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ABSTRACT

In this thesis I pursued two paths. In the first part a new construction for getting
normalized wave functional and corelation densities is proposed. This scheme is
independent of the dimension of space time and hence should in principle work in
four dimensions. It is applied to the three dimensional case and it is shown how one
can apply it to four dimensions. We believe this construction may give some hints on
constructing the full Hilbert space of quantum gravity.

In the second part an investigation of quantum effects in black holes is presented.
First a careful analysis of the semiclassical approximation to quantum gravity (quan-
tum matter propagating on a fixed background) is given, which clarifies some confu-
sion in the literature. Then we investigate, in detail, the semiclassical properties of
matter on a 2 + 1 dimensional black hole background. In chapter 5 we look closer
at the semiclassical approximation in the case of black holes and we show that in
the toy model of dilaton gravity, the approximation of neglecting geometry fluctua-
tions breaks down on certain hypersurfaces near the black hole horizon. This puts
Hawking's conclusion about information loss in doubt, and lends support to the idea
that the information can come out in the Hawking radiation. The analysis is done
in a two dimensional dilaton gravity model. In the last section it is shown that this
effect transcends to four dimensional black holes. We propose an effective theory for
describing the interaction between matter and gravity, and explore its properties.

Thesis Supervisor: Professor Roger Brooks
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Chapter 1

Introduction

A theory of quantum gravity, that is a theory based on the principles of quantum
mechanics and of general relativity, has been the goal of physicists for many years.
One is faced with numerous conceptual and technical problems when trying to for-
mulate such a theory. Problems like: identifying a time variable, finding physical
observables and wavefunctionals, understanding the emergence of our semiclassical
world and what physical notions (like unitarity, inner-product, etc.) do actually exist
in quantum gravity.

Further there is the issue of the black hole paradox [1] which is hoped to play the
same role for quantum gravity as the hydrogen atom played in quantum mechanics.

This thesis presents some investigations on these issues.
A brief introduction to canonical quantization of gravity, topological field theory,

quantum field theory on curved space time and black holes is given below.

1.1 Quantum Gravity
In this section we will briefly present the canonical quantization of the Einstein-
Hilbert action (for a review see [2]). One starts with the Einstein-Hilbert action
(h = 167rG = c = 1)

where g = det(g,,), g,, is the 4-metric and R is the curvature scalar. Assuming M
has the topology of E x R one can canonically quantize the theory (we will assume 
is compact). The 3-metric on E (gij) plays the role of the configuration variable. The
rate of change of gij with respect to the label time t pulled back from the foliation is
related to the extrinsic curvature by

1
Kij(xt) = 1 t g 3j(xt) + Lggi;(xt)}.

where N is the lapse function, N are the shift functions and Lg is the Lie derivative
along the vector field N. Then the action takes the form of
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S = 2 dt J d3xNV/=g{KijKj - K + R}.

The momentum conjugate to gij is

p = -2--(K' - gjK ).
From this the hamiltonian can be calculated and is a sum of first class constraints.

H = d3x(N + N7-i).

7 is called the super-Hamiltonian constraint and 7-i are called the super-momentum
constraints. One can show that these constraints are equivalent to the vacuum Ein-
stein equations.

The algebra of the super-momentum constraints is the spatial diffeomorphism
algebra. The super-Hamiltonian constraint is interpreted as generating deformation
of the hypersurface normal to itself as embedded in M. However, the algebra of all
the constraints does not generate the diffeomorphism algebra of M, and in fact is not
a Lie algebra at all. The canonical quantization follows from the Dirac procedure,
that is imposing the constraints on the wave functions

-HI'[gij] = 0.

This equation is known as the Wheeler-De Witt equation, and is the central equation
in canonical quantum gravity. The other equations read

7'/Hi[gij] = 0.

Further the physical operators 0 must weakly commute with the constraints (and
hence with the Hamiltonian).

As the Hamiltonian is constrained to vanish on the physical Hilbert space one
is faced with the problem of having no time evolution in quantum gravity. This is
known as the problem of time.

In the previous discussion I have ignored problems of the normal ordering of the
constraint and the possibility of anomalies in the algebra of the constraints.

1.2 Topological Field Theory
Topological field theories are a class of field theories whose physical correlation func-
tions are topological invariants of space time (for a review see [3]). A very important
subclass are topological quantum field theories (TQFT). These are field theories with
a classical Lagrangian being zero or a topological invariant of the space time manifold.
The initial information consists only of the field content and the classical Lagrangian
has an enormous set of symmetries which should be gauged fixed. The BRST opera-
tor of this gauge fixing will of course satisfy C = {Q, V} where £ is the total gauge
fixed Lagrangian. Although at first sight these theories appear trivial they have a
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rich and interesting behavior. Each TQFT is associated with a moduli space of fields
and the geometry of that space is represented in the TQFT by operators and fields.
For example the exterior derivative on the moduli space is represented by a BRST
operator Q. Other fields represent the cotangent vectors and the curvature two-form
of the moduli space. The physical operators in these theories are in the cohomology
of the Q operator. The expectation value of physical operators in the specific ex-
ample of Donaldson-Witten theory turn out to be the Donaldson invariants of four
dimensional manifold.

Topological field theories are relevant to physics. Two and three dimensional quan-
tum gravity are topological field theories of the BF type. Further, it was suggested by
Witten that certain TQFT's represent an unbroken diffeomorphism invariant phase
of quantum gravity.

In this thesis we will present another application which is the construction of a
limited class of correlation densities and normalized wave functionals in quantum
gravity, which in general should work in any dimension.

1.3 QFT in curved space time
In this section we will briefly describe how to quantize a scalar field on curved space
time (for a review see [4]). Treating the matter field as quantized and gravity as a
classical background is called the semiclassical approximation. It is believed to be
valid in regions of low curvature.

We will be dealing with a free scalar field whose Lagrangian is (the signature is

L = -+/T{g> $ +> [m2 + R] - 2}.

The equation of motions are

{f + m2 + R) = 0.
The solution to these equation form the basis of the mode expansion analogous

to the modes ei(wt- kx) in Minkowski space.
The Klein-Gordon inner product is

(01, 02) =-i ' [-g"(x)]d

where Y is a spacelike Cauchy surface. The different mode solutions (, are orthogonal
with respect to this inner product.

i.e. (m, Om) = mm', (m,q *) = 0, and (, e*,) = -Smm'. As usual the field
operator is expanded in these modes

= Eo mam + $ am
m

so that a, a+ destroy and create particles. Define the vacuum state 10), by am O ) =
0 Vm.

9



The two point function (Wightman function) is defined as

G+(x, x') = (O lq(x) /(x')10) = Z m(x)q$*(x').
m

Now in curved space time there is in general no canonical choice of positive fre-
quency modes (,) which amounts to the fact that there is no canonical choice for
what we call a particle, or a vacuum state.

So in general one could define different sets of modes which will correspond to
a different definition the vacuum. However all these modes are in the same Hilbert
space hence one can write

ai = Z(ajiiaj + l;iaii)
j

Where a are the annihilation modes in a differently prescribed vacuum. a, # are called
Bogolubov coefficients. One finds that with respect to the original vacuum the tilde
vacuum has expectation value for the original particle operator

(¢INl1)= E CIjil

Of course in the presence of a time like Killing vector one could define a canonical
set of modes by

LC)m = -iWC1m

Where L£¢ is the Lie derivative with respect to the time like Killing vector (.

1.4 Black holes
Black holes have many interesting features both classically and quantum mechani-
cally. Black hole solutions to the classical equation of motion are found in almost all
theories of gravity (Einstein, dilaton ,strings). The best known black hole is called
the Schwarzschild black hole. The metric of a mass M Schwarzschild black hole is

ds2 = -(1 - -)dt 2 + (1 - )-ldr2 + r2dQ2.
r r

In classical Einstein gravity it was found in the seventies by Bardeen Carter and
Hawking that black hole solutions are characterised by mass (M), charge (Q) and
angular momentum (J). Now charged, rotating black holes obey an equation which
is very suggestive

M = -A A- 2Q + J
87r

where A the area of the event horizon, /c the surface gravity at the horizon, 4 the
electric potential at the horizon and fQ the angular velocity at the horizon. Further it
was found that in all classical processes the horizon area always grows. This inspired
Bekenstein to interpret A as an entropy and r. as the temperature of the black hole.
This did not seem to be all too consistent as classically black holes do not emit any
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thing and hence can not be in thermal equilibrium with a heat bath. This was later
understood when Hawking found that quantum mechanically black holes do emit
particles with a thermal distribution with temperature T = 2 [5]. The Hawking
radiation is due to negative frequency matter modes becoming positive frequency
modes when propagated through the collapsing matter.

It is possible to reproduce Hawking's result as a calculation on an eternal black
hole background via a choice of vacuum states. There are three natural vacuum states
to be considered on a black hole background.

1. Boulware vacuum. The vacuum is defined with respect to Schwarzschild modes
on the past horizon and at I-. However the energy momentum tensor diverges
at both future and past horizons.

2. Hartle Hawking vacuum. The vacuum is defined with respect to Kruskal modes
at both future and past horizons. This represents a black hole in thermal
equilibrium with a heat bath of particles.

3. Unruh vacuum. The vacuum is defined with respect to Kruskal modes on the
past horizon and Schwarzschild modes at -. This represents a black hole with
a thermal particle flux at future infinity.

Despite this level of understanding there is still no satisfactory picture of the
microstates associated with the black hole entropy or a proof that the generalized
second law of thermodynamics (GSL) is valid (the GSL is just the usual law taking
into account the black hole entropy).

1.4.1 Black hole paradox
If black holes emit particles they will gradually shrink and then disappear leaving
behind, according to Hawking's calculation, just thermal radiation. This final sate
does not depend on how or from what the black hole formed. Given the initial state
one can deduce the final state but not vice versa. This led Hawking to suggest that
the black hole evaporation process is not unitary and that pure states can evolve into
mixed states and that the usual rules of physics should be changed to accommodate
that [1]. This point of view raises some problems and over the years there appeared
three possible resolutions to this problem, although none is completely satisfactory
(for a review see [6]).

1. Hawking is right. Information is lost or effectively lost to some baby universe.

2. The black hole shrinks down to around the Planck mass and then stops, leaving
a remnant which contains all information of the initial state.

3. The Hawking radiation carries with it the information of the initial state. This
can happen only if the semiclassical approximation breaks down, and this means
that some new interesting physics is involved.
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The main objection to the first suggestion is that all known models having the
property of converting pure states into mixed states have unwanted features like non
conservation of energy. Further, particle physicists find it hard to be separated from
friendly notions like unitarity.

The objection to the remnant idea is that you basically need an infinite number of
them in order to keep track of all the possible initial states that formed the black hole.
It is then unclear how one would get rid of the problem of having those remnants
invade the low energy physics through infinite production rates.

The last suggestion has a clear disadvantage. The difference between the first two
ideas can only be settled theoretically once we have a full theory of gravity that can
be trusted near the singularity. For the last idea to work quantum gravity effects
must become large in a region of very low curvature where it is believed they can be
neglected (the horizon). Even further it involves abandoning the usual connection (in
general relativity) between observation made by different observers.

12



Chapter 2

Quantum Gravity and Equivariant
Cohomology

On Monday, when the sun is hot
I wonder to myself a lot:
"Now is it true, or is it not,
That what is which and which is what?"
(The World of Pooh by, A. A. Milne)

Abstract

A procedure for obtaining correlation function densities and wavefunctionals for
quantum gravity from the Donaldson polynomial invariants of topological quantum
field theories, is given. We illustrate how our procedure may be applied to three
and four dimensional quantum gravity. Detailed expressions, derived from super-BF
gauge theory, are given in the three dimensional case. A procedure for normalizing
these wavefunctionals is proposed.
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2.1 Introduction

Topological invariants on a manifold are a subset of diffeomorphism invariants.
Thus we expect that elements of the set of topological invariants should be a sub-
set of the quantum gravity observables. Additionally, it is generally believed that
observables, which are elements of the BRST complex, may be used to construct
vertex operators or wavefunctionals for the theory. Consequently, should we succeed
in constructing observables for quantum gravity, we might also be able to construct
wavefunctionals. These statements form the nexus for the present work. The puzzle
is how to find representations of topological invariants in quantum gravity theories
in sufficient generality so as not to explicitly exploit the topological nature of low-
dimensional gravitational theories. In this paper, we will give a formal procedure for
constructing operators which have the interpretation as the densities of correlation
functions of observables and which lead to wavefunctionals, in this fashion.

Loop observables, which are constructed from Wilson loops, have been proposed
[8, 9] for four dimensional canonical gravity in the Ashtekar formalism [10] via the
loop representation [11]. In this way, observables which measure the areas of surfaces
and volumes of regions have been constructed [9]. These are intricate constructions
and we wonder if they may be placed in a different context via appealing to the
geometry of the space of solutions to the constraints. From observables, we expect to
be able to find states, and, perhaps, their wavefunctionals. Put into focus, our quest
for a geometrical interpretation for general quantum gravity is a hope that we may
be able to exploit the geometry to directly construct wavefunctionals. This is not to
mean that we are diminishing the importance of observables.

Indeed, the geometry which underlies gauge field theories suggests another way
of representing wavefunctionals; this will be the focal point of our exploration in this
work. In particular, as both three dimensional gravity [12, 10] and the super-BF gauge
theory [3] of flat S0(2, 1) or S0(3) connections (in which the geometry of the space
of connections is explicit) share the same moduli space, these theories are natural
choices for experimentation on this idea. We will find an interesting relation between
the polynomial topological invariants of three dimensional flat connection bundles,
which are the analogs of Donaldson's invariants [13] for self-dual connections in four
dimensional Yang-Mills gauge theory, and correlation densities of three dimensional
quantum gravity. This does not mean that we will find correlation densities of new
observables. We expect that the ones we will obtain may be decomposed in terms of
Wilson loops. Further pursuit of our ideas then lead us to expressions for canonical
and Hartle-Hawking wavefunctionals which satisfy the constraints of three dimen-
sional gravity. By exploiting previous work on four dimensional topological gravity,
we are also able to sketch how our approach works in this physical dimension. Due to
the fact that much more is known about the associated three dimensional topological
quantum field theories (TQFT's) [3] than four dimensional topological gravity, we are
presently unable to give expressions which are as detailed as those for three dimen-
sional quantum gravity. We should point out that while the correlation densities and
wavefunctionals which may be constructed via our approach for three dimensional
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gravity are likely to span the full space of such quantities, we do not expect this to
be the case for four dimensional gravity. The reason is simply that the phase space of
the former theory and of TQFT's is finite dimensional while that of the latter is not.

Our work is relatively formal as our objective is to establish an approach to solving
some of these long standing problems of quantum gravity. In particular, we give
expressions in terms of path integrals which, in principle, may be computed exactly.
These path integrals appear as those of topological quantum field theories which are
strongly believed to be, at worst, renormalizable [3]. This allows us to make use of
BRST analysis techniques in order to establish our results. A related approach for
the computation of scattering amplitudes in string theory was undertaken by one of
us in ref. [14].

Commencing, we establish the framework of our approach while attempting to be
as general as possible, in the next section. Implementation of the approach is carried
out for three dimensional BF-gauge theory, in general, and 3D quantum gravity, in
particular, in section 2.3. Expressions for correlation densities are given in sub-section
2.3.1 while wavefunctionals may be found in sub-section 2.3.2. The four dimensional
case is sketched in section 2.4. Our conclusions may be found following that section.
In addition, appendices summarizing BF-gauge theories and super-BF gauge theories
are given. In appendix C we suggest the possible existence of polynomial invariants
in pure three quantum gravity, before applying our approach. Our global notations
are given in appendix D.

2.2 The Heuristic Construction

As was discussed in the introduction, our approach is to first find correlation
densities and then extract the wavefunctionals from them. Thus, in this section,
we first concentrate on our general approach to obtaining the correlation densities.
Then, we will discuss how to obtain the wavefunctionals from them, at the end of
this section.

2.2.1 Correlation Densities

Given a field theory, one is interested in its physical states and the observables;
i.e, functionals and functions of the fields which obey the constraint of the theory.
One reason why observables are important is that from them physical correlation
functions can be constructed. However, it is not necessary to find observables in
order to construct physical correlation functions of the fields. As an example, given
a function, 0, of the fields, we will only demand that the vacuum expectation value

8{) vanishes, where g,, is some background metric. This allows for 0 c 0. The 9i6we will construct will have the property that generally 6I o for n 9J 2. Thus
we will construct will have the property that generally I- for n >2. Thus
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they are really physical correlation function densities. In this section, we will describe
how we can use TQFT's in order to construct, a set of the O's for a general field theory
(GFT). Our focus will be on quantum gravity for which topological observables are
of interest.

Take a GFT for fields, X, which are sections of a bundle over a manifold, M, and
whose space of physical fields is called JV. Construct [15] a TQFT which describes the
geometry of a subspace of J\, which we call M (the dimension of M is finite). In this
way, we have projected the GFT onto the TQFT. Expectation values of observables
in the TQFT (which we generally know how to write), are topological invariants of
M. Now if the TQFT has the constraints, , of the GFT as a subset of it's own
constraints then we can construct physical correlation functions and wavefunctionals
of the GFT, with the use of the TQFT. We now describe two different ways of doing
this.

First, suppose we are given a particular GFT for fields X and are able to construct
a TQFT with fields X and Y. Let us require that this TQFT has the same Lagrangian
as the GFT plus additional terms which are also invariant under the local symmetries
of the GFT*. Furthermore, we require that a subalgebra of the constraints of our
TQFT is isomorphic to the constraint algebra of the GFT. In particular, the action of
this subset on the X, in the TQFT is the same as the action of the GFT's constraints
on X. As an example, take the GFT to be BF-gauge theory and the TQFT to be
super-BF gauge theory.

Now take a set of observables in the TQFT and almost compute their correlation
function. By this we mean the following. Integrate the path integral over all the
fields that are present in the TQFT but not in the GFT; that is, over Y. We then
get an expression (which is typically non-local), C, in terms of the fields X. The
expectation value of 0, in the GFT, is a topological invariant of M. More precisely,

())GFT = [dX]esGFTr(X)= J[dX][dY]e STQFT(X, Y) , (2.2.1.1)

where 0 is a product of observables in the TQFT, SGFT is the action of the GFT
and C is a gauge invariant, non-local expression in terms of the original fields. Really
what we are doing is taking the original theory and coupling special "matter" to
it, and using the matter part to construct physical correlation functions. However,
using TQFT's has additional rewards. First, these expressions are computable as
the theories are, at worst, renormalizable. Second, we will see that we will be able
to write expressions without integrating over the entire spacetime manifold, which
satisfy the constraints of quantum gravity.

Although it is tempting to call the correlation densities observables, this can only
be done with qualification as they do not have one of the important properties we
associate with observables. That is, generally the product of two or more of them is
not an observables in the sense that this product's vacuum expectation value will not
be diffeomorphism invariant.

*Y may be thought of as the supersymmetric partners of X and the additional terms in the action
as supersymmetric completion.
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To place the above arguments in a geometrical setting, let us look at the geometry
of the space of connections [16]. This argument applies, in principle, to any gauge
theory built from a Yang-Mills fields space. Let P(M, G) be a G-bundle over the
spacetime manifold, M, and A be the space of its connections. Forms on the space
P x A, l(p,q)(P x A), will be bi-graded inheriting degrees p from M and q from A.
A connection A A + c may be introduced on the bundle P x A along with an
exterior derivative d d + Q where d(Q) is the exterior derivative on M(A). The
object, c is the ghost field of the Yang-Mills gauge theory. The total form degree
of A is one and is given by the sum of the degree on M and ghost number. The
curvature of the connection A is F = dA + [A, A] = F + g + 0q, where the (2, 0)
form F = dA + A A A is the usual curvature of P, ib = QA + dAc is a (1, 1) form and

= Qc + [c, c] is a (0, 2) form. Gauge invariant and metric independent operators
may be constructed out of these objects. They are the Donaldson invariants written
in a field theoretic language. Thus we will be attempting to recover these geometrical
objects which already exist, but are hidden, in physical gauge theories.

2.2.2 Wavefunctionals

We can also obtain wavefunctionals of the GFT's fields, X, which satisfy the
latter theories constraints. A general method will be described first, then another
prescription which we will later see works for three dimensional gravity, but which
is not guaranteed to work in general, will be given. In the following we will use the
term geometrical sector to refer to those fields which are realized as the curvature
components for the geometry of the universal bundle over X. For example, these
would be (A, ap, q$) in a theory defined over a Yang-Mills field space.

First, take the TQFT to be defined over a spacetime manifold M with a boundary,
AM, which is homeomorphic to the surface, A, on which we wish to quantize the GFT.
As for the GFT, let the phase space of the TQFT be even-dimensional. Note that
M need not be diffeomorphic to x R. Form the correlation function of a set
of observables in this TQFT. Choose a polarization and functionally integrate over
the X and Y sets of fields in the TQFT with boundary conditions on . Then,
the correlation function will yield a functional of the boundary values of half of the
Cauchy data for the X fields, call that set Xlr, and half of the Y fields, call that set
Yl. By construction this is a Hartle-Hawking wavefunctional for the TQFT which
is guaranteed to be computable since, at worst, TQFT's are renormalizable:

[Xl,Yl] = [dXl][dY]eSTQFTO(X, Y) . (2.2.2.1)

Here STQFT is the TQFT action on the manifold with boundary, E. The wavefunc-
tional, i[Xlr, YIE] is diffeomorphism invariant due to the properties of TQFT's. For
the particular TQFT, any fields which appear in I[Xlr, YlI] and which are not in
the geometrical sector, should be integrated out. Then all the Y fields which remain
in L[XlI, Yl] may be replaced by non-local expressions involving X and . This

17



is an idiosyncrasy of TQFT's. Then since x is a function of X, we obtain

T1[XlI,Yl] == [X] . (2.2.2.2)

In practice, we find that those Ylr fields which appear in 1[XJl, Ylr] are Grassmann-
odd and the projection to V[XlI ] stated above is performed by first choosing a basis
for T*M, expanding those YlE in this basis and then expanding 1[Xlr,Yl] as a
superfield whose components are wavefunctionals, 9'[Xlr].

This approach leads us to the following ansatz for a normalization procedure which
stems from the axiomatic approach [17] to TQFT's. Given two wavefunctionals, 1
and 'l2, defined on diffeomorphic boundaries, OM1 and M2, we might try defining
the inner product by gluing the two manifolds together. This will result in a path
integral of some observable of the TQFT defined on the glued manifold. As these
expressions are finite this gives a possible normalization procedure. We defer the
exact construction to future work [18].

A second approach to constructing the wavefunctionals stems from the observation
that, in the above, we took the wavefunctionals of the TQFT and projected onto the
X subspace to obtain the wavefunctionals of the GFT. Thus it is suggestive to simply
construct the wavefunctionals of the TQFT by any means possible and then apply the
projection. Thus we need not restrict ourselves to Hartle-Hawking wavefunctionals
but might also consider those obtained by directly analyzing the constraints of the
canonically quantized TQFT.

Now let us specialize to a certain set of GFT's. For certain theories, such as three
dimensional gravity, we may construct such wavefunctionals by building TQFT's
which are defined in a background which solves the constraints of the GFT. We will
call such TQFT's, servant theories. That is, in the GFT, we solve the constraints
first and then quantize. The quantization then demands that we find wavefunctionals
which have support only on the constraints' solutions. Realizing this, we construct
correlation functions in a servant TQFT which is defined over a certain background.
As we will see in the next section, this works when the servant TFT is of the Schwarz
[19] type. As the servant TFT's must be topological, this approach restricts the
background; i. e., those Xls which solve the constraints, to be non-propagating
fields or global data. Thus we expect that this approach will only work for certain
sectors of four dimensional gravity.

Having given a cursory discussion of our procedures for obtaining observables and
wavefunctionals, let us now turn to some specific applications. Three dimensional
quantum gravity and BF-gauge theories, in general, are first.

2.3 Application to 3D BF Gauge Theories

As BF-gauge theories are TFT's, they are the logical choice for the first application
of the ideas discussed in the previous section. Although our analysis below may be
carried out in arbitrary dimensions, we will focus on 2+1 dimensional manifolds. In
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this dimension, BF-gauge theories are of more than a passing interest; as with gauge
group G = SO(2, 1), they are known [12, 10, 20] to be theories of quantum gravity.
In subsection 2.3.1, we will study the construction of correlation densities in the
covariant quantization of BF-gauge theories based on the geometry of the universal
bundle. Then in subsection 2.3.2 we will give formal expressions for canonical and
Hartle-Hawking wavefunctionals of BF-gauge theories again based on the geometry of
the universal bundle. Where appropriate, we will make allusions to three dimensional
quantum gravity

Before proceeding we would like to be further explain the rationale for choosing
BF-gauge theories (see appendix 2.6) as a first application of our constructions. There
are cohomological field theories (or TQFT's), called super-BF gauge theories, which
share the same moduli space. As quantum field theories, they are very closely related
[21] and the manifest appearance of the geometry of the constraint space of BF-gauge
theories in the super-BF gauge theories will be most useful. These two facets make the
construction of observables and wavefunctionals for BF-gauge theories from super-BF
gauge theories highly suggestive and, as we will find, possible.

2.3.1 Pulling Back H*(M) to BF-gauge theories

Define N/ to be the restriction of A to flat connections: NA - AlF=O and M =
JA/G to be the moduli space of flat connections. Let mI, I = 1, .. ,dim M be local
coordinates on M. Flat connections are then parameterized as A(m). Given two
nearby flat connections as A(m) and A(m + dm), we expand the latter to see that
the condition for it to also be a flat connection is that

dA aidm = . (2.3.1.1)

By definition, the zero-mode of the (1,1) curvature component on P x A, O(°), satisfies
the equation

dAu(°) = 0, (2.3.1.2)

where A is a flat connection. Thus we immediately find a basis from which b(° ) =
(O)dm may be constructed; namely, (0°) = A

We seek observables in the BF-gauge theory which we can formally write in terms
of A assuming we have chosen a coordinate patch on JV. In order for them to
be observables they must be gauge invariant and diffeomorphism invariant. These
conditions are related as we will soon see. Let us now turn to their construction.

For a homology two-cycle, F, on M, we define

n I r OA OA (2.3.1.3)Oi -- 2 Tr( A (2.3.1.3)

Under a gauge transformation, A -, A, aA transforms into AI. Then for anam' Om 
infinitesimal gauge transformation, with parameter ,

b9IJ = TP(a m[l mi J]= Tr) * (2.3.1.4)
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Thus we see that OHJ is gauge invariant if A is a flat connection. Hence it is a possible
observable in BF-gauge theories.

A check of diffeomorphism invariance remains to be done. Diffeomorphisms of
the manifold, M, by the vector field, K, are generated by the Lie derivative K =

diK + iKd. By direct computation,

OCK iKdA + [ a(K)] + dA(iKm ) (2.3.1.5)

where ca(K) iKA. If A is a flat connection, the first term in the right-hand-side
of this expression vanishes. The second term is a gauge transformation. Although
the last term is inhomogeneous the fact that it is a total derivative means that af-
ter integrating by parts and imposing the flat connection condition, its contribution
vanishes. It then follows that O9 I is an example of a gauge invariant operator whose
correlation functions in the BF-gauge theory are diffeomorphism invariants.

Having convinced ourselves, by the example above, of the existence of operators in
BF-gauge theories which lead to diffeomorphism invariant correlation functions, we
must now establish a procedure for constructing such quantities. This will be done
by implementing the ideas in section 2.2; namely, almost compute the topological
invariants from the super-BF gauge theory theory. By almost, we mean integrating
over all of the fields in the functional integrals except for the gauge connection and
the field B. This will leave us with a functional integral expression over the space of
fields in the ordinary BF theory but with operator insertions at various points on the
manifold. Now we know that we are in fact computing topological invariants. Then
it follows that these operators, which will appear as functionals of the connection will
be physical correlation densitiest in the BF-gauge theory whose expectation values
are topological invariants.

To illustrate the procedure, let us write the generic Donaldson polynomials as
Oji(q, 'b, F; Ci)) where Ci is the cycle the observable is integrated over. Then we have
to compute

KO(I , 2kF;Ci)) = (ZsBF)/[du]SBF e-SSBF 
SBF

x I Oi(c, 0b,F;¢i) , (2.3.1.6)

where ZSBF is the partition function of the super-BF theory and [du]sBF (see ap-
pendices 2.7 and 2.9) is the measure for the path integral over the fields X,O 4, etc.
with the X zero-modes inserted. It is known (see appendix 2.7) that certain classes
of operators Oi exist for which these correlation functions are topological invariants.

The integral over may be performed leading to the delta function (AA$ +
[4b,*4']). This means that the Oa field is replaced by (Sa(X)) = -fM Gab(X, y)[,*]b,
where Gab(x,y) is the Green's function of the scalar covariant laplacian (A), in
the computation of the correlation function of the observables. Since the functional

t The relation of these quantities to what we normally expect observables to be is discussed in
section 2.2.
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integral has support only on flat connections, if there are no B-fields in the observables
(as is the case for our O's), the correlation densities reduce effectively to functions of
b and the flat connections only. In order for correlation functions to be non-zero, the

product of the observables - reduced in this way - must include all b zero-modes.
For a genus g > 2 handlebody, this number is (g - 1) dim(G). Let us now look at the
various classes of correlation functions.

The vacuum expectation value of a single O is a topological invariant in the super-
BF gauge theory. Hence, the gauge invariant operator (Ss is defined in appendix 2.7)

O(A;C) _- [d]se-SsO(q, ,F;C) , (2.3.1.7)
has the property that its vacuum expectation value in the BF-gauge theory is a
topological invariant. It is important to note that in general, O depends on the
background metric on M. Furthermore, although it is gauge invariant, it is not in the
cohomology of the, QSBF = QH + QYM, total BRST charge (see appendix 2.7 for a
discussion on QH), where QYM is the Yang-Mills BRST charge. Hence, its correlation
functions will not be independent of the background metric, in general. Additionally,
the 0 will be non-local operators in general. Although these last two points may be
viewed as drawbacks of this approach, there is one important lesson to be learned
here. This construction clearly demonstrated that the three dimensional analogs of
Donaldson invariants give rise to operators in the BF-gauge theories whose vacuum
expectation values, in the latter theories, are themselves topological and are physical
in three dimensional quantum gravity. It should also be noted that although the
fields B, c, , c', i' appear in Ss, they do not survive the [dp]s integration due to b
zero-mode saturation.

Until this point, we have only looked at the vacuum expectation values of the
O's. Now, we would like to investigate the expectation value of O in any physical
state of the BF-gauge theory. In particular, we would like to see whether or not
such an expression is independent of the background metric, g,, used in forming the
gauge fixed action. Let us suppose that such a state may be constructed out of the
action of Wilson loop operators on the vacuum. Alternatively, we can ask whether
or not the correlation function of the 's with Wilson loop operators, W[R, y] =
TrRP exp (, A), is background metric dependent. Hence we are led to study the
functional integral

(R, y, C) = J[dIBFe-SSBFO(, , F; C)W[R, ]

= J[d],BFe BF 6(A; C)W[R, a] . (2.3.1.8)
Functionally differentiating £(R, 7, C) with respect to the inverse metric, ge', we find

E(R-y, C) -SSBFTA)= [d]SFe s sB A (, ,F; C)TP( ) , (2.3.1.9)
after use of the properties of SSBF and where 6 ssF = {Q, A,,} with

A 5g"V (AAd + 'dAX + 'dAB + EA) . (2.3.1.10)
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We notice that the integral over O' yields (AA() A'). Since we assume that AA(O does
not have any zero-modes then this restricts A' to be zero. As a result of this, the only
appearance of X left is in the action. Integrating over this field we find 6(dAb -*dAr).
Now, the integrability condition for this restriction is [F, b] = VA(O)7. However, as
the integral over B can be seen to enforce F = 0, we find that 7r = 0, hence dA,b = 0.
This means that all Ib's in the path integral are now restricted to be zero-modes.
For all but the first term in A,,, the A integration can be performed and it restricts
each 0 in the 0 to be replaced by an expression (see below) which depends on two ,
zero-modes. This then means that the path integrals involving each of the last three
terms in A,,, is saturated by 0b zero-modes due to the presence of O. Thus, we see
that the extra . 0I due to the Wilson loop makes those expressions vanish. We are
then left with the first contribution for 1A,.- If O depends on this will not be zero.
Thus we deduce that 66(R,-y,C) = 0, in general, only if the O does not depend on ;
otherwise, the only restriction on O is that it saturates the number of 'b zero-modes.
Additionally, the result will not be altered if we included more than one Wilson loop
in E. Thus we conclude that the correlation functions of those 0 operators whose
ancestors - 0 - saturated the number of fermion zero-modes and are independent of
3, with Wilson loops is independent of the background metric.

Observables in the BF-gauge theory which depend on B have been constructed
in the literature [22, 3]. An immediate observation is that if we compute correlation
function of quantities which depend on B then the path integral is not restricted to
n. This invalidates the proof above. However, if we restrict to M = x R ( i.e
canonical quantization ), then there will be only dependence on Bl in the observables
and the restriction to FlE = 0 survives. In this case correlation functions involving
A, B and 0((;) are gauge invariant and metric independent.

Haven given formal expressions for physical correlation functions in BF-gauge
theories, we would now like to trace our steps back to the analysis at the beginning
of this section and see how it might arise directly from super-BF gauge theories.
Let us choose quantum gravity on a genus three handle body as a specific theory;
thus, g = 3 and G = SO(2, 1). Six b zero modes are needed so we pick three
homology 2-cycles which we label as Pi. Then we compute the correlation function
(i 3=1 fr, Tr(ob A ;))SBF, in the super-BF gauge theory also with g = 3 and G =
SO(2, 1). After integrating out the Y-fields, we obtain;

i_1J Tr( A )SBF = (ZSBF)-' j[di]BF"...a 6 e-(SBF+SBFgIf)'(A)
(2.3.1.11)

where

tIn general, the path integrations over the bosonic zero-modes are understood to drop out due
to the division by ZSBF in the expressions for the correlation densities.
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0dl 06(A) T(A) Tr(T[l (A) A T2(A)) x

x J Tr(Ta3A)A �4(A)) x

x Tr(Ta 5 (A) A a6](A)) . (2.3.1.12)

Here, the T' (A) form a six-dimensional basis for H1 (M, G). By [d/]BF,al...a6 we mean
[dp]BF with the functional measure over flat connections, A( °) given by [dA()] ... [dA()].
The A) and T"'(A) are chosen to form a canonical basis for T*M as in ref. [23].
As this expression was derived directly from the super-BF theory, the result is in-
dependent of the choice of basis for the fermionic zero-modes. The quantity T(A)
arises from the non-zero mode integration in [dp]s. The remaining functional integral
has support only on flat connections, hence T(A) is ostensibly the Ray-Singer (R-S)
torsion [24]. We then identify the T(A) as . Notice that in our analysis of the
BF-gauge theory at the beginning of this section, it was not evident that the R-S
torsion appears as part of the observable's definition.

Now we realize that

(i, Tr(7b A B) ((A))BF .(2.31.13)

Then interpreting O(A) as a correlation density in the BF-gauge theory we continue
the computation to find

(6(A)) = (ZSBF) J Jjr4 Tr(T(A()) A T(A())) , (2.3.1.14)

where T(A( °)) is a form on the space, X, of connections. The functional integral, fg
over JF is done with a wedge product of the T's, on that space, understood.

As a second example, we construct a correlation density in quantum gravity which
is considerably less obvious in the BF theory than the prior example. We start with
Jf Tr(q0b), here y is a one-cycle. It carries ghost number three. Thus we construct a
correlation density in quantum gravity on a genus g > 2 handle-body given as

O(A;-yi) = (ZSBF)-' J[d]se-Ss i Tr(qb ) (2.3.1.15)

Integrating over A we find that at the expense of a factor det-'(A)4
0 ), we should

replace +(x) by -fMy GA(X, y)[)(y),*(y)], where GA is the Greens' function of the
scalar covariant laplacian. Then functionally integrating over we obtain

O(A, i) = -(ZSBF)-IT(A) x

X {J Tr{M GA(Xi, y)[T(A(y)),*T(A(y))]T(A(x))}}

(2.3.1.16)
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to be another correlation density in quantum gravity. In this expression, the T's
appear anti-symmetrized as in (2.3.1.12).

Concluding this sub-section, we note one more point about the correlation densi-
ties we have been writing down. Unlike observables, our expressions are, in addition
to being non-local in the BF-gauge theory, given in terms of path integrals. These
functional integrals are best computed in perturbation theory. However, by invok-
ing BRST theorems we were able to obtain some expressions non-perturbatively, in
the above. It is safe to say that one lesson we have learned from this sub-section is
that for diffeomorphism invariant theories, quantum gravity in particular, we must
enlarge our scope of what an observable is. Here, we have used the geometry of the
universal bundle and more directly the de Rham complex on moduli space to guide
us. Presumably, this direction is worth a try in four dimensions also. We will turn
to the latter in the next section. However, before that, we would like to discuss some
even more profitable results; namely, expressions for wavefunctionals based on the
universal bundle geometry.

2.3.2 Wavefunctionals

The physical Hilbert space of a super-BF gauge theory consists of L2-functions
on the moduli space, M, of flat connections. In principle, quantization of this field
theory is then reduced to quantum mechanics on M. However, the pragmatism of
such a program is limited as, a priori, it becomes unwieldy to pull such wavefunctions
back into wavefunctional of the connection. In this sub-section we will demonstrate
how this problem may be obviated. To be precise, we will write down expressions
for the functionals of the connections on the G-bundle which are annihilated by the
constraints of the theory.

Correlation functions of observables in TQFT's are equal to the integral over
moduli space of a top form on that space [23]. Typically, such a top form is wedge
product of forms of lesser degree:

(Io1) = M = fi A f 2 A ... Ad , (2.3.2.1)

where the forms, fi, are obtained after integrating over the non-zero modes and
fermionic zero-modes in the path integral. Now, let us assume that a metric exists on
M so that we can define the Hodge dual map which we denote by the tilde symbol.
Then q' is a scalar function on moduli space. Let us now give representations for T.
All we seek is 's which are gauge invariant and have support only on flat connections,
w, on Eg: I[w]

Clearly [25], a delta function, 6(F), where F is the curvature of a G-bundle over
Eg satisfies our criteria. However, as it is highly unlikely to be normalizable. Re-
gardless, we realize that it might be worthwhile to look at diffeomorphism invariant
theories on Eg which are defined in a flat connection background. Considering the
two-dimensional BF-gauge theory we see that the analog of B, cp, is an ad(G)-valued
zero form and the action is SBi = l g Tr(pF). The delta function arises from the
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integral over . If we constructed the analog of SSBF, we would find that it shares
many of the terms which appear in the three dimensional action. However, here
the analog of X (we will call this below) is a zero-form. What is more, there are
no primed fields due to the degree of . Considering this, we introduce the func-
tional fg Tr(~dwb), for ad(G)-valued, Grassmann-odd zero- () and one- () forms
defined in a flat connection background, w, It is invariant under the local symmetry,
6S = ed,,, and upon gauge fixing it we obtain the quantum functional

Sw = j Tr( d, - Ad - A*/b) (2.3.2.2)

The partition function for this action is metric independent as the part of S" which is
metric dependent is exact with respect to the BRST charge for the gauge fixing of the
symmetry just discussed. Furthermore, it is simple enough to compute exactly and is
found to be equal to the Ray-Singer torsion of the G-bundle with flat connection, w.
In fact, the action S, is recognized as the action for a two-dimensional Grassmann-odd
BF field theory in a flat connection background. As was the case with the super-BF
gauge theory, the correlation functions of quantities such as Tr(0 2 (x)), etc., are
topological invariants. This is seen to be due to the transformation given by the
BRST charge: {Q, 4'} = dd. The partition function has support only on solutions of
those 1b which are in ker(d,). Hence, they span the cotangent space of M(Eg) whose
dimension is (2g - 2) dim(G).

As before, let us focus on three dimensional quantum gravity taking G = S0(2, 1).
Our first example of a wavefunctional is found by taking the (3g - 3) times product
of fr, Tr(4 A ) where the Pi are homology 2-cycles in Sg:

JI@[] = [d][d[dy] [dA][d]e s | (3g3) Tr(+ A i) , (2.3.2.3)

defined over the two-dimensional super-BF theory. The generic form of the wave-
functionals obtained by this construction is

w] = J[dl[db][dq][dA][d]e-Sw ITr( 2(xi)) x
i=1

n3 n2

1 i Tr(OO) I j Tr(/ A ) (2.3.2.4)

subject to the condition 4n4 + 3n3 + 2n2 = dim M(Eg, G). If w is not an irreducible
connection, then there are no 4 zero-modes and the only non-zero TqJ[w] are those for
which n 4 = n3 = 0.

In the preceding, we have not used the full power of the two-dimensional super-BF
gauge theory. As a matter of fact, we did not use it at all. The transition from S, to
the super-BF gauge theory on Eg is straightforward. Its action is

,SBF = L Tr(pF) - S + Tr(A[;b,*;b]), (2.3.2.5)
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where is a zero-form which imposes the flat connection condition on w and the
rest of the action is reminiscent of the three dimensional theory but without the
primed fields. Unlike the pure Sw theory, the absence of zero-modes does not imply

= 0, but +(x) = - fEgy GA(X, y)[O(y),*Ob(y)] as we saw in the previous sub-section.
Thus, more wavefunctionals result from this theory. They are of the same form as

n except that the functional measure must be enlarged to include all the fields
in SBF Additionally, S, is replaced by SSBF. We find the general form of these
wavefunctionals to be

n4

s[w] - (-)3 fITr(( f G(xi, y)[q(y),*q(y)])2) 
i so

X I, Tr( G(xj,y)[q(y*q(y),*q()]q(xj)) x
j g,Y

x H Tr(q A q), (2.3.2.6)
k k

again with n4 + n3 + n2 = dim(M(Eg, G)) and where the q(w) form a (2g -2) dim(G)
dimensional basis for H 1(Eg,G). As was the case in eqn. (2.3.1.12), the q's appear
in a totally anti-symmetric combination.

Our philosophy thus far has been to identify a Riemann surface (which is homeo-
morphic to the hypersurface of the foliated three-dimensional BF-gauge theory) and
construct a servant partition function§ for fields in a background which solves the con-
straints of the three-dimensional BF-gauge theory. Having done this we then identified
operators which yield diffeomorphism invariant observables in the two-dimensional
topological "theory". We assume that we can solve the equation which defines the
constraints (as though they were classical equations) and parametrize them by the
coordinates on moduli space. For example, the w which defines the background above
is really w(x; m). This means that the wavefunctionals are not simply defined at one
point in moduli space, but rather on all of M(Eg, G). We advocate this as a very
robust approach to constructing quantum gravity wavefunctionals as (1) we need only
solve the constraints classically and (2), thanks to our experience with TFT's it is
rather straightforward to at least formally construct the servant partition functions
and correlation functions in such a parametrized background.

Now, the fact that, in the previous sub-section, we were successful in formally
constructing correlation densities leads to another possible approach to constructing
wavefunctionals. If those correlation densities can be written, as operators, as O =
6to for some operator and adjoint, t, then we would have () = (OlOtOO).

Interpreting this as the norm of a state 010), it is suggestive that the wavefunctional
of such a state may be formed from the path integral expression for the correlation
density. The manner in which we see this state arising is analogous to sewing in
the super-BF gauge theory. Hence, we expect to be able to form the corresponding
wavefunctional by surgery in the super-BF gauge theory. Although we delay detailed

§We will call these servant partition functions to distinguish them from the partition functions
of the theories we are constructing the wavefunctionals for.
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investigation of such an approach until a future publication, we would like to point
out here that normalized wavefunctionals are expected. In the rest of this sub-section,
we will show how to construct wavefunctionals from a super-BF gauge theory on a
three manifold whose boundary is Zg.

We start with a super-BF gauge theory for a G-bundle over a three-dimensional
manifold M with boundary Eg. Then we insert the pertinent operators as was done
in the previous sub-section. Having done this, we choose a polarization (for which the
fields in the geometrical sector appear as "position" variables) and perform all func-
tional integrals with appropriate boundary conditions. This gives a wavefunctional
for the super-BEF gauge theory which is annihilated by the full BRST operator. It
is also gauge and diffeomorphism invariant [23, 26]. In general, there may be fields
which do not depend on the boundary values of the geometrical sector. Starting with
the wavefunctional of the super-BE gauge theory, we integrate over their boundary
values. This leads to a functional, I[w, w], where w is a flat connection on Eg, w
denotes a zero-mode of and is a solution of dw = 0 on Eg, and we have replaced
the boundary value of with the appropriate expression in terms of w and w. also
depends on the boundary values of c and c'; however, for notational simplicity they
will be omitted.

Focusing our attention on genus-g handle-bodies, OM = Eg, we compute the
correlation functions for the topological invariants fixing the boundary value of the
connection to be a flat connection on Eg. This can be done by inserting a delta
function, 6(U(A) - gI(o)) for each longitude, II in M. Here, Ui(A) is the holonomy
of the connection along the longitude, II, and gI(w) is the holonomy of a parametrized
flat connection on the cycle, bh, on Eg which (in the handlebody) is homotopic to II.
For the 4 field, we insert delta functions 6S(f, 4 - bI w) where II and b are as before.
Consequently, we arrive at our generic ansatz for wavefunctionals of super-BF gauge
theories:

(g-l) dim(G) (g-1) dim(G)r

[w, ~] J[dusBF fIl6(U1 (A) - gi(w)) l( ) x
I1 = J

X lO i(, ', F; Ci) e SBF . (2.3.2.7)

In this expression, the product of polynomials, fli Oi is such that it saturates the
number of ¢ zero-modes.

Now we must project out x. This we do by treating T[w, w] as a superfield and
obtaining the wavefunctional of w as a component via superfield projection. Choose
a (2g - 2) dim(G)-dimensional basis, q(w), for H((Eg, G) and expand the one-form
field, , in it as w _ ,c Oq,, where the Grassmann-odd coefficients 0c are the
quantum mechanical oscillators. As the wavefunctional depends on H 1(M, G) only
(g -- 1) dim(G) of the 0c will be non-zero. Then, I is formally T[w, 0] and we write,

an
ca,.,okn[o] = 00 0. J.[. 090o [, 0]l , (2.3.2.8)

where the slash means setting 0 = 0 after differentiating. Each ',I...n for n =
1,..., (g - 1) dim(G), is a wavefunctional in the BF-gauge theory in that it satisfies
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the constraints of the latter theory. We adopt this procedure as it is closest to the
sewing/surgery procedure, is of geometrical significance (see below) and it incorpo-
rates the two naive guesses: setting w = 0 or integrating out w.

The closest analogy of these I,,..., [w] is to Hartle-Hawking wavefunctionals
[27]. Notice that unlike the previous wavefunctionals, T~, in eqn. (2.3.2.6), which
are analogous to canonical wavefunctionals, these are functionals only of half of the
flat connections on Eg. This is due to the fact that the meridians of the handlebody
are contractible in M.

Based on our discussion at the beginning of this sub-section, we realize that the
,,1 ,...,n are n-forms on moduli space. This returns us to our earlier discussion of the

wavefunctionals of quantum gravity as being L2-functions on moduli space. In writing
down the ,,, ,...,,n, we have given formal expressions for the pertinent functions on the
moduli space in terms of the physical variable in the problem; namely, the connection.

The question remains which of them is normalizable. Although we do not have
much to say about this question in this work, we would like to bring to the fore a
possible strategy for normalizing wavefunctionals constructed in this way. Any closed
piecewise linear three dimensional manifold, N, may we formed via the Heegaard
splitting, N = Ml Uh M2, where M1 and M2 are two handlebodies whose boundaries
are homeomorphic (with map, h) to each other [28]. Making use of this, we view [18]
the norm of J[w, 0] to be a functional integral on N, [w, 0] itself to be the functional
integral on M1 and its adjoint to be the functional integral on M2. Reversing, we start
with the functional integral for the correlation functions of polynomial invariants on
N, perform surgery and then identify that component of T which appears in the form
~[w]tI[w] after integrating [dt]s. Obtaining the adjoint (t) is interpreted as arising
from the surgery/sewing process.

2.4 Application to 4D Quantum Gravity

In this section, we sketch how the above construction can be realized in four
dimension quantum gravity. The main ingredient that we have to supply is a TQFT
whose action starts off as an Einstein-Hilbert action, or rather when some of the
fields are put to zero one gets the usual action for gravity. Generally, we expect that
there is more than one such action. Unlike the three dimensional case where quantum
gravity was already defined over a finite dimensional phase space (flat connections
modulo gauge transformation), in four dimension there are propagating fields and
we can then try projecting the theory onto many different moduli spaces. In a way,
the Einstein-Hilbert action is a good example for this construction, Whereas it is
non-renormalizable, the topological projection takes us to a renormalizable theory in
which to do calculations on physical observables for quantum gravity. In addition,
we can construct formal, diffeomorphism invariant expressionsll without integration

rWe remind the reader that in constructing observables, we work in covariant - not canonical -
quantization.
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over the whole manifold.
Our first task is to select a TQFT. The logical candidates are topological gravity

theories. Four dimensional topological gravity theories for which the pure metric part
of the action is given by the square of the Weyl tensor, not the Einstein-Hilbert action,
are known [29]. As mentioned above, we seek a topological gravity theory whose pure
metric action is the Einstein-Hilbert action. Now, TQFT's may be obtained from
supersymmetric theories via twisting [23]. The fact that the four dimensional gravity
theories which were first constructed were conformal is apparently correlated with
the fact that N=2 supergravity in four dimensions has this feature. A Poincar6
supergravity theory was proposed sometime ago by de Witll [30]. Thus we expect
that a twisted version of this should exist as a topological gravity theory.

In ref. [31] a topological gravity theory with Einstein-Hilbert action as is pure
metric part was obtained by twisting a N=2 supergravity theory. Here, we will
simply use the results of this work. The twisting procedure defined a Lorentz scalar,
Grassmann-odd (BRST) charge, Q which is nilpotent. As it turns out this topological
gravity theory is seen to be the TQFT for the projection of the spin-connection form
(in the second order formulation) to be self-dual:

W -b(e) = 0 , (2.4.0.1)

where a etc. are Lorentz indices.
The observables are constructed from the cohomology of Q. After some re-definitions

of the fields one ends up with a BRST charge whose action upon the geometrical sector
of the theory is

Q: ea a _ Dea + ab A eb ,
Q: Wab X b _ Dab

Q ' -a /). -," -,ab A eb - Xab A b + a b A b ,
Q : a - e a b A b -na b A eb ,

Q Xa b - )77rlab + ac A Xb - Xac A ,b

Q: .~ab ac b _- ac A e b

Q:a -4 a + b b
Q ab 7 ab a+ eA cb , (2.4.0.2)

where ab and a are the ghosts for Lorentz and diffeomorphism symmetries, respec-
tively. As was mentioned above all this is in second order formalism. Although in
the BRST transformations all the fields look independent, this is not the case. How-
ever, according to [31], these transformations are consistent with the conditions of
the second order formalism: Wab A eb = dea , Xab A eb = -)Oa - Rab A b , etc...

The cohomology is constructed exactly as in Donaldson-Witten theory [3] and
observables are found. For example,

0(4) = Tr(72) ,
2e thank S. J. Gates, Jr. for bring this to our attention.

1'We thank S. J. Gates, Jr. for bring this to our attention.
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((3) = j Tr(x) ,

0(2) = jTr(R + XAX)

0(o) = fM Tr(R A R) (2.4.0.3)

The geometrical meaning of each field is in pure analogy with those in Donaldson-
Witten theory. As in the three dimensional case, the correlation functions of these
observables become, after integration over the non-zero-mode parts of the fields, func-
tions of the zero modes of Xab and the veirbein, ea. The zero-modes of X are a basis
for the cotangent space to the moduli space of w-ab(e) = 0.

Now that we have described the results of [31] we would like to indicate how
the constructions of the previous sections can be applied here. To construct the
observables we insert, in the path integral a combination of the TQFT observables
which saturates the X zero-modes and then integrate over all the fields except e, ea
and a" b. This will result in a non-local expression in terms of the veirbein whose
expectation value is a topological invariant of space time. In this way, we obtain
0(e) from the (k) above.

The wavefunctional construction is also very similar. However, at present, we
can only construct the Hartle-Hawking type wavefunctionals, as unlike the 3D case,
we do not have the corresponding servant action. Defining the action to be on an
four dimensional manifold, M, with boundary OM = a, we obtain wavefunctionals
by following the same steps we took in the three dimensional case. This results in
a functional ¶[el]. The proof that the wavefunctional so constructed satisfies the
constraints of quantum gravity is now the same as that of Hartle-Hawking [27]. We
differ the exact results, in particular, a presentation of the normalization procedure,
to a future work [18].

2.5 Conclusions

In this work we have indicated a possible way of using TQFT's to construct wave-
functionals and physical correlation functions in three and four dimensional quantum
gravity. We gave explicit results in the three dimension case and laid the building
blocks for the construction in four dimensions. Along the way we have shown that in
quantum gravity, there are functions of the fields whose vacuum expectation values
are not only diffeomorphism invariants of spacetime, but also of geometrical signifi-
cance on moduli space. A possible definition of an inner product was mentioned and
will be elaborated in [18]. This work also indicates that it might be useful to consider
quantum gravity in a larger geometrical setting than usual.

In concluding, it is tempting to speculate that pursuit along the lines advocated in
this work may lead to possible field theoretic relations between intersection numbers
on a manifold and the intersection numbers on the moduli space of field configurations
for sections of bundles over that manifold. In particular, we know that the Wilson
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loop observables in BF-gauge theories [32] and the loop observables [9] construct
knot invariants. Well, we have found the projections of Donaldson-like polynomial
invariants into three and four dimensional quantum gravity. From a purely field
theoretical point-of-view, we then expect to find a relation between these two sets of
operators.
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Appendices

2.6 A. 3D BF Gauge Theory

Recall [3] that the actions of BF-gauge theories are topological and of the form

SBF = Tr(B A F) , (2.6.4)

where B is an ad(G)-valued (n - 2)-form on the oriented, closed n-manifold, M
and F is the curvature of the G-bundle whose connection is A. Path integrals for
these theories with the insertion of any operators except those composed of B have
support only on flat connections. The wavefunctionals for these theories reduce to L 2-
functions on the moduli space, M, of flat connections. For purposes of path integral
quantization, the partition function of the BF-gauge theoryis

ZBF = [dA][dB][d][dc[d] [dc'][d]b]][db']e-[sBF+sBFgf (2.6.5)

where
SBF,g = f Tr(bd*A + b'dAB - d*dAc- 'd*dAc) . (2.6.6)

The last action represents the projection of the connection into the Lorentz gauge and
the removal of the covariantly exact part of B; all done by means of the symmetries of
the BF-gauge theory. In this gauge fixing, the c(c') and (') fields are the zero-form,
anti-commuting ghosts and anti-ghosts for the A(B) projections, respectively.

Canonical quantization on M = x R immediately leads to the constraints [33],

*dAB 0 , *F O0 , (2.6.7)

where the Hodge dual here is defined on E and is induced from that on M. The first
of these constraints is Gauss's law enforcing the gauge invariance of physical states
and the second requires that these states have support only on flat connections. In
this special case of 2+1 dimensional quantum gravity, it can be shown [20, 12] that
on physical states Diff(E) is equivalent to these constraints.

2.7 B. 3D Super-BF Gauge Theory

The action for super-BF gauge theory [3, 34] is

SSBF = I/ Tr{BAF - XAdA'b

+ 7d*A + A*A + A[,*4]
+ q/'d* + A'*LA' + A'[,*X] } . (2.7.8)

All fields are ad(G) valued and their form degree, Grassmann-parity and fermion/ghost
number are listed in the following table:
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FIELD DEGREE G-PARITY GHOST #
B 1 even 0
A 1 even 0

X 2 odd -1
1 odd 1

rl 0 odd -1
7' 0 odd 1

A 0 even -2
0 even 2

A' 0 even 0

o' 0 even 0

Placing this set of fields in the context of section 2.2, the BF-gauge theory is the
GFT and super-BF gauge theory is the TQFT. The sets of fields are represented by
X = (B, A) with Y being the rest of the fields in this table.

The (Yang-Mills) gauge invariant action (2.7.8) may be obtained by starting with
the zero lagrangian and gauge fixing the topological symmetry A = eF, to the flat
connection condition, F = 0. It is invariant under the horizontal BRST transforma-
tions

QH : A + , QH : - dAO ,

Q : X - B + dA' , QH: B [X, ] + [', ]
QH: , Q : [, [] ,
QH: A ri' Q : [, ] . (2.7.9)

Additionally, it is invariant under the one-form symmetry SB = dAA. The gauge
fixing of these symmetries introduces the usual ghost "kinetic" terms plus some new
terms which involve Yukawa-like couplings with ak and B. We will return to these
later. It is worthwhile to note that the action, SSBF may be written as the action of
a BF-gauge theory plus "supersymmetric" completion term as**:

SSBF = SBF + SS · (2.7.10)

The partition function for super-BF gauge theory is (see appendix 2.9 for our
notation)

Z(M) = [dt]SBFe -SSBF (2.7.11)

Integrating over B we see that this partition function has support only on flat con-
nections as is the case with the BF-gauge theories. However, ?6 and 4 have made their
appearances. The observables [3] of this theory are elements of the QH-equivariant
cohomology and are maps from H*(M) to H*(M). For rank two groups they are
constructed as polynomials of the following homology cycle integrals:

0(4) = 1Tr(b2 )
2
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o(3) = fTr(O4),

((2) = J Tr(OF + 2 A )

0(1) = IM Tr(/ A F) . (2.7.12)

In these expressions, the index (k) represents the fact that 9(k) is a k-form on mod-
uli space or carries ghost number k in the BRST language. These are the three
dimensional analogs of the Donaldson invariants which may be constructed in four
dimensional topological Yang-Mills theory [23].

2.8 C. Special Topology for BF: Zg x S1

In this appendix, we would like to suggest the possible existence of polynomial
invariants in the pure BF-gauge theory if the three-dimensional manifold is taken to
be the Lens space S2 x S1 or Eg x S1, in generaltt. In what follows we will assume
the temporal gauge. However, this is not completely possible due to the holonomy
of the gauge field in the S1 direction. It is for this reason that our discussion is
only suggestive. Nevertheless, see ref. [36] in which an explicit demonstration of the
relation between Chern-Simons theory and G/G WZW theory on Eg is given.

Expand all of the fields in the harmonics of S1 , ein", (where 0 is the coordinate on
S1 and n is an integer) symbolically as 4(Eg x S) -=En i(n)(ng)e

in. Then choose
the "temporal gauge" so that the connection in the S1 direction vanishes leading to
the actiont

SBF = l| Tr( (n)dA(_.) + 0(n)A(m) A A(n-m)
Eg n n,m

- iEnB(n)A(-n) + En(n)c(_n) ), (2.8.13)
n n

where (n) are the components of the original B field in the S1 direction. Realizing
that the B(n) for n 0 does not appear in a term with derivatives, we integrate it
out of the action finding

SBF = Tr (F + E nn)n)) , (2.8.14)

where 0 - (0) and F is the curvature on E, constructed out of A(o). With the excep-
tion of the completely decoupled fermionic term, this is the action for two dimensional
BF theory. It has been recently studied quite extensively [35, 26]. Notice that we did
not obtain it via compactifying the S1 direction. That direction simply decouples due
to the first order and off-diagonal nature of the gauge theory. Extending the theory

ttHere, as in the text, eg is a genus g Riemann surface.
**In this appendix, is not the scalar field in the super-BF gauge theory considered in the body

of the paper.
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to incorporate an equivariant cohomology is possible, however, we will not need this
in order to obtain our results.

From the partition function for this action, it is easy to show that gauge invariant
functions of will be invariant under diffeomorphisms. As K = ikdAq + [, (K)],
we must show that (dO(q)) = 0, where 0 is some gauge invariant function constructed
only out of . This equality follows from the statement that dAq is obtained by
varying the action with respect to the connection, thus its expectation value and/or
correlation function with any other functions of is a total functional derivative on
A; hence it vanishes. Another way to see this result is that a symmetry of the action
(2.8.13) exists in which may be shifted into a n, (or c,). This symmetry, however,
does not affect the X zero-mode (solution of dAO = 0) as it does not appear in the
action. The exponent in definition of BI is QH exact and since it is constructed to be
gauge invariant it is also QH closed.

2.9 D. Notation

The symbol, G is used to denote a semi-simple Lie group. The space of gauge
connections is written as A4. Our generic notation for spacetime manifolds is M while
we use the symbol, M(M, G) for the moduli space of specific (e.g., flat) connections
for the G-bundle, P, over M. The exterior derivative on M is d while the covariant
exterior derivative with respect to the connection A is dA. Coordinates are M are
written as x, y, etc. while coordinates on M(M, G) denoted by m. The gauge covari-
ant laplacians on k-forms are written as (k) . The genus of a handlebody/Riemann
surface is g. Any metrics which appear explicitly are written with indices or other-
wise in an obvious manner. While y denotes a homology one-cycle, stands for a
homology two-cycle. The functional measures used are defined in the following table:

NOTATION MEASURE ACTION

[d/]BF [dA] [dB] [de] [dc] [dc'] [dc'] [db] [db'] SBF + SBF,gf

[d]s [dx] [d] [d7] [dr [d+] [dA] [d+'] [dA'] Ss
[dtl]SBF [dp]BF[dy]S SSBF

All other notations are established in the text. Except note that our field notations
for the TQFT's are not the same in three and four dimensions (see section 2.4).
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Chapter 3

A Note on the Semi-Classical
Approximation in Quantum
Gravity

On Tuesday, when it hails and snows,
The feeling on me grows and grows
That hardly anybody knows
If those are these or these are those.
(The World of Pooh by, A. A. Milne)

Abstract:

We re-examine the semiclassical approximation to quantum gravity in the canon-
ical formulation. It is shown that the usual interpretation of a WKB state does
not give an adequate semiclassical description of both matter and gravity degrees
of freedom. A state for the gravitational field is proposed which has the necessary
properties to describe quantum field theory on a background spacetime with small
quantum fluctuations. Its connection with WKB states is clarified using a reduced
phase space formalism. This state is used to give a qualitative analysis of the effects
of geometry fluctuations, which can be related to the breakdown of the semiclassical
approximation near a black hole horizon.
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3.1 Introduction
Although we do not yet have a consistent quantum theory of gravity, there is a
simple requirement that can be placed on any sensible theory: It should be capable of
describing quantum matter fields interacting with an essentially classical gravitational
field in some limit. This is known as the semiclassical limit of quantum gravity. In
some formulations of quantum gravity, such as perturbation theory for the linearized
field around a given background, quantum field theory in curved spacetime is built in.
In non-perturbative approaches, however, where spacetime is only a derived concept,
it is useful to see how this limit can be obtained.

Some considerable work towards understanding the semiclassical limit has been
done in the canonical approach to quantum gravity using the ADM formulation [38].
In this approach there is no background spacetime, since the dynamical variables are
the 3-metrics of spacelike hypersurfaces, plus the matter fields on these hypersurfaces.
Employing the Dirac procedure, physical states must be annihilated by the momen-
tum and Hamiltonian constraints. The momentum constraints reduce the phase space
to the space of all 3-geometries (the equivalence classes of 3-metrics under spatial
diffeomorphisms). The Hamiltonian constraint is imposed by the Wheeler-DeWitt
equation which has the effect of factoring out translations in the time direction, and is
a direct analogue of the Klein-Gordon equation in the quantized relativistic particle.

The semiclassical limit is obtained by expanding the Wheeler-DeWitt equation
in powers of the gravitational coupling constant G. To first order, a perturbative
solution yields a WKB approximation

eiSHJ[hij]/hG

to the gravitational Wheeler-DeWitt equation (where SHJ[hi] is a Hamilton-Jacobi
function for general relativity). As was shown by Lapchinski and Rubakov, and later
by Banks [39], the next order approximation is obtained by solving the functional
Schr6dinger equation for a matter state on a set of eikonal trajectories corresponding
to the set of solutions of Einstein's equations given by SHJ[hij]. The approach of Refs.
[39] focussed on deriving the Schr6dinger equation for matter variables propagating on
a classical background, without giving a careful treatment of the gravitational degrees
of freedom. More recently, attempts have been made to interpret the entire state,
including both matter and gravity [40, 41]. It has been suggested that a solution of the
gravitational WKB equation could be interpreted as describing a statistical ensemble
of classical spacetimes, each of which acts as a background for quantum matter fields
(see [2] for a review of this point). Some reservations have been expressed about this
interpretation [42], and it seems that simple WKB eikonals may not be adequate.
We add simple arguments explaining why a first order WKB state cannot be used to
describe the state of a classical gravitational field of the kind we observe, and why it
is not consistent to regard the ensemble as statistical in any sense. The question we
then have to address is whether it is possible to find a modification of a first order
WKB state that can consistently describe a single classical spacetime, but that still
leads to the functional Schr6dinger equation.
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It is useful to recall how a state representing a single spacetime can arise from a
superposition of WKB type states, a point of view expressed originally by Gerlach
[43], but which appears to have been discarded in the standard semiclassical WKB
interpretation. The importance of this is most clearly understood in a reduced phase
space language, which can be derived from standard Hamilton-Jacobi theory for the
gravitational field. Using this language, it is evident that a state which admits a
classical interpretation must be well localized in the constants of the motion that
classify different classical spacetimes. The operators corresponding to these variables
occur in canonically conjugate pairs, and so do not all commute. Thus Gerlach's states
can be understood as coherent states with respect to these observables. The important
result is that superpositions of this kind can be approximated by gravitational WKB
states with a judicious choice of the WKB prefactor. As a consequence, the functional
Schrodinger equation for the matter state still appears in the second order expansion
of the Wheeler-DeWitt equation with this choice of state to describe the gravitational
field. It follows that a consistent semiclassical approximation exists that describes
quantum fields propagating on a single fixed background.

Identifying the correct superposition of first order WKB states that leads to a
consistent semiclassical interpretation is essential in order to discuss the Wheeler-
DeWitt equation beyond the semiclassical approximation. A coherent superposition
can be used to demonstrate the absence of quantum gravity effects in macroscopic
physics. It can also be used to predict the situations in which the semiclassical
approximation breaks down, an example being the breakdown of the semiclassical
picture close to a black hole horizon described in chapter 5.

The study of the semiclassical limit of quantum gravity is of interest for a variety
of reasons. The first question that one should ask in quantum gravity is how the 3+1
dimensional spacetime emerges from the wavefunction on 3-geometries. The usual
approach is then to ask how matter states are to be defined, how these form a Hilbert
space, and what ought to be an inner product on such states. In that case it is
essential to identify a single background spacetime on which a many fingered time
function r(x) is defined; the fluctuations of gravity around this mean metric are then
included as normal degrees of freedom (gravitons) on the same footing as the matter
degrees of freedom.

Here we shall consider a somewhat different construction, focussing on what kind
of a solution to the Wheeler-DeWitt equation best represents an approximately clas-
sical spacetime with matter propagating on it. It is unclear how one would determine
what wavefunction the Universe (or a region thereof) would have from first principles.
However, one usually imagines that the process of decoherence leads to an effective
description where semiclassical gravity is valid. Thus for the matter observables of
interest one imagines that out of all 3 geometries on which the wavefunctional has
support, only those close to a mean 3+1 dimensional spacetime effectively contribute.
Thus it makes sense to construct a wavefunction that directly describes such a semi-
classical limit. Here not only must the gravity look classical, but the matter must
evolve to a good approximation by the Schr6dinger equation on this metric. We
discuss in this paper how such a wavefunction should look.

In Sec. 2 we present a review of the expansion of the Wheeler-DeWitt equation in
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powers of the Planck mass, and discuss the pros and cons of standard interpretational
framework that accompanies this expansion. In Sec. 3, we discuss the WKB state
in quantum gravity in terms of physical (non-gauge) degrees of freedom, in order
to show why a coherent superposition of first order WKB states is the quantum
state of the gravitational field that exhibits classical behaviour. In Sec. 4, we show
how a superposition of WKB states is approximated by a single WKB state, where
information about superpositions is contained in the WKB prefactor. In this way a
superposition of WKB states leads to the functional Schr6dinger equation within the
usual perturbation expansion. Sec. 5 contains a discussion of higher order corrections
to the semiclassical approximation, with the aim of understanding when and how this
approximation can break down. Finally, in Sec. 6, we review some results from a 1+1
dimensional model which serve to to illustrate the rather formal discussion of Sec. 3.

3.2 The semi-classical approximation
Expanding the Wheeler-DeWitt and momentum constraint equations order by order
in the gravitational coupling constant G leads to a WKB approximation. The aim
of this approximation is to find a quantum state that represents both a classical
background spacetime and a quantum field propagating on that background. In this
section, we shall give a brief review of some of the large amount of work on this
subject [39, 40, 41].

We ignore the details of the momentum constraint in the following discussion,
and assume that spatial diffeomorphism invariance is imposed at all orders. We do
not need to specify whether we are working with open or closed spatial topology.
Although we shall generally assume that spacelike hypersurfaces are compact, this
discussion can be easily generalized to spacetimes with well-defined asymptotics (see
for example Sec. 6.2).

The Wheeler-DeWitt equation reads

52 2 [f, h] VhR- 167rGh2Gijkl - f h] _ r [ f , h] + Hmatt,,e[f, h] = 0 (3.2.1)
6hij8hkl 167rG

taking c = 1. Consider expanding the state as

T = e (soIG+sl+Gs2+ .)l/i (3.2.2)

where each Si is assumed to be of the same order. Eq. (3.2.1) can then be expanded
perturbatively in G. The first order equation simply states that So[f, h] = So[h] is
independent of the matter degrees of freedom. At the next order, we find that So[h]
must be a solution of the general relativistic Hamilton-Jacobi equation [43, 46]

1 5So So0
2 Gijkl 6hj h - 2v R = 0. (3.2.3)

There is not a unique solution to the Hamilton-Jacobi equation (3.2.3), so there is
some freedom in the choice of So[h], as we shall discuss in detail below.
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At the next order, we obtain an equation for Sl[f, h]. It is convenient to split
Si [f, h] into two functionals x[f, h] and D[h], so that

1 eiSo[h]/iG (3.2.4)
D[hl

is the next order full WKB approximation to the purely gravitational Wheeler-
DeWitt equation. The equation for the WKB prefactor D[h] is

6So[h] D[h] 1 2S0[h
Gijkl Gijkl D[h] = 0. (3.2.5)Shij Shk6 2 ShijShkl

The remaining condition on x[f, h],

bso 6x[f, hi]ihGijkl [ = H atterX[f, h] (3.2.6)
bhij Shkl

is an evolution equation for the functional x[f, h] on the whole of superspace (the
space of all 3-geometries). Its solution requires initial data for x[f, h] on a surface in
superspace.

Eq. (3.2.6) is closely related to the functional Schr5dinger equation. Having spec-
ified the initial data, it can be solved by the method of characteristics, by restricting
to eikonal tracks on superspace. The tracks are specified by solving the classical
equations

7rj = bSo[h],hi or d = -2N(x, )Kij(x,r) + V(iNj)(x, ') (3.2.7)

which give the family of solutions of Einstein's equations defined by the Hamilton-
Jacobi function So[h]. The solution of Eq. (3.2.7) requires a choice of integration
constants and a choice of lapse and shift functions N(x, r) and Ni(x, r). The inte-
gration constants specify different classical spacetimes while the lapse and shift are
just choices of co-ordinates on each of these spacetimes. Along each characteristic,
Eq. (3.2.6) becomes the functional Schr6dinger equation

ix[f, hi
ih x[f, h] = Hmatterx[f, h] (3.2.8)

where r is the time parameter corresponding to the chosen foliation.
There are two potential integrability conditions to worry about when solving Eq.

(3.2.6) using the method of characteristics. Firstly, Eq. (3.2.7) can be integrated
using different lapse and shift functions, corresponding to using different co-ordinates
on the background spacetime. We expect (3.2.8) to be covariant under changes of
co-ordinates, but this is not always the case. Integration with different lapse and shift
functions can lead to ambiguities in the definition of x[f, h], as has been discussed by
various authors [105, 48, 49]. We shall ignore this problem here. Secondly, there is the
question of different integration constants in the solution of Eq. (3.2.7), corresponding
to integration of (3.2.6) along different classical spacetimes. Formally this causes no
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problems, since in general there is at most one solution to Einstein's equations that
passes through any point in superspace and is compatible with a given Hamilton-
Jacobi function So[h]. However, as we shall see in Sec. 5, this is an important issue
when considering corrections to the semiclassical approximation.

It has been argued that although (3.2.4) has support throughout superspace, its
Wigner function is peaked around configurations where ri j = 6So/6hij (which defines
the ensemble of classical solutions (3.2.7)) [40, 41]. This has led to the suggestion
that the WKB state

1 = eiSo[h]/GX[f, h] (3.2.9)
D[h]

describes an ensemble of semiclassical spacetimes, where the WKB prefactor D[h]
gives a measure on the ensemble of solutions, suggesting a statistical interpretation.

Since each eikonal trajectory defined by So[h] is exactly classical, it does not make
sense to regard (3.2.9) as describing an ensemble. Even if some form of decoherence
is invoked, it is impossible for a quantum state to describe an ensemble of strictly
classical spacetimes. It might at first sight appear that fixing an initial 3-geometry will
select one characteristic from this ensemble and then any subsequent question about
the matter state depends only on integration along that characteristic. However, the
observation of an initial 3-geometry is not compatible with a state that has support
on the whole of superspace since it cannot leave that state unperturbedt. In order for
a wavefunctional to describe a classical background, it should have expectation values
for observables associated with classical quantities that are well defined with small
quantum spreads. Observables associated with picking out a particular characteristic
certainly fall into this category. This suggests that a quasiclassical state for the
gravitational field should have support on a narrow tube in superspace around a
classical spacetime, much like a quasiclassical state in quantum mechanics.

3.3 The WKB state in quantum gravity
In this section, we shall focus on the gravitational WKB state. We present a review
of Hamilton-Jacobi theory as applied to the gravitational field, which clarifies the
interpretation of WKB states.

3.3.1 Hamilton-Jacobi theory and WKB states
Let us begin by considering the general relativistic Hamilton-Jacobi equation (3.2.3).
In order to specify a solution of (3.2.3), it is necessary to supply a series of constants
of integration which are usually called a-parameters in Hamilton-Jacobi theory (see
for example Ref. [50]). Any solution S takes the form S[hij(x), a], where a represents
an infinite number of integration constants (equivalent to two field theory degrees of

tThe idea that any observation dramatically perturbs the gravitational state is somewhat out of
line with a semiclassical interpretation. After all, if this were to happen, the interesting question
would then be to identify the perturbed state, which would be the one giving semiclassical behaviour.
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freedom in 3+1 dimensions [2]). Given a Hamilton-Jacobi functional S[h, a], the
relation

- 8S[hij,a] (3.3.10)
bhij

gives the momenta conjugate to h in terms of h and a. Eqs. (3.3.10) are a set of
first order differential equations (c.f. Eqs. (3.2.7)), that yield solutions to Einstein's
equations, but require a further set of integration constants to pick out a particular
solution. Alternatively, a classical solution can be fixed by defining a set of constants

: 6S[hi, a] (3.3.11)
ba

which are precisely the integration constants for (3.3.10), and then solving for hij (the
set of all hij that satisfy this equation form a track in superspace defining a solution of
Einstein's equations). From either (3.3.10) or (3.3.11) it follows that a single solution
of Einstein's equations requires a choice of values for both the a and : parameters.

Although this is so far just standard Hamilton-Jacobi theory, it helps to under-
stand WKB states of the form eiS[h 'j'] . It is clear that a WKB state supplies the
values of the a parameters, but that defines a family of solutions to Einstein's equa-
tions with fixed a and arbitrary . It is in this sense that the WKB state contains
information about an ensemble of spacetimes. Given a set of a parameters (i.e. a
Hamilton-Jacobi function), a 3-geometry hj fixes a unique value of P for which the
a, spacetime contains hij.

We can use Hamilton-Jacobi theory to obtain a gauge-invariant description of
WKB states [51]. Eq. (3.3.10) can be turned around to give a set of functionals
a[hij, 7rij ] which are constants of the motion - that is they have vanishing Poisson
bracket with the Hamiltonian constraint. It is also possible to define functionals
/[hj, 7rij] which are conjugate to the a[hij, rij], and are similarly constants of the
motion. They are defined in terms of hij and r j by the equations

bS [hij, a][hij, rt]= S[ha] (3.3.12)
C ot=oa[hij ,Tri j]

These definitions provide a canonical transformation between the hij(x) and rij(x)
and the a and /3, so that the Hamiltonian vanishes in the new co-ordinates. We are
free to write our theory in terms of these constants of the motion. The a and P are co-
ordinates and momenta on the physical phase space* (if we assume that we have solved
the momentum constraint) and so are the correct variables to use for quantization
according to the Dirac procedure. They can be though of as parametrizing classical
solutions of the Einstein equations [52], in the sense that fixing the values of a[hij, rij]
and P[hij, 7rij] yields a classical solution simply by solving the equations

a[hij, 7ri ] -= ao, B[hij, 7rij] = /3. (3.3.13)

tOf course the implicit equations (3.3.10) are extremely difficult to solve in four dimensions, and
so this discussion should be regarded as somewhat formal in this sense.
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Let us imagine promoting the Poisson bracket algebra

{c, Oj} = 6ij, {-I, a} = {7-(, } = 0 (3.3.14)

to an operator algebra in the space of functionals 1[hij(x)], ignoring any anomalies or
ordering ambiguities. Although the Hamiltonian vanishes in the ac or 3 representation,
so that any state I[a] or [/P] is automatically a physical state, we continue to work
in the metric representation since this makes the interpretation of states somewhat
easier.

The first order WKB state To[hij, ao] = eiS[hij' ,co]/hG is an approximate eigenstate
of the operator &[hj, 7ij] with eigenvalue a0 , in the sense that:

&To[hij, ao] = ao o[hi, ao] + o(hG). (3.3.15)

It is easy to see why this is the case. Let us write a[hij, 7rij ] as an operator by replacing
the r ij by ih/Shij. Then the leading order contribution to the rhs comes when all
derivatives bring down the exponent with its accompanying powers of 1/hG. In this
leading term, the derivatives are replaced by 7r[h 6S[hij, [h, o]/hij which has
the obvious property that a[hij, 7rao] = a0 . An eigenstate of & can be expected to
have maximal uncertainty in : As a functional of hij, I 0[hij, ao] is damped where
hij is not found within any classical solution defined by a0 and /3 for any .

The above discussion shows that first order WKB states in the metric representa-
tion are closely tied to the a parameters. Since there is no known physical principle
that prefers the a parameters to the /3's, for example, it seems rather odd that they
play such an important role in the semiclassical approximation. It would be more
satisfactory if some mechanism restored a symmetry between the a's and the Pi's. Eq.
(3.3.15) for the first order WKB states suggests thinking about the general properties
of eigenstates of gauge invariant operators. A single spacetime is defined by a pair ao
and 0o of gauge invariant quantities, and any sensible observation within that space-
time implies a knowledge of both a and to some degree of accuracy. For example
any sequence of observations of hij that is made within a classical spacetime must
yield values for both a and to a reasonable accuracy. This shows that the quantum
state corresponding to a classical spacetime should have expectation values for both
& and/3 with small quantum spreads, rather than being an eigenstate of one set of
operators. This can be achieved by taking a gaussian superposition of eigenstates of
a.

3.4 WKB superpositions and the semiclassical ap-
proximation

So far we have only concentrated on the leading order term TIo[hij, ao] of the WKB
approximation. We have seen that this is closely related to an eigenstate of &. At any
subsequent order, there is a freedom in how we choose to solve the Wheeler-DeWitt
equation, which allows us either to construct successive approximations to an exact
eigenstate of &, or to construct other states. These other states must be some subset
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of superpositions of & eigenstates since eigenstates of & form a basis for the set of all
physical states.

Let us write exact eigenstates of & which are also exact physical states as ,, [hij].
A general physical state is a superposition of eigenstates of c&. The discussion in the
previous section suggests that a quasi-classical state in quantum gravity should be a
coherent superposition of & eigenstates TI, [hij]:

IT) = dac w(a)la) or I[hij] = J daw(a),[hij] (3.4.16)

where w(a) is a distribution that ensures a close to minimal uncertainty in both sets
of observables a and . It has support only on a restricted region of superspace
centered around a classical trajectory, and is compatible with weak observations of a
classical spacetime which effectively measure the gauge invariant quantities a and .

From the fact that a first order WKB state approximates an eigenstate of &,
we can obtain an expansion in hG for the superposition (3.4.16). The important
conclusion we reach is that an approximation to (3.4.16) can be obtained in the
usual perturbative expansion in powers of hG of the gravitational Wheeler-DeWitt
equation, by appropriate choice of integration constants for the terms of higher order
than So[h].

A simple example of this is given by the WKB approximation of the free relativis-
tic particle. Although the first order WKB wavefunction solves the Klein-Gordon
equation exactly, a WKB prefactor that is not constant approximates superpositions
of the exact WKB states. As was first noted in Ref. [53], the fact that the Klein-
Gordon equation is second order implies the presence of degrees of freedom that can
give rise to the kind of superpositions we are considering.

In the case of gravity, let us write a state which approximates a classical spacetime
with parameters ao and 0 as

I'I) = fda ei(-ao)ohGe(ao) 2/hG Ia)

so that w(a) = e-i(a-a°o)Po°/Ge-(a-) 2 /AG. Here we are working with a and P normal-
ized so that they have the same dimensions and that [a, ,3] = hG. The choice of w(a)
ensures that a and are localized to within vK~ of their mean values a0o and do. We
also assume that some a and are large compared to vh~ so that there is a large
dimensionless parameter with respect to which we can perform the expansion. This
is related to the physical criterion that fluctuations should be small compared to the
characteristic scale of the solution. For example, a cosmology with a maximal size of
the order of the Planck scale (see Sec. 6 for an example) should not be considered
classical.

In the metric representation we have

(hijla) - eiS [h' i l /hG

to first order, so that

G [hij] da e- ((c- ) /ha e- Seis ,[ ]/hG. (3.4.17)
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The integration in (3.4.17) can be performed after expanding eiS[h_,a] in powers of
ca - ao. Keeping the terms contributing to So and D of Sec. 1, the result is

TG[hij] e ( ) e)
(4 + (I[ao]))/

ei tan- [S[o]/2]/ ahGe- i(S[ °]- o) 2SII" [ao]/ 2 G(4+(S " [o]) 2) (3.4.18)

where S[a] = S[hij, a], S'[a] = S[hii, a]/Sa and S"[a] = 62S[hj, a]/6a2. The first
term in (3.4.18) is the first order WKB approximation for a = a0 , the center of the
gaussian, and is the only rapidly oscillating term of order 1/hG. The other terms all
belong in the next order correction, Si. The last two exponentials are corrections to
S[ao] and provide some order h corrections to Einstein's equations. The remaining
terms are real and make up part of the WKB prefactor D[hij]. The important term is
the exponential, which damps 3-geometries hij which are not compatible with d = Bo.
Although the a and /i damping in this representation occur in different ways, the
resulting state is damped away from a narrow tube surrounding the mean spacetime
given by ao and 0. This is precisely what one expects for a gaussian superposition
(3.4.16).

The definition of a semiclassical state is not limited to the case where w(a) is an
exact gaussian. A general w(a) in (3.4.16) will do equally well provided that it is
peaked around some ao and that its fourier transform &(fi) is peaked around some
,o so that Aa, Aft --'/. Under these conditions one can write (3.4.16) to a good
approximation as

[hij = eiS[hjao] (S'(a) - 0)

where C contributes the damping in P, and both it and its derivatives belong to Si
or lower order terms.

We conclude that any quasiclassical superposition of pure WKB states is approxi-
mately of the WKB form (3.2.4) if we take the prefactor into account. Thus a coherent
superposition fits into the expansion scheme described in Sec. 2, and the matter por-
tion of the WKB state, x[f, h], is still given by solving the functional Schr6dinger
equation along characteristics, now restricted to lie in a narrow tube around the a0 ,
/Po classical solution. The characteristics are only those for ao and for all 's within
the tube, so that the semiclassical approximation still looks asymmetric with respect
to a and . However, the differences between evolving x[f, h] on any of the char-
acteristics generically belong to lower order corrections because of the narrowness of
the tube. In this sense the asymmetry has been removed and we can think only of
solving the functional Schr6dinger equation on a mean spacetime defined by a0 and
0o.

3.5 Beyond the semi-classical approximation
The fact that a semiclassical wave functional for gravity (3.4.18) has support on a tube
in superspace rather than a single eikonal track indicates the presence of corrections
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beyond the simple picture of quantum field theory on a single background spacetime.
These corrections should be compared with those discussed by Kiefer and Singh [54].
In general, they should be related to Planck scale physics, as was first explained by
Wheeler [55].

When one wants to talk about quantum gravity beyond the semi-classical approx-
imation, the lack of a background spacetime, and of the notion of matter fields living
on that background makes life difficult. It is unclear what is meant by a unitary the-
ory and how to define an inner product under these circumstances. It is likely that
some or all of these concepts make sense only to the same order as the semiclassical
approximation, but nonetheless they form the basis of our description of nature. The
semiclassical approximation using gaussian states is very much in agreement with
Wheeler's picture, since the Planck scale uncertainties in a and / can be related to
fluctuations in the underlying spacetimes which are generically on the Planck scale
(see chapter 5 and some of Wheeler's original arguments [55]).

Lets examine what we can learn qualitatively about corrections arising from the
geometry fluctuations. We want to look at the state of matter at some hypersurface

shd [f] - [f, hJ].

To the order of the semiclassical approximation (equations (3.2.5) and (3.2.6)), this
is given by taking hij to be embedded only in the spacetimes labeled by cao and some
/3. Then one finds that h0 [f] is a solution to the functional Schrodinger equation
on a fixed background.

Corrections to this approximation come from taking into account contributions
from all the possible spacetimes labeled by a and / which are not damped in the
gaussian state. A simple way to get qualitative information about these corrections is
to consider solving the functional Schr6dinger equation on all of these spacetimes (not
just those with a = cao) and comparing the properties of the solutions. In order to
solve the functional Schr6dinger equation for the set of spacetimes defined by (3.4.18),
it is necessary to give initial data on each of them (that is on a surface in superspace
transverse to the tube). This initial data should presumably be arranged to make the
corrections to the semiclassical approximation as small as possible.

If there are to be only Planck scale corrections to the semiclassical approxima-
tion, the difference between Schr6dinger evolution of matter states on each of the
spacetimes should be small, except at the Planck scale. If this is not the case, the
results obtained to the order of the semiclassical approximation are not consistent.
It is clear that one situation in which the semiclassical approximation breaks down
unexpectedly is if there is chaotic behavior of the matter state with respect to the a
and # parameters.

An example of the comparison of matter states is provided by comparing the
properties of matter correlation functions in all the different spacetimes. An insertion
point (i.e. an event) is only defined by its position on a 3-geometry (since the basic
variable in canonical quantum gravity is a 3-geometry). To define a correlation func-
tion one needs to pick a 3-geometry in the mean spacetime given by aco and o that
contains all the insertion points. The insertion points are defined by the 3-geometry
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and their locations within it. Next one needs to look at how the given 3-geometry is
embedded in the other spacetimes. This then identifies the insertion points in each of
the spacetimes, allowing a comparison of the correlation functions to be made [45].

The location of the insertion points in other spacetimes depends upon the choice
of 3-geometry containing the points in the ao, Po spacetime. It follows that the
size of the corrections depends on the choice of 3-geometry and thus on how one
chooses to foliate the mean spacetime. However small the dependence on the choice
of foliation, this seems to say that coordinate invariance is lost§, which looks puzzling
since we started off with the Wheeler-DeWitt equation which is supposed to impose
that symmetry. Recall, however, that the familiar notion of coordinate invariance
comes from the semiclassical expansion of the Wheeler-DeWitt equation, which gives
a covariant equation for matter evolution on a fixed background spacetime. To this
order, observations are independent of a choice of foliations of the mean background
spacetime. It is this notion which breaks down when one takes into account the
geometry fluctuations which are higher order corrections. This is because the meaning
of the Wheeler-DeWitt equation is different at this next order, since the notion of
diffeomorphism invariance is now a property of the combined matter-gravity system,
not just of matter on a fixed background.

What makes this discussion particularly relevant is that quantum gravity effects
that normally occur at the Planck scale are magnified to the classical scale by the
apparently chaotic behaviour of functional Schrodinger evolution on certain hypersur-
faces close to a black hole horizon. In the 1+1 dimensional CGHS model [56], it will
be shown in chapter 5 that, for a particular choice of hypersurface, an insertion point
located near the horizon in a mean spacetime of mass M is identified with points
almost all over the horizon in spacetimes of masses differing from M on the Planck
scale. This is enough to show that corrections to the semiclassical approximation
can be large. Also, since the result depends sensitively on the choice of hypersurface,
it indicates a breakdown in coordinate invariance. This probably means that in an
effective description, the results of certain sets of observations near the black hole
horizon are not covariant, a conclusion similar to those of 't Hooft [57] and Susskind
[58].

3.6 A two-dimensional example
The use of Hamilton-Jacobi theory to reduce to the physical degrees of freedom was
discussed rather abstractly in Sec. 3. It is instructive to illustrate this using a simple
1+1 dimensional dilaton gravity model, which also allows some brief comments about
open spacetimes. The model we shall consider was discussed by Louis-Martinez et
al [59], and we shall make extensive use of their results. Related work on open and
closed spacetimes can be found in Ref. [60].

§This foliation dependence is independent of the anomalies discussed in Sec. 2 and in Refs.
[105, 48, 49].
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3.6.1 Classical theory: closed universe
Let us focus primarily on the case of a closed cosmology. Consider the action,

S = d2 x/i [OR - V()]

where x is a periodic co-ordinate (with period 2r), so that M = S1 x R. A constant
potential V(+) = -4A2 gives the closed universe version [61] of the CGHS model [56].

Working with the parameterization

ds2 = e2p (-N2dt2 + (dx + NLdt)2)

for the metric g,,, the canonical variables are p(x) and +(x), with conjugate momenta

H, = (N p' + Nj-) (3.6.19)

H = -2 (-N ') (3.6.20)
N -

while the lapse and shift functions N and N1 _ are Lagrange multipliers. As usual, the
Hamiltonian is just a sum of the Hamiltonian and diffeomorphism constraints

H = Jdx[N + NLl]

where

1
It = 2S" - 2q'p' - InInI + e2PV(O), (3.6.21)

IH/ = p'Hp + O'Hn, - II'. (3.6.22)

The Hamilton-Jacobi equation reads

g[4, p] + = 0
&k Sp

where

g[C, p] = -44" + 4 4'p' - 2e2PV(q).

This is solved by the functional

s[O, p, C = 2 d Qc + [2q' + Qc (3.6.23)

where C is a constant,

Qc[S, p] = 2 [(0Y)2 + (C + j(q)) e2P] 
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and

dj() = V(W,

(3.6.23) is also invariant under spatial diffeomorphisms.
In the Hamilton-Jacobi function (3.6.23), we see the presence of a parameter C

which is the a parameter in this problem. To deduce C as a functional of b, p and
their conjugate momenta, we must invert the relations

ES _ [q, p ES
Q = Qc[, ].

These lead to the definition

C =e -2 (12 - (;)2) ;- j(q) (3.6.24)

Similarly we can define the quantity f, we shall call P following [59], as

= S - dx 2e2Pii
P SC = - dx 4' (3.6.25)

C HII - 4(0') 2 '

It is easy to check that C and P are conjugate and that they have vanishing Poisson
brackets with the constraints.

From Eq. (3.6.23) for the Hamilton-Jacobi functional, we can solve the classical
equations of motion, using the relations

SS SS
I S-O I H S

and Eqs. (3.6.19) and (3.6.20).
For a constant potential V(+) = -4A 2, and taking a = 1 and M = 0, there are

homogeneous solutions

X2P2 _2pt7(_dt 2
ds2 = APe-2-2PtI(dt2 + dx2)

and

C= C e_2,\2pt/-r
4A 2

for all values of C and P.

3.6.2 Classical theory: spacetimes with boundary
The case of an open universe has been studied by various authors [60]. It has been
shown that the variable C is related to the ADM mass of the spacetime, while P,
integrated throughout a spacelike slice, is related to the time at infinity (or more
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precisely, to the synchronization between times at infinity). These results are in
keeping with the much earlier work of Regge and Teitelboim [62] on conserved charges
in canonical quantum gravity in open universes.

It is interesting to note that while P is associated with a constant of the motion as
described in Refs. [60], a closely related quantity provides a local geometric definition
of time for different hypersurfaces within a static spacetime. Consider any 1-geometry
associated with a hypersurface in a static classical solution. It can be intrinsically
described by the function (s), where s is the proper distance along the hypersurface
measured from some base point B at infinity, and is the value of the dilaton field.
Let o(s) be the function defining a constant time surface t = tl passing through
B = qo(O). Consider now a set of hypersurfaces passing through B that are defined
by qi(s) which differ from do(s) only in some finite interval 0 < s < so. For s > so,
qi(s) also define constant time hypersurfaces but at some time t = to + Ati.

Using (3.6.24) to give II, in terms of C and , we can define a quantity

+ds ±

(C + j(0i))

closely related to P. Here S > so so that the integration extends well into the region
where Oq(s) = qO(s).

Now in a static coordinate system

ds2 = e2p(-dt2 + dx2)

we can compute the change in the time coordinate along any hypersurface using

(dt 2 e-2p (di
dx (d, )2

Since in the static coordinate system Hp = 0, it follows that

dt 2 C + j(oi)

k ds )

From this expression we deduce that

dt, ) 2d /) +- + [ ' - j)]/2 1/ 2

a\t Ji d [( ds ) + + i( i) I d· [( ds + + j(0i)|
By definition t is zero for , but is non-zero for any () over the regon 0 < < 

By definition At is zero for o, but is non-zero for any Oi(s) over the region 0 < s < so.
The connection between Ati and Ti(S) emerges by noting that any static solution

has

eP d= C o s
( OdsY
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where co is some constant of proportionality (this can be shown using Eqs. (3.6.21)
and (3.6.24)). From this it follows that

At,(S) = Ti(S)
co

3.7 Conclusions
We have shown that the appropriate state to consider as a semiclassical state for
quantum gravity is a superposition of WKB type states which is peaked around
some values of the reduced phase space variables, with close to minimal uncertainty
in the reduced phase space variables. A pure first order WKB state on the other
hand is an approximate eigenstate of half of these variables and hence not adequate.
When matter is present the correct ansatz for the gravity part is still a gaussian
superposition, since this is perfectly compatible with the derivation of the Schrodinger
equation from the Wheeler-DeWitt constraint.

Using a superposition of WKB states, we were able to give a heuristic treatment
of higher order effects due to the quantum nature of the background geometry. This
allowed us to identify certain situations in which the semiclassical approximation is
inconsistent because of the sensitivity of matter propagation to small fluctuations in
the background geometry. An example of this type of situation is given by the break-
down of a semiclassical description of matter propagating on a black hole spacetime
[44, 45]. We also showed that as a consequence of quantum fluctuations, coordinate
invariance is lost on the Planck scale, and in certain cases, such as near the black
hole, this extends to macroscopic scales.

We have not discussed in this paper how it is that a system described by the
Wheeler-DeWitt equation comes to find itself in the particular state that exhibits
semiclassical behaviour. There is in principle no dynamical or kinematical reason
to prefer this state over any other. Perhaps the most likely answer to this question
is that decoherence effectively drives any initial state to a configuration in which
observations are equivalent to those within the gaussian state. It is important to
note, however, that decoherence cannot drive a state towards any configuration for
which the background spacetime is more classical than the one we have described.
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Chapter 4

Scalar field quantization on the
2+1 Dimensional Black Hole
Background

On Wednesday, when the sky is blue,
And I have nothing else to do,
I sometimes wonder if it's true
That who is what and what is who.
(The World of Pooh by, A. A. Milne)

Abstract

The quantization of a massless conformally coupled scalar field on the 2+1 di-
mensional Anti de Sitter black hole background is presented. The Green's function is
calculated, using the fact that the black hole is Anti de Sitter space with points iden-
tified, and taking into account the fact that the black hole spacetime is not globally
hyperbolic. It is shown that the Green's function calculated in this way is the Hartle-
Hawking Green's function. The Green's function is used to compute (To), which is
regular on the black hole horizon, and diverges at the singularity. A particle detector
response function outside the horizon is also calculated and shown to be a fermi type
distribution. The back-reaction from (T,,) is calculated exactly and is shown to give
rise to a curvature singularity at r = 0 and to shift the horizon outwards. For M = 0
a horizon develops, shielding the singularity. Some speculations about the endpoint
of evaporation are discussed.
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4.1 Introduction
The study of black hole physics is complicated by the many technical and conceptual
problems associated with quantum field theory in curved spacetime. One serious
difficulty is that exact calculations are almost impossible in 3+1 dimensions. In
this paper we shall instead study some aspects of quantum field theory on a 2+1
dimensional black hole background. This enables us to obtain an exact expression
for the Green's function of a massless, conformally coupled scalar field in the Hartle-
Hawking vacuum [64]. We use this Green's function to study particle creation by the
black hole, back-reaction and the endpoint of evaporation.

We shall work with the 2+1 dimensional black hole solution found by Baiiados,
Teitelboim and Zanelli (BTZ) [65]. It had long been thought that black holes cannot
exist in 2+1 dimensions for the simple reason that there is no gravitational attraction,
and therefore no mechanism for confining large densities of matter. This difficulty
has been circumvented in the BTZ spacetimet, but not surprisingly, their solution has
some features that we do not normally associate with black holes in other dimensions,
such as the absence of a curvature singularity. It is interesting to ask whether this
spacetime behaves quantum mechanically in a way consistent with more familiar back
holes.

The spinless BTZ spacetime has a metric [65]

ds2 = -N2 dt2 + N-2dr2 + r2dq2

where
N2 + r2 = Me2.

Here M is the mass of the black hole. The metric is a solution to Einstein's equations
with a negative cosmological constant, A = _-- 2 , and the curvature of the black
hole solution is constant everywhere. As a result there is no curvature singularity as
r - 0. A Penrose diagram of the spacetime is given in Fig. 1.

An important feature of the BTZ solutions is that the solution with M = 0
(which we refer to as the vacuum solution), is not AdS3. Rather, it is a solution that
is not globally Anti de Sitter invariant. It has no horizon, but does have an infinitely
long throat for small r > 0, which is reminiscent of the extreme Reissner-Nordstr6m
solution in 3+1 dimensions. It is worth noting that there are other similarities between
the spinless BTZ black holes, M > 0, and the Reissner-Nordstr6m solutions for
M > Q. In particular, the temperature associated with the Euclidean continuation
of the BTZ black holes has been computed in [65], and it was found to increase with
the mass, and to decrease to zero as M -- 0. Thus, if we carry over the usual notions
from four dimensional black holes, the M = 0 solution appears to be a stable endpoint
of evaporation.

tA charged black hole solution in 2+1 dimensions had previously been found in Ref. [66]. For
further discussions on the BTZ black hole, see Refs. [67].
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r=infinity

r-O

Figure 1: A Penrose diagram of the M 0 black hole. Information can leak
through spatial infinity, unless we impose boundary conditions at r = oo.

A feature of the BTZ solution that we shall make use of, is that the solution arises
from identifying points in AdS3, using the orbits of a spacelike Killing vector field.
It is this property that is the starting point of our derivation of a Green's function
on the black hole spacetime. We construct a Green's function on AdS3, and this
translates to a Green's function on the black hole via the method of images.

A Green's function constructed in this way is only interesting if we can identify
the vacuum with respect to which it is defined. We prove that our construction gives
the Hartle-Hawking Green's function. It is worth noting that for the BTZ black hole,
there is a limited choice of vacua. Quantization on AdS3 is hampered by the fact that
AdS3 is not globally hyperbolic, and this necessitates the use of boundary conditions
at spatial infinity [68] (see Fig. 2), as discussed in Appendix A. This problem carries
over to the black hole solution, and as a result, the value of the field at spatial infinity
is governed by either Dirichlet or Neumann type boundary conditions. Thus a Cauchy
surface for the region R of the BTZ black hole is either the past or the future horizon
only. With this knowledge, the natural definition of the Hartle-Hawking vacuum is
with respect to Kruskal modes on either horizon, whereas there does not appear to be
a natural definition of an Unruh vacuum (see [69, 70] for a discussion of the various
eternal black hole vacua). The definition of an Unruh vacuum might be possible given
a description of the formation of a BTZ black hole from the vacuum via some sort of
infalling matter, but as far as we are aware, no such construction has been found.

Having an explicit expression for the Hartle-Hawking Green's function, we are able
to obtain a number of exact results. As a check, we show that it satisfies the KMS
thermality condition [71]. We then compute the expectation value of the energy-
momentum tensor and the response of a particle detector for both nonzero M and for
the vacuum solution. For nonzero M we address the issue of whether the response
of the particle detector can be interpreted as radiation emitted from the black hole,
although a clear picture does not emerge.

For the M = 0 solution, we find a non-zero energy-momentum tensor, although
the corresponding Green's function is at zero temperature, and there is no particle
detector response. We interpret this as a sort of Casimir energy. Classically, the
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vacuum solution appears to be similar to the extremal Reissner-Nordstr5m solution,
in the sense that we expect that if any matter is thrown in, a horizon develops.
Quantum mechanically, the M = 0 solution appears to be unstable to the formation of
a horizon, when the back-reaction caused by the Casimir energy is taken into account.
This suggests that the endpoint of evaporation may not look like the classical M = 0
solution.

The paper is organized as follows. In section 4.2 we study the 1+1 dimensional
solution which arises from a dimensional reduction of the BTZ black hole [72], and
show that the vacuum defined by the Anti de Sitter (AdS) modes is the same as
that defined by the Kruskal modes; with this encouraging result we tackle the 2+1
case. Section 4.3 contains a review of the essential features of the geometry of the
BTZ black hole. In section 4.4 we construct the Wightman Green's functions on
the black hole spacetime from the AdS3 Wightman function, using the method of
images. We then show that the Green's function coincides with the Hartle-Hawking
Green's function [64], by showing that it is analytic and bounded in the lower half of
the complex V plane on the past horizon (U = 0), where V, U are the Kruskal null
coordinates. We also compute the Wightman function for the M = 0 solution, and
compare this to the M - 0 limit of the results for M 0. Section 4.5 contains a
calculation of (T,,) for all M > 0. For the black hole solutions, it is regular on the
horizon, and for all M it is singular as r -- 0. In Section 4.6 the response function
of a stationary particle detector outside the horizon is calculated and shown to be
of a fermi type distribution. A discussion is given of how this response might be
interpreted. In Section 4.7 we calculate the back reaction induced by (T,,), and show
that the spacetime develops a curvature singularity and a larger horizon for a given
M. Throughout this paper we use metric signature (- + +), and natural units in
which 8G = h = c = 1.

4.2 2-D Black Hole
Let us begin by looking at quantum field theory on the region of Anti de Sitter
spacetime in 1+1 dimensions described by the metric

-Mt 2 r2 _ Mt2 -1
ds2= - £2 ) dt2 + 2 ) dr 0 < r < oo -oo < t < o,

where M is the mass of the solution. This metric was discussed in [72] as the dimen-
sional reduction of the spinless BTZ black hole, and can be thought of as being a
region of AdS2 in Rindler-type co-ordinates. Under the change of co-ordinates

r = VMsecpcos)A, tanh (e) sin p

where we shall call (A, p) AdS co-ordinates, the metric becomes

ds 2 = £2 sec 2 p(-dA 2 + dp2 )
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which for - < p < and -oo < A < oo is just AdS2 [73].
It is possible to define Kruskal-like co-ordinates for this black hole, which do not

coincide with the usual AdS co-ordinates. For r > Me2, they are:

1

U = r + ) cosh t (4.2.1)
1

V = r+ - eV ) sinh t. (4.2.2)

The metric then takes the form

ds2 = dUdV
+ UV

where U = V + U, V = V - U, and the transformation between Kruskal and AdS
co-ordinates is

U = tan (PjA) V=tan(P;
2 2

which is valid over all the Kruskal manifold. The Kruskal co-ordinates cover only the
part of AdS2 with

ir r 7r r
-<p < -- <A<-.
2- -2 2 2

We shall now show that the notion of positive frequency in (A, p) (AdS) modes coin-
cides with that defined in (U, V) (Kruskal) modes.

The AdS modes for a conformally coupled scalar field are normalized solutions of
a10 = 0, subject to the boundary conditions

(P 2) = (P= 2 =.

The positive frequency modes are then

qe= 1 - sinmp m even > 0

qOm = 1 C-imcosmp m odd > 0

and these define a vacuum state 10)A in the usual way.
The Kruskal modes are solutions of Cl0 = 0 with the boundary condition ;(UV =

-1) = 0. Positive frequency solutions are given by

bw, = N, (e-iw" - eiw/V) w > 0

where N, = (8rw) -1/2 , and these define 10)K. These modes are analytic and bounded
in the lower half of the complex U, V plane. In order to show equivalence of the two
vacua I0)A and IO0)K, it is enough to show that the positive frequency AdS modes
can be written as a sum of only positive frequency Kruskal modes. Because of the
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analyticity properties of the Kruskal modes, it is enough to show that the AdS modes
are analytic and bounded in the lower half of the complex U, V plane [69, 4]. Changing
co-ordinates, we have

= 1 (e-2imarctan e-2imarctanU) m even (4.2.3)

, m= 21 (e-imactV + e-2imactaU) m odd. (4.2.4)

Using the definition arctan z = I ln + [77], (4.2.3) and (4.2.4) become

[( 1z
2/mi [( + iV 1 + iU)]

where i is for m odd or even. These modes can easily be seen to be bounded and
analytic in the lower half of the complex U, V plane for all m. This establishes that
the vacuum defined by the AdS modes is the same as that defined by the Kruskal
modes. Thus a Green's function defined on this spacetime using AdS co-ordinates
(A, p) corresponds to a Hartle-Hawking Green's function, in the sense discussed in the
Introduction.

4.3 The Geometry of the 2+1 Dimensional Black
Hole

In this paper, we shall be working only with the spinless black hole solution in 2+1
dimensions

ds2 = -N2dt2 + N-2dr2 + r2dq2 (4.3.5)

where
2 2 r

N2 r -rr2 = M2.
+2 +

As was shown in [65], this metric has constant curvature, and is a portion of three
dimensional Anti de Sitter space with points identified. The identification is made
using a particular killing vector , by identifying all points x, = e2rnix. In order to
see this most clearly, it is useful to introduce different sets of co-ordinates on AdS3.

AdS3 can be defined as the surface -v 2 - u2 + x2 + y2 = _-2 embedded in R4 with
metric ds2 = -du 2 - dv2 + dx2 + dy2. A co-ordinate system (A, p, 0) which covers this
space, and which we shall refer to as AdS co-ordinates, is defined by [68]

u = ecosAsecp v = esinAsecp
x = etanpcos9 y =tanpsin0

where 0 < p < , 0 < 0 < 27r, and 0 < A < 2r. In these co-ordinates, the AdS3
metric becomes

ds= 2 e2 p(-dA 2 + dp2 + sin2 p d02).
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AdS3 has topology S1 (time) xR 2 (space) and hence contains closed timelike curves.
The angle A can be unwrapped to form the covering space of AdS3, with -oo < A <
oo, which does not contain any closed timelike curves. Throughout this paper we
work with this covering space, and this is what we henceforth refer to as AdS3. As
mentioned in the Introduction, even this covering space presents difficulties since it
is not globally hyperbolic (see the discussion in Appendix A).

The identification taking AdS3 into the black hole (4.3.5) is most easily expressed
in terms of co-ordinates (t, r, q), related in an obvious way to those used above, and
defined on AdS3 by

= A(r)cosh(E)
x = A(r)sinh ,r)
y= B(r)cosh (t+) r > r+

v = B(r)cosh (t)

= FAsr)cosh(E+)

Note that -- B cosh (n is an integer,
Note that-oo < < oo. Under the identifications R and F +2ofn, where n is an integer,
these regions of AdS3 become regions R and F of the black hole. Regions P and L
are defined in an analogous way [65] (see Fig. 1 for a definition of regions F (future),
P (past), R (right) and L (left)). The r = 0 line is a line of fixed points under this
identification, and hence there is a singularity there in the black hole spacetime of
the Taub-NUT type [65, 73].

Finally, it is possible to define Kruskal co-ordinates on the black hole. The relation
between the Kruskal co-ordinates V and U and the black hole co-ordinates t and r
is precisely as in (4.2.1) and (4.2.2). U, V and an unbounded cover the region of
AdS3 which becomes the black hole after the identification.

4.4 Green's Functions on the 2+1 Dimensional
Black Hole

In this section we derive a Green's function on the black hole spacetime, by using the
method of images on a Green's function on AdS3. We then show that the resulting
Green's function is thermal, in that it obeys a KMS condition [71]. Using the ana-
lyticity properties discussed in the Introduction, the Green's function is also shown
to be defined with respect to a vacuum state corresponding to Kruskal co-ordinates
on both the past and future horizons of the black hole. We therefore interpret it as
a Hartle-Hawking Green's function. Finally we derive the Green's function for the
M = 0 solution directly from a mode sum, and compare it with the M 0 limit of
the black hole Green's function.
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4.4.1 Deriving the Green's Functions
Since the black hole spacetime is given by identifying points on AdS3 using a spacelike
Killing vector field, we can use the method of images to derive the two point function
on the black hole spacetime. Given the two point function G+(x, x') on AdS3,

G (x, x'; 6) = E -inG+(x, x)
n

Here x' are the images of x' and 0 < 6 < r can be chosen arbitrarily. For a general 6
the modes of the scalar field on the black hole background will satisfy m(e2"rnx) =
e-i6nn(x). = 0 for normal scalar fields and 6 = 7r for twisted fields. From now on
we will restrict ourselves to 6 = 0.

This definition of the Green's function on the black hole spacetime means that
when summing over paths to compute the Feynman Green's function GF(X, X'), we
sum over all paths in AdS3. Hence paths that cross and recross the singularities must
be taken into account (compare this with the results of Hartle and Hawking [64]).

As explained in Appendix A, boundary conditions at infinity must be imposed on
any Green's function on AdS3 in order to deal with the fact that AdS3 is not globally
hyperbolic. From Appendix A, we have

G+ = G1 + G+2 (4.4.6)

where +(-) corresponds to Neumann (Dirichlet) boundary conditions (from now on,
it should be assumed that the upper (lower) sign is always for Neumann (Dirichlet)
boundary conditions unless otherwise stated). The individual terms in (4.4.6) are
given by

G+1 (x, ') = 4 (cos(AA - i) sec p' sec p - 1 - tan p tan p'cos A0) 2

GA+2(X,x') = 4 (cos(XAA - i) secp'secp + 1 - tanptan p'cosA0) 2.

AA is defined as A - A', and similarly for all other co-ordinates.
The sign of the i is proportional to sign(sin A). It is only important for timelike

separated points, for which the argument of the square root is negative. In the three
dimensional Kruskal co-ordinates on AdS3, the identification is only in the angular
direction. For timelike separated points, signAA = signAV, where V is the Kruskal
time. It follows that for all identified points the sign of i in G(x, x' ) is the same.

We now work in the black hole co-ordinates (t, r, q), so that the identification
taking AdS3 into the black hole spacetime is given by - + 2rn. Under this
identification, the two point function on the black hole background becomes

G+(, x') - 1G+(x, X') = 4 e [G+(x, x') ± G+(x, x')]

where for x, x' E region R

G+( x a rr' r+(AO + 2rn) 1 (r2 -rT(r2-r)½ r+(At-it)] 2
Gt (xx' = 0 ~ [4cosh £ - r- 4cosh £2 J

n=- 4+ c47
(4.4.7)
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[0 rr' r+(AO + 2rn)
G+(x,x')= ~ [ cosh +1-

n=--oo +

1

(r2 -2 )(r2 - )2 cosh r+(xt- i) 2

(4.4.8)

For x, x' E region F,

G+t(x,x) =
l=--00n=-oo

r r+(AO + 27rn) 2 r2) I(r 2 - r'2 )2 h r+ 
2rcosh e - (- 1 +Atrcosh 1+ cosh £ + i

1

° [rr' r+(,A + 2rn) (r+ - r2)½(r+ - 1'2) r+At l -
G (x, x') = E0 [T cosh + 1 + cosh 2 + i

=-0,'- OO

Where = sign AV and of course in this region sign AV : sign At. For x E region
R and x' E region F, we have

Gl+(x, x') =

G+(x, x') =

rcosh
jrn=-oo

n=-oo

r+(Ab + 2rn) _ 1-
f

2 i(r 2 _ r2 )T~ 2 - 2) r+At+ +( ) sinh + 
2 -F2'"

rr h r+(AO+ + (-n)2 2 , ) t I
cosh- + - r sinh + ir-+ r2 £2

In all of these expressions, G-(x,x') = (Olq(x')$(x)j0) is obtained by reversing the
sign of ie. All of these expressions are uniformly convergent for x, x' real, and r, r' > 6,
6 > 0. Notice that as M -- 0 (r+ -- 0), G(x, x') will diverge like E 1 unless we take
the Dirichlet boundary conditions.

From these expressions the Feynman Green's function can easily be constructed
and in fact has exactly the same form, but with the sign of i being strictly positive.
It should be noted that none of these Green's functions are invariant under Anti de
Sitter transformations, as the Killing vector field defining the identification does not
commute with all the generators of the AdS group.

4.4.2 KMS condition
A thermal noise satisfies a skew periodicity in imaginary time called Kubo-Martin-
Schwinger (KMS) condition [71]

i
gp(Ar - ) = gp(-Ar)

where ga(Ar) = G+(x(r),x(r')) and GT = (00,|(x) (x')I10)l) 0_ with the world
line x(fr) taken to be the one at rest with respect to the heat bath (for a more extensive
discussion of the KMS condition, see [74]). We will show that g(Ar) = G+ (x(r), x(r'))
with x(r) = (, r, q) and b = (r2 -r2)1/2/£, satisfies this condition outside the horizon,
with a local temperature T = 2t(2_+ )2, which agrees with the Tolman relation [75]

T = (g0o)-1/2To, with To = r+/27r£2 the temperature of the black hole.
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g(Ar) is defined as

g(Ar)= 44r1 (9g(Ar)± g 2(Ar))

where

°° r2 27rnr+ (r -r+) r+ cs (+z -g1(Ar) = 2 + cosh -1- r2 cosh (t2 ( -

g2( )= 2 coh +1 _ ( 2 cs ( b 
n=-- + 

We will demonstrate the KMS property for each term in these sums.
Take a typical term in the sum. It has singularities at (p is an integer).

i
An = A + 7P + ie

These singularities are square root branch points and the branch cuts go from
(A + 2 + + ie -- 00 + ~p + i) and (-At, + 27r p + ie - -0 - 27r p + i). In
any region without the branch cuts, gl and g92 are analytic. Going around a branch
point gives an additional minus sign. Now for a given n, if Ar is such that the ex-
pression inside the square root is positive, then IReal Arn < Arm. In this region, gn
and gn are analytic and periodic in . What's more g(-Ar) g(Ar) as e - 0.
If on the other hand the expression inside the square root is negative, then because
of the branch cuts, g(Ar - ) = -g(Ar). As g"(Ar) = (-A + i sign At)-2 and
because our definition of the square root is with a branch cut along the negative real
axis, we see that gn((Ar) = -gn(-Ar) (A is only a function of IArl). This shows
that the KMS condition is satisfied, and hence that G+ is a thermal Green's function.

4.4.3 Identifying the Vacuum State
In the region R where r > r+, the Kruskal co-ordinates are defined as

1

U = (+ )cosh __t
r + r+ ) r+

1

V = + sinh ~Tt.
r + r+ t2

Defining V = V - U and U = V + U, r is given by

r 1 -UV
r+ 1 + UV
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In these co-ordinates the two point function becomes

GJ(xx') -x4r E (1+UV)(1 +U'V') x

[ (11-U('V') cosh (+(A+ 2rn)) (1 + UV)(I+ U'')
1

+ 2(VU'+ UV') + 2if sign AV

where TF is for J = 1,2. Here the sign of i is the same as sign AV which is the
same as signAA for timelike separated points. For x, x' E R, this is just signAt =
sign (VU' - UV'). This expression is valid all over the Kruskal manifold.

As discussed in the Introduction, the Hartle-Hawking Green's function is defined
to be analytic and bounded in the lower half complex plane of V on the past horizon
(U = 0), when U', V', b, q' are real, or in the lower half plane of U on the future
horizon (V = 0).

On the past horizon U = 0 we have

1G+- rte i + V [(1- V) cosh (r + 27rn))
±(1 + U'V') + 2VU' + 2ieAV] }2

In order to prove analyticity and boundedness we will show that the singularities
occur in the upper half plane of V. Hence every term in the sum is a holomorphic
function in the lower half plane. We will then use Wierstrass's Theorem on sums of
holomorphic functions in order to prove that the GJ are analytic in the lower half of
the complex V plane.

GJ+ has singularities when

(1 + U'V') - (1 - U'V') cosh ( ( + 27rn))
2(1 + ie)U'

Now suppose that ' E R, then -1 < U'V' < 0 and U' > 0. Defining UV' = -a,
(1 > a > 0), the singularity occurs at

(1 - a) - (1 + a) cosh ((AO + 27rn))
2(1 + i)U'

We see that when e - 0, V is real and negative. Hence V = A -A + i with1+ic -
A > 0, so that the singularities are in the upper half plane. Similarly, for the future
horizon V = 0, there are singularities when

- = 1(1 + U'V') - (1 - U'V') cosh(A + 27rn)
(1 - i)V'
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For x' E R, then-1 < U'V' < 0, and V' < 0, so that U = A A+ i, with A > O,
so the singularities are in the upper half plane of U. At this point it should be noted
that for GJ we get singularities in the lower half plane of U on the surface V = 0,
and singularities in the lower half plane of V on the surface U = 0.

For x' E F, if U = 0 and x and x' connected by a null geodesic, then AV < 0.
This is the case because for timelike and null separations, sign AV = -sign Ar (r is
a timelike co-ordinate in F) and Ar is always positive if x is on the horizon. Then it
can be checked that the singularities are again in the upper half plane of either U or
V.

Now that we have established that each term in the infinite sum is holomorphic
in the lower half plane of V on the past horizon (and in U on the future horizon) we
will use Weierstrass's Theorem. This states [76] that if a series with analytic terms

f(z) = fl(z) + f2(z) + -

converges uniformly on every compact subset of a region Q, then the sum f(z) is
analytic in Q, and the series can be differentiated term by term. It is easily seen
that unless U'V' = 1, i.e. x' is at the singularity, the sum converges uniformly on
every compact subset of the lower half plane. For U'V' = 1 the sum diverges and the
Green's function becomes singular at r = 0. This is because r = 0 is a fixed point of
the identification.

To conclude we have shown that our Green's function is analytic on the past
horizon in the lower half V complex plane, and similarly on the future horizon in
the lower half U complex plane. Its singularities occur when x, x' can be connected
by a null geodesics either directly or after reflection at infinity (see Appendix A and
Ref. [70]). We conclude that the Green's function we have constructed is the Hartle-
Hawking Green's function as defined in the Introduction, for both Neumann and
Dirichlet boundary conditions.

4.4.4 The M = 0 Green's function
The black hole solution as M - 0 is the spacetime with metric [65]

dV2 = ()t2 + (_)2 dr +r2d2

with r > 0, and t and as in (4.3.5). Defining z = - and -y = the metric becomes

(2
ds2 = 2 (-d 2 + dz2 + d02). (4.4.9)

The modes for a massless conformally coupled scalar field are solutions of the
equation

1J- R = 
8
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where again R = -6t- 2 , and are given by

'Akm = NwyJ e-iwt im eikz

where w2 = k2 + m2, m is an integer, and N, = (87r2w)2 is a normalization constant
such that (mk, km'k,) = mm,'(k - k').

As in quantization on AdS3, care must be taken at the boundary z = 0, which is
at spatial infinity. The metric (4.4.9) is conformal to Minkowski spacetime with one
spatial co-ordinate periodic and the other restricted to be greater than zero. As in
the case of AdS3, we impose the boundary conditions

-- = 0 or 1((z)) = 

at z = 0, corresponding to Dirichlet or Neumann boundary conditions in the confor-
mal Minkowski metric. Our approach will be to first calculate the Green's function
without boundary conditions and them use the method of images to impose them.

Summing modes, we obtain the two point function

G(x, x') 1= [e £ E eikaz dk

2_r eE eim"A G2(y, y,m)27r £ m

where G2(y, y', m) is the massive 1+1 dimensional Green's function and y = (y, z).
Now [4],

G2(y, y', m) = -Ko(Iml d) m 0

log d + lim ( 1) = 0
271r n-2 n7 2

where d = + iA sign At, with A = ((A-y)2 - (Az)2)2 for timelike separation, and
d = ((Az)2 - (A - i) 2 )2 for spacelike separation. Here Ko is a modified Bessel
function. It follows that

G(x, x') = 47r 2 [2 cos(mA)Ko(md) - logd]

where the infinite constant in the m = 0 expression was dropped to regularize the
infrared divergencies of the 1+1 dimensional Green's function. Using [77]

0 1 ] =
m1 Ko(mx) cos(mxt) = (c+ln -)+ + [X2+(2e tX)2) 1
m=1 2r2x + (t) 2 2r
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Here c is the Euler constant. This expression is valid for x > 0 and real t, and gives
the following expression for spacelike separated x and x':

G(x, x')
i Vv

47r f
[(F Z) + (-2 i) 2 1 I[(~z)2+ (AO + 27rn) (Ay i) 2 - + ]

n~

= 4 -- F(, x')

Here cl = c - ln 4r. Although the above formula was only true for x > 0 and real
t, the result is analytic for every real Az, A-y and AO. Hence it is also correct for
timelike separated points.

This is just what is expected from the conformality to the Minkowski space, other
than the E 2 - c1 which regularizes . Now the boundary condition can be easily
put in by writing

G+(x, x') = 4 v (F(x, x') F(x, '))

where x' = (y',-z', q). Notice that for Dirichlet boundary conditions, this agrees
with the M --+ 0 limit of (4.4.7) and (4.4.8).

Going to the (t, r, q) co-ordinates we have

1 
G+_= = 4 (rr) 2(G+ G+)

with
1

(AO+ 2n)'- (2 t _f- 
1
2

G~~~t ~r/- rG+ = [t2 (' 2

G+ E1 [f2 (Aq + 27rn)2 - ( t - i ]

1-2- +-zi
+ cl

nO27rn

4.4.5 Computation of ( 2)
(q2) is defined as (02) = lim , GReg(x, x) where G = G+ + G- is the symmetric
Green's function. In order to compute (q2 ), we need to regularize G. Now only the
n = 0 term in G+ is infinite and is just a Green's function on AdS3. Hence, we can
use the Hadamard development in AdS3 to regularize G [4]:

GHad = -

where

a [ar cos 2
2

ff= 2 [arcos Z],

1 Sin ()'

1()

and .Z = cos AA - sin p sin p' cos AO
cos p cos p'
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(here A is the Van Veleck determinant). Defining

GReg(, X') = GBH(X, X')- GHad(, X')

we get

(q 2) = e+ [o (cosh ( 2rn)- 1) + (cosh (2rn)-1 + 2 ()2)

which, for Dirichlet boundary conditions, can be seen to be regular as M - 0 (that
is r+ - 0), and to coincide in this limit with the M = 0 result for Dirichlet boundary
conditions.

4.5 The Energy-Momentum Tensor
The energy-momentum tensor for a massless conformally coupled scalar field in AdS3

is given by the expression

3 1 P,1 1
T,(x) = -,a (x)d ( x)- g,,g 9pa(x)d (x)- VAq(x)q(x) + -gR 9 2(z)4 4 4 96

where R = -6t -2 . In order to compute (T,,) one differentiates the symmetric two-
point function G = (Ol(x) +(x') + (x') q(x)10) [4], and then takes the coincident
point limit. This makes (T,,) divergent and regularization is needed. A look at our
Green's function reveals that only the n = 0 term in G1 diverges as x --+ x', so only
the (T,,) derived from it should be regularized.

The n = 0 term is just the Green's function in AdS3 in accelerating co-ordinates.
The vacuum in which this Green's function is derived is symmetric under the Anti de
Sitter group and AdS3 is a maximally symmetric space. Hence [78] (T,,) = g,.,(T)
where (T) = g'" (T,,,). For a conformally coupled massless scalar field (T) = 0 (there
is no conformal anomaly in 2+1 dimensions) so (T AdS) = 0.

Having shown that we may drop the n = 0 term in G1, after a somewhat lengthy
calculation we arrive at the result for M # 0,

(T (x)W) = 16e3 3 [fn 1 i[ (1 + (fJr) 2) 2 + f-] diag(1, 1,-2)

+ ( - ) fn 3 (I + (fr)- 2 ) 2 diag(1, 0,1)} (4.5.10)

where f = sinh(-l-7rn)/r+. diag (a, b, c) is in (t, r, ) co-ordinates. As expected the
n = 0 term from G2 did not contribute.

For M = 0 we get from Sec. 4.4.4

167r3 n>O (n7r)3

2(nrr)3 (i + (fr) 2) diag(1, 0 -1)} (4.5.11)
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where now f = 7rn/f. Note that the M = 0 result agrees with the M - 0 limit of
(4.5.10).

Some properties of (T,") are:

* As we can see from (4.5.10), far away from the black hole, (T,) obeys the strong
energy condition [73] only for the Dirichlet boundary conditions, while for the
Neumann boundary conditions, the energy density is negative in this limit.

* For Dirichlet boundary conditions, as M decreases, although the temperature
decreases, the energy density increases; just the opposite occurs for Neumann
boundary conditions.

* In the limit M -- oo, (T,) -- 0 for both sets of boundary conditions, which
suggests the presence of a Casimir effect.

* On the horizon, (T,) is regular, and hence in the semiclassical approximation,
the horizon is stable to quantum fluctuations; on the other hand, at r = 0, (T,)
diverges.

* Our Green's function was thermal in (t, r, ) co-ordinates, but although (T,) '
Tlc,, for large r, it is not of a thermal type [75].

4.6 The response of a Particle detector
In this section we calculate the response of a particle detector which is stationary in
the black hole co-ordinates (t, r, 0), and outside the black hole. The simplest particle
detector can be described by an idealized point monopole coupled to the quantum field
through an interaction described by Lint = cm(r) c[x(r)] where r is the detector's
proper time, and c < 1. The probability per unit time for the detector to undergo a
transition from energy E 1 to E2 [4] is R(E 1 /E 2 ) = c2 I(E2lm(0)lE)12 F(E 2 - E1 ) to
lowest order in perturbation theory, where

F(w) = lim lim 1 dr J dr' e-iw(T-T' ) -SITI - S T'I g(rr').
s-O To0-00o 2 0 -o - -To

g(r,r ') = G+(x(r), x(r')) and x(r) is the detector trajectory.
F(w) is called the response function. It represents the bath of particles that the

1

detector sees during its motion [79]. We take x(r)= (f,r, ) where b = (TI) .

Because g(r, r') = g(Ar), then

F(w) = e- iWAT g(Ar)d(Ar) (4.6.12)00oo

where g(Ar) = gl(Ar) ± g2(Ar). Here

2 2g\()=n r r+ r2 b2,-½g (A)= V (r2 -r +~) E [ r 2 r _ + cos(h (2r2n) ) 1)-cosh +(4.6- i1)]
(4.6.13)
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In this expression -(+) is for g1(g2).
Defining

cosh cn = - (2 cosh (2n) -

and

cosh/B = r2 2 (r 2+ cosh (2rn + 1

we have from Appendix B that

F(w) =- + 1 ( (coshan) t P i 1 (cosh ))
2 ew/The1 n rT 7T 2

where T = r+ a is the local temperature. This looks like a fermion distribution
2,ri(r2-r )r

with zero chemical potential and a density of states

D(w) = E (P i. 1 (coshan) P i- 1 (coshn)).
27r n 27rT 2 27rT 2

Notice that F(w) is finite on the horizon in contrast with black holes in two and four
dimensions (see [80]). This seems to be a consequence of the Fermi type distribution.
Statistical inversion in odd-dimensional flat spacetime was first noted in Ref. [74].

If the mass of the black hole satisfies e2rViM > 1 and 2t - 1 > w > T, then far from
the horizon, r > r+, we can sum the series, and for Dirichlet boundary conditions we
obtain

1 hwT1 8e-3rW w\ 2 - f Wo)j
F(w)~ 27r22T 2 2/T +1 4 + (- - sin T cos

A similar result holds for Neumann boundary conditions at large r,

F(w) I/T 1 + 4 (T)- e (sin - + cos )]T"/T T T T
where the approximation improves for large M as before.

It seems clear that the particle detector response will consist of a Rindler-type
effect [4], and, if present, a response due to Hawking radiation (real particles). The
former is due to the fact that a stationary particle detector is actually accelerating,
even when r o- ox (there is no asymptotically flat region). This is reflected for
instance in the fact that for some range of w, the behaviour of F(w) for r > r+
and M > 1 is governed by the n = 0 term in G+ , which is AdS invariant. Hence
all observers connected by an AdS transformation (a subgroup of the asymptotic
symmetry group) register the same response, even though they might be in relative
motion; this means that F(w) as a whole cannot be interpreted as real particles (see
[81, 82] for a discussion of this point). Unfortunately, one cannot filter out these
effects in a simple way, and further work is needed in order to find the spectrum of
the Hawking radiation.
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Finally, for M = 0, we may again define

Fi(w)= L e-iwATgi(AT)dAr.
-00

Now, however, gi and g2 are analytic in the lower half complex plane of Ar. Hence
for w > 0 we can close the integral in an infinite semicircle in the lower half plane
and by Cauchy's theorem Fi(w) = 0 for w > 0 so that no particles are detected by a
stationary particle detector.

4.7 Back-reaction
In this section we shall discuss the back-reaction on the BTZ solutions due to quantum
fluctuations, using the energy momentum tensor (To) derived in Sec. 4.5. We shall
show that for all M, including M = 0, divergencies in the energy momentum tensor
cause the curvature scalar R,,R' to blow up at r = 0 (note that since the energy
momentum tensor is traceless, R does not blow up). It is also interesting to consider
the effects of back-reaction on the location of the horizon, even thought this is only
an order h effect. It is possible to show for all M $ 0 that the horizon shifts outwards
under the effect of quantum fluctuations. For M = 0, the effect is that a horizon
develops at a radius of order h, but where we may still be able to trust the semi-
classical approximation.

We compute the back-reaction in the usual way by inserting the expectation value
of the energy-momentum tensor (4.5.10) or (4.5.11), into Einstein's equations,

GV = - 2g + r(Tv).

The first thing to note is that although the external solution is of constant curvature
everywhere, the perturbed solution is not, and the curvature scalar R,,Rv diverges
at the origin, r = 0. Einstein's equations give

RWR1V = (r(T) - 2-26 ) (a(T,) - 2t-26v)

= r2 (T) (T) + 12t-4

> r2(Tr)2 + 12£- 4 = 12f-4 + 64~6r6 3 )> l\Tr/m ±'~ m64e 6r6 fn>O )

The sum in the last expression is a constant depending only on M. In the limit as
M 0, the curvature still diverges as 1/r6. Although the divergence in the curvature
scalar occurs precisely where the semi-classical approximation is unreliable, the result
does say that we must go beyond semi-classical physics in order to describe the region
near r = 0. This seems to be the natural notion of a singularity at the semi-classical
level.

Having shown that the back-reacted metric becomes singular, it remains to look
at horizons. We begin with a general static, spherically symmetric metric, which we
take to be

dr 2

ds2 = _N 2 dt 2 + + e2A doN2
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where N and A are functions of r only. A linear combination of Einstein's equations
implies that

(N 2 )1" = 2f-2 + 2-r (T). (4.7.14)

Integrating Eq. (4.7.14) once, and inserting (4.5.10), we obtain the result

2(N 83r 2 nO [i(1 (fr)2

+f ± f,[1 r2 (1 - (1+ (fr)-2) 2)] } (4.7.15)

where an integration constant has been included to make the result finite. A second
integration gives

I 2 [1 +i r( (f) -2)2]

+f-3 2 2 - 2 )

+f 3 [1t + 2 (f-nr [(I + (fr) - ] + (+ (fr)2 ) )]} (4.7.16)

where the second integration constant has been set to M, and is the ADM mass of
the solution [65]. The two integration constants ensure that N2 --+ r2/2 - M + o(r)
as r -+ oo.

Having obtained an expression for N, it is also necessary to look at the g44 com-
ponent given by A. A is given in terms of N by the equation

A' = 16r 3 +ZE>o [ 2 _[1 ( f r)-2)-2] + f-3]
8f3r3(N2)'

which we shall not attempt to integrate, although it is easy to see that as r - 00,
A -- In r. The important thing to notice is that A' diverges only at r = 0 or where
(N2)' = 0. If the singularity at r = 0 is to be taken seriously, it is important that
(N 2 )' should not vanish for any finite, non-zero r. To see that this is indeed the case,
note that since the quantity inside the curly brackets of Eq. (4.7.15), is positive for
all r > 0, then so is (N2 )'.

Having checked that the backreaction does not cause a qualitative change in g,
and having found the exact change in N, we may examine the horizon structure of
the new solutions. Note that each term in the sum in (4.7.16) is strictly positive,
and behaves as 1/r at infinity and near the origin, for any M. Hence, the horizon of
the M # 0 solutions is pushed out by quantum fluctuations, as compared with the
classical solution of the same ADM mass.

The M = 0 solution, which acquires a curvature singularity due to backreaction,
also develops a horizon. We regard this result as being indicative of the fact that the
M = 0 solution is unstable, in the sense that the qualitative features of the solution
are changed by quantum fluctuations. Recall that (TV) in this case appears to be
just the Casimir energy of the spacetime as it is associated with a zero temperature
Green's function. The appearance of a horizon may be contrasted in an obvious
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way with 4-dimensional Minkowski spacetime, regarded as the M = 0 limit of the
Schwarzschild solution. Minkowski spacetime has no Casimir energy associated with
it, and is stable in the above sense.

Note that as M --+ 0, the horizon is located in a region sufficiently close to r = 0
that the semi-classical approximation may break down, i.e. fluctuations in (T') will
be of the order of (To). However, if there are n independent scalar fields present, then
the ratio of the fluctuations to (To) becomes negligible in the vicinity of the horizon,
as n becomes large. The size of the perturbation on the metric near where the horizon
develops may also be estimated. It is approximately an order of magnitude smaller
than the curvature of the original solution, a result which is independent of n.

We end with a speculation about the endpoint of evaporation. Notice that al-
though classically there is a clear but puzzling distinction between the black hole
solutions of BTZ, with M > 0, the solutions with conical singularities of Deser and
Jackiw [83] corresponding to -1 < M < 0, and AdS3 (M = -1), semiclassically
the difference between the small M and negative M solutions is not so marked. Our
results for M = 0 are qualitatively similar to those of Refs. [84], where it is shown
that quantum fluctuations on a conical spacetime generate a singularity at the apex
of the cone, shielded by an order h horizon. One might speculate from this similarity
that evaporation could continue beyond the M = 0 solution, perhaps ending at AdS3.

4.8 Conclusions
In this paper we presented some aspects of quantization on the 2+1 dimensional
black hole geometry. We obtained an exact expression for the Green's function in
the Hartle-Hawking vacuum and for the expectation value of the energy-momentum
tensor, but we found some difficulty in interpreting the particle detector response as
Hawking radiation. We feel that further investigation on this question is required. If
the black hole evaporates, the results of section 4.7 suggest the possibility that due
to quantum fluctuations, the endpoint of evaporation may not look like the classical
M = 0 solution.
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4.9 Appendix A: Scalar field quantization on AdS3

The derivation of a scalar field propagator on AdS3 is reviewed. This computation is
complicated by the fact that AdS3 is not globally hyperbolic. In the AdS co-ordinate
system defined in Sec. 4.3, spatial infinity is the p = surface which is seen to be
timelike (see Fig. 2). Information can escape or leak in through this surface in a finite
co-ordinate time, spoiling the composition law property of the propagator. In order
to resolve this problem and define a good quantization scheme on AdS3, we follow
[68] and use the fact that AdS3 is conformal to half of the Einstein Static Universe
(ESU) R x S2.

% 

.. 
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- N

-r

r=infmity

News

/

P=7c2 p=/2

Figure 2: A Penrose diagram of AdS 3. Information can leak in or out through
spatial infinity and thus E is not a Cauchy surface unless we impose boundary
conditions at r = oo.

The metric of ESU is

ds2 = -dA 2 + dp2 + sin2 pdO2

where -oo < A < oo, 0 < p < 7r, and 0 < < 27r. Positive frequency modes on ESU
are solutions of

o E - R E = o
8

where R = 2, and are given by

lm = NW e- iwA y(p, ) w > 0 (4.9.17)

where Yem are the spherical harmonics, w = + 2' m and f are integers with f >
0, Iml < , and N = These modes are orthonormal in the inner product [4]

(01, 2) -=-i / l 2[-gr(x)]½de
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where E is a spacelike Cauchy surface. i.e. (em, 7le'm') = See'mm', (em, , em) = O,
and (e[, fIm,) = -etmm,. As usual the field operator is expanded in these modes

E = Se,m Obemaem + iOema+m so that a, a+ destroy and create particles, and define the
vacuum state IO)E.

The two point function is defined as

G+(X, ')= E(Ol(X) (X')I)E = E m X)E(X').

Inserting (4.9.17),

GE+(X,x') = 1 2e i(e+ 1)( )E Ym(p, ) Y*e(, /).
+1 m

Using (Ym)* = (-1)mYem and =_e (-1)mY(x)Ym (x') = 2 +1P(cos a) where a is
the angle between (p, 0) and (p', '), we get

G+(x, x') = 1 e-2, - e-((-A')P(cos a).
e=o

Further, using n= Pn(x) z" = (1 - 2xz + z2)-2 for -1 < x < 1 and Izl < 1 and as
usual giving AA a small negative imaginary part for convergence, we get

I 1
GE (cos(AA - ie) - cos pcos p' - sin psin p'cos A0) 2

where the square root is defined with a branch cut along the negative real axis and
the argument function is between (-7r, r) [85]. From now we shall call this two point
function G+E and define G+E(X, x') = G+E(X, x') where x = (A, r - p, 0). Then,

1 1
G+2E (cos(AA - i) + cos p cos p' - sin p sin p' cos A0)- 24/27r

and G+E satisfies also the homogeneous equation (El - R)G = 0. Conformally
mapping these solutions to AdS3, where GA = cos pco p'G we get

1 1

G1,A(X, X) = (cos(AA - ie) sec p sec p' - 1 - tan p tan p' cos A0)-

and

1 1

G2A (, x') = 41t (cos(AA - ie) sec p sec p' + 1 - tan p tan p' cos a) 2.

It can be seen that G+A and G+ A are functions of o(x, x') = I[(u - )2 + (v -v) 2 +1,A 2 ,A are functions of 2(x x') =(--
(x - x')2 + (y _ y) 2], which is the distance between the spacetime points x, x' in the
4-dimensional embedding space.

In order to deal with the problem of global hyperbolicity, it was shown in [68] that
imposing boundary conditions on the ESU modes gives a good quantization scheme
on the half of ESU with p < , thus inducing a good quantization scheme on AdS4.
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It may be checked that this method also works in 2+1 dimensions. The boundary
conditions on the ESU modes are either Dirichlet

ie,m (P= 2) =0 obeyed by 4p,m with e + m = odd

or Neumann

a ,E'm (P = 0 obeyed by e,m with e + m = even.
'p 2e,m p

It is easily verified that the combination G+ = G+E ± G+E has the right boundary
condition where the +(-) signs are for Neumann (Dirichlet) boundary conditions.

Some remarks are in order: if x, x' are restricted such that -r < A(x) - (x') < r

then

(1) G+E is real for spacelike points, imaginary for timelike points and singular for
x, x' which can be connected by a null geodesic.

(2) G+E has the same property when x - , and if 0 < p(x'), p(x) < then G2
has singularities when x, x' can be connected by a null geodesic bouncing off
P= boundary.

From this we see that if we take the modes in AdS3 as

pe,m = (cos p) 2 e-i(+ ) Yem(p, ) £+ m = odd or + m = even

then these modes give rise to a well-behaved propagator [68]. The two point function
is then

G+ = VcosPcos p(G1,A ± G2,A)

where +(-) are for Neumann (Dirichlet). The two point function has singularities
whenever x,x' can be connected by a null geodesic directly or by a null geodesic
bouncing off infinity (null geodesics remain null geodesics by a conformal transforma-
tion). All other properties listed before also stay the same.

Note that it is possible to define a quantization scheme on AdS3 without using
boundary conditions (i.e. just using G+A), which is referred to as transparent bound-
ary conditions in Ref. [68]. However this requires the use of a two-time Cauchy
surface, and its physical interpretation is unclear.

4.10 Appendix B: Calculating the response func-
tion

We are interested in an integral of the type

J(w) =-2b eo 2 ' t (cosh a - cosh(t - ie))-dt
r+w)= 2oo
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where T = - r+ is the local temperature. J(w) = I(w) + I2(w) + 3(w) where

I1 is the integral from -oo to -a,, 12 is from -a, to a,, and 13 is from a,, to oo.
Recall that the square root is defined with the cut along the negative real axis. Then

J2b /n it I

II = e -27rT (cosh t - cosh an)-2-zr+ -o
12b i' ° wt 

13 = . e-27rT (cosht - cosh an)-2
ar+ n

-2
2 b fan wt I

I2 =- I cos (cosh a - cosh t)- 2 dt.r+ Jo 2rT
Using [77]

e-(V+}) t = tV2Q (cosha) Rev> -1 a>O
(cosht - cosha)- (cos

1 7P, (cosha) a > 0Ja cosh(v + )t (cosha - cosht)2 = x/

where P and Q, are associated Legendre functions of the first and second kind
respectively, we get

I3 = i Q (coshan)

I2 = - p _ 1 -(coshca)
r+ 2rT 2

I~ = i -2 Q-. r_(coshn )

Now using Q,(z) - Q__(z) = 7r cot(vr)P(z) [77]

2v27 2b 1
J(w) = \ P iw (cosha),)

r+ 2,rT 2 ew/T +1'

and F, 2(w), defined by (4.6.12) and (4.6.13) in an obvious way, are given by

22tTF1(W) = 1 1 ZP/(csh n)

F2(w) = 2 e/T+1 \ Pi b(cosh).2+ e/T1 e2ir T +

Notice that although the formulae that we used were not correct when a = 0,
nevertheless the a 0 term came out correctly, since

f, e-it(1 - cosh(27rTt -ic))- 2-oo

-iJ L_ -iw. \ .t/ i h(P Tt -i iwl h( Tt i)

= e- i" 't (/2i sinh(rTt)+ E) 1
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This gives [74]

F(w) =T e- iwt (2i sinh(7rTt) + c)- 1 = 2 1
2 2 e/T+

which is exactly what we got before as P,(1) = 1.
Combining the results for F1 and F2, we have

F(w) = 2 /T+ 1 i(P 1 (cosh a,,) ± P . (cosh )) .
2 &IT + I 21iT 2rT 1
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Chapter 5

Breakdown of the Semi-Classical
Approximation at the Black Hole
Horizon

On Thursday, when it starts to freeze
And hoar-frost twinkles on the trees,
How very readily one sees
That these are whose-but whose are these?
(The World of Pooh by, A. A. Milne)

Abstract:

The definition of matter states on spacelike hypersurfaces of a 1+1 dimensional
black hole spacetime is considered. The effect of small quantum fluctuations of the
mass of the black hole due to the quantum nature of the infalling matter is taken
into account. It is then shown that the usual approximation of treating the gravita-
tional field as a classical background on which matter is quantized, breaks down near
the black hole horizon. Specifically, on any hypersurface that captures both infalling
matter near the horizon and Hawking radiation, quantum fluctuations in the back-
ground geometry become important, and a semiclassical calculation is inconsistent.
An estimate of the size of correlations between the matter and gravity states shows
that they are so strong that a fluctuation in the black hole mass of order e -M /MP "anck

produces a macroscopic change in the matter state.
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5.1 Introduction
Since the original papers of Hawking [5, 1] arguing that black holes should radiate
thermally, and that this leads to an apparent loss of information, it has been hoped
that investigations of this apparent paradox would lead to a better understanding of
quantum gravity. Over the last few years, there has been renewed interest in this
general problem. One reason is the construction of 1+1 dimensional models where
evaporating black holes can be easily studied [56]. Another reason is the work by
't Hooft [57, 86, 87] suggesting that the black hole evaporation process may not be
semiclassical. This idea is based in part on the fact that although Hawking radiation
emerges at low frequencies of order M- 1 at +, it originates in very high frequency
vacuum modes at I- and even close to the black hole horizon, the latter frequencies
being about eM times the Planck frequency [88] (here M is the mass of the black hole
in Planck units). 't Hooft also argues that if the black hole evaporation process is to
be described by unitary evolution, then there should exist large commutators between
operators describing infalling matter near the horizon and those describing outgoing
Hawking radiation [87] despite the fact that they may be spacelike separated.

Recentlyt Susskind et. al. have argued that the information contained in infalling
matter could be transferred to the Hawking radiation at the black hole horizon, thus
avoiding information loss [90]. A common argument against this possibility is that
from the perspective of an infalling observer, who probably sees nothing special at the
horizon, there is no mechanism that could account for such a transfer of information.
In response, Susskind suggests a breakdown of Lorentz symmetry at large boosts, and
a principle of complementarity which says that one can make observations either far
above the horizon or near the horizon, but somehow it should make no sense to talk
of both [90, 58].

The 1+1 dimensional black hole problem including the effects of quantum gravity
was recently studied in Ref. [91]. It was found that there are very large commutators
between operators at the horizon, and operators at 27+ measuring the Hawking radi-
ation, agreeing with the earlier work of 't Hooft [87]. Ref. [91] assumes a reflection
boundary condition at a strong coupling boundary. Some natural modifications of
this boundary condition have been studied recently in [92]. There have been many
other studies of quantum gravity on the black hole problem, some of which are listed
in [93].

Let us recall the basic structure of the black hole problem [1]. Collapsing matter
forms a black hole, which then evaporates by emission of Hawking radiation [5].
The radiation carries away the energy, leaving 'information' without energy trapped
inside the black hole. The Hawking radiation arises from the production of particle
pairs, one member of the pair falling into the horizon and the other member escaping
to form the Hawking radiation outside the black hole. The quantum state of the
quantum particles outside the black hole is thus not a pure state, and one may
compute the entanglement entropy between the particles that fall into the black hole
and the particles that escape to infinity. It is possible to carry out such a computation

t Historically, the greatest champions of this view point have been Page [89] and 't Hooft [57, 86].
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explicitly in the simple 1+1 dimensional models referred to above. One finds [94, 95]
that this entropy equals the quantity expected on the basis of purely thermodynamic
arguments [96].

Such calculations are carried out in the semiclassical approximation, where one
assumes that the spacetime is a given 1+1 dimensional manifold, and the matter is
given by quantum fields propagating on this manifold. How accurate is this descrip-
tion? We wish to examine the viewpoint raised by 't Hooft and Susskind (referred to
above) that quantum gravity is important in some sense at the horizon of the black
hole. To this end we start with a theory of quantum gravity plus matter, and see
how one obtains the semiclassical approximation where gravity is classical but matter
is quantum mechanical. The extraction of a semiclassical spacetime from suitable
solutions of the Wheeler-DeWitt equation has been studied in [39, 41]. Essentially,
one wishes to obtain an approximation where the variables characterizing gravity are
'fast' (i.e. the action varies rapidly with change of these variables) and the matter
variables are 'slow' (i.e. the action varies slowly when they change). This separation
hinges on the fact that the gravity action is multiplied by an extra power of the
Planck mass squared, compared to the matter variables, and this is a large factor
whenever the matter densities are small in comparison to Planck density. We recall
that the matter density is indeed low at the horizon of a large black hole (this is just
the energy in the Hawking radiation). One might therefore expect the semiclassical
approximation to be good at the horizon. It is interesting that this will turn out not
to be the case, as we shall now show in a 1+1 dimensional model.

It was suggested in [97] that a semiclassical description (i.e. where gravity is clas-
sical but radiating matter quantum) can break down after sufficient particle produc-
tion. This suggestion is based on the fact that particle creation creates decoherence
[98], but on the other hand an excess of decoherence conflicts with the correlations
between position and momentum variables needed for the classical variable [99]. In
this paper we investigate this crude proposal and find that there is indeed a sense in
which the semiclassical approximation breaks down near a black hole. It turns out
that the presence of the horizon is crucial to this phenomenon, so what we observe
here is really a property of black holes.

Since in black hole physics one is interested in concepts like entropy, informa-
tion, and unitarity of states, it is appropriate to use a language where one deals with
'states' or 'wavefunctionals' on spacelike hypersurfaces, instead of considering func-
tional integrals or correlation functions over a coordinate region of spacetime. In this
description, the dynamical degrees of freedom are 1-geometries, and it is more funda-
mental to speak of the state of matter on a 1-geometry than on an entire spacetime.
Thus, we will need to study the canonical formulation of 1+1 dimensional dilaton
gravity. Recall that in this theory the gravity sector contains both the metric and an
additional scalar field, the dilaton, which together define a 1-geometry. The space of
all possible 1-geometries is called superspace. We assume that our theory of quantum
gravity plus matter is described by some form of Wheeler-DeWitt equation [100],
which enforces the Hamiltonian constraint on wavefunctionals in superspace. For
dilaton gravity alone, a point of superspace is given by the fields {p(x), +(x)}. Here
we have assumed the notation that the metric along the 1-dimensional geometry is
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ds2 = e2Pdx2, and d is the dilaton. One of the constraints on the wavefunctionals is
the diffeomorphism invariance in the coordinate x. Using this invariance we may re-
duce the description of superspace so that different points just consist of intrinsically
different 1-geometries. More precisely, choose any value of b, say o. Let s denote
the proper distance along the 1-geometry measured from the point where = 0,
with s positive in the direction where decreases. The function +(s) along the 1-
geometry describes the intrinsic structure of the 1-geometry, and is invariant under
spatial diffeomorphisms (we have assumed here for simplicity that is a monotonic
function along the 1-geometry, and that the value 0 appears at some point along the
1-geometry). Loosely speaking, we may regard superspace as the space of all such
functions +(s) (for a spacetime with boundary, this description must be supplemented
with an embedding condition at the boundary).

Let us now consider the presence of a massless scalar field f(x). Points of su-
perspace now are described by {(s),f(q(s))}, and wavefunctionals on this space,
I [4(s), f (+(s))], satisfy the Wheeler-DeWitt equation

(Hravity + Hmatter)'[(s), f( )] = 0. (5.1.1)

We are now faced with the question: How do we obtain the semiclassical limit of
quantum gravity, starting from some theory of quantum gravity plus matter? At
the present point we have only 1-geometries in the description, and we have to
examine how the 1+1 dimensional spacetime emerges in some approximation from

[O(s), f(0)]. Obtaining a 1+1 dimensional spacetime has been called the 'problem
of time' in quantum gravity, and considerable work has been done on the semiclassical
approximation of gravity as a solution to this problem [41]. We wish to reopen this
discussion in the context of black hole physics.

In mathematical terms, we have [+(s), f (+(s))] giving the complete description
of matter plus gravity. What is the state of matter on a time-slice? If we are given
a classical 1+1 spacetime, then a time-slice is given by an intrinsic 1-geometry +(s)
(plus a boundary condition at infinity). Thus the matter wavefunctional on a time-
slice +(s) should be given by

Tw(Is)[f( (s))] - I[d(s), f(q(s))], (5.1.2)

The semiclassical approximation then consists of approximating the full solution of
the Wheeler-DeWitt equation by the product of a semiclassical functional of the
gravitational variables alone, times a matter part which is taken to be a solution

mb() [f( b(s))] (5.1.3)

of the functional Schr6dinger equation on some mean spacetime M (here the function
+(s) is like a generalized time coordinate on M). If any quantum field theory on
curved spacetime calculation using (5.1.3) can be used to approximate the result
obtained using the exact solution of the Wheeler-DeWitt equation of (5.1.2), then
we say that the semiclassical approximation is good. On the other hand, if this
approximation fails to work, we conclude that quantum fluctuations in geometry are
important to whichever question it is that we wished to answer.
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For the black hole problem, it is appropriate to make a separation between the
matter regarded as forming the black hole, denoted by F(q(s)), and all other matter
f(q(s)). It is then more natural to regard F((s)) as part of the gravitational degrees
of freedom, and it is certainly regarded as a classical background field in the derivation
of Hawking radiation using the semiclassical approximation. In this situation we must
be more precise about what we require for the semiclassical approximation to be good.
Assume that the black hole is formed by the collapse of some wavepacket of matter
F, into a region smaller than the Schwarzschild radius. We note that the energy
of this matter wavepacket cannot be exactly M, because an eigenstate of energy
would not evolve at all over time in the manner needed to describe the collapsing
packet. In fact, since the matter will be localized to within the Schwarzschild radius
M, there will be a momentum uncertainty much greater than 1/M in Planck units,
which leads to an energy uncertainty which must also be much larger than 1/M.
This uncertainty is still quite small, but should nevertheless not be ignored. The
different possible energy values in this range (M, M + AM) where AM > 1/M,
will give different semiclassical spacetimes. For the semiclassical approximation to
be good for any given computation, it must be independent of which of the slightly
different spacetimes is chosen. Conversely, if the difference in any quantity of interest
becomes significant when evaluated on different spacetimes in the above mass range,
then we cannot use a mean 2-geometry to describe physics, and we should say that
the semiclassical approximation is not goodt

Casting this problem in the language of the preceeding paragraphs, we must ask
whether the wavefunctional of matter from the full quantum solution of the Wheeler-
DeWitt equation is well approximated by working on a fixed spacetime M of mass
M and ignoring the uncertainty AM in M. Now, suppose that the semiclassical
approximation were a good one when describing the state of matter on a given time-
slice +(s). If we consider the different matter states that are obtained on ¢(s) by
taking different values for M, which cannot be clearly distinguished because we are
averaging over the fluctuations in geometry, then these states should not be 'too
different' if there is to be an unambiguous definition of the state on the time-slice. This
is a minimal requirement for a semiclassical calculation to be a good approximation
to '[q(s), F(((s)), f((s))].

Let the state of quantized matter obtained by working on M be V/)()[f(4(s))],
where in M the energy of the infalling matter is M. This is a state in the Schrodinger
representation, and thus depends on the time-slice specified by the function +(s) (plus
boundary condition). At slices corresponding to early times (i.e. near I-, before the
black hole formed) for all spacetimes with mass M in the range (M, M + AM), we
fix the matter state to be approximately the same in each spacetime. In terms of a
natural inner product relating states on a common 1-geometry in different spacetimes
(which we define in this paper), this means that

(+(s)l++()) ~ 1 (5.1.4)

IThe role of fluctuations in the mass of the infalling matter was also discussed in [91]. Generally,
fluctuations in geometry can also arise from other sources, but we shall ignore these here.
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on these early time slices, where AM is a spacetime with mass M in the above range.
On each spacetime the matter state evolves in the Schr6dinger picture in different
ways, so that the inner product (5.1.4) will not be the same on all slices. For the
semiclassical approximation to be good at any given slice, we need that (5.1.4) hold
on that slice.

io

I-

Figure 1: An example of an S-surface, shown in
spacetime.

an evaporating black hole

Having fixed the matter states on different spacetimes so that they are very similar
at early times, we analyse later time slices to check that this property still holds. Any
slice is taken to start at some fixed base point near spatial infinity. Consider now
a slice that moves up in time near Z+ to capture some fraction of the Hawking
radiation. The slice then comes to the vicinity of the horizon, and then moves close
to the horizon, so as to reach early advanced times before entering the strong coupling
domain (see Fig. 1). The importance of such slices to the black hole paradox has been
emphasized by Preskill [103] and Susskind et. al. [90] in their arguments relating to
information bleaching and to the principle of black hole complementarity. Susskind
et. al. conjectured that the large Lorentz boost between the two portions of the slice
should lead to a problem in the semiclassical description of a black hole. Slices of
this type have also been used in the literature as part of a complete spacelike slicing
of spacetime, that stays outside the horizon of the black hole [101] and captures the
Hawking radiation, and on which semiclassical physics should therefore apply. For
these surfaces, which we shall refer to as S-surfaces, we shall show in this paper that
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it is no longer the case that matter states are approximately the same for different
background spacetimes. Indeed, even for M-MI - e-M we find that on a 1-geometry
q(s) of this type,

As was argued above, the fluctuations in the mass of the hole must be at least of
order AM > 1/M, so we see that the state of matter on such slices is very ill defined
because of the fluctuations in geometry. This shows that at least one natural quantity
that we wish to consider in black hole physics, the state of matter on what we have
termed an S-surface, is not given well by the semiclassical approximation.

The plan of this paper is the following. In section 2 we review the CGHS model,
and give some relevant scales. In section 3 we study the embedding of 1-geometries
in different 1+1 dimensional semiclassical spacetimes. In section 4 we compare states
of matter on the same 1-geometry, but in different spacetimes. Section 5 is a general
discussion of the meaning of these results and of possible connections to other work.

5.2 A review of the CGHS model
There follows a quick review of the CGHS model [56], with reference to the RST
model [102] which includes back-reaction and defines some relevant scales in the
CGHS solution. Although all calculations in this paper are for a CGHS black hole,
the general features of the results that are derived are expected to apply equally well
to other black hole models in two and four dimensions.

The Lagrangian for two dimensional string-inspired dilaton gravity is

SG = 2 J dxdt ~/7 e 2
0 [R + 4(V+)2 + 4A2] (5.2.5)

where +(x) is the dilaton field and A is a parameter analogous to the Planck scale.
Writing

ds2 = _e2 Pdx+dx-

where x± = t x are referred to as Kruskal coordinates, (5.2.5) has static black hole
solutions

-2- --- A 2 x+x- (5.2.6)

and a linear dilaton vacuum (LDV) solution with M = 0. More interesting is the
solution obtained when (5.2.5) is coupled to conformal matter,

dxdt 1/zg (Vf )2,

where f is a massless scalar field. A left moving shock wave in f giving rise to a stress
tensor

1-affa+f = Mb(x+ - 1/A)
2

83



yields a solution

e-2 P e2 (Ax+ - 1)(x+ - 1/A)- 2x+x-e-2 = -2~= ) (5.2.7)

representing the formation of a black hole of mass M/A in Planck units (the Penrose
diagram for this solution in shown in Fig. 2). For Ax+ < 1 (region I), the solution is
simply the LDV, whereas the solution for Ax+ > 1 (region II),

e-2p = e-20 = M - Ax+ (Ax- M

is a black hole with an event horizon at Ax- = -M/A.

singularity

0 Do
io

Figure 2: The Penrose diagram of the CGHS solution.

It is possible to define asymptotically flat coordinates in both regions I and II. In
region I, we define

Ax+ = eAy+, Ax =-M e-Ay-
A

(5.2.8)

and in region II we introduce the "tortoise" coordinates A&+:

Ax+ = es, Ax- + M = -e-Aaf
A

(5.2.9)

The coordinate y- is used to define right moving modes at IZ. To define left moving
modes at ZR we can use either y+ or a+. As (5.2.8) and (5.2.9) tell us, both coordi-
nates can be extended to I U II so that y+ = +. It is easy to see that as a - oo or
as y -- oo, p --+ -oo. Notice also that e plays the role of the gravitational coupling
constant in this theory. It is generally believed that semiclassical theory is reliable
in regions where this quantity is small. At infinity e --* 0, and so this is a region
of very weak coupling. Even at the horizon, e = /AI/M is small provided that the
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mass of the black hole is large in Planck units (M/A > 1). This is assumed to be the
case in all calculations so that the weak coupling region extends well inside the black
hole horizon.

One virtue of this two dimensional model is that it is straightforward to include
the effects of backreaction by adding counterterms to the action S. This was first
done by CGHS, but a more tractable model was introduced by RST who found an
analytic solution for the metric of an evaporating black hole. However, the RST
model still exhibits all the usual paradoxes associated with black hole evaporation
(for a review see [103, 6]).

strong
couplin
region

00

0

Figure 3: The Penrose diagram of the RST solution with some approximate
scales shown.

Although we will carry out our calculations in the simpler CGHS model, the RST
solution (whose Penrose diagram is shown in Fig. 3), is a useful guide for identifying
certain scales in the evaporation process. These can be usefully carried over to a
study of the CGHS solution, and serve to determine the portion of that solution that
is unaffected by backreaction: The time scale of evaporation of the hole as measured
by an asymptotic observer is tE 4M in Planck units; the value of x- at which a
proportion r of the total Hawking radiation reaches I+ is Axp = -M(1 + e-4rM/A)/A
(by this we mean that the Hawking radiation to the right of this value carries energy
rM); the value of x+ , for x- = xp, which corresponds to a point well outside the
hole, in the sense that the curvature is weak and the components of the stress tensor
are small is Ax+ = Me 4 rM/A/A provided that Ax+ > e2M/X. On the basis of these
scales, we can define a point P at (x+, Axp) as defined above, located just outside
the black hole, in the asymptotically flat region, and to the left of a proportion r of
the Hawking radiation.
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5.3 Embedding of 1-geometries
In this section, we shall compare how a certain spacelike hypersurface may be
embedded in collapsing black hole spacetimes (5.2.7) of masses M (denoted by M)
and M = M+ AM (denoted by A), where AM is a fluctuation of at most Planck
size.

In 1+1 dimensional dilaton gravity models an invariant definition of a 1-geometry
is provided by the value of the dilaton field +(s) as a function of the proper distance s
along the 1-geometry, measured from some fixed reference point. For spacetimes with
boundary, such as the black hole geometries in the CGHS model, this reference point
may be replaced by information about how the 1-geometry is embedded at infinity.
It is natural to regard asymptotic infinity as a region where hypersurfaces can be
nailed down by external observers who are not a part of the quantum system we are
considering. We impose the condition that 1-geometries in different spacetimes should
be indistinguishable for these asymptotic observers, ensuring that the semiclassical
approximation holds for these observers. This condition and the function +(s) are
enough to define a unique map of E from M to M.

It is important to point out at this stage that it is possible that this map is not
well defined for some A, in the sense that there may exist no spacelike hypersurface
in M with the required properties. For the surfaces we consider, this issue does not
arise. Further, it can be argued that there is no important effect of this phenomenon
on the state of the matter fields, at least as long as one is away from strong curvature
regions. (To see this it is helpful to use the explicit quantum gravity wavefunction
for dilaton gravity given in [59, 60]). For this reason we shall ignore all spacetimes
M where 5 does not fit.

Given an equation for EM,
Ax- = f(Ax +)

and expressions for p(x+,x - ) and (x+,x - ) in M and p(x+,-) and (x+,x-) in
M, we determine the corresponding equation for EM,

Ax- = f(x- +)

by requiring that (s) = (s) and similarly d/ds(s) = d/d,§(5) (it is if these
equations have no real solution for a given M that we say that E does not fit in M).
These conditions require one boundary condition which fixes EM at infinity, and this
may be chosen in such a way that the equations for EM and EM are the same in
asymptotically flat (tortoise) coordinates sufficiently far from the black hole.

We shall demonstrate that while most surfaces embed in very slightly different
ways in spacetimes M and M with masses differing only at the Planck scale, there
is a special class of surfaces for which this is not true (what we mean by embeddings
being different will be discussed later). These are the S-surfaces which catch both
the Hawking radiation (the Hawking pairs reaching +, but not those ending up at
the singularity) and the in-falling matter near the horizon (see Fig. 1). It is useful
to give an example of such surfaces. A straight line in Kruskal coordinates x± going
through a point P , (Me 4rM/AX/A,-M(1 + e-4rM/X)), is a line of this type, catching

86



a proportion r of the outgoing Hawking radiation, provided the slope of the line
is extremely small - of order e-8rM/ X . The smallness of this parameter will play an
important role in our discussion. Although the line is straight in Kruskal coordinates,
it will, of course, look bent in the Penrose diagram, ending up at io. Far from the
horizon, these lines are lines of constant Schwarzschild time At = 4rM, giving an
interpretation for minus one half the logarithm of the slope in terms of the time at
infinity.

It is worth pointing out that the map from a surface EM in M to the corresponding
surface EM in M defines a map from any point Q on M to a point Qe on E in
M. Any other choice of surface M in M passing through Q maps Q to a different
point Q in M. This uncertainty in the location of a point Q in M gives a geometric
way of defining the fluctuations in geometry around Q. Generally, we may expect all
the images of Q in AM to lie within a small region of Planck size. However, we shall
see below that this is not the case near a black hole horizon.

5.3.1 Basic Equations
Here we present the basic equations describing the embedding of S. In a collapsing
black hole manifold M of mass M (5.2.7), it is convenient to define as

Ax = f (Ax+)- M/A.

If we use Kruskal coordinates t+ to describe E in a black hole manifold .M4 of mass
M as

Ax- = f(A+) - M/A,
then in region II of (5.2.7)

- Ax+f(Ax+) = -A f(+) (5.3.10)

f + A+f' (5.3.11)

where prime denotes a derivative with respect to the argument. The first equation is
the requirement of equal +(s) and the second of equal dq/ds(s).

Once we identify the embedding of Y in MA, we can then identify points in both
spacetimes by the value of s on . This identification may be described by the
function +(x+) between coordinates on in each of the spacetimes. To solve the
equations (5.3.10) and (5.3.11), for x+(x+), differentiate (5.3.10) by x+ and divide by
(5.3.11), to get

dx+ 

Another combination of these equations gives

f-~= -(f + Ax+f') ± /(f - Ax+f,)2 - 4AMf'/A
V- = 2 A v- ' vC/' f
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where AM = M - M. Combining both equations,

ln(Ax+) = 2d(Ax+) - x+f (5.3.12)
(f + Ax+f') V(f-AX+f)2-4AMf'/A

which is a general expression for +(x+) for any S. Similarly, if we label the one
geometry by Ax+ = g(z-) where z- = Ax- + M/A (using the notation g = f-l), we
find an analogous expression for x-(x-):

ln(Ax- + M/A) = 2 J dz- g , (5.3.13)
(9 + z-g') /(g - -g) 2 4Mg/)

In (5.3.12) and (5.3.13), the sign of the square root is determined by requiring that
as AM tends to zero we get i4 = x+. From these equations one can construct
the corresponding one geometry in M. In order for the solution to make sense, the
expressions inside the square root must be positive. This condition is a manifestation
of the fitting problem mentioned above.

5.3.2 A large shift for straight lines
For simplicity, we focus our attention on lines that are straight in the Kruskal coordi-
nates x+. Below we present a quick analysis of the embedding of these 1-geometries
in neighbouring spacetimes. In the next subsection a more detailed treatment will be
given.

Consider the line E defined in M by the equation

MAx- = f(Xx+) - = _a 2Ax+ + b.

It is easy to see that as a consequence of (5.3.10) and (5.3.11), the function f(Ax+)
describing the deformed line in Kruskal coordinates on M must also be linear. This
is a helpful simplification. Let us write the equation for E in M as

Ax- = f(x\ +) - A = _a2x ++

The parameters b and b are related by

(b + M/A) 2 4AM (b + M/A)2

cV2 - a2

It is useful to define another quantity 6, so that E crosses the shock wave, (Ax+ = 1)
in M at Ax- = -M/A - 6 (i.e. 6 = a2 - b - M/A). We then find from equation
(5.3.12) that

2MAX+ = 2aAx+ + 6/a - a (a2 - ) 2 /a 2 + 4AM/A

We still have a free parameter a. The way to fix it is by imposing the condition
that should be the same for an asymptotic observer at infinity, meaning that as
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expressed in tortoise coordinates a or a, E should have the same functional form up
to unobservable (Planck scale) perturbations. This may be achieved, as we will see
later, simply by picking a point on E in M, call it x+, and demanding that both lines
have the same value of 0 at the point x+ = + = x+. Then

/- a +/(
6)2 /a+ + 4AM/ (5.3.15)

240

Taking x0 - oo fixes the line at infinity. The result does not depend on whether we
take x0 - oo or just take it to be in the asymptotic region x0o > Me2M/A/A.

We can actually derive some quite general conclusions about how the embedding
of E changes from M to M from (5.3.14) and (5.3.15). Let us split the possible E's
into three simple cases, for any value of ac and 6 (recall that lAM/Al < 1):

1. ( 2 _ 6)2/a2 > 4AM/A

In this case
a = a

and
AM

AX+ = Ax+ + A
X(a - )

2. (a 2 - 6) 2 /a2 < 4AM/A

For AM/A > 0 (this is taken to avoid fitting problems)

a=a
and

Ax+ = AM/x+
a

3. (a 2 - 6)2 /a2 4AM/A

Again AM/A > 0 , and we find a similar result

a = a

and

Ax+, Ax + AM/A
a

In the last two cases the sign ± depends on the sign of a 2 - S.
The above results all show that the slope -a of the line in M is virtually identical

to the slope a in M (identical in the limit x0 - o). It is also the case that the
position of the line in the x- direction is almost the same in M and M. However,
for lines with small values of a and 6, there is a large shift in the location of the
line in the x+ direction in M relative to its position in M. The lines for which this
effect occurs are precisely the S-surfaces that we have discussed above. These were
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defined to have a 2 _ Me-8rM/A/A, and 0 < 6 < Me-4rM/A/A, which are both small
enough to compensate for the AM in the numerator in the expressions above. The
large shift, and the fact that it occurs only for a very specific class of lines, precisely
the S-surfaces which capture both a reasonable proportion of the Hawking radiation
and the infalling matter (see Fig. 1), is the fundamental result behind the arguments
presented in this paper. The fact that only a special class of lines exhibit this effect is
reassuring, as it means that any effects that are a consequence of this shift can only
be present close to the black hole horizon.

5.3.3 Complete hypersurfaces
So far we have not taken the hypersurfaces to be complete, i.e., we have not done
the full calculation of continuing them to the LDV and finishing at infinity in the
strong coupling regime. We will now perform the full calculation for a certain class of
hypersurfaces. They will provide us a convenient example (for calculational purposes)
for use in section 4, where we will discuss the implications of the large shift on the
time evolution of matter states.

We choose, for convenience, to work with a class of hypersurfaces that all have
do/ds = -A:

-c2Ax+ - 2a - (Ax+ > 1)

- a + AX + (Ax+ 1)

These lines are of type 1 ((a2 -_) 2/a2 > 4AM/A) discussed in section 3.2. They have
one free parameter, the slope a2. At spacelike infinity, these lines are approximately
constant Schwarzschild time lines, a ° = -In a, and for different values of a, they
provide a foliation of spacetime in a way often discussed in the literature [101] in the
context of the black hole puzzle. They always stay outside the event horizon, and
they cross the shock wave at a Kruskal distance 6 = 2aM/A + a2 from the horizon.
After crossing the shock wave they continue to the strong coupling region. For an
early time Cauchy surface, the parameter a2 is arbitrarily large (a2 o would
make the lines approach I-). As a 2 becomes smaller, the lines move closer to the
event horizon. Finally, as a2 -- 0, the upper segment asymptotes to Z+ and to the
segment of the event horizon above the shock wave. This is illustrated in Fig. 4. We
are mostly interested in the S-surfaces that catch a ratio r of the Hawking radiation
emitted by the black hole, which fixes the value of a. For r not too close to 1, the
S-surfaces are well within the weak coupling region.
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Figure 4: Examples of the complete slices of Sec. 3.3.

We want to find the location of the above lines in a black hole background with a
mass M = M + AM. It is easy to see that in the new background, the lines

-c2x - 2 At(x + 1)

Ax = t2 (A-Ž1)(5.3.17)
- ci- + A X + (At+ < 1)

also satisfy d/ds -A. We only need to identify the new slope &a2 in terms of the
old one, and as before, this is given by the boundary conditions at infinity. Requiring
XA+ = A0o+, where a+ is the tortoise coordinate defined in (5.2.9), yields

a=a+ - 0

If we also want to require A&o = A-, we need to do the fixing at infinity, which of
course sets

After fixing the a coordinates at infinity, we may check that a' and A do not differ
appreciably as we approach the point P (still considered to be in the asymptotic
region) along an S-surface. Taking a e-4rMP/ and P to be at Ax+ Me4rM/A/A,
Axp - -M/A - Me-4rM//A as before, we find that at P

ha+ - A,,+ a /M (M)' 2 (5.3.18)

AM
2M
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which is a small deviation. We conclude that if we had fixed the surface at P instead
of infinity, all results would be qualitatively unchanged, as one would expect.

We can now compute the relationship between Ax+ and Ax+. As we saw in the
previous subsection, the points in the original line get "shifted" by a large amount in
the new line. It is easy to see that

x+ = Ax ++ a - \j ) (5.3.19)

A Ax+ - M-- - (5.3.20)
2Aa M

For instance, for ca -4rM/), AM/A A/M the shift is of the order of

)X+ - + _ -1 4rM/

which is huge. Even for AM/A e- M/, the shift can be extremely large. As we will
see in section 4, instead of the relations Ax+ = AX+(Ax+), we will be interested in
the induced relations between the asymptotically flat coordinates AO+ and Ao+, and
/A- and Ay-. A huge shift in the Kruskal coordinate close to the shock wave will
correspond to a big shift in the coordinate )Aa+, in which the metric is flat at 2R. As
a consequence, the relation between A-+ and a+ is nonlinear, as we will discuss in
the next section.

Finally, let us mention an immediate consequence of this large shift in the x+

direction. The map of an S-surface from M to M induces a map from a point Q
close to the horizon to a point Q which is shifted a long way up the horizon in terms
of Kruskal coordinates. A similar map induced by other surfaces through Q which are
not S-surfaces will not shift Q by a large amount. We therefore see the presence of
large quantum fluctuations near the horizon in the position of Q in the sense defined
above. These large fluctuations are already a somewhat unexpected result.

5.4 The state of matter on 
We have seen in the previous section in some detail the large shift that occurs in the
x+ direction when we map a S-surface E from a black hole spacetime M to one with
a mass which differs from M by an extremely small amount, even compared with
the Planck scale. This appears to be a large effect, capable of seriously impairing
the definition of a unique quantum matter state on E in a semiclassical way. There
are, however, many large scales in the black hole problem, and it is premature to
draw conclusions from the appearance of this large shift in the Kruskal coordinates,
without verifying that there is a corresponding shift in physical (coordinate invariant)
quantities. An absolute measure of the shift is given by the asymptotic tortoise
coordinate a+ at IR. The exponential relationship between x+ and a+ implies that
the shift is of Planck size for an x+ far from the shock wave (x+/4x+ 1, where xp

92



is again as defined at the end of section 2), and there is no reason to expect this to
give rise to a large effect. However, for x+/x + < 1 (close to the horizon), the shift
in A+ is of order M/A, an extremely large number. This implies that the shift is
macroscopic in the sense that, for example, matter falling into the black hole some
fixed time after the shock wave will end up at very different points on E, depending
on whether we work in M or M. Similarly, identical quantum states on IRj should
appear very different on E in the two cases, meaning that the matter state on is
strongly correlated with the fluctuations in geometry.

In this section, we will attempt to make the notion of different quantum states of
matter on more precise, allowing us to estimate the scale of entanglement between
the matter and spacetime degrees of freedom. In order to do this, it is necessary to
have a criterion to quantify the difference between two semiclassical matter states
living in different spacetimes M and M, that are identical on - and are then
evolved to E. The heuristic arguments above show that the expectation values of
local operators can be very different for states in M and AM4 that appear identical on
2- where there is a fixed coordinate system through which to compare them. Rather
than look at expectation values of operators, we construct an inner product

(sl0, , M 102, , A4)

between Schr6dinger picture matter states on the same E through which states on M
and M74 can be compared. The inner product makes use of a decomposition in modes
defined using the diffeomorphism invariant proper distance along , through which
the states can be compared. Details of this construction can be found in Appendix
A.

An important feature of the inner product is that for a Planck scale fluctuation
AM and for states [k, M) and I1, M) that are identical on 2- it can be checked that

(p, , M , E, iM ) 1 (5.4.21)

on any generic surface E that does not have a large shift. This is a necessary condi-
tion for the consistency of quantum field theory on a mean curved background with
a mass in the range (M, M + AM): If states on M and M are orthogonal on E,
this is an indication that the approximate Hilbert space structure of the semiclassi-
cal approximation is becoming blurred due to an entanglement between the matter
and gravity degrees of freedom. Using the inner product, we now show that matter
states become approximately orthogonal on S-surfaces for extremely small fluctua-
tions AM/A e-4rM/A in the mass of a black hole, dramatically violating condition
(5.4.21).

In general the states that we wish to compare are most easily expressed as Heisen-
berg picture states on M and M, and the prospect of converting these to Schr6dinger
picture states, and evolving them to is rather daunting. As explained in Appendix
A, there is a short cut to this procedure. For the states we are interested in (those
that start as vacua on I-) the basic information needed for the calculation of the
inner product is the relation induced by +(s) on between the tortoise coordinates
on M and M, namely a+ = a+(Ua+). This allows us to compute the inner prod-
uct between the Schr6dinger picture states by computing the usual Fock space inner
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product between two different Heisenberg picture states, defined with respect to the
modes e-iwa+ and eiw+. The latter inner product is given in terms of Bogoliubov
coefficients. It should be stressed that this is just a short cut, and that the inner
product depends crucially on the surface E, which is seen in the form of the function
C = +(&+).

We will study the overlap

(0 in, E, M10 in, , M) (5.4.22)

where 10 in, A, M) is the matter Schr6dinger picture state in spacetime M on the
hypersurface E which was in the natural left moving sector vacuum state on TR. We
shall also use this quantity to estimate the size of AM = (M - M) at which the states
begin to differ appreciably. To evaluate the inner product (5.4.22), we first need to
find the induced Bogoliubov transformation

v, = dw' [ aWW,'W + /WW1,, ] (5.4.23)

between the in-modes

V = e (5.4.24)=Vw -- eiwa

where a+ and r+ are related by an induced relation

a+ = a+ (a) . (5.4.25)

Let us derive the relation (5.4.25) above, for the example of Section 3.3. As
(5.3.20) shows us, the shift Ax+ - Ax+ can become large and Ax+ above the shock
wave maps to A+ further above§ the shock wave. As Ax+ comes closer to the shock
wave and crosses to the other side, the image point Ax+ can still be located above
the shock wave. Only when Ax+ is low enough under the shock wave, does Ax+ also
cross the shock and go below it. Thus, the relation between the coordinates is split
into three regions:

e- =

aAx+ + -= aAx+ + (Ax+ > 1)

ea + Ax += a Ax + (> > V)

(a + Ax+= (a+A/)A'x+ (+I ->Ax+Ž>)
a . ., - v

(5.4.26)

§ For simplicity, we will consider only the case AM < 0 in this section. The conclusions will not
depend on this assumption.
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Rewriting (5.4.26) using the asymptotic coordinates, we then get the relation (5.4.25):

AC+ =

[ a A4 (AC - Io1)

In ae: + - (a&+ > A + > ) (5.4.27)In [_a a 1- > 

+ a+n + -
Aa-+ + In V (0 > A&+
L -CI~ + V- 

where

A, + -In 1 + - - (5.4.28)

This coordinate transformation is illustrated in Fig. 5. As can be seen, in the first
region (which corresponds to both points being above the shock) the transformation
is logarithmic. On the other hand, in the third region when both points are below
the shock, the transformation is exactly linear. The form of the transformation for
the interpolating region when the other point is above and the other point below the
shock should not be taken very seriously, since it depends on the assumptions made
on the distribution of the infalling matter. For a shock wave it looks like a sharp
jump, but if we smear the distribution to have a width of e.g. a Planck length, the
jump gets smoothened and the transformation becomes closer to a linear one.

The Bogoliubov coefficients are now found to be

aw, - 2 W Iw + (5.4.29)

1 I7

= 27r L

where I , are the integrals

IJ, =- d + &-iw+(f+)iiw'+ . (5.4.30)
0
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Figure 5: A graph of the function ,Aj+(a+). The vertical axis =Ar +, the
horizontal axis =A,+. The part of the graph to the right (left) of the vertical
axis corresponds to both points being above (below) the shock wave. (The
interpolating part is in the region Aa+ E (-0.0013,0) so the plot coincides
with a segment of the vertical axis in the figure). The values M/A =20, AM/A
=-1/20 and r =1/2 were used in the plot.

Substituting the relations (5.4.27) above, we get

exp -Z In

exp -i-In

exp -iw' +

To identify the first integral, introduce first

AA=+ 1 (V aC A VT
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= da+

+ do+

+ J d+

- iw'+} (5.4.31)

i'+ }

=e 1 (5.4.32)

P- (1) + I�,,(2) + I!,, 3) .

I

a )&++ 1

-- .W In w &A Mt-



and change the integration variable from Aft+ to Ay,

/A\e- AY -- et . (5.4.33)

We now find that

,(l)= A ' dy exp {-i n [A(e - C)] iwy} , (534)dy exp i -In %W y ~ (5.434)
where

C 1-A (5.4.35)
AA

Now we can recognize the integral to be the same as discussed in [94]. This integral
can be identified as an incomplete 1-function. However, it is also possible to make
the standard approximation of replacing the integrand by its approximate value in
the interval Ay E (-1, 0) [5, 94, 104]. Note that this interval corresponds to a region
A + E (O,ln[(e - 1)AA + 1]). The latter can be large: for AA - eM/A it has size
- M/A. Indeed, comparing with (5.3.20) we notice that AA - 1 is equal to the shift
Ax+ - Ax+ above the shock, which could become exponential. So we can use

Ii (1) AAz: 'I o J dy exp -i ln [-AAAy]iw'y} . (5.4.36)

As discussed in [104], this leads to the approximate relation~I+W(1) ,,~ -/x (I:(1))* (5.4.37)

for the integrals.
The logarithm in (5.4.36) implies that Ii,(l) contributes significantly in the

regime w' - w > 1. Since the coordinate transformation (5.4.27) was exactly linear
in the third region and we argued that smearing of the incoming matter distribution
smoothens the "interpolating part" in the second region, we can argue that I,,(2)
and I,,(3) are negligible in the regime w' - w > 1. Therefore, in this limit I,,() is
the significant contribution, and a consequence of (5.4.37) is that the relationship of
the Bogoliubov coefficients is (approximately) thermal,

aww -erw/X w , (5.4.38)

with "temperature" A/27r. Let us emphasize that the "temperature" itself is indepen-
dent of the magnitude of the fluctuation AM. Rather, it is the validity of the thermal
approximation that is affected: the larger the fluctuation AM is, the better approx-
imation (5.4.38) is. Also, the region of ,A + which corresponds to (5.4.38) becomes
larger. Consequently, the inner product between 10 in, Z, M) and 10 in, Z, M) can be-
come appreciably smaller than 1. We refer to this as the states being "approximately
orthogonal", we will elaborate this below.

Let us now calculate the inner product (5.4.22). As was explained before, we have
related this inner product to an inner product between two Heisenberg picture states
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related by the above derived Bogoliubov transformation. For the latter inner product,
we can use the general formula given in [107]. We then find (see Appendices):

I(0 in, E, MI 1 in, E, M)1 2 = (det(1 + 3 /3 t)) 2 (5.4.39)

We can now make an estimate of the scale of the fluctuations for the onset of the
approximate orthogonality. As a rough criterion, let us say that as

1
(0 in, E,MI0 in, ,M)l2 < - , (5.4.40)

where -y e, the states become approximately orthogonal. As is shown in Appendix
B, the states become approximately orthogonal if

AM M Y48 (5.4.41)
A (5.4.41)

where a is the (square root of the) slope. If the lines do not catch the Hawking
radiation, a > 1, then the fluctuations are not large enough to give arise to the
approximate orthogonality and therefore (5.4.21) is satisfied. On the other hand, if the
lines catch the fraction r of the Hawking radiation, a m e-4 rM /X and the fluctuations
can easily exceed the limit. (Recall that M/A > 1, so a is the significant factor.)
Note that the criterion (5.4.41) has been derived for the example hypersurfaces of
section 3.3. However, the more general result for any S-surface of the types 1-3 of
section 3.2 can be derived equally easily. In general the right hand side of (5.4.41)
will depend on both the slope a 2 and the intercepts 6. The physics of the result will
remain the same as above: for the S-surfaces the approximate orthogonality begins
as the fluctuations AM/A satisfy ln(A/AM) M/A.

One might ask what happens to the "in"-vacua at 2L related to the rightmoving
modes e- iwY -, e- i W- . We can similarly derive the induced coordinate transformations
between the coordinates Ay- and Ay-. This coordinate relation is virtually linear,
and therefore the Bogoliubov coefficients will be .. 0 and the vacua will have overlap
t 1. Thus the effect is not manifest in the rightmoving sector.

5.5 Conclusions
Let us review what we have computed in this paper:

It is widely believed that the semiclassical approximation to gravity holds at the
horizon of a black hole. We have computed a quantity that is natural in the con-
sideration of the black hole problem, and that does not behave semiclassically at the
horizon of the black hole. This quantity is the quantum state of matter on a hyper-
surface which also catches the outgoing Hawking radiation. The crucial ingredient
of our approach was that when we try to get the semiclassical approximation from

TRecall that the hypersurfaces of section 3.3 had 6 = a2 +2a/Ai7X so the rhs of (5.4.41) depends
only on a.
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the full theory of quantum gravity, the natural quantity to compare between different
semiclassical spacetimes is the same 1-geometry, not the hypersurface given by some
coordinate relation on the semiclassical spacetimes. By contrast, in most calculations
done with quantum gravity being a field theory on a background two dimensional
spacetime, one computes n-point Greens functions, where the 'points' are given by
chosen coordinate values in some coordinate system. For physics in most spacetimes,
the answers would not differ significantly by either method, but in the presence of a
black hole the difference is important.

We computed the quantum state on an entire spacelike hypersurface which goes up
in time to capture the Hawking radiation, but then comes down steeply to intersect the
infalling matter in the weak coupling region near the horizon. We found that quantum
fluctuations in the background geometry prevent us from defining an unambiguous
state on this S-surface. Matter states defined on an S-surface, evolved from a vacuum
state at I-, are approximately orthogonal for fluctuations in mass of order e-M or
greater, a number much smaller than the size of fluctuations expected on general
grounds.

One can expand the solution of the Wheeler-DeWitt equation in a different basis,
such that for each term in this basis the total mass inside the hole is very sharply
defined. If one ignores the Hawking radiation, then one finds that for such sharply
defined mass the infalling matter has a large position uncertainty and cannot fall into
the hole. Thus one may say that if one wants a good matter state on the S-slice, then
the black hole cannot form. Any attempt to isolate a classical description for the
metric while examining the quantum state for the matter will be impossible because
the 'gravity' and matter modes are highly entangled. It is interesting that if we try
to average over the 'gravity states' involved in the range M -, M + AM, we generate
entanglement entropy between 'gravity' and matter. This entropy is comparable to
the entanglement entropy of Hawking pairs.

The computations of sections 3 and 4 show that the states on an S-surface differ
appreciably in the region around the horizon. However, to calculate any local quantity
close to the horizon, we could equally well have computed the state on spacelike
hypersurfaces passing through the horizon without reaching up to I + . On these
surfaces we would find an unambiguous state of matter for black holes with masses
differing on the Planck scale. This feature may signal that an effective theory of
black hole evaporation might not be diffeomorphism invariant in the usual way. It
also indicates that the breakdown in the semiclassical approximation is relevant only
if we try to detect both the Hawking radiation and the infalling matter. Susskind has
pointed to a possible complementarity between the description of matter outside the
hole and the description inside. 't Hooft and Schoutens et. al. have expressed this
in terms of large commutators between operators localized at Z+ and those localized
close to the horizon. These notions of complementarity seem to be compatible with
our results. It is interesting that we have arrived at them with minimal assumptions
about the details of a quantum theory of gravity.

It should be mentioned that although every spacelike hypersurface that captures
the Hawking radiation and the infalling matter near the horizon gives rise to the effect
we have described, a slice that catches the Hawking radiation, enters the horizon high
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up, and catches the infalling matter deep inside the horizon can be seen to avoid the
large shift. It seems that the quantum state of matter should be well defined on
such a slice. The significance of this special case is not yet clear to us, although it is
interesting that this type of slice appears to catch not only the Hawking pairs outside
the horizon, but also their partners behind the horizon.

Our overall conclusion is that one must consider the entire solution of the quantum
gravity problem near a black hole horizon, in particular one must take the solution
to the Wheeler-DeWitt equation rather than its semiclassical projection. We believe
that the arguments we have presented can be applied equally well to black holes in
any number of dimensions.
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5.6 Appendix A
In this appendix we shall explain the construction of a natural inner product relating
states of a quantum field defined on different spacetimes in which the same hypersur-
face E is embedded. Clearly the Schr6dinger picture allows us to compute the value
of a state on any hypersurface E in the form

I[f(x), to]

where in the chosen coordinate system E is the surface t = to. There is of course
a Hamiltonian operator which is coordinate dependent, and which in the chosen
coordinate system specifies time evolution on constant t hypersurfaces:

H[f(x), f(X), , t]@ = id

We shall assume that the evolution of a state is independent of the coordinate system
used, in the sense that a state on a Cauchy surface El is taken to define a unique
state on a later surface E2. This may not always be the case [105], but we will ignore
such problems in our reasoning.

In quantum field theory on a fixed background, there is an inner product on the
space of states on any hypersurface E. However, in order to use this inner product to
compare states in different spacetimes, it is necessary to find a natural way of relating
two states defined on E without reference to coordinates. A natural way of doing this
is to use the proper distance along E to define a mode decomposition, and to compare
the states with respect to this decomposition.

Define

a(k) = I d eiks kf((S)) +

at(k) =- j e wkf(x(s)) sf((s)) (5.6.42)

so that [a(k), at(k')] = (k - k'). It is then straightforward to define the familiar inner
product on the corresponding Fock space. An easy way to picture the Fock space in
this Schr6dinger picture language is to transform to a representation T[at(k), t], in
which a(k) is represented as 6/Sat(k). The "vacuum" state, annihilated by all the
a(k), is just the functional = 1, and excited states arise from multiplication by
at(k). The inner product is

(T1 92) J lk da(k)dat(k) (Al[at(k), t])* 2 [at(k), t]exp [- dk a(k)at(k)]

(5.6.43)
where (at(k))* = a(k) [106].

We could carry out the same construction for any coordinate x on E, and the inner
products would necessarily agree. However, the operators a(k) and at(k) constructed
using proper distance are special, in that we shall say that two states M [f(x), tl] and
XPIM [f(z), t2] defined on different spacetimes M and M but on a common hypersurface
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located at tM = t or t = t2, are the same if they are the same Fock states with
respect to this decomposition. If they are not identical, their overlap is given by the
Fock space inner product (5.6.43), and this is what is meant in Section 4 by

(Al, A, M 102, ', M).

Having defined an inner product between two Schrodinger picture states on dif-
ferent spacetimes, we want to extend it to Heisenberg picture states on M and M,
since these are the kind of states we are used to working with in quantum field theory
in curved spacetime. The inner product we have just defined can be used to relate
Heisenberg picture states by transforming each of the states to the Schrodinger pic-
ture, evolving them to the common hypersurface E, and computing the overlap there.
It is useful to have a short-cut to this computation. In order to achieve this, we first
relate a Schr6dinger picture state I[at(k), to] to a Heisenberg picture state T[at(k)],
where now the a(k) are associated with mode functions on M not Z: First choose
coordinates (x, t) on the spacetime such that the metric is conformally flat, that is
a constant time slice, t = to, and that the conformal factor is unity on E. Using these
coordinates, we can compute the Hamiltonian, which by virtue of two dimensional
conformal invariance is free

H = f dx(rf2 + (f) 2).

We pick a mode basis defined by

a(k) = J (wkf(x ) + f() 

at(k) = J/dx eikx (-kf(x) f(x))

so that on E this is precisely the proper distance mode decomposition. In terms of
these modes, the Hamiltonian is simply given by

H = Jdkwkat(k)a(k)

so that transforming the operators a(k) and at(k) to the Heisenberg picture simply
gives

a(k, t) = eiwk(t-to)a(k), at(k, t) = e-i'wk(t-to)at(k)

and

f ( = (a(k)e-ik x + at(k)eik I.

Correspondingly the Schr6dinger picture state T[at(k),t] is identical in form to the
Heisenberg picture state: l[at(k)] [at (k),t]lt=tO. We may repeat this procedure
on another spacetime M, again defining modes on M so that J[at(k)] is identical
to the Schr6dinger picture state on z. Then, the inner product (5.6.43) serves as
an inner product for Heisenberg picture states TQM[at(k)] and JM[at(k)] living on
spacetimes M and M.
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Now in order to compare a Heisenberg picture state M [at(k)] to any other
Heisenberg picture state on M, we may make use of standard Bogoliubov coeffi-
cient techniques. Consider another state defined in the Heisenberg picture in terms
of mode-coefficients related to modes vp(x, t) on M. Let us suppose that we associate
operators b(p) and bt(p) with the modes vp(x, t). Then

b(p) = E [akpa(k) + l;kpat(k)]
k

bt(p) = E [Okpa(k) + a*pat(k)] (5.6.44)
k

where

Ykp= -i dxfk(xt)atv(x, t), kp = i dxfk(x,t)tvp(x t).

Here fk(x, t) = e-ikx/ 45FJ are the modes defining the a(k).
We may perform a similar calculation on a neighbouring spacetime M, also con-

taining E, to relate a set of modes vq(x, t) to the modes fk(, t) and similarly to relate
the operators a(k) and at (k) to the b(p) and t(p) as

b(p) = k [6pa(k) + I3pat(k)]
k

bt(p) = E [Ikpa(k) + apat(k)] (5.6.45)
k

Now we can use the inner product (5.6.43) to relate two states JM [bt(p)] and qM [bt(p)]
directly.

More simply, it follows from (5.6.44) and (5.6.45) that the b's and b's are related
by

b(p') [(vp, vp,)L(p) + (,vp, 1) bt(p)]
p

bt(p') = [-(v, v,)t(p) - (vp,v,)b(p)] (5.6.46)
p

where
(vp, v, ) = -i dx5p(x, t)Otvp,(x, t) (5.6.47)

so that the inner product between states on M and M may be computed using the
standard inner product for states T[bt(p)] without going through the a(k).

In the examples that we consider, the Bogoliubov coefficients in (5.6.46) need not
be evaluated on E as in (5.6.47). Suppose for example that we have left moving
mode bases vp(a+) and vp(&+) defined in terms of tortoise coordinates on M and M
respectively. Then both v and v, are functions of x+ only. We can simply change
variables in (5.6.47) from x to oa (the t differentiation becomes an x differentiation
which absorbs the factor dx/da), yielding

( , V, iJdaP( =+(+f)) 9Oo v*( +i) (5.6.48)2) PO -if P
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where a+ is given as a function a+ through the relations derived by equating points on
E according to the values of d and dq/ds, as in Section 3. The integral (5.6.48) looks
exactly like the familiar integral for Bogoliubov coefficients, even though it involves
mode functions on different manifolds. (5.6.48) may be evaluated on any Cauchy
surface in M (or M) since both the mode functions solve the Klein-Gordon equation
on M (M).

5.7 Appendix B
We present some details of the calculation of the overlap of the two states on E. We
now know the Bogoliubov transformation between the modes v and 'v, in the text.
Subsequently, the overlap of the two Schr6dinger picture states can be found to be

(0 in, E, M 0 in, Z, M) = (det(a))- , (5.7.49)

where a is the matrix (a,,,) of Bogoliubov coefficients. The right hand side is the
general formula for the overlap of two vacuum states related to modes connected by
a Bogoliubov transformation [107]. However, it is more convenient to consider not
the overlap but the probability amplitude

(0 in, , M 0 in, Z, M)12 = (det(acat)) ,2 (5.7.50)

where the components of the matrix aat are

(aat)ww, j dw" aegww�aca. (5.7.51)

The evaluation of the determinant of the matrix aat becomes easier if we move into
a wavepacket basis. Instead of the modes v we use

1 (j+l)a
vj -a-½ j dw e2iwn/a v . (5.7.52)

ma

These wavepackets are centered at a+ = 2rn/a, where n = ... ,-1,0,1,..., they
have spatial width - a-l1 and a frequency wj ~ ja, where j = 0,1, .... For more
discussion, see [5, 104, 94]. In the new basis, the Bogoliubov coefficients become

Ojnwl =a- ~ dw e27r
i w n / a= a2 dw (5.7.53)

jnw = 2 (j+ 1) a/3jno, a-~ dw e2iwn/a /ww'ja

with the normalization

dw" [Ogjnwl. - j-13inwl"3>nlwtt] = .1'6nn. (5.7.54)

The thermal relation (5.4.38) becomes

Pjnw' -Oe WI/Ajnw . (5.7.55)
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Recall that the validity of the thermal approximation corresponded to the region
Ae+ E (0, ln[1 + (e - 1)Al]) where AA- 1 was the shift Ax+ - Ax+ . Let us denote the
size of this region as AL. Since the separation of the wavepackets is A(Aa + ) = 2rA/a,
we can say that

AL ln[l + (e - 1)AA] (5.7.56)
nmax = (5.7.56)

A(Aor+) 2rA/a
packets are centered in this region.

Combining (5.7.54) and (5.7.55), we now see that

(aat)njln' b 1 -e-2 'wi/i (5.7.57)

for n, n' "inside" AL. For the other values of n, n' (at least one of them being "out-
side"),

(at')jnjlnl jj,nn . (5.7.58)
We are now ready to calculate the overlap (5.7.50). We get

M ('""'d) 12
In [(0 in, ,M/O in, , 2M)I2] {(i -{ Erwj ln/] (5.7.59)

ln (outside) 

In order to estimate the last term, we convert the sum to an integrall:

in [1 -e2- ja /A] -4 j dj In [ - e - 2- j /A] (5.7.60).7,,E/] [d J i [ -~"l] (5.7.60)

2Ara 6 )

Now, combining (5.7.59) and (5.7.60), we finally get a useful formula for the overlap:

1(O in, ,MI0 in,,M)1 2 ~ exp L 2r } (5.7.61)

1 ALe 48

Now we can estimate when the overlap is < y-1 where -y is a number - e. The overlap
becomes equal to y-l as

481ny = AL = ln[1 + (e- 1)AA] (5.7.62)

In 1 + (e-1) 1 2 a

IINotice that one might like to exclude frequencies corresponding to wavelengths much larger
than the thermal region AL and impose an infra-red cut off at jmia 1/L. It turns out that for
oo > AL > 27r (O < jmi, a < A/2r) the effect of imposing this cut off is negligible. Therefore we can
just as well take the integral over the full range.
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where we used (5.3.20) in the last step. Solving for AM, we get

AM 2 48 (5.7.63)

A e - I A

If lAM/Al is bigger, the states are approximately orthogonal. Notice that since we
used (5.3.20) in the end, (5.7.63) is a special result for the hypersurfaces of section
3.3. However, it is straightforward to generalize (5.7.63) to any S-surface of section
3.2 by using the relevant shifts as AA - 1 and proceeding as above. In general the
right hand side of (5.7.63) will then depend on both a and the intercept .
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Chapter 6

A Proposal for an Effective
Theory for Black Holes

"Tracking what ?" said Piglet, coming closer
"That's just what I ask myself. I ask
myself, what ?"
"What do you think you '11 answer"
"I shall have to wait until I catch up
with it" said Winnie-the-Pooh.
(The World of Pooh by, A. A. Milne)

Abstract:

We extend the discussion of chapter 5 of the breakdown of the semiclassical ap-
proximation near a black hole horizon to four dimensional black holes. We propose
an effective theory for matter interacting with the black hole background taking into
account the gravity fluctuation and discuss its properties.

This chapter is based on ongoing work in collaboration with Miguel Ortiz

107



6.1 Four Dimensional Black Holes
We start with the Schwarzchild black hole metric in Kruskal coordinates.

2 32M 3

ds2 = - e- /2MdUdV + r2 dQ2
r

Where U = e- u/4M, V = e/4M, r is the usual Schwarzchild coordinate and u = t- r*,
v = t + r* and r* = r + 2M In Ir/2M - 1I is the tortoise coordinate.

We have
-UV = (r/2M - l)er/2M

We are only interested in the metric near the horizon and we expand around r = 2M
hence we write r = 2M(1 + e). then one gets -UV = .

Define x+ = v/32M3V, x- = 32MU, = 4M and p, A as follows

ds2 = -e 2PdUdV + AdQ2

Then we get
e-2 p = A = 2M - x + x-

We restrict ourself to spherically symmetric spacelike hypersurfaces. This implies
that the hypersurface is defined geometrically by its area and its intrinsic geometry in
the t, r plane. The area is given by A. It is a scalar under coordinate transformation
in the t, r plane. The intrinsic geometry of a spherically symmetric hypersurface is
then given by the function A(s) where s is the proper distance in the t, r plane. In
two different space times we say the hypersurfaces are the same if they define the
same function A(s)

Consider two different mass black holes with masses M and M. We can define
a (spherically symmetric) spacelike hypersurface on the first spacetime through a
relation between x+ and x-, say KX- = g(KCx+). Given the form of the metric, it is
easy to deduce the function A(s) which defines the intrinsic geometry. The condition
that A(s) be the same in two different spacetimes defines a simple relation between
points labelled by co-ordinates x± on one spacetime and points labelled by coordinates
X+ on another spacetime. Suppose that we define a spacelike hypersurface in the other
spacetime by cx- = (icx+). Then the condition that A(s) = A(s) is equivalent to
the two conditions:

A(x+,g(x+)) = A(x+,4g(x+)) (6.1.1)

dA dA
ds(x+g(x+))= dg+,g( + )) (6.1.2)

One then finds that the relationship between the coordinates of the same points
in the two different mass black hole is (see also chapter 5.3.1)

bln(ki+) = 2 dy + (6.1.3)(g + yg') /b2(g + yg)24g'(2M + yg)
Where y = cx+ and b = Ic/.
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For a S-surface g = -a 2 Zx+ + 6 where a 2 < 6 < 1. We find to a good approxi-
mation, a result similar to that found in chapter 5.

2AM
ec+ = + +

Two incoming states on different space times of mass M and M can be compared
on a spacelike hypersurface () through the proper distance modes on E. A vacuum
state with respect to modes q((x)+) on the M space time is mapped to a vacuum state
with respect to modes (+(x+)) on the M space time. The inner product between
the two states can be computed (see appendix A and B in chapter 5). For the natural
in-coming vacuum for which the positive frequency modes are of the form e-iw , one
finds that the inner product between the two states on the S-surface considered above
is

(0n M, E0inM, E)12 = exp -ln[ 2M ]/48 (6.1.4)

This becomes very small as 6 is very small on S-surfaces.
All this is true if the matter field was only coupled to the metric of the t, r plane.

However in four dimension this is not the case, so a little care must be taken
As usual we decompose the incoming matter waves as

f(x) = ZEr-1 Y,mu,m(r,t)
I,m

ul,m(r, t) solves a two dimensional wave equation. The equation is basically that of
a free field for I = 0 and has a potential term for I > 0. If we restrict ourselves to
I = 0 waves only (as we actually did above) we have proven the orthogonality. In
fact that is enough. However one can generalize the construction of chapter 5 to deal
with the higher angular momentum modes. We will not show this construction here.
The only quantitative difference is that the higher angular momentum modes are not
conformally coupled to the two dimensional metric, and hence their propagation is
not free. This can be dealt with. The difference between the inner product is most
easily seen in the difference of the Bogolubov coefficients between the two states. We
find (a 1)

O (awl- 2M)
e 2 ruw / - 1

The inner product will be modified and have the form

](0i, I ME 1°inx 1, SM,) 12 = exp -e-'l n[ /48 (6.1.5)e n _____ 1 (6.1.5)

Thus for high enough I the inner product will be close to 1.
We conclude that for four dimensional Schwarzchild black hole the semiclassical

approximation breaks down in the same way as described in chapter 5.
We would like to note that there are two important ingredient coming into the

breaking of the semiclassical approximation. One is the large shift in the Kruskal

109



coordinate and the other is the natural chosen incoming state. For space times that
have a large shift (but the natural state to consider is for instance the Kruskal vacuum)
there will be no breakdown of the semiclassical approximation. It is also possible to
show that the semiclassical approximation breaks down for matter propagating on a
charged black hole background but not for an extremal black hole; exactly because
of the above reason.

6.2 An Effective semiclassical Theory
let us summarize the situation. In a black hole background if we start with the natural
state at 2- we find that due to the small uncertainty of the mass of the black hole
the states become almost orthogonal on a certain class of hypersurfaces. If we want
to describe the physics in terms of outside observers only (outside the horizon) we
have no choice but to use those hypersurfaces. We also found that the state on the
same hypersurface in two different space times seem to be "thermally related" with
a temperature T = rc/27r.

We would like to construct an effective theory (for these observers) that will take
into account the quantum gravity fluctuations. In what follows we will explore its
properties. One needs to integrate over the un-observed fluctuations of the mass.
The assumption of semiclassicality together with the tracing over the unobserved
fluctuation around mass M0 gives a density matrix for the matter field

1 r/2

P= E I fi())(f ()I. (6.2.6)
i=-r/2

Where Ifi(r) > is the matter state starting from vacuum on Z- in the space time
with mass Mo + iAMo, and propagated to the surface E. Here AM is the minimum
fluctuation for the states to be different and n(S) is the number of orthogonal states
in the range of fluctuation of the mass.

We can calculate what are the states Ifi >, and what is the mean energy mo-
mentum tensor of these states. Now the states on E are going to be different only
in a region of space time where the : Bogolubov coefficients are non zero. In other
words only in the approximate region < Kv < in 2A where the size of 7, A depends
on the black hole. For the Schwarzchild black hole A = 2A, for the CGHS model

iA = A and 71 "= C+ Notice that A > eM for S-surfaces.

Above and below that region the states are basically the same regardless of the
small fluctuation of the mass of the black hole. The state on the mean space time is
just the vacuum state with energy zero propagated to some hypersurface. This state
is the vacuum with respect to some modes +(x). On any other space time the state
on the hypersurface is the vacuum state with respect to modes (x(x)). We know
on each S-surface the relationship (v). With this information we can find the states
Ifi(n) >.

Expanding the matter field operator on a certain hypersurface as
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+(v) = E aiqi(v) + at+ (v)

and

(v(v)) = E b ,(i(v)) + b M qX0(v(v))

One has the relationship
ak = e b e

Where J(a, at) is a function of the hypersurface. Then

Ifi) = e- iJM 10)

In a wave packet basis J = 0 for wave packets centered in the ex + coordinate above
2A and below on E. One can see that the interpretation of J is that of an integrated
hamiltonian interaction

= Hit(t)dt, (6.2.7)
where Hit is the Hamiltonian interaction between the fluctuating gravitational field
and the matter fields.

At this point we would like to remind the reader that all this is true when we con-
sider S-surfaces. There is nothing locally happening as each point could be considered
to be on a non S-surface. So these effects have to be interpreted carefully.

6.2.1 Energy
After we trace over the small range of mass fluctuations, from a semiclassical picture
the state on M becomes a state on M (on some E on M). The state on mass M has
T,, = 0. One can calculate the energy momentum tensor of all the other induced
states.

For notational simplicity define p(v) = (v) (this is understood to be dependent
on the hypersurface). Then a standard calculation shows that [4]

(Tv) =(filTvvIfi) = 1 (p)1/2a2r(p)-1/2 (6.2.8)

and all other components are zero. Assuming p has at least a continuous third
derivative and p' - 1 when v - ±oo then we find

E t--d dv(T) = 48 ( )2 > 0

These calculation can be performed in the CGHS model (and in the Schwarzchild
case under some assumption about the incoming shock wave). From chapter 5 (and
analogues for the Schwarzchild case) we see that in the three regions the function p(v)
has the form

p(v) = ln[e"v + B] + C.
tcl
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Further although p is continuous it is not differentiable. This is due to the fact that
we have taken the shock wave to be a delta function. Smearing the shock wave a bit
we will get a smother function p(v). For this form of p one gets

2 1

487r 1 + Be - V ]

One can calculate B for the CGHS model from chapter 5 ( = X , v = a+

6 = 2aM/A). For AM < O

A rv > O
B = - ln(,r) < v < 0 (6.2.9)

O xtv < ln(77)

where= + and i1= +. For AM > 0 wefindwr+/M/ a =+

-A Kv > ln(A + 1)
B = < v < ln(A + 1) (6.2.10)

0 rv < 0

where A = and we remind the reader that a is very small. For the Schwarzchild
case if we assume that the metric near the shock wave is similar to that of CGHS
then the above results apply. The total energy is

;tot 487r

Taking into account the smearing of the shock wave and the positivity of the total
energy we can deduce the form of the TX(v). It is displayed in figures 8 and 9
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B

A

L1

Figure 1: The graph of the Te is shown for AM > 0. L1 : lnA, L2 1.
The Hight of peak B is 22 A2, and is twice that of peak C. Point A is at
A = (0, K2/48r).

IVa

Figure 2: The graph of the T is shown for AM < 0. L1 Iln A, L2 
In 771 .. AM/2MJ. Hight of peak A is 2 2, and is twice that of peak B.
point C is at C = (n A,K2/48r).

113

I



6.2.2 Entropy
What is the physical picture emerging. On the simplest level we see that the semiclas-
sical approximation breaks down and presumably one has to resort to a full theory of
gravity. However it is worth pushing the semiclassical approximation a bit further.
We see that for S-surfaces intersecting the shock wave a distant 6 in x- coordinate,
there is a large shift of the x+ coordinate which transcends to a large change of the
matter state on the hypersurface for coordinate e- < x+ < 2A. Thus there is a
timelike line which is approximately r = 2M + 4(/AM)max (for Schwarzchild) and
r == M + 2(AM)max (for CGHS), that is the boundary between the right region (R)
where there is no change of the state due to quantum gravity effects and the left
region (L) where there is. Further in region L there is a large induced energy mo-
mentum tensor.. Semiclassical observations can not be made in the R region if it is in
the future lightcone of the left region (see figure ).

n affected by the boundry

macrostate

Figure 3: The boundary curve is shown on a CGHS background. For every
unique state on the right of the curve there are many possible states on the
left.

For a S-surface the state is unique on the right hand side of the boundary curve
but on the left there are many corresponding states (microstates) for the same state
(macrostate) at I + . Thus the boundary line can be endowed with energy (maybe like
the one computed above), entropy (log of the number of different states) and some
dynamics. All observations made at 1 + have to take into account this boundary. The
effect of the quantum gravity fluctuations on the matter is then seen to be described
in an effective way as if the boundary is some hot membrane. Notice that this is a
similar picture to that of the stretched horizon put forward in [90].

Now can the subscribed entropy be the origin of the black hole entropy. It is not
clear yet. It is intriguing to notice that if one takes the S-surface that captures an
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amount of energy from the hawking radiation E M-Q, then on that S-surface2 '

A
InJ A , SBH

hG

and this quantity is independent of the number of matter fields present.
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