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Abstract
Let k be a p-adic field. Split reductive groups over k can be described up to k-
isomorphism by a based root datum alone, but other groups, called rational forms of
the split group, involve an action of the Galois group of k. The Galois action on the
based root datum is shared by members of an inner class of k-groups, in which one
k--isomorphism class is quasi-split. Other forms of the inner class can be called pure
or impure, depending on the Galois action. Every form of an adjoint group is pure,
but only the quasi-split forms of simply connected groups are pure.

A p-adic Local Langlands correspondence would assign an L-packet, consisting of
finitely many admissible representations of a p-adic group, to each Langlands param-
eter. To identify particular representations, data extending a Langlands parameter is
needed to make "completed Langlands parameters."

Data extending a Langlands parameter has been utilized by Lusztig and others
to complete portions of a Langlands classification for pure forms of reductive p-
adic groups, and in applications such as endoscopy and the trace formula, where
an entire L-packet of representations contributes at once. We consider a candidate
for completed Langlands parameters to classify representations of arbitrary rational
forms, and use it to extend a classification of certain supercuspidal representations
by DeBacker and Reeder to include the impure forms.
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Title: Professor of Mathematics

2



Acknowledgments

I wish to thank my mentors, colleagues, family, and friends for their unwavering

support. This work was sponsored in part by an NSF Graduate Research Fellowship.

3



Contents

1 L-groups and Langlands parameters 6

1.1 L-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Langlands parameters .......................... 11

2 L-packets 14

2.1 Langlands parameter extensions. .................... 15

2.2 Stable rational forms . . . . . . . . . . . . . . . . . ........ 18

2.3 Unramified groups ............................ 21

3 Deligne-Lusztig Representations 23

3.1 A Class of Depth Zero Supercuspidal Representations ......... 23

3.2 Some Weyl groups . . . . . . . . . . . . . . . . . ......... 24

3.3 Construction ............................... 25

3.3.1 Computation of S . . . . . . . . . . . . . . . . ..... 26

3.3.2 Computation of R(k, G). .................... 27

3.3.3 Assigning representations to cocycles ............. 27

3.3.4 Independence of choices. . . . . . . . . . . . . . . . 31

3.3.5 Exhaustion of Deligne-Lusztig representations ......... 33

3.3.6 Non-duplication of representations ............... 34

3.4 Behavior in SL 2 .............................. 35

4 Induction 39

4.1 Compatibility of stable rational forms .................. 39



CONTENTS 5

4.2 Parabolic induction and infinitesimal characters ............ 41

4.3 Langlands parameters with a fixed infinitesimal character ....... 44



Chapter 1

L-groups and Langlands

parameters

1.1 L-groups

Let G be a connected reductive algebraic group over an algebraically closed field k. If

T C B are Cartan and Borel subgroups of G, let X and XV denote the character and

cocharacter groups of T, and let A and Av be the sets of simple roots and coroots

for the action of the Lie algebra t on b. Let D and Jv denote the full sets of roots

and coroots. The sets A and Av come with a canonical bijection 6 : A - AV. The

quadruple (X, A, XV , AV) is called a based root datum; it includes the identification

of A with a subset of X (and Av with a subset of XV).

An isomorphism of based root data (X, A, XV , Av) and (X', A', X' v, A'v) is an

isomorphism X -- X' sending A - A', in such a way that the transpose isomorphism

X'v - Xv sends AIv -* Av, and that the two maps A - A' and A/v -+ Av respect

the bijections and 6'.

Because k[T] = k z X, algebraic automorphisms of T are in natural correspon-

dence with automorphisms of the abelian group X.

Suppose T' C B' is another pair consisting of a Cartan and Borel subgroup in
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CHAPTER 1. L-GROUPS AND LANGLANDS PARAMETERS

G. Then there is a unique element gT E G/T such that (gTg-l, gBg-) = (T', B').

Therefore, having fixed the identification X X*(T), the pair T' C B' determines

an isomorphism between X and the character group X*(T').

If a C Autalg(G) is an algebraic automorphism, then aT C aB is another Cartan-

Borel pair, determining an element gT E G/T as above. We then have two maps:

a* : X*(oT) -X*(T)

Int(g)* : X*(uT) X*(T)

(here Int(g) is the inner automorphism x -- gxg- 1 ). The map a* o Int(g-1)* induces

an automorphism of X*(T) preserving the set A, whence an automorphism of the

based root datum (X, A, XV, Av). Thereby we get a map

/3: Autalg(G) Aut((X, A, XV, Av)) (1.1)

with kernel Int(G) r- Gad = G/Z(G).

From here on, suppose that k is the algebraic closure of some p-adic field k. (By

this, we mean that k is a finite extension of Qp.) Write F = k = rk/k for the absolute

Galois group of k. Let w be a uniformizer of k.

We will use the term "group over k" to refer to a connected reductive algebraic

group G over k equipped with an action

a : - Autabs(G) (1.2)

where Autabs refers to the group of (not necessarily algebraic) group automorphisms

of G. The action a is required to have the property that if f : G -* k is a regular

function, then the function

x · f(( -) x) (1.3)

is regular. In this expression, the y outside f acts via the natural Galois action on k.
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CHAPTER 1. L-GROUPS AND LANGLANDS PARAMETERS

An isomorphism of groups over k is an isomorphism of algebraic groups that is

equivariant for the action of F on each group. The various groups over k that are

isomorphic to G over k are called rational forms of G. Two rational forms are said

to be equivalent if there is an algebraic automorphism of G that is equivariant for

the corresponding Galois actions.

Fix a pinning for G. Any E Hom(r, Aut((X, A, XV, AV))) determines a quasi-

split form over k, as follows. Write n, for the value of n at y E F. Let w X,(T),

and let u, : k - G be the homomorphism from the pinning associated to a E A.

The conditions that:

y(w(k)) = Ki,(W)(yk) (1.4)

-Y(U(k)) = u,,(a,)(7k) (1.5)

(for all such w and a, and y E r) characterize the action of F on elements of G.

Fix any rational form on G, writing -yx for the action of C rF on a point x C G.

Suppose : r -+ Autabs(G) is another rational form. Then y-1 o( (a(y)) is an algebraic

automorphism of G. Indeed, if f is a regular function on G, then

Y - fy-f(o(y)y)

is regular. Applying this to the regular function

x -+ f(- 1x)

we deduce that

y -* -lYf(- 1a(Y)y)

is regular, as needed.

With this observation and the map (1.1), we may classify all rational forms of G

over k in terms of a split form over k. Let a : F - Autabs(G) be a rational form

8



CHAPTER 1. L-GROUPS AND LANGLANDS PARAMETERS

and let r: F - Autabs(G) be the split form preserving the pair T C B and our fixed

pinning. By the above paragraph, for each y the element a(-y) = r(y)r(y-1) is in

Autalg(G). Let F act on Autalg(G) by sending

- T( ) o T(y--1 ) (1.6)

for each y E F. For this action, ac E Z 1 (F, Autalg(G)). The cocycles determined by

two rational forms are cohomologous if and only if the rational forms are equivalent,

and we obtain a bijection between rational forms and Z1 (F, AutalgG), and between

their equivalence classes and H1 (r, Autalg(G)). Henceforth we typically will regard

rational forms as cocycles.

Giving Aut((X, A, XV, A)) the trivial Galois action,

Hl(F, Aut((X, A, XV, A)) = Z 1(F, Aut((X, A, XV, AV)))

= Hom(F, Aut((X, A, Xv, AV))).

The fibers of

. zl(F, Autaig(G)) - Zl(F, Aut((X, A, XV, AV)) (1.7)

are called inner classes of rational forms. Each inner class contains a unique equiva-

lence class of quasi-split forms. If n E Z1 (r, Aut((X, A, XV, AV))), write 7T for the

quasi-split form defined by equations (1.4)-(1.5). The fiber of /3 over is in bijec-

tion with Z(F, Gad), where the Galois action on Gad is defined by equation (1.6),

replacing T by T,.

If a splits over a finite cyclic extension k' of k of degree m, and Fk,/k is generated

by an element y E F, then ur is determined by the value (-y). Thus, the inner classes

of rational forms splitting over k' are in correspondence with the automorphisms of

the based root datum of order dividing m. For example, every quasi-split form that
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CHAPTER 1. L-GROUPS AND LANGLANDS PARAMETERS

splits over K = k nr is determined, up to equivalence, by the action of a Frobe-

nius element on the based root datum. Suppose , E Hom(r, Aut((X, A, XV, Av)))

describes this action, and is the corresponding quasi-split form. The action

of F on Gad specified by 7, factors through K/k, so we obtain an inflation map

H1 (K/k, Gad) H1(k, Gad). In the inflation-restriction sequence

1 H(K/k, Gad) H(k, Gad) --+ H 1(K, Gad) (1.8)

we have H'(K, Gad) = 1, by Steinberg's Theorem [14], applied to the connected k-

group Gad. This exact sequence of pointed sets gives a bijection from H1 (K/k, Gad)

to Hl(k, Gad). Thus, if a quasi-split form splits over K, so does every form in its

inner class.

An inner class of rational forms determines an L-group, as follows. Let a be

a quasi-split rational form of a connected reductive k-group with based root da-

tum (X, A, Xv , A). The classification of reductive groups over an algebraically

closed field associates a complex reductive group G to the dual based root datum

(XV, AV, X, A). The group 0 is unique up to inner isomorphism. Fix a Cartan-

Borel pair T C B in G. This choice determines a surjective homomorphism

/: Auta/g(G) -* Aut((XV, AV, X, A) (1.9)

as in (1.1).

Using the transpose P3T : Autalg(G) -+ Aut((XV, AV, X,A), our rational form

a E Zl(F, Autalg(G)) determines

10
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CHAPTER 1. L-GROUPS AND LANGLANDS PARAMETERS

A pinning (B, T, {5c}, {%}) for 0 determines 5b E Hom(F, Autalg(G)) in the fiber of

/3: Hom(r, Autal(G)) Hom(r, Aut(XV, AV, X, A))

over /3T (()) via

&(w(k)) = ,T(a)(c:)(k) (1.10)

&(u,(k)) = u/T()( 6)(k) (1.11)

The map a determines a semidirect product

LG = r

which we call the L-group of G.

1.2 Langlands parameters

We denote by = IFq the residue field of k, and by f = IFq its separable closure. The

isomorphism ri/f , t sending Fr to 1 gives a natural embedding of Z in f/f. Because

Z is not a closed subgroup of 2, this subgroup does not correspond to any extension

of f.

Let W = Wk be the Weil group for k (see Tate [15]); it comes with an open

subgroup Wk, for any finite Galois extension k'/k such that Wk/Wk, r Fk'/k, and the

maximal abelian quotient of Wk is isomorphic to kX under the Artin map of local

class field theory. We may identify Wk as the inverse image of Z under the reduction

map Fk -- rf.

Let K = kr be the maximal unramified extension of k in k. The subgroup

= FK of F is called the inertia group, and is contained in W. It fits into an exact
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CHAPTER 1. L-GROUPS AND LANGLANDS PARAMETERS 12

sequence

1 -z -- 1.

via the reduction map rF - rf.

Let kt be the maximal tamely ramified extension of k in k; it contains K = ku r .

The subgroup 1+ = rkt of I is called the wild inertia group; and the quotient It =

I/ZI+ is called the tame inertia group. The quotient It is abelian, but W/I + is not.

If Fr is a Frobenius element in rf and w E W/I + with w -- Fr, then for y E t we

have

wyw- = q . (1.12)

One way to see this is that t is a quotient of the Weil group WK for K = kun r (where

1WK = K = I, the inertia group for k), and the local Artin map is equivariant for

the natural action of rk on KX and its action on WK by conjugation (see Tate [15],

(W2), page 3). In fact, the choice of w gives a splitting W/I + Z< K it on which Z

acts on It by y -- , q.

The Weil-Deligne group is the semidirect product

W' =W C (1.13)

where w E W acts on z E C by wzw - ' = qnz if w n in the reduction map W rf.

Our Langlands parameters are homomorphisms q: W' LG such that the

diagram

W' ~ LG

commutes, and satisfying some additional restrictions. However, it will be more

convenient to think of these homomorphisms in two parts:

1. The Galois group F acts on G via - g = ygy-', where the right hand side is
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computed inside LG. Define a E Z1 (W, G) for this action by

ao( ) -= (1.14)

2. The restriction of ¢ to C can be written as

qIC(z) = exp(zNo) (1.15)

for some N CE .

The structure of W' imposes a compatibility condition between these two parts ao

and No, which we will consider and utilize later.

CrHAPTER . 13



Chapter 2

L-packets

Assume G to be quasi-split, and fix a pinning with Cartan and Borel subgroups

T C B, with T a maximally k-split k-torus. Write H*(k', -) for Galois cohomology

of a module for the absolute Galois group H*(Fk,, -) of a field k' containing k. If l/k'

is a subextension over k, we write H*(l/k', -) for H*(Frlk,, -) for a module under the

relative Galois group. Finally, if a is a generator of a topologically cyclic group, we

may write H*(, -) for the Galois cohomology of its modules.

Within an inner class, we explained in Chapter 1 how rational forms are parame-

terized by elements of Z1 (k, Gad) where Gad is viewed as a Fk-module via the action

from equations (1.4)-(1.5) arising from the quasi-split form. One can also give G a

Fk-module structure in the same way. Elements of Zl(k, G) are called pure inner

forms of the given quasi-split form; when the inner class is not fixed, we speak of pure

rational forms. Although pure rational forms determine rational forms via the natural

map Z1 (k, G) 4 Zl(k, Gad), this map is neither injective nor surjective on cohomol-

ogy; already for G = SL2 it is not surjective, and easy examples of non-injectivity

arise in non--split isogeny classes 2A 3 and 2 D 4.

In applications such as endoscopy, data pertaining to each pure rational form of

an inner class arise simultaneously in typical constructions. Because these forms have

the same L-group, Langlands parameters should classify the representations of each

14



CHAPTER 2. L-PACKETS

pure form of the inner class at once: A Langlands parameter conjecturally gives an

L-packet consisting of finitely many pairs (a, T.), indexed by some set of "parameter

extensions" , where r, is a representation of the rational form of G determined by

Tr. (We will describe these extensions more precisely momentarily.) However, if one

wishes to use the Langlands conjectures to obtain information about arbitrary rational

forms, one needs a bigger parameterization of L-packets that include representations

of all the forms of an inner class.

2.1 Langlands parameter extensions

In this section, we suppose we are given a k-group G with a pinning as above, defining

an L-group LG. Let : WV -+ LG be a Langlands parameter.

The subgroups [G, G] and Z(G) are defined over k; let G = G/([G, G] n Z(G)).

This group also is defined over k, and has the property that [G, ] = Gad. Write

the based root datum for G as (X, A, XV, AV).

The isogeny G -+ G induces maps of F-modules X - X and XV - Xv (both

injective) restricting to bijections A -+ A and Av -, Yv. (Thus we also may write

A in place of A.) We wish to consider the lattices X and TV in the same ambient

spaces as X and XV. The cocharacter group Xav for Gad may be recognized as the

lattice of integral coweights in the rational vector space ZAv Oz Q, giving a natural

embedding XVd - X'V ®z Q. Via this embedding, we may identify the lattices

XV = Xd+XV (2.1)

-X = {X E X (X, ) Z for all c E Xd} (2.2)

because the right hand sides yield a based root datum isomorphic to that of G.

On the dual side, the L-group of G is a semidirect product LG = G > F where

G is a complex reductive algebraic group with the based root datum (XV, AV X, A).

15



L-PACKETS

It gives a covering

1 - K L LG - 1 (2.3)

with K c G.

We will need the following elementary identifications:

Proposition 2.1 Let A be an algebraic subgroup of a complex torus, and let H =

Homalg(A, CX). Then:

1. HOmalg (w0 (A), CX) = Htor, the subgroup of torsion elements of H.

2. If T C Autalg(A) is a finite subgroup, consider the transpose action of T on H

and let H(T) be the group generated by ahh-l for a C T. Then annH(A ) =

H(T), and Homalg(Ar, CX) = H/H(T), the coinvariants of T in H.

Define the groups:

Xv = Xv/(zA v) = Hom(Z(G), CX) xv = -/(zAv) = Hom(Z(G), CX)

(2.4)

These are the cocenters of G and G, respectively. We will write

2 = Z(c) Z = Z(G) (2.5)

for the centers of these complex groups; because the center of F is trivial (cf. [15]),

their -invariants are respectively the centers Zr = Z(LG) and Zr = Z(LG) of the

L-groups to which they belong.

Write XVad for X,((Z(G))O). This lattice has the same Q-span as X,((Z(G)) ),

so we may naturally identify

(XV ® )/(XVd ® ) Xd Q . (2.6)

Under the quotient map X v 0 Q -- Xv 0 Q, the image of Xv is contained in X va

CrHAPTER 2. 16



CHAPTER 2. L-PACKETS

because every element of XV pairs with all the roots as an integer. Thereby we get a

map Xv -, XVd

The basic tool for interpreting H1 (k, G) in terms of based root data is a theorem

of Kottwitz:

Theorem 2.2 (Kottwitz, [6], [7]) Let G be a quasi-split connected reductive group

over k. Then there is a natural bijection

G : Hom(lro(2r), CX) - H(k, G) (2.7)

in which the trivial homomorphism is sent to the base point of H1 (k, G). For quasi-

split structures on G and Gad corresponding to the same automorphism of the Dynkin

diagram, the diagram

Hom(7ro ((LG)), ) Res Hom(ro (Z( Gad)), C ) (2.8)

Hl(k, G) H(k, Gad)

is commutative.

The L-group LG determines an inner class of rational forms; write G for the

quasi-split form in this class with a pinning in which the Galois action is given by

equations (1.4)-(1.5), and G, for the inner form of G corresponding to the cocycle

T C Z(k, Gad). For each inner form G, we want to classify the representations of

the group GT(k) of k-rational points.

Let be a Langlands parameter, and let G denote the centralizer of its image

in G. Let ro(OG) be its component group. Write Sure for the set Hom(To(G¢), Cx).

We call Spure the set of pure extensions of the Langlands parameter ¢.

Through the natural map 7r0(Z(LG)) --* o(G*), we get a restriction homomor-

phism

rpure : sure Hom(ro(Z(LG)), C x).

17
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CHAPTER 2. L-PACKETS

Conjecturally, if T E Hom(7r0(Z(LG)), CX), then the fiber of rppure over T is supposed

to parameterize the set of representations of GResocG(T) (k) associated to the Langlands

parameter . For example, for groups with connected center, Lusztig has explicitly

constructed unipotent representations for each pure extension of an unramified Lang-

lands parameter. [9, 10]

We revise this setting by replacing S"ure with a different set that maps naturally

into H1 (k, Gad), in the hope of parameterizing representations of all the forms in our

inner class. Recall the covering 7r: LG , LG (equation (2.3)). Let RO = 7r-1(0).

We call the set of irreducible representations

S, = Irr(7o(R¢)) (2.10)

the set of extensions of the Langlands parameter .

When G is split, the Galois action on 0 defined by LG is trivial, so that the natural

map r zr is a surjection. When G is assumed, in addition, to be semisimple,

Theorem 2.2 shows that the mapping from pure rational forms to rational forms

H1(k, G) H 1(k, Gad) is injective. This need not be the case for non-split inner

classes.

2.2 Stable rational forms

Although there will be a natural map S H'(k, Gad), the fibers of this map will

turn out too big to use in our construction of Deligne-Lusztig representations below.

To make a one to one correspondence, we will introduce a set of so-called stable

rational forms, to be denoted R(k, G), and factor the map S - H (k, Gad) as

S -- R(k, G) -- Hl(k, Gad). (2.11)

The map R(k, G) -- H(k, Gad) will be a surjection, independent of .

18
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The action of Fk on the based root datum of G factors through a finite quotient,

generated by finite-order automorphisms. The Kottwitz isomorphism (Theorem 2.2),

with Proposition 2.1, has identified

H'(k, Gad) Hom(w0(Z(LGaO)r),CX) (xd/xad(r)) . (2.12)

Through this equation and one like it for G, the map X v - XV identifies H1 (k, G)

as a cover of Hl(k, Gad). (Recall from equation (2.4) that XV is the cocenter of G.)

Our stable rational forms replace the coboundary relation in Hl(k, Gad) with one

that reflects conjugacy in G:

Definition 2.3 Let G be a k-group, split over K. The set of stable rational forms

is the set

R(k, G) = Hom(7r0(7r- (Z(LG))), Cx). (2.13)

For any Langlands parameter of G, the group Re includes 7 r-I(Z(LG)) =

7r-l(Z(G) ) as a subgroup. Therefore there is a natural restriction map S 

R(k, G).

Proposition 2.4 The map R(k, G) -- H1(k, Gad) is surjective.

Proof. Recall that we have constructed a map XV Xavd, via equation (2.6).

Proposition 2.1 gives a natural isomorphism

R(k, G) - (v/X V(r))). (2.14)
tor

Let ( be the natural map XV __ XV/XV(F). Put

Rlift(k, G) := {r E XV ((r) E R(k, G)). (2.15)

Suppose r Rlift(k, Gad). If m c N is such that mr XVad(F), then there exists

m' C N such that m'r E XV(F). Therefore, the inclusion of XV in Xd sends r to

19



CHAPTER 2. L-PACKETS

an element of Rlift(k, G). Thus, the natural map R(k, G) - R(k, Gad) is surjective.

Via equation (2.12), the second set is simply Hl(k, Gad). ]

We will use stable rational forms in our construction in a way similar to that in

which Adams, Barbasch, and Vogan use so-called rigid rational forms in the local

Langlands correspondence for real groups [1]. Stable rational forms behave more

simply than the set of strong rational forms envisioned by Vogan in [17], Problem

9.3-in particular, we have avoided introducing a pro-finite covering of G-and unlike

the set of rigid rational forms Vogan introduces, R(k, G) is a finite set even when the

center of G is infinite.

We propose that stable rational forms be used in the local Langlands conjecture

as follows. The complex dual group G acts on the set of pairs (, p) where is a

Langlands parameter and p E S, with g E G sending a pair (, p) to (, g. p) =

(Ad(g) o , Ad(j)*p), where E G is any preimage of g. (Since G - 0 is a central

isogeny, any choice of g yields the same element of SAd(g)o, and the map S - R(k, G)

factors through this action on SO.)

Conjecture 2.5 Suppose G is a quasi-split reductive k-group, split over K. Let 7 C

Zl(k, Gad), and ur E R(k, G) mapping to [] E Hi(k, Gad). The irreducible admissible

representations of the inner form GT are in natural one-to-one correspondence with

G-orbits of pairs (, p), where : W/V' - LG is a Langlands parameter, and p SO

such that p maps to a.

A pure rational form Tpure E H 1(k, G) determines a stable rational form 7*(Tpure)

in R(k, G), via the map r*: Hom(ro(Z(LG)), CX) -- Hom(0o(-'(Z(LG))), CX). It

is clear that the fiber S(Tr*(TPure)) is in bijection with Spure(TPure).

Proposition 2.6 If r1, T2 E R(k, G) lie over the same rational form T E H1 (k, Gad),

and d is any Langlands parameter for G, then the fibers S(r 1) and SO(T2) are in

natural bijection.

20



CHAPTER 2. L-PACKETS

Proof. View T1 and 2 as elements of Hom(7r-i(Z(LG)), CX). The map R(k, G) 

H(k, Gad) is the restriction to [G, G] n 7r-l(Z(LG)). The product 2T1 is trivial on

this subgroup, and gives a homomorphism

i: 7r-l(Z(LG))/ ([G, ] 71-l(Z(LG))) --+ CX. (2.16)

The quotient on the left is isomorphic to R¢/ ([, G] n 7r-i(Z(LG))). Thus the map

p - pK gives a map S, - So sending the fiber S(Ti) S( 2), as desired. 

In Chapter 3, we will verify that G-orbits of pairs (, p), where : W' - LG is a

tame regular semisimple elliptic Langlands parameter, and p S such that p maps

to a, are in natural one-to-one correspondence with the class of Deligne-Lusztig

representations, giving evidence for our formulation of Conjecture 2.5.

2.3 Unramified groups

Now assume that G is a quasi-split k-group that splits over K = kr. In this

situation, we may describe R(k, G) in terms of group cohomology.

Let Fr be a generator for K/k. Through the quasi-split structure on G, Fr acts

on X and XV with finite order, through a finite-order automorphism we denote F.

For the cyclic action on X, for example, we have X((F)) = (1 - F)X, and the group

of coinvariants is X/(1 - F)X.

When R is a discrete group with a continuous action of an infinite topologically

cyclic group C = (T) (for example, the unramified Galois group K/k = (F)), we

often will view cocycles in Z1 (C, R) as elements in R:

Lemma 2.7 ([3], Section 2.1) Let R be a discrete group with a continuous action

of an infinite topologically cyclic group C = (). Let

A = {g CR: g -(g). ... n-l(g) = 1}.
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Then evaluation at T defines a bijection

Z1(C, R) Un>1AR (2.18)

in which a, f} E Z 1(C, R) are cohomologous if and only if the corresponding elements

g, h E R are T-conjugate, i.e. there exists x E R such that h = xgT(x- 1 ).

When we take this viewpoint, if g is an element of R regarded as a cocycle, we will

write [g] for the cohomology class it represents.

Sometimes we have a further interpretation:

Lemma 2.8 ([3], Lemma 2.3.1) If, furthermore, R is a finitely generated abelian

group, then

Z1(C, R) = {r E R: mr C (1 - T)R for some m > 1}.

Under this interpretation, we have:

Hl(k, Gad)

Rlift(k, G)

R(k, G)

= Z1(K/k,XVad)

= Z(K/k,XV)

= Z1(K/k, X)/B (K/k Xv).

This point of view will be useful in the next chapter.

(2.19)

(2.20)

(2.21)
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Chapter 3

Deligne-Lusztig Representations

3.1 A Class of Depth Zero Supercuspidal Repre-

sentations

Definition 3.1 Let : W' -' LG be a Langlands parameter, and say it determines

cl9 E Z1 (W, G) and No E b. We say that a is tame if (y) = y for all y E 2I+ . If is

tame, we say that it is regular semisimple if the centralizer ZO(cO(27)) is a maximal

torus of G. We say that X is elliptic if the identity component of G is contained in

= Z(G)

Recently, DeBacker and Reeder [3] have associated a depth zero supercuspidal repre-

sentation of a pure rational form to every pure extension of a tame, regular semisimple,

elliptic Langlands parameter.

The supercuspidal representations DeBacker and Reeder construct are precisely

those compactly induced modulo center from unramified twists of the inflation of a

Deligne-Lusztig representation Rs,o to a parahoric subgroup P over k from its reduc-

tive quotient P = P/P+, where (S, 0) is a representative of any geometric conjugacy

class of the finite group P such that S is a minisotropic maximal f-torus of P and

0 c Hom(S(f), Cx ) is in general position. We will call this class the class of represen-
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tations of Deligne-Lusztig type. The Deligne-Lusztig representations are some depth

zero, supercuspidal ([3], Lemma 4.5.1), irreducible representations of G,(k). We will

parameterize the same class of representations for non-pure inner forms.

3.2 Some Weyl groups

We begin by comparing the setup of [3] in the cases of G, G, and Gad. The Frobenius

element in FrK/k acts on the group of K-points G = G(K) through the quasi-split

structure by an action we denote F, and we may take the Cartan-Borel pair T C B

so that T and B are F-stable and T is K-split; write T = T(K). Write i7: G - G

for the restriction of the covering map G - G; the map 77 need not be surjective.

Let T be the maximal torus in G containing 77(T). Let X,(T) = Hom(KX, T), and

write A(G, T) = X,(T) ®z IR for the apartment of T in G over K. Because T is

K-split, we have a natural isomorphism XV - X,(T). The apartment is naturally

embedded in the building B(G) (see Tits [16]), which carries natural actions by G and

G. Additionally, NG(T), N(T), W, and Wad act on X,(T) and hence on A(G, T),

preserving the simplicial structure. There is also an action by rK/k on both A(G, T)

and B(G); again we denote the action of the Frobenius generator by F. The map

r/ induces a bijection of affine spaces 7 : A(G, T) - A(G, T) with the same the

simplicial structure. However, the orbits of NG(T) on A(G, T) may be smaller than

the orbits of Nu(T) on A(G, T).

Let OK be the ring of integers in K, and put TO = T(OK), Td = Tad(OK), and

T = T(OK). We have affine Weyl groups for G, Gad, and G, which we may compute

over K:

W = NG(T)/T ° Wad = NGad(Tad)/Tad W = N/T (3.1)

The finite Weyl group W = NGad(Tad)/Tad appears as a quotient of each of these

groups, via the maps W - V -- Wad induced by the reductions G G 4 Gad. If
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a., b E W (or W or Wad), write a * b for abF(a-l).

Let C C A(G, T) be an F-stable alcove, and let o be an F-stable hyperspecial

vertex in its closure. We use the same notation for the images of o and C in A(G, T)

and A(Gad, Tad). Write W ° for the stabilizer of o in W; the natural inclusion maps

induce isomorphisms with the stabilizer of o in Wad or W, and these groups are

canonically isomorphic to W. Fix lifts tw E NG(T) of each T E W °. Then r(tb) is a

lift of w up to Nu(T).

Write We for the subgroup of W generated by reflections in the walls of C, and

W/C for the stabilizer of C in W (not the pointwise stabilizer). Similarly, write (Wad)C,

17Ca , Wc, and WC, but note that Wc = (Wad)C W Wc. Thus we have decompositions:

W = XV >WO W° Wad = Xad >W W V = X > W o (3.2)

W = W C > W C Wad = WC W W = WC >x W (3.3)

On the dual side, recall the Cartan-Borel pair T C B in G fixed when defining

the semidirect product structure on the L-group LG. Let W = NO(T)/T. Via the

transpose map, there is a canonical isomorphism W -+ W. Inside LG, F acts on G by

conjugation; write F for the automorphism by which the Frobenius generator acts.

This action stabilizes T and B by assumption.

3.3 Construction

Let G be a quasi-split reductive k-group, split over K. Let be a tame regular

semisimple elliptic Langlands parameter, and p E S. Suppose p maps to a E R(k, G),

in the preimage of [] E H1 (k, Gad). We construct a Deligne-Lusztig representation

7T = 7r(0,p) as follows.
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3.3.1 Computation of So

First, we invoke DeBacker and Reeder's interpretation of a tame regular semisimple

elliptic Langlands parameter . Recall from Chapter 1 the cocycle cO and the nilpo-

tent element No E attached to . Because Z(a0()) is a torus, N = 0. Let

Fr E W be a Frobenius element. The continuity of b forces cl z to factor through

a finite cyclic quotient. Let n = ao(Fr). The semidirect product structure on W

(see equation (1.12)) forces n C NG(Z(a (I))); by the assumption that b is regular,

this is the normalizer of a maximal torus in G. We say that is in good position if

a(ZI) c T; any tame regular semisimple X is conjugate to one in good position. As-

sume X is in good position. Then n determines an element w C W, and the centralizer

GJ = W~F. The assumption that is elliptic implies that the identity component

of G~ is contained in Z(G), so that t' is an elliptic element of W. The set of pure

extensions S"'ure is the set of characters of ro(G*) = 70(TbF).

Under the transpose isomorphism W - W and the isomorphism W W°, let

is, correspond to w C W °. Since XV = Hom(T, CX), Proposition 2.1 yields Sure"'

Hom(ro(T"F), CX) = (XV/(1 - wF)XV)tor. By Lemmas 2.7 and 2.8, we also have

Spure = Hl((wF) ,XV). Observe that Z1 ((wF) ,XV) is the set of elements in XV

whose image in (XV/(1 - wF)XV) has finite order. (In [3], this set of cocycles is

denoted Xw.)

Using the set Ro = {t T: 7r(t) E TWF}, Proposition 2.1 similarly allows us to

identify

,= (v/(1- wF)XV)to,. (3.4)

Because (1 - wF)XV has finite index in (1 - wF)XV, we may identify the right hand

side as Z1((WF), XV)/Bl((wF) ,XV).
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3.3.2 Computation of R(k, G)

Henceforth we will regard Xv as a subgroup of W via the map A --+ t, sending a

cocharacter A to translation by A. Similarly, we will regard V as a subgroup of W.

Because the coroot lattice is Xv n W = ZAV , we have xv = .XV/Xv n Wc. The

splitting W = Wc >xa C yields a homomorphism W --* WC; because we also have

W = XV x> W and W° C Wc, it induces an isomorphism Xv W C .

This identification, and its analogue for Xv, give a natural bijection

R(k, G) = Z 1(K/k, Wvc)/Bl1(K/k, WC). (3.5)

Write N for Nu(T), and N for the preimage of WC in N. By Lemma 2.2.3 of [3],

the map

Z(K/k, N C) Zl(K/k, WC) (3.6)

is surjective. For each b E Z'(K/k, 7WC), choose a lift b E Z'(K/k, N); this cocycle

specifies an inner form of G. Write Fb for the automorphism Ad(b)oF of G, G, or Gad,

and also for the automorphism bF of XV, XV, XaV or of the associated apartments.

More generally, for x E W, we write Fx for the composite xF inside the automor-

phism group of XV, XV, Xd, or the associated apartments, and for the map Ad(x)oF

on the associated tori. We will only use this notation when Fx is a finite-order auto-

morphism of all of these objects. We will write Z 1(F, -) in place of Z'((Fx),-).

3.3.3 Assigning representations to cocycles

We now construct a Deligne-Lusztig representation for each A E Z1 (F, XV).

Since A E Z1(F, XV), the element twF E Xv x> (Fr) has finite order, and hence

fixes a point x0 E A(G, T). Because C is a fundamental domain for the action of We,

there exists r E WC such that rxo E C, the closure of the alcove C. Factor r = rcr ° ,

where r E XV n We and r° C W °. The point x = rxo is in the closure of C; let J be
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the facet of A(G, T) in which it lies. The transformation r(tAwF)r -1 fixes the point

x and stabilizes the facet J.

Under the factorization W = Wc > WC , suppose

rtAwF(r-) = zb (3.7)

with z E Wc and b W C. Then

x = r(tAwF)r-lx = (rtAwF(r-1 )F)x = (zbF)x = z(bFx).

We have both bFx E C and z(bFx) E C. Since C is a fundamental domain for

the action of Wc, this implies that bFx = z(bFx) = x. Thus, the element x is Fb-

fixed and the facet J is Fb-stable. We conclude that JFb is a nonempty facet in the

apartment A(G, T)Fb of Gb over k.

The map So -+- R(k, G) is induced from the map W --* WC sending tx to b. Since

Wc is normal in W, the map does not depend on the choice of r; in particular it does

not depend on the representative A of p.

We have z C Wj, the subgroup of WC generated by reflections through hyper-

planes containing J. The group Wj may be naturally identified with the Weyl group

WI4(GJ, T) of the finite group GJ. Because J is Fb-stable, the Frobenius automorphism

Fb gives an f-structure on the finite reductive group GJ = GJ/G + . By the Lang-

Steinberg theorem, there exists p E GJ such that p-Fb(p) = z. Then S = Ad(p)T is

an Fb-stable maximal k-torus in Gj. Write SFb for S with the k-structure given by

Fb.

The torus SFb is minisotropic because the image of zb in W is elliptic. Indeed,

suppose w C XVF such that Ad(p) ow E Homk(kX, SFb). Then Fb(Ad(p) o(F-la)) =

Ad(p) ow(a) for all a e k . Conjugating by p-', this amounts to Ad(z)Fb(w(F- 1 a)) =
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w(a). But

Ad(z)Fb(w(F-'a)) = Ad(zb)w(a)

= Ad(rtxwF(r-1))w(a)

= Ad(rtxF(r-)) o Ad(F(r)wF(r-1))(w(a))

= Ad(F(r)w)(w(a)) (3.8)

where the last line uses the fact that rtxF(r - 1 ) E T since F and NG(T) preserve T.

We have deduced that F(r)Ww = w; since w (and hence F(r)w) is elliptic, this forces

F(,-)C E X,((Z(G))°), so w E X,((Z(G))°), as desired.

Factor zb = toWo with t o C XV and wo E W °. Write TF,, for T with the k-

structure given by Fwo. Then Ad(p) : TF, --- SFb is an isomorphism of k-groups: for

s E S, s = Ad(p)t, we have

,b(Ad(p)t) = Fb(ptp-) p= p 1Fb(ptp-1 )pp-' = Ad(p)(Ad(z)Fb(t)) = Ad(p)(Fwo(t)).

In particular, there are natural isomorphisms

LSFb LTF F r (3.9)

where iOo C W is dual to wo C W °.

The local Langlands correspondence for abelian groups [8] gives a bijection be-

tween tame Langlands parameters of a torus and its depth zero characters; the de-

tails we need are in [3], section 4.3 in the semisimple case, and in [13] reductive

groups. First, we need to extract from a Langlands parameter OT for TFo0 . Let

Gab = /[G, G] be the maximal abelian quotient of 0.

Lemma 3.2 ([13]) The canonical map

T/(1 - z0F)T G Oab/(1 - F)Gab
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is a bijection. The left hand side is in natural bijection with the equivalence classes

of Langlands parameters XT for TFw0 such that T I = arp,z inside T.

Take E (T) such that the image of in W is dual to the image of r in W.

Choose OT to correspond to the image of Ad(f)(O(Fr)) in the right hand side of

equation (3.10).

Let S = S/S n G. Our choice of uniformizer a for k gives a decomposition

TFuO = (TFwo)° x (XV)FWo into compact and hyperbolic parts; thereby we get a

decomposition

Hom(TFwo,CX) = Hom((TF-o)O,CX) ® Hom(TFo/(TFW )O ,CX) (3.11)

of depth zero characters into characters of SFb and unramified characters of the k-

torus TFwo. The tame Langlands correspondence for abelian groups produces a depth

zero character of TFwo from XT; suppose its decomposition above is 9 T r 0 X r Then

Ad(p)*(,Tr) factors to give a character o,r of the torus SFb of the finite group GFb.

This character is in general position because was regular semisimple. Take XA,r to

be the unramified character Ad(p)*(XTr, ) of TFWo. Because w0 is elliptic, TW, is an

minisotropic torus in G, so this unramified character must factor to a character of

the center Zb(k) of Gb(k).

The representation 7rX,r we associate to A and our choice of r is

7r,\ Indb(k(GJ) b(k)XA,r 0 E((GJ)Fb, SFb)R (G)b) (3.12)

where 6(GJFb, SFb) is the sign

E(Gj, S) = (_l)rankk((GJ)Fb)-rankk(SFb) (3.13)

and R(s4)b is the Deligne-Lusztig generalized character associated to the geometric

conjugacy class containing (S, OA,r) for the finite reductive group GJ/G+; the product
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is the character of an irreducible representation of GFb, which we inflate to GFb. The

proof of Theorem 4.5.1 of [3] goes through to show that 7rT,r is irreducible.

3.3.4 Independence of choices

Now we show that the representation 7r,r is independent of our choice of r in the

preceding subsection. Suppose that r' E WC and r'xo E C. Then r' E Wj · r. Via

w1 = Wc X WC, factor r'(tAw)F(r'-l) = z'b'. Because Wc is normal in W and

r' E WJr, b' = b. Take p' E Gj such that p'-1 Fb(p') = z'. Let S' = Ad(p')T, again

a minisotropic, Fb-stable maximal k-torus. It is clear from our construction that

Ad(p'p-)* sends the geometric conjugacy class (S, 0) constructed from r and 0 to

(S', 0'), and that 7rT,r = Tlr,r'.

Furthermore, the representation i7r depends only on the class p = [A] of A in SO.

Suppose that A = A' + (1 - wF)v for some v C XV. Then t = t,tA,wF(tVl)w - 1 and

tAwF = t(tx,wF)t- 1 (3.14)

Let x be the point fixed by t,wF. Then x0 = t x4 is fixed by twF. Given r' G WC

with r'x E C, and r E We such that rxo E C, let r c = r'(rt,) -1 E WC. We have

rCbF(rC - 1) = b' by equation (3.14), which establishes that these two elements have

the same image in W/Wc, and the fact that C is F-stable, which shows that the left

hand side belongs to WC.

The facet J' associated to 0 and A' is rCJ. Let b E Z 1 (F, N ) be a lift of b. For

any lift r of rC , Ad(r c ) induces an isomorphism of k-groups between Gb and G,

where b = rCbF(rc ): for x EC GF,

Ad(rC)(F(x)) = Ad(rCb)F(x) = Ad(b'F(rC))F(x) = Fp(Ad(rC)x).

Because rCJ = J', Ad(rC) sends the subgroup GJ to GJ,. Suppose p GJ and

S = Ad(p)T such that p-Fb(p) = z, with z as above. Then p' = Ad(rC)p E GJ,
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satisfies

p F-lF(p') = rC pl-XAd(rCbF(rC ))F(rCprC )rc -1 -r1 -1
rCp-lr- (rCbF(p)b- 1)

= rc (p-F (p))

z.

We conclude that Ad(p')T is a torus in GJ,, of type z' C WJy with respect to the FF,

f--structure on GJ,.

The characters XT and 0T constructed above depend only on X and not on p. Thus,

the pairs (S, 0) = (Ad(p)T, Ad(p)*OT ) and (S', 0') = (Ad(p')T, Ad(p')*O ) are identi-

fied under Ad(rC) GJ -* GJ,, and the representation 7r,,r = r,r. We have already

shown that 7 Ar,r is independent of r; we conclude that we get the same representation

7r(,p) = 7rAX, for all choices of A above b, and all choices of r.

Finally, we consider G-conjugate extended Langlands parameters. Suppose that

(l', p') = (, g p) for some g E 0, and that and b' both are in good position. This

forces g E No (T).

Let a C W ° be the element dual to the class of g in W. Say A represents p E SO.

If t C W is the element associated to b, we have wi' = g * b associated to q',

and A' = 9A represents p' E So,. On the p-adic side, t, = atx and w' = a * w.

Because a E Wc and a(tAwF)a- 1 = tw'F, the facet J C C determined by and

A matches J' corresponding to ' and A'. From the fact that twF and tw'F are

W-conjugate and that x = x', the elements z E Wj and b E WC determined by

(q, A) and (, A') also match. In particular, both extended Langlands parameters

determine the same w0 E W ° . We deduce that the characters X0 and X0' are equal,

and that the geometric conjugacy classes (S, 0) and (S', 0') match, because they are

32



CHAPTER 3. DELIGNE-LUSZTIG REPRESENTATIONS

determined by the downward arrows in the commuting diagram

Ad(a)

Ad(r) Ad(r')

To

in which the horizontal map is dual to the corresponding isomorphism Ad(g) T > F~

F -+ > xF, r of L-groups. Thus 7r(o,p) = 7r(,,p,).

3.3.5 Exhaustion of Deligne-Lusztig representations

Consider a stable rational form on G, represented by some element b E Z1 (K/k, WC).

Let 7 be a representation of Gb of Deligne-Lusztig type. Write

7 = In a b( (k ) e(Gj, S)R a J
rIdZ(k)(GJ)b(k)(X (S0))

for some J C A(G, T), some unramified character X, and some geometric conjugacy

class (S, 0) of GJ, with S minisotropic for the Fb-structure on GJ. Because C is a

fundamental domain for the action of Wc, we may and do assume that J C C. We

wish to find 0 and p such that 7r = 7r(,p) .

Take p Gj such that Ad(p)T = S. Let z = p-lFb(p) E Wj. Because S is

minisotropic, the image of zb in W is elliptic (reversing the logic of equation (3.8)).

Factor zb = txw with A C XV and w E W °. We claim that A E Zl(F, XV), in other

words, that twF has finite order. The facet J is stabilized by Ad(b) o F and fixed

by z. The element bF belongs to the finite group WC x (F) (where we quotient by

FM if the quasi-split form G splits over a degree m unramified extension), and z has

finite order because it belongs to the finite group GJ. Because the Weyl group Wj is

Fb-stable, Ad(zb) o F must have finite order, as desired.

Consider the character 0 T = Ad(p-l)*0 of TFw and the unramified character XT =

Ad(p-l)*X of TFw. Let AT be the Langlands parameter of TFu corresponding to
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0
'r 0 XT under equation (3.11). Let n' E No(T) be a lift of zi. Under the bijection

(3.10), the class of n' might not correspond to the class determined by XT; however,

by multiplying by a suitable element of T, we may replace n' by n E No(T) that does

correspond to XT and still is a lift of zj. We define the tame regular semisimple elliptic

Langlands parameter for G by the conditions als = lTz and ao(Fr) = n. Let p

be the class of the cocycle A in SO. Then 7r(,p) = r.

3.3.6 Non-duplication of representations

Suppose (, p) and (', p') are extended Langlands parameters over a stable rational

form [y] E R(k,G), represented by y E Z((F) , W c ) under equation (3.5). Let

Gy be the group inner to G with a k-structure in which rK/k acts by F, where

V E Z1 (F, N ) descends to y. We show that if r(¢,,p,) = 9g7r(,,p) for some g E Gy(k),

then there exists g E LG such that (', p') = (&, p).

Without loss of generality, we may assume that X and ' are in good position,

determining iw, w' E W, and that t5- and w' and the representatives A and A' of p and

p' are chosen such that twF and t,w'F fix points x and x' in C. Take z, b, J, S, 0,

z', b', J', S', and 0' associated to (, A) and (', A') as in previous subsections.

First, we replace (A, w) and (A', w') with more felicitous choices, so that our rep-

resentations may all be constructed inside Gy. Because (, A) and (A', A') both map

to [y], there exist c, c' E WC such that c * b =y = c' * b'. Let , c' E NO(T) be

dual to the images of c and c' in W; we then have (bF)6- = F. Replacing (, A)

by (, CA) and (', A') by (C /', cA'), we may assume that b = y = b', on top of our

previous assumptions.

Write

7 = 7r(,p) = Ind GJ)b(k) X 0 (GJ, S)RS)b

F = if(,Ip-) = Indz(k)(GJ,)b(k)X 0 E(Gj, S')R(S,)
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By Theorem 5.2 of [11], the types (GJ, E(G, S)R(s,o)) and (G,, E(G,, S')R(S,,o,))

must be associate. Using the fact GJ is a maximal parahoric in Gy, this means there

exists g Gy(k) such that gJ = J' and 9(E(G, S)R(So))- (E(Gj,, S')R(SJ) as

representations of (GJ,)Y; we may take g to be in (NG(T))FY. Consequently, (S, 90)

and (S', 0') belong to the same geometric conjugacy class, so there exists h E NGJ, (T)

such that (hgS, hg) = (S', 0') and h-1 Fy(h) T. Let a be the image of hg in WFY.

If a C N0 (TP) is dual to the image of a in W, then (, ap) is an extended Langlands

parameter that yields the facet J', the k-structure given by Fy, and the pair (S', 0').

We know that a(tAwF)a-l = z"yF for some z" E WJ,. On the other hand, with y

fixed, z" is uniquely determined by the pair (S', 0'), so z" = z'. Since

a(tAwF)a-l = z'yF = t,w'F, (3.15)

both cao(Fr) and ao,(Fr) have image w' in W. Because w' is elliptic, there exists

t E T such that aim,(Fr) = o (Fr). Both Langlands parameters yield the character 0'

of S'; since this character is regular, we must have tad = 4!. If the element a E W is

decomposed as atao with at E XV n Wc and a E W °, then a W = w, so by equation

(3.15),

taX = aA = X' mod (1 - wF)XV. (3.16)

Thus (tLaq, t p) = (', p') as desired. O

3.4 Behavior in SL2

As an example of how Langlands parameter extensions and their corresponding rep-

resentations behave with respect to coverings, we consider the group G = SL2. Here,

H1(k, G) = 1 by Kneser's Theorem [5], but R(k, Gad) = /2Z. Take r = -1 

R(k, G). Then Gr(k) = SL 1 (D), the norm-one elements of a central simple algebra

D of dimension 4 over k. Let k2 be the unramified quadratic extension of k. We may
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write D = k2 ® k2a, where a E D satisfies axa-1 = FIx for x E k2 and a2 = -1.

Recall the covering : G -- G, where G = PGL 2. Suppose Cad is a tame regular

semisimple elliptic Langlands parameter for PGL 2. We have an L-homomorphism

L: LPGL 2 LSL 2, providing a Langlands parameter q = L 0o Oad for SL 2. We

have LPGL 2 = Gx r and LSL2 = 0 x F, where G = SL2(C) and G = PGL 2(C).

Fix Cartan and Borel subgroups T C B C 0, and let T C B be their covers in G.

Suppose Oad to be in good position with respect to T, so that aad(Fr) represents the

nontrivial element of W(G, T) = W(G, T). Then

SOad = G *ad = TD = {±1} = Z(SL2(C)) = R(k, Gad) (3.17)

Each fiber of r : Sad --+ H 1(k, Gad) has a unique element, and DeBacker and Reeder

have constructed corresponding representations 7 (,ad,l) of PGL 2(k) and 7r(,ad,-l) of

PGL1 (D).

Consider an apartment A = A(G, T) of SL 2; it may naturally be identified with

a particular apartment of PGL 2. Choose a vertex o as the origin, and let a be an

affine root that vanishes there. Let C be the chamber between the hyperplanes where

and a + 1 respectively vanish. There is a generator A for xv = X V sending a

to a + 1; the element 2A is a generator for XV = X .SL2'

The Weyl group W = W(PGL 2, Tad) acts transitively on the vertices of A, but

TV = W(SL 2, T) has two orbits, consisting of the vertices where the roots a+k vanish

for k odd and even, respectively. Let J be the vertex where a vanishes and J' be

the vertex where a + 1 vanishes. Let w E W° be the nontrivial reflection. Through

the above constructions, ad determines a character T0 d of TF, and X determines its

restriction T to TFW.

If S is an anisotropic torus of (PGL 2)j, then S = r-1(S) is an anisotropic torus

of (SL 2)j. Because the restriction of 7T(adl) to (PGL2)j contains -1 · R(Sd), the

restriction of ri* (r(&d,1)) must contain -1 · R(s,o).
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The types (J, R(s,o)) and (J', R(s,o,)) are not associate, so we have found two

inequivalent irreducible representations in the restriction of 7r(¢ad,l) to G. These rep-

resentations appear as representations 7r(,p) for p E S as follows. By equation (3.4),

we calculate

S = Z'((s) , XV)/B((s,) XV) = XV/2Xv = XV/4Xv (3.18)

and by equation (2.21), we have

R(k, G) = XV/(1 - F)XV = XV/Xv = XV/2XV. (3.19)

The map S - R(k, G) corresponds to XV/4XV * Xv/2XV, and each fiber has two

elements.

Over the split form in R(k, G), we have the classes in S corresponding to 1

and t2 . Both 1 and t are in Wc, so the element b of equation (3.7) is 1. The

corresponding facets are those fixed by s, and ts,, namely J = o and J' = to. Any

irreducible representation 7r of SL 2 in the restriction of 7(ad,,,1) has one of the two

K--types (J, -R(s,o)) or (J', -R(s,o)), but 7r(,l) and 7r(,t2) are the unique irreducible

representations with these properties. We have precisely

Resc(k)wr(¢ad,l) = 7T(,1) D 7(,t2). (3.20)

Over the fiber of T = -1 R(k, G), we have the classes corresponding to t and

t0i. Write p for the class of t in So. The elements tsa and t3s , preserve x and tAX,

where x is the barycenter of C. However, s, C W ° satisfies

S(txs) = ts, = t3s, mod (1 - wF)XSL2 (3.21)
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Let

n= ( i) E SL2(C)

and let be its image in NO(T). Let 4/ = fi. Observe that Rp = Ry in . We have

(i%5, p) = (, p-l). Both (, p) and (, p-1 ) determine the same character T of

T F (see the discussion under Lemma 3.10), and the same representation of GT(k).

The representation arising from the character (T), on the other hand, arises from

either (, p) or the equivalent extended parameter (, p-l).

The identification of these representations works differently than over the split

fiber. There, the representations associated to the extended parameters (, 1) and

("'q, 1) match because the nontrivial Weyl group (W(GJ, T))F1 transposes the corre-

sponding parameters for the L-group of the split torus T.
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Induction

4.1 Compatibility of stable rational forms

Suppose G is a quasi-split connected reductive group defined over a p-adic field k,

with k-stable Cartan and Borel subgroups T C B. Consider a standard parabolic

subgroup P = LU of G such that P, L, and U are each defined over k. Let (eL, pL)

be an extended Langlands parameter for L.

Following [17], we define the infinitesimal character of a Langlands parameter X

for G to be 1[w. The inclusion of L in G induces an L-homomorphism L: LL LG

on the dual group side. By a slight abuse of terminology, we say that a Langlands

parameter eL for L is the infinitesimal character of 0 if the composite Lo L Iw = ¢1W.

Whenever we view an infinitesimal character as a Langlands parameter, we consider

the Langlands parameter to be trivial on the nilpotent part of the Weil-Deligne group.

Let B(G) be the (extended) building of G. The inclusion of L in G determines a

map 3(L) - B(G). Consider a K-split, maximally k-split torus T of L. There is

an embedding A(L, T) -4 A(G, T). Both apartments are affine spaces of the same

dimension, but A(G, T) has more hyperplanes.

The based root datum for L is (X, AL, X V , AL) for some subsets AL C A and

AL c Av. Let Xv and Xv be the cocharacter lattices of the quotients L and G
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constructed in Chapter 2. These differ, but both lattices embed into XV IR. Write

Xjv for the intersection XLv nXG inside this affine space, and xv for XV/ZZA\. There

is a natural map (but not necessarily a surjection) xv _ XLv/ZAL, so that we get a

map Zl(k,XV) -- R(k,L).

Suppose T E R(k, G) is a stable rational form for which L is defined over k. The

criterion for a translation t C X to preserve A(L, T) is that it live in the subgroup

XV. Therefore, representatives of T must come from Z1 (k, XV).

Let TL be the stable rational form of L defined by the extended Langlands pa-

rameter (XL, pL) corresponding to 7rL above. Suppose 0 is a Langlands parameter of

G with infinitesimal character XL. If the rational form in H1 (k, Lad) associated to TL

arises from a rational form on G, then TL is represented by a cocycle in Zl(k, XV).

Let T E R(k, G) be the stable rational form of G obtained from (any) representative

of TL via the map Z'(k, XV) -- Z1(k, XvG).

Although the map L --G might not lift to a map L -+ G, there is a relationship

between the parameter extensions SL and S¢. From the lattices

X = (Xo d XLd) + (4.1)

X = {X E X: (X, w) C Z for all w E XV} (4.2)

we obtain the based root datum (X,XV, AL, AL) of a quotient of L that covers

L. Calling the corresponding reductive algebraic group L1, we may factor the map

rl = rL: L - L of Chapter 2 as

L 1 L -+ (4.3)

and the dual map r = 7rL as

L %2 LL1 LI LL (4.4)

Through Proposition 2.1, the image of Z(k,XV)/Bl(k,XVL) in R(k,L) may be
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identified with Lh*(Hom(o(Lr1 l(Z(LG))), CX)). Recall that R/L = 7L1(LqL), and

SOL = Hom(Tro(RAL), CX). The fiber

SOL(T , = 7L72 ({(T E Hom(lro(L1l-1(LqL)), X) OLl1(Z(LL)) = TL}). (4.5)

The based root data show that there is a natural map : LL1 L, and we have:

LL 1 l LG (4.6)

LL LG

A. comparison of S, and S¢L will require an analysis of the various X with infinitesimal

character A, which we will perform later in this chapter. The simplest example comes

from the Langlands parameter 0o = L o XL. Then we have maps L 7 1l1(L~L) 

LG, inducing a restriction map S¢,(T) - SL(TL). For other X with infinitesimal

character rL, we do not always expect elements of S¢(T) to determine elements of

SOrL (TL), particularly if there exist P, P2 E SL (TL) such that IndLU(T(L,P 1 ) 0 1U)=

Indur(¢(L,p:2) 0 lu)

4.2 Parabolic induction and infinitesimal charac-

ters

The case of principal series gives a prototype for the relationship between parabolic

induction of representations and extensions of Langlands parameters. Consider the

situation where L = T and P = B. Identify LT with the subgroup T x> F of LG.

Given an unramified character of T(k) corresponding to a Langlands parameter
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5T : W _ LT, the work of Kazhdan and Lusztig [4] placed the subquotients of

IndB(k) (0 lu) in correspondence with some of the pairs (N, p), with N E such

that Ad( T(r))N = qN, and p a representation of the component group of the

centralizer ZO(0T(Fr)) n Zc(N), trivial on Z(LG). (Here, q is the order of f.) These

pairs may be regarded as certain pairs (, p) with a Langlands parameter having

infinitesimal character XT, and p E S(1).

When one tries to remove the word "certain" in the above correspondence, one

obtains not only principal series but the class of all unipotent representations [9], [10].

We wish to describe Lusztig's result in a particularly suggestive way.

We have fixed a K-split maximally k-split torus T and a Borel subgroup TU

of G. Following, e.g., Moy and Prasad [12] Section 6.3, we assign a Levi subgroup

M J of a standard parabolic subgroup of G to every k-stable facet J C A(G, T) as

follows. Let C be the maximal f-split torus contained in the center of the reductive

quotient G of the parahoric subgroup G. Lift C to T to obtain a subtorus T of S.

The group Al = Zc(C) is a Levi subgroup of G with the desired properties. Because

Al contains T, there is a natural embedding A(M, T) -4 A(G, T), and J is a minimal

F-stable facet in A(M, T). We take M J = M. Let N J be the unipotent radical of

the parabolic subgroup generated by M J and U.

Assume now that G = Gad and G is split. Let E Zl(k, G), and suppose that

P = MN is a F-stable parabolic subgroup of G. Given an unramified Langlands

parameter with infinitesimal character XT and p So(r) = Sure(r), Lusztig assigns

a representation 7r of G,(k) to (0, p) in [9], depending only on the G-conjugacy class

of this pair.

Note that in LT, the component group SrT is trivial. Lusztig's correspondence

has the following property:

Suppose T E R(k, G), and J C A(G,T) is an F-stable facet. Let

crA' be a unipotent cuspidal representation of G, M = M J, and r; be an
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unramified character of the center of MT (k). Put

tM ,= K TC-IndM (k) M
(m),(k)

If 7r is an irreducible subquotient of Ind(k)NJ() (wM &IN,( (k)), then wr cor-

responds to an extended Langlands parameter (, p) such that p E S¢(T)

and Olw = XT, where XT is the Langlands parameter of LT corresponding

to Kc.

When we think of the word "unramified" as meaning "geometric conjugacy class

(T, 1)" (the unipotent cuspidal representations), it suggests an immediate general-

ization of this property. Let M be a k-stable parabolic subgroup of G, and irM be

a Deligne-Lusztig representation of M. From our result in the previous chapter, it

determines a pair (M, pM), with OM: W -- LM a Langlands parameter for M and

pL C SM. Let b E Z 1 (K/k, WC), J c A(M, T) be as in the previous chapter. We

have M J = M. Let N = N J. The type of wM may be represented by (MJ, aM) for

some representation aM = c - Ind(k) ER(s,0)

The stable rational form L associated to b determines a stable rational form

T c R(k, G), as above. We conjecture that the following property will appear in

a Langlands correspondence between depth zero representations and tame extended

Langlands parameters:

Suppose 7r is an irreducible subquotient of IndM(k) N(k)(7 M 0 1N(k))

Then 7r corresponds to an extended Langlands parameter (, p) such that

01 = M .

We would like to add a compatibility condition between p and pM to this statement.
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4.3 Langlands parameters with a fixed infinitesi-

mal character

Now we return to a standard k-stable parabolic P = LU and a tame regular semisim-

ple elliptic Langlands parameter L for L in good position. Let rL be the corre-

sponding supercuspidal representation from Chapter 3. We consider the Langlands

parameters for G with infinitesimal character XL.

Put 00 = L o XL. Fix a generator s for ao,(Z), and let tb be the image of o0 (Fr)

in W. Recall that T is the preimage of T in G. From our description of the based

root data for L and G, it is clear that L = 7r-(L), which is a parabolic subgroup of

G. The element s is regular semisimple in L, and we have LL = WT and RL = TW.

The group Ro = 7r-l(CO° ) is also the centralizer of 7r-l(0o) in G. Recall that

the derived groups of G and L are simply connected. By a theorem of Steinberg, the

centralizer of a semisimple element in G is connected. Suppose E G with 7r(S) = s.

Then Gs is a connected, psuedo-Levi subgroup of G. Given a E D, write U, for

the corresponding root subgroup of C. There exists a subset 4 C such that

Cs = (T, U,:0 a E 4I,) (cf. Theorem 3.5.6 in [2]). Because s is regular semisimple

for L, I0 n DL = 0.

Given L tame regular semisimple elliptic, a Langlands parameter of G with

the property that 01w = L is determined by an element N C satisfying certain

conditions. To define from XL and such an N, we use the decomposition of the

Weil-Deligne group W' = W v C, requiring that for z E C, we have (z) = exp(zN).

Put

A(OL) == {N E : as defined above defines a Langlands parameter}. (4.7)

Write N for the Langlands parameter corresponding to N CE AM(L); this notation

extends our definition of Oo.
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We can characterize the set H(O5L) as follows. The element 't determines an

automorphism of 4I; we call the set of a' such that ia = a' for some i the zF-orbit

of a, and denote it by [a]. Let n be the minimal positive integer such that ti n E T.

Let p((L) denote the set of zi-orbits [] in such that for some (equivalently all)

aE[3]:

1. a(s)=: 1

2. Ad( iJn)Na = qnN,

Fix a Chevalley basis {H,, Xa} for b. Given [] E ~D(qL), fix ac E []. Let k = I[ac]l.

Certainly k divides n. Put

k-1

X[a] = E q-iAd(wi)(X.). (4.8)
i=O

We have Ad(w)X[] = qX[]. Write 0[,] = CX[,]. This vector space is independent of

the choices of Oa and X,.

Proposition 4.1 We have

A/(0 L) = [[a]E 4,(,L)[a]-. (4.9)

Proof. From the structure of the Weil-Deligne group, fJ(L) consists of the

N E such that 0(I) acts trivially on N and such that Ad(q(Fr))N = qN. It is clear

that the right hand side of equation 4.9 is contained in (qL). Conversely, suppose

N E A;(OL). Necessarily N is nilpotent; the projections - 0, determine N, E 0,

such that N = EaE Na. Define complex constants c, by Na = cX,. Because

Ad(zi)N = qN, we must have c-1, = q-lc,. We deduce that N = aE,(OL) caX[a].

[]
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