 2 equiv (per catalyst) of n-BuLi led to

an active catalyst system which cleanly converted a variety of alcohols and silanes into

the corresponding silyl ethers with concomitant evolution of H2
19 (eq 11).

Scheme 4

ROH R'3 SiH 11
LnTi H H LnTi-OR

- H2 a-bond
A- I~ n metathesis

LnTi- H

R3 +

J R'3SiOR
12

5 % Cp2TiC 10% n-BuLi HSiR'3 ROSiR' 3 (11)
toluene, -78 °C ROH

r.t., 12 h

Encouraged by these results, we decided to explore another possible reaction of

early transition metal hydrides 9, the reduction of carbonyl compounds.18 We imagined a

catalytic cycle where initial 1,2-insertion of the carbonyl compound into the Ti-H bond of

9 would produce alkoxide 13 (Scheme 5). This intermediate could again undergo a

a-bond metathesis reaction, regenerating the catalyst and producing silyl ether 14, the

formal reduction product of the carbonyl compound. When initial NMR tube experiments

demonstrated the feasibility of this process, we devoted our efforts to developing a mild,

efficient, titanium-catalyzed20 ester reduction procedure which would hopefully offer an

alternative to classical ester reduction reagents,5 especially for large scale reactions.

Scheme 5

LnTi- H

R)X R X R'3SiH + R XLnTi -- bH > -H
X = H, CR3, NR2 , OR LTi- metathesis R 3- Sind

metathesis R3'Si--14

9 13 14

17



Results and Discussion

The optimized titanocene-catalyzed ester hydrosilylation reaction is shown in

Scheme 6. The active catalyst system is generated by the reaction of 2 equiv (per catalyst)

of n-BuLi with Cp2TiC12 in THF at -78 °C. Addition of 2.5 equiv (per substrate) of silane

and the ester to be reduced, followed by warming to room temperature, results in an

exothermic reaction which cleanly produces the corresponding silyl ethers. Acid or

alkaline hydrolysis then affords the alcohol products in very good yields. The reaction

works well using triethoxysilane, diphenylsilane or diethylsilane as the stoichiometric

reductant. However, when triethoxysilane2 1 is used, the hydrolysis proceeds very cleanly,

generally affording crude products of greater than 90% purity, as judged by 1H NMR and

GC analysis. The bulkier phenyldimethylsilane produces no catalytic turnover. We have

also found that the catalyst loading can be reduced to 0.5 mol % with no loss of yield.

Most of the reduction reactions presented here, however, were run on a 2 mmol scale

using 5 mol % of catalyst.

Scheme 6

1 N NaOH (aq)

5% CPTiC 10% n-BuLi R OR R OSi(OEt)3 N HC (aq) R OH5% Cp2TiC12 1 0 n'-Bu.i OSi(OEt)3
THF, -78 °C HSi(OEt)3, r.t ROSi(OEt) 3 THF R'OH

0.5-2h

The reaction works well for a large variety of ester substrates (see Table 1).

Simple aromatic, heteroaromatic and aliphatic esters (Table 1, entries 1-5, 12 and 13) are

reduced in very high yield under the standard reaction conditions. Scale-up of the reaction

was also not problematic. Methyl benzoate (Table 1, entry 1) was reduced on a 100 mmol

scale to afford benzyl alcohol in 93% yield after acid hydrolysis of the intermediate silyl

ether. Di- and tri-substituted olefins, including a tri-substituted (xa,-unsaturated ester, are

completely tolerated during the reaction (Table 1, entries 6-8).

Certain functional groups require some modification of the reaction conditions to

allow for complete conversion. Running the reaction in the presence of esters containing

18



terminal olefins leads to catalyst deactivation, probably through an irreversible insertion

reaction of the olefin into a Ti-H bond.2 2 We have found that by replacing the pre-

catalyst, Cp2TiCl2, with the sterically more hindered titanocene complex, ethylene-1,2-

bis(rl5-4,5,6,7-tetrahydro- 1-indenyl)titanium dichloride,2 3 (EBTHI)TiC12, the approach

of the terminal olefin is sufficiently restricted to allow the ester reduction reaction to

proceed to completion (Table 1, entry 9). Under standard conditions, the reaction of a

bromo ester fails to go to completion due to a stoichiometric titanium-mediated

dehalogenation reaction.24 This unwanted side reaction can be attenuated by running the

reaction at -20 °C, followed by slow warming to room temperature (Table 1, entry 10).

An ester containing a terminal epoxide was also not tolerated under the standard reaction

conditions. The catalyst was deactivated before reduction was complete, and epoxide

deoxygenation products could be identified in the crude reaction mixture. It has been

shown that epoxides are deoxygenated and reduced by titanocene2 5 and titanium (III)

complexes.2 6 We have found that the rate of catalyst deactivation can be decreased in this

instance by the use of the sterically hindered (EBTHI)TiCl2 pre-catalyst (Table 1, entry

11). Extra equivalents of silane are required for esters containing acidic protons (Table 1,

entries 14 and 15), since these functional groups are silylated under the reaction

conditions. For example, when methyl 4-hydroxybenzoate (Table 1, entry 14) is reduced

in the presence of 3.5 equiv of triethoxysilane, the reaction first silylates the phenol.

During this phase of the reaction, bubbles of H2 are evolved. When the silylation phase is

complete, gas evolution ceases and the reduction reaction begins.

Selective reduction of an ester in the presence of a ketone was not possible. The

reaction of ethyl 4-acetylbutyrate (Table 1, entry 16) using 2.5 equiv of silane provided a

low yield of the fully-reduced diol along with some ketone-reduced product. Complete

conversion of the keto-ester could be effected by the use of 3.3 equiv of silane. A methyl

ester can be selectively reduced in the presence of a t-butyl ester (Table 1, entry 17).27 In

fact, t-butyl esters are completely inert under the reaction conditions.

19



Table 1. Titanocene-Catalyzed Reduction of Esters

Entry Ester Procedurea Workup Product Yield (%)

O

1 c[OMe A conc. HCI
OOH

2 OrYOEt

0

03 CeOEt4 OEto

C OS OMe

6 C[OMe

A 1 N NaOH in MeOH

Ac 1 N NaOH in MeOH

A 1 N NaOH in H2O
extract with EtOAc

A conc. HC1

A 1 N NaOH in H2 O

7 Me 
Me

Me

8 Oct __ OEt

7 o9 ~. ~,OEt
O

A 1 N NaOH in EtOH

A 1 N NaOH in H20

Be 1 N NaOH in H2 0

Me

Me

OH/ ~~OH

10 Br O E t
0

11 OEt 70

Bd 1 N NaOH in H20

Be 1 N NaOH in H 2O

12 nOEt
0

A 1 N NaOH in H2 0

20

O%%- OH

O-~OH

81

82

OH

0-OH

81

85

71

83

90

62

78

0O OH
67

CA O H 75



Table 1 (cont.)

Entry Ester Procedurea Workup Product Yield (%)

13 0O, t A 1 N NaOH in H2 0 OH 88

14 Ot Af 1 NNaOHin H2O (rH 88J14 HJc)OEt Af extract with EtOAc O

15 MjIOEt A8 1N NaOH in H20 OH 81
extract with EtOAc

16 Af NNaOH in H2 0 OH 78
extract with EtOAc OH

17 MeO6- O--Bu A N NaOH inH2 0 HO " -Bu 87

aProcedure A: Silane and ester are added to the precatalyst mixture simultaneously. Procedure B: Silane is
added to the pre-catalyst mixture and the reaction mixture is warmed to r.t., during which time gas evolution is
observed. The ester is added after gas evolution ceases. See Experimental Section for detailed procedures.

b100 mmol scale. CPh2SiH 2 was used in place of HSi(OEt) 3. iThe reaction was run at -20 °C for 6 h,
followed by warming to r.t. for an additional 2 h. eThe reaction was run using (EBTHI)TiCI 2 as a pre-catalyst

in place of Cp2TiCl2. fAn additional equiv of HSi(OEt)3 (3.3 equiv total) was necessary for complete
reaction. gAn additional 2 equiv of HSi(OEt) 3 (4.8 equiv total) was necessary for complete reaction.

Several substrates were more problematic (see Figure 1). The reaction with the

disubstituted a,0-unsaturated ester 14 gave, after work-up, poor yield (10-15%) of the

double bond reduction product 15 along with unreacted starting material. Performing the

reaction using (EBTHI)TiCl 2 as the pre-catalyst resulted in no improvement. The

reduction of cyano esters 16 and 17 did not turn over catalytically, presumably due to the

known stoichiometric nitrile reduction reaction,28 which would deactivate the catalyst.

Carboxylic acids 18 and 19, anhydride 20, and thiolester 21 also did not react, affording

only starting material after work-up.
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Figure 1

0

14 O E t

14

0

OH

18

15 16

OH

19

0

X #lOEt

NC -
Ot

17

SPh

0
20 21

We have found that we can use the inexpensive siloxane polymer,

polymethylhydrosiloxane (PMHS),2 9 as an effective substitute for triethoxysilane as the

stoichiometric reducing agent. This became especially important in light of safety

concerns associated with the use of simple alkoxysilanes. 2 1 Table 2 lists several

substrates which were reduced using PMHS as the stoichiometric reductant. For most

cases, 3 0 yields are comparable to those obtained using triethoxysilane. We have also

found that non-pyrophoric EtMgBr can be used in place of n-BuLi to generate an active

catalyst system. These simple modifications should render this reaction more

synthetically useful, especially for large scale applications.

Table 2. Titanocene-Catalyzed Reduction of Esters Using Polymethylhydrosiloxane

Ester

CO2MeU
Product

OrCH2 0H

MejjCH 2OH

Me

Me OHMe

Me Me

aNumbers in parentheses refer to yield obtained using HSi(OEt) 3.

22

Entry

2 Me C O 2E t

3 Me CO2Et

Me Me

Yield (%)a

63 (71)

98

90 (88)
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While we have not yet undertaken detailed mechanistic studies, a plausible

catalytic cycle for the reaction is outlined in Scheme 7. We believe that the active catalyst

in this system is a titanium (III) complex. There are several reasons for this hypothesis:

The +3 oxidation state is very accessible to titanium, and the propensity of titanium (IV)

to be reduced is known. 31 We also observe complete disappearance of 1H NMR signals

attributable to the titanium species under the conditions of the reaction. This is expected

for a paramagnetic titanium (III) complex. We also note that several side reactions which

we have observed with epoxides and olefins have been attributed to titanium (III)

reagents. 22 ,2 6 Finally, titanium (III) has been implicated as the reactive intermediate in

transformations which begin with the addition of two or more equiv of alkyllithium or

alkyl Grignard reagents to Cp2TiC12.22 ,32 Thus, our proposed mechanism begins with

bis(cyclopentadienyl)titanium (III) hydride complex 22, probably generated through a

one electron reduction of the dichloride by the alkyllithium, followed by formation of a

titanocene (III) alkyl species. 2 2 3-Hydride elimination can then afford 22. Initial

interaction of the ester substrate with 22 leads to a 1,2-insertion reaction into the Ti-H

bond to give titanocene alkoxide 23, in which the second ester oxygen atom is datively

coordinated to the titanium atom. This interaction may then lead to a -alkoxide

elimination reaction, expelling aldehyde to produce titanocene alkoxide 24a. The

aldehyde is never observed in the reaction mixture. It is immediately reduced by another

equivalent of 22, giving rise to the insertion product 24b. Both titanium alkoxides, 24 can

then undergo o-bond metathesis reactions14 with silane to regenerate the active catalyst

22 and afford the product silyl ethers.
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We were especially interested in the existence of proposed intermediate alkoxide

23. We reasoned that if we could somehow modify the reaction conditions to induce a

(-bond metathesis reaction to occur at this stage, the catalyst would be regenerated along

with a silyl protected hemiacetal 25 (Scheme 8). Kreutzer had shown that acetals were

inert to the reaction conditions,1 2 so this modification would serve as a route to produce

an aldehyde in a protected form. Hydrolysis of 25 would then liberate the desired

product, providing a simple and useful method to convert esters to aldehydes. The

classical way to effect this transformation is through the use of diisobutylaluminum

hydride, but this reaction suffers several drawbacks. It must be run at very low

temperature (-78 °C), and its success is highly substrate dependent.3 3 Thus, we turned our

attention to developing the proper reaction conditions which would convert esters to the

corresponding silyl-protected hemiacetals, and ultimately, to aldehydes.
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To make -bond metathesis (23 to 25) more competitive, we replaced

triethoxysilane with phenylsilane, a sterically smaller reagent with more reactive Si-H

bonds.34 We also deemed it necessary to reduce the facility of the -alkoxide elimination

pathway (23 to 24a). We hoped to shut down this step by attenuating the titanium to

oxygen dative interaction in 23. In hopes of blocking this coordination, we modified the

cyclopentadienyl ligands on the titanium, utilizing the bulkier and more electron-donating

pentamethylcyclopentadienyl ligand. We also tried using sterically hindered R' groups on

the ester (i-propyl and t-butyl). This is how we discovered that t-butyl esters are inert to

reduction. To make the coordination less electronically favorable, we attempted to make

the ester oxygen less electron rich, replacing R' with electron withdrawing groups, such

as the trifluoroethyl group. None of these modifications resulted in any observable

formation of 25 from simple esters. When the ester substrate had R and R' tethered

together by a carbon chain, as in a lactone, we were able to observe a substantial amount

of lactol in the crude product mixture (lactol : diol ratio = 1.8 : 1). Evidently, the tether

places a geometric constraint on the dative interaction in intermediate 23. This constraint

may arise from bumping interactions of the carbon tether with the cyclopentadienyl

ligands on titanium. With this result in hand, we could then further optimize the reaction

conditions to increase the lactol : diol ratio. Table 3 outlines the results of this work. We

found that by using the more reactive hydrosilylation reagent, phenylsilane, and running

the reaction at 0 °C, we could achieve almost exclusive formation of the lactol after the

usual work-up.
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Table 3. Optimization of the Titanocene-Catalyzed Reduction of Lactones to Lactols

5% Cp2TiC12 / 2 n-BuLi 1 N NaOH +- \OH
Hex slane, THF TH OH Hex O silane, THF THF Hex OH

A B

Silane Temperature Ratio A: B

HSi(OEt) 3 25 OC 1.8: 1

HSi(OEt) 3 0 C 4.8: 1

HSi(OEt) 3 -20 °C 8.0: 1

H3SiPh 25 °C 3.2: 1

H3SiPh 0 C 22: 1

H3SiPh -20 °C no reaction

These results are in line with our mechanistic predictions (see Scheme 8). The

unimolecular f5-alkoxide elimination pathway is entropically favored over the

bimolecular a-bond metathesis step. Lowering the temperature of the reaction reduces the

favorable entropy contribution associated with the activation energy of the elimination

pathway, thus making the a-bond metathesis pathway more competitive. Table 4 shows

the application of these results to the conversion of several lactones to lactols. For five-

and six-membered ring lactones, the reaction works quite well, affording the lactol

products in 69-94% yield. When the ring size of the lactone is expanded, however (Table

4, entry 4), the geometric constraint on the titanium-oxygen dative interaction is relaxed,

and the reaction again proceeds through the P-alkoxide elimination pathway, resulting in

exclusive diol formation.3 5
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Table 4. Titanocene-Catalyzed Reduction of Lactones to Lactols

Entry Lactone Lactol: Diola Product Yield (%)b

1 Tx 22:1 HexOH 83
Hex 0 0 Hex 0 OH

2 O 28:1 H 94

Pent Pent

3 0 3:1 OH 69

O OH

4 0:1 88

aBased on 1H NMR analysis of the crude product. byields refer to isolated

yields of pure lactols. For entry 4, the exclusive product is the diol.

In conclusion, we have developed a mild, efficient ester reduction protocol which

tolerates a wide range of functional groups with little or no modification to the standard

reaction conditions. We have also used a mechanism-based approach to develop a

modification of the reaction conditions for the conversion of lactones to lactols. In

addition, we note that the reaction is experimentally simple, and relatively insensitive to

adventitious moisture or air. The reaction proceeds cleanly, even when the substrate is

pre-mixed with 10 mol % of H20 (excess silane is used to scavenge water, which is

silylated under the reaction conditions) or if the reaction is carried out in a solvent which

has not been rigorously dried and deoxygenated. Moreover, the reaction can be run at

high substrate concentrations and low catalyst loading (as low as 0.5 mol %) with no

noticeable decrease in yield. Still there was room for improvement, and we again turned

to our proposed mechanism to develop a second generation reduction system with even

more desirable properties.
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Experimental Section for Chapter 1, Part 1
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General Considerations

All reactions were conducted under an atmosphere of purified argon using

standard Schlenk techniques. Tetrahydrofuran (THF) was dried and deoxygenated by

refluxing over sodium/benzophenone ketyl followed by distillation under argon.

Cp2TiCl2 was purchased from Boulder Scientific Inc., Mead, Colorado. Ethylene-1,2-

bis(T15-4,5,6,7-tetrahydro-l-indenyl)titanocene dichloride, (EBTHI)TiC12, was prepared

according to the published procedure.3 7 Methyl 10,1 1-epoxyundecanoate was prepared

by m-CPBA oxidation of methyl 10-undecenoate.38 t-Butyl 4-(carbomethoxy)butyrate

was prepared by dropwise addition of commercially available methyl

4-(chloroformyl)butyrate to a refluxing solution of t-butanol, dimethylaniline, and 10 mol

% of DMAP in ether. All other reagents were available from commercial sources and

were purified before use by passage through a short column of neutral alumina (ICN

Alumina N, Akt I).

Preparative flash chromatography was performed on E.M. Science Kieselgel 60

(230-400 mesh). All products, unless otherwise noted, are commercially available. 36

Yields, unless otherwise noted, refer to isolated yields of compounds of greater than 95%

purity as estimated by capillary GC and/or 1H NMR analysis. All compounds were

characterized by 1H NMR, 13C NMR, and IR spectroscopy. Nuclear magnetic resonance

(NMR) spectra were recorded on a Varian XL-300, a Varian Unity 300, or a Bruker AC-

250 Fourier transform spectrometer. Splitting patterns are designated as s, singlet; d,

doublet; t, triplet; q, quartet; m, multiplet. All 1H NMR spectra are reported in 8 units,

parts per million (ppm) downfield from tetramethylsilane. All 13C NMR spectra are

reported in ppm relative to the central line of the 77.0 ppm triplet for deuterochloroform.

Infrared (IR) spectra were recorded on a Mattson Cygnus Starlab 100 or a Perkin-Elmer

1600 Series Fourier transform spectrometer. Gas chromatography (GC) analyses were

performed on a Hewlett Packard model 5890 Gas Chromatograph with a 3392A

integrator and FID detector using a 25 m capillary column with crosslinked SE-30 as a
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stationary phase. Melting points were measured on a Haake Buchler Melting Point

Apparatus and are uncorrected.

Typical Procedures for the Titanocene-Catalyzed Reduction of Esters to Alcohols

Procedure A. To a dry Schlenk tube under argon was added Cp2 TiCl2 (38 mg, 0.15

mmol, 5 mol %) and 2 mL of THF. The slurry was cooled to -78 C (dry ice/acetone

bath) and n-butyllithium (188 L, 1.6 M in hexane, 0.3 mmol) was added. The color of

the reaction mixture changed from red to dark brown. After stirring for 15 min,

triethoxysilane (1.4 mL, 7.5 mmol) and the ester (3.0 mmol) were added, and the cold

bath was removed. As the reaction mixture warmed, gas evolution was apparent (see

caution above) and a significant amount of heat was generated which, in certain cases,

was enough to reflux the THF. (NOTE: For large scale reactions, it is recommended that

a room temperature water bath be used in order to avoid excess heating.) After 0.5 - 2 h,

GC analysis of an aliquot taken from the reaction mixture showed complete

disappearance of the starting material. The catalyst was deactivated by exposure to air

until the color of the solution changed from dark brown to yellow. THF (5 mL) and 1 N

NaOH (15 mL) were then added SLOWLY to avoid bubbling over, and the reaction

mixture was stirred vigorously for 1-3 h. The mixture was then added to a separatory

funnel with 150 mL each of H2 0 and ether. The aqueous layer was separated and

extracted with 100 mL of ether. The combined organic extracts were then washed with

100 mL each of 1 N HC1, sat. aq. NaHCO 3, and brine. The organic layer was then dried

over MgSO4, filtered, and concentrated to afford the crude product.

Procedure B. To a dry Schlenk tube under argon was added Cp2TiC12 (38 mg, 0.15

mmol, 5 mol %) and 2 mL of THF. The slurry was cooled to -78 C (dry ice/acetone

bath) and n-butyllithium (188 gL, 1.6 M in hexane, 0.3 mmol) was added. The color of

the reaction mixture changed from red to dark brown. After stirring for 15 min,
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triethoxysilane (1.4 mL, 7.5 mmol) was added and the reaction mixture was allowed to

warm to r.t. During this time, gas evolution was apparent (see caution above). When

bubbling ceased, the reaction mixture was again cooled to -78 °C. The ester (3.0 mmol)

was added, and the reaction mixture was again allowed to warm to r.t. After 0.5 - 2 h, GC

analysis of an aliquot taken from the reaction mixture showed complete disappearance of

the starting material, and the reaction was worked up as described above.

CAUTION! Adequate eye protection is required for the handling of triethoxysilane

(vapors can cause blindness). Alkoxysilanes are known to disproportionate to form the

highly pyrophoric silane gas (SiH4). In two reactions where the n-BuLi/Cp2 TiC12 ratio

was greater than 3, opening of the reaction vessel to air caused the appearance of a flame,

presumably due to SiH4 . A control experiment in which n-BuLi was allowed to react with

triethoxysilane in the absence of Cp2TiC12 gave similar results.

Benzyl alcohol (Table 1, entry 1). Using methyl benzoate (13.6 g, 100 mmol) as the

substrate, procedure A was followed up to the catalyst deactivation step. Then, THF (100

mL) and concentrated HCl (10 mL) were added to the reaction mixture. After stirring for

1 h, the mixture was added to a separatory funnel with 500 mL each of brine and ether.

The aqueous layer was extracted with 2x300 mL ether, and the combined organic extracts

were dried over MgSO4 . The crude product was purified by vacuum distillation (54 °C, 1

mm Hg) to afford 10.0 g (93% yield) of a clear oil: 1H NMR (250 MHz, CDC13): 8 7.1-

7.3 (m, 5 H), 4.43 (s, I H), 3.87 (s, 1 H); 13C NMR (62.5 MHz, CDC13): 8 140.8, 128.2,

127.2, 126.8, 64.5; IR (neat): 3320, 3088, 3064, 3031, 2931, 2873, 1496, 1453, 1208,

1023, 1019, 735, 698 cm-1.

2-Phenyl-1-ethanol (Table 1, entry 2). Using ethyl 2-phenylethanoate (500 gL, 3.0

mmol) as the substrate, procedure A was followed up to the catalyst deactivation step.
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Then, THF (5 mL), methanol (15 mL), and NaOH (0.6 g, 15 mmol) were added to the

reaction mixture. After stirring for 2 h, the mixture was worked up as described above.

The crude product was purified by flash chromatography (ether: hexane = 1 : 1) to afford

300 mg (82% yield) of a clear oil: 1H NMR (250 MHz, CDC13): 6 7.0-7.3 (5 H), 3.68 (t, J

= 6.8 Hz, 2 H), 3.29 (s, 1 H), 2.74 (t, J = 6.8 Hz 2 H); 13C NMR (62.5 MHz, CDC13): 8

138.4, 128.7, 128.1, 126.0, 63.1, 38.8; IR (neat): 3086, 3063, 3028, 2942, 2876, 1497,

1453, 1046, 1024, 747, 699 cm-1.

3-Phenyl-l-propanol (Table 1, entry 3). Using ethyl 3-phenylpropionate (712 mg, 4.0

mmol) as the substrate and diphenylsilane (930 iL, 5.0 mmol) in the place of HSi(OEt)3,

procedure A was followed up to the catalyst deactivation step. Then, THF (5 mL),

methanol (15 mL), and NaOH (0.6 g, 15 mmol) were added to the reaction mixture. After

stirring for 2 h, the mixture was worked up as described above. The crude product was

purified by flash chromatography (ether: hexane = 2 : 3) to afford 444 mg (82% yield) of

a clear oil: 1H NMR (250 MHz, CDC13): 8 7.1-7.2 (m, 5 H), 3.5-3.6 (m, 3 H), 2.62 (t, J =

7 Hz, 2 H), 1.80 (quint, J = 6 Hz, 2 H); 13C NMR (62.5 MHz, CDC13): 8 141.7, 134.2,

128.1, 125.5, 61.6, 33.8, 31.8; IR (neat): 3330, 3085, 3063, 3028, 2942, 2876, 1497,

1453, 1046, 1024, 747 cm -1 .

1,2-Benzenedimethanol (Table 1, entry 4). Using diethyl phthalate (596 gL, 3.0

mmol) as the substrate and adding an additional 2 equiv of triethoxysilane (2.5 mL, 13.5

mmol total), procedure A was followed. After work-up (as described, except that 6x100

mL ethyl acetate was used to extract the product from the aqueous layer), the crude

product was purified by flash chromatography (ether: hexane = 4 : 1) to afford 335 mg

(81% yield) of light yellow crystals: m. p.: 64-65 °C (lit.36: 63-65 °C); 1H NMR (300

MHz, CDC13): 8 7.25 (s, 4 H), 4.52 (d, J = 5.1 Hz, 4 H), 4.28 (s, 2 H); 13C NMR (75

MHz, CDC13): 8 139.1, 129.4, 128.3, 63.5; IR (nujol): 3228, 1401, 1377 1322, 1241,
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1213, 1182, 1111, 1038, 1004, 762 cm- 1.

Cyclohexanemethanol (Table 1, entry 5). Using ethyl cyclohexane-1-carboxylate (468

mg, 3.0 mmol) as the substrate, procedure A was followed up to the catalyst deactivation

step. Then, THF (10 mL) and concentrated HC1 (0.5 mL) were added to the reaction

mixture. After stirring for 2 h, the mixture was added to a separatory funnel with 50 mL

each of brine and ether. The aqueous layer was extracted with 2x50 mL ether, and the

combined organic extracts were dried over MgSO4. The crude product was purified by

flash chromatography (ether: hexane = 2: 3) to afford 274 mg (80% yield) of a clear oil:

1H NMR (250 MHz, CDC13): 6 3.38 (d, J = 6.4 Hz, 2 H), 3.05 (s, 1 H), 1.6-1.8 (m, 5 H),

1.35-1.55 (m, 1 H), 1.05-1.35 (m, 3 H), 0.8-1.0 (m, 2 H); 13C NMR (62.5 MHz, CDC13):

8 68.2, 40.2, 29.5, 26.4, 25.7; IR (nujol): 3330, 2918, 2853, 2796, 1472, 1462, 1449,

1430, 1419, 1378, 1100, 1091, 1080, 1056, 1034, 1025, 892 cm 1 .

Cyclohex-l-ene-l-methanol (Table 1, entry 6). Procedure A was followed to reduce

methyl cyclohex- -ene- I-carboxylate (408 jgL, 3.0 mmol). After work-up (as described),

the crude product was purified by flash chromatography (ether: hexane = 3 : 7) to afford

239 mg (71% yield) of a pale yellow oil: 1H NMR (300 MHz, CDC13): 6 5.6 (m, 1 H),

3.94 (s, 2 H), 2.51 (s, 1 H), 1.9-2.1 (m, 4 H), 1.5-1.7 (m, 4 H); 13C NMR (75 MHz,

CDC13): 6 137.4, 122.5, 67.1, 25.4, 24.8, 22.4, 22.3; IR (neat): 3310, 2930, 2891, 2874,

2858, 1447, 1437, 1052, 1007, 773 cm -1.

Chysanthemumyl alcohol (Table 1, entry 7). Using ethyl chrysanthemumate (mixture

of cis and trans isomers) (650 gL, 3.0 mmol) as the substrate, procedure A was followed

up to the catalyst deactivation step. Then, THF (5 mL), ethanol (10 mL), and NaOH (0.4

g, 10 mmol) were added to the reaction mixture. After stirring for 2 h, the mixture was

worked up as described above. The crude product was purified by flash chromatography
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(ether: hexane = 1: 1) to afford 368 mg (83% yield) of a pale yellow oil, which was a

mixture of cis and trans isomers in a ratio identical to that of the starting material: 1H

NMR (250 MHz, CDC13): 8 4.93-4.98 (m, 1 H, trans isomer), 4.85-4.9 (m, 1 H, cis

isomer), 3.45-3.75 (m, 2 H), 2.66 (s, 1 H), 1.69 (m, 6 H), 1.36 (m, 1 H, cis isomer), 1.0-

1.2 (m, 7 H), 0.75-0.85 (m, 1 H, trans isomer); 13C NMR (62.5 MHz, CDC13): 8 134.7,

132.7, 123.5, 119.0, 63.0, 60.0 34.9, 30.7, 28.6, 28.5, 26.0, 25.5, 25.3, 22.5, 22.0, 21.1,

20.4, 18.2, 18.0, 15.2; IR (neat): 3330, 2967, 2939, 2923, 2875, 1450, 1420, 1122, 1023,

990 cm-1.

9-Octadecen-l-ol (Table 1, entry 8). Procedure A was followed to reduce ethyl oleate

(1.1 mL, 3.0 mmol). After work-up (as described), the crude product was purified by

flash chromatography (ethyl acetate: hexane = 3 : 7) to afford 725 mg (90% yield) of a

clear oil: 1H NMR (250 MHz, CDC13): 8 5.35-5.4 (m, 2 H), 3.60 (t, J = 6 Hz, 2 H), 2.26

(s, 1 H), 1.9-2.0 (m, 4 H), 1.5-1.6 (m, 2 H), 1.1-1.3 (m, 22 H), 0.88 (t, J = 6 Hz, 3 H); 13C

NMR (62.5 MHz, CDC13): 8 130.3, 130.2, 62.8, 32.7, 31.9, 29.6 (two overlapping

signals), 29.5 (two overlapping signals), 29.4 (two overlapping signals), 29.3 (two

overlapping signals), 29.1, 27.2, 25.7, 22.6, 14.0; IR (neat): 3320, 2953, 2923, 2855,

1466, 1457, 1378, 1057, 966, 722 cm -1 .

10-Undecen-l-ol (Table 1, entry 9). Using ethyl 10-undecenoate (396 mg, 2.0 mmol, 5

mol %) as the substrate, procedure B was followed, replacing the Cp2TiC12 pre-catalyst

with (EBTHI)TiC12 (38 mg, 0.1 mmol). After work-up (as described), the crude product

was purified by flash chromatography (ether: hexane = 3 : 7) to afford 210 mg (62%

yield) of a clear oil: 1H NMR (250 MHz, CDC13): 6 5.81 (m, 1 H), 4.9-5.0 (m, 2 H), 3.60

(t, J = 6.5 Hz, 2 H), 2.43 (s, 1 H), 2.0-2.1 (m, 2 H), 1.1-1.6 (m, 14 H); 13C NMR (62.5

MHz, CDC13): 8 139.1, 114.0, 62.7, 33.7, 32.7, 29.5, 29.4 (two overlapping signals),

29.0, 28.8, 25.7; IR (neat): 3320, 3077, 2925, 2854, 1641, 1465, 1457, 1070, 992, 909
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cm-1

6-Bromohexanol (Table 1, entry 10). Using ethyl 6-bromohexanoate (534 gL, 3.0

mmol) as the substrate, procedure B was followed, holding the temperature of the

reaction mixture after ester addition at -20 °C for 6 h before warming to r.t. for an

additional 2 h. After work-up (as described), the crude product was purified by flash

chromatography (ether : hexane = 1 : 1) to afford 423 mg (78% yield) of a clear oil: 1H

NMR (250 MHz, CDC13): 8 3.60 (t, J = 6.5 Hz, 2 H), 3.42 (t, J = 7 Hz, 2 H), 2.99 (s, 1

H), 1.87 (quint, J = 7 Hz, 2 H), 1.3-1.6 (m, 6 H); 13C NMR (62.5 MHz, CDC13): 8 62.2,

33.7, 32.5, 32.2, 27.7, 24.8; IR (neat): 3330, 2934, 2887, 2859, 1460, 1437, 1430, 1259,

1072, 1053, 1037 cm-1 .

10,11-Epoxyundecan-l-ol (Table 1, entry 11).3 9 Using methyl 10,11-epoxy-l-

undecanoate (428 mg, 2.0 mmol) as the substrate, procedure B was followed, replacing

the Cp2TiC12 pre-catalyst with (EBTHI)TiC1 2 (38 mg, 0.1 mmol, 5 mol %). After work-

up (as described), the crude product was purified by flash chromatography (ether: hexane

= 2: 3) to afford 250 mg (67% yield) of a clear oil: 1H NMR (250 MHz, CDC13): 8 3.60

(t, J = 6.5 Hz, 2 H), 2.91 (m, 1 H), 2.75 (m, 1 H), 2.45-2.50 (m, 2 H), 1.2-1.6 (m, 16 H);

13C NMR (62.5 MHz, CDC13): 8 62.6, 52.3, 46.9, 32.6, 32.3, 29.2 (4 overlapping

signals), 25.7, 25.6; IR (neat): 3400, 2927, 2856, 1465, 1410, 1071, 1056, 835 cm -1 .

Furfuryl alcohol (Table 1, entry 12). Procedure A was followed to reduce ethyl

furoate (420 mg, 3.0 mmol). After work-up (as described), the crude product was purified

by Kiigel-Rohr distillation under aspirator pressure (b.p. 80 °C) to afford 220 mg (75%

yield) of a yellow oil: 1H NMR (250 MHz, CDC13): 6 5.54 (d, J = 2 Hz, 1 H), 4.49 (dd, J1

= 2 Hz, J2 = 3 Hz, 1 H), 4.42 (d, J = 3 Hz, 1 H), 2.68 (s, 2 H), 1.88 (s, 1H); 13C NMR

(62.5 MHz, CDC13): 8154.0, 142.2, 110.1, 107.4, 56.7; IR (neat): 3340, 3169, 3153,
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2930, 2876, 1505, 1221, 1149, 1009, 913, 885, 744 cm-l .

2-(2-Thienyl)ethanol (Table 1, entry 13). Procedure A was followed to reduce ethyl 2-

thiopheneacetate (450 gL, 3.0 mmol). After work-up (as described), the crude product

was purified by flash chromatography (ethyl acetate: hexane = 3: 7) to afford 339 mg

(88% yield) of a yellow oil: 1H NMR (250 MHz, CDC13): 8 7.12 (dd, J 1 = 5 Hz, J2 = 1

Hz, 1 H), 6.92 (dd, J1 = 5 Hz, J2 = 2 Hz, 1 H), 6.83 (dd, J 1 = 2 Hz, J2 = 1 Hz, 1 H); 13C

NMR (62.5 MHz, CDC13): 8 140.7, 126.8, 125.3, 123.7, 63.1, 33.0; IR (neat): 3320,

3106, 3070, 2942, 2928, 2878, 1439, 1427, 1077, 1044, 847, 823, 697 cm-1 .

4-Hydroxybenzyl alcohol (Table 1, entry 14). Using ethyl 4-hydroxybenzoate (500

mg, 3.0 mmol) as the substrate and adding an additional one equiv of triethoxysilane

(1.85 mL, 10 mmol total), procedure A was followed. After work-up (as described,

except that 6x100 mL ethyl acetate was used to extract the product from the aqueous

layer), the crude product was recrystallized from ether/ethyl acetate to afford 326 mg

(88% yield) of light yellow crystals: m. p.: 113-115 C (lit.: 36 118-122 C); 1H NMR

(250 MHz, acetone-d 6): 8 8.28 (s, 1 H), 7.17 (d, 2 H, J = 6 Hz), 6.77 (d, 2 H, J = 6 Hz),

4.50 (d, 2 H, J = 6 Hz), 4.17 (t, 1 H, J = 6 Hz); 13C NMR (62.5 MHz, acetone-d 6 ): 8

157.3, 134.0, 129.1, 115.7, 64.5; IR (KBr): 3400, 3100, 1612, 1598, 1507, 1456, 1223,

1209, 995, 838 cm -1 .

4-Aminobenzyl alcohol (Table 1, entry 15). Using ethyl 4-aminobenzoate (496 mg,

3.0 mmol) as the substrate and adding an additional two equiv of triethoxysilane (2.7 mL,

15 mmol total), procedure A was followed. After work-up (as described, except that

6x10OmL ethyl acetate was used to extract the product from the aqueous layer), the crude

product was recrystallized from ether/hexane to afford 298 mg (81% yield) of light

yellow crystals: m. p.: 62-63 C (lit.:36 65-67 C); 1H NMR (250 MHz, CDC13): 8 7.03
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(d, J = 8 Hz, 2 H), 6.60 (d, J = 8 Hz, 2 H), 4.51 (s, 2 H), 4.43 (s, 2 H), 3.92 (s, 1 H); 13C

NMR (62.5 MHz, CDC13): 8 146.6, 129.8, 127.3, 113.4, 68.3; IR (KBr): 3350, 3220,

3062, 3028, 2910, 2875, 1620, 1518, 1278, 1183, 1001, 829 cm - 1.

1,5-Hexanediol (Table 1, entry 16). Using ethyl 4-acetylbutyrate (480 pL, 3.0 mmol)

as the substrate and adding an additional one equiv of triethoxysilane (1.85 mL, 10 mmol

total), procedure A was followed. After work-up (as described, except that 6x100 mL

ethyl acetate was used to extract the product from the aqueous layer), the crude product

was purified by flash chromatography (ethyl acetate) to afford 306 mg (78% yield) of a

clear oil: 1H NMR (250 MHz, CDC13): 6 4.02 (m, 1 H), 3.74 (m, 2 H), 3.59 (t, J = 6 Hz, 2

H), 1.5-1.4 (m, 6 H), 1.16 (d, J = 6 Hz, 3 H); 13C NMR (62.5 MHz, CDC13): 8 67.9, 62.4,

41.8, 39.0, 32.6, 22.2; IR (neat): 3300, 2981, 2932, 2858, 1458, 1432, 1419, 1374, 1133,

1111, 1072, 1050, 945, 923, 733 cm-1 .

t-Butyl 5-hydroxypentanoate (Table 1, entry 17).40 Procedure A was followed to

reduce t-butyl 4-(carbomethoxy)butyrate (625 ,uL, 3.0 mmol). After work-up (as

described), an ethereal solution of the crude product was decolorized by passing through

a column of activated charcoal to afford 455 mg (87% yield) of a clear oil: 1H NMR (250

MHz, CDC13): 6 3.63 (t, J = 6 Hz, 2 H), 2.45 (s, 1 H), 2.26 (t, J = 7 Hz, 2 H), 1.5-1.8 (m,

4 H), 1.45 (s, 9 H); 13C NMR (62.5 MHz, CDC13): 6 173.2, 80.1, 61.9, 35.0, 31.9, 27.9,

21.1; IR (neat): 3400, 2977, 2935, 2872, 1727, 1457, 1392, 1367, 1252, 1155, 1066 cm - 1.

Typical Procedure for the Titanocene-Catalyzed Reduction of Lactones to Lactols

To a dry Schlenk tube under argon was added Cp2TiC12 (38 mg, 0.15 mmol, 5 mol %)

and THF (2 mL). The slurry was cooled to -78 C (dry ice/acetone bath) and

n-butyllithium (188 p.L, 1.6 M in hexane, 0.3 mmol) was added. The color of the reaction

mixture changed from red to dark brown. After stirring for 15 min, phenylsilane (494 L,
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4.0 mmol) and the lactone (3.0 mmol) were added, and the reaction mixture was warmed

to 0 °C (ice bath). After 1 h, GC analysis of an aliquot taken from the reaction mixture

showed complete disappearance of the starting material. The catalyst was then

deactivated by exposure to air at 0 °C and stirred until the color of the solution became

yellow. The reaction was then worked up as in Procedure A above to afford the crude

product.

2-Hydroxy-5-hexyltetrahydrofuran (Table 3, entry 1).41 The general procedure was

followed to reduce y-decanolactone (539 RL, 3.0 mmol). 1H NMR analysis of the crude

product showed a 22: 1 ratio of lactol: diol. Purification by flash chromatography (ether

: hexane = 2 : 3) afforded 424 mg (82% yield) of a clear oil, as a mixture of

diastereomers, D1 and D2: 1H NMR (250 MHz, CDC13): 8 5.5-5.6 (m, 1 H, D1), 5.4-5.5

(m, H, D2), 4.4-4.5 (m, I H, DI), 4.3-4.4 (m, 1 H, D2), 4.1-4.2 (m, 1 H, D1), 3.9-4.0

(m, 1 H, D2), 1.6-2.2 (m, 4 H, D1 & D2), 1.2-1.6 (m, 10 H, D1 & D2), 0.8-0.9 (m, 3 H,

D1 & D2); 13C NMR (75 MHz, CDC13): 8 98.3, 98.1, 81.1, 78.4, 37.4, 35.6, 33.9, 32.9,

31.8, 29.5, 29.3, 29.2, 26.2, 26.0, 22.6, 14.0, four signals obscured by others.

2-Hydroxy-6-hexyltetrahydropyran (Table 3, entry 2).42 The general procedure was

followed to reduce 8-decanolactone (539 gL, 3.0 mmol). 1H NMR analysis of the crude

product showed a 28: 1 ratio of lactol : diol. Purification by flash chromatography (ether

: hexane = 1 : 1) afforded 449 mg (87% yield) of a clear oil, as a mixture of

diastereomers, D1 and D2: 1H NMR (250 MHz, CDC13): 8 5.30 (s, 1 H, D1), 4.71 (m, 1

:H, D2), 4.68 (s, 1 H, D2), 4.07 (s, 1 H, D1), 3.95 (m, 1 H, D1), 3.41 (m, 1 H, D2), 1.7-1.9

(m, 2 H), 1.0-1.7 (m, 12 H), 0.88 (t, J = 6.6 Hz, 3 H); 13C NMR (62.5 MHz, CDC13): 

96.4, 91.5, 76.4, 68.7, 36.0, 35.7, 32.6, 31.8, 31.7, 30.9, 30.2, 29.8, 25.0, 24.9, 22.5 (two

overlapping signals), 22.0, 17.3, 13.9 (two overlapping signals).
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2-Hydroxy-5-phenyltetrahydrofuran (Table 3, entry 3).43 The general procedure was

followed to reduce 4-phenylbutyrolactone (539 AL, 3.0 mmol). 1H NMR analysis of the

crude product showed a 3: 1 ratio of lactol : diol. Purification by flash chromatography

(ether: hexane = 2: 3) afforded 339 mg (69% yield) of a clear oil, as a equilibrating

mixture of diastereomers, D1 and D2: 1H NMR (250 MHz, CDC13): 8 5.65-5.75 (m, 1 H,

D1), 5.5-5.6 (m, 1 H, D2), 5.2-5.3 (m, 1 H, D1), 4.9-5.0 (m, 1 H, D2), 3.9 (s, 1 H, D2),

4.0 (s, 1 H, D1); 13C NMR (75 MHz, CDC13): 8 142.7, 142.3, 128.3 (two overlapping

signals), 127.4, 127.3, 126.3, 125.6, 98.8, 98.5, 82.9, 79.6, 34.3, 33.0, 32.8, 32.7.

Undecan-l,ll-diol (Table 3, entry 4).44 The general procedure was followed to reduce

c-undecanolactone (557 AL, 3.0 mmol). The reaction mixture becomes very viscous,

perhaps due to polymerization. Additional THF (10 mL) was added to the mixture before

work-up (as described above). 1H NMR of the crude product showed only the diol.

Purification by recrystallization (ether) afforded 492 mg (88% yield) of a white solid: m.

p.: 62-64 °C (lit.: 44 61 C); 1H NMR (300 MHz, CDC13): 8 3.64 (q, J = 3.9 Hz, 4 H),

1.57 (quint., J = 7.2 Hz, 4 H), 1.25-1.45 (m, 16 H).

Typical Procedure for the Titanocene-Catalyzed Reduction of Esters Using PMHS

as the Stoichiometric Reductant

To a dry Schlenk tube under argon was added Cp2TiCl2 (74 mg, 0.3 mmol) and THF (4

mL). The slurry was cooled to -78 °C (dry ice/acetone bath) and n-butyllithium (564 AL,

1.65 M in hexanes, 0.6 mmol) was added. After stirring for 15 min, PMHS (570 AL, 9.5

mmol hydride equiv) was added, and the reaction mixture was allowed to warm to r.t.

The ester (3.0 mmol) was then added slowly. The reaction became very hot, causing the

THF to boil. After 40 min, GC analysis of an aliquot taken from the reaction mixture

showed complete disappearance of the starting material. The catalyst was deactivated by

exposure to air until the color changed from dark brown to orange. The solution was
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transferred to a 100 mL round bottom flask with 10 mL of additional THF. Then, 30 mL

of 1 M NaOH was then added SLOWLY (to avoid bubbling over). The mixture bubbled

vigorously and was stirred for 1.5 h. The reaction mixture was then added to a separatory

funnel with 50 mL each of H2 0 and ether. The aqueous layer was separated and

extracted with 2x40 mL of ether. The combined organic extracts were washed with 40

mL each of 1 N HC1, sat. aq. NaHCO3, and brine, and then dried over MgSO4 to afford

the crude product.

Cyclohex-l-ene-l-methanol (Table 4, entry 1): The general procedure was followed

to reduce methyl cyclohex-1-en-1-carboxylate (408 gL, 3.0 mmol). Purification by flash

chromatography (ether: hexane = 3: 7) afforded a pale yellow oil (211 mg, 63% yield).

1H NMR (300 MHz, CDC13): 8 5.65-5.7 (m, 1 H), 3.97 (s, 2 H), 1.95-2.1 (m, 4 H), 1.83

(s, 1 H), 1.5-1.7 (m, 4 H); 13C NMR (75 MHz, CDC13): 8 137.5, 122.9, 67.5, 25.5, 24.9,

22.5, 22.4; IR (neat) 3331, 2998, 2932, 1436, 1269, 1161, 1135, 1052, 1008, 946cm- 1 .

Decanol (Table 4, entry 2). The general procedure was followed to reduce ethyl

decanoate (696 ptL, 3.0 mmol) which afforded, without further purification, 465 mg (98%

yield) of a pale yellow oil: 1H NMR (300 MHz, CDC13): 3.62 (t, J = 6.6 Hz, 2 H), 2.01

(s, 1 H), 1.5-1.6 (m, 2 H), 1.2-1.4 (m, 14 H), 0.89 (t, J = 6.4 Hz, 3 H); 13C NMR (300

MHz, CDC13): 8 62.9, 32.7, 31.9, 29.6, 29.5, 29.4, 29.3, 25.7, 22.6, 14.0; IR (neat) 3330,

2854, 1466, 1378, 1266, 1121, 1058, 843, 721 cm- 1.

Chrysanthemumyl alcohol (Table 4, entry 3): The general procedure was followed to

reduce ethyl chrysanthemumate (650 gL, 3.0 mmol, mixture of cis and trans isomers)

which afforded, without further purification, 413 mg (90% yield) of the alcohol as a pale

yellow oil which was a mixture of cis and trans isomers in a ratio identical to that of the

starting material: 1H NMR (250 MHz, CDC13): 6 4.93-4.98 (m, 1 H, one isomer), 4.85-
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4.90 (m, I H, other isomer), 3.45-3.75 (m, 2 H), 1.69 (m, 6 H), 1.36 (m, 2 H), 1.0-1.2 (m,

6 H), 0.75-0.85 (m, 1H); 13C NMR (62.5 MHz, CDC13): 6 135.1, 133.1, 123.4, 119.1,

63.6, 60.5, 35.3, 31.2, 28.8, 28.7, 26.3, 25.7, 25.5, 22.7, 22.3, 21.3, 20.7, 18.4, 18.2, 15.5;

IR (neat) (cm-l): 3357, 2924, 2877, 1449, 1376, 1122, 1022, 909.
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Part 2. The Ti(O-i-Pr) 4 Reduction System
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Introduction

After our initial success with the development of the Cp2TiC12 / 2 n-BuLi system,

we turned our attention to several shortcomings of the reaction. The biggest drawback of

the system was that it was not completely air-stable. Although the reaction still proceeded

well in the presence of adventitious moisture and oxygen, opening the reaction vessel to

the atmosphere caused rapid catalyst deactivation. The standard reaction conditions also

called for air-sensitive metal alkyls, such as n-BuLi or EtMgBr to transform the Cp2TiC12

pre-catalyst into the active reduction catalyst. We hoped to find conditions in which the

active catalyst could be formed starting with air stable reagents. To achieve this goal, we

looked back to our proposed mechanism and noted that the key step in the catalytic cycle

is a -bond metathesis14 reaction to convert a titanium alkoxide to a titanium hydride

(Scheme 9). We reasoned that an active titanium hydride species might be generated

directly from an appropriate titanium alkoxide and the silane used for the reduction, thus

eliminating the need for the n-BuLi activation step. This expectation was indeed borne

out when we found that the combination of a catalytic amount of Ti(O-i-Pr)4, and

triethoxysilane generates a mild and very efficient ester reduction system.45

Scheme 9

LnTi-OR [ H- SiOEt3 LnTi- H+ - :: V' +
H- Si(OEt)3 Ti -OR R O- Si(OEt)3
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Results and Discussion

The optimized procedure for the Ti(O-i-Pr)4 catalyzed ester reduction reaction is

shown in Scheme 10. The reaction is extremely easy to run, and is carried out by simply

mixing the ester with 2.5-3.0 equiv of triethoxysilane in a test tube (fitted with a drying

tube packed with DrieRite® to exclude excess moisture), adding 5 mol % of Ti(O-i-Pr)4 ,

and then heating the reaction mixture to 40-55 °C for 4-22 h. Not only does the use of

Ti(O-i-Pr) 4 lead to a self-activating, air-stable reduction system, but its use imparts other

desirable properties onto the reaction. The reaction requires no added solvent, and after

acid or alkaline hydrolysis, simple extractive work-up generally provides excellent yields

of alcohol products of greater than 95% purity.

Scheme 10

O 5% Ti(OiPr)4 1 N NaOH
or

2.5-3.0 eq (EtO)3SiH 1 NHCl

R OR' 40-55 °C, 4-22 h THF R OH
r.t., 2-4.5 h

As can be seen from Table 5, the yields from this reaction generally meet or

surpass those obtained from the previous system. The reaction also lends itself well to

large scale synthesis.4 6 Ethyl thiophenacetate (Table 5, entry 2) was reduced on a 50

mmol scale to afford the desired 2-(thienyl)ethanol in 93% yield. The functional group

compatibility of this system is also superior to our previous system. Halides and olefins,

including terminal olefins, (Table 5, entries 4-6) are completely tolerated under the

standard reaction conditions. Epoxides (Table 5, entries 7-9), both terminal and internal,

are also unaffected by the reduction process, although some purification of the crude

product is necessary to remove traces (less than 5%) of triol which arises from the

hydrolysis step. Even a terminal alkyne ester (Table 5, entry 10) was smoothly converted

to the desired alkyne alcohol with only traces (-5%) of triple-bond reduction observed.

Not surprisingly, free alcohols are silylated under the reaction conditions.1 9 Thus, an
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alcohol ester (Table 5, entry 11) required an extra equiv of triethoxysilane to afford the

desired diol after hydrolysis. A lactone (Table 5, entry 14) was reduced exclusively to the

diol with no trace of lactol product detected under a variety of reaction conditions.

While the simple protocol described above works well in many cases, the

reduction of some aromatic and cyclopropyl esters stops short of completion. In the

cyclopropyl case, this may be due to steric factors. However, since methyl cyclohexane

carboxylate (Table 5, entry 12) and methyl 2-phenylbutyrate (Table 5, entry 13) both

proceed to completion under the given conditions, the difficulty with reducing benzoate

esters cannot be easily explained by steric arguments. The reduction of benzaldehyde is

rapid and clean under the standard reduction conditions, so product inhibition of the

catalyst is also not responsible for these observations. For these difficult substrates, we

have found that complete conversion is achieved by the addition of phenylsilane to the

reaction mixture (Table 5, entries 18-20), presumably due to its smaller size and more

reactive silicon-hydrogen bonds.3 4 Interestingly, reactions of ortho substituted benzoate

esters (Table 5, entries 15-17) do not suffer from this problem and are reduced to

completion in high yield under the standard conditions. This led us to the hypothesis that

the reduction of non-ortho substituted benzoate esters was getting "stuck" by a C-H

activation reaction 47 with the active titanium hydride (Scheme 11) to produce 26.

Intermediate 26, we reasoned, could be unreactive towards triethoxysilane, but could

react with phenylsilane, leading to a species which would turn over catalytically.

Unfortunately, running the reduction of methyl benzoate using trideuterophenylsilane

provided, after work-up, the alcohol product with no deuterium incorporation in the

phenyl ring, casting doubt on the hypothesis. To date, we have not arrived at an adequate

explanation for this curious effect. It is an especially surprising result, since benzoate

esters are very good substrates for the Cp2 TiCl2 / 2 n-BuLi system, leading us to

conclude that the Ti(O-i-Pr)4 system potentially proceeds through a very different

mechanism.

45



Table 5. Ti(O-i-Pr)4-Catalyzed Reduction of Esters

Entry Ester Time (h) Alcohol Yield (%)

1 Me,CO 2 Et
6

2

3

( co0 2Et¢-f( r CO2E
4 Br'%,.CO2Et

5 > 6 C0O 2Me

6 Me -. COC0 2Me

7 OCMCO 2 Me

8 MeMe6 CO2 Me

9 C2Me

10 ,[CO2Me
H

11 HO(-.j CO2 Me
9

12I 2 O -C02Me

Me

1 3 CO2Me

14 Hex -4 0OO

10 Me {CH 20H

4 £S- CH2OH

4 Q/CH 2 OH

6 Br -.-CHCH 2OH

Me{3' ~,6 C H2 OH
5 Me,(-}~CH 2 OH

o>,CH2H21

0

1 8 Me 6 CH20H

HO

5

18

7

16

14

16

H a 6 CH 2 OH
H

HO ,CH 2 0H
9

O, CH20H

Me

QrCH2OH

Hex CH20H
OH

46

95

93a

89

88

87

92

87b
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88

87
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Table 5 (cont.)

Entry Ester Time (h) Alcohol Yield (%)

CO2Me CH2 0H

15 J c 8 1 96
~ - OMe OMe

16 10 93
C1 C1

_ CO2Et CH2OH

17 10 95
Br Br

1. CO2Me CH2 CH 2 0H

18 17 10 75

Ad CO2Et CH20H

1 9 OJ 20 75 b ,e

0 2N 02N

Me Me

20 Me CO 2Et 22 Me8 CH 2 0H 8b,e

Me Me
Me Me

a50 mmol scale bThe crude product was purified by flash chromatography or

recrystallization. CThe reaction was run using 3.75 eq of HSi(OEt) 3. d37 mmol scale,

distilled yield eMixtures of (EtO)3 SiH and H3 SiPh are required for complete conversion.

Scheme 11

H OR No Reaction

o -H2

TiLn
H

SiPhH 2

Several other limitations of this method have been discovered (see Figure 2). The

reduction of a,-unsaturated ester 27 proceeded to give a 4 : 1 mixture of 1,2 reduction
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and fully saturated products in low (58%) overall yield. The reaction with cyano ester 28

gives an intractable polymer, while cx-bromo ester 29 does not react at all. Additionally,

we have found that polymethylhydrosiloxane does not support a catalytic cycle under the

standard conditions when used with this system. This was disappointing, due to the safety

concerns associated with the use of triethoxysilane (SEE WARNINGS). 46 We have

demonstrated that tributoxysilane may be used interchangeably with triethoxysilane,

offering a less volatile alternative. Also, it has been recently found that PMHS can be

used successfully to reduce esters in combination with substoichiometric amounts (25-50

mol %) of Ti(O-i-Pr)4 at higher temperatures (60-80 oC).48

Figure 2
O Br

0 OEt
O Me N Cvi ' ',ef eO MEt

27 28 29

We have also shown that other early transition metal and lanthanide alkoxides

behave as catalysts for ester hydrosilylation. As Table 6 shows, titanium alkoxides are the

best reagents for this system in terms of isolated yield, although Nb(OEt) 5 (Table 6,

entries 1 and 5) also works quite well. Zirconium alkoxides do not behave as catalysts for

this reaction, presumably due to the greater strength of the zirconium-oxygen bond.1 5

The lanthanide alkoxides (Table 6, entries 2 and 3), while displaying some catalytic

turnover, generally require longer reaction times and do not proceed to completion. The

isopropoxytitanatrane species 51 (Table 6, entry 4) behaves very similarly to Ti(O-i-Pr)4.

Structures such as this with stereogenic centers in the carbon backbone may be used to

pursue an enantioselective variant of the hydrosilylation system for the reduction of

ketones and other prochiral unsaturated compounds.
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Table 6. Reduction of Esters Catalyzed by Other Metal Alkoxide Reagents

Entry Ester Catalysta Time (h) Alcohol Yield (%)

0
1 MeoOEt Nb(OEt) 5 3 Me OH 72

2 " Nd(O-i-Pr) 3 35 "24
b

3 " Dy(O-i-Pr) 3 92 t 47C

4 "i(-Pr) 18 87

Me Me

5 ~Me' 1 CO 2 Et Nb(OEt) 5 120 Me CHOH 69

Me Me

6 ,. TiCl3(O-i-Pr) 168 1" 93 d

aCatalyst loading was 5 mol % in all cases except for entry 6, where loading was 8 mol %. b263 mg (44%)

of starting material was recovered. C40 mg (6%) of starting material was recovered. dThe product was -90%

pure by H NMR analysis.

We have undertaken several qualitative studies to probe the nature of the active

catalyst. One possibility is that this is a simple Lewis acid-catalyzed hydrosilylation,

similar to those explored by Calas and Frainnet. 7 ,8 We have determined that the

conversion of ethyl decanoate to decanol is unaffected, in terms of both rate of formation

and yield of product, by the addition of 20 equiv (relative to catalyst) of Lewis bases such

as pyridine, THF or PMe3. In a control experiment where Ti(O-i-Pr)4 is replaced with the

strong Lewis acid, ZnC12,7 no reduction is seen under the standard reaction conditions.

Another possibility is that the active catalyst is an anionic pentavalent hydridosilicate

species, similar to those explored by Corriu and co-workers.4 9 These species are known

to be electron donors toward organic halides, forming reductive coupling or

dehalogenated products. Under our described conditions, ethyl 6-bromohexanoate is

converted cleanly to the alcohol with no evidence of dehalogenation. Also, in a control

experiment where 1 equiv each of Ti(O-i-Pr)4, triethoxysilane, and benzyl bromide were
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combined and heated to 45 °C, no 1,2-diphenylethane was detected after two days. Corriu

reported a 34% yield of this product under similar conditions starting with

K[HSi(OEt)4].49 While these results argue against a free hydridosilicate species present

in our system, we have observed resonances corresponding to pentavalent alkoxysilanes

(6 -81 to -84) 49 in the 29 Si NMR spectrum of a 1: 1 mixture of triethoxysilane and Ti(O-

i-Pr)4. This indicates that some pentavalent silicon species may be present, perhaps bound

to titanium. Finally, we have found that performing the reduction in the presence of 20

equiv (relative to catalyst) of Mel has no effect on the rate or yield of the reaction. Since

Mel is expected to trap any free titanium hydride 50 present in the reaction mixture, we are

forced to rule out this type of discrete species as the active catalyst as well.

Our mechanistic probes thus far seem to implicate a hybrid species with

properties of both a metal hydride and a pentavalent hydridosilicate. One possible

catalytic cycle which incorporates this idea is shown in Scheme 12. It is known that

titanium alkoxides are dimeric in solution in order to increase their coordination number

and become more electron rich.5 1 This dimer 30 can dissociate and react with a molecule

of silane to form the bridged titanium-hydride/hydridosilicate species 31. Complexation

of the ester to the open coordination site at titanium would form intermediate 32. Hydride

transfer from the silane in exchange for an alkoxide ligand would lead to titanium hydride

intermediate 33, which would be expected to rapidly rearrange and associate with another

molecule of silane (again maximizing coordination number) to form 34. -Alkoxide

elimination could then proceed to form the bound aldehyde complex 35, which would

react in a fashion similar to ester complex 32. Formation of the intermediate hydride 36,

followed by insertion and re-association with another molecule of silane would then

complete the catalytic cycle, forming the new bridged titanium-hydride/hydridosilicate

species 37. Further studies are obviously required to verify this hypothesis.
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Scheme 12
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In conclusion, we have developed a second generation ester hydrosilylation

system which uses air-stable reagents, can be run in the air, and displays a enhanced

degree of functional group compatibility. The discovery of this reaction is the result of

mechanism-based approach to the optimization of a catalytic cycle. The experimental

simplicity and mild reaction conditions of this procedure should make it useful to

synthetic chemists, if safety considerations can be overcome. Continued refinement and

improvement of the reaction conditions to render the reaction protocol even more

attractive are currently underway.
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Experimental Section for Chapter 1, Part 2
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General Considerations

Unless otherwise indicated, all reactions were conducted in the air, in a dry test

tube equipped with a drying tube packed with DrieRite.® All solvents were available

from commercial sources and were used directly out of the bottle. Methyl 10,11-

epoxyundecanoate, methyl 9,10-epoxyoctadecanoate, and methyl 4-phenyl-3,4-

epoxybutyrate were prepared by standard m-CPBA oxidation of the corresponding

olefins.38 Methyl 10-undecynoate, methyl 11-hydroxydodecanoate, methyl 2-

phenylbutyrate and ethyl 2-chlorobenzoate were synthesized by refluxing the

corresponding carboxylic acids in the appropriate alcohol with a catalytic amount of

H2SO4 for 4-16 h. All other substrates, as well as triethoxysilane, were available from

commercial sources and were purified before use by passage through a short column of

neutral alumina (ICN Alumina N, Akt I).

Preparative flash chromatography was performed on E.M. Science Kieselgel 60

(230-400 mesh). All products, unless otherwise noted, are commercially available. 36

Yields, unless otherwise stated, refer to isolated yields of compounds of greater than 95%

purity as determined by capillary GC and/or 1H NMR analysis. Nuclear magnetic

resonance (NMR) spectra were recorded on a Varian XL-300, Varian Unity 300, or

Bruker AC-250 Fourier transform spectrometer. Splitting patterns are designated as s,

singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All 1H NMR spectra are reported in

6 units, parts per million (ppm) downfield from tetramethylsilane. All 13C NMR spectra

are reported in ppm relative to the central line of the 77.0 ppm triplet for

deuterochloroform. Infrared (IR) spectra were recorded on a Perkin Elmer 1600 Series

Fourier transform spectrometer. Gas chromatography (GC) analyses were performed on a

Hewlett Packard model 5890 Gas Chromatograph with a 3392A integrator and FID

detector using a 25 m capillary column with crosslinked SE-30 as a stationary phase.

Melting points were measured on a Haake Buchler Melting Point Apparatus and are

uncorrected.
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Titanium (IV) Isopropoxide-Catalyzed Reduction of Esters to Alcohols

General Procedure. Triethoxysilane (1.7 mL, 9.0 mmol) and the ester to be reduced (3.0

mmol) were added to a test tube. Ti(O-i-Pr)4 (45 !L, 0.15 mmol, 5 mol %) was then

added,4 6 and the tube was fitted with a drying tube packed with DrieRite® to exclude

excess moisture. The vessel was then heated in an oil bath at 50 °C. The reaction mixture

was stirred until all of the starting material was consumed, as determined by GC and/or

TLC analysis of an aliquot quenched with a small amount of 1 N NaOH and THF. The

reaction mixture was washed into a 100 mL round-bottom flask with 10 mL of THF.

Then, 20 mL of 1 N NaOH was added SLOWLY with stirring. (NOTE: Vigorous

bubbling was observed.) After 4 h, the mixture was added to a separatory funnel with 50

mL each of ether and water. The aqueous layer was separated and extracted with an

additional 50 mL of ether. The combined organic extracts were then washed with 2x50

mL of 1 N HCl, dried over MgSO4, filtered, and concentrated in vacuo to afford the

desired alcohol. Unless otherwise indicated, the crude product was >95% pure by GC and

1H NMR analysis and was not subjected to further purification.

CAUTION! Adequate eye protection is required for the handling of triethoxysilane

(vapors can cause blindness). In the absence of substrate and under inert atmosphere,

triethoxysilane is disproportionated by Ti(O-i-Pr)4 to form SiH4, a pyrophoric gas. We

have been informed by a user of the procedure that, even in the presence of substrate,

running the reaction on a large scale under an inert atmosphere may lead to exotherms

and SiH4 gas production. Therefore, we strongly urge anyone attempting this procedure

to run the reaction in the air and to be aware of this possible undesirable side reaction. 46

Decanol (Table 5, entry 1). The general procedure was followed to reduce ethyl
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decanoate (696 gL, 3.0 mmol). After 10 h, work-up (as described) afforded 422 mg (95%

yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 3.62 (t, J = 6.4 Hz, 2 H), 1.71 (s, 1

H), 1.57 (m, 2 H), 1.2-1.4 (m, 14 H), 0.88 (t, 3 H); 13C NMR (75 MHz, CDC13): 8 62.7,

32.7, 31.9, 29.7, 29.6, 29.4, 29.3, 25.8, 22.6, 14.0; IR (neat): 3332, 2915, 2854, 1467,

1378, 1057, 966, 721 cm-1 .

2-(2-Thienyl)ethanol (Table 5, entry 2): To a dry round-bottom flask were added

triethoxysilane (23.3 mL, 125.0 mmol), ethyl 2-thiophenacetate (7.5 mL, 50.0 mmol), and

titanium (IV) isopropoxide (750 gL, 2.5 mmol). The vessel was then fitted with a drying

tube packed with DrieRite® and heated in an oil bath at 55 °C. After 4 h, the reaction

mixture was washed into a 500 mL round-bottom flask with THF (150 mL). Then, 1 N

NaOH (250 mL) was added SLOWLY with stirring. (NOTE: Vigorous bubbling was

observed.) After 4.5 h of vigorous stirring, the mixture was added to a separatory funnel

with 250 mL each of ether and water. The aqueous layer was separated and extracted with

100 mL of ether. The combined organic layers were washed with 2x100 mL of 1 N HC1,

dried over MgSO4, filtered, and concentrated in vacuo to afford 5.96 g (93% yield) of a

yellow oil: 1H NMR (300 MHz, CDC13): 8 7.12 (d, J = 5.0 Hz, 1 H), 6.92 (dd, J = 3.5 Hz,

J = 5.0 Hz, 1 H), 6.83 (d, J = 3.5 Hz, 1 H), 3.80 (t, J = 6.4 Hz, 2 H), 3.04 (t, J = 6.4 Hz, 2

H), 2.68 (s, 1 H); 13C NMR (62.5 MHz, CDC13): 8 140.7, 126.8, 125.3, 123.7, 63.1, 33.0;

IR (neat): 3332, 3107, 2941, 2874, 1438, 1376, 1244, 1132, 1045, 846, 822, 695 cm - 1.

2-Phenyl-l-ethanol (Table 5, entry 3): The general procedure was followed to reduce

ethyl 2-phenylacetate (478 gL, 3.0 mmol). After 4 h, work-up (as described) afforded 324

mg (89% yield) of a clear oil: 1H NMR (250 MHz, CDC13): 8 7.15-7.35 (m, 5 H), 3.82

(t, J = 7.5 Hz, 2 H), 2.86 (t, J = 7.5 Hz, 2 H), 1.72 (s, 1 H); 13C NMR (75 MHz, CDC13):

8 138.5, 128.9, 128.4, 126.3, 63.5, 39.1; IR (neat): 3333, 3086, 3060, 3027, 2938, 2877,

1606, 1498, 1451, 1046, 744, 702 cm -1 .
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6-Bromohexanol (Table 5, entry 4): The general procedure was followed to reduce

ethyl 6-bromohexanoate (534 gL, 3.0 mmol). After 6 h, work-up (as described) afforded

476 mg (88% yield) of a clear oil: 1H NMR (250 MHz, CDC13): 8 3.62 (t, J = 6.6 Hz, 2

H), 3.40 (t, J = 6.6 Hz, 2 H), 2.99 (s, 1 H), 1.87 (m, 2 H), 1.3-1.6 (m, 6 H); 13C NMR

(62.5 MHz, CDC13): 62.2, 33.7, 32.6, 32.4, 27.8, 24.8; IR (neat): 3331, 2936, 2859,

1462, 1430, 1259, 1237, 1052 cm-1 .

10-Undecen-l-ol (Table 5, entry 5): The general procedure was followed to reduce

methyl 10-undecenoate (594 mg, 3.0 mmol). After 16 h, work-up (as described) afforded

443 mg (87% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 5.81 (m, 1 H), 4.9-

5.05 (m, 2 H), 3.63 (t, J = 6.5 Hz, 2 H), 1.9-2.0 (m, 2 H), 1.63 (s, 1 H), 1.5-1.65 (m, 2 H),

1.2-1.4 (m, 12 H); 13C NMR (75 MHz, CDC13): 139.1, 114.0, 62.8, 33.7, 32.7, 29.5,

29.4 (two overlapping signals), 29.1, 28.9, 25.7; IR (neat): 3336, 3078, 2976, 2933, 2851,

1644, 1465, 1438, 1412, 1059, 990, 911 cm- 1.

9-Octadecen-l-ol (Table 5, entry 6): The general procedure was followed to reduce

methyl 9-octadecenoate (1.0 mL, 3.0 mmol). After 5 h, work-up (as described) afforded

737 mg (92% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 5.25-5.4 (m, 2 H),

3.61 (t, J = 6.0 Hz, 2 H), 2.10 (s, 1 H), 1.95-2.05 (m, 4 H), 1.5-1.6 (m, 2 H), 1.1-1.3 (m,

22 H), 0.88 (t, J = 6.0 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 129.9, 129.8, 62.9, 32.8,

31.9, 29.8 (two overlapping signals), 29.5 (two overlapping signals), 29.4 (two

overlapping signals), 29.3 (two overlapping signals), 29.2, 27.2, 25.8, 22.7, 14.1; IR

(neat): 3331, 3001, 2916, 2855, 1466, 1056, 721 cm -1.

10,11-Epoxyundecan-l-ol (Table 5, entry 7).39 The general procedure was followed to

reduce methyl 10,11 -epoxyundecanoate (642 mg, 3.0 mmol). After 21 h, work-up (as
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described) followed by flash chromatography (ether : hexane = 1 : 1) afforded 462 mg

(83% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 3.63 (t, J = 6.5 Hz, 2 H), 2.91

(m, 1 H), 2.75 (m, 1 H), 2.45-2.5 (m, 1 H), 1.70 (s, 1 H), 1.2-1.6 (m, 16 H); 13C NMR (75

MHz, CDC13): 8 62.6, 52.3, 47.0, 32.6, 32.3, 29.3 (two overlapping signals), 29.2 (two

overlapping signals), 25.8, 25.6; IR (neat): 3384, 3046, 2922, 2859, 1464, 1412, 1257,

1057, 916, 836, 722 cm- 1. Eluting the column with ether: ethyl acetate (3 : 7) afforded 6

mg (1% yield) of a white solid whose 1H NMR spectrum is consistent with its

formulation as 1,10,11-undecanetriol: 1H NMR (300 MHz, acetone-d6): 8 3.3-3.6 (m, 7

H), 2.8 (t, 1 H), 1.2-1.6 (m, 16 H).

9,10-Epoxy-l-octadecanol (Table 5, entry 8).52 The general procedure was followed

to reduce methyl 9,10-epoxyoctadecanoate (624 mg, 2.0 mmol), using triethoxysilane

(l.1 mL, 6.0 mmol), and titanium (IV) isopropoxide (30 g1L, 0.10 mmol, 5 mol %). After

18 h, work-up (as described), followed by recrystallization from pentane afforded 494 mg

(87% yield) of white crystals: m. p.: 52-53 °C (no lit. value reported); 1H NMR (300

MHz, CDC13): 8 3.63 (t, J = 6.6 Hz, 2 H), 2.90 (m, 2 H), 1.2-1.6 (m, 29 H), 0.88 (t, J =

6.7 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 63.0, 57.2 (two overlapping signals), 32.8,

31.8, 29.52, 29.50, 29.47, 29.4, 29.3, 29.2, 27.8, 27.7, 26.6 (two overlapping signals),

25.7, 22.6, 14.1; IR (nujol): 3271, 2917, 2851, 1462, 1377, 1074, 846 cm - 1.

2-Phenyl-3-hydroxytetrahydrofuran (Table 5, entry 9).53 The general procedure was

followed to reduce methyl 4-phenyl-3,4-epoxybutyrate (576 mg, 3.0 mmol). After 5 h,

work-up (as described), followed by purification by flash chromatography (ether: hexane

= 1 : 1) afforded 192 mg (39% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 7.2-

7.4 (m, 5 H), 4.74 (d, J = 6 Hz, 1 H), 4.05-4.25 (m, 3 H), 2.57 (s, 1 H), 2.05-2.2 (m, 1 H),

1.85-1.95 (m, 1 H); 13C NMR (75 MHz, CDC13 ): 8 140.7, 128.4, 127.5, 125.4, 87.5,

78.7, 67.1, 34.0; IR (neat): 3404, 3062, 3030, 2978, 2946, 2885, 1603, 1493, 1452, 1106,
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1055, 1028, 992, 911, 735, 700 cm-1 .

10-Undecyn-l-ol (Table 5, entry 10). The general procedure was followed to reduce

methyl 10-undecynoate (588 mg, 3.0 mmol). After 18 h, work-up (as described) followed

by purification by flash chromatography (ether: hexane = 2 : 3) afforded 354 mg (70%

yield) of a clear oil: 1H NMR (250 MHz, CDC13): 6 3.61 (t, J = 6.6 Hz, 2 H), 2.1-2.2 (m,

3 H), 1.95 (t, J = 2.4 Hz, 1 H), 1.1-1.7 (m, 14 H); 13C NMR (75 MHz, CDC13): 6 83.9,

67.7, 61.8, 32.1, 28.9, 28.8, 28.5, 28.2, 27.9, 25.2, 17.8; IR (neat): 3310, 2927, 2853,

2117, 1466, 1432, 1371, 1350, 1327, 1057, 911, 734, 629 cm- 1.

1,12-Dodecanediol (Table 5, entry 11). The general procedure was followed to reduce

methyl 12-hydroxydodecanoate (690 mg, 3.0 mmol) using one additional equiv of

triethoxysilane (2.1 mL, 11.3 mmol total). After 7 h, work-up (as described) afforded 536

mg (88% yield) of white crystals: m. p.: 82-83 °C (lit.:36 81-84 °C); 1H NMR (300 MHz,

acetone-d 6): 6 3.52 (q, J = 6.0 Hz, 4 H), 3.41 (t, J = 6.0 Hz, 2 H), 1.50 (m, 4 H), 1.2-1.4

(m, 16 H); 13C NMR (75 MHz, acetone-d6): 6 62.6, 34.0, 30.7, 30.6, 30.5, 26.9; IR

(nujol): 3407, 3348, 2923, 1461, 1377, 1350, 1058, 1040, 992 cm- 1.

Cyclohexylmethanol (Table 5, entry 12). The general procedure was followed to reduce

methyl cyclohexanecarboxylate (429 gL, 3.0 mmol). After 16 h, work-up (as described)

afforded 300 mg (88% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 6 3.44 (d, J =

6.4 Hz, 2 H), 1.99 (s, 1 H), 1.6-1.8 (m, 5 H), 1.4-1.6 (m, 1 H), 1.1-1.35 (m, 3 H), 0.85-1.0

(m, 2 H); 13C NMR (75 MHz, CDC13): 6 68.5, 40.5, 29.7, 26.7, 25.9; IR (neat): 3331,

:2932, 2853, 1449, 1378, 1090, 1034, 892, 734 cm- 1.

2-Phenylbutanol (Table 5, entry 13). The general procedure was followed to reduce

methyl 2-phenylbutyrate (534 mg, 3.0 mmol). After 14 h, work-up (as described)

58



afforded 390 mg (87% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 7.15-7.35 (m,

5 H), 3.6-3.8 (m, 2 H), 2.6-2.75 (m, 1 H), 1.5-1.9 (m, 3 H), 1.84 (t, J = 6.7 Hz, 3 H); 13C

NMR (75 MHz, CDC13): 6 142.1, 128.5, 128.0, 126.5, 67.1, 50.9, 24.9, 12.0; IR (neat):

3355, 3083, 3061, 3027, 2962, 2930, 2874, 1494, 1452, 1379, 1037, 760, 700 cm- 1.

1,4-Decanediol (Table 5, entry 14). 54 The general procedure was followed to reduce y-

decanolactone (510 mg, 3.0 mmol). After 16 h, work-up (as described) afforded 454 mg

(87% yield) of a clear oil: 1H NMR (300 MHz, CDC13): 6 4.10 (s, 1 H), 3.77 (s, 1 H),

3.5-3.7 (m, 3 -l), 1.1-1.8 (m, 14 H), 0.88 (t, J = 6.7 Hz, 3 H); 13 C NMR (75 MHz,

CDC13): 6 71.6, 62.6, 37.5, 34.3, 31.8, 29.3, 29.0, 25.7, 22.5, 13.9; IR (neat): 3330, 2927,

2857, 1467, 1378, 1340, 1056, 1014 cm-1.

2-Methoxybenzyl alcohol (Table 5, entry 15). The general procedure was followed to

reduce methyl 2-methoxybenzoate (498 mg, 3.0 mmol). After 8 h, work-up (as described)

afforded 395 mg (96% yield) of a clear oil: 1H NMR (250 MHz, CDC13): 6 7.2-7.3 (m, 2

H), 6.8-7.0 (m, 2 H), 4.68 (s, 2 H), 3.86 (s, 3 H), 2.42 (s, 1 H); 13C NMR (75 MHz,

CDC1 3): 8 157.4, 129.0, 128.9 128.7, 120.6, 110.2, 61.9, 55.2; IR (neat): 3372, 3004,

2939, 1603, 1589, 1493, 1464, 1439, 1289, 1242, 1196, 1116, 1049, 1031, 910, 754, 732

cm-1

2-Chlorobenzyl alcohol (Table 5, entry 16). The general procedure was followed to

reduce ethyl 2-chlorobenzoate (554 mg, 3.0 mmol). After 10 h, work-up (as described)

afforded 398 mg (93% yield) of a white solid: m. p.: 70-71 °C (lit.:36 69-71 °C); 1H NMR

(250 MHz, CDC13): 6 7.4-7.5 (m, 1 H), 7.2-7.4 (m, 3 H), 4.75 (s, 2 H), 2.29 (s, 1 H); 13C

NMR (75 MHz, CDC13): 6 138.1, 132.7, 129.3, 128.7, 128.6, 126.9, 62.7; IR (nujol):

3196, 1362, 1062, 1045, 1034, 990, 750, 701 cm - 1.

59



2-Bromobenzyl alcohol (Table 5, entry 17). The general procedure was followed to

reduce ethyl 2-bromobenzoate (684 mg, 3.0 mmol). After 10 h, work-up (as described)

afforded 530 mg (95% yield) of a white solid: m. p.: 79-80 °C (lit.:36 79-82 °C); 1H NMR

(300 MHz, CDC13): 6 7.54 (d, J = 7.2 Hz, 1 H), 7.43 (d, J = 7.2 Hz, 1 H), 7.28 (t, J = 7.2

Hz, 1 H), 7.15 (t, J = 7.2 Hz, 1 H), 4.67 (s, 2 H), 2.59 (s, 1 H); 13 C NMR (75 MHz,

CDC13): 6 139.7, 132.5, 129.0, 128.7, 127.5, 122.4, 64.8; IR (nujol): 3204, 1366, 1056,

1025, 990, 749 cm- 1.

Benzyl alcohol (Table 5, entry 18). To a 50 mL round-bottom flask was added methyl

benzoate (3.0 g, 37.0 mmol), triethoxysilane (7.4 g, 45.0 mmol), and phenylsilane (4.9 g,

45.0 mmol). Titanium (IV) isopropoxide (570 IL, 1.9 mmol, 5 mol %) was then added,

and a drying tube (DrieRite®) was placed over the opening of the flask. The reaction

vessel was then heated in an oil bath at 48 °C. After stirring for 10 h, the reaction mixture

was washed into a 200 mL round-bottom flask with THF (50 mL). Then, 1 N NaOH (100

mL) was added slowly with stirring. (NOTE: Vigorous bubbling was observed.) After 3

h, the mixture was added to a separatory funnel with 150 mL each of ether and water. The

aqueous layer was separated and extracted with 2x50 mL of ether. The combined organic

extracts were then washed with 3x50 mL of 1 N HC1, dried over MgSO4, filtered, and

concentrated in vacuo. The crude product was purified by distillation under reduced

pressure (162 °C, -30 mm Hg) to afford 1.79 g (75% yield) of a clear oil: 1H NMR (300

MHz, CDC13): 7.1-7.3 (m, 5 H), 4.53 (s, 2 H), 2.92 (s, 1 H); 13 C NMR (75 MHz,

CDC13): 141.4, 129.0 128.0, 127.5, 65.5; IR (neat): 3320, 3086, 3067, 3030, 2928,

2876, 1496, 1454, 1207, 1026, 1017, 735, 699 cm -1 .

4-Nitrobenzyl alcohol (Table 5, entry 19). The general procedure was followed to

reduce ethyl 4-nitrobenzoate (586 mg, 3.0 mmol), using triethoxysilane (747 glL, 4.0

mmol), and phenylsilane (520 gIL, 4.2 mmol). After 20 h, work-up (as described),
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followed by purification by flash chromatography (ether: hexane = 1: 1) afforded 345

mg (75% yield) of yellow crystals: m. p.: 93-94 °C (lit:36 92-94 °C); 1H NMR (300 MHz,

CDC13): 8 8.20 (d, J = 10 Hz, 2 H), 7.53 (d, J = 10 Hz, 2 H), 4.83 (s, 2 H), 2.29 (s, 1 H);

13C NMR (75 MHz, CDC13): 8 148.3, 147.2, 127.0, 123.6, 63.9; IR (nujol): 3516, 2923,

1602, 1507, 1458, 1377, 1342, 1197, 1057, 736 cm-1 .

Chrysanthemumyl alcohol (Table 5, entry 20). The general procedure was followed to

reduce ethyl chrysanthemumate (650 L, 3.0 mmol, mixture of cis and trans isomers),

using triethoxysilane (747 IL, 4.0 mmol), and phenylsilane (520 pL, 4.2 mmol). After 22

h, work-up (as described) followed by purification by flash chromatography (ether:

hexane = 1: 1) afforded 370 mg (80% yield) of a pale yellow oil, which was a mixture of

cis and trans isomers in a ratio identical to that of the starting material: 1H NMR (300

MHz, CDC13): 8 5.0-4.9 (m, 1 H, one isomer), 4.9-4.85 (m, 1 H, one isomer), 3.5-3.8 (m,

2 H, both isomers), 1.35-1.75 (m, 7 H, both isomers), 1.38 (m, 1 H, one isomer), 1.0-1.2

(m, 7 H, both isomers), 0.8-0.9 (m, 1 H, one isomer); 13C NMR (62.5 MHz, CDC13, both

isomers): 8 134.7, 132.7, 123.5, 119.1, 63.1, 60.0, 34.9, 30.7, 28.7, 28.5, 26.0, 25.5, 25.4,

22.5, 21.2, 18.2, 18.1, 15.2, two signals obscured by others; IR (neat): 3333, 2921, 1450,

1376, 1122, 1022, 847 cm- 1.

Use of Other Metal Alkoxides to Catalyze the Reduction of Esters to Alcohols

Niobium (V) ethoxide

Decanol (Table 6, entry 1). A dry Schlenk tube under argon was charged with

Nb(OEt)5 (48 mg, 0.15 mmol, 5 mol %). Triethoxysilane (1.4 mL, 7.5 mmol) and ethyl

decanoate (696 tL, 3.0 mmol) were added and the reaction mixture was heated to 50

°C. After 3 h, the reaction was complete, as determined by GC analysis of an aliquot

taken from the reaction mixture. THF (8 mL) and 1 N NaOH (15 mL) were then added,
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and the mixture was stirred vigorously for 3.5 h. The reaction mixture was then added

to a separatory funnel with 50 mL each of H20 and ether. The aqueous layer was

separated and extracted with an additional 50 mL of ether. The combined organic layers

were then dried over MgSO4, filtered, and concentrated. Purification by flash

chromatography (ether: hexane = 1: 1) afforded 370 mg of a clear oil with a flaky

suspension of a precipitate. Filtering the oil through a small plug of celite afforded 343

mg (72% yield) of pure product (>95% pure by 1H NMR analysis).

Chrysanthemumyl alcohol (Table 6, entry 5). A dry Schlenk tube under argon was

charged with Nb(OEt)5 (48 mg, 0.15 mmol, 5 mol %). Triethoxysilane (1.4 mL, 7.5

mmol) and ethyl chrysanthemumate (650 gL, 3.0 mmol) were added and the reaction

mixture was heated to 50 °C. After 5 days, the reaction was complete, as determined by

GC analysis of an aliquot taken from the reaction mixture. THF (8 mL) and 1 N NaOH

(15 mL) were then added, and the mixture was stirred vigorously for 4 h. The reaction

was worked up as above. Purification by flash chromatography (ether: hexane = 1: 1)

afforded 320 mg (69% yield) of a yellow oil, a mixture of cis and trans isomers (>95%

pure by 1H NMR analysis).

Neodymium (III) Isopropoxide

Decanol (Table 6, entry 2). A dry Schlenk tube under argon was charged with

Nd(O-i-Pr)3 (48 mg, 0.15 mmol, 5 mol %). Triethoxysilane (1.4 mL, 7.5 mmol) and

ethyl decanoate (696 gL, 3.0 mmol) were added and the reaction mixture was heated to

60 C. After 7 h, exposure of the reaction mixture to air caused a flame, presumably

due to SiH4 gas evolution. After 29 h, THF (8 mL) and aqueous 1 N NaOH (15 mL)

were added, and the mixture was stirred vigorously for 2.5 h. The reaction was worked

up as above. Purification by flash chromatography (ether: hexane = 3 : 7) afforded 114

mg (24% yield) of pure decanol and 263 mg (44% yield) of recovered ethyl decanoate
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(both >95% pure by 1H NMR analysis).

Dysprosium (IH) isopropoxide

Decanol (Table 6, entry 3). A dry Schlenk tube under argon was charged with

Dy(O-i-Pr)3 (51 mg, 0.15 mmol, 5 mol %). Triethoxysilane (1.4 mL, 7.5 mmol) and

ethyl decanoate (696 L, 3.0 mmol) were added and the reaction mixture was heated to

60 °C. After 20 h, GC analysis of an aliquot taken from the reaction mixture showed

23% conversion. The reaction mixture was then heated to 70 °C. After an additional 3

days, THF (8 mL) and aqueous 1 N NaOH (15 mL) were added, and the mixture was

stirred vigorously for 3 h. The reaction was worked up as above. Purification by flash

chromatography (ether: hexane = 3 : 7) afforded 224 mg (47% yield) of decanol (>95%

pure by H NMR analysis) and 40 mg of recovered ethyl decanoate (84% pure, 5.5%

yield).

(2-Propanolato)titanatrane 51

Decanol (Table 6, entry 4). Triethoxysilane (1.4 mL, 7.5 mmol) and ethyl decanoate

(696 [L, 3.0 mmol) were added to a dry test tube. (2-Propanolato)titanatrane (38 mg,

0.15 mmol, 5 mol %) was then added, and the tube was fitted with a drying tube packed

with DrieRite® to exclude excess moisture. The vessel was then heated in an oil bath at

50 "C. After 18 h, the reaction mixture was washed into a 100 mL round-bottom flask

with 10 mL of THF. Then, 20 mL of 1 N NaOH was added SLOWLY with stirring.

(NOTE: Vigorous bubbling was observed.) After 4 h, the mixture was added to a

separatory funnel with 50 mL each of ether and water. The aqueous layer was separated

and extracted with an additional 50 mL of ether. The combined organic extracts were

then washed with 2x50 mL of 1 N HC1, dried over MgSO4, filtered, and concentrated in

vacuo to afford 412 mg (87% yield) of decanol (>95% pure by 1H NMR analysis).

63



Titanium (IV) Trichloroisopropoxide

Chrysanthemumyl alcohol (Table 6, entry 6). Triethoxysilane (1.4 mL, 7.5 mmol)

and ethyl chrysanthemumate (650 AiL, 3.0 mmol) were added to a dry test tube.

TiC13(0-i-Pr) (35 mg, 0.25 mmol, 8 mol %) was then added, and the tube was fitted

with a drying tube packed with DrieRite® to exclude excess moisture. The vessel was

then heated in an oil bath at 40 C. After 7 days, the reaction was complete as

determined by GC analysis of an aliquot taken from the reaction mixture. THF (7 mL)

and aqueous 1 N NaOH (15 mL) were then added, and the mixture was stirred

vigorously for 2 h. The reaction was worked up as above to afford 429 mg (93% yield)

of crude product which was >90% pure by 1H NMR analysis.
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CHAPTER 2

DEVELOPMENT OF A TITANOCENE-CATALYZED REACTION TO CONVERT ENYNES

TO BICYCLIC CYCLOPENTENONES
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Background

One of the more interesting features of organometallic reagents is their ability to

mediate reactions which are difficult or impossible using classical methods of organic

synthesis. One example is the activation of simple unsaturated organic fragments by

group 4 metallocene compounds, a process which has been studied in some detail.5 5 An

alkyne complex of zirconocene or titanocene follows the Dewar-Chatt-Duncanson model

of bonding.56 According to this model, there are two interactions which occur when an

alkyne binds to the metal (see Figure 3). The first is c-donation of a filled alkyne r

orbital into the empty 2al molecular orbital of the metallocene.5 7 The second is r

backbonding from the filled lb2 orbital of the metallocene into the empty * antibonding

orbital of the alkyne. Thus, there are two extreme resonance forms of a group 4

metallocene alkyne complex, as indicated in Figure 3. The reactivity of these 16-electron

complexes resembles that of a metallacyclopropene, and a 1,2-insertion of another

unsaturated organic fragment can easily occur in what has been termed a "reductive

coupling" reaction.
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Figure 3
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Floriani and co-workers 58 were able to prepare the alkyne complex 37 from the

reaction of the "titanocene" equivalent, Cp2Ti(CO)2, with diphenylacetylene (Scheme

13). They also showed that 37 disproportionates over time to form Cp2Ti(CO)2 and 38.

The structure of intermediate 37 was determined from an X-ray analysis. The carbon-

carbon bond of the alkyne was found to be significantly lengthened (1.285 A; average

length of a C-C triple bond is 1.2 A), and the phenyl groups were bent back from the

linear arrangement (C-C-C bond angle: 145.8°). Thus, in the solid state, complex 37 most

closely resembles a metallacyclopropene.

Scheme 13

Ph Ph

Cp 2Ti(CO) 2 + CP2Ti CP2 Ti(CO)2 + Cp2
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In a further development, Farona and co-workers 59 demonstrated the use of a

zirconocene equivalent, generated by the Mg/HgC12 reduction of Cp2ZrC12, to synthesize

a series of substituted metallacyclopentadienes 39a-c from the reductive coupling of

symmetrical alkynes (eq 12). It is important to note that, up to this point, only symmetric

alkynes had been used for the reaction. Alt, Rausch and co-workers6 0 demonstrated the

use of a new phosphine-stabilized titanocene reagent, Cp2Ti(PMe 3)2, to reductively

couple several terminal alkynes. They reported that this reaction was not very selective,

leading to mixtures of regioisomers (eq 13). Indeed, the lack of regioselectivity and the

problems associated with the cross-coupling of two different unsaturated compounds was

a major shortcoming of this method towards its application in organic synthesis.

R

Mg
Cp2ZrCI2 + R , R g

HgC12
n R = r,.I4
.1 _ - _-001 D

b: R = C2 H
c: R = CH 3 39a-c

Me Me H

Me ---- H Cp2 Ti(PMe 3)2

Me

(13)

Me
Me H H

There have been two solutions to this problem which have led to the use of the

reductive coupling reaction in a variety of novel organic methodologies. One method,

pioneered in the Buchwald laboratories, 61 involves the formation of a reactive

zirconocene alkyne complex 41 from compounds of type 40 by the concerted loss of an

alkane (usually methane) via a -hydrogen abstraction process. When this reaction is

performed in the presence of a suitable unsaturated organic fragment, reductive coupling

can occur to give metallacycles of type 42 (Scheme 14).

68
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Scheme 14
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The second strategy, developed by Nugent and co-workers, was to form bicyclic

metallacycles 43 directly by in situ generation of the active metallocene reagent in the

presence of a diyne,6 2 enyne,6 3 or diene (Scheme 15).64 In most cases, the intramolecular

reductive coupling reaction occurs before dimerization or oligomerization. The

metallacycles 42 and 43 behave as 1,2-dianion equivalents, and have been shown to react

with electrophiles61 ,65 to furnish a host of highly functionalized organic compounds and

organo-main group compounds (Scheme 16). More recently, other researchers have

applied Nugent's method to the intramolecular cyclization of hydrazone/alkenes (or

alkynes), 66 enones and ynones.6 7

Scheme 15

R' Cp2ZrCl 2Mg / HgC 2

R

ZrCp2

R R4343

Scheme 16
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Y = (H, H), PPh, AsPh, SbPh, BiPh, GeC12, InC12, S, Se, SnMe 2, S=O, B-R
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Negishi and co-workers discovered an entry into a zirconocene species which

greatly increased the synthetic utility of the intramolecular reductive coupling reaction.

They found that zirconacycles of type 43 could be generated by the reaction of Cp2ZrCl2

with 2 equiv of n-BuLi68 at low temperature, followed by addition of dienes, diynes, or

enynes and warming to room temperature. The procedure is experimentally much simpler

than the previous method (reduction of Cp2ZrC12 with Mg/HgC1259). The Negishi group

also showed that the zirconacycles could be directly carbonylated6 9 to produce, in a one

pot procedure, bicyclic cyclopentenones 44 (Scheme 17). This method provides an easy

way to prepare cyclopentenone skeletons from simple starting materials, and has been

used successfully as the key step of several natural product syntheses.70

Scheme 17
R' R' R'
. .

Cp 2ZrC12

2 n-BuLi
R -78 °C. THF

ZrCp2 0

43 R 44 R

The metal-induced conversion of enynes to bicyclic cyclopentenones was not

unprecedented. Carbonyl complexes of cobalt71 (the intramolecular Pauson-Khand

reaction), iron72 and tungsten 7 3 had also been shown to effectively mediate this

transformation. Additionally, Tamao has used bis(cyclooctadienyl) nickel in the presence

of an isocyanide, used as a carbon monoxide equivalent, to convert enynes to bicyclic

iminocyclopentenes (Scheme 18).74 Note that in each case, a stoichiometric amount of

the metal species is required to effect the desired transformation.75
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Scheme 18
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While attempting to use Negishi's method to synthesize cyclopentenone 47,

Robert Grossman was surprised to find that the cyclization of enyne 45 provided only a

trace of the desired zirconacycle 46a (Scheme 19).76 He thought that this may due to an

irreversible interaction between the oxygen atom and zirconium. Because titanium-

oxygen bonds are substantially weaker than zirconium-oxygen bonds (by -20

kcal/mol),1 5 Grossman attempted the reaction using Cp2Ti(PMe3)21 1 and was able to

generate the metallacycle 46b quantitatively. Direct carbonylation in chloroform afforded

the desired product 47. Grossman discovered that the combination of Cp2TiC12 and 2

equiv of EtMgBr (or n-BuLi) functioned similarly to the analogous zirconium system as

an in situ generated titanocene equivalent. Unlike the zirconium reaction, the titanium

mediated cyclization also tolerated the presence of ester groups.76 ,77

Scheme 19

... O.- Me

vO" -0 - Me

45

Cp 2ZrC12 / 2 n-BuLi

Cp2 Ti(PMe 3 )2

or
Cp2TiCl2/ 2 EtMgBr

Only Traces of Cyclized Product

Me Me

46a: M=Zr 47
46b: M=Ti

71



Grossman also showed that the addition of 2,6-dimethylphenylisocyanide to

metallacycle 46b led to the expected 1,1-insertion into the titanium-sp 3 carbon bond,

providing iminoacyl compound 48 (Scheme 20).78 Over time, this complex decomposed,

presumably via the reductive elimination of "titanocene", to form the bicyclic

iminocyclopentene 49 in good yield. 7 6

Scheme 20
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While there was precedent for this type of reductive elimination reaction,7 9 it had

not been the subject of careful study. Juan Cimpora monitored the rates of decomposition

of a series of titanocene iminoacyl complexes 50 to the corresponding imines 51 (eq

14).80 He found that the decomposition reaction displayed first-order kinetics and was

unaffected by the addition of donor ligands such as PMe3. The rate of elimination was

accelerated by the presence of electron withdrawing substituents on the N-phenyl ring (p

value from a Hammet plot = +1.55) and was slightly decelerated in the presence of polar

solvents. Most importantly for our purposes, he was able to trap the eliminated "Cp2Ti"

fragment with dimethyldisulfide, demonstrating that the titanocene reagent was not

destroyed in the reductive elimination.

-Cp 2Ti" N= (14)

Et 2N, MeO, Me, H, C1 K
.I _-

a ou M DI1
Fr
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Cmpora's result led us to envision the catalytic cycle shown in Scheme 21. After

isocyanide insertion into the bicyclic metallacycle 52 to form iminoacyl complex 53,

reductive elimination reaction would provide bicyclic iminocyclopentene 54 and reactive

"titanocene" species 55. If this reactive fragment could be trapped by another equivalent

of enyne prior to its decomposition or conversion to "dead end" products, the cycle would

be completed. Hydrolysis of imine 54 would then furnish bicyclic cyclopentenone 56.

Thus, we began our efforts to devise the proper conditions to render the process

catalytic. 8 1

Scheme 21
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Results and Discussion

Attempts to cyclize enyne 57 using 10 mol % of Cp2Ti(PMe 3)2 in the presence of

t-butylisocyanide proved fruitless. 1H NMR analysis showed no reaction of the enyne and

resonances attributable to isocyanide complexes of titanocene (eq 15).82 Evidently, the

titanocene reagent reacts much faster with the isocyanide than with the enyne. Efforts to

limit the concentration of isocyanide by slow or portionwise addition resulted in little

improvement. Sequential addition of enyne and t-butylisocyanide to a stoichiometric

amount of Cp2Ti(PMe3)2, repeated four times, gave a 220% yield (by 1H NMR analysis)

of 58 based on titanium,7 6b suggesting that catalytic turnover was indeed possible.

Ph

N 0
t-RI I/

rn 58

(15)

KKAD cirInle nttrihl e mahI to
I-1 1V I 1oly l II I LLIIlUU LI,I Lv

C p2Ti(PMe 3)(t-BuNC) and Cp 2Ti(t-BuNC) 2

We saw a potential solution to the "isocyanide delivery" problem in the interesting

tautomeric equilibrium which exists between trialkylsilylcyanides and the corresponding

isocyanides (eq 16).83 The equilibrium largely favors the cyano tautomer (-95:5 in the

case of trimethylsilylcyanide). Furthermore, the "normal : iso" ratio can be affected by

modifying the nature of the groups on the silicon. We hoped that running the reaction in

the presence of the appropriately substituted trialkylsilylcyanide would be an ideal way to

conveniently limit the concentration of free isocyanide in the reaction mixture.

R3Si CN r ' R3Si NC
(16)

> 95% < 5%
Favored by Bulky R
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After much experimentation, it was found that 10 mol % of Cp2Ti(PMe3)2, under

the conditions shown in Scheme 22, would catalytically convert enynes 59 and a slight

excess of trialkylsilylcyanide to the corresponding iminocyclopentenes 60. Use of

Me3SiCN gave variable results, although in some cases complete consumption of the

enyne was observed when slow addition of the silyl cyanide was employed (Table 7,

entries 1, 2 and 4). Reactions employing i-Pr3SiCN went to completion, but were too

slow to be useful (10 days, r.t.). t-BuMe2SiCN proved to be a good compromise with

respect to both reactivity and compatibility. Reactions employing t-BuMe2 SiCN

generally were run at 45 C for 18-24 hours (Table 7, entries 4-7, 10 and 12). One

drawback of this reagent is that it is a waxy solid and difficult to prepare in a pure form.

More recently, we found that Et3SiCN, an easily distillable liquid, works well under the

standard reaction conditions (Table 7, entries 3, 7-9, 11 and 13). Another advantage of

Et 3SiCN is that reaction times using this reagent are slightly shorter (12-16 hours, 45 °C).

For certain substrates (Table 7, entries 9, 11 and 12), greater than 10 mol % of

catalyst is required for complete conversion. This effect is probably steric in origin. With

these bulkier enynes, binding to the titanocene species 55 is more difficult, and with each

turnover of the cycle (see Scheme 21), there is a greater chance that 55 will decompose

before metallacycle 52 can form.

Scheme 22
R R HOAc/NaOAc (1:1) R

10% C2Ti(PMe3)2 THF, 0 C, 2-4 h

R3SiCN N X or 
benzene or toluene R3 Si' sat. aq. CuSO4

argon THF, r. t., 3-5 h
59 45 C, 18-24 h 60 6159 60 61
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Table 7. Titanocene-Catalyzed Conversion of Enynes to Bicyclic Cyclopentenones

entry starting material cyanidea product isolated yield (%)d

1 Ph O

2 N

Ph

3
BOC

Me3 SiCN

Me3SiCN

Et3SiCN

Ph

Ph

°OjN-Ph
Me

O -jQN- BOC

4 Ph

Me =
t-Bu0 2 C CO2 t-Bu

Me =
6

t-BuO2C CO2t-Bu

Me =
7 

EtO2 C CO2 Et

Me 3SiCN

t-BuMe 2SiCN

t-BuMe2SiCN

t-BuMe 2SiCN

t-BuMe 2SiCN

Et3SiCN

Ph

Me

o =<<C C2t-Bu

C02tBu

Me CO2t-Bu

0 CO2 t-Bu

Me

0 c~

o-, I P

Me2(H)Si

EtO2C CO2Et

Ph -Me

Me

Et3SiCN

Et 3SiCNC

H

==_~0 2Et

Ph

Me
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Table 7 (cont.)

entry starting material cyanide a product isolated yield (%)d

Ph Me

Me

10 Ph I t-BuMe 2 SiCN O 0 71
%0 - --- O - (5 : 1)

H

n-Bu OSi(Pr) 3

OSi(iPr)3
11 rn-Bu t-BuMe 2 SiCNe 0 54

(1.6:1)
H

OSi(iPr)3

12 rBu u t-BuMe 2SiCN e

Ph O
13 n-rBu Et3SiCN 45

(12: 1)
", M

vJ r-ll

aMe3SiCN was added slowly over a 4-8 h period; t-BuMe 2SiCN and Et 3SiCN were added immediately at

the beginning of the reaction. See Experimental Section for full details. b13 % of starting material was also

isolated. CRequired 20 mol % catalyst for complete reaction. dThe major isomer, as assigned on the basis of

NOE analysis, is shown. Numbers in parentheses indicate the ratio of diastereomers. eRequired 15 mol %
catalyst for complete reaction. fThe isomer shown was the only one detected.

In all cases shown in Table 7, conversion of enyne 59 to imine 60 was nearly

quantitative (1H NMR analysis). Hydrolytic workup of 60 was the yield limiting step,

affording cyclopentenones 61 in fair to good yield.84 The cyclization reaction

successfully forms both 5,5- and 5,6-fused ring compounds, and tolerates the presence of

polar functional groups, such as ethers (Table 7, entries 1 and 9-13), nitrogen-containing

compounds (Table 7, entries 2 and 3), and esters (Table 7, entries 5-8). This is similar to

the functional group toleration which we have observed in the stoichiometric reactions.76
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For the cyclization of enynes containing stereogenic centers (Table 7, entries 10-

13), levels and sense of diastereoselectivity for this process were similar to those

observed in related zirconium-mediated stoichiometric processes reported by Nugent and

Livinghouse.63,8 5 There is a large degree of 1,3-stereoinduction for the formation of 5,6-

fused ring systems (Table 7, entry 12). While 1H NMR analysis of the intermediate

imines shows a small amount (< 10%) of the minor diastereomer, the ketone shown in

Table 7, entry 12 was the only diastereomer detected after hydrolysis. Livinghouse has

rationalized this selectivity on the basis of the reduction of allylic 1,3-strain in the pre-

cyclization conformers (Figure 4).85 No explicit explanation was given for the observed

selectivity for the formation of 5,5-fused systems. MM2 molecular modeling (using an

augmented parameter set for use with metal complexes) shows that the observed

selectivity in these cases can be explained as a result of the reduction of 1,3-diaxial

interactions in the pre-cyclization conformers (Figure 5). While high 1,2-stereoinduction

is observed (Table 7, entry 12), only modest 1,3-stereoinduction is seen (Table 7, entries

10 and 11),63 perhaps due to competing allylic 1,3-strain (see Figure 6).

Figure 4
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Figure 6
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Much attention was devoted to the improvement of the hydrolysis procedure, with

mixed results. Under a variety of conditions, ranging from acidic to alkaline, significant

amounts of the product were decomposed through tautomerization, enamine formation,

and polymerization. For several substrates, a significant amount of -hydroxy alcohol,

formed by Michael addition of water to the cyclopentenone (or imine), was shown to be

present in the crude reaction mixture. For entry 8 of Table 7, the alcohol product 62 was

isolated as a pure material in 22% yield and characterized by IR, 1H NMR, and 13C NMR

spectroscopy (eq 17). The two best hydrolysis procedures to date are shown as part of

Scheme 22. We have found that the CuSO4 work-up protocol is somewhat useful for

substrates where the determination of diastereoselectivity is a concern. The acidic

conditions of the acetic acid/sodium acetate work-up procedure epimerize the stereogenic

center at C-5, leading to false product diastereomer ratios (this was seen for Table 7,

entry 13 and led to a decreased diastereomer ratio of 3: 1). For the product in Table 7,

entry 8, trifluoroacetic acid is required to remove the silyl group through a

protodesilylation reaction (eq 17).

0O

CF3COOH, H2 0
CH2 C12/THF +

.... ' (17)N:
Et3 Si' O°C, 16h

0
.Et

,Et
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Several substrates which resist catalytic cyclization are listed in Figure 7. The

enyne ether 63, which cyclizes to form a 5,6-fused ring system with oxygen in the

backbone, does not turn over catalytically under the standard reaction conditions.

However, 63 can be converted to the corresponding iminocyclopentene using a

stoichiometric amount of Cp2Ti(PMe3 )2 . Further optimization of the silyl cyanide reagent

may lead to catalytic activity with this substrate. Terminal alkyne 64 was also not

successfully cyclized under catalytic conditions. This result was not surprising, since it

has been shown that terminal alkynes do not cyclize using stoichiometric titanium or

zirconium reagents, attributed to a side reaction with the acidic alkyne proton.6 3 Enyne

ethers 65 and 66 each contain a 1,2 disubstituted olefin. These substrates do not cyclize,

even under stoichiometric conditions. Examination of molecular models of the

corresponding metallacycle shows a severe steric interaction between the terminal olefin

substituent and the cyclopentadienyl rings on the titanium. Silane 67 does not cyclize

intramolecularly. Instead, it forms the dimer 68, implying that the required geometry of

the desired 5,5-fused bicyclic species is inaccessible. The enyne in Table 7, entry 12

requires 15 mol % of catalyst to effect complete cyclization. Thus, enyne 69 was prepared

with the hope that the Thorpe-Ingold effect86 would render the cyclization of this type of

substrate more favorable. Unfortunately, 69 was actually a worse substrate for the

cyclization reaction. Substrates 70 and 71, containing carbonyl groups within the tether

between the alkyne and olefin units, led to a complex mixture of products by 1H NMR.

No iminocyclopentene was observed, possibly due to side reactions arising from the

formation of titanocene-carbonyl complexes. Grossman has shown that substrates of this

type do not cyclize well using the stoichiometric system.76
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Figure 7
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When the trimethylsilyl substituted enyne 72 failed to cyclize under catalytic

conditions, we reasoned that the corresponding titanacycle, 73, may not be stable. We

tried the reaction using a stoichiometric amount of Cp2Ti(PMe3)2 , and found that 73 was

formed cleanly in high yield, and could be isolated as an air-sensitive solid (eq 18).

Treatment of 73 with Me3SiCN, t-butylisocyanide, or even acetonitrile, resulted in a

retro-cyclization reaction to give back the trimethylsilyl enyne (eq 19) along with

isocyanide complexes of titanocene. Combining titanacycle 73 with an enyne that is a

good substrate under catalytic conditions, such as 74, led to an enyne exchange reaction

to provide the trimethylsilyl enyne and the new metallacycle 75 (eq 20). The rate of this

reaction is doubled in the presence of a good donor ligand, such as PMe3.

Me 3 Si Me3SI
MeS \ Cp 2Ti(PMe 3)2

CPi(e3 ']O- Cp2 Ti + 2PMe3 (18)

72 73

81



Me 3 Si Ml

MCP2 Tii Me 3SiCN

73

e3 Si 

72

Cp2 Ti(PMe 3)(Me 3SiCN)
+ (19)

Cp2Ti(Me 3SiCN) 2

Me3Si

Cp2Ti 7

73

Ph
Ph7 P Me3Si

+ ___> Cp 2Ti +(20)

74 75 72

Examination of molecular models of 73 showed that the trimethylsilyl group is

very close to the cyclopentadienyl ligands (see Figure 8). When a ligand binds to this

complex, we believe the steric environment around the metal becomes severely crowded,

and the resulting strain causes the retro-cyclization reaction to become energetically

favorable. This may explain why the enyne exchange reaction is ligand accelerated. To

test this hypothesis, enynes 76 and 77 were subjected to the standard reaction conditions.

While the trimethylsilyl substituted enyne did not react, 77 reacted smoothly to afford

bicyclic iminocyclopentene 78 quantitatively (Scheme 23).
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Scheme 23
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In conclusion, we have developed the first early transition metal system for the

catalytic formation of bicyclic cyclopentenones from enynes and a carbon monoxide

equivalent. The reaction is tolerant of polar functional groups and cyclizes chiral enynes

with a moderate to good degree of diastereoselectivity. While we have made a

considerable amount of progress in the development of the reaction, we are continuing

our efforts to improve the yields, substrate compatibility, and experimental simplicity.

We note that while all of the entries in Table 7 were cyclized using 10 mol % of highly

air-sensitive Cp2Ti(PMe3)2, we have been able to generate an active catalyst in situ from

Cp 2TiC12 and 2 equiv per catalyst of n-BuLi. Running the reaction with 20 mol %

catalyst loading is necessary to ensure complete conversion of the enyne. Future work

will be directed towards further refining the in situ generated catalyst system and toward

the development of enantiopure catalysts of titanium and other metals.
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Experimental Section for Chapter 2
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General Considerations

All manipulations involving air sensitive materials were conducted in a Vacuum

Atmospheres Dry Box or by using standard Schlenk techniques under an atmosphere of

argon. THF and benzene were distilled under argon from sodium/benzophenone ketyl

before use. Toluene was distilled under argon from molten sodium.

Bis-trimethylphosphinetitanocene, Cp2Ti(PMe3)2 , was prepared from titanocene

dichloride (obtained from Boulder Scientific, Boulder, CO) by the procedure of Binger,

et. al. 87 and was stored in a dry box under argon. t-BuMe2 SiCN was prepared from

t-BuMe2SiCl and KCN in the presence of 18-Crown-6.88 Et3 SiCN was prepared by the

procedure of Becu 89 (Me3SiCN, Et3 SiCl, trace KF, then removal of Me3SiCl by

distillation). The enynes 3-Allyloxy-l 1-phenyl-l-propyne, 3-(2-methyl-2-propenyloxy)- 1-

phenyl-1-propyne, and 3-allyloxy-l-phenyl-1-butyne (Table 7, entries 1, 9 and 10) were

prepared by the condensation of allyl bromide with the appropriate propargyl alcohol

(NaH, dry THF).90 1-Phenyl-6-hepten-1-yne91 (Table 7, entry 4) was synthesized by the

reaction of lithium phenylacetylide (prepared in situ from n-BuLi and phenylacetylene in

THF at 0 °C) and 5-bromo-1-pentene in the presence of 2 equiv of DMPU (reflux, 3 h).

Diethyl 7-octen-2-yne-5,5-carboxylate76 (Table 7, entry 7) was prepared by the alkylation

of diethyl allylmalonate with 1-methylpropargyl mesylate (NaI, K2 CO3, acetone, reflux,

4 days). Syntheses of previously unreported enyne substrates are described below. All

other reagents were available from commercial sources and were used without further

purification, unless noted otherwise.

Preparative flash chromatography was performed on E.M. Science Kieselgel 60

(230-400 mesh). Yields, unless otherwise stated, refer to isolated yields of compounds of

greater than 95% purity as estimated by capillary GC and/or 1H NMR analysis. All

compounds were characterized by 1H NMR, 13C NMR, and IR spectroscopy. Previously

unreported compounds were also characterized by high resolution mass spectroscopy.

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian XL-300, a Varian
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Unity 300, or a Bruker AC 250 Fourier transform spectrometer. Splitting patterns are

designated as s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All 1H-NMR spectra

are reported in 8 units, parts per million (ppm) downfield from tetramethylsilane. All 13C

NMR spectra are reported in ppm relative to the central line of the 77.0 ppm triplet for

deuterochloroform. Infrared (IR) spectra were recorded on a Perkin-Elmer 1600 Series

Fourier transform spectrometer. High resolution mass spectra were recorded on a

Finnegan MAT System 8200. Gas chromatography (GC) analyses were performed on a

Hewlett-Packard 5890 Gas Chromatograph with a 3392A integrator and FID detector

using a 25 m capillary column with cross linked SE-30 as a stationary phase. Melting

points were measured on a Haake Buchler Melting Point Apparatus and are uncorrected.

Preparation of Enyne Starting Materials

N-Allyl-N-(3-phenylpropynyl)aniline (Table 7, entry 2). Allylaniline (4.1 mL, 30

mmol) and THF (100 mL) were added to a dry Schlenk flask under argon. The solution

was cooled to -78 C (dry ice/acetone bath) and n-BuLi (12 mL, 2.5 M in hexanes, 31

mmol) was added dropwise. -Phenylpropargyl bromide (6.0 g, 30 mmol) was then

added, and the reaction mixture was allowed to warm to r.t. overnight. The next day, the

mixture was added to a separatory funnel with 150 mL each of 1 N HC1 and ether. The

organic layer was separated and washed with 3x50 mL of 1 N HC1 and 50 mL of brine.

After drying the solution over MgSO4, flash chromatography (CH2C12 : hexane = 1: 99)

provided 4.3 g (58% yield) as a pale yellow oil: 1H NMR (300 MHz, CDC13): 7.3-7.4

(m, 2 H), 7.2-7.3 (m, 5 H), 6.91 (d, J = 9 Hz, 2 H), 6.78 (t, J = 9 Hz, 1 H), 5.8-6.0 (m, 1

H), 5.30 (dd, J = 2 Hz, J = 17 Hz, 1 H), 5.20 (dd, J = 2 Hz, J = 10 Hz, 1 H), 4.23 (s, 2 H),

4.03 (d, J = 5.1 Hz, 2 H); 13 C NMR (75 MHz, CDC13): 8 148.6, 134.2, 131.7, 129.1,

128.2, 128.1, 123.1, 118.0, 116.7, 114.3, 85.6, 83.9, 53.9, 40.6; IR (neat): 3297, 3060,
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3032, 2979, 2912, 2245, 1642, 1598, 1575, 1503, 1490, 1442, 1417, 1378, 1346, 1287,

1255, 1229, 1192, 1173, 1126, 1255, 1229, 1192, 1173, 990, 911, 755, 733, 691 cm-1;

Exact mass calculated for C1 8H1 7N: 247.1361. Found: 247.1363.

tert-Butyl N-allyl-N-(2-butynyl)carboxylate (Table 7, entry 3). -Methylpropargyl

mesylate (7.0 g, 47 mmol, freshly prepared from 2-butyn--ol and methanesulfonyl

chloride) was added neat to allylamine (17.6 mL, 235 mmol) with stirring at 0 °C (ice

bath). The bath was allowed to warm to r.t., at which point GC analysis showed the

complete disappearance of the mesylate. The reaction mixture was added to 150 mL of

ether, and the white precipitate which formed was filtered away. Distillation (130 °C, 760

mm Hg) provided the desired N-allyl-N-(2-butynyl)amine. This material (2.0 g, 18

mmol) was then added to ether (50 mL) in a 250 mL Schlenk flask under argon. Pyridine

(1.54 mL, 19 mmol) was added, and the solution was cooled to 0 °C (ice bath). Di-t-

butylcarbonate (4.37 mL, 19 mmol) was then added dropwise, and the reaction mixture

was allowed to warm to r.t. The reaction mixture was then diluted with ether (75 mL) and

washed with 3x50 mL of 1 N NaOH. The organic layer was dried over MgSO4 and

purified by vacuum distillation (47 °C, 0.02 mm Hg) to afford the desired product as a

clear oil: H NMR (300 MHz, CDC13): 8 5.7-5.85 (m, 1 H), 5.17 (d, J = 7.4 Hz, 1 H),

5.14 (d, J = 11 Hz, 1 H), 3.97 (s, 2 H), 3.92 (d, J = 5.7 Hz, 2 H), 1.81 (t, J = 2.3 Hz, 3 H),

1.46 (s, 9 H); 13C NMR (75 MHz, CDC13): 8 154.8, 133.5, 116.6, 79.8, 78.9, 74.6, 48.2,

35.5, 28.2, 3.3; IR (neat): 3082, 2977, 2922, 2226, 1699, 1455, 1406, 1366, 1246, 1173,

1146, 924, 872, 769 cm-l; Exact mass calculated for C1 2H19 N 2 : 209.1416. Found:

209.1414.

Di-tert-butyl 2-pentyne-5,5-dicarboxylate. Sodium hydride (3.71 g, 155 mmol) was

slurried in dry tert-butyl alcohol (100 mL) and cooled to 0 °C under an atmosphere of

argon. After 15 min, di-tert-butylmalonate (46.1 mL, 206 mmol) was added dropwise.
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The mixture was then warmed to room temperature, and the mesylate of 2-butyn-1-ol

(15.3 g, 103 mmol), freshly prepared by the reaction of MsCl and 2-butyn-l-ol in ether

with triethylamine, was added. Additional tert-butyl alcohol (50 mL) was added and the

mixture was heated to 65 C. After 1 h, the mixture was cooled to room temperature and

added to a separatory funnel with 100 mL H2 0. The aqueous layer was then separated

and extracted with 3x100 mL of ether. The combined organic layers were dried over

K2CO3, filtered, and concentrated under reduced pressure. A trace amount of magnesium

oxide was added to prevent decomposition. Vacuum distillation (100 °C, 0.15 mm Hg) in

base-washed glassware afforded the desired product (18.89 g, 70.5 mmol, 69% yield),

which was used immediately in the following two preparations:

Di-tert-butyl 7-octen-2-yne-5,5-dicarboxylate 92 (Table 7, entry 5). Sodium hydride

(0.85 g, 35.3 mmol) was placed under an atmosphere of argon and slurried in toluene

(120 mL). Di-tert-butyl 2-pentyne-5,5-dicarboxylate (6.3 g, 23.5 mmol) and additional

toluene (20 mL) were added, and the mixture was heated to 85 °C. After 2.5 h, the

mixture was cooled to room temperature. Allyl bromide (2.45 mL, 28.2 mmol) in toluene

(20 mL) was added, and the mixture was again heated to 85 °C. The mixture was stirred

overnight, and then cooled to r.t. p-Toluenesulfonic acid (2.03 g, 11.8 mmol) was added

slowly, and the reaction mixture was stirred for 5 min. The mixture was filtered,

concentrated under reduced pressure, and vacuum distilled (108 °C, 0.15 mm Hg) in

base-washed glassware, yielding the desired product (2.66 g, 8.6 mmol, 38% yield) as a

clear oil: 1H NMR (300 MHz, CDC13): 8 5.5-5.7 (m, 1 H), 5.0-5.2 (m, 2 H), 2.66 (d, J =

7.4 Hz, 2 H), 2.59 (q, J = 2.6 Hz, 2 H), 1.72 (t, J = 2.6 Hz, 3 H), 1.42 (s, 18 H); 13C NMR

(75 MHz, CDC13): 6 169.3, 132.5, 119.0, 81.4, 78.3, 73.9, 57.6, 36.3, 27.8, 22.7, 3.4; IR

(neat): 3079, 3004, 2931, 2250, 1731, 1642, 1477, 1456, 1437, 1393, 1369, 1298, 1250,

1227, 1153, 1068, 993, 921, 847, 747 cm-1; Exact mass calculated for C 14 H2 0 0 4 [M-

C4H8]+: 252.1361. Found: 252.1360.
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Di-tert-butyl-8-nonen-2-yne-5,5-dicarboxylate9 2 (Table 7, entry 6). Sodium hydride

(0.85 g, 35.3 mmol) was placed under an atmosphere of argon and slurried in toluene

(120 mL). Di-tert-butyl 2-pentyne-5,5-dicarboxylate (6.3 g, 23.5 mmol) and additional

toluene (20 mL) were added and the mixture was heated to 80 °C. After 2.5 h, the

mixture was cooled to r.t. 4-Bromo-l-butene (2.45 mL, 28.2 mmol) in toluene (20 mL)

was added, and the mixture was again heated to 80 °C. After 1 day, sodium iodide (0.70

g, 4.7 mmol) was added. After 2 additional days, the reaction was cooled to r.t.,

p-toluenesulfonic acid (2.03 g, 11.8 mmol) was added slowly, and the reaction mixture

was stirred for 5 min. The mixture was filtered, concentrated under reduced pressure and

vacuum distilled (115 °C, 0.15 mm Hg) in base-washed glassware. The crude product

obtained was then purified by flash chromatography (92 : 8 hexane : diethyl ether),

yielding the desired product (2.28 g, 7.07 mmol, 30% yield) as a clear oil: 1H NMR (300

MHz, CDC13): 6 5.7-5.9 (m, 1 H), 4.9-5.1 (m, 2 H), 2.62 (q, J = 2.4 Hz, 2 H), 1.85-2.05

(m, 4 H), 1.70 (t, J = 2.4 Hz, 3 H), 1.41 (s, 18 H); 13C NMR (75 MHz, CDC13): 8 169.7,

138.0, 114.7, 81.3, 78.2, 73.8, 57.7, 30.9, 28.3, 27.8, 22.9, 3.1; IR (neat): 3078, 2977,

2933, 2275, 1729, 1642, 1477, 1451, 1393, 1359, 1280, 1245, 1216, 1160, 912, 849

cm-1; Exact mass calculated for C15H2 20 4 [M-C4H8]+: 266.1518. Found: 266.1520.

Diethyl 1-(dimethylsilyl)-6-hepten-1-yne-5,5-dicarboxylate (Table 7, entry 8). To a

solution of i-Pr2NH (12.9 mL, 92.5 mmol) in THF (75 mL) was added n-BuLi (35.6 mL,

2.6 M in hexanes, 92.5 mmol) at 0 C (ice bath) under argon. The solution was

transferred by cannula into a solution of diethyl allylmalonate (13.6 mL, 69 mmol) in

THF (150 mL) at -78 C (dry ice/acetone bath) with stirring. After the addition was

complete, propargyl bromide (10.7 mL, 80 wt % wt in toluene, 96.2 mmol) was added,

the cold bath was removed, and the reaction mixture was allowed to warm to r.t.

overnight. The next day, the reaction was quenched by slow addition of sat. aq. NH4C1
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(-50 mL) and the contents of the reaction flask were added to a separatory funnel with

150 mL each of ether and H2 0. The organic layer was separated and washed with 2x100

mL of 1 N HC1 and 100 mL of brine, and then dried over MgSO4. Vacuum distillation

afforded 10.7 g (65% yield) of diethyl 6-hepten-1-yne-4,4-dicarboxylate. To a solution of

this material (9.25 g, 39 mmol) in THF (70 mL) at -78 C (dry ice/acetone bath) was

added a freshly prepared solution (see above) of lithium diisopropylamide (46 mmol in

70 mL of THF) by cannula. When the addition was complete, the reaction mixture was

stirred for 10 min. Chlorodimethylsilane (5.1 mL, 46 mmol) was then added and the

mixture was stirred at -78 °C for 1 h. The reaction was then quenched by slow addition of

40 mL of sat. aq. NH4C1 at low temperature. Upon warming to r.t., the mixture was added

to 100 mL each of ether and H2 0. The aqueous layer was separated and extracted with 25

mL of ether, and the combined organic layers were washed with 2x50 mL of sat. aq.

CuSO4 and 50 mL of brine. The solution was dried over MgSO4 and purified by vacuum

distillation (87-90 C, 0.02 mm Hg) followed by flash chromatography9 3 (ether: hexane

= 5 : 95) to afford the desired product as a clear oil: 1H NMR (300 MHz, CDC13): 8 5.5-

5.7 (m, I H), 5.17 (dd, J = 2.0 Hz, J = 20 Hz, 1 H), 5.13 (dd, J = 2.0 Hz, J = 9.3 Hz, 1 H),

4.20 (q, J = 7.1 Hz, 4 H), 4.08 (m, 1 H), 2.83 (s, 2 H), 2.80 (d, J = 7.5 Hz, 2 H), 1.26 (t, J

= 7.1 Hz, 6 H), 0.20 (d, J = 3.7 Hz, 6 H); 13 C NMR (75 MHz, CDC13): 6 169.5, 131.8,

119.6, 102.8, 85.0, 61.5, 56.7, 36.4, 23.9, 14.0, -3.0; IR (neat): 3080, 2981, 2181, 2137,

1736, 1444, 1367, 1322, 1286, 1251, 1215, 1190, 1145, 1096, 1032, 885, 841, 772, 742

cm-1; Exact mass calculated for C14H2104 Si [M - CH3 ]+: 281.1209. Found: 281.1208.

5-(Triisopropylsilyloxy)-l-undecen-6-yne (Table 7, entry 11). To a 50 mL two-necked

flask under nitrogen, added imidazole (2.7 g, 40 mmol) and DMF (20 mL). After the

imidazole had dissolved, undec-l-en-6-yn-5-ol (3.3 g, 20 mmol, made by the addition of

I-hexynyllithium, prepared in situ from n-BuLi and 1-hexyne in THF at 0 C, to

4-penten-l-al, generated by the Swern oxidation of 4-penten-1-ol.9 4) was added to the
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solution. Triisopropylsilyl chloride (4.2 mL, 20 mmol) was then added dropwise, and the

mixture was stirred at r.t. After 4 h, the reaction mixture was poured into a separatory

funnel with 75 mL each of ether and sat. aq. CuSO4. The organic layer was separated and

washed with 30 mL each of sat. aq. CuSO4, H2 0, and brine. The solution was then dried

over MgSO4 and purified by vacuum distillation to afford 1.9 g (30 % yield) of a clear

oil: 1H NMR (300 MHz, CDC13): 8 5.8-5.9 (m, 1 H), 5.03 (dd, J = 2.0 Hz, J = 18 Hz, 1

H), 4.96 (dd, J = 2.0 Hz, J = 10 Hz, 1 H), 4.4-4.5 (m, 1 H), 2.15-2.3 (m, 4 H), 1.75 (dd, J

= 7.9 Hz, J = 14 Hz, 2 H), 1.3-1.5 (m, 4 H), 1.0-1.1 (m, 21 H), 0.90 (t, J = 7.2 Hz, 3 H);

13C NMR (75 MHz, CDC13): 8 138.3, 114.5, 84.6, 81.7, 62.7, 38.5, 30.8, 29.5, 22.0, 18.5,

18.2 (two overlapping signals), 13.7, 12.4; IR (neat): 3078, 2942, 2866, 2262, 1641,

1464, 1340, 1248, 1092, 1014, 996, 912, 883, 681 cm- 1; Exact mass calculated for

C17H31 OSi [M - C3H7 ]+: 279.2144. Found: 279.2143.

6-(Triisopropylsilyloxy)-l-dodecen-7-yne (Table 7, entry 12). To a 100 mL three-

necked flask under argon, added imidazole (3.95 g, 58 mmol) and DMF (30 mL). After

the imidazole had dissolved, dodec-1-en-7-yn-6-ol (5.23 g, 29 mmol, made by the

addition of -hexynyllithium (prepared in situ from n-BuLi and 1-hexyne in THF at 0 °C)

to 5-hexen-l-al, generated by the Swern oxidation of 5-hexen-1-ol.9 4 ) was added to the

solution. The reaction vessel was placed in a r.t. water bath, and triisopropylsilyl triflate

(8.6 mL, 32 mmol) was then added dropwise. The mixture was stirred at r.t. for 4 h, then

diluted with 75 mL of ether and washed with 2x75 mL of sat. aq. CuSO4. The aqueous

washings were then extracted with 2x50 mL of ether, and the combined organic layers

were washed with 2x50 mL each of H2 0 and brine. The solution was dried over MgSO4,

and purified by vacuum distillation (155 °C, 0.02 mm Hg) to afford 5.69 g (58 % yield)

of a clear oil: 1H NMR (300 MHz, CDC13): 8 5.7-5.9 (m, 1 H), 4.9-5.05 (m, 2 H), 4.4-4.5

(m, 1 H), 2.18 (td, J = 6.9 Hz, J = 1.8 Hz, 2 H), 2.08 (q, J = 6.9 Hz, 2 H), 1.3-1.7 (m, 8

H), 1.0-1.2 (m, 21 H), 0.90 (t, J = 7.1 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 138.7,

91



114.3, 84.4, 81.9, 63.1, 38.7, 33.6, 30.8, 24.5, 22.0, 18.5, 18.2, 18.1, 13.7, 12.4; IR

(nujol): 3077, 2942, 2866, 2250, 1641, 1464, 1382, 1339, 1248, 1149, 1093, 1066, 1014,

996, 910, 883, 681 cm- 1; Exact mass calculated for C18H33OSi [M - C3H7 ]+: 293.2301.

Found: 293.2299.

3-Benzyloxy-l-undecen-6-yne (Table 7, entry 13). To a slurry of NaH (1.72 g, 72

mmol) in THF (100 mL) in a 500 mL round-bottom Schlenk flask under argon was added

undec-l-en-6-yn-3-ol19 5 (10.4 g, 63 mmol) and benzyl bromide (8.55 mL, 72 mmol). The

reaction mixture was heated to reflux for 5 h, then the reaction was quenched by addition

of -40 mL of NH4 C1. The mixture was then added to a separatory funnel with 80 mL

each of H20 and ether. The aqueous layer was separated and extracted with 2x75 mL of

ether. The combined organic extracts were then washed with 2x80 mL of brine and dried

over MgSO4. Purification by vacuum distillation (150 C, 0.02 mm Hg) afforded 7.2 g

(45 % yield) of a clear oil: 1H NMR (300 MHz, CDC13): 8 7.2-7.4 (m, 5 H), 5.6-5.8 (m, 1

H), 5.26 (dd, J = 1.9 Hz, J = 8.0 Hz, 1 H), 5.21 (s, 1 H), 4.59 (d, J = 12 Hz, 1 H), 4.36 (d,

J = 12 Hz, 1 H), 3.89 (q, J = 5.5 Hz, 1 H), 2.2-2.3 (m, 2 H), 2.0-2.2 (m, 2 H), 1.75-1.9 (m,

1 H), 1.6-1.75 (m, 1 H), 1.3-1.5 (m, 4 H), 0.89 (t, J = 7.6 Hz, 3 H); 13C NMR (75 MHz,

CDC1 3): 68 138.7, 138.5, 128.2, 127.7, 127.3, 117.2, 80.5, 79.4, 79.2, 70.3, 34.9, 31.2,

21.8, 18.3, 14.9, 13.5; IR (neat): 3065, 3030, 2956, 2930, 2861, 1642, 1496, 1454, 1432,

1329, 1098, 1071, 1028, 993, 927, 735, 697 cm-l; Exact mass calculated for C18H23 0 [M

- H]+: 255.1749. Found: 255.1750.

Conversion of Enynes to Bicyclic Cyclopentenones

General Procedure A. Cp2Ti(PMe3 )2 (66 mg, 0.2 mmol, 10 mol %) and the enyne (2.0

mmol) were added to a dry Schlenk tube in a dry box under argon. The mixture was

stirred for 5 min, and the tube was fitted with an addition funnel. The funnel was charged
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with a solution of Me3SiCN (293 gL, 2.2 mmol) in benzene (2 mL), and this was added

dropwise to the reaction mixture over a period of 4-8 h. After the addition of Me3SiCN

was complete, the tube was removed from the dry box (without exposing the contents to

the atmosphere) and attached to a vacuum/argon manifold. The benzene was then

removed in vacuo, the residue placed under an atmosphere of argon, and THF (10 mL)

and 1 N HCl (4 mL) were added. The mixture was stirred vigorously for 12-16 h, then

poured into a separatory funnel with 50 mL each of ether and H2 0. The aqueous layer

was separated and extracted with 2x30 mL of ether, and the combined organic extracts

were washed with brine, dried over MgSO4, and concentrated using a rotary evaporator to

afford the crude product.

General Procedure B. Cp2Ti(PMe3)2 (66 mg, 0.2 mmol, 10 mol %) was added to a dry,

sealable Schlenk tube in a dry box under argon. Benzene (1 mL) and the enyne (2.0

mmol) were then added with stirring. After 2-3 min, a solution of t-BuMe2SiCN (326 mg,

2.3 mmol) in benzene (1 mL) was added. The tube was then sealed, removed from the dry

box, and attached to a vacuum/argon maniforld. The reaction vessel was then immersed

in an oil bath heated to 45 °C for 20-24 h, after which time the starting material had been

completely converted to the corresponding bicyclic iminocyclopentene (1H NMR

analysis). The vessel was removed from the oil bath and the reaction mixture was

transferred by cannula to a 250 mL Schlenk flask under argon. The benzene was removed

in vacuo, and THF (30 mL) was added. The solution was cooled in an ice bath, and 30

mL of a 1:1 mixture of 1.0 M acetic acid and 1.0 M sodium acetate (the pH of this

buffered solution was ca. 5) was added dropwise over a period of 5 min with vigorous

stirring. After 2-4 h, hydrolysis to the cyclopentenone was judged to be complete, 9 6 and

the mixture was allowed to separate into two layers. The aqueous layer was extracted

with 3x30 mL of ether, and the combined organic layers were washed with 30 mL each of

1 N NH4F, H20), and brine, and then dried over MgSO4. Concentration using a rotary
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evaporator afford the crude product.

General Procedure C. To a dry, sealable Schlenk tube charged with Cp2Ti(PMe3)2 (66

mg, 0.2 mmol, 10 mol %) under argon was added benzene or toluene (2 mL) and the

enyne (2.0 mmol). Et3SiCN (390 gtL, 2.3 mmol) was then added, the tube was sealed, and

the reaction vessel was immersed in an oil bath heated to 45 C. After stirring for 16-24

h, the starting material had been completely converted to the corresponding bicyclic

iminocyclopentene (1H NMR analysis). The vessel was removed from the oil bath and

the reaction mixture was transferred by cannula to a 250 mL Schlenk flask under argon.

The solvent was then removed in vacuo, and THF (40 mL) was added, followed by

dropwise addition of 3 mL of sat. aq. CuSO4. After vigorous stirring for 3-6 h, hydrolysis

to the cyclopentenone was judged to be complete,96 and the reaction mixture was poured

into a separatory funnel with 50 mL each of 0.5 N HC1 and ether. The aqueous layer was

separated and extracted with two additional 50 mL portions of ether. The combined

organic layers were then washed with 50 mL portions of 0.5 N HC1 and brine, and then

dried over MgSO4. Concentration using a rotary evaporator afford the crude product.

2-Phenyl-7-oxabicyclo[3.3.0]oct-l-en-3-one 5 8 (Table 7, entry 1). Procedure A was

used to convert 3-allyloxy-l-phenyl-1-propyne 58 (344 IL, 2.0 mmol) to the desired

product. Purification by Kugelrohr vacuum distillation afforded 319 mg (80% yield) of

pure product as a pale yellow oil: 1H NMR (300 MHz, CDC13): 7.25-7.55 (m, 5 H),

4.95 (d, J = 16 Hz, 1 H), 4.44 (d, J = 16 Hz, 1 H), 4.38 (t, J = 7.3 Hz, 1 H), 3.2-3.4 (m, 2

H), 2.85 (dd, J = 6.1 Hz, J = 18 Hz, 1 H), 2.35 (dd, J = 2.8 Hz, J = 18 Hz, 1 H); 13C NMR

(75 MHz, CDC13): 8 206.5, 177.3, 134.2, 130.4, 128.3 (two overlapping signals), 127.7,

71.0, 66.0, 43.0, 40.0; IR (neat): 3058, 2976, 2853, 1744, 1707, 1497, 1446, 1408, 1356,

1301, 1165, 1120, 1027, 908, 890,767,732, 697 cm- 1.
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2,7-Diphenyl-7-azabicyclo[3.3.0]oct-1-en-3-one (Table 7, entry 2). Procedure A was

used to convert N-phenyl-N-(3-phenyl-2-propynyl)-N-allylaniline (494 mg, 2.0 mmol) to

the desired product. Purification by recrystallization from ethyl acetate afforded 240 mg

(44% yield) of pure product as yellow crystals: m. p.: 204-206 °C; 1H NMR (250 MHz,

CDC13): 6 7.56 (d, J = 7.0 Hz, 2 H), 7.2-7.45 (m, 5 H), 6.74 (t, J = 7.3 Hz, 1 H), 6.63 (d, J

= 8.1 Hz, 2 H), 4.62 (d, J = 16 Hz, 1 H), 4.07 (d, J = 16 Hz, 1 H), 3.95 (t, J = 8.5 Hz, 1

H), 3.3-3.5 (m, 1 H), 2.89 (dd, J = 6.5 Hz, J = 18 Hz, 1 H), 2.76 (t, J = 9.3 Hz, 1 H), 2.44

(dd, J = 3.6 Hz, J = 18 Hz, 1 H); 13C NMR (62.5 MHz, CDC13): 8 206.3, 174.9, 163.6,

147.2, 135.2, 130.7, 129.3, 128.5, 128.2, 117.1, 112.0, 51.8, 49.4, 41.3, 31.0; IR (nujol):

1688, 1645, 1598, 1506, 1468, 1444, 1379, 1358, 1158, 994, 905, 752, 699 cm-l; Exact

mass calculated for C1 9 H1 7NO: 275.1310. Found: 275.1308. Flash chromatography

(ethyl acetate : hexane = 15 : 85) of the residue obtained by removal of solvent from the

mother liquor afforded 63 mg (13%) of the starting enyne.

t-Butyl 2-methyl-7-azabicyclo[3.3.0]oct-1-en-3-one-7-carboxylate (Table 7, entry 3).

Procedure C was followed to convert t-butyl N-allyl-N-(2-butynyl)carboxylate (416 mg,

2.0 mmol) to the corresponding bicyclic iminocyclopentene. After the CuSO4-mediated

hydrolysis was judged to be complete (6 h), the reaction mixture was poured into a

separatory funnel with 50 mL each of ether and H2 0. The aqueous layer was separated

and extracted with 50 mL of ether and 2x30 mL of ethyl acetate. The combined organic

extracts were then washed with brine and dried over MgSO4 to afford, after purification

by flash chromatography (ether: hexane = 7 : 3), 203 mg (43% yield) of the product as a

light yellow solid: m. p.: 113-115 °C; NMR spectroscopy showed the product to be a

slowly equilibrating mixture of two rotamers (R1 and R2) as a result of restricted rotation

about the carbon-nitrogen amide bond: 1H NMR (300 MHz, CDC13): 6 4.11 (s, 2 H, Ri),

4.08 (s, 2 H, R2), 3.98 (t, J = 9.4 Hz, 1 H, RI), 3.90 (t, J = 9.4 Hz, 1 H, R2), 3.07 (s, 1 H,

R1 + R2), 2.72 (t, J = 8.1 Hz, 1 H, Ri), 2.69 (t, J = 8.1 Hz, 1 H, R2), 2.61 (t, J = 6.5 Hz, 1
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H, RI), 2.55 (t, J = 6.5 Hz, 1 H, R2), 2.09 (s, 1 H, RI), 2.03 (s, 1 H, R2), 1.68 (s, 3 H,

R1), 1.67 (s, 3 H, R2), 1.41 (s, 9 H, Ri), 1.40 (s, 9 H, R2); 13C NMR (75 MHz, CDC13):

8 208.0 (RI+R2), 172.4 (R1), 171.9 (R2), 153.8 (R1), 153.6 (R2), 132.8 (R1), 132.7

(R2), 79.4 (RI+R2), 50.5 (R1), 49.8 (R2), 45.1 (R1), 44.7 (R2), 41.1 (R1), 40.4 (R2),

39.1 (R1), 39.0 (R2), 27.9 (RI+R2), 8.2 (R1+R2); IR (nujol): 1707, 1683, 1308, 1291,

1166, 1109, 1049, 967, 870, 771, 722 cm- 1; Exact mass calculated for C13H19NO3:

237.1365. Found: 237.1363.

2-Phenylbicyclo[3.3.0]oct-l-en-3-one 9 1 (Table 7, entry 4). Both procedure A and

procedure B were used to convert 1-phenyl-6-hepten-1-yne9 1 (340 mg, 2.0 mmol) to the

desired product. Purification by flash chromatography (ether: hexane = 3 : 7) afforded

218 mg (55% yield) of a pale yellow powder using procedure A and 262 mg (66% yield)

using procedure B: m. p.: 62-63 °C (no lit. value reported); 1H NMR (300 MHz, CDC13):

8 7.53 (d, J = 7.0 Hz, 2 H), 7.15-7.35 (m, 3 H), 2.65-2.9 (m, 3 H), 2.45-2.6 (m, 1 H),

2.05-2.2 (m, 2 H), 1.95-2.05 (m, 2 H), 1.04 (quint, J = 9.7 Hz, 1 H); 13C NMR (75 MHz,

CDC13): 8 208.0, 184.8, 133.7, 131.2, 127.6, 127.5, 127.0, 44.0, 42.3, 30.3, 26.7, 25.3; IR

(nujol): 1710, 1690, 1625, 1314, 1297, 1132, 926, 763, 695 cm-1 .

Di-t-butyl 2-methylbicyclo[3.3.0]oct-1-en-3-one-7,7-dicarboxylate (Table 7, entry 5).

Procedure B was used to convert di-t-butyl 7-octen-2-yne-4,4,-dicarboxylate (616 mg, 2.0

mmol) to the desired product. Purification by flash chromatography (ether: hexane = 1:

4) afforded 474 mg (70% yield) of a white solid: m. p.: 67-69 °C; 1H NMR (300 MHz,

CDC13): 3.00 (s, 2 H), 2.8-2.9 (m, 1 H), 2.45-2.6 (m, 2 H), 1.96 (dd, J = 3.0 Hz, J = 17

Hz, 1 H), 1.62 (t, J = 1.1 Hz, 3 H), 1.46 (t, J = 12 Hz, 1 H), 1.39 (s, 9 H), 1.37 (s, 9 H);

13C NMR (75 MHz, CDC13): 8 209.5, 178.4, 170.7, 170.1, 132.6, 81.8, 81.7, 62.2, 42.5,

41.3, 38.9, 33.7, 27.7 (two overlapping signals), 8.4; IR (nujol): 1725, 1672, 1457, 1369,

1284, 1256, 1169, 1141, 1062, 1029, 845 cm- 1; Exact mass calculated for C1 5H200 5 [M -
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C4H8]+: 294.1467. Found: 294.1465.

Di-t-butyl 2-methylbicyclo[3.4.0]non-l-en-3-one-8,8-dicarboxylate (Table 7, entry 6).

Procedure B was used to convert di-t-butyl 8-nonen-2-yne-4,4-dicarboxylate (644 mg, 2.0

mmol) to the desired product. Purification by flash chromatography (ether: hexane = 3:

7) afforded 497 mg (71% yield) of a clear viscous oil: 1H NMR (300 MHz, CDC13): 8

3.42 (dd, J = 2.2 Hz, J = 14 Hz, 1 H), 2.35-2.6 (m, 4 H), 2.05-2.15 (m, 1 H), 1.8-2.0 (m, 2

H), 1.76 (s, 3 H), 1.48 (s, 9 H), 1.41 (s, 9 H), 1.2-1.35 (m, 1 H); 13C NMR (75 MHz,

CDC13): 8 208.4, 170.7, 170.5, 168.8, 135.4, 82.0, 81.4, 57.2, 40.8, 39.2, 33.1, 30.9, 30.5,

27.8 (two overlapping signals), 7.8; IR (neat): 3056, 2976, 2931, 2862, 1709, 1656, 1496,

1445, 1295, 1270, 1132, 1046, 988, 904, 834, 767, 711, 696, 606 cm-1 ; Exact mass

calculated for C1 6H2205 [M-C4H8]+: 280.1311. Found: 280.1312.

Diethyl 2-methylbicyclo[3.3.0]oct-l-en-3-one-7,7-dicarboxylate 7 6 (Table 7, entry 7)

Procedure B was used to convert diethyl 7-octen-2-yne-4,4-dicarboxylate7 6 (504 mg, 2.0

mmol) to the desired product. Purification by flash chromatography (ether: hexane = 2:

3) afforded 366 mg (65% yield) of a white waxy solid. A modification of procedure B

where Et 3SiCN (390 L, 2.3 mmol) was used in place of t-BuMe2 SiCN provided, after

purification, 400 mg (71% yield) of the same material: m. p.: 33-36 °C (no lit. value

reported); 1H NMR (300 MHz, CDC13): 6 4.26 (q, J = 7.1 Hz, 2 H), 4.21 (q, J = 7.1 Hz, 2

H), 3.24 (d, J = 12 Hz, 1 H), 3.20 (d, J = 12 Hz, 1 H), 2.99 (m, 1 H), 2.79 (dd, J = 7.2 Hz,

J = 12 Hz, 1 H), 2.65 (dd, J = 6.5 Hz, J = 18 Hz, 1 H), 2.10 (dd, J = 3.5 Hz, J = 18 Hz, 1

H), 1.72 (t, J = 1.0 Hz, 3 H), 1.66 (t, J = 12 Hz, 1 H), 1.30 (t, J = 6.8 Hz, 3 H), 1.27 (t, J =

6.8 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 209.5, 178.0, 171.8, 171.2, 133.1, 62.3,

62.1, 61.2, 42.9, 41.6, 39.4, 34.2, 14.2 (two overlapping signals), 8.7; IR (nujol): 1736,

1675, 1460, 1424, 1384, 1256, 1177, 1084, 1063, 1023 cm -1 .
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Diethyl bicyclo[3.3.0]oct-1-en-3-one-7,7-dicarboxylate (Table 7, entry 8). To a dry,

sealable Schlenk tube charged with Cp2 Ti(PMe3)2 (66 mg, 0.2 mmol, 10 mol %) under

argon was added benzene (2 mL) and diethyl 1-(dimethylsilyl)-6-hepten-l-yne-4,4-

dicarboxylate (592 mg, 2.0 mmol). Et3SiCN (390 jIL, 2.3 mmol) was then added, the tube

was sealed, and the reaction mixture was stirred at r.t. for 27 h. The solution was

transferred by cannula to a 250 mL Schlenk flask under argon, and the solvent was

removed in vacuo. THF (15 mL) and CH2C12 (15 mL) were then added, and the reaction

vessel was cooled to 0 °C (ice bath). Trifluoroacetic acid (5 mL) and H2 0 (0.5 mL) were

then added slowly, and the reaction mixture was stirred vigorously as the ice bath

warmed to r.t. After 16 h, 60 mL of sat. aq. NaHCO3 was added SLOWLY to avoid

bubbling over. When the bubbling ceased, the mixture was added to a separatory funnel

with 80 mL each of ether and H 2 0. The aqueous layer was separated and extracted with

30 mL portions of ether and ethyl acetate. The combined organic layers were then washed

with brine and dried over MgSO4, followed by concentration using a rotary evaporator.

Purification by flash chromatography (ether : hexane = 1 : 1, then 100% ether) afforded

280 mg (53% yield) of the desired cyclopentenone and 125 mg (22% yield) of the

corresponding D-hydroxy ketone 62: Cyclopentenone: 1H NMR (300 MHz, CDC13): 8

5.94 (s, 1 H), 4.26 (q, J = 6.9 Hz, 2 H), 4.22 (q, J = 6.8 Hz, 2 H), 3.36 (d, J = 19 Hz, 1 H),

3.26 (d, J = 19 Hz, 1 H), 3.12 (m, 1 H), 2.81 (dd, J = 7.8 Hz, J = 13 Hz, 1 H), 2.64 (dd, J

= 6.4 Hz, J = 18 Hz, 1 H), 2.14 (dd, J = 3.1 Hz, J = 18 Hz, 1 H), 1.75 (t, J = 13 Hz, 1 H),

1.29 (t, J = 7.1 Hz, 3 H), 1.27 (t, J = 7.0 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 209.2,

185.3, 171.1, 170.4, 125.3, 62.0, 61.9, 60.7, 44.9, 42.0, 38.8, 35.1, 14.0 (two overlapping

signals); IR (neat): 2882, 2938, 1733, 1634, 1464, 1447, 1413, 1390, 1367, 1254, 1178,

1096, 1064, 1039, 1017, 901, 860, 821 cm- 1; Exact mass calculated for C14 H1 80 5:

266.1154. Found: 266.1155; -Hydroxy ketone: 1H NMR (300 MHz, CDC13): 8 4.1-4.3

(m, 4 H), 3.28 (s, 1 H), 2.6-2.8 (m, 4 H), 2.56 (s, 2 H), 2.36 (d, J = 15 Hz, 1 H), 2.0-2.2

(m, 2 H), 1.2-1.3 (m, 6 H); 13C NMR (75 MHz, CDC13): 215.7, 173.2, 171.1, 85.4,
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62.2, 61.8, 59.9, 51.3, 48.0, 46.8, 44.0, 39.5, 13.9 (two overlapping signals); IR (neat):

3468 (br), 2982, 2940, 1740, 1465, 1446, 1392, 1368, 1258, 1187, 1097, 1044, 916, 860,

733 cm-1; Exact mass calculated for C14 H2006: 284.1260 Found: 284.1258.

2-Phenyl-5-methyl-7-oxabicyclo[3.3.0]oct-1-en-3-one (Table 7, entry 9). To a dry,

sealable Schlenk tube charged with Cp2Ti(PMe3)2 (132 mg, 0.4 mmol, 20 mol %) under

argon was added benzene (2 mL) and 3-(2-methyl-2-propenyloxy)-1-phenyl-1-propyne90

(372 mg, 2.0 mmol). Et3SiCN (407 gL, 2.4 mmol) was then added, the tube was sealed,

and the reaction vessel was immersed in an oil bath heated to 45 C. After stirring for 24

h, the vessel was removed from the oil bath and the reaction mixture was transferred by

cannula to a 250 mL Schlenk flask under argon. The solvent was then removed in vacuo

and THF (40 mL) was added, followed by dropwise addition of 5 mL of sat. aq. CuSO4.

After vigorous stirring for 28 h, hydrolysis was judged to be complete,96 and the reaction

was worked up according to Procedure C. Purification by flash chromatography (ether:

hexane = 3 : 7) afforded 253 mg (59% yield) of a viscous yellow oil: 1H NMR (300

MHz, CDC13): 6 7.3-7.6 (m, 5 H), 4.99 (d, J = 16 Hz, 1 H), 4.61 (d, J = 16 Hz, 1 H), 4.04

(d, J = 7.9 Hz, 1 H), 3.43 (d, J = 7.9 Hz, 1 H), 2.61 (d, J = 15 Hz, 1 H), 2.54 (d, J = 15 Hz,

1 H), 1.39 (s, 3 H); 13C NMR (75 MHz, CDC13): 8 206.5, 180.5, 133.1, 130.5, 128.6,

128.5, 128.1, 76.5, 65.3, 48.7, 47.8, 24.7; IR (nujol): 3056, 2967, 2852, 1712, 1654, 1496,

1446, 1345, 1295, 1151, 1072, 1025, 918, 896, 766, 697, 597 cm-1 ; Exact mass

calculated for C14 H14 02 : 214.0994. Found: 214.0996.

2-Phenyl-8-methyl-7-oxabicyclo[3.3.0]oct-1-en-3-one (Table 7, entry 10). Procedure

B was used to convert 3-allyloxy-l-phenyl-1-butyne (372 mg, 2.0 mmol) to the desired

product. Purification by flash chromatography (ether: hexane = 3 : 7) afforded 305 mg

(71% yield) of a pale yellow viscous oil as a 5:1 mixture of diastereomers: Major

isomer: 1H NMR (300 MHz, CDC13): 7.50 (d, J = 7.0 Hz, 2 H), 7.3-7.45 (m, 3 H), 4.85
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(q, J = 6.5 Hz, H), 4.35 (t, J = 7.8 Hz, 1 H), 3.35-3.45 (m, 1 H), 3.25 (dd, J = 7.8 Hz, J =

11 Hz, 1 H), 2.79 (dd, J = 6.4 Hz, J = 18 Hz, 1 H), 2.28 (dd, J = 3.5, J = 18 Hz, 1 H), 1.56

(d, J = 6.5 Hz, 3 H); 13C NMR (75 MHz, CDC13 ): 6 206.6, 179.5, 134.1, 130.2, 128.5,

127.8, 127.7, 71.7, 70.6, 41.2, 39.0, 20.7. Minor Isomer: 1H NMR (300 MHz, CDC13): 6

7.50 (d, 2 H), 7.3-7.45 (m, 3 H), 5.23 (q, 1 H), 4.27 (s, 1 H), 3.35-3.45 (m, 1 H), 3.25 (dd,

1 H), 2.78 (dd, 1 H), 2.34 (dd, 1 H), 1.14 (d, 3 H); 13C NMR (75 MHz, CDC13): 6 206.4,

181.6, 135.3, 129.5, 127.9, 127.8, 127.6, 72.2, 68.9, 44.5, 39.5, 16.7; IR (neat): 2977,

2933, 2869, 1727, 1659, 1456, 1393, 1369, 1287, 1257, 1166, 1139, 1072, 847, 734 cm- 1;

Exact mass calculated for C1 4 H14 02 : 214.0994. Found: 214.0995. A nuclear Overhauser

enhancement study was undertaken to determine the relative configuration of the major

isomer. Irradiation of the methyl group at 6 1.56 gave a 4% NOE of the C-5 hydrogen at

6 3.4. Irradiation of the C-8 hydrogen at 8 4.85 gave about 0.5% enhancement of the

same hydrogen. The stereochemistry of the major isomer was therefore assigned as

shown:

O

0.5%

2-Butyl-8-(triisopropylsilyloxy)bicyclo[3.3.0]oct-l-en-3-one (Table 7, entry 11).

Cp2Ti(PMe 3)2 (99 mg, 0.3 mmol, 15 mol %) was added to a dry, sealable Schlenk tube in

a dry box under argon. Benzene (1.5 mL) and 5-(triisopropylsilyloxy)-1-undecen-6-yne

(648 mg, 2.0 mmol) were then added with stirring. After 2-3 min, a solution of

t-BuMe2SiCN (340 mg, 2.3 mmol) in benzene (0.5 mL) was added. The tube was then

sealed, removed from the dry box, and immersed in an oil bath heated to 45 °C for 16 h.

General procedure C was followed for the hydrolysis and work-up to provide the desired
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product. Purification by flash chromatography (ether: hexane = 5 : 95) afforded 399 mg

(57% yield) of a pale yellow oil as a 1.6: 1 mixture of diastereomers. A pure sample of

the major diastereomer was obtained from the chromatography for analysis: 1H NMR

(300 MHz, CDC13): 8 4.8-4.9 (m, 1 H), 3.0-3.1 (m, 1 H), 2.61 (dd, J = 6.4 Hz, J = 18 Hz,

1 H), 2.1-2.2 (m, 4 H), 1.94 (dd, J = 2.8 Hz, J = 18 Hz, 1 H), 1.8-2.0 (m, 1 H), 1.2-1.4 (m,

4 H), 0.9-1.1 (m, 22 H), 0.82 (t, J = 7.1 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 211.4,

179.8, 135.9, 68.0, 42.4, 39.7, 37.4, 30.3, 28.3, 23.8, 22.8, 17.9 (two overlapping signals),

13.7, 12.3; IR (neat): 2943, 2866, 1709, 1668, 1464, 1138, 1082, 1065, 917, 883, 734,

681, 648 cm-1; Exact mass calculated for C2 1H380 2Si: 350.2641. Found: 350.2643. A

nuclear Overhauser enhancement study was undertaken to determine the relative

configuration of the major isomer. Irradiation of the C-8 hydrogen at 8 4.87 gave a 5%

enhancement of the adjacent hydrogens at 8 2.15 and no enhancement of the C-5

hydrogen. The stereochemistry of the major isomer was therefore assigned as shown:

,., -PrSiO

0

2-Butyl-9-(triisopropylsilyloxy)bicyclo[3.4.0]non-1-en-3-one (Table 7, entry 12). To

a dry, sealable Schlenk tube charged with Cp2Ti(PMe3 )2 (99 mg, 0.3 mmol, 15 mol %)

under argon was added benzene (1.5 mL) and 6-(triisopropylsilyloxy)-1-dodecen-7-yne

(672 mg, 2.0 mmol). A solution of t-BuMe2SiCN (340 mg, 2.3 mmol) in toluene (0.5

mL) was then added, and the tube was sealed and immersed in an oil bath heated to 45 °C

for 22 h. General procedure C was followed for the hydrolysis and work-up to provide the

desired product as a single diastereomer. Purification by flash chromatography (ether:

hexane = 7 : 93) afforded 390 mg (54% yield) of a pale yellow oil: 1H NMR (300 MHz,

CDC13): 6 4.94 (t, J = 2.3 Hz, 1 H), 3.0-3.1 (m, 1 H), 2.52 (dd, J = 6.5 Hz, J = 19 Hz, 1
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H), 1.9-2.3 (m, 5 H), 1.91 (d, J = 19 Hz, 1 H), 1.2-1.6 (m, 6 H), 0.9-1.1 (m, 22 H), 0.90 (t,

J = 7.0 Hz, 3 H); 13C NMR (75 MHz, CDC13): 8 209.2, 175.1, 135.9, 65.0, 41.4, 36.3,

35.8, 35.7, 30.9, 22.8, 22.7, 19.4, 18.0, 17.9, 13.8, 12.3; IR (nujol): 2939, 2865, 1706,

1653, 1464, 1179, 1118, 1083, 1027, 882, 681 cm-1 ; Exact mass calculated for

C22 H4 0SiO2: 364.2797. Found: 364.2801. A nuclear Overhauser enhancement study was

undertaken to determine the relative configuration of the major isomer. Irradiation of the

C-9 hydrogen at 8 4.94 gave a 5.5% enhancement of the adjacent hydrogens at 8 1.43 and

no enhancement of the C-5 hydrogen. The stereochemistry of the major isomer was

therefore assigned as shown:

0

0%

2-Butyl-6-(benzyloxy)bicyclo[3.3.0]oct-1-en-3-one (Table 7, entry 13). Procedure C

was followed to convert 3-(benzyloxy)-1-undecen-6-yne (512 mg, 2.0 mmol) to the

desired product. Purification by flash chromatography (ether: hexane = 1: 4) afforded

239 mg (42 % yield) of a pale yellow oil as a 12: 1 mixture of diastereomers. A pure

sample of the major diastereomer was obtained from the chromatography for analysis: 1H

NMR (300 MHz, CDC13 ): 8 7.2-7.4 (m, 5 H), 4.56 (s, 2 H), 3.54 (q, J = 7.4 Hz, 1 H),

2.92 (m, 1 H), 2.0-2.8 (m, 8 H), 1.2-1.5 (m, 4 H), 0.88 (t, J = 7.2 Hz, 3 H); 13C NMR (75

MHz, CDC13): 6 209.2, 178.0, 138.1, 137.9, 128.3, 127.6, 127.4, 83.2, 71.7, 49.5, 41.1,

32.0, 30.0, 23.9, 23.2, 22.5, 13.7; IR (neat): 2956, 2931, 2870, 1705, 1662, 1454, 1358,

1117, 912, 734, 696 cm- 1; Exact mass calculated for C1 9H240 2: 284.1776. Found:

284.1772. A nuclear Overhauser enhancement study was undertaken to determine the

relative configuration of the major isomer. Irradiation of the C-6 hydrogen at 8 3.54 gave
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a 2% enhancement of the C-4 hydrogen at 2.15 and no enhancement of the C-5

hydrogen. Also, irradiation of the benzyl protons at 8 4.56 gave a 1% enhancement of the

C-5 hydrogen. The stereochemistry of the major isomer was therefore assigned as shown:

0

Ph

1%
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