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Abstract
Single molecule experiments offer a unique window into the molecular world. This
window allows us to distinguish the behaviors of individual molecules from the be-
havior of bulk by observing rare events and heterogeneity in the dynamics. This
thesis discusses both models for single molecule experiments, including the stretching
of DNA in hydrodynamic flows and the diffusion of tracer particles in heterogeneous
environments, and methods to analyze single molecule data to allow determination of
properties and models for single molecule experiments. These methods of analysis are
based on combining information theory and Bayesian methods with physical insight
and are applied to several experimental situations.

Thesis Supervisor: Jianshu Cao
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Chapter 1

Introduction

Single molecule experiments have been around for almost 30 years. The first single

molecule experiments involved ion channels [30, 211]. These experiments demon-

strated discretized ion current levels when an electric potential is applied across

membranes permeated with ion channels [30, 211]. The discretized levels were as-

sociated with the opening and closing of individual ion channels. Twenty years later,

Orrit and Moerner were able to perform single molecule optical spectroscopy on single

fluorophores at cryogenic temperatures [19]. Their results gave insight into spectral

diffusion in glasses and the existence of two level systems [19]. Single molecule tech-

niques were quickly extended to room temperature studies of more complex biological

systems such as proteins and DNA [240, 246, 161]. Today, single molecule experiments

are inundating the literature with over 700 papers published in 2004 alone [219].

The interest in single molecule experiments stems from the large amount of infor-

mation that is accessible by single molecule experiments that is not available through

bulk experiments. This information includes observations of rare events and spatial
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and temporal heterogeneity. These phenomena are important in understanding the

physics of the system. For example, the transition state of a reaction is often a rare

event that dominates the kinetics of a reaction [94, 237]. The population of a transi-

tion state is so small that its signature is drowned out in bulk measurements and the

transition state's existence must be inferred from observations of the reactant and

product populations. However, single molecule experiments allow one to trace the

evolution of a molecule from the reactant through the transition state to the product.

This tracking is unique to single molecule experiments and is the largest advantage

of single molecule experiments.

As another example of the advantages of single molecule experiments, consider an

ensemble of molecules embedded in a matrix. In a bulk experiment, the measurements

are averaged over the entire volume of the experiment. If molecules located in different

parts of the matrix are subject to slightly different environments, one expects them to

have slightly different attributes. However, the ensemble measurement only captures

the average behavior [60]. We are unable to determine if the measurement is the

result of the averaging of molecules with different attributes or if every molecule has

the same attribute. This distinction can be determined by looking at each molecule

separately. Using single molecule techniques, we can achieve this level of detail.

Similarly, if the molecules are evolving as the result of a stationary process, the

bulk experiment will only be sensitive to the average of this process. By contrast,

single molecule techniques allow one to observe the different time evolution of each

molecule. We should note that in neutron scattering techniques, one is able to observe

time evolution on short time scales, but the single molecule techniques can be used
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on much larger time scales because fewer particle are detectable and one does not

lose track of the particles over longer periods of time [117].

All of these advantages suggest that single molecule techniques are superior to

ensemble measurements, but there are some inherent difficulties with single molecule

techniques. The techniques can only be applied to systems with certain attributes.

For example, fluorescence experiments can only be successfully applied to systems

that contain a good dye molecule. As most substances are not fluorescent, this greatly

limits the application of fluorescent single molecule techniques [76]. This difficulty

is a hard constraint on the types of systems that can be studied. Another difficulty

that will be one focus of this thesis is the fact that the trajectories that we observe in

single molecule experiments are a stochastic realization of an underlying mechanism

of the system. From a collection of realizations, we need to infer the mechanism. For

a bulk experiment, this is generally not a problem because the noise is small, due to

the large number of molecules, and the averaged properties of interest are measured

directly. If one could perform an infinite number of experiments on single molecules,

one would have the same confidence in the attributes that can only be measured by

single molecule experiments, but typical single molecule experiments take minutes

to hours to perform. As a result of the time constraints, the amount of data is

fairly limited and the properties measured have a fairly large amount of stochasticity,

which is different than noise that can be removed by better instrumentation. The

stochasticity requires one to use much more robust statistical methods to analyze

data than is usually used within the physical sciences.
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1.1 Overview

This thesis will examine several different types of single molecule experiments through

modeling and data analysis. Chapter 2 discusses the use of more traditional ex-

perimental analysis and shows the difficulties of applying these methods to single

molecule experiments. These difficulties mainly stem from the shot noise intrinsic

to single molecule experiments and the time consuming nature of single molecule

experiments that make the data insufficient for many of these analyses. Chapter 2

also demonstrates that Bayesian methods can compensate for the shot noise and data

insufficiency to allow rigorous comparisons of data to models.

The problem with complete Bayesian analysis is its computationally intensive

nature and the need to propose underlying models. These models quickly grow in

complexity and full Bayesian analysis becomes cumbersome. In Chapter 3 we examine

some properties of single molecule systems that can be determined without examining

the entire single molecule data sequences or determining the exact underlying model.

These properties include detailed balance violations, presence of correlations in single

molecule events [35], experimental condition dependencies, non-ergodicity and the

emergence of classes of single molecule behaviors, and identification of states. After

developing a theoretical basis for the detailed balance violation signatures, simple

Bayesian statistical methods are used to identify the detailed balance and these other

signatures of single molecule systems.

The Bayesian methods are adapted to analyze a single protein photon counting

experiment [240] in Chapter 4. Some simple one dimensional signatures are used
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to construct viable models for the fluctuations in the photon lifetimes before a full

13ayesian analysis is performed to test these models. The one dimensional analysis is

non-parametric so one avoids imposing functional forms and artificial physics on the

data. The analysis paints a simple physical picture based on diffusion in a harmonic

well for the observed protein motions, which is validated by a more rigorous analysis.

The Bayesian approach is ideal for complex inhomogeneous systems like proteins,

where the number of different types of interactions is large and first principles models

are not possible. For more homogeneous systems, such as DNA, an approach based

on first principles modeling is more appropriate. The preference for first principles

modeling is strengthened when the number of different experiments testing the model

is larger than the number of parameters so that the model is not simply a curve

fitting procedure. To demonstrate first principles modeling, we examine the ability

of the worm-like chain model of DNA [81] in both stretching and hydrodynamic flow

experiments in Chapter 5. The stretching experiment is used to parameterize the

model and the three different flow experiments-constant plug flow, elongational flow,

shear flow-are used to test the model. The agreement between the four experiments

for a model with a single adjustable parameter, the persistence length, is outstanding.

Although modeling single molecule behaviors is important in data analysis, single

molecule experiments are often used as probes of complex environments. One of the

most popular applications of single molecule methods to the examination of complex

environments is single particle tracking in heterogeneous environments. In Chapters 6

and 7, we examine two models for single particle diffusion in random environments.

These models are passive and the tracer particle does not influence the trapping
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process. Instead the tracer particle is slaved to environmental fluctuations. The

first model examines diffusion in a random potential (Chapter 6), while the second

model examines trapping processes in diffusion (Chapter 7). The first model always

maintains diffusivity, while the second model can show anomalous diffusion with a

modification to the long time behavior.
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Chapter 2

Single molecule kinetics:

theoretical analysis of indicators

and numerical Bayesian analysis

2.1 Introduction

Over the last few years, many scientists used single molecule experiments to re-

veal the nature of dynamic systems. The first elegant single molecule experiments

by Moerner and Orrit explored low temperature glasses, where the spectral diffu-

sion of a single chromophore probes the environment. Recent experiments extend

the single molecule technique to probe complex biological systems at room tem-

perature. The systems studied with single molecule techniques have become much

more complex, which makes interpretation of data more difficult [148, 149]. Ex-

periments by Chu, by Xie, and by other groups reveal the mechanisms of chemi-

35



cal reactions in biomolecular systems and the associated time scales of these reac-

tions [138, 235, 240, 75, 110, 157, 94, 246, 33, 221, 237, 236]. Other experiments

demonstrate single molecule spectroscopy's ability to distinguish between heteroge-

neous and homogeneous relaxation in glassy systems [106, 244, 60]. All of these anal-

yses require the determination of characteristic times and pertinent configurations or

states from the frequency and count of the photons emitted during the experiment.

The switching between configurations and the photon statistics are stochastic pro-

cesses that create large uncertainties in the data retrieved from experiments on these

systems. Considering these uncertainties, analysis of these experiments requires the

use of robust statistical methods.

The stochastic fluctuations in single molecule systems stimulated interest in the

statistical mechanics community [216, 159, 11, 87, 21, 92, 241, 234, 35, 242, 243, 29,

14]. These single molecule experiments give exciting insight into microscopic systems

including the role of system bath-interactions and fluctuations. For bulk experiments

one is generally only able to measure "intensity" correlations in the system, but these

single molecule experiments allowed theorists to proposed several new indicators of

various dynamics in these systems, including the event-averaged quantities, "two-

event echo", and number density, which we discuss in recent papers [35, 242, 243]. A

more recent proposal suggests the use of a generating function to examine blinking

sequences [29]. Most of these analyses depend on large amounts of data to remove

uncertainties and accurately measure indicators. Since the typical experiment is on

the order of seconds to minutes, these large data requirements may be experimentally

impossible to obtain.
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The chapter is an elaboration of previous work and a demonstration of the role of

recently proposed indicators in the framework of single molecule kinetics [35, 242, 243,

29, 87, 21, 38, 16]. The results in this chapter are important in order for us to properly

assess how to combine indicators to reveal the physics of the system. In this chapter

we introduce a standard single molecule model using Poisson kinetics in section 2.2.

WVe simulate data with a specific kinetic scheme in order to give a numerical example

of the application of these indicators to single molecule experiments. Through both

analytical work and applications to the simulated data, we demonstrate the infor-

mation content of each indicator and discuss both strengths and possible difficulties

related to these indicators. We show that the indicators contain similar information

about connections between relaxation times in complementary forms, and this infor-

mation may be easier to extract from one indicator or another. Understanding the

relationships between the signatures of various indicators is important in unambigu-

ously determining possible kinetic schemes.

Under common conditions the indicators can theoretically contain all the available

information of the system, but extraction of this information may not be numerically

feasible. We also discuss that non-uniqueness of the under-lying kinetics prevent de-

termination of the exact kinetic scheme, but the degeneracy of the different schemes

comes from linear transformations. In Chap. 2.7 we introduce a computational ap-

proach based on Bayesian statistics to analyze data from single molecule experiments,

which can overcome the deficiencies in the indicators. This chapter concentrates on

combining the insight from indicators with numerical methods to approach single

molecule problems [224].
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After discussing the standard four state Poisson model in Sec. 2.2, including the

important role of initial conditions, we will examine the three common indicators, "in-

tensity" correlation, "event" correlation and characteristic function, in Secs. 2.3, 2.4,

and 2.5, respectively. Our analysis will include discussions of the information about

relaxation times and connectivity contained in each indicator. For each indicator, we

will also discuss situations where a limited number of moments of each indicator can

theoretically contain all available information, but this information does not uniquely

determine the kinetic schemes. The chapter also examine numerical examples of each

indicator, which demonstrates several difficulties with the use of indicators.

2.2 System of interest

Our analysis will primarily focus on the blinking model that appears extensively in

the literature [35, 242, 243, 29, 11, 21, 92, 87, 241, 234, 38, 16]. The model views the

single molecule experiment as a stochastic process that switches between two different

sets of states. A number of states, labeled "bright," emit photons in a laser field, but

we cannot distinguish these states from each other. The other states, labeled "dark,"

do not emit photons and also cannot be distinguished from each other. The resulting

signal resembles the telegraph signal demonstrated in Fig. 2-1, where we are able to

see the molecule switch from a "bright" state to a "dark" state and vice versa, but

we do not know which "bright" or "dark" state the system is in.

This simple model does not consider uncertainty in the state of the system,

"bright" or "dark", and also neglects restrictions on temporal resolution. One can
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Figure 2-1: The telegraph signal with 20% Poisson shot noise for the standard single
molecule experiment that we examine in this chapter. The molecule is either con-
sidered "bright" with high intensity of photon emission, or "dark" with low photon
intensity. The "event" correlation function measures the duration of "bright" events
and "dark" events, labeled tb and td in the figure.

compensate for these simplifying assumptions, but for many systems the error in-

troduced by these assumptions is minimal. The photon shot noise is instrumental in

limiting both our ability to determine the state and the temporal resolution. In many

of these experiments, the photon emission rate for the "bright" state is much larger

than the "dark" state background photon emission rate. Our temporal resolution is

limited by our ability to collect enough photons in a bin to determine the state of the

system. If both the "bright" state photon emission is much larger than the blinking

rates and the difference between the "bright" and "dark" state photon emission rates

is also much larger than the blinking rates, the binning time can be chosen so that

there is little ambiguity in the state or times of transitions. The unambiguous sharp

transitions are apparent in the simulation in Fig. 2-1, where we show a single molecule
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trajectory where the "bright" and "dark" state lifetimes are Is (or other appropriate

unit), the "bright" photon emission rate is 3000 photon/s and the "dark" emission

rate is 500 photon/s. The bin size is 20 ms and the number of photons in each bin is

given by a Poisson distribution. These relative rates are reasonable for many single

molecule experiments. As can be seen from this trace, the state can be unambiguously

assigned and the time resolution is adequate.

This simple kinetic model successfully explains correlations in the length of time

spent in "bright" states in the experiments by Xie [138]. Mathematicians studied

similar models related to ion channels [12, 93]. Our discussion primarily addresses

systems that follow Poisson kinetics,

= -Kp, (2.2.1)

which is a type of Hidden Markov Chain (HMC). A HMC is a model where the kinetics

of state transitions only depend on the current state, but we cannot directly observe

the states. We need to infer the states from data, which do not specify the states

uniquely or may only have a probabilistic dependence on the current state. Although

most of our discussion will address discrete state Poisson kinetics, we can include the

continuous limit to get a diffusion type of equation, like the fluctuating-bottle neck

model whose equation is given in Eq. 2.5.23 (also see [35, 242, 243, 29, 11, 21, 20, 92,

87, 241, 234, 38, 16]).

The discrete state HMC can be used to interpret many experiments that fit multi-

exponential distributions. These models explain dynamic heterogeneity that results in
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long lived memory effects as we discussed in previous work [35, 242, 243]. Determina-

tion of this heterogeneity or the time scales of other underlying mechanisms in single

molecule experiments requires detailed analysis of data acquired from experiments.

A Simple Model

As a demonstration of the philosophical approach to single molecule problems, we

study a simple four state model, whose kinetic scheme is outlined in Fig. 2-2(a).

The model has four states and the inter-conversion between the states is governed by

Poisson kinetics. Two states are "bright" with labels "bi" and "b2," and two states

are "dark" with labels "dl" and "d2." The equation for the probability density is

given by the simple kinetic equation,

Pbl - (Ybl + kbl) Yb2 kdl 0 Pbl

Pb2 'Ybl - (Yb2 + kb2) 0 kd2 Pb2

Pdl kbl 0 - (dl + kdl) Yd2 Pdl

Pd2 0 kb2 7Ydl - (7d2 + kd2) Pd2

(2.2.2)

For numerical calculations, kbl = 0.75s - 1, kdl = 0.50s- 1, kb2 = 0.33s-',kd 2 = 0.22s- 1,

and Yb1 = a2 = Ydl = Yd2 = 0.1s - '. Note that bl is not connected to d2 and b2 is

not connected to dl. We break the links between these states to avoid difficulties

associated with non-uniqueness discussed in section 2.4. Except for certain ranges of

parameters, the eight parameter model can reproduce the waiting time distribution

for the four state model with more parameters due to the non-uniqueness [12]. The
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numerical values of these kinetic constants are chosen to make the waiting time dis-

tributions not mono-exponential, which we determine from the indicators presented

in Secs. 2.3, 2.4, and 2.5. However, the modulation rate between the states does not

cause apparent time separation in any of the indicators.
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Figure 2-2: Possible kinetic schemes. (a) A diagrammatic depiction of the kinetic
scheme that we analyze. (b) and (c) show two indistinguishable schemes. For ex-
ample, the probability distribution for a sequence produced from the model in (b)
with parameters kbl = 3s-1, kdl = ls - 1 and y = 2s- 1 is indistinguishable from the
model in (c) with kbl = 6 -1 , kdl =2, kb2 1s-l,kd2 = -1. These two sets
of parameters correspond to cutting different connections in the model in (a), which
one would expect to behave qualitatively differently, but this intuition is false.

Since many experiments fit the waiting time distributions to a bi-exponential, this

four state model is a reasonable minimal model for many systems. For the particular

constants we simulate, detailed balance holds, i.e. there is a vector Peq such that

Peq = 0 and kij(Peq)j = kji(peq)i, but we do not need detailed balance or even Poisson

kinetics to apply these approaches. In fact, detailed balance violations are generally

difficult to determine [214]. The cholesterol oxidase experiment by Xie and the RNA

hairpin experiment by Chu [138, 94, 246] monitor macromolecules that require a

substrate, which the reaction depletes from the environment. The replenishment of

the substrate is a transport process, which is not in equilibrium although the system

reaches a steady state. When treated appropriately, the lack of detailed balance will
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not affect any indicators discussed in this chapter or the numerical routine discussed

in Sec. 2.7.

From the model system with the specified parameters, we generate a sequence of

"bright" and "dark" states for 25 molecules with a duration of 300s, which allows

about 150 observed turn-over events per molecule and 7500 pieces of data [224].

These data sets are much smaller than the data sets collected in the experiments by

Xie [138].

Matrix notation for Poisson kinetics

To discuss these HMC more generally we introduce a simple matrix notation for the

kinetics of the system. We write the kinetic matrix as three contributions

r+K+Kd = +
o r(--) K (- + ) 0

K( + + ) O
+ . (2.2.3)

0 K(--)

We denote the "bright" state with a + sign and the "dark" state with a - sign.

K( i ) corresponds to transitions from a "dark" state to a "bright" state, or vice

versa. K ) is the decay caused by K ( ). If probability is preserved then (K )jk =

- i KT6
3+jk. The case of diagonal K (+ - ) and K (- + ) corresponds to the modulated

reaction models discussed extensively [215, 216, 159, 11, 87, 20, 21, 92, 241, 234,

35, 242, 243, 29]. The r(±i ) matrices correspond to unseen transitions between two
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"bright" states or two "dark" states.

For the four state model, whose kinetic equation is outlined in Eq. 2.2.2, these

matrices are

K(++) = -K(-+) kb 0

O -kb2

-kdl 
K(--) = -K(+-) (2.2.4)

0 -kd2

and

r(++) = Yb1 b2 1 dl - d2 1 (I'rc~~~t-)~~~ ~(2.2.5)
'bl -7Yb2 Ydl -Yd2

The waiting time distribution for the first visible transition into the "dark" state

denoted by i given that we started in the "bright" state j at t = 0 has the Laplace

transform Q(i)j (s) = (K(-+) [ls -K(++)- (++)] j. Note that our notation is

transposed relative to standard probability notation. A similar expression exists for

the "dark" to "bright" transition, Q(+ - (s) = (K(+ ) [Is - K(--) )ij . Be-

low we will discuss a characteristic function, which requires us to define the combined

matrix,

0 Q(+-)
Q = (2.2.6)

Q(-+) 0O
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From the matrices r and K or Q, all observables of the system can be determined,

but we want to determine the properties of the matrix from the observables, which is

a non-trivial inversion problem.

Equilibrium Distribution

For various indicators the initial condition plays a pivotal role in determining the

strength and clarity of various signatures. Since the system has Poisson kinetics, it

has a well defined steady state distribution, which for convenience we will call the

equilibrium distribution, Peq, even if detailed balance does not hold. Generally, Peq will

not be the initial conditions of our calculations since we select certain configurations

to start our measurement. For the "intensity" correlation discussed below, we start

monitoring the system at an arbitrary time, but we only consider configurations that

are in a specific state, "bright" or "dark" at that time. For this scenario, the initial

condition is trivially, ()Peq/ll()Peql, where

1 O
(+ ) = j, ( -) = (2.2.7)

0 0 0 1

and 6(i)Peql = i(6(i)Peq)i. For the "event" correlation function, we start the obser-

vation times after an observable transition. If we start from an observed transition

from the "dark" state to the "bright" state and average over all observed transitions,

the initial condition is Pi = K(+-)5(-)eq/lK(+-)(-)peql, which is the stationary flux

introduced previously [35, 242, 243]. A similar expression exists for starting mea-
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surements on a "bright" to "dark" transition. Generally, this initial condition is not

as strongly influenced by long time correlations as the "intensity" correlation since

long "bright" or "dark" periods do not have as large of a contribution to the initial

condition as they do for the "intensity" correlation initial condition [212]. It is im-

portant to note that we must average over all observed transitions. This stationary

flux initial condition is adequate if the duration of a "bright" or "dark" period in

the molecular trajectory is shorter than the experimental measurement times so that

many measurements can be made on the same time sequence. If this is not the case,

the initial condition must be modified, accordingly.

2.3 Intensity Correlation

As discussed in section 2.2, the need to determine the time scales of the underlying

conformational dynamics of these experiments motivated many authors, including our

previous work, to propose various indicators. As a result, the recent literature contains

extensive references to these binary "bright-dark" systems [35, 242, 243, 87, 21, 20].

The popular indicators measure correlations in the state of the system or analyze

blinking between the "bright" and "dark" states. Below we will discuss three major

approaches to interpreting single molecule experiments with binary-"bright-dark"-

informations, which we refer to as "intensity" correlations, "event" correlations (see

Sec.2.4) and characteristic functions (see Sec.2.5) [35, 242, 243, 29, 87, 21, 20].

The "intensity" correlation approach measures the probability of being in the

"bright" or "dark" state at multiple times [35, 242, 243]. This correlation function
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requires the existence of two sets of distinguishable states. Unlike some quantities

discussed below, this correlation function cannot be applied to single photon statis-

tics since single photons do not have a well defined duration. The time scales of the

correlation functions determine the relaxation of the system to the equilibrium distri-

bution from the initial state, but they do not contain the time scales of the sojourn

times in the "bright" and "dark" manifolds. The one-time "bright-bright" intensity

correlation function measures the joint probability of being in the "bright" state at

t = 0 and at t. The general expression for a Poisson kinetic process is,

C± ..+(tl, tn) = T {TI ()e -(r+K+Kd)(ti-ti-1) 6( )Peq (2.3.8)
n 1()Pe~q

where the matrices are time ordered. The 1T is a unit row vector that denotes a

sum over the remaining components and the resulting quantity is a scalar. The

"bright-bright" correlation function measures the eigenvalues that correspond to the

relaxation of the system from the non-equilibrium initial condition of being in the

"bright" state at t = 0. The matrix that governs this relaxation is F + K + Kd.

If the eigenvalues of the matrix r + K + Kd are unique, the two time correlation

functions C±±±(tl, t2) contain all of the available information about the other cor-

relation functions through a decomposition of the correlation function into a sum of

multi-exponentials,

n

C± ... (tl, ..,t) = E ail.i I e im(t ), (2.3.9)
m=l
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where we can then relate the coefficients, ai,, in to each other. As a result, we

can determine all of the available information about the system from accurate two

time measurements [84]. For completeness, we outline the proof in appendix 2.10.

We use the term all available information because different kinetic schemes can result

in the same waiting time distributions and therefore produce the same sequence,

although from a given kinetic matrix the waiting time distributions are uniquely

determined [12]. We present an example of this non-uniqueness in section 2.4.

Although one can theoretically extract information on the duration of time spent

in the "bright" or "dark" manifold by measuring an infinite number of multi-time

correlations, it is not practically feasible. The approach also has a difficulty when one

set of states is short-lived and the system is almost always "bright" or "dark" since

the correlations stay near the baseline. One must simultaneously solve for all of the

eigenvalues at once, whereas the "event" correlation methods that we will discuss in

Sec. 2.4 below separates the "bright" and "dark" processes. The "intensity" corre-

lation function does not contain any readily observable signatures of conformational

dynamics[35, 242, 243]. Another difficulty with this approach is the need to accu-

rately calculate the correlation function for a wide range of times and for multiple

times, since the "intensity" correlation relaxation time scale will generally be larger

than the duration of "events." The "intensity" correlation function does not probe

individual elements of r, K, and Kd, only the total matrix, so that determination of

the kinetics is more difficult than the "event" correlation.
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Numerical example

The deviations of the population from the equilibrium distribution by knowing that

the system is in the "bright" or the "dark" state at a given time are smaller than

knowing that the system made a transition from "bright" to "dark" or vice versa at

that time. As a result, the signatures of memory can be weak. The weak signatures

are made apparent in FIG 2-3. The figure compares the two time "bright-bright-

bright" correlation function to the predictions for a single time correlation function,

C+++(tl, t 2) - C++(tl)C++(t2 ), for the model system discussed in Sec. 2.2. The corre-

lation function was calculated with a sliding time window from 25 molecular trajec-

tories. The maximum deviations in the correlation function are around 1% relative

to the steady state value of the correlation function. This deviation is the same or-

der as the deviations of the correlation function calculated from the data relative to

the exact calculation, and because of correlations in the fluctuations and the high

redundancy in the sliding window, the deviations appear to be systematic.

The deviations can be seen in Fig. 2-3(a), which compares the "bright-bright"

correlation function, C++(t), determined from the data with the model prediction.

The two time correlation function, C+++(tl, t 2) shown in Fig. 2-3(b) does not have

any obvious features that represent memory. Fig. 2-3(c) compares the values of C+++

for t = t2 with the square of the single time correlation function. The deviations

between the two correlation functions coincide with deviations presented in Fig. 2-

3(a), which indicates it is probably a data artifact. Fig. 2-3 (d) shows a contour plot

of the deviations for 0 < t1 , t2 < 10. The maximum deviations are around 1% of the
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Figure 2-3: Memory in the correlation function generated from the sequences of
25 molecules with kinetic scheme discussed in Sec. 2.2. (a) shows the single time
"bright-bright" correlation function, C++(t), measured from the simulation versus
the exact solution for the model. As can be seen, the data is not sufficient for the
determination of weak features. (b) shows a contour plot of the two time "bright-
bright-bright" correlation function, C+++(t1 , t2 ). (c) shows the deviation of C+++(t, t)
from C++ (t) '. The deviations coincide with deviations of the simulation data from the
exact correlation function and cannot be considered an indication of memory. These
deviations are less than 1% of the normalized correlation function and well within the
range of noise. (d) shows a two dimensional plot of C+++(t, t2) - C++ (t1 )C++(t2),
which shows the scale of the noise in the system. Once again, the largest deviations
are less than 1% of the maximum height of the correlation functions.
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total magnitude of the function and may not indicate any memory effects considering

the data's deviations from the exact correlation function. These difficulties make it

almost impossible to determine the coefficients of the decomposition of the intensity

correlations, aij, above, but suggest that other methods of determining the presence

of memory are necessary. One should also note that the deviations do not give a clear

signature of a specific kinetic motif since the deviations occur at short time which

makes determination of specific features difficult.

2.4 "Event" correlation

The "event" correlation approach determines the statistics of "events." An "event"

is the duration of a "bright" or "dark" period. In other words, the start of a "bright"

event is the time when the molecule makes a transition from "dark" to "bright."

The event ends when the molecule turns "dark" again. The definitions of events

are demonstrated in Fig. 2-1. We can easily generalize these definitions to photon

statistics, where the events are the arrival times of individual photons so the times of

events are the times separating photons. The time scales extracted from the measure-

ments pertain to the duration of events and not the overall relaxation measured by the

"intensity" correlation approach. One determines the correlations in the length of du-

ration of multiple events, such as two "bright" events separated by one "dark" event,

or separated by two "dark" and one "bright" event, etc. The most important indi-

cator of the "event" correlation family is a "bright" event versus an adjacent "dark"

event. This quantity is the strongest, but also the most important for cases where we
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can determine all available information. Previous work concentrated on two "bright"

events separated by a single "dark" event, but these measurements are not as strong

and cannot be simply inverted even when the eigenvalues are distinct [35, 242, 243].

The approach contains possible flags to infer non-Poisson or non-renewal behavior,

but these flags also require a large amount of data to see them. One of these flags is

the "two-event echo," which shows a rise in the two event "bright-bright" duration

probability density function compared to the predictions of uncorrelated behavior for

tl t2 >> :r, where t is the duration time of an event and r is a characteristic time

of the system. The position and height of the echo is a measure of the memory of the

system. [35, 242, 243].

The n-"event" probability density function, which we will call the n-"event" cor-

relation function, directly specifies the probability of the path of the system. The

correlation or any other quantity is a sum over all possible paths so the "event" cor-

relation is in many ways the basis of all other measurements. The probability density

for the 1 t n transitions is

P(tl,...,t ) = T [I Ke(Kd+r)(t-til) pi (2.4.10)
i 

The initial condition p) is chosen because the measurements start at a transition

and one averages over all of the possible starting transitions. The superscript that

appears in the initial condition is to specify the initially observed state. As has

been pointed out by Verbeek and Orrit, the single "event" probability does not con-

tain any information about the overall relaxation of the system. In order to extract
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meaningful information about conformational kinetics, multiple time "event" densities

are required, whereas the single time correlation function contains some information

about conformational kinetics [35, 242, 243]. This expression is easily expressed in

the Laplace domain as well. As discussed in Sec. 2.2, event densities can be sensitive

to photon shot noise, which can cause uncertainty in the state of the molecule, and

data binning, which can cause uncertainty in the time of transitions, if the photon

emission rate is not high enough.

Similar to the two time "intensity" correlation function, when the matrices F(±±) +

Kd+ have distinct eigenvalues, the "two-event" correlation function contains all of the

available information about the Poisson process. The derivation follows the results

in appendix 2.10 with some redefinitions of various quantities and is also outlined

by Fredkin and Rice [84]. It is important to note that the eigenvalues for the decay

constants will be determined by the sub-matrices K(++ ) + r (++) and K( - - ) + r(--)

instead of the complete matrix Kd + r + K and the coupling between the exponential

decays for the two different times will be determined by the matrices K (+ - ) and K (+ - )

instead of 6(±), so one can separate the contributions from K( :F) and rF(+ ) + Kd + .

The result implies that there is no additional information in higher densities, but

the analysis of the "two-event" correlation function requires binning small amounts

of data into a multidimensional array. Since the probability of falling into a specific

bin is a Bernoulli variable, statistical fluctuations in the number of events that fall

into a bin can affect determination of these relaxation times. One method of avoiding

the binning difficulty is the calculation of the covariance of the times of "two-events."

Although this calculation can indicate a correlation between adjacent events, one loses
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much of the information contained in the density since the covariance is an averaged

quantity.

"Event" correlations and non-uniqueness

The "n-event" density function can be rewritten in a revealing form

P(tL, . . t. t) = 1T L Ke (Kd+r)(ti- ti1) Pic

qT [a S-lKSe A(tit1 p, (2.4.11)

where S is the similarity transform that diagonalizes Kd+r and A are the correspond-

ing eigenvalues. The vectors, p = S-1pic and qT = TS, result from the similarity

transform. \We assume A is diagonal because having an algebraic multiplicity greater

than one usually requires additional constraints. This form demonstrates a lack of

uniqueness since any system with the same eigenvalues, the same matrix S-1KS, and

the same vectors qT and p give the same probability distribution for multiple time

"events" [12]. In other words, since the density is restricted to probe along the vec-

tors p and q complete information about the underlying matrix is lost even if we can

determine all of the higher order correlations or "event" densities, but the different

models are related through a linear transformation.

A simple example of two indistinguishable kinetic schemes is presented in Fig. 2-

2(b) and (c). These are three state models with two bright and one dark state. We

can map the three state model into a model with one "bright" state and one "dark"

state with multi-exponential waiting-times for the duration of each state. Processes
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with one "bright" state and one "dark" state with possibly non-mono-exponential

waiting times are known as alternating renewal processes. If we set kbl = 3s- 1,

kdl = ls - , kb2 = kd2 = OS - 1, = 2s-1, the "bright" state waiting time distribution

with dimensionless time is 26e- 6t + 3e-t. The "dark" state waiting time is a simple

Poisson process, e-t . The model in Fig. 2-2(c) can achieve the same waiting-time

distribution with the parameters kbl = 6s - 1, kdl = 5 S-1 kb2 = ls-,kd2 = 5 s.

These models have different connections, but the ambiguity about the underlying

kinetic scheme cannot be resolved.

Numerical example

The advantages of the "event" correlation over the other measurements mainly stems

from its separation of the "bright" and "dark" events and the separation of Kd + r,

which determines the eigenvalues, and K which determines the connectivity. The

"event" correlation is the best indicator in many respects. As shown in Fig. 2-4(a) and

(b), we are able to easily fit the waiting time distribution generated by 25 molecules to

a bi-exponential form. This bi-exponential form gives us the number of states in both

the "bright" and "dark" manifolds and also restricts the range of eigenvalues. A log-

plot of the binned data is not obviously bi-exponential, but it is obviously not mono-

exponential, which would justify performing a numerical fit to the bi-exponential,

which is quite good.

The deviations of the two-event correlation versus the prediction from single wait-

ing time distributions, P(tl, t2)- P(tl)P(t 2 ), are on the order of 2%, which is stronger
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Figure 2-4: Event density generated from data of 25 molecules. (a) shows the
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than the correlation function and the echo at later times indicates conformational dy-

namics. It is important to note that Fig. 2-4, presents the adjacent "bright-dark

event" correlations. The "bright-bright event" correlation has weaker memory effects

and cannot be used in the analysis for systems with distinct eigenvalues since one

needs to know about the "dark" state to determine the connectivity. For the four

state model, one only needs to fit the data to a bi-exponential, versus a tri-exponential

and a constant for the correlation functions. The reduction in the number of fits also

makes use of the "event" quantities more feasible.

2.5 Characteristic function

In this section we examine a recently proposed indicator, the characteristic function

and the related moments that we previously referred to as "number densities" [35, 242,

243, 29, 87, 21, 20]. The characteristic function and related moments have an extensive

history although suggestions of introducing them into the field of single molecules is

fairly recent [243, 29, 87, 21, 20]. The "characteristic function" approach examines

the probability of observing n transitions from "bright" to "dark" or vice versa in

a period of time, P(n, t) [29]. One classic indicator derived from the characteristic

function is the Mandel Q parameter that measures deviations from a Poisson process,

n 2(t )) - (n(t) )2 _ 1, (2.5.12)
(r(t))
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where (ni(t)) = E, niP(n,t) is the expectation of the number of events. Wang

and Wolynes and Silbey and co-workers also discuss using moments in several single

molecule experiments [215, 14]. An attractive property of the "characteristic func-

tion" is the amount of information carried in quantities measured at a single time.

The binning with respect to the number of observed events is more natural than

binning time. Often one measures moments or "number densities," which resemble

the use of correlations and avoids binning. These properties help us avoid problems

associated with binning our data in multidimensional arrays.

If there is a visible transition into state j at t = 0, the probability of observing n

more transitions by time t is given by

P(n, t j, t = ) = E [t dtQik(t) * [Q*n(t)]k,j (2.5.13)

In this expression, Q is the matrix defined in Eq. 2.2.6, * is the convolution operator,

and *n denotes n convolutions of the same term. The Q(t)*n term represents the

probability of making n transitions before time t, and the [ft dtQik(t)] term repre-

sents the probability of not making the next transition. The expression in the Laplace

domain is given by

P(n, s j, t = 0) = IT - Q(s)] [Q(s)] (2.5.14)

The above equation is valid for any waiting time distributions, not just Poisson ki-

netics. The formalism can be easily applied to photons statistics, where a transition
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corresponds to a detected photon. Since we do not know the original or final state

we must introduce the initial distribution and sum over the initial states. As will

be discussed below, the best initial condition starts from a switching event, switch-

ing from "bright" to "dark" or vice versa, since this initial condition allows simple

analysis to determine if the process is the result of single waiting-time distributions.

Supplemented with an initial condition Pic), the probability of observing n transitions

in a HMC with "bright" and "dark" states becomes

P(n, sli.c.) = 1T [is - r - Kd (K [ls - F - Kd]-))n pic (2.5.15)

The characteristic function for the number of events, n -¢ , as a function of the

Laplace variable t -+ s is

G((, slic) = P(n, sic)e in = T [is - - Kd -ei(K] Pic (2.5.16)
n

This characteristic function comes from the discrete Fourier Transform, which can be

easily related to the generating function by Brown (a Z-transform) through analytic

continuation [29]. For numerical applications the discrete Fourier transform has better

software support and the general approach to inverting a Z-transform is by evaluating

it on the unit circle, in which case it becomes the discrete Fourier transform.
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Moments of the characteristic function

As with many functions, the Fourier or Laplace transforms generally do not give good

insight into the probability function. Because of this difficulty, the most convenient

and informative procedure for analyzing a characteristic function will come from the

moments. If there is one state with arbitrary waiting time distribution, Q(s), and

wve see the transitions from the state back into itself, an intermittent blink discussed

in [35, 242], we have complete information by only knowing the expected number of

blinks as a function of time. This scenario also applies to photon counting statistics,

where the blinks are emitted photons. For photon statistics, the photon emission

rates from the system will be lower than the "bright-dark" kinetics. As a result the

background photon detection rate becomes important. For a Poisson kinetics with

Poisson background, the kinetic rates in Kd need to be increased by the background

rate and the emission from the background will correspond to a visible transition

back into the same state. For a single state, the first moment is known as the renewal

function and it is related to the waiting time distribution by the renewal theorem,

Q(s) = s(n(s))/(l + s(n(s))), (2.5.17)

where (n(s)) is the Laplace transform of the expected number of events, (n(t)) =

,n nP(n, t), whose derivative is the "number density" that we discussed previously [35].

The relation is only valid if the process starts from a blink. If the process does not

start from a blink, i.e. arbitrary start time, the expected number of blinks grows

linearly in time and the relation is lost, (n(t)) = t/r, where r is the average time
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between events, and any memory effects are contained in the higher moments, which

are difficult to measure. The analysis can be applied to alternating renewal processes

(one "bright" and one "dark" state with arbitrary waiting times) by measuring the

expected number of transitions initially starting from a "bright" to "dark" transition

and then from a "dark" to "bright" transition. Systems with a single waiting time

for both "bright" and "dark" states have a simple memory. The system remembers

how long it has been in a particular state, but does not know the path that it took

to get there.

Deviations from simple memory

The characteristic function also contains information about the non-renewal nature of

the process. For a process with a single waiting time distribution (renewal process),

E n2P(n, s) = (n2(s)) = ((s)) + 2s(n(s))2 , (2.5.18)
n

and deviations from this relation imply more complex memory effects. Similar rela-

tionships can be derived for an alternating renewal process, supplemented with the

appropriate initial conditions.

For the case of intermittent blinks discussed in [35, 242], the inverse Laplace of

transform of Eq. 2.5.18 suggests a simple indicator

I(t) = (n (t)) - (n(s)) - 2 f dr(n(t - T))0t(n(T)) (2.5.19)
(n62(t))
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For long times (n(t)) tIt + b, where p is the average waiting time and b is an off set

caused by the non-Poisson nature of the system. In the long time limit, the indicator

function behaves as

I(t) (n2 (t)) - /2t2 - 4pbt - t (2.5.20)
ALt

Note that for a Poisson process, b = 0 and we recover the Mandel Q parameter.

Long lived correlations and the moments of the characteristic

function

To give insight into the memory effects captured by these indicators, we consider

a, simple example with long lived bright states and intermittent dark states. The

transition matrix Q is given by

I - p p
Q (S1) P [+s 2= (2.5.21)

-p LO 2+

and in the limit as t - oo the indicator approaches limtoo(n(t))I(t) = 1 - 2).

For p = 0, the indicator is infinite since the memory is infinite. For p = there

is no nmemory of the previous transition and the indicator is zero, but the process

is not Poisson. This is a simple renewal process (single waiting time distribution)

with bi-exponential waiting time. The renewal indicator becomes negative for p > 

because the system prefers to flip-flop between states and a fast transition is followed
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by a slow one, i. e. anti-correlated steps. The anti-correlation is a sign of a break-

down of detailed balance resulting in circulation through the configurations. The

important observation is that the indicator is based on first and second cumulants,

which are easy to measure. Comparisons of higher-order cumulants of P(n, t) are not

as easily measured, and it is difficult to extract meaningful information from these

higher cumulants.

In these long persistence situations, large deviations from a normal distribution

for intermediate times are possible [29, 87, 21, 20]. For our example with p 0 at in-

termediate times, one observes a superposition of two normal distributions. Although

the "two-event" measurements contain some of this information, the information may

not be as explicit if the two exponents are comparable k k2 but p is still small.

Moments of a Poisson process and the extraction of kinetic

schemes

From Eq. 2.5.16 for the Hidden Markov chain (HMC), the expected number of blinks

(also know as renewals) can be written as

(n(s)) = -1TK [s - F - K - Kd]-1 Pic, (2.5.22)
S

where [s - r - K - Kd]-1 is the matrix for the relaxation to the equilibrium distri-

bution from the fluctuation that results in the initial transition at t = 0. These are

the same decay constants measured by the "intensity" correlation functions, but the

quantities are integrated because of the term, which often makes extraction of this
S
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information difficult. Similar to discussions above, these eigenvalues are different than

the "two-event" density eigenvalues, and the two measurements provide complemen-

tary information. One advantage of the characteristic function over the "intensity"

correlation function is that the characteristic function directly probes the transition

matrix, K, which is also measured in the "event" density so the characteristic function

can be viewed as a mixture of the "intensity" and "event" indicators.

For Re(s) > 0, the system has a convergent Taylor expansion in terms of the gen-

erating variables around = 0, so we only need to know the moments to determine

the functional form. If the eigenvalues of the matrix r + K + Kd are distinct we

can use a similar procedure to those applied to the "intensity" correlation function

to relate higher moments to the first few lower moments, so we can theoretically de-

termine the entire generating function from the first few moments. This procedure

is discussed in appendix 2.11. Unlike the "intensity" correlation function, the rela-

tions are highly non-linear and require higher order moments so this extraction is

not practical. Introducing a multiple time moment expansion will prevent the non-

linearities, but multiple times also removes the advantages of having a large amount

of information contained in a two variable function.

Numerical examples

The above analysis demonstrates the difficultly in using the generating function to see

explicit details of the system. Although the position and variance of the number of

observed transitions give indications of memory effects, the underlying causes of these
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Figure 2-5: P(nlt) and the absolute values of its generating function G(klt). (a) shows
P(nlt) determined from data of 25 molecules. (b) shows the errors between P(nlt)
and predictions for alternating renewal process. (c) shows the generating function,
G(klt), determined from the data. (d) Shows the absolute errors between G(klt) and
the predictions for alternating renewal processes.

memory effects are not obvious. The lack of specific features makes it difficult for

the generating function to distinguish features in the data. The lack of other features

can be seen in Fig. 2-5. In this figure, we examine the data generated for the model

discussed in section 2.2. The initial condition is a "dark" to "bright" transition and

every "dark" to "bright" transition in the trajectory is used as an initial condition.

Fig. 2-5(a) shows a histogram of the number of renewals as a function of time, P(n, t),

determined from the data sequence.

The histogram is compared against the expected probability for an alternating

renewal process in FIG 2-5(b). The alternating renewal waiting time distributions

are determined from "event" correlations. The maximum error is 3% with typical

errors around 0.5%. The characteristic function is calculated in Fig. 2-5(c). As can
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be seen, most of the details of this distribution are hidden by noise in the data. The

only notable features are the central peak, whose width we can measure through the

second moment and the weak peaks at k = r. The peaks at k = ±r are the result

of the alternating renewal nature of the generating function. The "dark" events are

longer lived than the "bright" events so the number of renewals is more likely to be

odd than even if we start from a renewal into a "bright" state. Fig. 2-5(d) compares

the generating function calculated from the data and the alternating renewal process

predictions. The deviations between the alternating renewal prediction extracted from

the data and the complete set of single molecule data are small less than < 1% relative

to the maximum values of the function-unity-except in the vicinity of k = 0, ±Tr. The

error in this vicinity will grow in height but shrink in width. These peaks indicate

a memory effect, but it is difficult to discern a motif associated with this memory

effect.

Brown used the characteristic function approach to compare the signatures of the

four state model with the fluctuating bottle-neck model [29]. The fluctuating bottle-

neck model corresponds to a one dimensional diffusion process in a harmonic well

with a reaction rate that depends quadratically on the coordinate.

otP±(t) = DV 2P±(t) + V (kxP±(t)) - a±x2 P±(t) + UTX2PT. (2.5.23)

Consistent with previous notation + represents the "bright" state and - represents

the "dark" state. He demonstrates that for perfect data the characteristic functions

are different for the four state model and the fluctuating bottle-neck model, as long
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Figure 2-6: Comparison of the fluctuating bottle-neck model and the four state model.
(a) The absolute value of G(klt) for the fluctuation bottle-neck model as determined
from data of 25 molecules. (b) The absolute value of G(klt) for the four state model.
(c) The absolute value of the difference in the two models. (d) The theoretical results
of (c).

as the temporal fluctuations of the rate constant is slow in comparison with the

rates of transitions. His example shows the exact generating functions with temporal

fluctuations in the rate constants that are 25 times slower than the average rate

of reaction. As demonstrated in Fig. 2-6, when these measurements are made on

stochastic data with the more interesting scenario of the fluctuations in the rate

constant being the same order as the average transition rates, the signature cannot

be successfully deduced. The figure compares data generated from a diffusion process

with D = k = + = 1 and -1 = KeqK+ = 2, with a four state model with Ybl = Yd1 =

0.289706, Yb2 = Yd2 = 1.71029, kbl = kdl = 0.417953, kb2 = kd2 = 4.43615. The

constants for the four state model are chosen according to the procedures outlined

in [29], which are close to maximizing the similarity of the two models.

The data includes the trajectories of 25 molecules run over 100 time units resulting
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in an average of 150 turn-overs [224]. The initial condition starts from a "bright" to

"dark" and the system is averaged over all possible initial transitions, which gives

about 1250 total trajectories of 10 time units. Fig. 2-6(a) shows the absolute value

of the fluctuating bottle-neck characteristic function determined from the data and

Fig. 2-6(b) shows the absolute value of the four state model characteristic function

determined from the data. Fig. 2-6(c) shows the absolute value of the difference

between the two models calculated from the data and Fig. 2-6(d), is the ideal plot of

Fig. 2-6(c). Even the ideal signal is only about 5% of the total signal, and the noise

in the characteristic function is around 10%, which prevents any strong conclusions

using generating function methods. The signal would be weaker if one did not specify

t:he sequence starting on a transition at t = 0 [29]. In the long time limit the two

models become indistinguishable since they have the same average rate of transitions

and similar fluctuations in the number of transitions, but at short times there are

possible signatures. It important to note that similar systematic deviations between

characteristic functions generated from data sets from the same stochastic process

also appear because of the averaging over the same data sequence for 25 molecules.

As a result, the strongest possible conclusion is that the data might not be consistent

with a four state model, but these measurements do not give a good quantitative

measure.
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2.6 Comparison of different indicators

This chapter presents a critical analysis of proposed indicators for single molecule

experiments. All indicators have the potential to give qualitative insight into the

dynamics of a single molecule system. The information contained in each indicator

is similar, but it is convoluted differently in each measurement so that one indicator

may have a relatively stronger signature than the others. An example is the long

memory effects captured by the characteristic function.

The "intensity" correlation function is generally the weakest indicator. Measure-

ments do not start from a transition so the deviations from equilibrium are small.

Due to the initial condition, accurate measurements of the intensity correlation are

sensitive to long "bright" or "dark" periods. The "intensity" correlation does not

contain clear signatures of the dynamics of the system and only probes the total

matrix, rF + K + Kd, which does not give insight into individual contributions.

The "event" correlations are generally the most useful of the three indicators.

They separate the contributions from K from F + Kd and the contributions from

the "bright" and "dark" states. The "event" correlations also contain the two event

echo, which is a signature of conformational dynamics, but the indicator requires data

binning, instead of averaging, which causes a loss of temporal resolution.

The characteristic function and its moments are a hybrid between the "intensity"

correlations and "event" correlations. The characteristic times are determined by the

same matrix as the "intensity" correlation, r + K + Kd, but the coefficients allow

exploration of K separately. The characteristic function allows averaging instead
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of binning, but it does not allow separation of "bright" and "dark" states. The

average number of transitions and its variance give insight into memory effects of the

system, but there are no other salient features. Application of complete information

for distinct eigenvalues becomes a highly non-linear problem for this indicator, unlike

the other indicators.

In principle, Markovian systems with distinct eigenvalues only require two-time

information to extract all available information about the process, but as shown in

the simple example in Sec. 2.2 all available information does not give a unique kinetic

scheme. The analysis can be extended to processes with a limited number of degen-

eracies, such as double degeneracies. These relations are theoretically interesting, but

practical implementation is difficult if not impossible. The indicators can still give

valuable information such as the time constant for relaxation or the time constants for

the duration of an "event." A major cause of the difficulties with any indicator is the

large data requirements and the lack of a unique solution. A more robust numerical

approach that does not depend on the inversion of averaged data is required. Below

we give a demonstration of combining the single molecule indicators with a Bayesian

numerical approach to extract possible kinetic schemes.
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2.7 Introduction to application of Bayesian statis-

tics

As discussed above, a formidable theoretical obstacle facing single molecule analysis

is the extraction of pertinent information about stochastic chemical processes from

noisy data. Several authors have proposed simple indicators to attempt to reveal these

processes [223]. Generally, these indicators give qualitative indications of deviations

from simple Poisson or renewal processes (i.e. simple single waiting time processes),

but quantitative extraction of the characteristics of these processes is difficult if not

impossible. The major obstacles to using these indicators are the data binning and

data averaging that they require, which removes much of the available information.

The indicators may also be sensitive to instrument resolution and background counts,

whose effects may be difficult to incorporate in the analysis.

Despite these difficulties, these indicators can give valuable qualitative insight into

the behavior of the system and can be used to reduce the number of possible mod-

els that describe the system. After developing this insight and reducing the number

of models, a more robust numerical routine that does not require the reduction of

information through data binning or data averaging is required to move beyond a

qualitative description of the system. One numerical routine that can perform a com-

plete sequence analysis is Markov Chain Monte Carlo with Bayesian statistics [177].

Markov Chain Monte Carlo with Bayesian statistics starts from the use of Bayes for-

mula, which compares the relative probability that two models, AI and Al', reproduce
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a data set,

P(A D) _ P(DAI)P() (2.7.24)
P(AJID) P(D lAI)P(AI')

In this expression P(MD) is the posterior probability of the model given the data,

P(D Al) is the probability of the data given the model, and P(M) is the a priori

probability of the model, which is often assumed to be uniform or log-uniform or a

conjugate prior [6, 86]. In other words, from our previous experience we start with a

given distribution of possible models, P(M). After examining the data through the

Bayesian formula, we modify our guess about the possible model parameters, which

results in the new distribution P(M ID). This quantity tells us about our certainty

in predicting the values of parameters.

As a demonstration of the philosophical approach to single molecule problems,

we will apply the Bayesian method to the simple four state model that we examined

above, Fig. 2-2. For numerical calculations we use the same constants as above, kbl =

0.75s-1, kdl = 0.50s- 1, Kbl/b2 = 0.44, kb2 = kblKbl/b2 = 0.33s-l,kd2 = kdlKbl/b2 =

0.22s- 1, and Yb1 = Yb2 = Ydl d = 7 = 0.1s-1 . The four parameters we examine

are kbl, kdl, Kb2/bl, and y. The numerical values of these kinetic constants are chosen

so that the waiting time distribution for both the "bright" and "dark" states are

obviously not mono-exponential, which we determined from the indicators presented

above, but the rate of modulation between the two states does not cause apparent

time separation in any of the indicators. We also perform the analysis with all of

the parameters free, but this information is difficult to present in a visual form so we

concentrate on the four parameter fit.
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From the model system with the specified parameters, we generate a sequence

of "bright" and "dark" states for 25 molecules with a duration of 300s, which al-

lows about 150 observed turn-over events per molecule and 7500 pieces of data to

determine the four parameters. The simulation details used to generate this data

are presented in appendix 2.12.1. These data sets are much smaller than the data

sets collected in the experiments by Xie [138]. By applying the "event" correlation

indicator discussed in Sec. 2.4 to this data, one is able to deduce that the "bright"

and "dark" decays can both be fit with bi-exponentials which suggests that they

both contain two states. The "event" density also indicates a memory effect, which is

confirmed by the characteristic function. This information allows one to reasonably

suggest the four state model as a candidate to describe the system.

Given the kinetic scheme, we can simply calculate P(D]M) through iterative

matrix multiplication. Given the initial state of the system, "bright" or "dark", and

the times of the transitions, {ti}, the probability of the data given the model is

P(D = {ti} Al) = 1 T [ Ke(Kd+r)t dti (+) pq, (2.7.25)

where the matrix definitions follow those used previously [223, 35, 242, 243]. The

6(') is determined by the initial condition. Since we can calculate the relative prob-

abilities, we can perform Monte Carlo on the probabilities to determine models that

are consistent with the data. The exact method of calculating the probabilities and

performing the Monte Carlo simulation are outlined in appendix 2.12.2.

The approach can also be extended to experiments with more complex data, such
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as photon counting statistics and can incorporate data deficiencies or statistical fluc-

tuations from sources other than the system such as instrument resolution and re-

sponse [121, 225]. For most of the analysis we assume the switching between states is

sufficiently fast so that these times are sharp variables relative to the duration of the

"bright" and "dark" states, but generalizations can easily be made in this framework

since we do not require the system to have Poisson kinetics [101]. From our proposed

model, we determine the probability of the initial condition and the probability of

the transitions at the recorded times. The probability of the sequence is the result of

iterative matrix multiplication.

For many optimization applications, the Monte Carlo approach avoids difficulties

associated with gradient based likelihood maximization. Gradient based maximum

likelihood approaches successfully determined point estimates of the most likely set

of parameters for single membrane ion channel experiments, but the calculation only

determines the best fitting parameters and the curvature of the likelihood function,

P(DlAI) at this point [172]. The Monte Carlo approach can show more detail in

the probability distribution, such as multiple minima with similar probabilities [101].

The shot noise in the data creates large uncertainties and makes these maximum

likelihood estimates inaccurate so a global estimation of the parameter distribution

becomes important. Often, if the data is not sufficient or other difficulties arise that

prevent the system from finding the most likely parameters, the probability density

signals these difficulties.
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2.8 Application of Bayesian Approach

We applied the Bayesian algorithm outlined in appendix 2.12.2 to the data set gen-

erated by the algorithm discussed in appendix. 2.12.1. Since the kinetic rates are

positive quantities and we do not initially know the magnitude of these rates a natu-

ral initial (a priori) distribution for the kinetic rates is log-uniform, P(Al) xc 1/M [6].

As a result the Monte Carlo jump sizes are proportional to the magnitude of the

kinetic rates. This log-uniform distribution is not normalizable (improper), but the

likelihood, P(DIM), will give the necessary truncation to prevent any problems as-

sociated with this normalization. Other a priori distributions are possible based on

the analysis with other indicators. From the multi-exponential fit determined by the

"event" correlations, one may want to restrict the eigenvalues of the matrix to a small

interval around the fitted parameters.

Fig. 2-7 shows 2-dimensional projections onto the principal axes of the posterior

probability density for the parameters determined from a data set, and TABLE 2.1

contains the mean and covariance of these parameters. The predicted mean values

for these constants are very accurate and the variances are fairly small, which shows

that the data is sufficient to determine these parameters. We note that the maximum

likelihood value is not necessarily in the center of the distribution, which shows that

the distribution is not Gaussian. Because the eigenvalues and eigenvectors depend

on the parameters through an inherently non-linear functional form, the asymmetry

is not surprising. The largest uncertainty is in the constant Kb2/bl. This constant

enters into the determination of the eigenvalues through multiplication with kbl and
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Actual Values

kbl kd 7 Kb2/bl
I _ 1 0.75 0.50 0.10 0.44

Mean Values

kb1 kdl 'Y Kb2/bl

0.77 0.50 0.10 0.43

Covariance x103

kbl kdl 'y Kb2/bl
kbl 0.86 0.33 0.42 -0.73
kdl 0.39 0.27 -0.50
' _0.89 -0.74
Kb2/bl 1.4

Table 2.1: Mean and Covariance for the Monte Carlo simulation presented in
Fig. 2-7. Stability analysis determines normal modes with standard deviations of
5.1, 2.1, 1.8, 11.3 x 10 - 2 .

kdl so the additional uncertainty comes from compensation for fluctuation in these

other quantities.

The predicted maximum likelihood estimate is slightly off-set from the real pa-

rameters. Many sets of data examined in simulations converge to a roughly Gaussian

distribution with a mean that is slightly off-set from the actual parameters although

some simulations fail to converge and a few simulations converged to a set of param-

eters that are far from the actual set of parameters used to generate the data. Even

for data sets with as few as 5 molecules, many simulations predict maximum likeli-

hood estimates around the actual parameters, but more importantly, convergence to

parameters far removed from the actual parameters are rare.

The most likely point estimates encountered during a Monte Carlo simulation

for 500 different sets of data with 25 molecules and 300s trajectories are plotted in

Fig. 2-8. Although the Bayesian philosophy concerns determining the entire probabil-
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Figure 2-7: Contour plots of two dimensional projections onto the principal hyper-
planes of the probability density generated by the Monte Carlo simulation that deter-
mines the four parameters for the model in Eq. 2.2.2. The gray-scale is measured in
number of points for approximately 5. 106 Monte Carlo Samples. The black squares
mark the positions of the parameters that generated the data. Each peak is pointed to
by a two component label for that peak, such as [, kdl]. The first entry corresponds
to the horizontal axis and the second entry corresponds to the vertical axis. Kb2/bl

has the largest uncertainty since it must adjust itself to fluctuations in kbl and kdl.
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ity distribution, the point estimates give good insight into the reproducibility of the

simulation. From this plot it is apparent that the predicted maximum likelihood pa-

rameters are distributed around the actual parameters, except for one outlying data

point. The distribution of the maximum likelihood estimates resemble the distribu-

tions of the probability distribution of the parameters for a single set of data. The

stochastic nature of the underlying dynamics causes these off-sets. This noise makes

the use of simple maximum likelihood point estimates of the parameters statistically

uncertain unless other analysis is performed.

To help determine the off-set caused by the noise in real single molecule experi-

ments, we can break a large data set into several subsets and perform optimization of

the parameters with these subsets and compare optimal parameters; this is known as

cross-validation [99]. For this application, breaking data sets up by taking segments

of single molecule sequences or by performing the analysis on different single molecule

sequences has about the same effect on the cross-validation. In fact, future analysis

concerns a data set that contains a single long sequence [225]. Mixing these subsets

will improve our predictions of off-sets and allow us to understand the sensitivity of

parameters to the intrinsic noise in these systems. Breaking the data up into smaller

subsets will also allow the simulation to search larger regions of parameter space since

the sensitivity of the Bayesian score scales linearly with the length of the sequence

and number of molecules. In many ways, the length of the sequences corresponds to

a fictitious inverse Boltzmann temperature.
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Figure 2-8: Two dimensional projections onto the principal hyper-plane of the vectors
of the best fitting parameters encountered during a Monte Carlo simulation for 500
different data sets. In comparison, Fig. 2-7 is the total probability determined from a
single data set, but this plot shows the peak position for several data sets. The optimal
parameters are distributed around the white squares that label the parameters that
generated the data sets. Different symbols are used for each projection to show the
single outlier. Similar to Fig. 2-7, each cluster is pointed to by a label such as [ kdl].

The first entry corresponds to the horizontal axis and the second entry corresponds
to the vertical axis.
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Variations of the simulation

The Monte Carlo simulation failed to converge to any value when the data sets are

not consistent with the model. We tested this property by trying to fit the simple

four parameter model to a sequence created from a stretched exponential waiting

time distribution. Both the "bright" and "dark" waiting time distributions are given

by e-(gt)/ 2, which has a characteristic time of 8/3, which is comparable to k,77+k{8 ' 2
in Eq. 2.2.2.. When the model tried to fit this data, it would either set many of its

parameters to zero (large negative values for the log of the parameters) or wander

through the parameter space without converging.

For situations where the difference between the proposed model and the actual

kinetics is not as great as the stretched exponential, the manifestation of errors are

more subtle. We demonstrate the subtlety by attempting to fit data generated from

a five parameter model with the original four parameter model. The five parameter

model is also a four state model with the same kbl ,kdl and Kb2/bl, but two different

values for the -'s. For this demonstration, we set bl = Ydl = O l s - 1 and ?b2 =

1d,2 = 0.2s-1 . Fig. 2-9 and TABLE 2.2 summarize the results of one of the best fits

of this optimization. Although all of the parameters are shifted relative to the true

parameters, the greatest uncertainty appears in the single a since this quantity is not

well defined in the model that generated the data.

As with all parameterizations, the data requirements scale with the number of

parameters. For more complex models, more data may be needed. Since the amount

of data serves the role of temperature in the sampling of a partition function, large
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Figure 2-9: Contour plots of two dimensional projections of the probability density
generated by the Monte Carlo simulation that determined the four parameter fit to the
five parameter model discussed in section 2.8. The black squares mark the positions
of the parameters that generated the data. The distribution of y is much wider than
the distribution presented in Fig. 2-7, which reflects the fact that this parameter is
not defined for the model that generated the data. Similar to Fig. 2-7, each cluster
is pointed to by a label such as [3', kdl]. The first entry corresponds to the horizontal
axis and the second entry corresponds to the vertical axis.
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[[ _____ ___ _ Actual Values [
kbl kdl _ Kb2/bl

_ _ 1 0.75 0.50 0.10/0.20 0.44

Mean Values

kbl dl i ) Kb2/bl
0.82 0.57 0.22 0.47

Covariance x10 3

kbl kdl 7Y b2/bl

kbl 0.88 0.33 0.52 -0.82
kdl 0.42 0.35 -0.56
7 4.0 -0.9
Kb2/bl 1.5

Table 2.2: Mean and Covariance for the Monte Carlo simulation presented in Fig. 2-9.
Note that the data is generated from a model with two 7's, but the fit is performed
with a single y. Stability analysis determines normal modes with standard deviations
of 6.7, 4.2, 1.8, 1.6 x 10- 2 . Because the model with a single t7 did not generate the
data, there is a fairly large variance for .y relative to the other parameters.

amounts of data correspond to a very low temperature and can result in a failure to

explore the relevant parameters space due to trapping in local minima. This trap-

ping phenomenon is analogous to diffusion on a rough potential energy surface [53].

We found that the use of 250 or more molecules with a trajectory length of 300s

leads to trapping in local minimum. This trapping shows that the surface is gener-

ally not monotonically decreasing to the global minimum. One should use standard

approaches such as annealing to help the system find the global minimum [186]. One

method of incorporating annealing is the addition and mixing of data during the sim-

ulation. i. e. exchanges data used in the optimization with unused data during the

simulation. The mixing is important to preventing certain pieces of data from domi-

nating the optimization and avoiding convergence to parameters that are consistent

with all of the data.
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Actual Values [

kbl lkb2 kdl kd2 'Ybl | Yb2 'Ydl 0d2
0.75 0.33 0.50 0.22 0.10 0.10 0.10 0.10

Mean Values

kbI kb2 kdl kd2 %7blI b2 7dl 7d2

0.75 0.32 0.50 0.19 0.12 0.09 0.11 0.14
Covariance x103

kbl kb2 kdl kd2 'Ybl 'Yb2 'Ydl Yd2

kbl 3.0 1.0 1.1 0.3 1.8 0.25 0.88 -1.4
kb2 1.5 0.85 0.75 0.78 -0.80 0.37 0.83
kdl 1.0 0.46 0.85 -0.22 6.7 -0.46

kd2 0.87 0.61 -0.19 0.36 -0.92

Ybl 2.7 1.2 0.11 -0.97
Yb2 2.1 0.27 -0.01

Ydl 1.6 0.55

'Yd2 2.1

Table 2.3: Mean and Covariance for the Monte Carlo simulation with
eters. Stability analysis determines the normal modes with standard
8.5, 5.8, 4.8, 3.4, 2.1, 1.7, 1.1, 0.9, x 10 - 2 .

eight param-
deviations of

The effects of excessive data, such as trapping in local minima, are not a consid-

eration even if we perform the optimization of all 8 parameters with no constraints.

Using 50 molecules, instead of 25, we generated data with the four parameter model,

but let all eight parameters vary independently and then imposed kbl > kb2 at the

end of each Monte Carlo iteration. Most of the simulations are able to locate a global

minimum that is near the actual parameters. The results for one of these simulations

is presented in TABLE 2.3. The largest standard deviation in a mode is - 8.5%,

which is a typical value for most simulations. For 25 molecules, the largest standard

deviation of one of the normal modes was around - 15 - 20%, which shows that the

certainty in the parameters improve roughly as the expected X scaling as more data

is added.
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Four state model and the fluctuating bottle neck

The four state model is often compared with the fluctuating bottle-neck model (i.e.

the diffusion controlled reaction) in the literature [29, 35, 242, 243, 92, 216]. The fluc-

tuating bottle-neck model describes a one dimensional diffusion process in a harmonic

well with a reaction rate that depends harmonically on the coordinate,

aX(t) = DV2P(t) + V (kxP±(t)) - ±2P±(t) + ,FX2P'. (2.8.26)

We previously demonstrated that the difference between the characteristic function

of the fluctuating bottle-neck model with D = k = + = 1 and cl = KqK+ = 2,

and a four state model with Yb1 = adl = 0.289706, Nb2 = Yd2 = 1.71029, kbl =

2kdl = 0.417953, kb2 = kd2 = 4.43615 is small with the maximum deviation in the

characteristic function of 5o%, which is smaller than the approximate noise levels

for the reasonable amount of data (See Sec. 2.5).

We consider the time traces of 25 molecules for 100 time units generated from

both the fluctuating bottle-neck and the four state model. For the given model

parameters, each molecule performs approximately - 150 turn-overs. From this data,

we attempt to find a four state model that optimizes the fit to both sets of data.

Applications of Bayesian statistics to a continuous diffusion model will be discussed

in applications to single photon experiments [225]. TABLE 2.4 compares the means

and covariances for a typical run (typical average value and variance). The first

important observation is that the optimal fitting parameters to the fluctuating bottle-

neck model are different from the parameters suggested by Brown's procedure [29].
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Actual Values For Four State

kbl kb2 Kq 'Ybl Yb2

0.42 4.4 2.0 0.29 1.7

Mean Values (Four State/Bottle-Neck)

kbl kb2 Keq Tbl b2

0.44/0.41 4.6/4.1 2.0/2.0 0.26/0.43 1.7/2.2
Covariance x 103 (Four State/Bottle-Neck)

kbl kb2 Keq Ybl 'Yb2

kbl 0.39/0.82 1.9/4.9 -0.67/-0.57 -0.20/-0.95 -0.18/-0.21
kb2 43./51. -8.4/-7.2 -1.0/-4.0 8.4/17
Keq 6.4/6.6 1.0 .10-2/ 2.0 .10-2 -0.81/-0.45

Yb1 0.55/2.3 1.8/4.5
Yb2 20./40.

Table 2.4: Mean and Covariance for the Monte Carlo simulations attempting to fit
the four state model to data generated by a four state model and by the fluctuating
bottle-neck model. Stability analysis determines the normal modes with standard
deviations of 40., 21., 14., 8.6, 4.1 x 10-2 for fitting the four state model to itself and
standard deviations of 44., 23., 20., 8.1, 5.8 x 10-2 for fitting the four state model to
the fluctuating bottle-neck.

Maximizing statistical overlap of the sequences between two models is actually a non-

trivial problem, and Brown's parameterization only matches correlation functions,

which does not necessarily maximize the overlap of probability.

From the covariance matrices it is apparent that kb2 and Keq have comparable

variances for both data sets, but the variances of kbl, %bl, and b2 are over twice as

large for the fits to the fluctuating bottle-neck model. The larger uncertainty in the

parameters can be used as a flag to suggest the exploration of other models, which

can then be compared through the use of the Bayesian score. Similar to the choice

of optimal parameters, one can use Bayesian statistics to choose from models with

different physical features or complexity. Comparison of seemingly disjoint models

has a rich history with several aspects including determination of when to increase
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the number of parameters, so this step is omitted here for brevity, but several ref-

erences address model comparison through Bayesian methods [47]. Many of these

comparisons start to use the Bayesian score that we calculate to perform our Monte

Carlo simulations.

2.9 Conclusion

Single molecule experiments offer an opportunity to gain significant insight into the

physics of glasses, biomolecules, and other complex systems. The insight is limited

by both the amount of collected data and the analysis performed on the data. Previ-

ously proposed indicators and other quantities used in the analysis of single molecule

experiments contain useful information that give qualitative insight into the physics

of the system, as demonstrated in previous references [35, 242, 243, 223]. The use-

ful information includes various time constants for the relaxation of the system and

connectivity between these relaxation times (i.e. memory effects), but the extraction

of quantitative information from these indicators is difficult because the indicators

require data binning and data averaging which removes large amounts of useful in-

formation.

To move beyond indicator analysis requires a numerical method that does not

require ill-conditioned data inversion or averages out information contained in the

data. Bayesian analysis with Monte Carlo optimization is one strong candidate.

Implementing Bayesian analysis still requires the use of the previous indicators to

determine constraints on possible models, such as the number of states or restric-
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tions on eigenvalues, but the Bayesian approach gives quantitative estimates of the

parameters and uncertainties in these parameters. By incorporating the constraints

discovered through the indicators into the a priori distribution of possible models, one

can use Monte Carlo with the Bayesian score as the Boltzmann energy to optimize the

parameters. Applications of this approach to a simple four state model demonstrate

its capabilities to reproduce the correct parameterization and give uncertainties in

these parameters. The Bayesian approach also has the ability to distinguish differ-

ent models as shown by the comparison of the fluctuating bottle-neck and four state

models.

Many other scenarios exist and should be explored, such as the role of photon

statistics and continuous distributions of states. The Bayesian approach performed

well in our tests of some of these other scenarios, but additional analysis requires

motivation from applications to real systems so we will not go into detail about other

simulations with computer generated data. Preliminary results from the analysis

of single photon emission events from fluorescence quenching experiment are very

promising [240, 225]. Of all the existing approaches, the Bayesian approach is the

most reliable and robust method of numerically analyzing single molecule data, and

we encourage experimentalists to explore the application of this approach to their

single molecule data. The Bayesian approach will become a standard method of

single molecule analysis in the future.
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2.10 Appendix: Proof of complete information con-

tent

It is important to demonstrate the completeness of the information so that we can

compare results with other indicators. The derivation follows those in the refer-

ences [84]. The n-time correlation function is written in the Laplace domain as,

T 1 6(i)S [lSn + A] S-1 6()Peq _ Z ail,..., n 7 1 
n ....(+)Pe.. m=l n + i_

The matrix S is a similarity transform of the matrix r + K + Kd, and A is the matrix

of corresponding eigenvalues, Ai. Since the eigenvalues are distinct this matrix is

diagonal. The prefactor, ai,..,in: is determined by fitting the n-time correlation

function to the functional form presented above. The initial condition appears in the

superscript of the prefactor, ±, and the ±irm refers to the index of the eigenvalues

and the state measured at the time t,. Note that fitting the functional form can be

done in the time domain. The functional form of the prefactor is

a i 1T{6(±)SS S-n p±. (2.10.28)

In this expression, the matrices are time ordered and the matrix 6in has all zeros except

for the element, {i, i}, which is unity. The vector p± is (+)Peq/l((+)eql. The matrix

SSiS - 1 can blIe written as an outer product of two vectors, SiS -1 = wiT with the

property that witiTWitVT = WiTiT and wivTwjv = 0 for j Z i. Starting from the trivial
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idenc;,,,,,T = -1i T T IT±wiv =pidentity Wiv = - = (ai)lwa i ivT with scalar ai = 1T5()wivTpi, which

follows from the definitions above, we get wi vT (ai)-lwiT6(±)wivtiTp±ti. Since

1T(()w i and viTp± are scalars, they commute resulting in the expression, wiviT =

(a i)-lwivTp±lT6(i)wivT. Substituting this expression for Si2S - 1 in EQ. 2.10.28

gives a recursion relation for the values of

ail ,...,+in =

1T { d6(±)SSiS-1 }Pi = 1T {rI(±)WiVT p
-

-1 (T fJ6(±)W[lP±"i (IT
ai2 + T)Win)n P ( W i2V iii

a±i2...,+i (2.10.29)
awi2

which implies that determination of ai and ai,+j from fitting C++(tl, t2) to sums

of exponentials determines all of the higher order correlations. One can determine

the decay rates, Ai, and the a±i, from the single time correlation function, and use

the two time correlation function to fit the coefficients of the exponents, a i,±j de-

termined from the one time correlation. If a limited number of degeneracies exist,

such as double degeneracy, a limited number of higher order moments can capture

this behavior. The result depends on the fact that eigenmodes never mix and does

not generalize to arbitrary waiting time distributions even if these distributions have

a single parameter.

As we discuss in previous work, the above analysis has an analogy to spectral
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decomposition in quantum mechanics [35, 242, 243]. By writing,

1T { (+)S [lsn + A]- S1} p =

ITS {II S-16(+)S [lSn + A]- } S-lp± =

Tr (S-1P±lTS {J1 S-16(I)S [sn + A]-1} ), (2.10.30)

the n time "intensity" correlation maps into the spectral decomposition of the quan-

tum time-correlation function with a density matrix p - S-16(±)p±lTS, eigenfre-

quencies iwi - -Ai, and transition matrices, B -- S-1d()S.

2.11 Appendix: Application of information con-

tent to the generating function

For integer powers of m, the mth moment has the form,

(n t (s)) = E m,i T [K [s - - K - Kd Pic (2.11.31)
i=l s

In this expression, cm,i is a combinatorial factor, and we used 1 T [r + K + Kd] = 0

to get the term. The terms with i < m can be expressed as lower order moments.

From these expressions it is apparent that each higher term contains new information

in the form of the expression,

f()= 11 T [K [is- - K- Kd]-l] m pic (2.11.32)
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We can use the same projection technique with projection operators of the form

SiS - 1 to derive a recursive relationship between terms that contain m products of

the matrices K and those with one and two K matrices. One should note that S is

a similarity transform that diagonalizes the matrix r + K + Kd, which is the same

transformation used in the "intensity" correlation calculation, but the coefficients will

be different. Using the projection operator we can write

I1 1

fm(S) S iEi il,'im jzj'm i + ', (2.11.33)

where the a's have a similar definition to the "intensity" correlation and "event"

density, but they will be numerically different although the A's will be the same as

the "intensity" correlation function. The same recursion relation holds,

ail = 1Tr l KS6imS-1 Pic ai2ai2 , im (2.11.34)
=1 ai2

From the first moment we can find the ai terms by fitting the transform to a sum of

terms of the form s-1(s + Ai)-l, but we cannot find the ail,i2 terms from the simple

second moments since we cannot distinguish ordering. It is important to note that

the functional form does not give us any ordering of the eigenvalues, so we would fit

fim(S) to

fmi(S) = SE nm sim (2.11.35)
il>..im j=il.. ,im s + j

with bi,...,im = {ii mail,...,i, where P{... is the permutation operator. By
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fitting the moments, (nm(s)) or fm(s) as functions of the Laplace variables to the

data, we can determine the bi .....:i, and using the recursion relations, we write the

bi....,im in terms of products of ail,i2 and a. In principle, this process produces

a, set of equations that determines all of the a,ij 2 and the properties of the HMC,

but the resulting equations are non-linear, which makes the existence of the solution

difficult to ascertain. The higher order single time moments of the generating function

can be used to extract the available information about these processes, but more of

moments are needed than with time correlations. These moments also cannot be

reliably extracted from experiments. The problem can be avoided by determining a

two time renewal function, (n(tl)n(t 2 )), in which case the analysis becomes the same

as Sec. 2.3 and only the first and second time moments are needed. Even using the

two time renewal function requires one to either fit the function in Laplace space, or fit

functions that contain convolutions, which results in additional polynomials in terms

of time that must be fit. The result is theoretically interesting, but in practice, even

for a model with two eigenvalues we need to accurately measure the Laplace transform

of the 3 rd moment and numerically solve a non-linear set of equations, which is not

numerically feasible. The lack of certainty of the existence of a solution, as well

as numerical difficulties in finding this solution, makes the use of the characteristic

function difficult even when the eigenvalues are distinct.
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2.12 Appendix: Simulation details

2.12.1 Generation of data

Four state model

The four state numerical example that we examine is depicted in Fig. 2-2 for the

system are given by the kinetic matrix equation, Eq. 2.2.2. From the kinetic rates the

steady state solution, Peq can be determined. For each of the 25 molecular trajectories

the initial state is randomly sampled from this steady state. After choosing the

initial state, the time of a transition from this state to either the other connected

states is drawn from an exponential distribution with characteristic time (y, + ks)-l,

where s = bl, b2, dl, d2 denotes the current state. Once this time is chosen, the new

state is chosen. The probability of making an unseen "bright-bright" or "dark-dark"

transition is given by ys/(?Ys + ks), and one minus this quantity is the probability of

making a visible transition. If a visible transition is observed, the transition time

is recorded as part of the single molecule trajectory. After the new state is chosen,

the simulation is continued until 300s has elapsed, but it is possible to incorporate

photo-bleaching events. Although we assume that the transitions are sharp in this

chapter, we can easily simulate systems with broader transition regions by adding the

uncertainty in the transition time.
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Fluctuating bottle-neck model

A similar simulation method is used to generate the data for the fluctuating bottle

neck model. The equilibrium distribution is given by

iPk e x 2 D (2.12.36)
k+±k 2irk/D

This distribution can be easily sampled. Given the current position, x, we choose a

small time step t D x 10-6. We calculate the probability that the system reacts

1 -e -kx 2 at. If the system reacts we record the time of the event. Then we propagate

the system under normal Brownian motion in a harmonic oscillator to choose a new

x value, so that our temporal resolution in 10-6D, which is much smaller than the

kinetic rates 4.5D

2.12.2 The Monte Carlo algorithm

Given the data generated in Sec. 2.12.1, we attempt to determine the relative like-

lihood of various possible parameters through a standard Metropolis Monte Carlo

algorithm. More complex algorithms may be necessary, depending on the amount

and complexity of the data, as well as the model being considered. The probability

of a specific sequence is easily written in matrix notation as

P(D AI) = T IJ Ke(Kd+r)tidti] 6+Peq (2.12.37)i~~~~~~~~~~21.7
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where the definitions of the matrices follow from above and the 6± selects the initial

condition [223]. The dti are the small widths of the time bins, which will generally

be determined by instrument concerns as well as the photon emission rates from

the "bright" and "dark" states. If dti is large relative to the kinetic constants, the

appropriate binning needs to be considered. Note that the elements of e(Kd+ r )ti must

be evaluated through standard eigenmode analysis. Since we care about relative

probabilities of different kinetic matrices, we can neglect the bin sizes, dti. For a long

sequence the matrix products quickly go to zero. To prevent difficulties associated

with zeroing out of the matrix products after each multiplication of Ke(Kd+r)ti we

renormalize the resulting vector, pi = riKe(Kd+r)tipi_l. The constant ri is chosen so

that Ej(Pi)j = 1. Here i denotes the number of matrix multiplications. The sum of

the logs of all of the renormalization constants is the Bayesian score, B = - L log(77i).

Except for a constant correction of E log(dti), the Bayesian score is the log of P(DIM)

which is necessary to apply Bayes formula. The Bayesian score plays the same role

as the Boltzmann factor, 3E({ti}) in statistical mechanics.

The Bayesian score allows us to perform Monte Carlo importance sampling to

sample the posterior distribution of parameters that represent the data. We start the

simulation at a random parameterization. At iteration j we have a set of parameters

with Bayesian score Bj. We sample a new set of parameters, j + 1, by multiplying the

current parameters by er, where r is a uniform random number symmetric around the

origin with step size A, i.e. -A < r < A. This step corresponds to a Markov Chain

Monte Carlo importance sampling with an improper log-uniform a priori distribution,

P(M)dAI cx dM. This distribution is improper since it is not normalizable, but

96



as can be seen from the numerical examples in this chapter, the prior does not play

a large role in the final distribution for these models. We choose this importance

sampling since the kinetic constants must be positive and we cannot a priori set

their magnitude so a log uniform distribution (Jeffrey's prior) is the most appropriate

choice [6]. If we are imposing an ordering to preserve uniqueness, i.e. kbl > kb2,

then after we choose the new values, we relabel the states to maintain this ordering.

Once the new parameters, j 1, are chosen we calculate the Bayesian score for these

parameters. Following standard importance sampling in Monte Carlo if Bj+l > Bj

we accept the new set of parameters, else we conditionally accept the new parameters

with probability eBj+l- Bj

For a short sequence and a small number of states, we can readily evaluate the

Bayesian score for every possible choice of parameters. For larger sets of states, more

complicated models or data a more intelligent methods of sampling is required.
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Chapter 3

Testing the properties of single

molecules blinking sequences:

detailed balance violations, renewal

properties, and trajectory

classifications

3.1 Introduction

Cellular processes involve highly connected biochemical networks that are operating at

a steady state far away from equilibrium [151, 171, 78]. The steady state is maintained

by constant influx of complex energy containing molecules (glucose) and efflux of
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simpler molecules (H2 0 and CO2). Understanding the pathways that allow cells to

use the energy influx to perform biological functions is the primary objective in the

study of metabolism [151, 103]. The complexity of biochemical reaction networks

in cells makes studies on the entire network difficult and motivates studying small

segments such as single enzymatic reactions.

Enzymatic reactions may be the smallest component of cellular metabolism, but

the enzyme itself is a fairly complex object with many degrees of freedom that can be

affected by the energy influx of cellular metabolism. Although we generally associate

simple Michaelis-Menten kinetics with enzymatic turnover [213], these additional de-

grees of freedom allow the enzyme to show complex behaviors with memory effects

that can modify the molecule's properties in response to environmental or substrate

fluctuations. These behaviors can be observed in single molecule experiments through

fluorescent labeling [132]. The labels must be attached to many proteins of inter-

est through chemical modification [98]. Avoiding changing the enzyme's reactivity

through the chemical modification requires care, and the fluorescent probes will often

be attached to the periphery of the protein so the coupling of the photophysics of

the dye and the enzymatic reaction may not be obvious. This situation motivates

assessment of the probe's coupling to the enzymatic reaction process. Since the en-

zyme is being pumped by the substrate reaction [95, 171, 78], a probe whose motions

are coupled to the reaction are expected to violate detailed balance (DB) and deter-

mination of the nature of the DB violation in the probe's motion is the first step in

understanding the coupling between the measured coordinate and the reaction pro-

cess. The DB violation is a generic property of systems that can be studied without
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determining a model for the exact kinetics or semi-Markov scheme. In this paper we

discuss the properties of DB systems and different manifestations of DB violations. In

a subsequent paper, we present robust statistical tests for these properties based on

two dimensional histograms that do not depend on the exact model proposed [228].

Although generalizations are simple, we concentrate on the two manifold model,

where the system exhibits hops between two intensities, labeled + for bright and -

for dark, resulting in a blinking sequence. The duration of the + or - intensity has

been referred to as events in literature [35, 243]. These hopping events are generally

modeled by stochastic waiting time processes (semi-Markov) [79]. If the waiting

times show correlations between adjacent transition times, additional hidden states

are added. Including only a few states can greatly increase the complexity of the space

of possible models so it is desirable to develop methods to get insights that do not

require model optimization [30]. In the long time limit, the number of transitions from

the + manifold of states to - manifold of states is necessarily equal to the number

o:f transitions from - to +, which results in a long time DB relation, (K +_(peq)-) =

(K_+(peq)+), where Peq is the equilibrium distribution, K±:t is the flux operator, and

(...) is the average over the conformational coordinates (hidden states) [35, 243].

Monitoring each of the conformational substates may show more transitions from

substate i to substate j than the reverse, resulting in a DB violation that does not

appear on the mesoscopic scale of manifolds.

In this paper we examine the ability to detect and to characterize microscopic DB

violations between the i and j substates in a system that appears to hold mesoscopic

DB between the + and - manifolds. Although a substrate concentration dependence
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is a direct indicator that the probed coordinate is coupled to the reaction, the con-

centration dependence does not always give insight into the underlying topology of

the circulating loops leading to the DB violation. Using concentration dependences

may also be difficult in some single molecule experiments. In ion channels the probe

is the current from ions, which is also the substrate of the transport process. Chang-

ing the substrate concentration affects detection efficiency so the exact concentration

dependence may not be easily determined. The substrate may also be a fairly ubiq-

uitous compound, such as 02, whose concentration is difficult to control, or one may

desire testing for DB violations in the system to determine if the experiment is in

equilibrium.

The classification of different mechanisms of DB violations without resorting to

parametric models is the focus of this paper. By using the kinetic formalism discussed

below, three signatures are derived, including a peak in the single waiting time dis-

tribution, a time reversibility violation, and a related lack of diagonal features in two

dimensional joint waiting time distributions. The peak in the single waiting time

distribution corresponds to a multiple step jumping process within a single manifold

that indicates a flow through that manifold (See Fig. 3-1(b) for an example), while

the time reversibility violation or a lack of a diagonal feature in the two dimensional

joint waiting time distribution indicate a circulation loop that enters both manifolds

twice (See Fig. 3-l(c)).
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Figure 3-1: (a) A kinetic scheme that maps onto an alternating renewal process
without violating DB. (b) A kinetic scheme that can be mapped onto (a) but violates
DB. (c) A kinetic scheme that violates DB by alternating between waiting times. (d)
The conformationally controlled kinetic scheme.
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3.2 Kinetic Formalism

The statistical distribution of the times between events such as photon emission,

switching between high fluorescent to low fluorescent state, and forming distinct con-

tacts in a protein are generally the strongest indicators of the properties of single

molecule systems [35, 243, 184, 138, 159]. If these events correspond to large scale

rearrangements that cross high energy barriers, we expect the transitions follow a

Poisson process. In order to discuss the features of a DB system (or DB violations),

we need to model the system as a kinetic scheme [35, 243],

P1 ] | K+++ -K_ I 1 L ] J

p_ -K_+ K__ + p

Any semi-Markov process with a reasonable waiting time distribution is inverse Laplace

transformable and can be expressed as a (possibly complex) kinetic scheme. To map

this kinetic scheme into a semi-Markov process, one simply defines the waiting times

for transitions from state j in the ± manifold to state i in the ± manifold as

[G_± +(t)]ij = [K±e- (Ki +r: )t]i (3.2.2)

The determination of the exact waiting times from the data requires computationally

expensive search algorithms for a complex topological space [30].

As an alternative, we determine features of DB violations in the one and two di-

mensional histograms of events. The histograms are determined from the probability
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of n events [243],

1 KT (Peq)~:Pi .. (t 1 ,.., rtn) = A T SuK+Fe2p-(Kay +rr c , (P1 ZKf (Peq ) (3.2.3)

where the sums are carried over the final states. To get reduced probability ma-

trices one integrates over the other events. If DB holds, the flux conservation law

(-K_-+)ij [(Peq)+]j = (K+-)ji [(Peq)-]i and (rF±)i j [(Peq)i]j = (Fr±)ji [(Peq)±I] implies

that the kinetic matrix in Eq. 3.2.1 has a special form,

_ n9+ -& --1 D ± [ : : P + ( 3 .2 .4 )
Lp-j-QL Q - 0 D_ p

where D = 6i [(Peq)]-l is the inverse of the equilibrium distribution, Q±± are

symmetric matrices with positive eigenvalues (positive definite) that contain posi-

tive elements on the diagonals and negative elements off of the diagonal, and Q+_

is a matrix that contains only positive elements. The matrices satisfy the relation-

ships, Ei(Q--+)ij = Ei(Q+-)ji, and Ei(Q--)ij = i(Q+-)iij, (Q++)ii > ]j(Q+-)ij,

(Q(--)ii > Ej(Q+-)3 i, and Eij Q++ = Zij Q-- = Eij Q+±.

Defining a symmetric operator with positive eigenvalues (positive definite), H±± =

1 1

D+Q+±±D+, allows us to rewrite P+_...+_ for an even number of events starting from

a + event as

P+_...+_(tl,... , t2n) =

E fIl Q D / -C- D_ +-D+ D+Q+-/ iQ_, (3.2.5)
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where the matrix product over i is time ordered. Similar expressions exist for an

odd number of events and for starting from the - state. This representation will be

the basis for much of the discussion below, but one may express P±... as a kernel of

exponential components,

P± ... (t , ', t ) = JI [dkikie-kit] P±...+(kl, .. k (3.2.6)

The kernel, P±... (kl,... k), need not be a probability distribution, but DB will

impose conditions on this distribution (see Sec. 3.4). To simplify the presentation

our focus is on P(t1 , . .., t,), but the results are independent of binning methods and

can be easily applied to logarithmic binning, P(lntl,..., Intn). In fact, logarithmic

binning is statistically robust for the determination of exponential decay times [196].

3.3 No sufficient condition for DB

Before continuing, we should note that all features of DB discussed below are neces-

sary but not sufficient. If all states were distinguishable, DB violations are determined

by examining the number of transitions between different states. When there is de-

generacy in the states, a similarity transform can be performed that will not alter

the statistics of events, but can change a DB obeying scheme into a DB violating

scheme [223]. As a result, we can assess if DB is violated, but one can never establish

if DB holds.

The statistical equivalence can be demonstrated by the schemes in Fig. 3-1(a)
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and (b). Each model only has one - state and the statistics of the system will be

an alternating renewal process. If the + and - single waiting time distributions are

identical between the two models, all statistics will also be identical. One model is a

linear chain that must follow DB and has waiting time distributions,

P_ = k2e-2t; P+ = pkie -klt + (1 - p)k3e- k3 t. (33.7)

The other model has a one way loop that always violates DB and has distributions

P_ = k_e - P+ = q_e- - t + (1 - q)+e-+ t, (3.3.8)

where i = k + y / + 2, and

1 X'(k -6) + (k + )( - 6 ) (3 -9)
2V2+72 +(3.3.9)

For > 0, we can choose kl, k2, and p such that K_ = k1, K+ = k3 and p = q.

The result is identical waiting time distributions and two indistinguishable models.

From this example, it should be apparent that degeneracy eliminates the possibility

of determining if DB holds, and one can only determine if DB is consistent with the

statistics of the system.
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3.4 Peaks in Single waiting time

The above arguments and examples show that there are no signatures of DB, but

signatures of DB violations in the one and two dimensional histograms of events may

still exist. To give some insight into possible manifestation of DB violations, we revisit

the models in Fig. 3-1(a) and (b). The mapping from k, k3 , and p to y, , and k is

not possible for 6 < 0. The prefactor q is always positive, but it becomes greater than

unity for 6 < 0, which implies that 1 - q is negative. The DB model in Fig. 3-1(a)

cannot have a negative (1 - p) value and cannot be mapped onto the kinetic scheme

in Fig. 3-1(b). We want to examine if 6 < 0 creates a feature that corresponds to the

DB violation that prevents the mapping between the two models.

Assuming that a DB violating feature increases with decreasing < 0, we expect

the feature to be the strongest when 6 = -k. The process continues to be a simple

time reversible alternating renewal process, but the waiting time distribution for the

+ state becomes a two step process,

P+(t) = (e =-K- _ (3.4.10)r+ ( tK) -- + 

where t± = k + -y ±k 2i+ 7y2 follows from above. The waiting time distribution is

the convolution of two exponential processes and the function has a zero at t = 0 and

a peak at t - In(+)-In(_) Intuitively, we expect this peak to correspond to a DB

violation because the waiting time corresponds to a flow (- -+1 -- +2 - - ... ).

In other words, the system prefers to hop into the + manifold through one state then
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hop to a second + state before leaving the manifold, resulting in a circulation through

the manifold.

To quantify this intuition, we note that by defining a vector w with coefficients

Wi=E(DQ2+-)/ (3.4.11)

we can write

P (t) K_+e-(K+++r ++)t K+(Peq) = wTe ++t (3.4.12)
Z K+_(peq) -

Differentiating with respect to t gives

dP+ (t) = _ T H + +eH + +tw. (3.4.13)

Since H++ is positive definite, this expression must be strictly negative and a peak

is not possible. Similarly, the second derivative must be strictly positive (convex).

The lack of a peak in the single waiting time distribution imposes a restriction on the

semi-Markov processes modeling equilibrium behavior.

A much stronger statement can be made about the single time waiting time dis-

tribution. Since H++ is a symmetric operator with positive eigenvalues, it has a

complete eigenvalue decomposition and the waiting time distribution can be written
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in the form of Eq. 3.2.6

P+(t) = Zajkje - k t = Jdkke-ktP+(k) (3.4.14)

where kj are the eigenvalues of H++ and aj = k(w Vj)2 is a weighted square

of the dot product of the corresponding eigenvector onto w. The resulting kernel,

P+(k) = aj(k - kj), is a probability density (P+(k) > 0, fP+(k) = 1) and the

variance in the waiting time becomes

(At2) = (k-1)2 + 2(Ak-2), (3.4.15)

where (zk - 2 ) is the variance in k-l that is calculated from P+(k). Eq. 3.4.15 demon-

strates that the variance in the single waiting time distribution must be wider than

the square of the mean waiting time for the DB schemes, (t)2 = (k-1)2 .

Coordinating parallel stochastic processes that have wide distributions of timescales

would be difficult, so using energy to drive the reaction on a narrower timescale would

be desirable. This driven reaction would result in a DB violation. As a simple ex-

ample consider the kinetic scheme shown in Fig. 3-2(a), where a circular chain con-

nects a block of n + states with a block of n - states that is driven clockwise with

a transition rate of k = kon (mean waiting time independent of n). The system

is a simple alternating renewal process with waiting time distributions of the form

P(t) = (kon)t"- 1 exp(-kont), which is not allowed in DB schemes. Increasing n re-

sults in peaks that reduce the variance below the variance of an exponential process,
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as shown in Fig. 3-2(b).

Assuming a small backwards reaction rate, kb allows us to define a free energy

loss per step, AG = kbTln(k/kb). The total free energy dissipated in the cycle is

2nA\G. A stronger peak corresponds to more steps, which implies a larger free energy

loss. Achieving a narrow variance in the waiting time (i.e. be highly peaked) requires

pumping by external energy sources. The narrow waiting time distributions also

result in the peak in the power spectrum of the correlation function C(t) explored by

Qian [171, 78] and shown in Fig. 3-2(c). This power spectrum peak can be interpreted

as a clocking mechanism in the enzyme.

3.5 Time reversibility

The peak in the waiting time distribution is the only one dimensional indicator of a

DB violation. We expect many possible DB violating schemes to lack a peak in the

waiting time, such as the scheme in Fig. 3-1(c), so it is necessary to look at higher

dimensional measures for DB violations. Avoiding the difficulties of determining an

underlying model restricts the applications of the analysis to the binning of data so

two dimensional measures are the most useful for developing insight into the nature

of DB violations. A previously studied two dimensional indicator of DB violations

is time reversibility in the joint distribution of events [196]. The time reversibility

can be understood by re-examining the expression for n events in Eq. 3.2.5. This
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Figure 3-2: (a) A kinetic scheme with a narrow waiting time distribution. (b) The
waiting time distribution, k t , for n = 1 (solid), 2 (dotted), 5 (dot-dash), and
10 (dashed) sequential processes with rates k = kon with k0o = 1 (to ensure same
mean). The peak is an indication of a DB violation. (c) The power-spectrum of the
correlation function of the scheme shown in Fig. 3-2(a) for n = 10. (d) The long
time rate of growth of the variance in the number of turnovers for the scheme in
Fig. 3-1(c), with k = k2 = k4 = 1 and k3 = 2 as a function of p. The expected
number of turnovers is 4t (see text) and the maximum variance occurs for p = 1/2
and corresponds to a renewal process obeying DB.
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expression is a scalar so it is equal to its transpose, which is

P_4..._+(tn,... t) =

L f1i T D 2 e-H++t2- D+ _2 H--t2i QT Eij Q-- (35 )

Noting that Eij Q-- = ij Q++, H±± is symmetric, and the time ordering of the

matrix product is reversed, we see that this expression is equivalent to observing the

reverse of the sequence, time reversibility (i.e. P...T (t ... ., t) = PT...+(t, ... ,t1)

and P±...±(tl.... t7) = P±+...+(t... ., t1 )). This time reversibility relation has been

used to explore DB violations in ion channels [196]. As discussed elsewhere, one can

perform statistically robust tests on 2-D contours to assess if time reversibility is

violated [228].

The time reversal violation affects our inference about the waiting time of an event

given that we have information about a different event. Suppose that we measured a +

event and wanted to infer the properties of the - events immediately before and after

this + event. If time reversal symmetry holds we would assume that the preceding and

succeeding -- events have identical statistics, but a time reversal symmetry violation

implies that the statistics are different. The time of an event is a stochastic signature

that can be used to infer which transition has occurred, j -+ i, where we identify

the transition through the index of the Green's function expression in Eq. 3.2.2. This

definition defines the transition based on the initial substate entered in each manifold.

A:n extreme example has [G±T(t)]ij = 3(t-tij) for tij g! tk,l so that the transition time

uniquely identifies the transition. A time reversibility violation implies that the j - i
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transitions and the i - j transitions occur with different frequencies. This violation

is the result of a circulation around a loop that enters the + and - manifolds at least

twice, (+ - -- + -).

A simple realization of this time reversibility violation has four states +1,+2,-1,

and -2 with each + state only connected to - states and vice versa (Fig. 3-1(c)).

Topologies with no + - + or - +- - connections have been referred to as the

Bauer-Kienker uncoupled (BKU) canonical form [30]. All models can be mapped into

a canonical form with possibly unphysical rates (negative or complex), but the form

reduces degeneracy in the number of identical schemes and the number of parameters,

which simplifies model optimization. An arbitrary model will have (N+ + N_) (N+ +

N_ - 1) kinetic rates connecting the N± substates in the ± manifolds, which should

be compared with the 2N+N_ rates of the BKU form. Studies in the literature have

found that many ion-channel models have physical topologies that resemble this BKU

form [30]. Another canonical form, whose topology has appeared in several physical

models of ion channels, is the manifest interconductance rank form. This canonical

form has several attributes, the most important property being that every + state is

connected to at most one - state and vice versa. The conformationally controlled

kinetic schemes, such as the four state model in Fig. 3-1(d) is an example of this

canonical form [30].

Returning to the simple model in Fig. 3-1(c). Each state has a simple exponential

waiting time distribution, Pi(t) = kie- k t, and the conformational dynamics prefer to

proceed in a circular sequence +1 -+ -1 - +2 --+ -2 -- +1 . . ., with p representing

the clockwise bias. The circular flipping process results in the detected DB violation
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with the two event waiting times being

P+--(t, t2)= p [k2e k2t2kle klt] + (1 - p) [k4 ek4t2klekltl

+±p [ 4e 42k3 3tl + (-p) [k2e2t2k 3e3tl] , (3.5.17)

and

1 k - 1q k4t2ektl
P_+-(t2,t1 ) = 2(1-p) Ik2e k22kle Ltl + -p [k4e 4 2kee 1

2 2

(1 -p) [k4 e k4t2k3ktl] +-p [k2ek2t2k3e-k3tl (3.5.18)

If kl < k3, k2 < k4 and p (< 1, we expect long + events will be followed by short

-- events, but long - events will be followed by long + events. If a short + event is

observed, we infer that the state is probably the k3 state and expect the preceding

-- event to be long and the succeeding - event to be short. As a result P+-(tl, t 2)

has a large contribution from the off diagonal, whereas P-+(t 2, tl) does not. (See

Fig. 3-3(a) and (b)).

3.6 A diagonal feature of DB systems

Degeneracy in some of the kinetic rates of Eq. 3.2.1 can lead to systems where the

time reversibility violation and peaks in the waiting time distribution do not appear,

despite the system violating DB. A simple example of this degeneracy is the existence

of' a path independent single rate determining step, such as transport limited reac-
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Figure 3-3: Comparison of P+_(t+, t_) in (a) with P_+(t_, t+) in (b) to show a time
reversibility violation for the scheme in Fig. 3-1(c) with 4kl = 4k2 = k3 = k4 = 4,
and p = 0.1. The maximum occurs at t = t2 = 0 and monotonically decays. (c)
P_+(t_, t+)- P+_ (t+, t_) shows that the difference is not zero, which indicates a time
reversibility violation. (d) P_+(t_,t+) - P+_(t+,t_) with 4k = 3k2 = 2k3 = k4 = 4
to demonstrate that the contours do not have to be symmetric.
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tions. The scheme in Fig. 3-1(c) with k2 = k4 has this property. The - waiting time

is mono-exponential so the - waiting times cannot be used to detect DB violations,

and we must rely on examining the histogram of two + events. For simplicity we

consider two + events separated by a single - event, P++ (tl, t2), but generalizations

to greater separations is simple. If DB holds, this waiting time distribution can be

written as

P++ (tl, t2) = wTe-H++t2R++e-H++tl w (3.6.19)

where

1 1

R++= D+Q+ Q-1 Q+ D (3.6.20)

is a symmetric operator with positive eigenvalues (positive definite). From the triangle

inequality with the positive definite operator R++, it is simple to show

[P++(tl, t2)]2 • P++(t1 , t)P++(t 2, t2 ). (3.6.21)

As a result, the maximum of the probability distribution must appear on the diago-

nal, t = t2 and the function must be concave around the diagonal, i.e. for fixed t,

++ (t - , t + ) must have a local maximum at = 0. A possible DB violation P++ is

the contour in Fig. 3-4(a), where the wings in the waiting time distribution violate this

triangle inequality. The difference between the upper bound of the triangle inequal-

ity and the t rue distribution, AP++ (t, t2) = P++(tl, t2) - P++ (t, t)l) P++ (t2, t2) is

plotted in Fig. 3-4(b). This kinetic scheme is time reversible and does not possess a
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Figure 3-4: (a) P++(tl, t 2) for the scheme in Fig. 3-1(c) with k1 = k2 = k4 = 1, k3 = 4,

and p = 0.05. The large k3 was chosen to accentuate the strong off diagonal features.

(b) AP++(tl, t2) = P++(tl, t2) - P++(tl, tl)P++(t2, t2) for the contour in (a). The
positive peaks along the lines tl = 0 and t2 = 0 and the zero along the line tl = t2
are strong signatures of a DB violation.

peak in the single waiting time spectrum so the diagonal dominance test is the only

one that can detect the violation. We should note that schemes that strongly violate

DB have been used to create strong diagonal features so a strong diagonal feature

does not infer even approximate consistency with DB [135].

Integrating Eq. 3.6.19 over a small interval, ti = ti ± d gives

J dtidt 2P++(t1 ,t2) = wTH- (eH++(t2-6) e- H++(t2+6))-++

R++H++ (e H++(t-6) - e-H ++( tl+ )) w (3.6.22)

Since H++ is symmetric and R++ is positive definite, the triangle inequality can also

be applied to this expression. Histogramming data approximates this quantity so

the relation can be applied to histograms. (If Pij is a histogram for two + events,

then p.2. < P iPJj) We discuss statistically testing these types of histograms in [228].
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Similar to the DB violation, a violation of the triangle inequality follows from a

circulation loop that enters both manifolds of states at least twice, but the circulation

is being inferred from the ++ joint waiting time distribution since the - manifold is

degenerate and does not give any information.

The standard renewal test P++(tl, t2) = P++(tl, t 2)-P+(tl)P+(t 2) corresponds to

replacing R_+ in the above expression with (S++)ij = (R++)ij _k (Q+-)ik+- [35,

243]. This operator is symmetric and has positive eigenvalues except for a single zero

eigenvalues (positive semi-definite operator) so the diagonal of the difference function

must be positive and the maximum must occur on the diagonal. If there is a zero

on the diagonal, as is the case for the two channel model considered in [35, 243], two

lines of zero difference parallel to the t = 0 and t2 = 0 axes pass through that point.

The difference function also shows that

Cortr(n) = dtldt 2t1t2 P++(t1,t2) = (tt) 2 wH+s w > 0. (3.6.23)

This expression implies that adjacent + events are positively correlated in DB obeying

processes and results in a wider distribution of the number of turn-overs over a fixed

period of time compared to the expectations from examining the single waiting time

distributions, P+(t) [223]. A DB violation can make (ttn) < 0 and narrow the

distribution of the number of turnovers over a period of time.

A simple example of DB violations narrowing distributions in the number of

turnovers and causing negative correlations in the duration of adjacent event is the

scheme in Fig. 3-1(c) with k = k2 = k4 = 1 and k2 = 2. For any value of p, the
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single waiting time distributions are P_(t) = e- t and P+(t) = [e- + 2e-2 t]. In this

case, (t) = but (t 1lt 2) = 1)2 In the long time limit, we expect the number of8

turnovers to grow as (N(t)) = t since we need to include the - waiting time. The

variance in the number of turnovers for this model is ((6N(t)) 2 ) = 4t [25 + 1-2p(1-p)

As shown in Fig. 3-2(d), the variance in this distribution reaches a maximum at

P = ,2 when the model is a renewal process obeying DB. As the DB violation in-

creases p - 0, 1, the variance monotonically decreases since slow events follow fast

events.

3.7 Conclusion

The one and two dimensional features discussed above appear to be the exhaustive

set of possible tests for detectable DB violations in the one and two dimensional

histograms of events without resorting to determining the underlying model and ex-

amining the entire sequence. Testing for these features establishes necessary but not

sufficient conditions for DB, since sufficient tests do not exist. A DB violating kinetic

scheme may exhibit none, some, or all of these features, such as the three substate

model in Fig. 3-1(b) that reduces to a time reversible alternating renewal process

that lacks two dimensional features, or the four state model in Fig. 3-1(c) that lacks

a peak in the single waiting time distribution, but shows two dimensional features.

The peak in the single waiting time distribution is caused by the system's tendency

to make several transitions within either the + or - manifold before leaving the

manifold and corresponds to a current through the manifold. Cyclically performing
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many steps increases the DB violation, but allows the system to perform its function

on a definite timescale. A time reversibility violation in comparing P±T to P± or

a lack of peaks on the diagonal of the P±± indicate a circulation loop that travels

through both manifolds at least twice. These violations allow the system to alternate

responses and can result in anti-correlated event times and narrowing the distribution

of number of turnovers. These DB violations allow the protein to retain memory of

past events and modify its response. We present statistical methods to determine

these types of DB violations elsewhere [228].

3.8 Testing for renewal and detailed balance vio-

lations in single molecule blinking processes

In this section, we examine statistical tests of properties that appear in the one and

two dimensional histograms of events. The tests capture important aspects of the

system, including the non-Markovian/non-renewal nature of the system, violations of

detailed balance, and similarity in behaviors of molecules in different experimental

conditions [226]. The renewal behavior determines the existence of parallel paths,

while the detailed balance violations give insight into circulation in the underlying

topology, including the connectivities that lead to the circulation [226]. Concentration

dependences indicate the role of cofactors in a single molecules function, such as

metal ions in ribozyme folding and the energy transfer between the substrate and the

macromolecule [171, 227].
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The major difficulty with the two event waiting time distribution is the need to

histogram the events (resulting in a histogram hij). In the infinite data and infinites-

imal bin size limit, the traditional analysis discussed in the single molecule literature

will suffice. However, these methods are sensitive to noise and cannot be easily imple-

mented for finite sets of data. The implementation difficulties have several sources.

One source is the binning methods, which are linear in many proposed applications,

but should be logarithmic for examining exponentially distributed data [196]. In this

paper, data will be presented logarithmically histogrammed event though the discus-

sion will present linear probability distributions. Another issue is the scatter that is

present in the histogram. The scatter in a histogram should be approximately Poisson

distributed with the variance in the number of events in a bin being approximately

equal to the number of events in the bin. As a result, the scatter will not be uni-

formly distributed throughout the histogram, which can cause misinterpretation in

features that are measured from the differences between histograms. The nearly Pois-

son nature of the data scatter causes an additional problem for low count bins, where

the deviations are not Gaussian. Avoiding these difficulties is the motivation behind

introducing more rigorous statistical methods of assessing the relevance of apparent

features. An important result is the establishment of the number of measurements

necessary to elucidate the existence of features in the histograms properties and dis-

tinguish different models. These numbers should be used as a guideline for the types

of models to compare to the data.
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3.9 Testing models for histogrammed data

In order to avoid the combinatorially complex problem of finding the best model

for the data, we construct histograms of events from the data and then test generic

features of the histograms instead of the underling model that produced these features.

The histograms, hi or hij, include the single events (single sojourn time) and pairs of

events, such as adjacent + and - sojourn times or two + sojourn times separated by

one - sojourn. The objective is to test possible models for the histograms. The best

fitting model will always be the histogram itself Pj = hij with N = Eij hij. The

main issue is the establishment of other simpler models, Pj that are consistent with

the data. For a model Pij, the probability of getting the histogram hij is P(hij I Pij) =

-Ij(Pij)hij. Taking the log of this probability gives

1nP(hij I ij) = hijln(Pij). (3.9.24)
ij

Since each event is a random variable, Yij hijln(Pij) is the result of a sum of random

variables that converges to a Gaussian distribution in the large NA limit. As a result,

the difference in the log probability of the histogram, Pij = hip and Pi, is a natural

method of comparing the model to the data and assess if the model is adequate [133].

For the histogram hij the difference in the logarithms is

E hij [In(Pij) - ln(ij)] = E hijn(Pij/Pij). (3.9.25)
ij ij
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Since Pij = hij, we are left with N times the Kullback-Liebler metric (KL) [133],

Nlp = N (dlpp)i j = N Pijln(Pij/Pij). (3.9.26)
ij ij

The log-likelihoods should be compared against the expected variances,

SI2 -= N Pij 1n(Pij)2 - Pj(Pi
ij ij

E Pijln(Pij )2 - h Pijln(PPij) (3.9.27)
ij ij

If the KL metric is small compared to the variance estimate, P is an adequate model

for the data. It is simple to account for correlations in the data by modifying the

variance. This testing method penalizes using the histogram, Pij, itself by a factor

that scales as N without regard to the number of parameters, whereas other meth-

ods penalize by factors of In(N) or unity with a parameter dependent prefactor [125].

The preferred method should depend on both the number of data points and number

of parameters.

If Pij Pij, then a Taylor expansion gives

Iij E1 (P - 2 1 _ (3.9.28)
2. Pij ij

since the linear term averages to zero. This result follows from the previous discussion

about the approximately Poisson nature of the variations in the data. The variance in

the number of events in each bin is equal to the number of events in a bin (a 2 = NPi3 ),
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and this procedure reduces to least squares analysis in the large data limit [196]. The

expression demonstrates that the relative instead of absolute values of deviations of

Pi; from Pij; is the important quantity. Large absolute deviations appear in regions

with larger numbers of events and re-weighting the residual deviations is necessary.

3.10 Testing renewal behavior

As the simplest example of testing models, consider trying to determine if the his-

togram, hij corresponds to a simple renewal or alternating renewal process. Renewal

or alternating renewal processes assume that the sojourn time of events are indepen-

dent, which implies that the process does not exhibit multiple paths connecting the

+ and - manifolds [82]. To test the renewal property, the data, Pij hi, must be

compared with the best fitting model for independent events

Pij = PiPj = N2 hij di j . (3.10.29)

The resulting Kullback-Liebler metric for comparing P and P is Iplp = Eij Pijln(Pjl/

(Pi P)), which is sometimes called the mutual information between the variable i and

j [156]. The mutual information is always positive since Pij is a better fit. To

determine if the difference in fits is significant, we compare NIpi with N5Ilp. If

zero falls within the 95% confidence interval (2 standard deviations), the events are

considered independent and we adopt Pij = PiPj.

We explore application of this test to the model in Fig. 3-5(a) as a function of p
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and K for k = k2 = K-]k 3 = K-lk 4 = 1. In this case the two event function for a

+ sojourn followed by a - sojourn is,

P+-(tl, t2) = etl + (1-p)e-

+2Ke Kt [pKe-Kt2 + (1 -p)e - t

The best fitting renewal process for P+_ has p = . A comparison of the P+_ (in log

time form) to the renewal prediction in Fig. 3-6(a) for p = and K = 4 shows that

the true distribution is stretched along the diagonal compared to the renewal process.

In real experiments, the data is binned for the comparison, but the KL metric can

be defined in the continuum limit, which maximizes the KL metric for comparing the

true distribution P with the model P [133]. Binning the data corresponds to coarse

graining the distributions, which reduces the KL metric. The extreme example is the

spacing being divided into a single bin, where all data points fall into the bin and

the log likelihood of P and P is zero. For any binning, the likelihood calculation

determines the probability that the model histogram P is an adequate representation

of the data histogram, P. In the continuum limit, the Kullback-Liebler metric comes

from an integration over a 2-D contour

/ dlntldlnt2dIplp(lntli, Int2) = J ddlnt 2P(ntl, Int2)rnL(P(lntl, Int2)/]P(lnt1 , 1it2))

(3.10.31)

that is shown in Fig. 3-6(b). We call dIplp(lrint, Int 2) the Kullback-Liebler (KL)

difference function. To first order in AP the KL difference function resembles the
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Figure 3-5: Kinetic schemes that violate detailed balance. (a) A scheme that has a
circulation loop passing through both manifolds twice, which gives time reversibility
and diagonal dominance violations. (b) A concentration dependent Michaelis-Menten
scheme. where the substrate pumps the conformational coordinates of the system. (c)
A kinetic scheme that has a circulation loop resulting in a peak in the single waiting
time distributions.
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Figure 3-6: Testing the renewal hypothesis for the scheme in Fig. 3-5(a) with p = 3/4,
and 2k1 = k2 = K-lk 3 = K-lk 4 = 1 for K = 4. (a) The two event distri-
bution, P+_(Intl,lnt 2) (dashed) is compared with the best fitting renewal process
P(lntl, lnt 2) = P+(Intl)P_(Int 2) (solid). Note the log scales. (b) The KL difference,
dIpl = P+ln( P+- ) for comparing these two models. (c) The expected number of
measurements required to distinguish a the data from the renewal model at the 95%
confidence level. As the model gets closer to being a renewal process p = 1/2 or
K = 1, more measurements are required to distinguish the two models.
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traditional difference function, P(lntl, lnt2) = P(lnti, lnt2) - P(lnt1 )P(lnt 2), but

this term does not contribute to test of P [35, 242]. The expected minimum number

of measurements necessary to distinguish the renewal process from the non-renewal

process at a 95% confidence interval is plotted in Fig. 3-6(c).

The abil:ity to detect a renewal violation depends on the magnitude of p - and

log(K). The degree of the renewal violation in the underlying scheme is captured

by the magnitude of p - 1, while the magnitude of log(K) captures the ability to

distinguish substates in the underlying manifold, which is necessary in order to detect

the violation. The waiting time is a signature of the substate that was entered. If

the waiting times are identical, log(K) = 0 the signatures cannot distinguish the

states so the non-renewal nature defined by p - cannot be detected, while for

Ilog(K)l large, the two states are easily identifiable and the non-renewal nature is

detectable. For systems that strongly violate the renewal property p 0, 1, the

number of measurements is reasonable (a couple thousand data points). Following

our intuition, as the degree of the renewal violation decreases p -- 1/2, the number

of measurements necessary to detect the violation increases and diverges for p 1/2.

Similar behavior is observed for the number of measurements necessary to distinguish

different K values, since the system is a renewal process for K = 1.

The p parameter dominates the mixing of the process. For p Z 1/2 the process

mixes quickly and even a full sequence analysis cannot distinguish the renewal and

non-renewal models. If the mixing is slow, but the kinetic rates are similar, K 

1, then a full sequence analysis can distinguish the data from a renewal model by

detecting the weak but long lived correlations in the waiting times although the
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proposed two dimensional test be weak. One may be able to use two dimensional

analysis to overcome these difficulties by examining the probability distribution of

sums of events, such as P(t1 + t 2, t3 + t4) or P(t1 + t3 , t 2 + t4) (or the log equivalent).

The first test would be sensitive to positive correlations, while the second test would

be sensitive to negative correlations.

It is important to emphasize the difference between the mutual information and

correlation analysis. Symmetry may make the first few correlations zero even if the

measured quantities are correlated at higher moments, whereas the mutual infor-

mation is only zero if the two quantities are independent. The properties that one

measures with correlations also need to be characterized by a numerical value, but

mutual information only requires binning of the data, which can be performed on data

with qualitative labels or multidimensional data. An example is a traditional photon

counting experiment, where the arrival time and fluorescence lifetimes of the photons

are recorded [225]. In these experiments, the number of photons that arrive in a small

time window and the average fluorescence lifetime in each bin may be recorded. To

perform correlation analysis for the number and fluorescence lifetimes in two time

windows separated by a fixed time t requires calculation of all possible correlations

between the number of photons in different bins and the average fluorescence lifetime.

For the mutual information, a two dimensional histogram of number of photons and

average lifetime can be constructed and then the mutual information for all of these

inputs results in a single number. If two variables are Gaussian distributed, the cor-

relation function and mutual information are related since the correlation function

defines the probability distribution.
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3.11 Comparing experimental conditions

The simple test can be extended to the determination of the existence of concentration

dependences in experiments [228]. Many single molecule experiments attempt to

ascertain the mechanism of an enzyme's or ribozyme's reactivity by attaching a probe

to the single molecule of interest by chemical modification. In this scenario, it becomes

important to establish that the probe's motion is coupled to the reaction center of

the single molecule by examining a substrate concentration dependence [237, 228].

We analyze the sensitivity in detecting changes for the model in Fig. 3-5(b), which

is the reduced model that corresponds to Michaelis-Menten kinetics with extremely

fast product release step, a diffusion limited substrate binding step, and a fluctuating

kinetic rate for the enzyme-substrate to enzyme-product reaction. For simplicity we

choose KE = KES = 1, KES = 2, YEs* = 7s = 0, and-yEs = Ys* = 1/5. The-

waiting time is a simple exponential process that depends linearly on the substrate

concentration, [S], i.e. P_(t, [S]) = [S]e-[s]t. The + waiting time has a more complex

substrate dependence,

P+(t, [S]) = + (121e + (11 + 30[S])e-t). (3.11.32)

The first step in comparing two histograms h(l) and h 2) for different sets of exper-

imental conditions is to construct the model for the two histograms being produced

by the same underlying process, P, = 1/(N(l) + N(2))(h(l) + hi(2)). This model should

be compared against the data to determine if a substrate dependence in the vari-
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ous measurements exists. The test is very strong for the linearly dependent rates of

the - waiting time. Even for concentration differences of 5%, the linear dependence

in the waiting times can be detected with less than 500 measurements. Of greater

interest is the ability to detect the more subtle dependences in the + waiting time

distribution. Fig. 3-7(a) shows that even for a factor of 10 difference in the concentra-

tion, [S] = 1,10, the waiting time distributions are similar, and the composite model

P+(t) = 2(P+(t, [S] = 1) + P+(t, [S] = 10) can be a very good fit. The difference

measure dl (ip = P+()(lnt)ln(P+()(lnt)/P+(lnt)) is shown in Fig. 3-7(b), with [S] = 1

(i = 1 (solid)) and [S] = 10 (i = 2 (dashed)) The expected number of measure-

ments needed to discriminate P from the two true probability distributions at the

95% confidence interval is presented in Fig. 3-7(c).

The ability to distinguish the two waiting time distributions depends on the dif-

ference in the concentrations. This waiting time distribution is a weighted average

of two exponentials with concentration independent decay constants, but concen-

tration dependent weights. These changes in the weights saturate at high and low

concentrations, which results in the plateaus in the ability to detect the concentration

dependences at high and low concentrations. This comparison of two distributions

can be used to test different single molecules in the same experimental conditions

or segments of a single trajectory to determine if the experiment is ergodic. As will

be discussed elsewhere, this idea can be extended to examining collections of single

molecules in order to classify their behaviors [226].
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Figure 3-7: Ability to determine concentration dependent behaviors in P+(t1 ) in the
model depicted in Fig. 3-5(b) for KE = KES. = 1, KES = 2, YES* = 7s = 0, and
3'ES = US =: 1/5. (a) P+(lnt) for [S] 1 (dot-dashed) and [S] = 10 (dashed) are
compared with with P = (P+([S] = 1) + P+([S] = 10) (solid). These probability
distributions can be used to calculate dIpIp, shown in (b) for P+([S] = 1) (solid)
and P+([S] == 10) (dashed). (c) The expected number of measurements needed to
discriminate behaviors between [S]1 and [S]2 at the 95% confidence level.
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3.12 Time reversibility

The existence of detailed balance is an important property to establish for various

protein systems since detailed balance violations imply that the conformational ki-

netics being probed are also pumped by an external source of energy, such as the

substrate in an enzymatic turnover process or the ionic potential across a membrane

that is often explored in ion channel experiments [228, 196]. The easiest test of the

probed coordinate's motion violating detailed balance is a substrate concentration

dependence, as discussed above. These concentration dependences are not always

easy to detect [196], and do not always give insight into the topology of the system

that leads to the detailed balance violation.

As discussed previously [228], there are several manifestations of detailed balance

violations that can be seen in the 2-D event probability contours. These manifestation

include a violation of time reversibility P+_(t1, t2) = P-+(t2, t), a violation of the

triangle inequality of same event measurements, P++(tl, t2)2 < P++ (t1, t) P++ (t2, t2 ),

and a peak in the single time waiting time distribution [228]. Most previous analysis

concentrated on the time reversibility [196]. Here we will use one and two dimen-

sional analysis to explore all three of these possible manifestations of detailed balance

violation without resorting to examining the underlying model.

If detailed balance holds for a system, the system is time reversible and the statis-

tics of the forward and backward process are identical [228],

P+_(tl, t2 ) = P-+(t 2, t1 ). (3.12.33)
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A typical realization of a time reversibility violation occurs when there is a circulation

loop in the underlying topology of the kinetic scheme that enters both manifolds at

least twice. The simplest realization of this has only four substates +1,+2,-1, and

-- 2 with the conformational dynamics preferring to proceed in a circular sequence

-1 -- -1 -- +2 - -2 + +1 - .... This situation is depicted in Fig. 3-5(a).

The time reversibility property is easily tested within the framework applied to

test for a concentration dependence since time reversibility reduces to determining if

two probability distributions are identical. Comparing P+_ and P_+ in the model

in Fig. 3-5(a), with kl = = K-lk 3 = K-lk4 = 1 as a function of p and K

results in Fig. 3-8. As shown in Fig. 3-8(a), for p = and K = 2, P+}(t1 ,t 2 )

is elongated along the t = t2 line compared to P_+(t2,tl) (remember logarith-

mic binning). The alternative hypothesis P+_(tl,t2) = P-+(t2,tl) = P(tl,t 2) with

= (P+_ (t 1, t 2 ) + P-+(t 2, t1 )) is similar to both distributions. The KL differences,

d(+) = P+rln(P+_/P) and dI(-) = P_+ln(P_+/P), are plotted in Fig. 3-8(b) and

(c), respectively. Since the P+_ distribution is elongated along the diagonal compared

to P_+. dI( -) is positive along the diagonal and negative on the off diagonal. The

other KL difference, dI(- ) , shows the opposite behavior with a negative diagonal and

positive off diagonal.

The necessary number of measurements to distinguish P+_ and P_+ from P at

the 95% confidence interval is plotted in Fig. 3-8(d). Similar to the renewal indicator,

the ability to discriminate depends the magnitudes of p - and log(K). The mag-

nitude of p --- is a measure of the detailed balance violation, while the magnitude

of log(K) is a measure of our ability to distinguish the two states. If two states are

135



12

_ 0

-1 

-21

(a) (b)

°9qrN

logloK

(c) (d)

Figure 3-8: Determination of time reversibility in the model depicted in Fig. 3-
5(a) for k = k2 = 1, k3 = k4 = K = 2.7, and p = 3/4. (a)
P+_(1ntl, lnt 2) (dash) and P_+(lnt2, nt1 )(dot-dash) are compared against the
time reversible model, P = (P+ + P_+) (solid). (b) A contour of

dI(+ ) = P+_(lntl, lnt2 )ln (P+_(lntl, Int2)/P(lntl, nt2)) (c) A contour of dI(- ) =

P_+(lnt 2, lntl)ln (P_+(lnt 2, ntl)/P(1nt l, lnt 2)). (d) The expected number of mea-

surements needed to discriminate P+_ and P_+ from P at the 95% confidence level
as a function of p and K.
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distinguishable, (log(K)l large), it is easier to detect the detailed balance violation.

If p is very different from 1/2, (p -- 0, 1), but K is near unity, the time reversible

and irreversible models may still be discriminated by either the complete sequence

analysis or comparing sums of events in another 2D analysis as discussed in Sec. 3.10.

3.13 Diagonal Features

If the waiting time in one of the manifolds has a rate limiting step that is the same

for all possible paths, such as substrate transport, we expect a degeneracy in the

eigenspectrum of the waiting time distribution [228]. This degeneracy can make

the sequence time reversible even if it violates detailed balance. In these cases, the

distribution of two similar events such as two + events separated by a - event must

be used to test for detailed balance violations. As an example, setting k2 = k4 for the

model in Fig. 3-5(a) makes the - waiting time a simple exponential, P_(t) = ke - kt,

and the system time reversible, but there is a detailed balance violation and two

adjacent + events can show features of this violation.

One feature of a detailed balance obeying P++ distribution is diagonal dominance,

where P++(tl1,t 2)2 < /P++(tl,t)P++(t 2 ,t 2 ) [228]. The violation of this diagonal

dominance for the model in Fig. 3-5(a) with k1 = k2 = k4 = 1, k 3 = K = 2.7

and p = 3/4 is shown in Fig 3-9(a) and (b). Fig. 3-9(a) shows the isocontours

of vP++(t, t))P++(t2,t2) are narrower than those of the true distribution, so the

distribution becomes greater than the theoretical detailed balance limit, resulting

in the positive difference between P++(tl, t2) and /P++(t, t1 )P++(t2,t 2). In other
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words,

P++ = P++(tl, t2) - P++(t, tl)P++(t2, t2) > 0 (3.13.34)

indicates a detailed balance violation.

Diagonal dominance holds for integration over t or nt so

tl+A/2 t2+A/2 2[/I dt' / dt"P++(t', t") >
Jtl -A/2 Jt2-A/2

[tl+I/2 dt rt+d/2tt d t"P++(tt") [+a/2 t 2 dt"P++(tl', t")] (3.13.35)

also indicates a detailed balance violation and the diagonal dominance test is also valid

for a histogram, Pj = aij l/ 2P 1/2 [228]. Unlike previous tests, histogramming may

improve the KL measure of the detailed balance violation, by allowing comparison

of a narrow diagonal feature with broad off diagonal features, which can also violate

detailed balance and has appeared in some models that violate detailed balance [135].

Similar to the time reversibility test, a diagonal dominance violation occurs when

there is a circulation loop in the underlying topology of the kinetic scheme that

enters both manifolds at least twice, as depicted in Fig. 3-5(a).

To demonstrate a diagonal dominance test, we examine the model in Fig. 3-5(a).

The two large off diagonal peaks in the AP++ distribution in Fig. 3-9(a) indicate that

splitting the distribution into four quadrants along the diagonal, t = t 2, should be

sufficient to test for diagonal dominance. The position of the split depends on p and

K. For the histogram with only four quadrants, diagonal dominance implies that

P2,2, < P1 P22. Assuming that we are testing detailed balance, time reversibility
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Figure 3-9: Ability to discriminate a diagonal dominance violation in the model
depicted in Fig. 3-5(a) for k = k2 = k4 = 1, k3 = K = 2.7, and p = 3/4.
(a) P++(lnt:, int 2) (solid) is compared against P++(ritl, 1ntl) V/P++(Int2,1nt 2)

(dashed). (b) AP++(ntl, lrnt2) = P++(lrntl, Int2 )- P++(rint, Intl) P++(rIt2, Int2),
which shows two positive off diagonal peaks indicating a detailed balance violation.
c) The expected number of measurements needed to determine the existence of a
diagonal dominance violation.
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is also required and the optimal diagonally dominant time reversible distribution is

given by P12 =P= (h12 +h21 ) and P hii, for (h12 + h21)2 < hllh 22 . If this

inequality is not satisfied, we must modify the probability to,

(hll+2(h12+h21)) 2
11 - N2

1(h22+ (hl2+h2l))2
P 22 - N2

(hll+(hl2+h2l))(h22+_(hl2+h2l)) (3.13.36)
P 2 1 P12 = N2 1336)

Following previous analysis we compare this model to the data, Pij = hij/N, to deter-

mine the probability of a diagonal dominance violation. The number of measurements

necessary to discriminate a diagonal dominance violation at the 95% confidence inter-

val using the four quadrant test on the model in Fig. 3-5(a), is plotted in Fig. 3-9(c)

as a function of p and K. The features are similar to those in the previous tests, with

the discriminating power of the test depending on the magnitude of p - and log(K)

since these measure the detailed balance violation and distinguishability, respectively.

3.14 Single waiting time test

A one dimensional feature that indicates detailed balance violations is the existence

of a peak in the single time waiting time distribution [228]. This detailed balance vi-

olation has a different origin than the previously discussed time reversibility violation

and diagonal dominance violations that are usually associated with the circulation

loop passing though the + and - manifolds at least twice. A peak in the single wait-
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ing time distribution results from a flow within a single manifold so that the system

has a tendency to enter the + or - manifolds through one substate and exit through

another. This indicates a microscopic time reversibility violation between states in

the same manifold even though the mesoscopic time reversibility may hold. If de-

tailed balance holds, the single waiting time distribution can be expressed as a sum

of exponentials P(t) f dkP(k)ke - kt, where P(k) is a proper probability density,

P(k) 0, Jf dkP(k) = 1. A rigorous method of testing for a peak is to determine

P(k) from maximum entropy fits or another method and compare this probability

distribution to the data [225].

As a simple example, we examine the + waiting time distribution, P+(t), in the

model depicted in Fig. 3-5(c) with kl = k2 = k3 = K-lk 4 = 1. This waiting time

distribution with K = 2.7 and p = 1/10 is compared against the best fitting detailed

balance obeying distribution, P = f dkP(k)ke-kt, in Fig. 3-10(a). The detailed bal-

ance distribution is wider than the detailed balance violating scheme. Fig. 3-10(b)

shows the KL difference, dplp,. Similar to the previous tests, the ability to detect

this detailed balance violation increases with increasing magnitude of p - , but the

ability to distinguish the peak varies inversely with magnitude of log(K). Taking

p = 1, the waiting time distribution is given by

k ki1 ki- k4t
P+(lnt) - k4 k eklt k4 - k k4ek (3.14.37)

which as a zero at t = O. If k1 is much smaller than k 4 (K > 1), the waiting time of

the system is nearly mono-exponential, P+(t) kle-klt, with only a brief deviation
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at short times, so it is difficult to detect the detailed balance violation. Similar

results hold for K < 1, and it is only when k4 k that the deviation from simple

exponential behavior can be detected.

3.15 Summary of simple feature tests

As demonstrated above, one and two dimensional histograms can elucidate many

properties of a system without solving the combinatorial complex problems of deter-

mining the exact underlying model. These methods allow detection of correlations

in events through the renewal test, similarities in behaviors under different experi-

mental conditions, and detailed balance violations. The renewal test determines if

the transitions between the two manifolds correspond to multiple paths, and the ex-

perimental condition dependence indicates that the probe is coupled to the reaction

coordinate. The detailed balance violations can result in time reversibility violations

or a lack of diagonal dominance that indicate a circulation loop that goes through

both manifolds as least twice, and peaks in the single waiting time distribution that

indicate a multiple step circulation through a single manifold. Knowledge of these

properties can give insight into the underlying topology of Markovian models without

determining the specific model parameters.

The proposed tests not only allow determination of the existence of these proper-

ties, but also create rigorous bounds on the ability to discriminate models with one

and two dimensional data. The number of measurements necessary to distinguish

these model at the 95% confidence can not be reduced by introducing another mea-
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Figure 3-10: Ability to determine if the waiting-time distribution is not consistent
with a detailed balance scheme. (a) The single + waiting time distribution, P+(lnt)
in the model depicted in Fig. 3-5(c) for k = k2 = k3 = 1, k4 = K = 2.7, and
p = 1/10 (solid) is compared to the best fit of a detailed balance obeying scheme,
P(t) = f dkP(k)ke-kt, P(k) > 0 (dashed). (b) dIpjp for the distributions in (a).
(c) The expected number of measurements needed to discern the detailed balance
violation as a function of K and p. Unlike other tests, the ability to determine the
existence of a peak in the waiting time distribution depends on K 1.
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sure on this data. The only major assumption that may need to be corrected is the

independence of events, which may not be true if the histogram is constructed from

parsing a long single trajectory, but this will only modify the variance estimate.

The analysis can be extended to higher dimensional binned data, but histogram-

ming will not be practical. Instead, one needs to fit the data to flexible functional

forms that continue to obey the restrictions on the properties, such as time reversibil-

ity [140]. These reduced information tests will never be as powerful as full sequence

analysis, but even using flexible functional forms is orders of magnitude less compu-

tationally intensive than a full sequence analysis and does not require one to propose

underlying topologies. These reduced information methods can also be expanded to

classify different molecular trajectories, to test ergodicity, and to determine properties

of the transition state ensemble [226]. The computational simplicity, along with the

rigorous bounds in the ability to discriminate models, makes the information theoretic

approach to reduced data representations an advantageous first step in performing

single molecule analysis.

3.16 Classification of single molecule processes

The two major cited reasons for studying single molecule experiments over ensem-

ble experiments is the ability to observe short lived transition states, whose signal is

drowned out in an ensemble experiment, and to distinguish homogeneous and het-

erogeneous effects [158, 183, 77, 155]. Most of the successes in single molecule exper-

iments have come from elucidating the short lived transition states, since their single
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molecule signature is easily identified within many of these experiments [23, 247, 237].

A much more difficult task is assessing heterogeneity since this requires determining

appropriate measures of the similarity between molecules.

Unambiguously determining the existence of heterogeneous behavior in single

molecule trajectories is imperative in experiments that use single molecule probes

to measure micro-environments, such as applications to transport processes in cells

or glasses [9.5, 183, 77, 155]. A common approach to assessing heterogeneity has

been mapping the measurements into a scalar, and then examining the distribution

of this quantity [136, 134]. The selected scalar is arbitrarily chosen and little effort

is dedicated to assessing if the scalar is a good indicator of heterogeneity. The two

most common scalars are expectation values or parameters of a fit. If the expectation

value is properly chosen, the scalar can discriminate quantitative differences, such as

differences between mean waiting times, but they will not discriminate qualitative dif-

ferences, such as distinguishing exponential distributions from normal distributions.

Using higher order moments has been proposed to quantify differences in distribu-

tions, but higher order moments are sensitive to fluctuations in data and are not

reliable [134].

Parameters determined by fits to specified functional forms can discriminate qual-

itative differences, but the ability to discriminate is restricted to the functional form

of the fit that is often arbitrary. If the distributions show small peaks, but the func-

tional form decays monotonically, such as an exponential or stretched exponential,

the contribution of the peak features will be lost. The functional form may also lack

a physical mechanism or (more dangerously) imply a physical mechanism that is not
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present.

In this paper, we outline a statistical procedure based on the histogramming of

single molecule events that will allow rigorous classification without calculating a

simple scalar, such as a mean, or enforcing a fit to a specific functional form. The

statistical distribution of events, such as photon emission, switching from high fluo-

rescent to low fluorescent state, or forming distinct contacts in a protein, are generally

the strongest indicators of the single molecule properties [223, 228, 35, 242]. Since

most other analyzes can be performed on the bulk system, the statistics of events are

the major distinction between single molecule and ensemble experiments. Histograms

of events assign a fingerprint to each molecule that avoids the computational diffi-

culties of performing full sequence analysis to determine underlying models for each

molecule [30]. This classification scheme will allow the observation of heterogeneity in

single molecule environments or determination of the effects of experimental param-

eters on the measured distributions. These approaches can be applied to ergodicity

tests by examining several time windows in a single trajectory. Classification should

be the first step in any single molecule experiment, since it gives insight into different

types of behavior that may be hidden in the data sets and are not observable in bulk

experiments.

3.17 Histogram classification of two molecules

The procedure may be applied to any characteristic histogram, including the joint

sojourn time in blinking experiments and the joint distribution of photon arrival

146



times. For simplicity, we concentrate on the photon emission statistics that have

become common in intra-molecular quenching experiments [240]. The event is the

number of photons emitted over a small time interval. The data is coarse grained by

histogramming the number of photons in each bin. For each molecule, j, this results

in a histogram h(j). One could also histogram the average lifetime of the photons in

each bin resulting in a two dimensional histogram, or histogram the joint distribution

of the number of photons in two bins separated by a fixed distance.

From this histogram, we classify the different observed behaviors. First, suppose

that the experiment was performed on two different molecules (or we examine two

different sections of the same single molecule sequence to assess ergodicity) and the

histograms for each molecule was constructed, hl) and h ). We want to determine

if the molecules are similar or different (i.e. one or two classes). If the two molecules

are behaving differently, the most likely model for each molecule is Pi(j) = 1h(j)

with j = 1, 2. If the two molecules are produced by the same probability distribution,

the most likely probability distribution is Pi = N()+ (hi) h(2).

For Pi, the probability of getting the histogram hi is P(hiPi) = -i(Pi)h i. Taking

the log of this probability gives

InP(hi lPi) = hiln(Pi). (3.17.38)

Since each event is a random variable, Ei hiln(Pi) is the result of a sum of random

variables that converges to a Gaussian distribution in the large N limit. As a result,

the difference in the log probability of the histogram given Pi and Pi (log-likelihood)
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is a natural method of comparing the restricted model Pi to the data Pi. For the

histograms hj ) , the difference in the log probability is

(jh? [n(Pi() - n(Pi)] = h(j ) n(P(j)/P i) = N(j)Pi(j)ln(Pi()/1p) = NIpl,
i . .

ij ij ij

(3.17.39)

where IpIp, is the Kullback-Liebler metric (KL) [133],

The model Pij has restrictions, which generally implies less parameters, and should

be adopted if the differences in the log-likelihoods is not statistically significant. The

log-likelihoods should be compared against the estimated variance in this measure,

Na121 = N(J) [pi(J)1n(p(J))2 - ( pi(j)li(P(j)) +

N(J) [Pj)In(P3i)2- ( Pi()n(P)) (3.17.40)

It is simple to account for correlations in the data by modifying the variance. This

testing method penalizes using the data histogram, Pi(j), by a factor that scales as

v without regard to the number of parameters, whereas other methods penalize by

factors of n(N) or unity with a parameter dependent prefactor [125]. The preferred

method should depend on both the number of data points and number of parameters.

3.18 Histogram classification of M molecules

The results for comparing two sequences can be extended to several sequences. The

objective is to use the fingerprint provided by the histogrammed data to classify a set
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of single molecule trajectories into groups with similar traits. One can then examine

the properties of these different groups to identify these features and gain insight into

the properties of the system. Suppose that we have M molecular trajectories resulting

in AI histograms, {h(J)). The objective will be to make A probability distributions

that capture the typical behaviors of the different molecules. The distributions are

indexed by and represent different classes of molecules. The probability of each

class, A(a) ((a) > 0, d P() = 1), and the representative histogram for each class,

P(") (P() . 0, Ei P) = 1), are determined for fixed number of classes through the

expectation maximization algorithm discussed in Sec. 3.18.1. Then the log-likelihoods

and variances for various values of A are compared to determine the minimum number

of classes, A, necessary to represent the molecular behaviors. The result of the calcu-

lation is the signature of the class determined by the representative histogram, Pi(a),

the percentage of occurrences of that class, ,u, and the probability that a particular

molecule is a member of that class.

3.18.1 Expectation maximization

Without going into detail about the expectation maximization algorithm [197], the

best fitting class model are defined by P(a) and (c) and can be calculated from an

iterative algorithm. For fixed model histograms Pi(') and weights (a), the probability

of each molecular histogram belonging to each class is calculated. Then (a) is the

expected percentage of histograms that belong to each class, and Pi(a) is the average

of the molecular histograms weighted by the probability that the histogram belongs
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to the class a. The resulting equations are

(0)
At+ 1,

m

,1 a(a,hi| {ltC }{ (P(c) })
P(hm) {A(C)} (p())

= ,X1 -
5

(p.(a)) h(- P ( { (t) , (Pi(')) I him))
m

= A, E hi() t+)l Hi (P()) t

ot+ ) t ))t

where t denotes the iteration number. The proportionality constants, A and Aa, are

determined by normalization, , ( a ) = Ei P) - 1. One should note that local

minima may exist so a thorough search is necessary.

Once the optimal parameters, /!) and (P'?)), are determined for a fixed A, the

average log-likelihood and variance can be easily calculated,

(LA) = Al-' n(P({h) {)l{ ))}{(P( )*}) = I-'
m

Z lIn(Z£ 1a*) h (Pi(v) ) )m a i

(3.18.42)

and

(6LA) = Al-1 [In(P({h(m)}) I{la}{(pi( )))2- LA]2A i I~~~7T

,() h( (-)) ) _ LA]

i
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=A-1 n(E
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The log-likelihoods can then be compared at the 95% confidence intervals to determine

the appropriate number of classes [228]. One can also calculate the probability of each

molecule belonging to different classes,

hP( i hm)) - ' I (F<'a) / I ." ) (3.18.44)

These probabilities can be used divide the single molecules into subensembles that

allow further investigation into the causes and properties of these different classes.

3.19 An example: the telegraph model with pho-

ton counting

As a demonstration of the classification scheme, we consider a photon counting ex-

periment. The monitored statistics correspond to the number of photons in each bin.

The molecule switches between two states with a rate that is much smaller than the

inverse bin size, k < ms - 1, so that we can approximate the transitions as occurring

in. between the Ims bins with the probability of the transition p < 1. Given that

the molecule is in state w during bin n, the number of emitted photons is given by a

Poisson distribution with parameter AX, i.e. Pi(') = e-'. For calculations below,

we consider A, = 1, 3 for states w = 1, 2, respectively. These assumptions allow us to
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write a Markov chain expression for the transitions between states 1 and 2,

p(1) 1 -p p p(l)Pn+1 ip lp Pn ()2)(3.19.45)

We are concerned with sequences that are long enough to be able to develop his-

tograms for each molecule, but short relative to the correlations in the data, 1 << N <

-. To study this scenario we consider, p - 0 and N -+ oc, such that pN -- 2t/- ,
p

where corresponds to a fictitious relaxation time. Setting 1 makes the mixing

time, t, and the number of time bins, N, the important parameters. Letting ni denote

the number of time bins that the system is in state w = 1, 2, and z = n - n2, the

continuum approximate equation of motion for z as a function of t is the telegraph

equation [154]

02p(z, t) +- 1 ap(z, t) = 02p(z, t)
at2 &t 8z2

, (3.19.46)
Ct2 at - Z 2

with initial conditions Pt) = 0 and p(z, O) = (x). Since the important quantity is

the percentage of time spent in state 2, we want to solve the telegraph equation and

substitute x = + z , resulting in

substitu te x = ~ 4- t,p(x, t)= le-t/(27) 6() + ( -1) + (lo ( -(1( ( -
2 7 2)) 2 (1

(3.19.47)

where 1o, are the modified Bessel functions. The x corresponds to the class of the

molecule, which is determined by the number of time bins associated with distribu-

tions 1 versus 2. For this model, the classes are a continuous distribution. The 

152



functions correspond to particles that are always in state 1 or 2, whereas the Bessel

functions correspond to particles that have made at least one transition. For small

mixing times, t, the a functions dominate since the probability of a molecule switching

distributions is small and the ballistic nature of the model is the major contribution.

As a result we expect to see two classes of molecules, those that correspond to distri-

bution w = 1 and w = 2. For large mixing times, the a function contribution decays

since every molecule will have switched states at least once, and the Bessel function

contribution dominates. Due to the scaling, the distribution approaches a 6 function

at x = 1/2 and each molecule appears to be a member of the same class since ergodic-

ity is achieved in the long time limit. The interesting behavior occurs at intermediate

times where the optimal number of classes is not straight forward. Technically, an

infinite spectrum of classes exists since the Bessel function contribution is spread out

over the entire middle region for intermediate times, but these different classes should

show similar behaviors and be captured by only a few classes.

The finite number of classes, A = 1, 2 ... , that approximate this continuous spec-

trum can be calculated numerically. Ignoring the stochastic nature of histograms,

each class will have the functional form

pi(c = (1 - )P(w =l) + ap(w= 2). (3.19.48)

The different; classes result from varying ,,. After finding the classes, we calculate the

expected log-likelihood score, the expected variance in this score, and determine the

number of single molecule trajectories necessary to distinguish models with differing
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numbers of classes at the 95% confidence interval.

For modest amounts of data, one or two classes will always be the preferred model.

Choosing a three class model over the two class model for any parameter t requires

over 5000 histogrammed events per molecule for at least 1000 molecules, which is

not reasonable. Although we know that a continuous distribution of classes exist, we

cannot statistically verify the classes with reasonable amounts of data and it does not

make sense to construct more complicated models that cannot be statistically verified.

Between the one and two class models, the expected number of molecules necessary

to distinguish the two class model at 95% confidence is plotted in Fig. 3-11(a) as a

function of the number of turnovers per molecule, N, and the mixing time, t. Few

molecules need to be examined for small mixing times, t < 1, and large number of

samples per molecule, N > 500. For small t arguments, few molecules switched from

distribution 1 to 2 or vice versa, so there are two distinct classes. For a large number

of samples from each molecule (large N) it is easier to distinguish the classes.

The optimal classes for the two class models are not composed of purely dis-

tributions = 1,2. Fig. 3-11(b) shows the mixing coefficient for the two classes

as a function of t for N = 500. The mixing occurs because some molecules have

switched distributions. The probability of the two classes is also not symmetric,

(a=1) f ,(a=2 ) 1. The class with a greater contribution from pi(= 2) has a

slightly higher weight, because wider distributions better account for variations in

the data [241].
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Figure 3-11: Ability to distinguish classification schemes with a single class from
classification schemes with two classes for the random telegraph model discussed in
the text. The important factors are the number of measurements per molecule, N,
and the mixing time of the model, t. (a) The expected number of single molecule
experiments necessary to determine the existence of two classes at the 95% confidence
interval. (b) The , values of the distributions for = 1 (dot-dashed) and a = 2
(dashed) as a function of t for N = 500. The solid line corresponds to the weight of
the class with a higher contribution from Pi('), (= ), which is compared against
1/2 (dotted line) to demonstrate the asymmetry.
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3.20 Classification with physically restricted func-

tional forms

The above model analysis used the histograms to classify the various molecule be-

haviors. This approach is very powerful at classifying molecules when the amount of

data from each molecule is sufficient, even if the number of molecules is small. In

some applications the amount of data from each molecule may not be sufficient for

histogramming or one wants to make inference about the behavior of a small segment

of a single molecule trajectory. A flexible functional form such as sums of Gaussians

can replace histograms and compensate for a lack of data for histogramming [140].

The sum of Gaussians is flexible enough to avoid imparting artificial features and the

parameters can be easily determined.

In several applications, the physics restrict the possible models so Gaussians may

not be the most appropriate functional form. Examples include FRET and single

photon counting processes, where the emission statistics follow a Poisson distribution,

P(n) = A e-> if the photon detection rate is much lower than the excitation rate so

that the photons are approximately uncorrelated. Knowing the number of photons in

a single bin allows one to construct a probability distribution for A in each bin. This

probability distribution can be used instead of a histogram to determine different

classes and or states.

We concentrate on applications to FRET experiments, since application to photon

counting is simpler. If we assume that the number of photons in each channel emitted

during a single time bin comes from a Poisson processes with constants Ad for the
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donor and )Aa for the acceptor, then the probability of getting {m, n} photons from

the donor and acceptor respectively is given by

P(m, nAdAa) = A! d Ae-a (3.20.49)

Often the intensity, I = Ad + Aa, is unstable due to drift in the alignment of the

optics, but the relative intensities and resulting FRET value, F = A,/(A, + Ad), of

the donor and acceptor are stable since detection efficiency is equally affected for both

channels. As a result, we need to transform the variables Aa,d to the intensity, I and

FRET value F. We assume that the intensity I = A, + Ad is a random variable that

must be integrated out, while the FRET values are the characteristic of the class.

From Bayes theorem, the probability of a specific FRET value for given number of

photons, m and n, is

P(F{nm, n}) = J dIP(F, I{m, })= J dI P({n FI)P(FI)050)P({rn, 72}) (3.20.50)

This expression is derived from assuming that m, n, I, and F are all random vari-

ables. For simplicity, we assume P(F, I) = const since we are searching for the best

fitting models and do not want the prior to influence the fit, but one may consider

other priors 6]. Taking the log of Eq. 3.20.50 allows us to ignore the constant P(F, I).

Similarly, P({m, n}) is a constant that can be neglected and the important contribu-

tion is the the likelihood of having {m, n} photons in each channel for a fixed FRET
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value,

F(m + n + 2)
P(F {n, n}) = F( + 1)F(m + 1) (1 - F)m Fn, (3.20.51)

which is simply a 3 distribution. The maximum occurs at F = m+n, the generally

reported FRET value. The probability distribution reflects the stochastic nature of

the measurements. The variance in the probability of the FRET value decreasing

with increasing m + n, since increasing m + n is equivalent to increasing the number

of experiments.

Since we have a probability distribution for various FRET values, given a certain

number of photons from the donor or acceptor in each bin, we can determine the

existence of classes of FRET values. As a simple example, consider a system that

toggles between two states, ± with a fixed intensity, I and FRET values F± = ± AF

with equal probability. The probability distribution for {m, n} photons is

1 (I(1 - F+))(IF+)n_ _ (3.20.52)P(m, ) = 2 + 2 (3.20_52)

The most likely two class model will be the true model, and the best single FRET

state model has F -"� -) - (F + F_) = 2' where the (. .) correspond to the(n)+m) 2 2

expectation of n and m is over the distribution in Eq. 3.20.52.

The expected number of measurements needed to distinguish the true two state

model from the one state model is calculated as a function of I and AF in Fig. 3-12. If

AF is small the two states have similar statistics to the single state and it is difficult

to distinguish models so it is not surprising that a large AF improves the ability
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Figure 3-12: Ability to distinguish a classification scheme with a single class from the
true model that contains two classes for the FRET model discussed in the text. The
figure shows the number of measurements necessary to establish the existence of two
classes as a function of intensity and differences in FRET values.

to distinguish two models. Increasing the total intensity, narrows the distribution

of FRET values from each state (See Eq. 3.20.51), which reduces the overlap of the

measured FRET values from the two states. The reduced overlap increases the ability

to distinguish F+ from F_ and infer the existence of two distinct classes (as seen in

Fig. 3-12).

3.21 Conclusion

Testing the properties of single molecule systems requires both physical insight and

rigorous statistical analysis. The physical insight into detailed balance violations lead

to several possible features. Once these features and other features such as renewal

character were identified, one is able to construct rigorous tests to determine if these

features are truly present in the data or if the feature is a simple data artifact. These
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tests are non-parametric since one does not have to propose a priori models and

simply uses the histograms to represent the data in a coarse grained fashion.

The most powerful extension of these methods is to classification of single molecule

behaviors. Classification schemes are a natural first step in performing single molecule

analysis that allow the identification of different characteristic behaviors between

molecules, the establishment of the existence/non-existence of ergodicity in single

molecule trajectories, and the determination of states. Having insight into the vari-

ations in single molecule behavior is critical in additional analysis by allowing the

assessment of the validity of average quantities. For example, the average number

of photons in each bin is not very meaningful if the molecules form two distinct

classes. These calculations also establish a theoretical limit in the ability to distin-

guish models and make assessments about the number of classes. Whenever a model

is proposed, one should assess whether it is statistically feasible to distinguish this

model from others. Using classification to identify molecular states, such as in the

FRET example, is also the first step in examining the traditional multiple state ki-

netics. Rigorously identifying states makes examining transitions between states and

inferring connectivities, which are the primary focus of many analyses, possible.

To minimize the information loss, one should examine histogramming several dif-

ferent quantities. In fact, the analysis can be simultaneously applied to several dif-

ferent histograms constructed from the same sequence. For example, if the data

shows the system toggling between three states, a histogram of the waiting times

for transitions between each of the states can be combined in a single classification

procedure.
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Classification procedures can flag interesting or problematic features in the data.

Once classification procedures give initial insight into heterogeneity in the dynamics

of the system, reductions in the possible models of the system are possible. After

reducing these models, a more thorough analysis may be possible to find a model of

the underlying dynamics.
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Chapter 4

Analysis of the entire sequence of a

single photon experiment on a

flavin protein

4.1 Introduction

Single molecule methods are widely applied to the study of biomolecules [149, 246,

240, 75, 110, 221, 236]. The dynamics of biomolecules revealed by these single

molecule techniques are complex with fluctuations on many time scales. Data col-

lected from these experiments are inherently noisy with contributions from back-

ground photons, the photon statistics of the system (shot noise), and the stochastic

nature of protein dynamics [38, 35, 242, 21, 14, 29]. These stochastic contributions

to the data cause difficulties in interpreting single molecule data and necessitate the

application of robust statistical methods.
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This chapter uses a Bayesian/information theory framework to examine a possible

model for a flavin protein (Fre) experiment by Xie and co-workers [240, 224, 4, 218].

The experiment collects single photons emitted from the system and shows photon

correlations up to lOOms time scales. Maximum entropy analysis (MEM) shows

long time multi-exponential relaxation [190, 198]. The MEM fit avoids using a pre-

determined functional form so it does not introduce artificial physics through a para-

metric fit. Since many models may result in the same correlation functions, such

as a harmonic diffusion model or a two state model with complex waiting times,

the correlation function only contains a limited quantity of information relevant to

understanding the mechanisms of biomolecules. Confirmation of the validity of the

physical picture motivates the examination of the entire data sequence. By combin-

ing physical insight with statistical methods, this chapter shows that modeling the

protein's motion as a collection of over-damped diffusive harmonic modes is consis-

tent with the entire data sequence. Although diffusion in multi-dimensional harmonic

potentials can be cast into a generalized Langevin equation with a smooth relaxation

spectrum for the correlation function of the random force, the picture of a connected

network of amino acids has physical appeal since it explains the Gaussian nature of

the long lived correlations. This picture is a dynamic analogue of the elastic network

models (ENM) used in determining the static root-mean-squared (rms) displacements

of functional groups in proteins [7, 126, 68, 85].

This analysis is one of the first to utilize the entire data sequence of a single

photon experiment on a single protein to determine a physical picture. Since the

model fit incorporates all of the available information, one maximizes the ability to
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test the legitimacy of models. The robustness of Bayesian analysis combined with the

non-parametric MEM analysis give a complete description of the probed dynamics of

F're.

After discussing the experiment in Sec. 4.2, we perform simple preliminary statis-

tical analysis in Sec. 4.3 to extract the limited information contained in correlation

functions. This information is used to explore possible models in Sec. 4.4. We estab-

lish the ENAM as an appropriate model for the system and discuss the reasons that an

N state or trapping model is not a natural choice. In Sec. 4.6, we determine the ade-

quacy of the harmonic diffusion model to fit all possible statistics through Bayesian

analysis of the entire sequence.

4.2 Description of experiment

The Fre experiment examines a single flavin protein attached to a cover slip by exciting

an electron in the flavin with a repetitive sequence of laser pulses. As shown in Fig 4-

l(a), the excited electron can relax through the emission of a photon or through a

two step electron transfer process between a nearby tyrosine, tyr35 , and the flavin

molecule. The kinetic scheme associated with this system is shown in Fig. 4-1(b).

The fluorescence rate is kf 0.2ns -1 . The first electron transfer rate is a dynamic

quantity that fluctuates around kET(t) l.Ons - 1. The second electron transfer

rate does not affect the ability to fluoresce and can be neglected. The experiment

continually excites the flavin molecule with a pulse train separated by 13.2ns, (Fig. 4-

l(c)). As depicted in Fig. 4-1(c), the experiment detects the first photon and records
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the arrival time of this photon, ti, and the fluorescence lifetime, -i. The lifetime is the

time difference between the excitation pulse time and the photon arrival time. Fig. 4-

l(d) is a record of the lifetime versus chronological time for a short piece of the time

sequence. The probability of detecting a photon is proportional to the fluorescence

lifetime [240],

~f(t) 1 (t) - I
Pphoton(tT(t)) (t) + TET)) 1 (4.2.1)

tf Tf

Experiments reveal the exponential dependence of the electron transfer rate on the

distance between the flavin and a specific tyrosine, tyr35 , TET(t)/ns = e (t) - r° =

eR(t ) - R° , where Ro accounts for the prefactor and /3 1.4i -1 is the empirically

determined scaling coefficient [240]. Following Xie and co-workers, FT >> Tf7 implies

T(t)/ns e(R (t )- R o) . (4.2.2)

The objective of this chapter is the determination of the equations of motion for this

coordinate R(t).

4.3 Analysis with the maximum entropy method

(MEM)

To gain insight into viable models for R(t), we visualize the data through one dimen-

sional measurements. The data is preprocessed to remove systematic errors, including

monotonic intensity fluctuations in a peak corresponding to scattered photons from
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Figure 4-1: (a) The two competing mnechlanisis for relaxation of an excited election
to the ground state-photon emission and electron transfer. (b) The corresponding
kinetic schelme. (c) Schematic of the pulse trail that defines the chronological time,
ti, and the fluorescence lifetime, Ti,. (d) 'race of the lifetime of a photon as a function
of chronological time from the experiment.
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the laser sour'ce and a drift in the zero time baseline for the lifetime. Then the photons

are binned in l'rns time bins. After preprocessing, mneaslurements with different seg-

ments of the: sequence are onsistent (stationary) and the background measurements

show no correlations.

4.3.1 Static lifetime distribution

The photon statistics are complicated by the backgrounld counts contributing over half

of the photons ( 58%), and by the photon's lifetime, r,, being a random variable

that depends stochastically on the lifetime of the system

P(T7TET(t)) T() f '/fET(t) (4. 33)

which is convolved with the instrument response. These complications necessitate the

examination of several averaged imeasureiLments to develop insight into possible models

for this system. The first averaged measurement is the static distribution of the

fluorescence lifetimes. We perform this measurement for both the experiment and the

background measurement to determine the typical lifetimes of photons emitted by the

chlroinophore. 'he photon lifet itie distributions for the experiment and backgrolllld

mreasurements are histogramined i Fig. Figg. 14-2 also shows naximurm etropy

fits (N1E) 1-to sums of exponentials [190, 1981. MENI attempts to balance tlhe ability

to fit the 1data with the desire to have a featureless specttirlm. This fitting scherme

toes not impose an arbitrary functional form on te ldata.

The distributions and MEM fits of the single molecule experiment and background
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Figure 4-2: (a) The maximum entropy method (MEM) fit to the experimental
(squares=data, black solid line=fit) and background photon lifetime measurements
(circles=data, grey dashed line=fit). The two curves show similar long lifetime be-
havior, but differ in the intermediate times. The scatter in the data gives a good
indication of the error bars. These error bars are not plotted for visual clarity. (b)
The MEM spectrum for the fits. The fits differ in the amplitudes of the intermediate
time shoulders, 0.1 < /ns < 1.0.
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measurement differ quantitatively, but no strong features differentiate the two life-

time distributions (See Fig. 4-2). Both MEM fits show a small peak at short lifetimes,

T/ns < I and a broad peak at /ns 10 caused by the instrument response with

a shoulder at shorter lifetimes. The shoulder is larger for the single molecule exper-

iment's data and indicates that many of the photons from the protein occur on the

short time side of this peak, 0.1 < /ns < 1.0.

4.3.2 Intensity correlation function

To gain insight into the dynamics of the system, we examine the lms discretized

trajectory to determine correlations between the number of photons in each bin. The

objective of this chapter is to relate these temporal correlations in the intensity to

the underlying dynamics, which are dominated by the fluorophore-quencher distance,

R(t) [240]. If the fluorophore-quencher distance, R(t = jt) = Rj is constant over the

At = Inms bin, the number of photons is Poisson with parameter A(j) = Ab + Aks(j),

P(nlRj) = A(j)n/n!e-x ( ), (4.3.4)

where Ab accounts for the background counts, and A(j) = AoeRj with prefactor Ao.

Instrument considerations slightly modify these expressions.

For a Poisson process, the second moment for the number of photons in any two

bins, i and j has the form

MA(j, k) = (njnk) = (A(j)A(k)) + jk(A) (4.3.5)
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with lKroecker delta jk denotillg an additional white inoise term and (...) is the

expected value. After preprocessing to remove systematic istrument errors, the

data is translationallv invariant and allows time averaging. Subtracting thie squared

averalge,(A)' and j.k(A) gives the A-correlation function,

IA (o, j) 6o(A) - (XA)2
CA( 0, 0) (j) - (A)2 3.)

plotted in Fig. 4-3(a).

To idenify the time scales in this system, we perform a maximum entropy fit

(MNEM). The MEM fit avoids using parameterized no(lels that (can hide certail fea-

turcs in the data. The resulting spectrum reveals three tirre regilres (Fig. 4-3(c))

l'he fastest timre scale corresponds to correlations that fall off within a few tirrme

bins -less thi 20 rris. This time scale appears to be broadly distributed sinlce few

data points contribute to the short time dynamics. A less broadly distributed sec-

n-,nd time scale decays around 50-100 ms, and a third narrowly distributed time scale

decavs arollld 4()00 ns. The narrow distribution at long times (lemonstrates an ex-

ponential d(ecay of the correlation function at loniger times. A fit to the Fractional

Gaussian Noise lnodel (FCN) to the first 3000 ata points shows poor agreement,

especially foi the short time behavior (t < L00Oms) [1201 (see Fig. 4-3(a)). Trhe

X2 N - - " Z(x, - l) 2/2(,- = 1.3 for the FGN mnodel, which shows that the fit is out-

side tile 95X, confidence interval, 2 - 1, used to choose the MEM solution. l'he large

nimber of data points in the tail force the FGN model to neglect the short, time cor-

rllations. The parameters predict that the mean squared (IS) fluorophore-quencher
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Figure 4-3: (a) Comparison of the MEM fit, (solid line) to the FGN model (dashed
line). The FC'N model correlation frulction has the form, CA - A(cCFC-;N(t)-I) with

C(FGN B(Z ,, +). The FGN fit gives T 263ms, 3' - 0.84, B - 2.32 and
A - 0.084. (b) The tail of (a). (c) Coumparison of the MIEM spectrum (dashed) to

the Bayes spectruml averaged over the NIC data(solid). Except for the fast fluctuations
that cannot be captured by the simple correlation analysis, the Bayesian peaks overlap
with the peaks in the MIENI spectruml, showing that they are consistent. W'e normalize
the spectrum to the -lmns bin contribution since the zero time correlation cannot be
accurately mneasured.
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distance fluctuation is approximately 1.2A2 , which is significantly larger than experi-

mental measurements [240, 104]. This large (MS) displacement reduces the amplitude

of the long time power-law tail to less than 2% of the correlation function. As a re-

sult, exponential long time relaxation fits the data better, but FGN has reasonable

long time agreement (See Fig. 4-3(b)). As discussed in Sec. 4.6, multiple diffusive

harmonic modes are consistent with this MEM spectrum and give MS displacements

of 0.32 ± 0.402)12, which agree with experimental measurements. It is possible to

achieve a better fit with a Fractional Gaussian noise model to the first few hundred

data points (up to tenths of a second), but not the entire time range of interest. We

emphasize that the MEM fit does not assume a functional form and favors a less

structured relaxation spectrum, such as a power-law or stretched exponential, over a

structured spectrum. As a result, one should have confidence that the data reflect

these structures.

The millisecond motions like those captured by the MEM analysis have been

observed in several fluorescence and NMR experiments and have been attributed to

loop rearrangements. breathing motions in a sheets, rigid body motions of a-helices,

and internally hindered rotations [126, 68, 144]. These low frequency millisecond

motions often play pivotal roles in a protein?s function so the ability to resolve and

model these motions is important [67]. Although the tyr3 5-flavin distance may not

play a key role in functionality, other motions coupled to this displacement may.

The MEM analysis suggests that any physical model for the tyr3 5-flavin coordinate

must reflect both the small scale fluctuations of R(t) and the structured relaxation

spectrum. It is also important to capture the non-Markovian fluctuations in the
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intensity and fluorescence lifetimes (as demonstrated in Fig. 4-1(d)). The model

must also account for the distribution being stationary after preprocessing the data

since no aging effects are present. Armed with these insights we are now able to

explore physically feasible models for this system in Sec. 4.4.

4.4 Slow motions in proteins: N state models,

trapping models, and ENM

Many candidate models can reproduce the intensity correlation function and the

lifetime distribution, so the other physical attributes discussed above also need to be

considered in selecting a model. The physical basis of a model depends on the level

of coarse graining required to capture the essential physics of a system. This point

is illustrated by the hierarchical tier picture of protein energy landscapes/surfaces

(PES) [83]. The potential energy landscape is high dimensional and complex with

motions on many length and time scales. The motions on tier m are generally faster

than motions on tier n > m, but slower than motions on tier n < m, and time

separation arguments generally apply. If the motions that we are monitoring occur

at tier m, we can homogeneously average over the degrees of freedom associated with

the lower tiers n > m and need to perform a quenched average over the higher tiers

n < m. The quenched average would result in heterogeneity in the behavior of single

molecules. As shown in Fig. 4-4, averaging over faster time scales results in a free

energy potential instead of a detailed microscopic potential [68]. Considering that
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(a) (b)

(c) Trap state (d)

(e) (f)

Figure 4-4: Caricature of the different potential energy surfaces (PES) after averaging
over faster time scales. (a) A PES with a global curvature and Gaussian roughness.
Homogeneously averaging over the smaller length scales results in normal diffusion
with a renormalized diffusion constant, Deff = Doe- ((o V)2 (°))/d, as shown in (b). (c)
A PES with an exponential distribution of traps, P(Et) = ae -aEt, which results in
deep spikes. Averaging over the smaller length scales replaces normal diffusion by a
trapping process with a waiting time f(t) as depicted in (d). (e) A more complicated
PES with several local minima. Averaging over small length scales results in an N
state model with Poisson kinetics depicted in (f).

the experimental time scales of the Fre experiment range from milliseconds to tenths

of' seconds, these motions occur on the slowest time scales of the protein (no tiers

n < m). so we do not expect additional slower motions that must be heterogeneously

averaged over.

Three models that result from different coarse graining procedures include the N

state model, the trapping model, and the harmonic diffusion model. These models

originate from different topologies of the protein potential energy surface. As elabo-

175

f l

I

I - .



rated below, the N state model results from the timescale of interest corresponding to

motions over high energy barriers, while the trapping model corresponds to hopping

over many smaller structures. For the harmonic diffusion model, the smaller scale

structures result in a diffusion tensor.

4.4.1 The N state model

The N state model results from the tier of interest containing multiple minima sepa-

rated by high barriers, (See Fig. 4-4(e) and (f)) Averaging over the faster degrees of

freedom results in Kramer's barrier crossing kinetics,

PR(t)=Ri = -KPR(t)=Ri (4.4.7)

where PR(t)=Ri is the probability that the particle is in minima i with a corresponding

tyr3 5 -flavin distance of Ri. One may also add fluctuating barrier heights that make

K(t) time dependent [1]. The presence of three relaxation time scales suggests that

a minimum of four states is necessary, but some of the kinetic rates would be slow,

r - 100ms and one would expect deviations from Gaussian behavior that are not seen

in the data. Instead, the data analysis below suggests the additional non-Markovian

fluctuations in R(t) can be captured by a Gaussian model, although a model with both

barrier crossing kinetics and intra-well relaxation may also be viable. These additional

non-Markovian fluctuations can be captured by the inclusion of additional states. If

enough states are included, the N state model can approximate any other model,

but attempts to fit the data through complete sequence analysis with a reasonable
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number of states, N > 6, did not achieve a desired fit to the data. The identity of

these states is also ambiguous since the apparent fluctuations in the chromophore

quencher distance is rather small, on the order of tenths of an A, compared to the

larger scale motions that an N state model attempts to capture [240], although these

motions may simply have a weak projection onto the probed coordinate.

4.4.2 The trapping model

Unlike the N state model, where the barriers that dominate the dynamics occur on the

same tier as the motion of interest, the trapping model has important contributions

from the smaller scale motions (See Fig. 4-4(c) and (d)). These small scale structures

trap or hinder the motions of the coordinates of interest and the fluorescence lifetime

becomes static for long periods of time. Fractional diffusion is an extreme example

of this scenario, where the traps have energetic barriers that are exponentially dis-

tributed for large energy barriers, P(Et) _ ae - cEt [150]. The exponential decay of

the energy barrier distribution is the result of extreme value arguments with a strong

emphasis on the functional form in the tail of the distribution. This formulation is

hindered by the tails being slow to converge to the universal form [150]. The scenario

results in a long time power-law decay and aging effects that are not seen in the data

or the MEM fit [150]. We examined truncating the distribution of energy barriers,

P(Et), but this truncation imposes an interrupted aging effect that removes contri-

butions from the short time trapping behavior and prevents the inclusion of a broad

distribution of time scales in the stationary correlation function [227]. The trapping
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models also depend on the system being large so that correlations in the trapping

times can be ignored, which probably does not apply to finite sized proteins. As a

result, the data do not support a trapping model.

4.4.3 Dynamic elastic network model (ENM)

If the barriers are not high within the tier of interest, the system demonstrates a

diffusive behavior. Averaging over faster degrees of freedom results in a smooth

convex free energy landscape (See Fig. 4-4(a) and (b)) [112, 7], and the slow motions of

the protein can be approximated by diffusion of a collection of independent harmonic

modes whose correlation function is a simple exponential (R,(t)R,(O)) = 6,,e - tl v

The motion of interest is a weighted sum of modes, R(t) = E, b R (t) and the process

becomes Gaussian with correlation function (R(t)R(O)) = Z, a~e- t/ ' . By defining

p(-) = a6(y - y), we can define a relaxation spectrum and write

(R(t)R(O)) = CR(t) = dyp(-y)e - t/L. (4.4.8)

The probability distribution of R(t) becomes a simple functional integral

P({R(t)) = 1 e-2 f dtdt 2 R(t)C(t-t 2)R(t 2) (4.4.9)
+/Det(2CR (t))

This model can be cast into an N state model with many states, but the kinetic rates

have simple relationships with each other, which reduces the number of parameters.

Unlike the trapping model, which puts strong emphasis on small scale fluctuations, the
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harmonic diffusion model accounts for small scale motions through the more modest

means of a renormalized diffusion tensor. The diffusion tensor for a Gaussian distribu-

tion of energy barriers can be shown to be isotropic with Dff = Doe -(O2 v ( ) 2)/d [55],

where 3 is the inverse temperature and V(0) is the random potential. With this

assumption for R(t). the fluorescence intensity correlation function is approximately

C(t) = A(eCR( t) - 1) ACR(t) + ACR(t)/2! +... (4.4.10)

where A is a prefactor that accounts for Ao and Ro and the asymptotic relations result

from the decay of the correlation function. This expression would be exact, except

for experimental considerations such as instrument response and the finite detection

window, but these deviations are small.

Large scale coarse grained normal modes have been used to study the dynamics

and statistics of several systems [68, 10, 179]. The fast motions in proteins devi-

ate from this model's simple harmonic motion [85], but the larger scale motions have

been found to be independent of small scale anharmonicities due to laws of large num-

bers and motional narrowing effects [7, 187]. A Gaussian model is also the minimal

information model consistent with the measured observables-the correlation func-

tion [170]. Even if deviations from harmonicity exist, the current data are not able

to resolve characteristics of these deviations. As a result, the important features are

characteristic relaxation times and the magnitude of the displacements of R(t), which

can be captured by a harmonic approximation.
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The spectrum of the correlation function

The MEM analysis showed three time scales contributing to the system, which sug-

gests that the major contribution to the long time relaxation of the system can be

captured by a harmonic diffusion model with three relaxation time scales. Concurrent

with our work, Kou and Xie suggested a harmonic diffusion model with a power-law

distribution of relaxation times, which they capture with the Fractional Gaussian

noise model [120]. This model is very interesting, but even ignoring the difficulty in

fitting the dynamics, its applications to proteins needs to be justified.

Gaussian noise assumptions have two possible sources. An unlikely source for this

protein system is the bath being much faster than the time scales of interest, which

leads to multiple collisions and large number arguments. In this case, the structure

of the bath does not matter, but long lived correlations in the random force cannot

be introduced. The other possibility is that the bath has an intrinsically harmonic

structure, as argued above for coarse grained descriptions of the protein. This coarse

graining will add many time scales to the relaxation spectrum, and the major issue

becomes the expected structure of the spectrum of relaxation times.

Power-law spectrum and scaling

A power-law spectrum has been suggested for this system [120]. This power-law

may be the result of the protein showing a self similar structure. The simplest self

similar structure is the Rouse polymer chain of N beads at positions x, with local

connectivities [189]. The beads undergo diffusion in a potential of the form VRouse =
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i ,a (ai - ai+l)2. In the large monomer limit, N -- x, the eigenmodes a,(t)

j- ei' an( t) have a correlation function

DCw(t) = aw(t)a,(O)) ( 2 k(cs(w)1-c)t (4.4.11)
2k( - cos(a))

where D is the diffusion constant, k is the spring constant of the Rouse chain, the

friction coefficient = 1, and the end effects were ignored [231, 189]. The correlation

fimction for a - am is

Cnmi(t) = ((an(t) - am(t))(an(O) - am(O))) =

d D 1-cos((m-n)) e2k(I-cos(w))t _( - n) 2e2 kt02kt) (4.4.12)

which decays as t- (See Fig. 4-5) [189]. More generally, the lattice could have a

self similar fractal structure, and the correlation would be expected to asymptotically

decay as t - d /2, where d is the fractal dimension. The power-law arises from the scale

invariance of the system. By only having local connectivities, there is a translational

invariance (if end effects are ignored). As a result, the relaxation times correspond to

differing length scales resulting in the power-law. The power-law results will not be

altered by adding bending rigidity or any other local interaction since the translational

invariance will still hold in the large N limit.
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Figure 4-5: (a) The correlation function for m = 493 and n = 507 for a Rouse chain
with 1000 beads, and the same correlation function averaged over random cross-
linking of the Rouse chain polymer of 1000 beads with approximately 1 cross link per
polymer. These correlation functions are compared with the correlation function for
the opposite corners, i = j = k = 1,10, of a 10 x 10 x 10 cube. The cube also has
1000 beads, but it is a small object. The diffusivity, D and the force constants for all
connected beads, k, are assumed to be unity D, k = 1. Except for the Rouse chain,
the smallest relaxation rates A1 0.1, and the contribution of long time exponential
relaxation is significant. (b) The lowest eigenvalues for the Rouse (triangle), cross-
linked polymer (square), and the cube (circle).
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Non-local contacts, finite sizes, and non-scaling behavior

Proteins have additional interactions that are non-local with respect to the position

along the protein sequence so these self similar structures are probably not a good

model for a protein. These non-local interactions destroy the scale invariance so a

power-law spectrum cannot be universally applied to proteins. Although proteins

may be large objects in terms of the one dimensional sequence, the three dimensional

structure is much smaller than a crystal so edge effects destroy the scale invariance

necessary for a power-law. A protein with one thousand amino-acids (Rouse beads)

would only form a three dimensional structure around ten amino-acids in length (on

the order of nanometers) [105].

The smallest eigenvalues for the relaxation spectrum of a 1000 bead Rouse chain

show a near power-law behavior with very small eigenvalues, whereas the spectrum

of an elastic body that is a 10 unit cube (also 1000 beads) shows a lower bound in

the relaxation rates, (see Fig. 4-5). The cube undergoes the same diffusion process

as the Rouse chain, but the potential for the cube is

Vcute Z [(ai,j,k - ai+l,j,k - aij,k,i+l,jk)
i,j,k=l ..n.--a=x,y,z

(i,jk - ai,j+,k - ai,,ki,j+lk) + (ai,j,k - ai,j,k+l - aij,,i,j,k+)2 (4.4.13)

where aijkki jk+1 denotes the equilibrium distance. In the large nr limit, this expression

is also exactly solvable with a t-1 power-law dependence, but the edge effects for n =

10 are quite significant. If force constant k and the diffusion constant D are assumed
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to be unity (unit-less time and distance), the cube's spectrum (excluding rigid body

motions) is bounded away from zero, A1 0.1, and long time exponential relaxation

is expected. Even a less structured connectivity such as the average eigenspectrum

of a randomly cross-linked Rouse chain (1000 beads) shows an eigenspectrum that is

bounded away from zero (Fig. 4-5) [31]. In this model the potential is random with

Vcross-link =- VRouse + Zi>j;a=x,y,zPij (ai- aj)2 , where Pij = 0, 1 with probabilities

(N- 1)/N and 1/N, respectively. This random linking results in a collapsed structure

so finite size effects are expected [31]. Proteins have specific non-local connections to

allow it to perform its function. As a results, one expects a greater variety of possible

behaviors, which leads to a greater variety of possible relaxation spectra. As a result,

it should not be surprising if the relaxation spectrum of proteins shows structures

that are unique to the protein.

4.5 Implementation of Bayesian statistics to ENM

If the harmonic diffusion model is correct, the MEM analysis suggests that harmonic

diffusion with three distinct time scales can capture the long time relaxation of the

data. One can model the three time scales with three modes without introducing

statistically significant errors. The remaining issue to address is verification of the

consistency of the model with the data set as a whole. Additional coarse grained

measures, including multiple time correlation functions, are too noisy to assess the

model adequately, but the results are consistent with a harmonic diffusion model for

the motions of R(t). Concurrent with our work, Kou and Xie also demonstrated
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this consistency by examining these averaged quantities so we will not go into detail

about these tests of the Gaussian hypothesis [120]. To strengthen the legitimacy of

harmonic diffusion a full sequence Bayesian analysis is necessary.

The Bayesian analysis is implemented by fixing the number of modes, Al and

performing a Monte Carlo (MC) simulation to sample the parameters of the model

(the weights ap, the relaxation times, %>., and auxiliary parameters such as A and Ro)

that determine the statistics of the system. For given parameters, the probability of

having nj photons with lifetimes jl ... jn in bin j for R(t) = Rj is computed,

P({7j ... Tjn}Rj) =P(nIRj) II P(TjmlRj) (4.5.14)
m=l ...n

where P(nlRj) is the probability of getting n photons as defined in Eq. 4.3.4 and

P(7jTlRj) is the probability of the lifetime of the photons given Rj,

P(7jm l Rj) = Ab A Pb(7jm ) + A (j Psys (jm -ET = e(R -R)). (4.5.15)
Ab + b(Tjm) + A((j)

Both sources of photons, the system, Psy,, and the background, Pb, are accounted for

in this expression. The exact form of these probabilities is complicated by convolu-

tion with instrument response and other instrument considerations. Without these

considerations Ps.y is equal to Ps in Eq. 4.3.3. Given the probabilities of the photon

emission events for all Rj, the mode positions RP(t = jat), are varied by randomly

choosing one mode and statistically choosing its positions, {R, (t = jt)} keeping

the other modes fixed through a forward-backward algorithm [211].
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From this simulation we estimate the Bayesian score (log of the probability that

the model produced the data) to determine the optimal parameters [211]. The score

includes how well the sampled paths fit the data and the probability that the paths

are produced by the diffusion model. The fit to the data is estimated from the log

of Eq. 4.5.14 for the selected sequence {Rj), and the fit to the model is estimated

from the Fourier components of R,(t = jAt), FR,(t = jAt)eii j. The Bayesian

score was computed for different number of diffusive harmonic modes and compared

to determine the appropriate number of modes.

4.6 Results

The simulation found that a fourth mode is necessary to account for fast fluctuations

that are not consistent with the stochastic fluctuations (including the background)

and would not be represented in the correlation function. The time constants and

weights of the four oscillators are a2 = 0.595 ± 0.023, 0.293 ± 0.040, 0.292 i 0.028, and

0.324 ± 0.041 for y, = 0.42 ± 0.10, 5.9 ± 2.8, 28.0 ± 8.2 and 400. ± 57, respectively.

The exponential components discovered by the Bayesian simulation fall into the time

scales revealed by the maximum entropy fits, which shows that harmonic diffusion

agrees with the basic features of the data and the Bayesian approach identifies the

important time scales. The Bayesian spectrum is determined by averaging Cx over the

Monte Carlo simulation and is compared against the MEM simulation in Fig. 4-3(c).

For X = 1.4A, the mean square (MS) displacement of r(t) is (r 2(t)) 0.32 i

0.02A2, which is in agreement with other measurements [240, 104]. Crystal structure
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data show that tyr3 5 has a MS displacement of 0.25A2 and that the isoalloxazine

portion of FAD has a MS displacement of O.10A2, so fluctuations around 0.35A2

are expected. For four modes, we predict that the average lifetime is around () 

0.310±0.011.ns. Since the number of photons emitted depends on 7(t), we must weigh

the probability of 7(t) by the expected number of photons given (t) to determine

the average lifetime of a photon emitted by the FAD, (photon) 0.410 ± 0.028ns. As

expected, this distribution suggests that the photons from the system occur on the

short time shoulder peak of the MEM distribution in Fig. 4-2(b).

Additional modes, beyond four, slightly improve the fit to the data and the corre-

lation function, but the improvement can not be justified statistically. For less modes,

the paths selected by a two and three mode models have similar likelihoods to the

paths of the four mode model, but the probability of these paths being produced by

the harmonic model was much lower. In other words, following the variation in the

data with less than four modes resulted in unlikely paths. The Fourier components

of the sequence for the four mode model, E R,(t = j/At)eiwj, are within the expected

variances of the model so harmonic diffusion is consistent with the paths that fit

the data. Si:nilarly, the photon emission events are consistent with the model. The

Bayesian scores and parameters for four oscillators show time translational invariance

so the model is not over-fitting the data.
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4.7 Conclusion and Discussion

This chapter examines a single photon experiment with a complex data set that

is difficult to interpret from correlation analysis. Non-parametric fits by the MEM

demonstrate a wide distribution of time scales with distinct structures in the relax-

ation spectrum that are neglected by phenomenological fits using smooth predeter-

mined functional forms. The evidence for these structures (especially at long times)

is strong so it is appropriate to discuss distributed lifetimes, but the existence of a

stretched exponential, power-law, or other phenomenological functional form cannot

be fully supported by the data. This experiment demonstrates the importance of in-

troducing non-parametric methods into single molecule data analysis and the need for

caution in interpreting model features such as power-law tails since models without

these features may also be consistent with the data so it may be difficult to assign

a physical meaning to the predicted power-law. From the non-parametric analysis

of coarse grained measures, such as correlation functions, one can develop legitimate

models to describe the behavior of the system. Although models should be consistent

with the correlation analysis, correlation functions are only one or two dimensional

information and cannot be the sole determiner of the properties of the system and

generally fails to distinguish different models. The desire for a comprehensive test

motivated the use of Bayesian methods in analyzing the entire data sequence. These

tests are more time consuming than simple correlation analysis, but the conclusions

are more reliable [120]. Through a complete sequence analysis on a single molecular

trajectory, this chapter demonstrates that diffusive harmonic network with a few well
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defined long time scales is a viable candidate for describing this system. These slow

time modes may correspond to motions that influence protein structure and function.

Proteins are specific entities that perform specific tasks. The complexity of pro-

teins may cause a broad distribution of time scales, but it is important to understand

how the motions are associated with the specific tasks of the protein. Coarse grained

diffusive normal modes incorporate the universality of large numbers by averaging

over small scale fast fluctuations while maintaining features that are specific to the

protein's structure and function. The fact that coarse grained models and simulations

can capture these slower timescale motions while also being computationally tractable

is a desirable feature that may allow comparison of simulation to experiment.
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Chapter 5

First-principle path integral study

of DNA under hydrodynamic flows

5.1 Introduction

The previous chapters mainly addressed the use of statistical techniques to make in-

ferences about data without imposing artificial physics on the data. These methods

are especially valuable for complex systems, such as proteins, where it is difficult to

ascertain parameters and cross validate experiments. For more homogeneous sys-

tems, such as polymer systems, a first principles approach is possible since there are

few parameters and these parameters can be independently verified. These systems

also present opportunities to perform several different experiments and cross-validate

results.

The mechanical properties of polymer systems are also important in many appli-

cations, including lubricants and plastics. The bulk visco-elastic properties of these
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systems result from the microscopic deformation of the polymer chains when they

are subject to external forces. This microscopic-macroscopic correspondence has gen-

erated interest in studying polymeric solutions at the microscopic level, including

experiments at the single molecule level. Many single molecule experiments examine

the behavior of single polymers, like DNA, subject to various stresses, including ten-

sile stress and hydrodynamic flow [26, 199, 42, 9, 161, 163, 162, 173, 193, 192, 191].

One set of experiments by Chu's group visualizes fluorescently labeled DNA sub-

ject to the stresses discussed above. The experiment monitors the entire contour

in real time and gives a complete picture of the polymer dynamics [161, 163, 162,

173, 193, 192, 191, 204, 97, 188, 8]. In this paper, we model DNA as a worm-

like chain (WLC) with parameters previously determined in force-extension experi-

ments and then use this model to examine the experimental results of Chu for the

steady state configurations of DNA subject to constant plug, elongational, and shear

flows [9, 161, 163, 162, 173, 193, 192, 191]. The ability to use parameters from one

experiment to model different experiments confirms the validity of the WLC model

for DNA.

This DNA system has also been the subject of many Brownian dynamics simula-

tions [5, 69, 71, 70, 102, 108]. Predicting the properties of a complete contour requires

a large number of long simulations performed on a large number of beads. With care-

fully chosen parameters, reasonable agreement between the experiments and these

simulations exists, but these calculations are phenomenological and computationally

intensive [69]. We propose a less computationally intensive first-principles path in-

tegral Monte Carlo algorithm based on equilibrium theory to study DNA subject
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to various hydrodynamic flows. If the relaxation of the polymer is fast, the experi-

mentally observed configurations correspond to a generalized equilibrium distribution,

which has arn associated potential. With a reasonable formulation of the potential, we

evaluate time averaged ensemble quantities with Monte Carlo techniques. Although

this approach will not describe dynamics, it is computationally more efficient than

Brownian dynamics and allows the prediction of important time averaged quantities,

like the mean extension of the polymer that we examine in this letter. Previously,

Larson and Chu, as well as others, used similar Monte Carlo techniques on bead

and spring models to describe time averaged properties of DNA polymers subject to

constant plug flow [131].

DNA is a difficult polymer to model because it is semi-flexible with a large persis-

tence length of 53 nm, compared to a typical length studied in experiments of 50 m,

and its contour length only extends under strong forces [69, 131]. Bead and spring

simulations require a large number of beads to account for bending energy and con-

strained dynamics to maintain the contour length. We adopt a more natural model

for DNA, the WLC model of Kratky and Porod [62]. The IWLC replaces the Rouse-

like bead and spring model with a continuous contour of fixed length and includes

an energy associated with bending the polymer. The bending energy is experimen-

tally measurable, which removes a fitting parameter. The first analytic treatment of

the 1WLC model appear in a 1973 paper by Fixman and Kovac [81]. Later work by

Marko and Siggia with improvements by Bouchiat demonstrate that the WLC model

predictions agree extremely well with the force extension experiments on DNA by

Bustamante's group [33]. The agreement suggests that the IWLC captures the fun-
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damental thermodynamics of DNA [142, 26, 193]. The WLC is also the basis for the

force extension relations used in simulations by Doyle and in the analytic theory by

Zimm [69, 248]. Doyle neglects hydrodynamic interactions while Zimm incorporates

the interactions with a length dependent rescaling of the flow field determined by the

Kirkwood approximation.

In the absence of an external field, the energy of the WLC is a simple contour

integral, 3E = foL l0t 2ds, where L is the polymer's length [81]. The inverse tem-

perature, makes all quantities unitless and the tangent vector t of the contour R(s)

is normalized to fix the contour length, It = 1. An external potential, U(R(s))

modifies the energy resulting in a path integral partition function,

Z = f DR(s) exp (- f {Ia s 2 + 3U(R(s))} ds) (5.1.1)

We can derive the form of OU(R(s)) for many experiments. For example, in the

experiments of Smith, Finzi and Bustamante, one end of the DNA strand is attached

to a glass surface and magnetic tweezers stretch the other end of the DNA [193].

The external potential is U(R(s)) = -f Rz(O) - R(L)= -ff oL tzds, where f is

the force applied to the two ends and tz, is the component of the tangent vector in

the direction of the force. The solution maps into the trajectory of a quantum rigid-

rotor and has good agreement with experiment [81, 142, 26]. We parameterize the

bending energy of the WLC model with the persistence length determined by these

references, A = 53nm, to remove fitting parameters and validate the consistency

of the WLC description of DNA in various experiments. WVe neglect the persistence
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length's dependence on various experimental conditions, such as buffer concentrations

and the dye used in imaging.

The potential is not easily defined for hydrodynamic flows because hydrodynamic

flows are dynamic phenomena, but the flow still performs work on each monomer. If

we ignore the intrachain hydrodynamic interactions of a polymer in a potential flow,

like constant, plug flow or elongational flow, the work is proportional to differences in

the potential. For a free-draining polymer, we add the potential of all of the monomer

units, which becomes an integral over the contour. A simple double integral over the

contour can incorporate the two body potential, but this is not done here. Removal

of the free draining approximation is more difficult, but previous studies show that

hydrodynamic interactions lead to only modest corrections to many time averaged

quantities [131, 108].

5.2 Constant Plug Flow

The constant plug flow potential is V = -F. z, where F is the flow rate, and the

polymer's potential is -F fJL z(s)ds, where is the friction per unit length. Based

on the findings of Larson et al., we assume the friction does not vary with the flow

rate or over the polymer, but we do not know the friction constant explicitly [131].

Most experiments report the viscosity of the polymer in the solution, whose relation

to friction has a non-trivial geometric dependence. The friction is the only fitting

parameter, but it is comparable in all simulations and simply scales the flow rates.

The Kirkwood approximation in Zimm's calculation for constant plug flow replaces
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the bare uniform force on each segment from the flow field with a dressed force that

is also uniform and justifies a rescaled friction constant [248].

Perkins et al. performed the constant flow experiment with optical tweezers [163].

Fluid passes over the polymer creating a force along the entire polymer. Integration

by parts gives an insightful formula for the potential, -F fooL(L - s)tds. The

energy of the potential comes from a tension that scales linearly along the chain. The

tension is the greatest at the end tethered to the bead because the whole chain pulls

on this end, and it lessens further down the chain until it becomes zero at the free

end. For a strong flow, the polymer is almost completely extended in the z-direction,

and the components in the x and y directions are small perturbations of the linear

configuration. The energy of the WLC is approximately

/3E j [A/20JDt±.2 + -~(L - s) t1 -2 L2, (5.2.2)

where t is the transverse components of the tangent vector, the x and y directions,

and the component in the z direction is approximately tz = 1- 1 2 [142]. The

action corresponds to a quantum harmonic oscillator with a linearly ramped spring

constant. The x and y components act independently and the partition function for

each component is Gaussian,

D(t( Y) (x )p( AY ((,y) (s) di ( )

+ JL dd'(-s) { x) d2i('Y) () )(s) (' ))})
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Since the operator in the exponential is Hermitian, the Green's function for the aver-

age square of the transverse component, u(s, s') = ((t( Y))(s)(t Ix'))(s')), is a weighted

sum of eigenfunctions, G(s, s') = n u(s))An 1(un(s')l, that satisfy the differential

equation

-A d (s) + F (L - )un(s) = AnUn(s) (5.2.3)
ds 2

with the boundary conditions u (O) = u' (L) = 0. The analytic solutions to the

equation are] sums of Bessel functions. The rms of the traverse displacement is

/En A 1 foZ un(s)ds 2, which is shown in Fig. 5-1. Since (tz) ~ 1- (((t)(s))2) +

((it()(s))2)) = - A71u2(s), the average extension in the z-direction is approxi-

mately L - A 1 foL dsu2(s) = L - An1. Since the eigenvalues change slowly with

the flow rate in the high stretching regime, the width and extension also change slowly.

The rms displacement displays a trumpet shape that is qualitatively similar to the

shapes observed in experiments, simulations, and other theories [163, 131, 50, 28].

Without the large flow rate approximation, the action of the tangent vector corre-

sponds to the imaginary time Shr6dinger equation for a rigid-rotor in a time dependent

potential,

0@(S) _ L2 1

s - 2A - F(L- s)cos(O)js ) (5.2.4)

In this equation, L is the angular momentum operator, and cos(O) is the projection

of the tangent vector onto the direction of the flow field. This equation resembles the
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Figure 5-1: The root mean square displacement of the traverse component of the
polymer in a strong constant plug flow. The displacement is plotted as a function of
distance in the direction of the flow field. Note the resemblance to the trumpet shape
observed in experiment and simulation.

constant force calculations with a simple time dependence (L- s) [142]. This equation

can be solved by using a spherical harmonic basis set and numerically propagating

the resulting matrix [142, 26]. The only difficulty is the initial condition of the

wave-function, for which we use results that are consistent with the high stretching

calculation above, t(O) = 1 and t(O)= t(O) = 0.

Fig. 5-2 compares the predictions of mean fractional extension versus flow rate for

the rotor Hamiltonian, the Monte Carlo simulation discussed below, the experimental

results of Perkins et al., and the Brownian dynamic simulations of Doyle [163, 69].

Since the experiment cannot determine the end-to-end distance, the fractional exten-

sion is the maximum distance between any points on the polymer contour compared

against the contour length. The flow rate is in a dimensionless form, Tl'i = F/p,

where T F is the characteristic time of the flow and Tp is the longest relaxation rate

of the free polymer, which is determined by equations in the references [69, 71, 70].
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Figure 5-2: Comparison of the constant plug flow experiment in [163], the path-
integral Monte Carlo simulation, the path-integral matrix multiplication method,
and the Brownian dynamics simulation reported in [69]. Inset compares asymptotic
behavior of the simulations for large flow rates.

For elongational and shear flows, the dimensionless form corresponds to Weissenberg

numbers. Both simulations compare well with experiment. The mean extension ini-

tially increases rapidly with the flow rate. At about 60% of full extension, the rate

of increase in the extension slows to an asymptotic approach to full extension in the

large flow rate limit.

A slight discrepancy for moderate flow rates results from the initial condition,

which is correct in the strong stretching limit and is not important for weak flows.

Monte Carlo techniques correct the discrepancy, as would different initial conditions,

which are not done here to avoid additional fitting parameters. Although we do not

present these results since they appear elsewhere, the matrix multiplication method

exactly reproduces the constant force results of Bouchiat, which agrees with the ex-

periments of Bustamante, since no ambiguity about the initial conditions exists, and

the rigid rotor equation is the same [26, 193, 33, 142].
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5.3 Elongational Flow

The quantum rigid-rotor analogy extends to the elongational flow by changing the

form of the external potential to -Ff L ds(z2 (s)- 1/2(x2 (s)+y 2(s))), where F is the

flow rate over length. The potential depends on the position instead of the tangent

vector. Unless we know the starting position, which depends on the steady-state

distribution, we do not know R(s) and cannot predict the s dependence of the field.

To overcome the difficulties presented by this potential, we evaluate the path integral

using Monte Carlo techniques.

As a calibration, we analyze the constant plug flow experiment with Monte Carlo

and compare these results with our previous results. We discretized the polymer

into 844 segments, two segments per persistence length for a DNA chain that is

22.4 pum in length. The discretization captures the rigidity of the polymer without

incorporating phenomenological bending springs. The segments are fixed in length

and only the angles are varied. We fix one end of the polymer at the origin and

perform 12. 106 Monte Carlo steps with the potential energy defined above. The

Monte Carlo algorithm fits the experiment and Brownian dynamic simulation results

better than the matrix multiplication method, as shown in Fig. 5-2. These results

give us confidence in using this algorithm to evaluate more complicated flows.

Elongational flow corresponds to the experiments of Smith and Chu and of Perkins,

Smith, and Chu [192, 162]. In these experiments, the DNA is freely flowing with the

fluid. Since the forces caused by this flow are linear, we decompose the motion of the

polymer into center of mass and relative motion of the polymer segments. The Monte
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Figure 5-3: Comparison of the elongational flow experiment in [162], the path-integral
Monte Carlo simulation, and the Brownian dynamics simulation reported in [69].

Carlo procedure is the same as for the constant plug flow, except that the energy is

determined in the relative coordinate frame. Fig. 5-3 shows the fractional extension

results compared against the experimental results of Chu and the Brownian dynamic

simulations of Doyle [69].

Even for this more complicated flow, the fractional extensions predicted by both

of the simulations agree extremely well with the experimental results. The fractional

extension as a function of flow rate rises quickly to about 80% before a slow asymp-

totic approach to full extension. In the strong flow limit, the Monte Carlo simulation

slightly overestimates the extension, as compared to the experiment and Brownian

dynamics simulation, but all three results agree extremely well for weak and moderate

flows. The agreement between the simulations and experiments for the constant plug

and elongational flows demonstrates that the Monte Carlo technique successfully re-

produces the results for potential flows and that the WTLC model is a good description

of DNA and possibly other semi-flexible biological polymers in potential flows.
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5.4 Shear Flow

Encouraged by the success of the path integral Monte Carlo method on potential

flows, we investigate the application of these methods to non-conservative flow fields

like shear flow. The simple shear flow also has an analogous rigid-rotor Hamiltonian

with an electrostatic potential U xc -x z and a non-conservative B-field, x r, where

r is the position vector and Sr is the unit vector in the y direction. Similar to the

elongational flow, we avoid the difficulty of the position dependence by evaluating the

action with Monte Carlo.

The shear flow experiment that we analyze is similar to the elongational flow

experiment [191, 69]. The DNA freely flows with the fluid, and we calculate the

forces in the center of mass frame using the simple shear relations, Fz = F~x and Fx =

Fy = 0, where F is flow rate over length. Although shear flow is not a potential flow,

the fluid still performs work on the system, which allows us to define a local energy

change by integrating the force along the linear path connecting two configurations.

The probability of a transition occurring is proportional to the energy difference

in the local frame. Several authors used this approach to describe other polymer

systems in shear flows [130, 202, 147, 238]. Since the potential changes as the polymer

moves, detailed balance does not hold and the polymer rotates through space, but this

simulation can be viewed as a Glauber dynamics [46]. The Monte Carlo algorithm

for the shear flow follows the same steps as the constant plug flow and elongational

flow with the potential defined locally. A trajectory dependence exists, which may

require a larger number of simulation steps than the potential flows, but we still only
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use 12. 106 Monte Carlo steps.

The force extension relations for shear flow are plotted in Fig. 5-4. As with the

potential flows, the path integral Monte Carlo method agrees extremely well with both

experiment and the Brownian dynamics simulation. Because we only used 12. 106

1Monte Carlo steps, some scatter in the data exists. We added a trend line in Fig. 5-4

to help the eye follow the data. For weak shear rates there is a fast initial rise in

the mean extension. After the initial rise, the data quickly asymptote to about a

40% extension. The small asymptotic value can be understood by examining the

decomposition of the shear flow field into an elongational part and a rotational part.

At an angle of about 7r/4 in the xz plane, the polymer gets stretched, but at -/4

the polymer gets compressed [191, 69, 129]. The rotational part moves the polymer

between these angles resulting in an averaging over these angles and a decreased

total extension. This cycling from the extended to the compressed states has been

observed in the experiment, the Brownian dynamics simulations, and our Monte Carlo

simulations. The correspondence shows that the Glauber dynamics of a Monte Carlo

simulation does capture some of the real dynamics of the system.

5.5 Summary and Conclusion

As demonstrated in this letter, the W\LC is a good model for DNA and possibly other

semi-flexible biopolymers. With a single fitting parameter, the friction constant,

which linearly scales the flow rate, the solution to the path integral quantitatively

agrees with experimental results for DNA subject to constant plug, elongational, and
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Figure 5-4: Comparison of the shear flow experiment in [191], the path-integral Monte
Carlo simulation, and the Brownian dynamics simulation reported in [69]. To aid the
eye, the solid curve follows the trend of the Monte Carlo data.

shear flows. The model is based on physical principles without phenomenological force

extension relations. Although hydrodynamics are strictly dynamic phenomenon, time

averaged quantities are quasi-equilibrium phenomenon in an effective potential. This

description is possible because relaxation to the steady state distribution is fast and

contributions from intra-chain hydrodynamics can often be neglected. The equilib-

rium partition function corresponds to an ensemble average, which demonstrates the

correspondence between time-averages of single molecule trajectories and ensemble

averages for ergodic systems. These techniques are computationally inexpensive since

we do not have to run many trajectories to average over initial distributions. This

path integral approach is applicable to other semi-flexible biopolymer systems.

204



Chapter 6

Brownian motion in dynamically

disordered media

6.1 Introduction

Single particle tracking has become a popular method of probing local environments

in complex systems, such as cells or glasses [220, 176]. These tracking experiments

examine mesoscopic time and length scale motion of probe particles [61, 239, 220].

On these length scales, the random fluctuations of the solvent that influence the

motion of the molecule cannot be modeled with the assumption that they are locally

correlated in time and space since some large-scale motions of the solvent are on the

time scale of the experiment. A result of these non-local correlations is deviation

from Gaussian behavior on intermediate time scales which are measured in several

experiments [239, 44, 61, 141].

Many stochastic problems can be modeled by the diffusion of Brownian particles
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interacting with a random potential [24]. Although there is a macroscopic homoge-

neous environment, the mesoscopic heterogeneity caused by local environments often

plays the central role of determining how the system behaves even on long time and

length scales [55]. Several references have treated random media problems both an-

alytically and numerically to find modifications to the diffusion constant to capture

long-time behavior. An interesting issue that is not always examined is the devia-

tions from the Gaussian behavior expected in the intermediate time scales of these

random media problems, which can primarily be measured using single molecule ex-

periments [73, 118, 217, 122, 165, 169, 24, 25, 55, 54, 51, 123, 124].

The heterogeneity on mesoscopic length and time scales has physical significance

that is observable in experiments and simulations of many systems including systems

near phase transitions like glasses and supercritical fluids.

Glasses

Several experiments in glasses demonstrate the effect of the heterogeneous fluctuat-

ing environments on molecules, including video microscopy, neutron scattering, NMR,

and single-molecule tracking [220, 44, 100, 22, 15]. These problems are particularly

interesting because of the many single molecule experiments performed on glassy

systems. The systems exhibit regions of varying relaxation dynamics as well as col-

lective behaviors, which lead to deviations from Gaussian behavior [209, 74, 44, 141,

63, 65, 66]. Kirkpatrick et al. attributes these varying dynamics to the constant for-

mation and destruction of glassy clusters [115]. Experiments on colloidal systems by

Weeks et al. and members of the Rice group show strong spatial-temporal correla-
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tions in the system. Particles in these colloidal systems move collectively, resulting in

long time correlations [113, 141, 209, 210]. Measurements of the rotational diffusion

constants of colloidal spheres in glassy systems show similar stong spatial-temporal

correlations [206, 111].

Supercritical fluids

Diffusion in supercritical fluids is another interesting example of dynamics in heteroge-

neous environments. The density of supecritical fluids has long length and time scale

correlations, which lead to several anomalous experimental results [208, 27, 207, 45].

Although results differ, several experiments report dramatic changes in the diffusion

constant of solutes in supercritical fluids [41, 180]. These density fluctuations have

been observed in MD simulations and persist for long time scales [207, 91, 72].

These experiments and simulations show that there are intermediate length and

time scale environmental fluctuations in several interesting systems, which motivates

our study of a stochastic potential with intermediate scale correlations. Because two

different stochastic processes, simple diffusion and the random potential, determine

the movement of our Brownian particle, we expect significant deviations from the

Gaussian form predicted by Einstein's equation. These deviations have been ob-

served and quantified in several simulations and theories [141]. Several references

showed that the simple assumption of fluctuating regions of two different diffusion

constants, one for a cluster and another for free diffusion, results in significant changes
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in the diffusion constant and deviations from Gaussian behavior on intermediate time

scales [137, 249, 34]. Mode coupling theory also predicts significant deviations from

the expected Gaussian behavior, especially for glasses [209, 210, 245, 89, 232]. Simula-

tions by Donati et al. support these theoretical predictions of non-Gaussian behavior

at intermediate times for glasses. Similar to the arguments of Kirkpatrick et al. they

attribute these deviations to the formation of clusters [115, 66, 65]. Motivated by the

observations of Donati and others we examine a simple model that exhibits similar

clustering behavior.

6.1.1 The diffusion model

In order to address this Brownian motion problem analytically, we do not explicitly

include the solvent. Instead, we develop a phenomenological model that captures the

interactions of the solvent molecules with the Brownian particle without explicitly

including them. In this paper, the microscopic time-scale fluctuations are still ap-

proximated as simple diffusion, but we extract the larger time scale motions and write

them as a fluctuating potential with a time and spatial dependence. The approach

follows the work of Deem and Chandler and has been discussed by Bouchaud and

Georges but is generalized to allow a time dependent potential [55, 25]. This type of

diffusion process is governed by the equation:

OG(x, t) = DoV2G(x, t) + DoV (G(x, t)VV(x, t)), (6.1.1)
208
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with

G(x, 0) = 5(x),

where G(x, t) is the Green's function, Do is the diffusion constant modeling the short

time scale interactions, is the inverse temperature and V(x, t) is the random po-

tential [55, 25, 54]. The difficulty in dealing with the random media problem is

attempting to average G(x, t) over the disorder of V(x, t), even though we assume we

know the moments of V(x, t) [25]. In this paper, we will make a Gaussian assumption

for the random potential with

(V(x, t)) = 0

and

(V(xl, tl)V(x 2, t2 )) = X(IX1 - X21, Itl - t2 ) 4 0. (6.1.2)

All other moments are either zero or can be expressed as a polynomial of X. This

assumption eases computation, but higher order cummulants can be incorporated

using the methods below. Most of the equations in this paper are valid for arbitrary

X, but the explicit calculations used to generate the figures will correspond to 3

dimensions with .x defined by,

X( x, t ) = (exp 4( +A A) (6.1.3)
a+ A~ 2 4(, + A t)

This potential-potential correlation is chosen because it has some of the features

expected for a real potential of a fluid like system, but it is a model that also allows

easier computation. Two of the important aspects of this paper are the various
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techniques used to derive the Green's functions and the equivalence between them

and the idea that the potential can mediate the clustering behavior of the system.

The constant Xo = (lxl = 0, t = 0), corresponds to the strength of the large scale

interactions and is our perturbation expansion parameter. The choice of a Gaussian

form allows us to omit a cutoff frequency that separates the small-scale motions that

we approximate as simple diffusion and those that we treat as the stochastic potential.

V/a is the length scale of the heterogeneity of the system, which can be viewed as the

size of wells in the potential energy surface. We refer to ac2 as the size of the cluster

to make contact with previous experiments and simulations [44, 63]. We incorporate

decay of spatial correlation into our model by including the Altl term. The 1/(Altl)

dependence is chosen to give an exponential time dependence in Fourier space. This

formulation corresponds to smaller scale fluctuations or clusters decaying faster than

larger scale ones, a property prescribed by Trajus and Kivelson [203]. In analogy

with several references, we refer to A as the hopping rate, but we also emphasize that

the power law dependence of our potential correlation function does not have a well-

defined rate and, even for a strong disorder, the hopping fluctuations in the potential

may not be associated with hopping of the Brownian particle since the particle has

inertial mass [63, 88, 174].

6.1.2 Summary and outline

In the examination of the random media problem, a self-consistent equation for the

one particle Green's function that is accurate to 2nd order in the disorder strength can
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be determined by a perturbation expansion of equation 6.1.1 directly [165, 122, 118,

217]. But many papers calculated the Green's function and the diffusion constant by

using the classical field formalism developed by Martin, Siggia, and Rose (MSR) [24,

55, 123, 51, 52]. To show the consistency of our perturbation method with the field

theoretic methods of MSR, we solve for the Green's function using both methods and

derive equations that are identical up to 2nd order in the disorder strength. This

result should not be surprising since both methods attempt to describe the dynamics

by a Dyson and Schwinger equation with self-energy. To make contact with previous

work, we also solve the equations with an Edwards type of variational method that

circumvents the Dyson and Schwinger equations [55, 24]. The variational method

yields results that are similar to the our perturbation expansions as well as previous

work but slightly more complex than perturbation. In the static limit the equations

are identical to those derived by Deem and Chandler [55, 54, 164, 24, 51, 52].

The paper also contains a 1 t order equation for the two-particle propagator de-

termined by both the MSR and direct perturbation methods. Hydrodynamic and

excluded volume interactions are not considered in this paper since the two particle

propagator is intended to measure variation in different particle trajectories caused

by the potential. As seen from equations 6.2.4 and 6.5.12 below these results are

identicle to 1St order. As a final result, we use the MSR method to determine a 1 st

order renormalization group (RG) calculation of the diffusion constant, which com-

pares well with our perturbation equations and reduces to previous RG calculations

in the static limit [51, 55].

Our results are organized into six sections. Renormalized perturbation and nu-
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merical results are presented in sections 6.2-6.4 followed by the conclusions in section

6.7. Readers interested in a more detailed discussion of MSR and RG are referred to

sections 6.5 and 6.6.

6.2 Determination of the Green's function from di-

rect perturbation

6.2.1 One-particle propagator

To begin our analysis, we perform a direct perturbation and re-summation of the

Green's function equation to get a 2 d order self-consistent equation, which we com-

pare with our field theoretic results. The renormalized perturbation expansion is anal-

ogous to the direct interaction approximation used to describe turbulent flows [54,

169, 73, 178, 119]. Fourier transforming the spatial variables (x -+ k) gives the equa-

tion:

G(k, t) = -Do0 k 2G(k, t)

(/Do)I /dh{k (k -h)(G(h,t)V(k -h, t))}, (6.2.1)

with

G(k, 0) = 1.

The integration over h runs from -x < Ih < oc. We define t + Do lk 2 as Go 1(k, t),
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and Go(k, t) as our usual fundamental solution for free diffusion,

Go = exp (-Dotlkl2).

With this definition of Go(k, t) the propagator for a specific realization of disorder is

G(k, t) = Go(k, t)

(Do(2 ) /dhd{k (k - h)V(k-h, )Go(k, t- )G(h, )}, (6.2.2)

where r has a range from 0 to t. Repetitively substituting the right-hand side of

6.2.2 for G(k, t) in the right-hand side of the equation 6.2.2 produces a perturba-

tion expansion for G(k, t) in terms of V(k, t) and Go(k, t). Since Go(k, t) has no

dependence on the random potential V(k, t), we are able to average over V1(k, t) in

this expression using Gaussian factorization. We re-sum terms so that the equation

is accurate to various powers of the disorder strength, Xo, and express these terms

as self-consistent equations of G(k, t). The re-summation procedure corresponds to

evaluating the self-energy in the Dyson expansion. The resulting 2nd order expression

is

(G(k, ')) = Go(k, t)

(D )2 Jdhda-d2{k. (k-h)h. (k-h)x(lk-h ,71 - 21)

xGo(k, t - T1) (G(h, 71 - 72)) (G(k, 72 ))}

+ ((2)2d Jdhldh2dTldT2d 3dr4{k. (k-h 1 )h2 (k- h)
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xhl (k- h)(k- hi) (k- h + h2)x(lk - h , 17 - 31)

xX(lhl - h2, 172- 74)G(k, t - 71) (G(hl, 71 - 72)) (G(h2, 72 - 73))

x (G(k - hi + h2, 73 - 74)) (G(k, 74))}, (6.2.3)

where the 2 d term is the first order correction and the 3 d term is the second order

correction. The integrations in this expression are for t > 71 > ... > 7, > 0 and

-oC < Ihi < oc and the (...) represtents the average over the disorder. The origin of

the self-consistent equation can be easily demonstrated with a Feynman diagrammatic

expansion and re-summation used in QED [80]. In these diagrams, we replace the

propagator for photons with the propagator for X and only use graphs that do not

violate causality.

Although the sum of all graphs should converge to the solution, we are not guar-

anteed that the sum of any subsequence also converges. This lack of convergence

may plague the 2 nd order expression, since the graphs captured by this term are pre-

dominantly positive. The difficulty may also be purely numerical in nature due to

approximations made in evaluating the 2 d order expression. In either case, a Pdde

approximation was used in the numerical calculations to aid in convergence of the

solution. The specifics of these approximations are discussed in section 6.3.1.

6.2.2 Two particle propagator

Single particle motion is not sufficient to resolve the spatial-temporal correlations built

into our model. The equations 6.2.3 show that the Green's function deviates from
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the Gaussian form predicted by the free propagator, but the amount of the deviation

is difficult to determine from examining the Green's function for the motions of a

single particle. To overcome this difficulty we determine a perturbation expansion

for a two-particle propagator. Section 6.5.2 shows the same calculation using the

I\ISR perturbation method. This propagator measures the movement of two particles

initially separated by a distance r. The correlation of these two particles determines

the deviations from the behavior of two independent particles, which allows us to

examine the spatial effects of the stochastic potential. As mentioned above, we are

not considering any interactions between the particles, like excluded volume and

hydrodynamic effects. Although numerical studies demonstrate the importance of

both excluded volume and long-range hydrodynamic interactions between particles in

many processes, including the glass transition, we are concerned with the roles of the

heterogeneity of the solvent on the correlations between particles [205]. We are also

not considering the effects of the particles on the solvent. The correlations we examine

are strictly mediated through the potential and can be viewed as a demonstration of

the deviations of different realizations of the path of the particle due to the potential

if the particle was placed at different locations.

The perturbation calculation for the two-particle propagator starts from the ex-

pansion of the original Green's function equation. We do not average over the random

potential and all terms are present. The propagator is centered at the origin and is

denoted by iG()(k 1 , t) = G(k1, t), where the superscript (1) denotes the particle la-

bel. We introduce a propagator for the 2 d particle that is displaced from the origin

by a vector r and it is denoted G(2 )(k2, t2) = exp[ik2 r] G(k 2, t2). Like the propa-
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gator centered at the origin, we iteratively expand the equation and do not average

the single-particle propagator over the random potential. We multiply the two prop-

agators together and then average over the potential using Gaussian factorization.

After resummation, the resulting first order self-consistent equation has a form that

is similar to the equation for the single particle propagator.

G(l'2)(kl, t1 = t, k2, t2 = t) = (G(1)(kl, t)G(2)(k 2, t)) =

(G(1)(k, t) (G(2)(k2, t)) (2 j / dh f d dr2

x {kl (kl - h)k2. (kl - h)X(Ikl - hi, 71 - 721)

x (G(k, t - 71)) (G(k2, t- T2 )) G(1'2)(h, rl, k1 + k 2 - h, 2 )} (6.2.4)

Two of the propagators are not labeled because they are single particle propagators

with no multiplication by exp[ik. r] and (G(k, t)) corresponds to the single particle

Green's function in Eq. 6.2.3. This equation can also be represented by a Feynman

diagrammatic expansion and resummation [80].

6.3 Derivation of important statistical quantities

from the Green's functions

The preceding section outlines the derivation of the self-consistent equations for var-

ious Green's functions, which correspond to different possible single molecule ex-

periments. These experiments measure certain numerical quantities associated with
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motions of the Brownian particles but they do not measure the Green's functions

directly. In this section we outline methods of extracting some measurable quanti-

ties from the self-consistent equations derived above, including the diffusion constant

and indicators of the deviation of the two-particle Green's function from the uncor-

related motion of two independent particles. We will refer to these quantities as

non-Gaussian indicators, but the system is not necessarily Gaussian if these quanti-

ties are zero. Several non-Gaussian indicators are possible and we discuss a few that

are easily determined from experiments [141, 66, 65, 74].

6.3.1 Diffusion constant

A simple Ansatz

As discussed in the introduction, macroscopic effects of mesoscopic disorder led to

many studies that determine the diffusion constant from self-consistent equations

similar to the ones derived above [55, 54, 164, 51, 52]. Most of these references

address static disorder, but these methods can be generalized for the dynamic case.

Our analysis parallels several of these approaches. The methods require numerical

computation of the solution from a suitable basis set [55]. Before introducing these

rigorous methods, we perform a simple analytic calculation based on a simple Ansatz

that the single particle Green's function maintains a Gaussian form, but the diffusion

constant is :modified.

(G(k, t)) exp[-Dtlk 2] (6.3.1)
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For weak disorder, the Gaussian form is exact and the approximation should

determine the correct initial slope of the diffusion constant. The diffusion constant

can be expressed in terms of the Laplacian of the Green's function.

-VG(k, t) k0= D
t-oo 2dt

The Gaussian form allows analytic evaluation of the 1 st order expression with the

Gaussian form of the potential correlation functions, X in Eq. 6.1.3, which results in

an algebraic expression for the diffusion constant.

D = Do - A) 32X (6.3.3)
(D+A) 2 3

The equation has no explicit dependence on the cluster size because it is the

intrinsic scale of the problem which determines the magnitude of the other quanti-

ties. The equation exhibits the expected behavior from intuition. As the disorder

strength, Xo, increases, the diffusion constant will decrease, and as the hopping rate,

A, increases, the diffusion constant will increase, but this increase is dependent on

the disorder strength. If A > Do the equation suggests an increase in the diffusion

constant. This result is not surprising in the weak disorder limit since the forces on

the particle increase displacements, but there is no trapping because the potential

rearranges quickly and is weak. The solution of this equation as a function of 3

and A is plotted in Fig. 6-1(a). The renormalization group (RG) result is also plotted

as a function of 51 and A in Fig. 6-1(b). A derivation of the RG result and a more3

detailed comparison of these results are discussed in sections 6.6 and 6.4 respectivley.
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Figure 6-1: Contour plot of the diffusion constant as a
corresponds to the perturbation expansion of Eq. 6.3.3
group result.

function of A and 32Xo/3. (a)
and (b) is the renormalization
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Numerical determination of the diffusion constant

In order to go beyond the simple assumption of a Gaussian form, we need to imple-

ment a numerical approximation method for determining the Green's function and

subsequently the diffusion constant. The numerical solutions are calculated in Laplace

space using a basis set approach, which is similar to the approach of Deem and Chan-

dler [55]. Approximate 1 t and 2 d order solutions using a 16 function basis set were

determined as functions of 2- for A/Do = 0.0, 0.4, 1.2. These results are presented

in Fig. 6-2(a),(b), and (c) for A/Do = 0.0, 0.4, 1.2, respectively. These figures also

compare the RG calculation and the simple self-consistent result, Eq. 6.3.3.

The basis set equations are complicated non-linear integral equations that are

difficult to solve analytically or numerically. Several numerical approximations used

in evaluating these expressions introduce errors other than the choice of the basis

set. To aid in convergence with these numerical approximations, a Pde approxi-

mation is introduced. This approximation has the correct 1st and 2 d order terms,

but also includes additional higher order terms that may aid in convergence. This

approximation combines our 1st and 2nd order correction terms in eq 6.2.3.

1St order expression
1 2nd order epression

1st order expression

The errors introduced in determining the numerical results are higher than second

order in terms of disorder strength so the equation is still accurate at 2nd order.

These approximations are not necessary for the A - 0 limit, and a comparison of

the numerical solutions with and without the PAde approximation in this limit shows
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Figure 6-2: Comparison of the lst order (empty circles) and 2nd order (filled circles)
numerical solutions derived from the basis set approach outlined in section 6.3.1 and
the results of Eq. 6.3.3 (solid line), and the renormalization group (RG) (dashed line)
for (a) A/D( = 0.0, (b) A/Do = 0.4, and (c) A/Do = 1.2.
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good agreement at moderate disorder strengths. The Pde approximation prevents

higher order terms contained in the 1 t and 2nd renormalized expressions from strongly

influencing the fit, which makes our calculation less sensitive to other approximations

necessary to numerically calculate the diffusion constant. This is especially important

since the terms captured by the 2 nd order expression are predominately positive, which

may prevent convergence since we are only summing some graphs. The extra higher

order terms in the Gaussian reference calculation in equation 6.5.14 may also alleviate

this sensitivity, as would including higher order terms in the perturbation expansion.

Numerically, both the 2nd order Gaussian reference calculation and including higher

order perturbation expansion terms would be difficult and is not performed here.

A detailed discussion of the results for the calculations performed in this paper is

presented in section 6.4.

6.3.2 Non-Gaussian indicators

In order to analyze the non-Gaussian nature of the model, we need to define quantities

that measure the deviations from uncorrelated behavior. Experimentally determining

deviations from Gaussian behavior is difficult with a single particle, so we analyze

the model for two particles that is developed in section 6.2.2. The indicators should

demonstrate collective motions like clustering because of structures in the system that

prevent two particles from moving independently. Both of these effects are observed

in experiments and simulations of real systems like glasses [141, 61, 63, 65, 174, 209].

Two correlations that are measured in several single molecule experiments are
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the dot product of the displacement vectors of two particles initially separated by

a distance r', R 1 6R 2, and the square of the displacements, R 2 R22 [43, 195].

The subscripts label the particle and the 6 denotes the displacement from the initial

position. The equation for the two-particle propagator is difficult to manipulate

because it requires the solution for the one particle Green's function. To simplify the

analysis, we perform an asymptotic expansion of the equations and only evaluate the

non-renormalized terms. To normalize the function, we divide this quantity by 32Xo.

The two correlation functions are

C (r,t) = (SR1 (t) 6R2(t)) (6Rl(t). R2(t)) (6.3.5)
( 32 Xo) ( 6RI2 ) (32Xo)(2dDot)

C2(r. t): JRl (t)2 16R2(t) 2)- ( R 2)2 (I Rl(t) l21R2(t) 2) -(I1R 22
(/ 2Xo) (16RI2)2 (2Xo)(2dDot) 2

(6.3.6)

To first order these can be written in Fourier space as:

(/2x)( 2dDt) (2 )d Vkl Vk2 (e ik2 r] Jdh dT dT2

x {kl. (kl - h)k2 (kl - h)(kl - hl, 171 - 7T2 )Go(k, t - T-)

xGo(k2, t - 72) Go(h, 71) exp[i(k + k 2 - h)- r] Go(k1 + k2 - h, 72)})

(6.3.7)
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)(2dD)(2 ) Vv (exp[-ik' r] dhfj dTl f d2('2Xo) (2dDot) (2-F)d kl kV

x {kl. (k1 - h)k2 (kl - h)(Ikl - h , 71 - 2 )Go(k1, t - Ti)

xGo(k2, t-T - 2) Go(h, 71) exp[i(k + k2 - h). r]Go(k + k2 - h, 72)})

(6.3.8)

The 1 t correlation C1 contains both angular and radial information, while C2

contains only radial information. These quantities are useful in micro-rheological

experiments [43, 195]. Because the integral is Gaussian for our model potential,

these expressions can be integrated analytically, resulting in complex expressions that

are omitted. The two correlation functions behave similarly so we only present the

features of C2 in Fig. 6-3 (a) and (b). These figures are analyzed in section 6.4.

6.4 Analysis of results

In the previous section, sec

are defined and determined

presented in eq 6.1.3. In this

of the solutions to compare

of the unusual properties of

6.3, the diffusion constant and non-Gaussian indicators

by renormalized perturbation for the random potential

section we present a detailed discussion of the properties

these results to previous models and demonstrate some

this model.

6.4.1 Diffusion constant

Section 6.3 presents several approximations for determining the diffusion constant,

and section 6.6 presents a renormalization group (RG) approximation of the diffusion
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Figure 6-3: Time dependence of the non-Gaussian indicator C2. (a) shows the behav-
ior of C2 as a function of time for several values of initial separation with A/Do = 0.4.
(b) shows the behavior of C2 as a function of time for several values of A with r = /.
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constant. Due to the technical nature of the RG calculation, we compare the results

of the perturbation and RG calculations in this section before discussing the details

of the RG calculation in section 6.6. The analysis begins by defining v as our

length scale and - as our time scale. With the redefinition of our length scales, X in

Eq. 6.1.3 is uniquely determined by two dimensionless quantities and A/Do. All

figures and discussions of the effects of the hopping rate, A, and the disorder strength,

Xo, are in terms of these dimensionless quantities and the diffusion constant is also

made dimensionless by dividing by Do.

Figure 6-1 presents a contour plot of the solution that is generated from Eq. 6.3.3

and the RG calculation in section 6.6. Both plots appear similar for weak disorder

strength because they capture the correct first order response of the diffusion constant.

In the weak disorder regime, the diffusion constant is dominated by the disorder

strength because the hopping rate's effect on the diffusion constant is proportional

to the disorder strength. For moderate hopping rates, A, the two figures agree up to

stronger disorder strengths because the two equations yield similar results as long as

D stays close to Do.

For strong disorder strengths, the two equations show markedly different charac-

teristics. For a small hopping rate, the perturbation solution, Eq. 6.3.3, predicts that

the particle becomes trapped for moderate disorder. Because X(O, 0) is Gaussian, it

can never be large and trapping should not occur [59]. The trapping predicted by

perturbation expansions is common in disordered media problems because the effect

of the disorder is over-emphasized [54]. For larger hopping rates, the perturbation

result predicts that the diffusion constant approaches the hopping rate, which sug-
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gests that the particle is trapped in a well that is moving at the hopping rate. As

mentioned previously, a well-defined time constant for the hopping is not defined so

this result is as unphysical as the trapping predicted for a small hopping rate.

Unlike the perturbation result, the RG calculation never predicts trapping. The

solution remains above the solution determined by Dean and by Deem, which is above

the lower bound determined by De Masi et al. [51, 55, 59]. In fact, in the A -- 0 limit,

the results of Dean and of Deem are recovered [51, 55]. For any value of the hopping

rate, the diffusion constant approaches zero in the strong disorder limit so the contour

lines of Fig. 6-1(b) never become parallel with the 32Xo/3 axis. For A >> 0, the

diffusion constant approaches zero as a power-law, see Fig. 6-4. Except for small A,

the exponent is weakly dependent on A and close to unity.

The numerical solutions are more computationally intensive than the simple self-

consistent equation, Eq. 6.3.3, and the RG result so these equations are used to deter-

mine the diffusion constant for specific values of the hopping rate, A/Do = 0.0, 0.4, 1.2.

These results are compared against the results of Eq. 6.3.3 and the RG calculation

in Fig. 6-2. All of the different techniques agree in the small disorder limit, but the

numerical calculations predict trapping of the particle for finite disorder strength for

all values of A. The 2 d order numerical solution agrees with the RG solution for

larger disorder strengths than the 1St order numerical solution. The better agreement

between the RG and 2 nd order solutions for diffusion problems in the static limit has

been demonstrated in several papers, and numerical simulations in the static limit

suggest that the RG calculation may be correct up to larger disorder strengths than

would be expected from a first-order RG result [37, 164]. Because of these previous

227



0.0 5.0 10.0
P

2
X,/3

(a)

2.0 3.0 4.0 5.0

In(3
2
XW3)

(b)

Figure 6-4: (a) shows the behavior of the diffusion constant predicted by the renormal-
ization group calculation over a large range of disorder strengths for A/Do = 0.0, 0.4,
and 1.2. (b) is a log-log plot of the diffusion constant versus the disorder strength
for large disorder for A/Do = 0.4 and 1.2. The static limit is not plotted because
it is an exponential. The straight line with nearly unity slope shows the power-law
dependence of disorder for moderate values of A
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studies, the static disorder results are not surprising, and our RG calculation is a

reasonable extension of these previous calculations.

The A/Do) = 1.2 case demonstrates interesting behavior because non-renormalized

perturbation expansion predicts that the diffusion constant initially increases as dis-

cussed above. Because of the power-law time dependence of the potential correlations,

one expects stronger disorder strength to eventually restrict the motion of the particle

causing a decrease in the rate of diffusion. These intuitive arguments agree with the

numerical calculations and the RG result and show that these results capture the

physical aspects of the problem. Diffusion initially increases with increasing disorder

strength but it eventually decreases in the strong disorder limit.

6.4.2 Non-Gaussian indicators

Determining the diffusion constant for disordered media is important in many indus-

trial processes like chromatography, but single molecule experiments do not study

macroscopic diffusion. The experiments study deviations from simple diffusion on

intermediate time scales. Although more detailed calculations can be performed, the

simple first order non-renormalized calculation demonstrates several of the interest-

ing features of this model, including an apparent cluster-size and the effect of the

dynamics of the random potential, A (which can be shown from the C1 calculation in

Eq. 6.4.1 below). We defined two non-Gaussian indicators in section 6.3.2 in order

to capture the angular and radial dependence of correlations involving two Brownian

particles separated by an initial distance r.
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The C1 correlation function contains information that can be interpreted as clus-

tering. Clustering of the two particles would correspond to the particles having a ten-

dency to move together resulting in a decrease in the distance between them as com-

pared to the motions of independent particles. As a result, (R 1 - R2) 12) would be less

than the value predicted for independent particles. Because (r. R1 ) = (r. 6R2) = 0,

(R 1 - R212) = (R - r - R 212)

= (R1 2) + (R21 2 ) + r 2 - 2. (R 1 . R2 ). (6.4.1)

From this expression we see that a positive C1 means that particles have a tendency

to move closer together than predicted by independent motion and a negative C1

corresponds to the opposite behavior.

The C2 correlation function is a measure of correlations of the rates of diffusion

for the two particles as compared to independent particles. We concentrate our

analysis on C2 because the two functions share similar characteristics with only minor

quantitative differences which will be discussed below. Since there are only small

differences, the graphs in Fig. 6-3(a) and (b) only correspond to the C2 correlation

function. We are examining the non-renormalized perturbation calculation and all

quantities are proportional to the disorder strength. Similar to the diffusion constant,

the natural length scale is V/ and the natural time scale is a/Do. Because of these

relationships, , Do and 3 2Xo/3 are set to unity. The important parameters that

have a qualitative effect on the non-Gaussian indicators are the initial separation of

the two particles, r, and the relaxation dynamics of the potential, A.
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The effect of the initial separation is stronger than the dynamics of the potential

since the time dependent factor is also dependent on the spatial factor, exp[- rl 2 /(o+

At )]. For short times, the temporal decay of the spatial correlations is not large and

the correlations are completely dominated by the spatial separation. The strong de-

pendence on r is apparent by examining Fig. 6-3 and Fig. 6-5. For small initial

separations, the system shows strong positive correlations for both C1 and C2 , result-

ing in a high positive peak. For larger values of r the strength of the correlations

decrease and both C1 and C2 show anti-correlations in the short time behavior for

some values of r. The C1 correlation shows only a simple inversion for r > v/6a. As

discussed above, negative correlations in C1 correspond to a larger increase in the

distance between the two particles than would be expected for independent particles.

The C2 correlation shows a more complex inverse response. For 1.9Vo > r > 4/a

the correlation function shows an initial inverse behavior, but some values of r > 4 /a

the correlation is initially positive for a short period of time before becoming nega-

tive. In the long time limit, all correlations become positive and decay as power-laws,

C1 x t- 1 and C2 x t- . The power-law behavior comes from the normalization of

the correlation functions, but it demonstrates that the correlations between the two

particles remains significant even at large times.

Unlike the strong qualitative effect of the initial separation, the time dependence

of X only affects the quantitative features of the correlation functions. The qualitative

shapes of the correlations do not change, but the heights and positions of the maxima

change as A changes. The time and height of the maxima of C2 as a function of r

for several values of A are presented in Fig. 6-5, which demonstrates the qualitative
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Figure 6-5: (a) shows the maximum value of C2 as a function of initial separation,
r, for several values of A. (b)shows the time of the maximum. From the figures it is
apparent that A does not qualitatively affect the shape of these graphs.
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effects of r and the quantitative effects of A.

The strong positive correlations between particles separated by small distances

suggest that the model does exhibit clustering behavior. The particles that are within

/ Ga diffuse with similar speeds and have a tendency to move closer together than

expected if they are uncorrelated. This behavior is similar to what is expected for

particles in the "same cluster." If the particles are farther apart than the length of

a cluster, they are in two "different clusters," which have a tendency to diffuse away

from each other, leading to negative correlation in C1.

6.5 MSR field theory

The perturbation expansion equations can be derived using the MSR formalism [143,

166, 109]. But most applications of MSR to diffusion problems have been centered

around RG calculations and reference systems [25, 55, 51]. These efforts are stimu-

lated by the quenched disorder problems where the Green's function instead of the

generating function should be averaged over quenched disorder [25]. As stated in the

introduction, section 6.1, the non-trivial terms for this particular problem are the

same regardless of averaging over the generating function or the Green's function so

we examine the perturbation expansion of this problem as well as a reference and RG

calculation. This equivalence between the different averaging techniques for certain

dynamic problems has been discussed elsewhere, and should not be surprising since

the system will always be diffusive [49, 48, 24, 59, 36, 55]. For a more detailed discus-

sion of MSR. we refer readers to several references [143, 49, 48, 56, 57, 58, 166, 167,
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168, 107, 109, 3, 24, 55]

6.5.1 The generating functional

To write the random media problem into the field theoretic formalism we note that

the diffusion equation is also the equation for the change in the probability density

at a point in space. With this idea we can write a replica generating function in a

form that is similar to a Feynman path integral. Defining

Go1(i, 2) = 6(1 - 2)(0t2 + Dolk2 2) = 6(1 - 2)(-at, + Dolk1 2), (6.5.1)

and

(i, 2, , 4) =

( )2 6(tl - t2)(t3 - t4)6(k1 - k2 + k3 - k4)
(27)d

xk1. (k1 - k2 )k3 ' (k3 - k4)x(Ikl - k2, Itl - t3 i)

the generating function is

Z [i, i]= E [pj]Eji]

1
exp [-Go-l(i, 2 )/i(1)pi( 2) + y7(1, 2, 3, 4 ) i(1)pi( 2 )3 j( 3 )pj( 4 )

+ i(l)pi(1) + i(1)3i (1)] (6.5.2)
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where we integrate over repeated arguments and sum over indices i and j [109, 55].

The notation we use in equation 6.5.2 is consistent with Jensen's work. The variables

1 = [k1, t] and 2 = [k2, t2] stand for all variable parameters, like space and time and

the components of these variables are denoted with a subscript, 1 or 2. This generating

function introduces a conjugate variable p(1), which acts as an infinitesimal density

creation operator. Differentiation of n Z with respect to (i(1) and (i(1) determines

the desired statistical quantities. For the perturbation expansion we take N = 1 since

we are averaging over the generating function. In the reference calculation, where

the Green's function is averaged, the N - 0 limit is taken in the replica action,

which eliminates several terms that are present in the N = 1 limit. It may appear

that the two different limits cannot both be correct, but the additional terms in the

perturbation expansion that are eliminated in the N - 0 limit are non-causal and

evaluate to zero as discussed above [49, 48]. This result gives us confidence that our

MSR perturbation, where we do not take the N --+ 0 limit, does not fail to properly

average over the disorder [25]. The ry is the Jacobian which depends on discretization

and can be assumed to be constant.

The action in equations 6.5.2 is very similar to the actions in other references on

diffusion in random media [55, 54, 37, 164, 25]. Our derivation is for the general case

of dynamic disorder and our equations simplify to these previous results in the static

limit. Because we consider dynamics, we must integrate over time or frequency, which

can often be omitted in the static case [55]. Some slight differences also come from

our definition of p, which is equal to -ip in several references [55, 160, 123, 124]. The

largest contrast comes from our action being defined in Fourier space so the signs
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of some of the arguments, like 2 are reversed. Because of the domain of definition,

the Fourier transform of corresponds to density created at a specific wave-vector

instead of a specific point in space.

The generating function gives us all of the desired statistical quantities by differ-

entiating In Z[i, i] with respect to the generating variables (i and (i. The replica

trick that we use in our Gaussian reference calculation replaces the ln Z[(, ] with

limNo N , but we are still evaluating the same quantities. The Green's function

is defined by

62 n Z[~i, j]0
((p(1)/(2))) = G2(1, 2) = °l)i,] , (6.5.3)

This quantity is the response function and it represents the creation of density at the

wave vector k2 at time t 2 and subsequently measuring the density at the wave vector

kl at time t, which is similar to the definition of the Green's function defined in

Eq. 6.1.1, except that the density creation is defined in Fourier space.

6.5.2 MSR perturbation theory

One particle propagator

The perturbation method follows the derivation of Jensen [109]. We explicitly con-

struct Schwinger and Dyson equations from Z[i, J] instead of evaluating n Z[i, ~].

N = 1 and we are not introducing the unphysical replica trick. We also introduce the

Legendre transform variable F,

F [G1, 1 ] = n Zg[, ~] - ~(1)G 1 (1) - ()G 1 (i) (6.5.4)
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where i and i refer to p(i) and p(i), respectively. When the variable is either p(i) or p(i)

it appears as i. The Legendre transform formally closes the Dyson's equation. Note

that the Green's functions generated by Z[~, ] are already averaged over the random

potential and the (...) is omitted. We assume that F2 (1,2)= -G-1(i,2). This

equality is not necessarily strict but it allows simple manipulation of the equations.

The equations derived by MSR allow us to use perturbation theory to systematically

expand and evaluate the self-energy, as demonstrated by Deker [56, 57, 58]. The

resulting set of equations is:

G2(1', ") = Go(l', 1")

+Go(l', i)y(i, 2, 3, 4) [G2(2, )G2(3, 6)G2(4, )G2(i", 8)rF4(5, 6, , 8)

+ G2(2, 3)G2(4, i")] (6.5.5)

F2(1', i") = -G2(l', i ") =

-Go (1', 1") + y(i", 2, , 4) [G2(2, 5)G 2(3, 6), G2(4, 7)F 4(5, 6, 7, 1')

+ E G2 (2, 5)G2 (3, 6)G2 (4, 7)G 2 (9, 1O)3 (9,j(# i), k(# i,j))
i=5,6,7

xrF (10, 1',i)

+ E G (i)G2(j(# i), 5)G2(k(# i,j), 6)r3(g, 6, 1')]
i:-=2,3,4

+ 1(i1 , , 4) [G 2 (3, 4) + G 1 (3)G 1 (4)]

+ -,(i", 2, 3, 1') [G2(2, 3) + G1 (2)G1 (3)] (6.5.6)
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r3(1', 1, 1"') = 6F((1', ") (6.5.7)
6G, (i"')

r4(l, i", , i v) 6= r2(l, i") (6.5.8)
6G1 (1"'), 6G1(iiv)

with Go(1, 2) defined as

Go(1, 2) = 0(tl - t 2)6(k 1 - k 2) exp [-Dotl - t2 kl1 - k2 2]

The MSR Go above differs from its analogue in the direct perturbation calculation

in section 6.2, because it is a function on two different sets of coordinates. The MSR

Green's function is a measure of the response of the system at the coordinate labeled

1 to the introduction of density at coordinate 2 so the zeros of the system are still

arbitrary. The step function, 0(t), enforces causality and the 6 function enforces

translations invariance. To recover the usual Green's function with the creation event

centered at the origin in real space at time t = 0, we set t2 = 0 and integrate over

k2. The variables of the form i must be integrated over both arguments i and i, but

many of the terms that they represent are zero. The result is similar to Deker's result

for a cubic field at the 2 d order [56]. For the 2nd order expression, we evaluate r4 to

1St order. 4 has two terms to 1 t order.

r4(l', i", 1'"/, i v) = 7(", 1, i iv, 1) + (i, 1, i iv , 1)238
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We substitute this expression for r4 in Eq. 6.5.5 and G2 becomes

G2(1', ") = Go(l', i")

t- Go(l', i )y(i , 2, 3, 4)G2 (2, 3)G 2(4, ")

+Go(l', i)-y(l, 2, 3, 4)G 2(2, 5)G 2(3, 6)G 2(4, 7)G 2(i", 8 )'y(5 , 6, 7, 8)

+Go(1', i)y(1, 2, 3, 4)G 2 (2, 5)G 2 (3, 6)G 2(4, 7)G 2(i", 8)y(5, 8, 7, 6)

(6.5.9)

The last term is zero because it violates causality and it would be zero in the replica

action because of the N - 0 limit. Integrating over kl,, and setting tl,, = 0 results

in the 2nd order expression, which is identical to equation 6.2.3.

G(k, t) = Go(k, t)

(27r)d dhdTld2 {k (k - h)h.

xGo(k, t - 7)G(h, 71 - 72)G(k, 72 )}

(3Do ) 4

+ (27r)2d I dhldh2dTldT2 d3dr4{k. (k - hl)h2 (k - hi)

xhl (k- h)(k - hi)' (k- hi + h2)(k - hll, 17, - T31)

xx(lhl - hl 1, 2 - 7T4 )Go(k, t - 71)G(hi, T7 - 2)G(h 2, 2 - 73)

xG(k - hi + h2, 73 - 4)G(k, 74)}

The average of G(k, t) over disorder is implied. The perturbation expansion of
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the 2 d order term has a simple graphical expression that follows the notation used

by Deker. As can be seen from the Dyson series above Eqs. 6.5.5-6.5.8, the MSR

perturbation method expresses the Green's function in terms of a self-energy term,

which explains the equivalence between the directly renormalized perturbation and

the MSR results.

Two particle propagator

The ltorder perturbation result with MSR is obtained from a simpler procedure than

the direct perturbation result, but we do not determine a self-consistent equation. A

self-consistent equation can be calculated with some complexity, but the definition

of a two-particle propagator, G(1 2 ), is a natural result of the vertex functions. We

start by setting N = 2 in the replica generating function and defining the two one-

particle propagators, G(1) and G( 2), where the superscripts have a similar meaning

as section 6.2.2, but G(2 ) does not contain exp[ik r]. We also define a two particle

connected Green's function as

G4(2', 2', 3', 4') = 64 Z[i, (65.11)
6l ( )61 (2')642 (3)62 (4')

Similar to the one particle propagator, we must add the initial conditions by setting

t2, = t4, = 0, multiplying by exp[ik 4, r] and integrating over k4, and k2 ,. Finally,

we remove the primes on the labels and change the label of k3 to k 2 to recover the

first correction to the two particle propagator which is captured in the expansion of

the self-consistent equation, Eq. 6.2.4.
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G(12) (kl, tl = t, k2 , t2 = t) = GO1) (kl, t)G ) (k2, t) exp[ik2 · r]

((2 )d /dho dTl o dr2 {kl (k -h)k 2' (k l-h)

xX(lkl - hi, - T2 )G(1)(kl, - T1)G(2)(k2,t - 72)

x G(1)(h, r1)G(2)(kl + k2 - h, 2) exp[i(k + k 2 - h) r]} (6.5.12)

6.5.3 MSR with replica trick and Gaussian reference system

The MSR perturbation is an asymptotic expansion, which may not have good accu-

racy at large disorder strengths. To overcome the difficulties of asymptotic expan-

sions, several references introduce a variational technique that attempts to minimize

the errors. These variational methods are referred to in the literature as the Gaus-

sian reference technique [18, 55, 54, 160]. To first order these techniques resemble

the Edwards variational method. In the Gaussian reference technique the full ac-

tion is fit with a new action that only contains a quadratic term, but the term is

not necessarily Gaussian. The technique avoids the Dyson equation and the vertex

renormalization used in section 6.5.2. With the time dependent generating function

for ZN[0, 0] derived in Eq. 6.5.2 the Gaussian reference technique follows the same

procedure as several references except that it is necessary to integrate over the time

or frequency variable as well as the spatial variables [25, 55, 54]. The results of this

technique are time dependent analogues of the results in the references and reduce to
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these previous expresssions in the static disorder limit. For 1 t order we get the first

two terms derived in Eq. 6.5.9

G2(1', i") = Go(l', i") + Go(l', i)y(i, 2, 3, 4)G2(2, 3)G2(4, i"), (6.5.13)

but the 2 d order expression is more complex

2Go(l', i") = 3G2(1', i") - G2(1', i)Gol(i, 2)G2(2, i")

+ 4G(1', 1i)y(1, 2, 3, 4)G 2 (2, 3)G 2 (4, i")

- 2G2(1', i)y(1, 2, 3, 4)G 2(2, 3)G2(4, i")

+ G2 (1', 1)ty(i, 2, 3, 4)G2 (2, 5)Go-(5, 6)G2(6, 3)G2 (4, i")

- Go(l', i)y(i, 2, 3, 4)G2 (2, 3)G2 (4, (5)y(, 6, , 8)G2 (6, 7)G2 (8, 1")

- Go(l', i)y(i, 2, 3, 4)G2 (2, 5)y(5, 6, 7, 8)G 2 (6, 7)G 2 (8, 3)G 2(4, i")

- Go(l', i)y(i, 2, 3, 4)G2 (2, 5)G2 (3, 6)G 2(4, 7)G2 (i", 8)-y(5, 6, 7, 8)

+Go(l', i)y(i, 2, 3, 4)G 2(2, 5)G 2(3, 6)G 2(4, 7)G 2(i", 8)-y(5, 8, 7, 6)

(6.5.14)

Expanding terms that contain Gol or no Go demonstrates that this expression is the

2 nd order perturbative term, Eq. 6.5.9, with additional third and higher order terms.

These additional terms may improve the fit but they generally make numerically

solving the self-consistent equations difficult by adding complexity to the equations.

Because of this difficulty, we do not solve the 2 d order reference system calculation
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in this article.

The equality at 2nd order is not unexpected because there is only one 2 nd order

graph that is not contained in the graphical expansion of the 1st order self-consistent

equation. The Gaussian reference method has many terms that appear redundant.

At 2 nd order the terms cancel but they do not necessarily cancel at higher order. As

a result, this method over counts some graphs and subtracts graphs that should be

added. The expansion is also much more complicated and does not allow systematic

diagrammatic analysis. Determining additional graphs to include in the expansion

is difficult so expanding beyond 2 d order requires one to start from the 3 rd order

variational expression and re-evaluate the higher order terms.

6.6 Renormalization Group Result

eo further demonstrate the consistency of our results with other MSR methods, we

perform a simple 1 t order renormalization group calculation to determine the effective

diffusion constant. The calculation parallels several other one-loop approaches [55,

37]. More sophisticated renormalization group calculations on the action in Eq. 6.5.2

have been used to determine the diffusion constant in static random media problems

in several references as well [123, 124]. Our approach is not general, but it allows

the incorporation of dynamic disorder and the spirit of these calculations can be

implemented for other forms of disorder. This approach also recovers the general

form suggested by Dean and by Deem in the static limit, A - 0 [51, 55].

The calculation begins by Fourier transforming the time variable, t -+ w so that
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1 = [kl, wl] and Go 1 = i + D k 2 in our generating function. Since the calcula-

tion is to first order we can take the number of replicas to be one. We introduce

an artificial cutoff frequency in the spatial transform variable k, denoted kc, and

define a momentum shell composed of frequencies that we eventually integrate over

(klb < Ikl < k) with b > 1. To first order we can replace (i)p(j) with ki, kj > k/b

with (i- j)(iLwi + D ki 2)-. With these substitutions the action in our functional is

-Gol(1, 2 )/3(1)p( 2 ) + -y?(l, 1', 1', 2)Go(l', 1')p(1)p(2)

+ 7-(l, 2, 3, 4 )(1)p( 2 )p( 3 )p(4 ) + const (6.6.1)

where the 1' is integrated for k/,lb < k' < k, the other k variables are integrated

for kl < k/b, and all frequencies are integrated from -cx to oc. The constant term

comes from integrating the terms with kl > k/,lb for all p and . This term only

changes the normalization and will be omitted in further calculations.

Up to this point the random potential correlation function, X has been general.

Now we introduce the 3 dimensional X in Eq. 6.1.3 and evaluate the integrals over '

and k'. Integrating over w' is done in a straightforward manner, but the k' integral

has some difficulty. Since the final form should resemble a free diffusion propagator,

we will perform a Taylor expansion of the integral in terms of k 2 up to 2 nd order and

assume the other terms are small. The new action is

-Jdld2{(1 - 2) 2 + D - (2) 3/2o (D)

x dr{[2- 2 - D + Al rexp[-r]}) k2 )(1)p(2)}
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1 (OD 
+ 2 (-2)2) dd2d3d4(1 - 2 + 3 - 4) {k1 (k1 - k2)k3 .(k3 - k4)

x2(2r)(2a) Akl - 2 exp[-a kl - k 2 2]
(X2 kl - k2 14 + (W1 - W2)2

x5(:l)p(2)3(3)p(4)} (6.6.2)

with k,/b < r = Ikl < k, and Ikl < klb. To get this result, a term of the form

(iw + (D + A)r2)- l is replaced with ((D + A)r2)- l since r is large and the major

contribution from w are for w 0 O. Rescaling k by b, w by b2 and the field variables, p

7and 3, by b-- 2 results in an action with the same form as our original and the proper

limits of integration.

dld2 6(1 - 2) i a2 + D 3 /;(2a)3/2X D+)

x /dr{[2 ar2 - D + A2 expar2]}) k2 ) p(1)p(2)}

+ () 2 d1d2d3d45(1 - 2 + 3 - 4) {k1 (k1 - k2)k3 (k3 - k4)

x2(2ir)~(2a)~X0Ak x k 2 2 exp[-c k1 - k2 2]
2(2kl 1 - k214 + (l 1- 2)2

xp(l)p(2)/(3)p(4)} (6.6.3)

It is a new scale factor that modulates the Ik 2 term in the exponential. Before the

1s t iteration of the renormalization group, = 1. From this equation we determine

the relationship between the old parameters and the new parameters, denoted with
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a prime.

! b2

D' D -D- 3v(2) 3/2xo ()2 f dr {[2- a/ 2f r2 exp[-autr 2]}

By resealing Xo by ( D) we replace the D2 in the quartic term with (D')2. Choos-

ing b = exp[A(] with zA - 0 allows us to write approximate equations for the changes

in these variables. These approximations will become accurate in the limA-o.

A - -2A(

AXo -Xo3AC

+ X 32 8 (2a()3/2 (2 f 2- -
2 D+A k3 exp -ack2]} A

AD - 4 (2a )3/2Xo (, { [2-a kc2 D A 3 ex[-agk 2]} A
3 V2 7r I "D+A I

The 2 nd term in the flow expression for Xo can be made arbitrarily small by choosing

a large enough cutoff frequency, k,. This assumption fails when the /u becomes

extremely small, but Xo can be arbitrarily small at the point of the failure, which

allows us to neglect this term. This argument depends on the decay of Xo being

faster than the decay of /u. From the first two equations, /z and Xo have a simple

exponential form in terms of C = NA( where N is the number of iterations of the

RG calculation.
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= exp[-2(]

Xo = [Xo](=oexp[-3(]

Substituting these expressions into the expression for D leads to the expression

dD 4 (o3D ) 2

d( 2-- 3 + A

x 2 - a exp[-2]kc D + A kc exp[-3(] exp[-a exp[-2]kc2]

(6.6.4)

The new diffusion constant is the value of the solution to this equation at C = C

with D = D (the free diffusion value) at = 0. The equation simplifies further by

introducing a new variable of integration k = - kcexp[-], and defining dimen-

Dosionless quantities D' =D and A' = . In the limit as the cutoff frequency goes to

infinity, the initial conditions are D' = 1 at k = -oc, and the solution is D' at k = 0.

With these substitutions the equation for D' is straightforward in form.

dD' k 2 D 2 A'
dk = A' k D' A' exp[-k 2] (6.6.5)

with

a= ( [Xo]=o)

For D D, the equation is just an integral and the result is the 1st order non-

renormalized perturbation result
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2 (Do - A) 2X
D = Do - Do (Do A )2 3-X. (6.6.6)

This expression can also be derived by substituting D = Do in Eq. 6.3.3 and shows

that the expression has the correct initial slope. The expression also recovers the

static disorder limit ( A - 0) reported in several references [55, 54, 51, 52, 164, 37],

D=Doexp - 2X (6.6.7)

A discussion of the comparison between the RG results and the perturbation

results was presented in section 6.4. As discussed in section 6.4.1, the RG calculation

presented here gives the correct first order perturbation result and examination of

the flow equation, Eq. 6.6.5, demonstrates that the solution does not go to zero for

finite disorder strength. As a result, the particle avoids trapping. As mentioned in

Sec. 6.4.1, the particle should exhibit this non-trapping behavior. The solution to

this equation for the dynamic potential remains above exp[- 23-], the static disorder

solution in Eq. 6.6.7, which is also above the lower bound predicted by De Masi et

al. [55, 59].

6.7 Discussion of Results

In this paper, we have extended previous MSR results for diffusion to a random po-

tential with both spatial and temporal correlations. We perform a Dyson expansion
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to develop renormalized propagators for one- and two-particle systems. These prop-

agators determine the characteristics of the system including the diffusion constant

and non-Gaussian indicators. Most of the results are general for arbitrary dynamic

potential correlation function X or can be generalized by following the spirit of these

calculations.

The field theoretic method developed by Martin, Siggia, and Rose is shown to

be consistent with the direct Dyson expansion. A perturbation expansion using the

MSR method yields the same single particle propagator to 2nd order and the same 1 t

order expression for the two-particle propagator. The field theoretic method of MSR

can also be used to determine an Edwards type of variational fit of the propagator,

which has the same 1 t order expression as perturbation but a more complicated 2nd

order expression. The variational approach is also consistent with previous static

calculations [55]. The diffusion constant is also determined from a renormalization

group calculation. These results are consistent with previous work in the static limit

and give a reasonable generalization to dynamic disorder [51, 55].

The renormalized perturbation expansion used to determine the diffusion constant

demonstrates the expected behavior of a perturbation expansion. The results match

the non-renormalized expansion for small values of disorder strength but eventually

they deviate from reasonable behavior and predict trapping. The dynamics of the

potential correlation function, A, increased the diffusion constant because any barriers

to diffusion would eventually rearrange and allow the particle to move. Contrary to

this intuitive result, the renormalized perturbation expansion still predicts trapping

for finite disorder strength. A renormalization group calculation with the MSR for-
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malism shows more reasonable behavior with the diffusion constant decreasing as an

exponential with respect to the disorder strength in the static limit, which is consis-

tent with previous calculations and simulations, and as a power-law for a system with

non-zero A [55].

The correlation function determined by the perturbation expansion for the two

particle Green's functions exhibit collective behaviors that can be interpreted as clus-

tering in this model. Particles that originate near each other have a tendency to

diffuse with similar rates and move closer together. This behavior results in long

lived correlations that are apparent even in the non-renormalized expressions. Since

perturbation expansions have a tendency to over-emphasize the effects of the po-

tential, we expect that the renormalized propagator will demonstrate even stronger

correlations between the particles.

Although the model was chosen for computational convenience, the correlations

exhibit behaviors that are similar to real systems like glasses and supercritical fluids.

This study also demonstrates that the analytical and computational methods used in

this paper can be applied to the diffusion of a solute in real systems with a potential-

potential correlation function determined for these systems.
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Chapter 7

Continuous Time Random Walks:

aging correlations and coupling to

kinetics

Several single molecule tracking experiments suggest the existence of dispersive trans-

port mechanisms for the motions in glasses, cells and proteins [152, 181, 216, 2, 96,

128, 182]. The general feature of dispersive transport is complex non-exponential

temporal relaxation, which can be phenomenologically fit with a long time power-law

tail or a stretched exponential. Phenomenological dispersive transport models often

incorporate the non-exponential relaxation into diffusion problems by replacing the

exponential waiting-time distribution of traditional diffusion processes with a more

complex waiting-time distribution through subordination, which results in a contin-

uous time random walk (CTRW) or the related fractional Fokker-Planck equation
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(FFPE) for sub-diffusion [79, 116, 194]. The origin of the complex waiting time has

been extensively explored in simulations of glassy systems [64, 32] and is attributed

to activation processes with randomly distributed energy barriers [233, 25, 153].

Many processes appear to obey power-law statistics over several decades before

achieving an equilibrium state where the time correlation of the system becomes sta-

tionary [39, 225]. Examples include quantum dot blinking experiments that show

a laser power dependent cutoff in the blinking statistics [39], and photon emission

statistics in proteins, whose complex correlation function shows long time exponen-

tial relaxation [225]. Since aging would cause the system's behavior to change over

time and additional processes that can truncate the aging in the system are almost

always present, it is not surprising to see a cutoff in the power-law correlations ob-

served in experiments [39, 225]. These truncations would have noticeable effects on

biological processes where the complex transport dynamics are coupled to first order

processes [200, 182, 127]. In these experiments, a kinetic rate of a process depends on

a distance coordinate, which moves according to a CTRW or other dispersive trans-

port model [77]. A simple example is an electron or proton transfer reaction where the

rate of transfer depends on the distance between the donor and the acceptor [240]. If

distance is modulated by a dispersive transport process, one expects non-exponential

kinetics for the reaction.

The truncation of the aging processes and the inclusion of first order kinetics in

dispersive transport models can be treated within the same framework by simply

including a first order kinetic scheme that preserves probability to introduce a cutoff

or removes probability to introduce reactions. In order to understand the applicability
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of the anomalous diffusion models with first order kinetics to biological experiments,

one must address issues associated with the coupling of these mechanisms. Several

authors previously considered coupling of dispersive transport with a single a function

sink [185, 201, 200]. Here we consider more general scenarios and derive several

possible limiting cases. To extend applications of FFPE to systems whose aging

processes are interrupted by truncation or reaction requires us to develop a general

description of trapping processes [139, 233, 25, 153].

7.1 General two-time Semi-Markov construction

A semi-Markov process is the most general description of trapping models with com-

plex waiting times. In a semi-Markov process, the probability of making a transition

from a state j to state i at a time t is given by the matrix element Qij(t)dt with

Qij(t) > 0 f-or t > 0 and i f dtQij(t) 1 for all j [79]. If i f dtQij(t) < 1 the

particle may stay at site i permanently, i.e. i is a trap. The single time propagator

for this process in the Laplace domain, t - s, is

Gi.(s) = - ZI Qki(s) Q()- (7.1.1)

In this expression I is the identity matrix and Q is the complete matrix of Qij(s).

The [I - Q(:s)]'J is the Laplace transform of the probability of jumping into the state

i at time t given that we started in state j and -Ek Qki(S) is the probability of not

jumping out of the final state, i [79]. In this expression, the hopping process begins
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at t = O. In other words, the beginning of the hopping process is well defined, such

as the temperature quenching time in glass forming experiments.

More generally, the measurement does not begin at the quenching time. In order

to explore this scenario, we examine a two-time propagator in double Laplace space

tl - s1 and t2 s2 [79],

Gijk(l 2) _1 Z- Qli(S2) [Q(2)] [Qmj(sl) - Qmj(S2)] [I1 -Q(Gijk(SI, S2) - (s2)lim [1 Q Slsijk

S2 m 2 - S1

[ 1-, Qlj(sI) 1-L Qlj(S2) -

+6ij L2- [I -Q(sl)]k
$2 - S1

(7.1.2)

The -EQi (S) and [I - Q(s)] terms correspond to the same processes in Eq. 7.1.1,

but [Qm j(sl)-Q" (s2)] corresponds to the jump that spans both time intervals tl and t2,
$2-S1

and 5 ij [ -i Qj(sl) 1_ EIQj(2)] 5 15 corresponds to failing to make a jump during

the second time interval [79].

7.2 A microscopic trapping picture for Q(s)

A possible origin of Q(s) is the trapping processes observed in glassy systems [64, 25,

153]. If the experiment monitors a few labeled tracer particles in a glassy matrix, the

tracers spend most of their time trapped in cages formed by the matrix and can only

move when a trap rearranges through an activation process. If the rearrangements are

large enough, we would not expect correlations between the trapping times and/or the

displacements [25, 153]. The trapping times would be site specific with no directional
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dependence. Qij(t) = TI4ij 4j(t). The matrix W controls the directional aspects of the

particle motions and can be approximated as W eLFP At, where At is a small time

step and LFP can be a kinetic matrix or an operator, LFPP(X, t) = V. [D(x)Vp(x, t)]+

V. [p(x, t)VV(x)], with diffusion constant D(x) and potential V (x).

Bouchaud [25, 153] introduced a waiting time that we denote by Oj(t) through

an activated process with possibly site specific random energy barriers, 6j(t) =

f dEjO(t Ej)P(Ej) with (tES) T 7-le-OEj exp (-le-Ejt) , and 7jo is a weakly

temperature dependent prefactor [25, 153]. If the energy barriers are exponentially

distributed for each site P(Ej) = aje-%jEj the waiting time has an asymptotic power-

law tail j(t) 0j 1 L-F[1 + ] [t/Toj]- (1+ ). The distribution of barrier heights,

P(E;), is phenomenologically based on extreme value arguments that are not easily

justified due to the sensitivity of the waiting time distribution to the non-universal

tails of the barrier distribution [222].

The sensitivity to the non-universal tails suggests that the tail of the waiting

time distribution should be modified. Wolynes introduced a cutoff in the free en-

ergy barriers of glasses because there are many competing processes resulting in a

rearrangement with a finite sized barrier height always being possible [233]. We in-

troduce a slightly different cutoff by adding a competing pathway of fixed energy

barrier height, i.e. take the fastest times between an exponential process, kj e - jt and

Cj(t). This approach is similar to the coupling scheme of first order and power-law

dynamics discussed elsewhere [230]. Having only two such pathways is a simplifica-

tion that folilows if there are two possible classes of rearrangements to the system, ~

corresponding to a broad distribution of energy barriers and ke- kt corresponding to
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a narrow distribution of deep energy barriers.

In the case of an exponential process competing with Bouchaud's waiting time

distribution, our waiting time is j (t) = j (t)e-kit + kje-kt fSx° ~ (t) [201]. If cj = a,

To0 = To and kj = k for all lattice sites, we can write an equation for the time evolution

of the distribution of Bouchaud's energy barrier [25, 153],

aP(E) = -(k + e E)P(E) + ae-E / dE'(k + -leE')P(ZE') (7.2.3)

The high energy cutoff introduced by k creates a microscopic equilibrium for the

distribution of energy barriers and the system achieves equilibrium in a finite amount

of time, t k- 1. The equilibrium distribution for the barrier heights, atpeq = 0 is

e-aE
peq(E) = k + Tle-E (7.2.4)

where r7 is the normalization. On these long timescales, we expect the system to be

diffusive. For > a and k = 0 we recover the trapping result for a lack of equilibrium

distribution [25]. The system is microscopically far away from equilibrium for time

less than k -1 so the system is not in a linear regime for t < k- 1 and short time

violations of the fluctuation dissipation theorem (FDT) should not be surprising.

The traps arrest the motions on these timescales and the system cannot respond, but

the FDT becomes valid for forces applied on timescales longer than the trapping time

(t > k-1 ).

In order to study the properties and effects of this waiting time distribution, we
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perform a Laplace transform on the waiting time distribution [201]

j (s) = j (s + kj) + kj 1 - j(s + kj) (7.2.5)
s + ks

In the long time limit, we approximate Oj(s) with a Lvy distribution, Oj(s) =

e-(j') y3 where yj = , is the power-law exponent of the original waiting time dis-

tribution and -j is a constant that defines the tail amplitude. Eq. 7.2.5 allows us to

write Q(s) = Wb(s) and

G(s) = 1 [I- Ws)(s)]- 1 (7.2.6)

Substituting W = eLFPAt and taking the limit At, rj -- 0 such that At/ Y7 -- D7

lead to a Green's function for an anomalous diffusion process competing with a first

order process,

G(s) [s - LFpD7(s + k)7] 1 (7.2.7)

where D ?(s + k)1-' = 6ijD7(s + k) 1- j . If = j and D = D are the same

for all sites., the Green's function becomes G(s) [s - DYLFp(S + k)l-] - l with

corresponding Green's function equation,

sG - I = DLFP(S + k)l-TG. (7.2.8)

Notice that LFP is applied to the interrupted fractional derivative, (s + k)1-" of the

Green's function, so spatial inhomogeneities in the interruption rate, k result in a
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change in the equilibrium population.

An extensively studied example of this effect on the equilibrium is the quantum

dot, which has two states, on and off. The on time cutoff is experimentally verified

to be shorter than the offtime cutoff [39]. If yon = yoff = 7 the quantum dot Green's

function is

s + Dan(s + ko,)-- -DYff(s + koff)
-QD on=of (7.2.9)

-Do(s + kon)1 + Doff(s+ kff) of

D-y k-Y
and the equilibrium on population is po,(t - o) = off off The D

of f o on/off

term plays the role of a determining the amplitude of the power-law tails versus the

short time dynamics. When y = 1 the intensity of the QD monotonically approaches

equilibrium, but for y 1, the QD can show an initial rise to an intermediate plateau

before monotonic decay to equilibrium as shown in Fig. 7-1 for Don/off = 1, - = ,

k- = 100, and k-if = 10000 [39]. The transient steady state is the result of the

short time dynamics sufficiently scrambling the on and off probabilities before the

long time asymptotics cause the decay to the equilibrium value, which has been

observed in experiment [40].

Unlike the QD example, if kj = k is the same for all j, the interrupted fractional

derivative commutes with LFp and we recover the equilibrium distribution of LFP

as the equilibrium distribution of the interrupted process. For kj = k, the Green's
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log 10t

Figure 7-1: The on probability for a quantum dot (QD) modeled by the interrupted
fractional diffusion propagator. The initial condition assumes the renewal process
begins at t = 0 and the dot is off. Unlike a simple two state kinetic scheme that
monotonically approaches equilibrium, the on probability shows a fast rise to an initial
transient steady state before decaying to the long time equilibrium distribution.
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function can also be re-expressed as

G(s) f dw (s + k)-' _: 27ri s(s + k)-1 + DYiGF (-W) (7.2.10)

where GFP(w) = [-iw + LFP]- 1 is the Green's function for the normal Fokker-Planck

equation. This expression is the standard subordination result and can be rewritten

in real time as [79]

G(t) = j dt'g(t', t)GFp(t') (7.2.11)

where g(t', t) is the inverse Laplace transform, s - t, of

g(t',t) = L-1 [(D7)-1(s + k)7-e-s(s+k)7-(D7)-l] . (7.2.12)

The interrupted fractional Green's function is simply an average of the normal diffu-

sion Fokker-Planck Green's function over a stochastic distribution for t' determined

by g(t', t).

7.3 Interrupted aging and the two-time propaga-

tor

The single time propagator assumes that the trapping process begins at t = 0. More

generally, the trapping process will begin at an earlier time than the observation time.

Starting from Eq. 7.1.2 for the two-time semi-Markov propagator and following the
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single time propagator derivation gives the two-time propagator

(=1- __ _(S2) -1 wmj [j(Sl) - j(S2)] [I -w ()] 1
Gijk(Sl, S2) 1S [I - W'(s 2) im j

S2 r S2 -- S1

1-,Oj(1 l-,j( /1[S2) w-1
+_(ij SIS2 [I - sl )]jk

2 - S 1

(7.3.13)

After performing the same limits as Eq. 7.2.7,

Gijk(Sl, s2) :',

[ - L-pD'~(s 2 + k)'-Y]1' (S2+k)yi-(sI+k;)j (s + kj)' - 7j [1 - LFPD7(Sl + k)l-Y]-kijS2-S1lI 3j

+ i(s1+k:)' 1-(s2 +kj)Y 1 (s + kj)' -y [s l - LFPDY(sl + k)l-r] -l (7.3.14)
S2-S1

The [s - LFpD'(S + k) -̀ ] terms are simply the single time interrupted fractional

diffusion Green's functions. The (s + k) 1- w term is the interrupted version of the

firactional derivative operator. The first sl versus s2 difference term, (S2+k) -(s+k)
S2-S1

corresponds to the first jump made during the second time interval. Finally the third

term, (i+-kY---( 2+k corresponds to particles that fail to make a jump during the

second time interval. After the first jump, the particle resumes normal interrupted

fractional diffusion. We will discuss further details about these two terms after we

introduce a memory kernel expression for these terms.

Similar to the derivation of the single time propagator, if kj = k, D' = D,

and j = is independent of the lattice positions, the two-time propagator can be
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rewritten as

G2(s1,s 2) dL2 2wr 2 c -(wW
1, 2 IS S2)GFP(-W2)GFP(-Wl)

dw d2

+ 12w 2-w- CO(W1, W2 S1, S2 )GFP(-W 2 )GFP(-W1) (7.3.15)

where

=C (s2 + k) --1 (s2 + k>)v - ( + k)* 1 (7.3.16)
s2(2 + k)' - 1 + iD'w 2 S2 - S 81(sl8 + k) 7- 1 + iDw

and

(si + k)'-l - ( 2 + k)Y-1 1
S2 - sl sl(sl + k)y- 1+ iDY(wl

The expression can be used to measure the response to a step potential applied at tl,

by choosing GFP # GFP. For the aging correlation function applied to the harmonic

oscillator below, GFP = GFP. If we set k = 0, we recover two-time anomalous diffu-

sion, which coincides with expressions previously derived for translationally invariant

systems and harmonic oscillators [13, 17].

A few comments about Eq. 7.3.15 are necessary [90]. Consider the evolution

during the 2 nd time period, (tl, t1 + t 2) for fixed t. The propagator corresponds to

a random hopping process, where most hops are fast with the occasional long lived

trap. The longer the particle hops, the more likely it will find a long lived cage. The

expression for co represents the probability that a particle is still in the cage that

it found during the first time interval, which results in co being independent of w2,

while c1 corresponds to all processes that made at least one hop during the 2 nd time
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interval. If t1 is short (sl - c), the co term goes to zero because the particle did

not find a long lived trap. If t is long, but t2 is short (sl -+ 0, s2 - c) the co term

dominates since the particle found a long lived trap and has not hopped out of it

during the 2nd time interval, which causes aging. Eventually, the particle will hop out

of the trap found during the first time interval and resume its random walk so the co

term decays and the cl term dominates for t2 > k - 1. The truncation of the co term

is the major contrast between interrupted and uninterrupted fractional diffusion.

7.4 Application to the Harmonic Oscillator

As a simple application of Eq. 7.3.15, consider fractional diffusion in a 1-D harmonic

well with unit diffusion constant, viscosity, and force constant. The resulting Green's

function for normal diffusion is

GFrP(xx', t):= FP(x,x', t) : p2r(1 - e--t)2 (7.4.18)

For simplicity, the initial condition is e-2/2 and the system is always in macro-

scopic equilibrium, but not in microscopic equilibrium with respect to the distribu-

tion of activation barriers. We are concerned with the correlation function C(t 2ltl) =

(r(tl + t 2)x(tl)). Setting D? = 1 (i.e. time and space are unit-less) and integrating

over wi gives the aging correlation function

( 2 +k)Y- 1 (s2+k)--(s1+k)Y 1
C(S 2 1S) - S2(s2+k)Y-lI 1 S2-S1 si(sl+k) - I
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+(sl+k)y-1 -(s2+-k)' -1 IS2-S1 sl(sl+k) '- 1

Setting k = 0 recovers the FFPE result [17]. This correlation function is rigorously

unity at t 2 = 0. In the limit of no aging, t - 0, one recovers an interrupted version

of the correlation function,

li sC(s2S1)= + (k +(7.4.20)
SI-00 S2 + (k + 2)1-Y

Another important feature is the existence of a stationary correlation function in the

limit as t1 - oc,

k`Y (k + S2)Y (- - (k + SY)
lim SIC(s2 S1) =- k' - - (k + S2) - 1 + ((7.4.21)S1-o S2 k + s2 + s 2(k + s2)'Y

As a specific example we choose y = 1 and k = 1/1000. The solutions for several

aging times t = 0, 1, 10,100, oc are plotted in Fig. 7-2. If the system has not aged,

t = 0, the correlation function demonstrates relaxation on many timescales before

approaching exponential behavior at the interruption time k- = 1000. If the system

is allowed to age for a short time, the correlation function remains approximately

equal to unity for a short period of time before the onset of the distributed relax-

ation. The long time exponential behavior is not delayed so one observes a smaller

region of multiple time-scale relaxation. In the long time limit, t -+ oc, the mul-

tiple timescale relaxation is absent, and only approximate exponential relaxation is

observed. The FDT become valid on these longer time scales and the traditional
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log10 t2

Figure 7-2: The correlation function for the interrupted fractional diffusion with
' = 2'1 k = 1/1000 in a harmonic oscillator with induction times (from bottom

to top), t = 0, 1, 10, 100, oc. The t = 0 solution shows approximate power-law
behavior for 1 < t2 < 1000, before switching over to exponential behavior in the long
time limit. This is in contrast to the nearly exponential behavior (on a log scale)
shown by the longer induction times. Aging removes many of the features that one
tries to incorporate in the model through a complicated waiting time.

exponential relaxation associated with FDT returns.

7.5 Experimental measurements

The validity of the FDT at low frequencies and related aging effects must be explored

in any experimental system modeled by waiting time processes. If the time of the

trapping process cannot be determined, the aged correlation function in Eq. 7.4.21

should be used. This correlation function is not defined for k = O0. The longer the
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first time interval, the longer the co term dominates the correlation function and

the particle does not move. The result is an essential system arrest for periods of

time shorter than the characteristic relaxation time determined by the cutoff k- 1.

This construction of interrupted fractional diffusion makes it apparent that certain

quantities are not affected by aging, such as the ordering of events. If the particle is at

position x = 0 at time, t and we measure the probability of reaching position x = 1

before x = -1, this probability will not depend on t. These invariant measurements

should be examined in experiments where interrupted fractional diffusion appears to

fit the correlation function.

Interrupted aging processes are more realistic scenarios for modeling biological

systems than the infinite aging of fractional diffusion. Although the stretched ex-

ponential approximation to the short time behavior of the non-aged FFPE and a

long time power-law have been fit to the correlation functions of several different

measurements on single room temperature biomolecules, the systems do not exhibit

long time aging processes and appear to achieve equilibrium in a finite amount of

time [225]. Similarly, the interruption of aging has been observed in quantum dot

blinking statistics and may prove to be the rule rather than the exception [39].
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7.6 Coupling first order kinetics to the fractional

Fokker-Planck equation

The original applications of these dispersive transport models date back Scher and

Montroll's description of the power-law arrival times of electrons in amorphous semi-

conductors 152, 181]. A more formal derivation of the CTRW in disordered media

was provided by Klafter and Silbey [116]. More recently, the number of applica-

tions has grown to include the analysis of biological systems, such as CO binding in

myoglobin and cellular reaction processes [200, 182], where the dispersive transport

mechanism is coupled with first order kinetic processes [127]. In order to understand

the applicability of the anomalous diffusion models with first order kinetics to bi-

ological experiments one must address issues associated with the coupling of these

mechanisms. Several authors previously considered coupling of dispersive transport

with a single 6 function sink [185, 201, 200]. Here we consider more general scenarios

and derive two possible limiting cases.

7.7 Naive approach

If one examines the fractional Fokker-Planck Equation [145], OtG = oD-?LFpG, one

can naively write the first order kinetic equation as [201],

8tG = oDLFPG - KG. (7.7.22)
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The Green's function is G and K is the first order process. The operator LFP can

be another kinetic operator or a time independent Fokker-Planck operator with po-

tential 1 and diffusion constant D, LFPG = V[DVG] + V [GV3V]. The fractional

differential operator, o0 D - ' is given byoDl-f (t) = Dr[] o f0t with the con-t t I'] at w(t-t,)l- 

stant D' having units of [time]1 - . In the Laplace domain s -* t, we can rewrite

Eq. 7.7.22, Go1G = -KG + I. with Go1 = s - D s1- LFP and I being the identity

operator. Iterating this solution gives

G = Go [I + KGo] - 1 , (7.7.23)

which is equal to G = [Is - sl-VDLFp + K] - 1

Suppose that K is a constant diagonal matrix K = cI and y # 1 (i.e. depletion

occurs at every point). The solution should be Go(t)e - 6t, which becomes in the

Laplace domain Go(s + K), but this result is not the solution of the Eq. 7.7.22, unless

LFP = 0. The equation ignores the aging of the propagator each time the first order

kinetic operator is applied. Perturbatively expanding the solution in Eq. 7.7.23 for a

reactive sink in terms of the free fractional propagator gives

G Go(t, 0) - / dt'Go(t, t')Go(t', 0) + .... (7.7.24)

The first term corresponds to density that does not react, while the second term

corresponds to a single reaction at some time defined by KGo(t, 0) that creates a

negative density intended to cancel some of the density in Go(t, 0) by being super-
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imposed upon it. The fractional diffusion propagator is not a semi-group, Go (t, O) 

Go(t, t')Go(t', 0), so the motion of the negative density at later times is different than

the motion of the original density. As a result, the negative density does not remain

super-imposed upon the original density, leading to the unphysical solution discussed

above.

In order to construct a model for coupling first order and fractional processes, one

must return to the original construction of semi-Markov processes and take appro-

priate limits. The construction will depend on the physical scenario considered. We

discuss two possible scenarios below.

7.8 Passive first order kinetics

In the case of passive first order kinetics, the first order reaction process does not

influence the anomalous process. An example is the fluctuating diffusion constant

model [34]. The first order process is a diffusion process with time dependent diffusion

constant, Gki(k, t) =- fK(t) = efD(t)V 2 , where kin stands for the kinetic operator

K(t) which is - f D(t)V 2 for the fluctuating diffusion model. The diffusion constant

changes between a set of discrete values, D(j), through a stochastic jumping process

(semi-l\arkov) process [79]. In a semi-Markov process, the probability of making a

transition from a state j to state i at a time t is given by the matrix element Qij (t)dt.

The functions Qij(t) must satisfy Qij(t) > 0 for t > 0 and i f dtQij(t) < 1 for all

j. If i f dtQij(t) < 1 the particle may stay at site i permanently, i.e. i is a trap.

For the rest of the derivation, we assume the sum is unity. The one time propagator
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for the process governing the diffusion constant can be simply written in the Laplace

domain t -- s as [79]

G(D)(s) = 1 k Qk [I- Q(s)] . (7.8.25)

In this expression I is the identity matrix and Q is the complete matrix of Qij(s).

The [I - Q(s)]l~ is the Laplace transform of the probability of jumping into the state

i at time t given that we started in state j and 'k Qki(s) is the Laplace transform

of the probability of not jumping out of the final state, i [79].

If the waiting time of the transitions is site specific but does not depend on the

direction of the transition, Q = WOp(t), where Wij is the probability of the next

transition being from site j to site i (7j > 0 and Ei IT4j = 1) and ij (t) = 6ij4j(t) is

the waiting time for the transition out of site j (j (t) > 1, f dt4j = 1). The Green's

function for the diffusion constant must be tensored with the Green's function for the

kinetic process and the scalars ¢j (s) become matrices, Qij = Wij j (s + K(J)), where

Wij = Ikin Tij and

,j (s + K(i)) = S(i),'j(s + A(i))(S(i))- 1 (7.8.26)

with S) diagonalizing the kinetic operator K(U) with eigenvalues A(J) and 4j(s +

A(U)) = 6,mn/j(s + A)) is a diagonal matrix. In the case of the diffusion process,

-K) = D(j)V2 and the eigenfunctions are the Fourier components, x ~- k, with

eigenvalues D(J)k2 . The identity operator Ikin denotes a sub-matrix ij with the
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dimensions of the kinetic operator K(). One can allow the complex waiting time

transitions to influence kinetic process by replacing Ikin with another Markov matrix.

Similarly, the expression 1- kQk(s) becomes IkiI-¢j(s+K()) with 1 representingS s+K(j) s+K(O)

a matrix inverse.

Often, the semi-Markov transitions have the form 1/ eLFpAt, where At is a

small time that characterizes the displacement and LFP can be a kinetic matrix or a

Fokker-Planck operator as discussed above. Using the definitions above, Eq. 7.8.25

becomes

Gij () Ikin -' (s+ K(i)) I- eLFPAt(s + K)]
s + K II)

(7.8.27)

In this expression, 4'(s + K) is a block diagonal matrix,

4'(s +K) = 
' (s + K(J))

0

0

· o

(7.8.28)

and LFP has the form

(LFP)lllkin -

(LFP)NlIkin -

(LFP)lNIkin

(LFP)NNIkin

The waiting time distribution is assumed to be a L6vy distribution ij(s) = e-T

but the limiting results will be independent of the exact functional form. The limit
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as 7 , At < 1 with at - const = D;, gives

Gij (s) [s + K- LFpD? [s + K]1I]- (7.8.30)

where

Ikin DjD =
ands [s + K = [ K (j)I 1- j 0

, and [s + K] 1- y . (7.8.31)

.. 0 .

An important feature is the matrix ordering with LFP operating on a matrix contain-

ing the first order reaction terms. Setting D = D-, -yj = y, and K (j ) = 0 recovers

anomalous diffusion [145]. Similarly for yj = 1 and D = 1, normal diffusion with

reactive sinks is recovered. The intuitively expected fractional diffusion times an ex-

ponential decay, G = Go(t)e - 't, results when K (j ) = KIkin, j = 7y, and D = Da for

all j.

For the fluctuating diffusion constant model with two states, 1, 2, (LFP)ij =

-2a5 ij + a, Dj = 1, and -yj = y, the Green's function in Fourier space becomes

Gij(k. s)= = 

+ [ia -a

-a a

D(1)k 2

0

0

s + D(2)k2

(s + D(l)k 2)1-

0

0

(s + D( 2)k 2 )1-
-

Note that we need to specify both the semi-Markov process,

272

ij, and the kinetic

-1
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process, k. If the initial condition for the semi-Markov process is pi = P2 = 1 and

6(x) for the kinetic process, summing over the final state, Ei=, 2 G(k, s)p, allows

us to calculate the variance, (x2 (t)) = (D(1) + D(2))t, and the asymptotics of the

non-Gaussian indicator ())2(t)) 3(D( 1)D( 2))2 -) In the long time limit, the(x2 (t))2 (( 1 ) ±( 2))2)

system displays a non-zero non-Gaussian indicator for y 1 because the system is

non-self averaging.

Another interesting case has K = vVx and LF = V2 with D = 1 (unit-less time

and space) and yj = y. This kinetic scheme corresponds to fractional diffusion in a

glassy sample that we throw across the room. In Fourier space we get

G(k, s) = (7.8.33)s - i k- k2(s- ivk) 1- 7

As expected, the mean displacement is ballistic, (x(t)) = 't, but the variance is

anomalous, (6x(t)2 ) OC tYt. Throwing the sample across the room does not

influence the anomalous diffusion occurring inside the sample. Similar behavior can

be derived for fractional diffusion in systems with macroscopic flows that do not break

up the traps, but convect the tracer particle and the trap together [146].

7.9 Interrupted Case

The reaction scheme can also correspond to the first order process competing with

the more complex waiting time process, which is the construction applied the most

extensively to models of CO myoglobin binding experiments [200]. For simplicity we
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again assume that the semi-Markov process has site specific waiting time distribution,

Q = Wb(s) with Ei IVij = 1 and f dtOj(t) = 1. We have a competing first order

kinetic process, Pij kje -k it, with Pij > 0 and Ei Pij < 1. The semi-Markov matrix

Q is modified to account for the competition between the kinetic process and the

anomalous diffusion process Qij(t) = Pijkje-kajtft (t) + 1T5jj(t)e- k t. If Pj =

Wij, this expression is identical to an expression derived in the study of interrupted

aging [229].

The Laplace transform of this expression is given by

Qi= ij1 j s + Vtj[ 1j(s + kj). (7.9.34)
s + kj 

and the probability of not jumping becomes (1(+kj)) Using these substitutions ins+k.j

Eq. 7.8.25 gives the Green's function

0(s+kjk

Gij(s) = [1-<i(s+ki) I-P k- s+k 

(7.9.35)

Substituting W = eLFPAt and lj (s) = e- 'T j and taking the same limiting procedure

as above gives the Green's function,

G K ( + kj) L pD y (7.9.36)
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with

K = [I- P] (7.9.37)

0'.
The K is equal to the first order kinetic matrix for normal diffusion. If Pi = 1,

K = 0 and the interruption process results in restarting the system without deple-

tion, so the equilibrium distribution is the same as the normal diffusion equilibrium

distribution [229]. Note that K may be zero, but LFP still acts on the kinetic matrix.

Similar to the passive diffusion process, in the limits that kj = 0, we recover fractional

diffusion, and in the limit that yj --+ 1 we recover normal diffusion. If the first order

kinetics corresponds to a simple sink, K = 6ijkj, the interrupted and passive diffu-

sion processes are identical and correspond to anomalous transport with site specific

depletion rates, which is explored below.

7.10 Survival probability with a sink

An extensively studied problem is the survival probability of a CTRW in the presence

of reactive sinks [185, 201]. The expression we derive does not depend on the reactive

process being restricted to a small boundary and is intuitive without resorting to any

limiting arguments. To simplify expressions, we assume 3j = y, D = Dv. A subset

of the sites, j, have reactive sinks, which remove particles with a rate given by kj.

The other sites have no reaction, kifj = 0. So the Green's function has the form
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G=s+[ k 1D[(Is + k)' 0
G = s OO - DLF sl(7.10.38)

which can be rewritten as

G = Go- + 0 ° -DYLFP o - (7.10.39)
0 0 0 0

where Gol is the inverse of the free fractional diffusion propagators in the absence of

a sink. The survival probability is S = E G. If Go preserves probability, E Go = s -

the survival probability can be written as

S =-E[I+ (K-D-LFP (IS + k)17 - Is+-Y Go (7.10.40)
$

0 0

which can be simplified to

S = 1 - k [I + (Go)jjk + [s - s(Go)jj] [(s + k) - sl-l]] (Go)ji]

(7.10.41)

since -DLFP = s7-1 [G0 - s]. By rewriting the solution in this form, we remove

the LFpDY s + K]1-w term and can take a continuum approximation. For the simple

diffusion limited recombination problem, LFP = V2 , where we set D = D = 1 (unit-

less space and time) and all the reactive sites have a rate of k and appear on a sphere
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of radius a. Symmetry allows us to write the survival probability as

I k Go(a, r, s)S=- l- (71042)S [ - 1 + ko(u, a: s) + [s k - sGo(a, a)] [(s + k) - sy (7.10.42)

with r0 denoting the initial position. In three dimensions the Green's function is

Go(-a, r0, s) -= S 2 +e(r-o) )s / where angular integration has been performed [114]

(remember that s, k, a, and ro are unit-less). The ultimate survival probability can

be calculated by taking the limit as s -- 0 of sS, which gives

1 r
lim sS = 1 - - (7.10.43)
s-o 1 + k-?7a- ] ro

Note that the survival probability depends on k-' and coincides with the expression

for n = 1 [175]. This expression is much simpler than those presented previously [185,

201]. For k > 1 the survival probability decreases with increasing -y, and for k < 1 the

survival probability decreases with decreasing y. For y = 0, the survival probability

equals . For k = 1, the survival probability is independent of , S(t = o) =

1 The inverse oa dependence results from the apparent centrifugal force,

F c 1/r that pushes the particle away from the reactive sites.

The result is slightly counter intuitive because we expect a smaller -y to correspond

to a slower process and to be more likely to react for all values of k. Smaller ~ results

in a slower process in a mean waiting time sense, but the mean waiting time is not the

important contribution to the survival probability. The important contribution is the

probability of the anomalous translational process occurring before the rate process.

277



This probability is e-'Yk for the Levy distribution. For k large and 7- = 1 (time unit-

less), a smaller -y increases this term and implies a greater survival probability during

the encounter with the reactive sink. In fact, the fatter the power-law tail, - < 1,

the more likely there will be an extremely fast process, with only the occasional slow

process to destroy the mean.

7.11 Conclusion

Several scenarios for the coupling of first order processes to anomalous transport are

explored by constructing possible kinetic schemes with a limiting procedure performed

on an appropriate semi-Markov process. The semi-Markov process is based on the

trapping picture that has been explored in simulations of glassy systems. The limits

are taken under the assumption that the kinetic process is a slow process, so that the

non-universal features at the short time portion of the waiting time distributions can

be ignored. The limiting procedure simplifies the mathematics and functional forms

of the solutions into a form that allows one to explore the influences of topology

and geometry without considering these non-universal features. Since an important

aspect of proteins and cells is the geometry of internal cavities, this simplification is

advantageous.

The first order processes? effects on equilibrium behavior, aging, and probability

of reaction can be addressed within the same framework. The first order kinetic

processes cannot be separated from the anomalous diffusion process, resulting in a

term of the form LFpDV(s + K) 1- ' , which can modify the equilibrium distribution
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of the semi-Markov process. The operator form LFpD(s + K) 1- ? also results in the

aging of the semi-Markov system results in a modified correlation function. Most

of the timescales that are present in the waiting time distribution are not apparent

in the aged waiting time distribution. The LFpDY(s + K) 1- 7 operator may also

result in a non-trivial spatial limit if K becomes proportional to a spatial 6 function.

This spatial limit can be avoided in calculating the survival probability for a process

with arbitrary sinks, and an explicit expression for an irreversible diffusion controlled

reaction in three dimensions is derived. For the diffusion controlled reaction, the

ultimate survival probability yields a simple expression that depends on k- 7 and

shows that slow diffusion can improve the survival probability if k is large. This

result is not surprising because the probability of the power-law process being faster

than an exponential process is different than the mean waiting time being a fast

process.
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