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Abstract

Since the terrorist attacks of September 11, 2001, aviation security policy has remained a
focus of national attention. We develop mathematical models to address some prominent
problems in aviation security.

We explore first whether securing aviation deserves priority over other potential targets.
We compare the historical risk of aviation terrorism to that posed by other forms of terrorism
and conclude that the focus on aviation might be warranted.

Secondly, we address the usefulness of passenger pre-screening systems to select poten-
tially high-risk passengers for additional scrutiny. We model the probability that a terrorist
boards an aircraft with weapons, incorporating deterrence effects and potential loopholes.
We find that despite the emphasis on the pre-screening system, of greater importance is the
effectiveness of the underlying screening process. Moreover, the existence of certain loopholes
could occasionally decrease the overall chance of a successful terrorist attack.

Next, we discuss whether proposed explosives detection policies for cargo, airmail and
checked luggage carried on passenger aircraft are cost-effective. We define a threshold time
such that if an attempted attack is likely to occur before this time, it is cost-effective to
implement the policy, otherwise not. We find that although these three policies protect
against similar types of attacks, their cost-effectiveness varies considerably.

Lastly, we explore whether dynamically assigning security screeners at various airport se-
curity checkpoints can yield major gains in efficiency. We use approximate dynamic program-
ming methods to determine when security screeners should be switched between checkpoints
in an airport to accommodate stochastic queue imbalances. We compare the performance
of such dynamic allocations to that of pre-scheduled allocations. We find that unless the
stochasticity in the system is significant, dynamically reallocating servers might reduce only
marginally the average waiting time.

Without knowing certain parameter values or understanding terrorist behavior, it can be
difficult to draw concrete conclusions about aviation security policies. Nevertheless, these
mathematical models can guide policy-makers in adopting security measures, by helping to
identify parameters most crucial to the effectiveness of aviation security policies, and helping
to analyze how varying key parameters or assumptions can affect strategic planning.
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Chapter 1

Introduction

Within a period of little more than an hour on September 11, 2001, an unprecedented
series of terrorist attacks occurred on American soil. Four commercial passenger planes were
taken over by, terrorists, three of which were crashed into the Pentagon outside Washington
D.C. and the twin towers of the World Trade Center in New York City (precipitating their
collapse). It is believed the passengers on the fourth plane prevented an attack on a major
target in Washington by taking control of the plane themselves and crashing it into an
isolated field in Pennsylvania. Nearly 3000 people died that day.

The United States was not unfamiliar with attacks on aviation. Prior to September 11,
nearly 300 American civilians had been killed in aviation related terrorist attacks, most of
whom were killed in the 1988 bombing of Pan Am Flight 103 over Scotland. However, the
September 11 attacks were significant in their magnitude and in having taken place within the
United States. They revealed major weaknesses in the aviation security system and prompted
an immediate response. The Aviation and Transportation Security Act (ATSA) [133], passed
two months after the attacks, established the Transportation Security Administration (TSA)
that would, among other things, be responsible for the screening by a Federal employee of "all
passengers and property ... carried aboard a passenger aircraft" (Prior to September 11, most
airport security personnel worked for private contractors hired by the airlines). ATSA also
required all airports to obtain and use Explosive Detection Systems (EDS) to screen checked
luggage by the end of 2002 (Prior to 9/11, only a fraction of checked bags were ever screened).
The 2002 Homeland Security Act established the Department of Homeland Security (DHS)
to oversee the TSA and other security-related administrations. DHS continues to enact new
aviation security regulations (e.g., allowing trained pilots to carry handguns and prohibiting
cigarette lighters in carry-on bags [16, 77]) and to examine future threats such as those
posed by shoulder-fired missiles [122] and threats to air cargo, general aviation and airport
perimeters [14:7].

While most would agree that aviation security as a whole has improved since the at-
tacks, public debate continues about the value of existing measures and about remaining
vulnerabilities. The airline industry, for instance, has suffered financially since the attacks, a
phenomenon it attributes partially to a declining economy, but also to the expenses (direct
and indirect) of additional security requirements. The Air Transport Association (ATA) es-
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timates that the cost of aviation security policy in the first year after the attacks was roughly
$4 billion. In addition to this, ATA member airlines cut 100,000 jobs, ground nearly 300
aircraft, eliminated routes and scaled back flight frequencies. Some airlines were also forced
to seek bankruptcy protection. The Air Transportation Safety and System Stabilization Act,
enacted within weeks of September 11, granted $5 billion in funds directly to the airlines
as compensation and also made $10 billion available for loans [7]. Nonetheless, the airlines
feel that the burden of aviation security costs, transferred to them in the form of air carrier
and passenger taxes, has greatly exceeded this government support, and many are critical
of certain security measures that could impose further financial hardship [59, 106]. Former
CEO of Delta Air Lines, Leo Mullin, argued, "[T]he industry's ability to address the current
crisis is seriously limited by the staggeringly high costs of well-intended post-9/11 actions
by the government related to security" [106].

There is also concern that the TSA has implemented its security measures somewhat
haphazardly. Terrorism expert Brian Jenkins of the RAND Corporation suggested that the
TSA has been "bounced around in a reactive mode" and must "outline a broad strategy"
for instituting security measures effectively [54]. Although the TSA recognizes its objective
to be providing "tight and effective security in a manner that avoids waste and ensures cost-
effective use of taxpayer dollars" (statement of Inspector General Kenneth M. Mead [103]),
arriving at such decisions to the satisfaction of all stakeholders can be difficult.

Operations research can help to clarify these often political issues and guide decisions
in an objective, analytical manner through the use of mathematical models. Indeed, the
National Commission on Terrorist Attacks Upon the United States (the 9/11 Commission)
essentially called for increased use of operations research analysis in aviation security policy
when it recommended that "the U.S. government should identify and evaluate the trans-
portation assets that need to be protected, set risk-based priorities for defending them,
select the most practical and cost-effective ways of doing so, and then develop a plan, bud-
get, and funding to implement the effort" [107]. Operations research can contribute to such
a systematic approach by determining the conditions under which a policy may or may not
be effective, the level of risk at which a proposed measure becomes cost-effective, and the
most efficient implementation of such policies.

It is in these areas that this thesis hopes to illustrate the role that operations research
analysis can play in guiding aviation security policy. Some work has already been done in
this area, in optimizing the application of security measures to different classes of passengers
[68, 69, 71, 100, 156, 157], assessing the performance of multi-tiered security processes [70,
80, 81], evaluating the cost-effectiveness of certain policies [33], and in pointing out potential
weaknesses in proposed measures [20, 28]. Obviously, we cannot purport to address in this
thesis all issues in aviation security. Rather, we select a few prominent problems arising in
the years since September 11, 2001, namely whether securing aviation deserves priority over
other potential targets; whether passenger pre-screening systems to identify potentially high-
risk passengers are useful; whether explosives detection policies for cargo, airmail and checked
luggage carried on passenger aircraft are cost-effective; and whether dynamic assignment of
security screeners at various airport security checkpoints can yield major gains in efficiency.
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We create mathematical models that try to describe these problems and try to provide
guidance in their solution.

We use the next chapter to explore whether or not the recent focus on aviation is a
disproportionate response to an isolated event. The 9/11 Commission voiced its concern
that United States homeland security policy was focused too heavily on "fighting the last
war" [66], by hardening aviation at the expense of other vulnerable homeland targets. Since
the attacks, the Department of Homeland Security has spent nearly $15 billion on aviation
security compared to only $250 million on transit security [89], and attacks such as the
March 2004 Madrid train bombings and the July 2005 subway/bus bombings in London
have heightened fears that terrorists may have shifted their focus to ground targets. On
the other hand, the Secretary of the Department of Homeland Security, Michael Chertoff,
has defended recently this emphasis on aviation, arguing that "a commercial airliner has the
capacity to kill 3,000 people. A bomb in a subway car may kill 30 people" [89].

Here we try to contribute to the debate on whether the post-9/11 attention on aviation
security is excessive. We conduct a historical study of fatal terrorist attacks against Amer-
icans prior to September 11, 2001. The analysis demonstrates that the 9/11 attacks were
more a continuation of a terrorist fascination with aviation than a major departure from the
existing pattern. As we show, 38% of Americans killed by terrorism over the period from
1968 to September 10, 2001 were victims of aviation-related attacks. In contrast, the average
American civilian spends only 0.1% of his time in an airplane or at an airport. From these
numbers, we can compute that the hourly risk of being killed in a terrorist attack during an
air journey was over 600 times as high as the risk per hour on the ground. And, again, these
data pertain exclusively to the period prior to 9/11. Events since September 11 suggest that
the threat to aviation continues.

In subsequent chapters, therefore, we explore the efficacy and cost-effectiveness of several
security policies adopted or considered since 9/11.

One controversial measure has been the passenger pre-screening system, or profiling sys-
tem, commonly referred to as CAPPS (Computer-Assisted Passenger Pre-Screening System).
Pre-screening systems currently use passenger data collected by the airlines at the time a
reservation is made to identify passengers who could potentially pose a higher risk of ter-
rorism. Most passengers undergo only a primary level of screening at the airport security
checkpoint, but those passengers selected by the pre-screening system are then subjected to
a secondary level of screening, such as a thorough hand-search or explosives trace detection
of their carry-on bags.

Supporters of these systems have emphasized the operational improvements such systems
permit, because security resources are focused on the individuals who are believed most
dangerous, allowing other passengers to pass more easily through the checkpoint. But other
people wonder if these assessments about which passengers are dangerous are accurate, and
still others wonder whether terrorists can deduce enough about how the systems work to
evade them easily. For example, [28] pointed out the possibility that terrorists might probe
the pre-screening system. They might send members of their group on trial flights in which
they pass through the security checkpoint to ascertain which members are deemed high-

17



risk and which are deemed low-risk by it. The low-risk members could then be used in an
attack and receive only the primary level of screening, avoiding the more stringent scrutiny
a high-risk member would receive.

In Chapter 3, we evaluate passenger pre-screening systems, developing a probabilistic
model for the likelihood that the terrorists attempt and succeed at a plot to carry weapons
on-board the aircraft. This probability is a function of the profiling system's ability to
identify potential terrorists and the effectiveness of both the primary and secondary levels
of screening. The model considers as well elements of terrorist behavior: we evaluate how
this probability changes if terrorists probe the system prior to attacking, or if they can give
up on an attack if their chance of success is too low.

We find that while the ability of the profiling system to identify high-risk individuals is
often the focus of debate, perhaps of greater importance is the effectiveness of the screening
received by both low- and high-risk passengers. Without effective screening, the ability
to identify terrorists to receive such screening is of limited value. We also find that the
terrorists' ability to probe the system and identify low-risk members amongst themselves
can sometimes decrease the likelihood that a successful attack takes place. If the terrorists
find by probing that the profiling system is more effective than they expected, they could be
sufficiently discouraged to abandon the plot.

Many of the parameters used in the model are unknown, limiting our ability to draw a
final conclusion about the effectiveness of profiling systems. However, the contribution of
this chapter is to provide a mathematical model that allows policy-makers to assess profiling
systems under ranges of reasonable parameter values and to determine their sensitivity to
assumptions on terrorist behavior. The model also highlights the importance of key parame-
ters, in addition to the effectiveness of the profiling system, that have been less prominent
in the public discussion.

Of regular debate is also the issue of determining under what conditions a particular
security measure would be cost-effective. According to Chertoff, we must "maximize our
security, but not security at any price" [87], and mathematical models can be used to evaluate
when a security measure is worth its price.

Chapter 4 focuses on this cost perspective in the context of three measures to secure
the cargo hold of passenger aircraft. The first is Positive Passenger-Bag Match (PPBM),
which prevents a piece of checked luggage from remaining on an aircraft if its accompanying
passenger fails to board. The second measure we explore is the removal of United States
Postal Service airmail packages weighing more than one pound from passenger aircraft, as
compared to a proposed policy to screen such packages using bomb-sniffing dogs. The third
measure to be considered is a parallel measure for cargo carried on passenger aircraft: given
that airmail packages have been removed from passenger aircraft, are we not also obligated
to remove cargo?

We use a cost-benefit model to calculate threshold values for the likelihood of an attack
beyond which the benefits of a policy exceed the costs. Although the three security measures
studied here are similar in their goal of protecting cargo holds, their disparate costs result
in quite different thresholds. Because bag-matching is a relatively inexpensive policy to
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maintain, it is cost-effective even if the likelihood of an attack on an unmatched bag is
quite small. By contrast, removing cargo would cost the airlines billions of dollars in lost
revenue and, thus, would not be cost-effective unless an attack were imminent. While the
cost-effectiveness of removing airmail from aircraft is somewhat inconclusive, the decision to
remove airmail does not automatically set a precedent for removing cargo because the two
measures have substantially different decision thresholds.

Although such an analysis is limited by our inability to estimate the likelihood of an
attack, the use of a decision threshold in this model permits us to consider only whether the
likelihood is higher or lower than this threshold. This mathematical framework can then be
used by policy-makers to determine whether society should be willing to incur the cost of a
particular security measure.

Once a security measure has been adopted, it is also important to ensure that the policy
be implemented as efficiently as possible. When the Aviation and Transportation Security
Act mandated the use of Federal employees to screen passengers and baggage at airports,
the TSA was faced with the task of hiring as many as 50,000 new employees [54]. Since
then, however, limits have been placed on the number of screeners that can be employed at
airports, and a recent Senate bill called for a 12% reduction in spending on airport screeners
to help fund other security initiatives [88].

Given this pressure to reduce the number of security employees at airports, we examine
in Chapter 5 the efficient distribution of screeners to security checkpoint queues within an
airport: if an airport has a fixed number of screeners and multiple security checkpoints, how
should the screeners be assigned to the checkpoints at different times of day to minimize the
time passengers spend waiting in line?

We consider both a pre-determined staffing allocation and a dynamic allocation. The
pre-determined schedule specifies, at the start of the day, the allocation of screeners to
checkpoints for each time period. Any changes in the allocation to accommodate varying
passenger arrival rates to the queues are prescribed in advance and cannot be modified later
in the day if, for instance, one queue grows unexpectedly longer than another. A dynamic
allocation, however, allows such modifications and can deviate from the original staffing
schedule by switching screeners from a shorter queue elsewhere in the airport to the longer
queue. Here, we use dynamic programming techniques to formalize when such switches
should occur and to assess the benefit of dynamically allocating employees.

Using security checkpoint data from Logan Airport in Boston, we compare the average
waiting time spent by an airline passenger in the security checkpoint queue under these two
types of allocations. When the only uncertainty in the system is in the time each individual
passenger spends being screened, we find that the ability to deviate dynamically from a pre-
determined schedule typically yields little additional reduction in the average waiting time of
passengers. However, when stochastic impulses affect the system on an aggregate level (such
as when the true arrival rate of passengers to the checkpoint deviates significantly from the
expected arrival rate), then being able to modify the schedule dynamically in response to
these impulses can be beneficial.

Chapter 6 synthesizes the outcomes of our various investigations. We conclude that
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different issues in aviation security are amenable to mathematical analysis to varying degrees.
The key obstacle facing such analyses is the absence of information. Without knowing certain
parameter values (such as the effectiveness of a profiling system at identifying a potential
terrorist, or the likelihood of a particular type of attack occurring), and without having a
clear understanding of terrorist behavior, it is difficult to arrive at concrete conclusions as
to the ability of a policy to thwart terrorism or the expected net value of implementing
the policy. Nonetheless, the models presented here serve as tools that can be used to guide
policy-makers. Even without knowing the exact value of a given parameter, one might still be
able to consider a reasonable range of values and determine an appropriate decision within
this range, or explore how the decision changes at the extremes of this range. Moreover,
mathematical models can often clarify the reasoning behind qualitative statements about
aviation security, and point out the limitations in such reasoning. Problems as important as
those arising in Homeland Security could benefit from a wider use of such modeling.
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Chapter 2

The Relative Risk of Aviation
Terrorism

The nearly simultaneous hijackings of four planes in the 9/11 attacks prompted many
new security requirements to prevent future attacks on American soil. It is estimated that
the Federal government, through the newly formed Department of Homeland Security and
its Transportation Security Administration, has spent about $15 billion directly on aviation
security systems since the September 11 attacks (about 90% of the TSA's budget) compared
to roughly $250 million for transit security (See, e.g., [74, 89, 128, 129, 135]). This fiscal
emphasis on aviation security raises the question of whether the United States is fighting the
"last war" (as suggested by [161] and the September 11 Commission [66]), by focusing a large
portion of Homeland Security monies on aviation security while leaving other targets (such
as ports, power plants and rail systems) as "disaster[s] waiting to happen" (Senator Joseph
Biden, cited in [86]). They argue that it is unlikely that terrorists will choose aviation as a
future target when so many potentially easier targets exist, so why focus mainly on aviation
security, to the detriment of these other targets?

One possible answer is that the new measures have not done enough to render aviation a
less attractive target. Reports of the Office of the Inspector General for the Department of
Homeland Security suggest that even basic passenger screening is ineffective against certain
types of weapons (in particular, explosives) [136, 137, 138]. Another response could be that
attacks against aviation cause farther-reaching consequences than attacks involving ground
targets. As predicted Gerald L. Dillingham, then of the U.S. General Accounting Office (now
known as the Government Accountability Office), in 2000, "Protecting [the air transporta-
tion] system demands a high level of vigilance because a single lapse in aviation security
can result in hundreds of deaths, destroy equipment worth hundreds of millions of dollars,
and have immeasurable negative impacts on the economy and the public's confidence in air
travel" [146]. A third justification for the focus on aviation security could be that terrorists

Some of the material which appears in this chapter originally appeared in a substantially different form
in Chance [97] and is reprinted with permission. Copyright 2004 by the American Statistical Association.
All rights reserved.
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are fascinated by aviation, perhaps partly due to a combination of the above two reasons, and
would prefer to attack even a hardened aviation target than another easier but less intriguing
target. According to Brian Jenkins, a terrorism expert with the RAND Corporation, ter-
rorists "don't abandon their old playbook. We know that our terrorist opponents continue
to be interested in domestic aviation" [54]. This opinion is shared by government officials,
including former TSA administrator David Stone, who say that intelligence suggests that al
Qaeda and other terrorist groups continue to target aircraft and that aviation continues to
pose the greatest risk of terrorism [74, 86, 129].

Indeed, we find in this chapter that prior to September 11, an American civilian was
more than 600 times as likely to be killed in a terrorist attack on aviation, per hour, as in
an attack on any other activity. We arrive at this conclusion via a relative risk statistic that
compares the ratio of hourly risk of death in attacks on aviation, (the fraction of terrorism
deaths occurring in aviation over the fraction of time spent in aviation), to that in other
types of terrorist attacks. In the next section, we introduce relative risk statistics in a
general context. Then, in Section 2.2, we discuss the history of terrorism against Americans,
and group terrorist attacks into categories according to where they occurred. Section 2.3
estimates the fraction of time an individual spends in each of the activity categories of
Section 2.2.2. These results are used in Section 2.4 to determine the relative risk posed by
aviation terrorism. We close in Section 2.5 by discussing some of the recent threats against
aviation and argue that the use of historical data can still help assess the threat currently
facing aviation security.

2.1 A relative risk factor

Relative risk is used to determine how much more likely an undesirable event is to occur
between members of two different populations. Commonly denoted RR, it is simply the
ratio of the fraction of Group A members experiencing the event to the fraction of Group B
members experiencing the event:

P(Event occurslMember of Group A)
P(Event occurslMember of Group B)'

If RR is equal to one, then members in Groups A and B are equally likely to experience
the event. If RR > 1 then the members of Group A are RR times as likely to experience
the event than members of Group B. If RR < 1, then members of Group B are 1/RR times
as likely to experience the event than members of Group A (or the members of Group A
experience a 1 - RR reduction in risk, relative to members of Group B).

We would like to use a relative risk statistic to determine how much more likely an
American civilian is to be killed in an act of aviation terrorism, per hour spent in aviation,
than in another type of terrorism, per hour spent in all other activities. To do this, we
will need a tally of terrorist events against American civilians, categorized by where they
occurred, and an estimate of the amount of time Americans spend in aviation- and non-
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aviation-related activities. These are discussed in the following two sections.

2.2 Terrorism against Americans, 1968-2001

2.2.1 Definition of terrorism

The United States Federal Bureau of Investigation defines terrorism to be a "violent act or
all act dangerous to human life, in violation of the criminal laws of the United States, or
of any state, to intimidate or coerce a government, the civilian population, or any segment
thereof, in furtherance of political or social objectives" and divides such activity into three
categories: a terrorist incident that occurred and is attributable to a known terrorist group, a
suspected terrorist incident that is believed to have been committed by a terrorist group but
that has not been fully solved (such as the still unsolved 1975 LaGuardia Airport bombing)
and a prevented terrorist incident 145]. The FBI also defines the so-called "modern era of
terrorism" to begin in the late 1960's, and it is in 1968 that the U.S. government began
keeping formal records of terrorist events against Americans. We use this as the starting
point for our study.

We consider domestic and international terrorist incidents and suspected terrorist inci-
dents in which American civilians were killed from the period of January 1, 1968 through
September 10, 2001 (we exclude the terrorist attacks of September 11, 2001 because that
single data point would have been responsible for 80% of all terrorist fatalities against Amer-
icans). We exclude attacks that were targeted specifically against military facilities (such
as the 1983 attack on a Marine barracks in Beirut, Lebanon) because such an attack could
be considered an act of war. We do, however, include attacks on military personnel outside
of military bases because such attacks are similar to those experienced by non-military per-
sonnel. Using publicly available sources [1, 2, 17, 26, 101, 125, 145, 151, 152, 153], many

of which are official U.S. reports on terrorism against Americans, we have created a list of
terrorist events in which American civilians were killed, given in Appendix A. In total, there
were 179 fatal attacks, killing 740 American civilians, ranging from small attacks such as
kidnappings of a single person to large attacks such as the bombing of Pan Am Flight 103,
killing 189 Americans, and the Oklahoma City bombing, which killed 168.

2.2.2 Classification of terrorist attacks

In many of the sources, the location and context of each attack were given, allowing us
to attribute the attack to one of five categories: Aviation, Work, Home, Leisure, Other
Travel. In other sources, such details were not given. Twenty-seven attacks (many of them
kidnappings where it is unknown or unstated from where the victims were kidnapped) had
no clear category given, and we assigned a likely category to these attacks based on similar
attacks in which the location was stated. Table 2.1 shows the number and percentage of
attacks and the number and percentage of fatalities by attack category. We see that while
the number of attacks on aviation (24 out of 179) is small compared to the other categories, it
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Number of Percentage of Number of Percentage Average Fatalities
Category Attacks of Attacks Deaths of Deaths per Event
Aviation 24 13.4% 294 39.7% 12.2

Work 40 22.3 260 35.1 6.5

Leisure 38 21.2 80 10.8 2.1

Other Travel 40 22.3 63 8.5 1.6
Home 37 20.7 43 5.8 1.2

Table 2.1: Number and percentage of terrorist attacks and fatalities, by attack category

Year Total U.S. Population (millions)
1970 203
1975 216

1980 231
1985 238
1990 253
1995 263
2000 286

Average 240

Table 2.2: United States population, by year. Source: U.S. Bureau of the Census 132.

accounts for the greatest share of terrorist fatalities (39.7%) and the highest average number
of fatalities per attack, 12.2, while attacks on the workplace, the next highest, average around
6.5 fatalities. The large share of fatalities attributable to aviation is especially striking
when one considers how little time the average American civilian spends in aviation related
activities compared to time spent, say, at home or at work.

2.3 Fraction of time spent in aviation

The historical likelihood of being killed in a terrorist attack per hour is the total number of
terrorism fatalities divided by the total number of person-hours over our time horizon. To find
the total person-hours over the period of 1968-2001, we look at the United States population
over this period at five-year marks along the interval (shown in Table 2.2), estimate a time
average population of 240 million, and multiply this by the total number of hours in the
period from 1968 to 2001. This yields a value of roughly 7.15x1013 person-hours. So the
total risk per hour to an American civilian of being killed in a terrorist attack is the number
of fatalities, 740, divided by the number of person-hours, 7.15x1013, or 1.03x10-1 (equivalent
to waiting an average of 11 million years before succumbing to such an attack). To find a
similar value specific to aviation attacks, we use the fraction of these person-hours spent in
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Total Air Journeys Average Enplanements
Year on U.S. Airlines (millions) per person
1970 154 0.76

1975 189 0.88
1980 273 1.18

1985 357 1.50
1990 424 1.68

1995 499 1.90
2000 611 2.14

Average Ratio (weighted by pop.) 1.46

Table 2.3: Total air journeys and average number of journeys per person, by year. Source:
U.S. Air Transport Association [6J.

aviation. There are two ways at arriving at such a fraction, and we will show that both yield
roughly the same value.

2.3.1 Estimation based on passenger enplanements

We can use annual passenger enplanement data from the Air Transport Association to esti-
mate the average number of flights per year that an American takes and from there, estimate
the amount of time spent at the airport or onboard the aircraft. Passenger enplanements per
year are shown in Table 2.3, as are the ratios of the number of journeys to the population
in each year. Over this 34-year period, each American citizen took approximately 1.5 flight
legs on domestic flights annually1 .

We need next to translate this average number of flights per year into an average time
spent at an airport or on an aircraft. Before September 11, 2001, air passengers arrived
roughly one hour prior to takeoff. An average non-stop flight, being approximately 1000
miles long, would have taken about 2.5 hours by jet. However, one-third of passengers
require connecting flights, adding an additional hour to the total travel time. Lastly, the
typical passenger generally leaves the arrival airport within 20 minutes after disembarking
the plane. Thus, the total time per flight is approximately (1 + 2.5 + 1/3*1 + 1/3) = 4.2
hours. If we allow for occasional flight or other delays, then we suppose that the average
total time per air journey is approximately five hours2. Thus, the total person-hours spent
in aviation-related activities from 1968-2001 was roughly 6.1x101°0 person-hours, or 0.1% of
the total person-hours in that time. An American citizen spent roughly one-tenth of one
percent of their time at an airport or in an airplane.

'While not all passengers on domestic flights are U.S. citizens, and not all Americans travel solely on U.S.
domestic flights, we assume that these two effects roughly cancel each other.

2While this estimate is based on domestic flights, and we must include international flights as well (which
can be significantly longer), this estimate of five hours can still be appropriate when one considers that many
international flights are themselves quite short, such as between Chicago and Toronto, or Tokyo and Seoul.
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Total Minutes Fraction of Time
Category per Day per Day
Aviation 1.43 0.001

Work 179.28 0.124
Leisure 119.86 0.083

Other Travel 91.36 0.063
Home 1048.07 0.728

Table 2.4: Total time and fraction of time spent per day in each location category Source:
EPA Time Use Survey [154j.

2.3.2 Estimation based on time-use studies

Another method to determine the fraction of time an American spends in each of the cate-
gories given in Section 2.2.2 is to use Time Use Survey data that report the average amount
of time spent by survey participants in various locations. We referred to the Environmen-
tal Protection Agency National Time Use Survey [154]. This nationwide telephone survey
was conducted from September 1992 through October 1994 and published in 1995. From
each participating household, one person (either an adult or a child under the age of 18)
responded, and a total of 9386 surveys (from 7514 adults and 1872 children) were completed.
The survey consisted of participants listing each activity they had engaged in and each lo-
cation they had visited the day before, as well as an estimate of the time spent in each. We
chose this time study over others because it distinguished air travel from other modes of
transportation. A summary of the total time spent (in minutes) per day in each location
category, as defined in Section 2.2.2, is shown in Table 2.4. Once again, we see that the
average American spends about 0.1% of their time either at an airport or on an airplane.

2.4 Death risk per hour
As we saw in Section 2.3, the risk per hour to an American civilian of being killed in a
terrorist attack of any type is approximately 1.03x10 -1 l. However, if we divide the number
of terrorist fatalities in a particular category by the number of person-hours spent in that
category (which is the total number of person-hours over 1968-2001 times the corresponding
fraction of time from Table 2.4), then we obtain the risk per hour of being killed in an attack
on that category. These hourly risks are given in Table 2.5. While the hourly risk of death
in an aviation terrorist attack is small in absolute terms, it is greater than that of any of the
other categories.

Using Equation (2.1), the relative hourly risk posed by aviation terrorism versus non-
aviation terrorism is given by:

Hourly Risk from Aviation
RR Hourly Risk from Non-Aviation

Hourly Risk from Non-Aviation
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Category Hourly Risk
Aviation 4.11x10 -9

Non-Aviation 6.24x10- 2

Work 2.93x10 -1 1

Leisure 1.35x10- l l

Other Travel 1.38x10- ll

Home 8.26x10- 13

Table 2.5: Hourly risk of death in a terrorist attack, by location category

4.11x10 - 9

6.24x10 - 12

658.6. (2.2)

An average American civilian is more than 600 times likely to die in a terrorist attack on
aviation, per hour, than in all other activities.

2.5 Using the past to predict the future

Clearly, prior to September 11, 2001, aviation attacks caused a disproportionately large
fraction of the total American civilian terrorism fatalities, and on 9/11 they more than
quadrupled the total number of American terrorism fatalities, via a series of attacks on
aviation. Does terrorists' fascination with aviation continue?

More rigorous passenger and baggage screening may have reduced the likelihood of an-
other attack on aviation through both improved detection capabilities as well as deterrence
effects. Perhaps this heightened security has caused terrorist groups to shift their focus to
different targets, increasing the risk of non-aviation terrorism relative to aviation terrorism.
On the other hand, many argue that September 11 marks the beginning of a new era of ter-
rorism against, the United States, and terrorists, spurred on by their successful 2001 attacks,
might continue to plot even more devastating aviation attacks.

The evidence supports this latter claim. A few months after the 9/11 attacks, Richard
Reid attempted to ignite explosives hidden in his shoes on a flight from England to the U.S.,
and in July 2002, three people were shot and killed by a gunman at Los Angeles International
Airport. Even as recently as April 8, 2005, two passengers on a KLM flight from Amsterdam
to Mexico (scheduled to fly over U.S. airspace) were discovered to be on the U.S. no-fly list
and the flight was sent back to Amsterdam. International events also serve as evidence that
the use of aviation as a vehicle for terrorism continues. There was, for instance, the near-miss
of shoulder-fired missiles on an Israeli airline over Mombasa, Kenya in 2002 and the successful
downing of two passenger planes in Russia in August 2004. A study published by the RAND
Corporation examining the cost-effectiveness of various anti-missile technologies argues that
because terrorists have the motive and means to carry out an attack using shoulder-fired
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missiles and are simply waiting for an opportunity to use them, the threat of such an attack
could be high [33].

In addition to these known attempted and successful attacks, the U.S. government has
repeatedly mentioned intelligence reports suggesting that al Qaeda's interest in aviation
continues even now, almost four years after 9/11. In 2003, officials warned of the possibility
of another 9/11-style attack in which terrorist teams might hijack aircraft, and an undercover
FBI agent intercepted the sale of a shoulder-fired missile by a British arms dealer who
believed he had been interacting with terrorists. In 2004, the Department of Homeland
Security suggested that terrorists might try to blind airline pilots with high-power lasers, a
possibility made more grim by a series of incidents in which pilots did notice lasers pointed
at their aircraft (although it was later believed to have been innocent civilians improperly
using laser technology) [49]. An FBI/DHS report released in early 2005 indicates that
terrorist groups continue to explore aviation as a means of attack, even testing the system
to discover loopholes [74], and while the report focused specifically on general aviation and
helicopters, it emphasized that the threat on commercial aviation is ever-present as well.
Furthermore, it continues by saying that improvements since September 11 have "reduced,
but not eliminated" the threat of future attacks on aviation [86]. Former Transportation
Security Administrator David Stone warned of "threat streams" indicating that the greatest
risk for future terrorism still lies within the aviation sector [74, 86, 128].

Clearly, aviation terrorism was a threat long before September 11, on and immediately
after September 11, and it continues to be a threat. Given that so many resources are
being devoted to aviation security, it is worthwhile to consider how those resources are being
used and whether they are efficient at achieving their stated goals. The remainder of this
thesis attempts to use mathematical modeling to guide the discussion. We begin in the next
chapter with the question of how to evaluate the effectiveness of a security measure, in the
context of computerized passenger profiling.
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Chapter 3

How Effective Might Passenger
Profiling Be?

While some aviation security measures are applied equally to all passengers, others are
considered so time-consuming that they are restricted to a fraction of air travelers. A key
issue in the debate is the question of which passengers should be subjected to special scrutiny
at the airport prior to boarding the airplane and how they can be identified. Since 1973,
all passengers on American airliners have been required to pass through metal detectors or
pass their carry-on baggage through x-ray machines in an attempt to prevent hijackers from
carrying weapons aboard the plane. In 1997, at the recommendation of the White House
Commission on Aviation Safety and Security (also known as the Gore Commission) [162], a
system was introduced to identify potentially dangerous passengers whose checked luggage
would be screened for explosives. This system, known as the Computer Assisted Passenger
Pre-screening System (CAPPS), used a set of risk-determining criteria to try to identify
potentially high-risk passengers whose checked bags needed further investigation, and it also
selected for screening the bags of a fraction of presumably low-risk passengers chosen at
random. After September 11, however, the policy was extended such that any passenger
chosen by CAPPS would now undergo additional personal screening, such as hand-wand
inspection, pat-down inspection and/or hand searching of carry-on bags at the security
checkpoint or at the gate prior to boarding.

The method for choosing "selectees" has been changing over time, as has its name:
first CAPPS, then CAPPS II and now Secure Flight, with each successor trying to find an
acceptable balance of collecting government and airline data that could lead to terrorists,
while respecting civil liberties. The original CAPPS uses only information obtained by the
airlines at the time a ticket is purchased. Commonly cited risk indicators are purchasing
one-way tickets or paying in cash. The initial proposed successor to CAPPS, CAPPS II,
would have used additional data, such as credit reports, criminal records, travel history, cell
phone calls among other personal information [96, 110]. In response to privacy concerns,
the TSA modified its description of CAPPS II to reassure the public that only names,
addresses and dates of birth would be used to verify passengers' identities and compare
them to criminal and intelligence databases [76, 78, 139, 142, 143]. However, due to concerns
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that criminal records might be misused to capture non-violent criminals [8, 76, 110, 111],
and TSA's inability to collect passenger data from the airlines, CAPPS II was dropped in
July 2004. A new profiling system, Secure Flight, was proposed shortly thereafter and is
currently in development. This system will be managed entirely by the government, merging
federal, non-criminal databases, and will apply only to domestic flights [144, 148, 160]. The
Transportation Security Administration (TSA) hopes to have Secure Flight in place by the
end of 2005, but in the meantime, the original CAPPS is still in use. The analysis presented
in this chapter does not rely on the type of data used by the profiling system, nor do we
address the civil liberties issues associated with such a system. (The interested reader can
read a Congressional debate of such issues in [149]). Instead, we focus on the quantitative
performance of pre-screening systems.

There are divergent opinions regarding the anti-terrorist effectiveness of such passenger
pre-screening systems. Secretary of Transportation Norman Y. Mineta described a strong
pre-screening system as the "foundation" of aviation security [109]. Supporters of profiling
systems feel that they allow a more efficient allocation of security resources. The height-
ened security after 9/11 forced passengers to arrive earlier at the airport than they were
accustomed to doing. This so-called "hassle factor" is believed to have caused a reduction
in the demand for air travel shortly after September 11. In 2002, Leo Mullin, then CEO of
Delta Air Lines, estimated the cost of this hassle factor to be $3.8 billion industry-wide in
2001-2002 [59]. Although security delays have since diminished, many passengers are still
frustrated because they believe it should be obvious they pose no threat and thus should
not be subjected to random searches. Donald Carty, former CEO of American Airlines, has
said, "[CAPPS II is] simply going to allow us, instead of focusing on the kind of thorough se-
curity procedures we're going through, with every single person that goes through...to focus
resources on really suspicious targets. And that's the right answer to security" [73]. Former
TSA Administrator Admiral James M. Loy described profiling systems as "a valuable tool
in holding down passenger wait times by reducing the number of people who undergo sec-
ondary screening or who are misidentified as potential terrorists" [140]. Furthermore, there
is a widely held belief that the presence of such security measures alone will deter terrorists
from even attempting to attack. According to Carty, "With the amount of security that we
have in the aviation system today, the likelihood of a terrorist choosing aviation as the venue
for future attack is very low" [15].

Others, however, have questioned the protection offered by pre-screening systems. One
problem that has received special attention is the ability of terrorist groups to "reverse
engineer" the system and thereby thwart it. As Chakrabarti and Strauss [28] have argued,
terrorist groups can find out through test flights which of their members are selected by
computer for secondary screening and which are not, a process the authors liken to a carnival
game. Then in actual missions, group members classified as low-risk could take the lead
roles. In consequence, the true effectiveness of the pre-screening system might be far less
than hypothesized. Others feel that computerized passenger profiling may not be an effective
security tool. Brent Turvey, forensic scientist and criminal profiler argued, "You can't use
profiling to predict crimes, only analyze crimes that are in the past" [62], and Barnett [20]
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outlines several problems with attempting to use assumed terrorist characteristics to identify
future terrorists.

Who is closer to the truth, the optimists or the pessimists? We consider that issue in this
chapter, though we cannot provide a definitive answer. Instead, we develop a parameterized
probabilistic model of the pre-screening process, one component of which relates to terrorist
behavior, and use it to evaluate the probability that a terrorist is able to board a commercial
aircraft with the intent to attack it. We investigate which parameters are most important
for reducing the probability of a successful terrorist attack. Moreover, by clarifying the tacit
assumptions underlying the opposing opinions, the formulation identifies some potential
problems with their arguments. In some circumstances, for example, the ability of terrorists
to probe the screening system can actually reduce the danger of a terrorist attack. And
even if the pre-screening system is extremely good at identifying high-risk individuals, it
might only minimally reduce the chance of successful terrorism if the secondary screening
process is inadequate. We find that if the profiling system is not as effective as we might
hope, or not robust to terrorist behavior, our efforts would be better applied to improving
the primary screening imposed on all passengers. However, if the profiling system does a
good job at identifying terrorists, then it is imperative that we develop a strong secondary
screening process.

In the next section, we describe the airport security checkpoint process and define para-
meters associated with key components of this process. Section 3.2 discusses, through the
use of these parameters, the opposing opinions on pre-screening systems and their underly-
ing assumptions. In Section 3.3, we develop our model, incorporating the terrorists' probing
behavior as well as deterrence effects. Section 3.4 describes the methodology used to analyze
this model in which none of the parameters are known exactly. We present in Section 3.5 the
results of our analysis, including some counterexamples to the conclusions drawn by those
factions. We summarize our conclusions and policy recommendations in Section 3.6.

3.1 System and parameter description

When a passenger checks in for a flight, the passenger screening system (hereafter PSS)
labels her as either low- or high-risk and indicates this status on her boarding pass. She then
proceeds to the security checkpoint where, as shown in Figure 3-1, if she is labeled low-risk
and is also not selected at random to receive additional scrutiny, she passes through the metal
detector and sends her carry-on bags through the x-ray machine, a process we call primary
screening. Otherwise, she must pass first through primary screening and then undergo a
more thorough search of her belongings and clothing. This entire alternate process, which
includes the initial primary screening, is referred to as secondary screening.

We define the following parameters:

* C, the a priori probability that an actual terrorist is classified as high risk by the PSS.

* r, the percentage of "low-risk" passengers selected at random for secondary screening.
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Figure 3-1: Current security checkpoint procedure.

*· , the conditional probability that primary screening detects the terrorist's weapons
and prevents him from proceeding further, given that he receives only primary screen-
ing.

* P2, the conditional probability that secondary screening detects the terrorist's weapons
and prevents him from proceeding further, given that he receives secondary screening.
Because secondary screening includes primary screening, we have P2 > Pi.

· T, the terrorist group's deterrence threshold: the minimum probability of success re-
quired by the group to proceed with the attack.

* n, the number of potential participants in a particular terrorist plot.

We note that C, pi and P2 depend heavily on the particular members of the terrorist plot and
on the particular nature of the plot itself. For instance, an x-ray machine might be very good
at detecting a loaded gun, but less effective at detecting a small knife and virtually ineffective
at detecting plastic explosives. We also assume that these parameters reflect the terrorists'
estimate of the values they represent and that their estimates are realistic. Moreover, the
value, C, does not denote the overall fraction of passengers that are selected for secondary
screening but is instead a conditional probability that a terrorist will be selected by the
profiling system. ([100] present a model for determining the fraction of passengers to be
assigned to different risk classes to minimize the chance of a successful attack, subject to
budget constraints on the number of passengers undergoing stringent screening).

The use of a threshold parameter to model deterrence requires some explanation. A
vulnerability analysis, as defined in [53], examines the probability that an attempted attack
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on a system is successful, a measure of a system's inability to thwart attempts against it as
they occur. By contrast, a complete risk analysis would also take into account the likelihood
that an attack will be attempted in the first place, considering the frequency with which
such attacks occur. Here, because we do not consider the total frequency with which plots
occur, we are not performing a complete risk analysis. However, we expand on vulnerability
analysis to consider not just the system's ability to detect plots in progress, but also its
ability to deter terrorists from attempting their plots. If, as is widely believed (see, e.g.,
[41]), terrorists consider the costs, value and likelihood of success of an attack, then using a
threshold parameter is reasonable. They will attack when the value of an attack (weighted
by its chance of success) exceeds its cost (weighted by its chance of failure). If their estimated
probability of success is greater than a threshold, T, then they will attack, otherwise they will
not. Low values of r reflect willingness to attack despite a high risk of failure (for instance,
when the cost of a failed attack is relatively low). Higher values of T indicate risk aversion.

A similar method was used in [11, 12, 150] for drug interdiction. In those studies, law
enforcement officers interviewed several drug smugglers to determine each of their individual
threshold levels as a function of the probability and legal consequences of getting caught, and
then fit a function to represent the average of these thresholds. While there is substantial data
that can be used to estimate deterrence effects on drug trafficking as a function of interdiction
efforts (in addition to using interview data, drug prices before and after interdiction can be
examined, as in [40]), there is little such data available for terrorist behavior, so calibrating
a "willingness to attack" function is impossible at this time. Nonetheless, the use of a
deterrence threshold in the context of drug smuggling supports our use of a threshold here.
We note that although deterring an on-board attack might only lead to mayhem elsewhere,
this caveat can be applied to any successful anti-terrorist measure. Indeed, the Office of
National Drug. Control Policy defined a drug interdiction effort to have a "deterrent effect"
if it at least forced the smugglers to use a less attractive route that was riskier or more costly
to them [150]. In our model, we use this same notion and focus only on terrorists' ability to
commit their original intended attack.

Using these parameters, we can estimate the probability that a terrorist can success-
fully board an aircraft with weapons. For ease of exposition, we assume that an attack is
attempted by a lone terrorist, chosen out of the group of n, who tries to pass through screen-
ing. (Two lone terrorists with plastic explosives destroyed two Russian passenger planes
in August 2004). We treat the attack as successful if he makes it through the screening
process with his weapons and boards the aircraft, thus assuming that once he has boarded
the aircraft, his attack will proceed unthwarted. As shown in Figure 3-2,

P(Terrorist receives primary screening) = (1 - C)(1 - r),
P(Terrorist receives secondary screening) = C + (1 - C)r.

Hence, a successful attack occurs with probability

(1 - C)(1 - r)(1 -PI) + (C + (1- C)r)(1 - P2). (3.1)
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C

Figure 3-2: The path through airport passenger screening for an individual terrorist carrying
weapons

If his calculated chance of success is smaller than T then he will forego his attack, otherwise
he will proceed.

3.2 Opposing viewpoints
As noted, there is much debate about whether a profiling system can substantially improve
aviation security. We discuss now the arguments of both proponents and critics in terms of
the parameters defined above.

3.2.1 The "right answer" to security?
Supporters of pre-screening systems argue that if a computerized profiling system can identify
terrorists, then we need screen only these high-risk individuals. Random searching would
not be necessary, and even general passenger screening would be less important, facilitating
the flow of passengers through the checkpoints. Furthermore, if this focused security were
very effective, terrorists would be deterred from using commercial aviation as their target
for attacks.

They assume, given their wording, that the PSS will flag virtually all terrorists as high-
risk, or that C is very close to 1. Their belief that screening of low-risk passengers would
be expedited by a profiling system indicates an assumption that the PSS will not select too
many "innocent" passengers, (i.e., the false positive rate is reasonably small). Furthermore,
some believe that terrorists can be deterred by the prospect of stringent searching (i.e.
the terrorists have a nonzero deterrence threshold, ). Under these assumptions, almost
all terrorists who attempt to board the plane will receive secondary screening, and the
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probability that they attempt and succeed at their attack will be either 1 - P2 (if they
attempt the attack) or zero (if they are deterred). Under an (implicit) assumption of highly
effective secondary screening, the terrorists' probability of success could approach zero even
if they are undeterred.

3.2.2 A carnival game?

There are others who feel that profiling introduces weaknesses to the security system. Barnett
[20] questions the assumption that C would be very high, citing, among other concerns, the
difficulties in using limited information about past terrorists to identify future terrorists,
and the possibility of terrorists using innocent-seeming "dupes" who do not realize they are
carrying deadly items.

Chakrabarti and Strauss [28] go even further and argue that profiling applied to passenger
screening could actually help terrorists improve their chance of success. Terrorist groups can
send members on trial flights, without the intent to attack. Because the additional screening
of a selectee is of a personal nature, they can ascertain who is considered low-risk by the
pre-screening system based on who is not pulled aside for secondary screening. If we assume
that passengers' PSS scores are constant during the probing-and-attack cycle, then a terrorist
who passes unflagged even once through the checkpoint knows for certain he has a low PSS
score. In the real attack, the group could use this low-risk member knowing that he will face
additional scrutiny only if chosen at random. Essentially, each terrorist "steps right up" to
the security checkpoint to discover which level of screening he is to undergo.

Moreover, they argue that a terrorist group can always find such a "low-risk" group
member. First, they assume that n, the pool of terrorist probes, is arbitrarily large. Second,
they assume that C < 1 and that risk ratings for different group members are independent.
Thus, even if k terrorists have been flagged by the profiling system, the probability that
the k + 1st is selected remains C, suggesting that the profiling system's ability to detect
ties between rnembers of a same terrorist group is poor. More specifically, they assume
each passengers' score to be selected independently from a Gaussian distribution, with the
terrorists having a higher mean score than innocent passengers. The profiling system selects,
for each flight., a given percentage of passengers having the highest profiling scores to receive
secondary screening. As such, in their model, a passenger might be considered high-risk on
one flight but low-risk on the next.

The independence assumption implies the probing process is Bernoulli, and, if the group
keeps sending probes, eventually one will be classified as "low-risk". At the time of the
attack, C would be zero for such a known "low-risk" passenger, and the probability that he
would succeed would be as in Equation (3.1) and Figure 3-2, with C = 0:

()( - -PI) + r(l -P2)

While the authors do not discuss deterrence, they tacitly assume that

r < (1 - r)(1 - P) + r(1 - P2),
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so the terrorists will not be deterred. Because the chance of receiving secondary screening in
this situation is simply r, they conclude that using a PSS would do no better than random
screening alone.

3.3 A general model

How crucial are the assumptions presented above to the final conclusions drawn by the
optimists and pessimists? We will develop in this section a general model, capable of accom-
modating the various sets of assumptions, to evaluate a profiling system's ability to reduce
the likelihood of a successful attack. We begin by stating our own assumptions.

3.3.1 How terrorists might probe the system
We will use the same parameters and security checkpoint procedure described in Section 3.1,
but we must formalize our assumptions about how the pre-screening system selects passengers
and the terrorists' probing process.

The National Research Council's Committee on Science and Technology for Countering
Terrorism [37] indicates that profiling systems select passengers for additional screening
according to an absolute risk score. Passengers are rated "Green", "Yellow" and "Red" for
low-risk, high-risk and no-fly status (for known terrorists), respectively. It is estimated that
in a new profiling system, approximately 5-8% of all passengers would be labeled as Yellow
and require additional screening (compared to 15% under the original CAPPS), and that
fewer than 2% would not be allowed to fly [8, 76, 78, 123]. We assume this status does not
change from flight to flight. Thus, if a passenger passes once through the security checkpoint
without being selected, he is certain to have a low-risk classification on subsequent flights.
On the other hand, selection for secondary screening does not always imply high-risk status,
as a fraction r of low-risk passengers are selected at random for this screening. Though this
is different from the "curved grading" used in [28], where one might be among the highest
scoring x% of passengers on one flight but not another, this absolute scoring seems more
logical, aligns well with the available information, and simplifies our analysis.

We model the attack process as a sequence of decisions made by the terrorists. At each
stage, they compare their estimated chance of success from the current stage onward to their
deterrence threshold T. If ever it falls below -, they give up and do not proceed to the next
stage. Note that taking = 0 is equivalent to a model where terrorists are assumed never
to give up.

First, the group decides, based on an initial estimate of their likelihood of success, whether
to take the first step towards an attack by probing the system, or to give up at the outset (if
their initial estimated chance of success is lower than ~). Assuming they decide to probe, all
n members 1 are sent, in sequence, on probing flights where they each pass once through the

'In our model, the group never decides to give up in the middle of the probing process. Either no member
is sent and they give up outright, or all are sent, at least until a low-profile member is found. One can imagine
a different model where, in the middle of the probing process, the terrorists use the results of previous trials
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if PSo -':

P(Success)

if PSo <: r PS 0

Don't Probe
(Give up)

Figure 3-3: A decision tree describing the probability of a successful attack. The shaded
portion represents the value PSo, the probability of success once the terrorists have decided
to probe. The decision of whether or not to probe is made based on comparing PSo to the
value 7.

security checkpoint and notice whether they are pulled aside for additional screening or not.
After the flights, the group can use the results to update their estimate of C, the chance of
being selected by the PSS. Thus, if k members were pulled aside for additional screening,
the terrorists might infer that the probability of selection for the k + 1st is higher, relaxing
the independence assumption used by Chakrabarti and Strauss. (Holding the value of C
constant is equivalent to treating the terrorists as independent).

After all of the probing flights, the group decides whether or not to commit the attack.
If a low-profile member was found during the probing flights, then he is sent on the attack.
Otherwise, if no low-profile member was found, the group must decide whether to attempt
the attack with one of the previously flagged members (if the chance of success using a
previous selectee is sufficiently high) or to give up without attacking.

3.3.2 Modeling the probability of a successful attack

We now formalize this two-stage model, for which the decision tree is shown in Figure 3-3.
As shown in the shaded portion, if the terrorists have decided to probe, then in the best
case, they will find at least one group member who is not selected for secondary screening
during his probing run. We assume that this happens with probability q, which depends
on C and on the updating scheme the leader might use, to be discussed in Section 3.3.3.

to decide whether to continue probing or to give up immediately. Because we assume that the probing flights
contribute negligible cost, the terrorists will send all n members to probe if they feel they have a reasonable
chance of finding at least one low-profile member.
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Concluding that he has a low PSS score, they can send him on the attack, where only if
flagged at random will he be subjected to additional screening. In this case, the attack's
probability of success, S, is

S = (1 - r)(1-p1 ) + r(1 - p2) (3.2)

If S > T, then the group will decide to attack using this low-profile member. If S < , then
even a low-profile terrorist does not guarantee a sufficiently high probability of success, and
the group will not attack.

In the worst case, occurring with probability 1 - q, all n members will be selected for
secondary screening (but they do not know which among them have been selected by the
PSS and which at random). Despite this, they might feel that they have still a reasonable
probability of success using one of these possibly high-profile group members in the attack.
The group leader can update C, the estimated probability of a group member being flagged
by the PSS, to a higher value, C, based on the results of these probings, and use this updated
value in Equation (3.1) to estimate the chance of success using a previously flagged member
in the attack. We call this value S:

S = (1 - )(1 -r)( - pi) + (C + (1-C)) (1 - ). (3.3)

If S < , then the terrorists will not attack. Otherwise, if S > , then even if all members
are selected for additional screening during the probing runs, they will still proceed with the
attack, and succeed with probability S. We note that our assumption that P2 > p implies
that S > S.

The above values give the estimated probability of success after the terrorists have decided
to probe the system. The question remains of whether the terrorists should probe in the
first place, or just give up at the outset. For instance, if S > T but S < T, the terrorists will
attack only if they find a low-profile group member during the trial flights. If the probability,
q, of them doing so is very small, then they may decide probing is not worth the effort. We
let PSo be the total probability of success anticipating n probing runs:

f qS+(l -q)S S> S > 
PSo = qS : S > T,S < (3.4)

0 · S S <T.

To decide whether or not to probe, PSo is compared to . If PSo > 'r, then the terrorists
proceed with the probing flights, otherwise the terrorists give up immediately. In the case
where S > S > , the terrorists will always attack, even if all group members are flagged
in the probing flights. However, the group still sends its n members on probing runs in case
they can find a low-profile member for whom the probability of success would be greater.
S > 7, S < T represents the case where the probability of success is acceptable if a low-profile
member is found, but not acceptable when only a previously flagged member is available. In
this case, the n probes will be sent only if there is a reasonably high chance, q, of finding a
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low-profile member (qS > r), and the attack is attempted only if a low-profile group member
is found during the course of the probings. Lastly, if we have S < T, then S is also smaller
than T and PSo = O; no probes are sent and the attack is not attempted.

The overall probability that an attack is Attempted and Successful, P(AS), is therefore

f qS + (1 - q)S PSo > T S > r, > 
P(AS) q= S : PSo TS > ,S <T1t 0 PSo< T

( qS + (1 -q)S S > T S>T
qS qS > T,S < T (3.5)

O : qS < ,S < .

The task still remains of finding values for q, the likelihood of finding a low-profile mem-
ber, and C (used for computing S), the updated chance that a terrorist will be selected by
the PSS at te time of the attack, given that he and all of the other group members were
pulled aside for additional screening during the probing runs. These values depend on how
we assume the PSS detects links between members of a same terrorist group, as we will
discuss in the next section.

3.3.3 Updating conditional probabilities of selection
As mentioned earlier, if all probing runs fail (meaning all n group members are selected
either by the profiling system or at random during the trials), the group leader might adjust
the estimate of C based on this information to some new value C, the conditional probability
that a member has a high PSS score given that all group members were selectees in the trial
flights. His method for doing this depends on how the profiling system detects associations
between members of a same terrorist group, which also determines q, the probability that
at least one low-profile group member is found during the probing runs. We consider three
possible updating techniques to facilitate our discussion.

First, we define some intermediate probabilities. Let Cili 1_ be the probability that the
ith probe is selected by the profiling system given that the previous i - 1 probes were all
selected for additional screening, either by the profiling system or at random (with Clio =
C). Related to this value is the value Pili-1, the probability that the ith probe is selected
either by the profiling system or at random, given that the previous i - 1 probes were
all selected for additional screening, either by the profiling system or at random. Clearly,
Pili- = Cili-1 + (1 - Cili-1)r. Lastly, let Pi be the total probability that the first i probes
are all selected for additional screening either by the PSS or at random: Pi = I =1 Pkk-1.
Because q is the probability that at least one low-profile member is found amongst the n, q
is therefore the probability that not all n members are selected, or q = 1 - P,.

We now find these values under three different updating schemes.

* Independence: In this scheme, each member has the same probability of being se-
lected by the PSS, independently of the other members. C_ 1 = C and Pi_
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C + (1 - C)r (the superscript I denotes the Independence updating scheme). In this
case, the probing flights constitute independent Bernoulli trials, similar to the assump-
tion made in [28], and the probability, q' of finding at least one low-profile member
is

qI = 1 - PI
= 1 - (C + (1 - C)r)n. (3.6)

While different terrorists are assumed independent by this method, if no low-profile
member is found during the probings, then in an attack, the attacker will have been
previously flagged during the probing flights. Because he could have been flagged
either by the PSS or at random, the conditional probability, C', that he was selected
by the PSS (and thus would again be selected by the PSS during the attack) is given
by Bayes' Rule:

CI = P(selected by PSSlselected)
P(selectedlselected by PSS)P(selected by PSS)

P(selected)
1.C I~~~~~~~~~ * C ~(3.7)

C + (1 - C)r 

Under an assumption of independence, qI and CI are the values of q and C to use in
Equations (3.3)-(3.5). We note that as n gets large, the probability, q, of finding a
low-profile member approaches one as we would expect from Bernoulli trials.

Maximum Dependence: On the opposite end of the spectrum from the Indepen-
dence scheme, one could assume that the system is perfectly able to detect ties between
terrorists, such that one terrorist being selected by the profiling system implies all oth-
ers will be, and one terrorist not being selected implies no others will be. In essence,
we treat the n members as if they were a single person conducting n trials.

Because all members are assumed identical in this case, the ith member will be flagged
by the profiling system only if the i - t person was. So 0 MD the probability that theili-1 the probability that the
ith is selected by the PSS given that the first i-1 members received secondary screening,
under a Maximum Dependence scheme, is the conditional probability that the i - 1 st

cMD
probe was selected by the PSS and not at random, or CiD = c +(

MD MD CStarting with C0 MD = C, we find by induction that CMD = C . It is essentially110 -iji-1 C+ 10 iCi-1
the conditional probability of being considered high-risk, given that one was selected
for additional screening i - 1 times. The total probability that the i th person will
be selected for secondary screening given that the previous i - I1 members were is

therefore PD 1 = CC+(-C)i , and pMD = 1 = PklMD = C +(1 - C)ri . Because C
is the probability of the chosen attacker being flagged by the PSS after all n members
received secondary screening during the probing flights, CMD is equivalent to CMDICC~CVCU CC~VIULLY D~I~llll~j ~lll~j ~IC ~JV~ll~j IlC+li DCUVII~~ nn
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above:

C
CMD - C + (1 -Crn ' (3.8)

and by the relation given earlier,

qMD = 1M- PD = (1- C)(1-r). (3.9)

This is an intuitive result. Because this Maximum Dependence case assumes the ter-
rorists have identical risk levels in the profiling system, if one terrorist is considered
high-risk, they all are, and if one terrorist is considered low-risk, they all are. So the
only way for a guaranteed low-profile member to be found is if all n members have a
low profiling score, occurring with probability 1 - C, and if they are not all selected for
random screening, occurring with probability 1 - r'. In contrast to the Independence
case, as n gets large, the probability, qMD, of finding a low-profile member does not
approach 1, but rather the value 1 - C. The likelihood, CMD, of the attacker be-
ing selected by the profiling system given that all n members were flagged during the
probing runs approaches 1. The more group members that are selected for secondary
screening during the probing runs, the more likely it is that the attacker will also be
selected.

Average: A profiling system is unlikely to completely ignore ties between terrorists
such that they are completely independent, nor to perfectly detect ties between them
such that the selection of one implies the selection of all others. To consider a case
somewhere between the Independence and Maximum Dependence cases, we take the
straight Average of the two as a third case. At the ith probing run, if the previous i - 1
members were all selected for secondary screening, we let CiA be equal to the average

of and CiD:

A Ci + C D (3.10)
2

Similarly we let conditional probability of the ith member being flagged by the PSS
given that the first i - 1 probes received secondary screening to be the average of those

Cl +CMD
under the Independent and Maximum Dependence cases: C = ii - which

also -1 Using the definition P pA we can find
I 2 Using the definition P ' li=1

qA = 1--- pA iteratively.

We will use the Averaging technique in the remainder of the analysis, except if indicated
otherwise.
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3.4 Analysis techniques

To evaluate the probability that the terrorists attempt and succeed at their attack, we need
to estimate the model's parameters. However for the most part, the values are either not
publicly available or depend on the particular plot being considered by the terrorists. We
will, therefore, discuss some possible estimates, based on publicly available information, and
evaluate the model considering a wider range of values.

The effectiveness of the primary and secondary screening, Pi and P2, depends heavily on
the exact nature of the terrorist plot, as discussed earlier. Furthermore, performance spec-
ifications for metal detectors and x-ray bag scanners in use in the U.S. are kept classified.
However, reports from the U.S. Government Accountability Office (formerly the General
Accounting Office) indicate that screeners are roughly 80% likely to detect certain unautho-
rized items, although it is unclear whether this at the primary screening level, secondary
screening level, or both. This assessment is based on a 1987 inspection of screeners that
revealed that 20% of dangerous objects were not detected. Subsequent inspections in 1999,
2003 and 2005 indicated that performance was not improving and may even be worsening
[90, 138, 146, 148]. Furthermore, while these results may correspond to the detection of
guns, knives or even explosives contained in carry-on luggage, currently neither primary nor
secondary screening is likely to detect explosives carried on a person's body, although a new
walk-through detector known as a "sniffer", which blows a puff of air on the passenger to
dislodge trace particles of explosives that it can then detect, might increase the value of P,
(and hence P2) for such plots.

The estimated ability of the PSS to recognize a high-risk individual, as measured by C, is
also not publicly available. Moreover, its value could depend on whether the group members
involved in the plot are well-known terrorists or new recruits. In [157], the authors define a
CAPPS multiplier, , to be the ratio of the proportion of threats amongst selectees versus
non-selectees. If T is the event that a bag contains a threat, R the event that the passenger
is a high-risk individual (a selectee) and R the complement event, then

P(TIR)
P(TIR)

3 gives an indication of how much more likely those selected by the PSS are to have a
dangerous object than non-selectees. If the PSS is working correctly, : should be greater
than 1. We can rearrange the terms above to get

P(RIT)P(R)13 - P(RIT)P(R) (3.11)

P(RIT)P(R)

P(RIT) is the probability of a person being selected for additional screening given that he
is carrying a threat object, or C in our model. P(R) is the total fraction of passengers
considered to be selectees, which is currently estimated to be 15%, but changes to Secure
Flight might decrease it to 5%. The study in [157] was conducted with the Federal Aviation
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Administration, and while the authors had access to classified parameter values such as ,
they altered the values for their published paper and assigned the value = 155 to use
in their analysis. If we use this value of 13 and solve for C in Equation (3.11), we find an
estimate for C( of 96% under the current PSS where 15% of passengers are selected, and 90%
under the proposed Secure Flight where fewer would be selected. However, on September
11, only six out of the nineteen terrorists were flagged by CAPPS [47], suggesting a value
for C of only 32%. As we will see later, uncertainty in the parameter C can yield conflicting
conclusions.

r, the fraction of lower-risk passengers selected at random for additional screening, is
believed to range between 5-10%. Lastly, the parameter is the most difficult to estimate
because it measures a particular terrorist cell's willingness to attempt an attack given the
likelihood and possible consequences of getting caught. We have little understanding of how
to estimate deterrence levels so we will refrain from doing so, choosing instead to explore
the probability of a successful attempt over a wide range of values of T.

Given the uncertainty of the above estimates, we follow the example of [35] and consider a
wide range of reasonable values for each parameter in our analysis. We can then examine how
the probability of a successful terrorist attempt varies with the parameters, and determine
which parameters are most influential in preventing a successful attack.

* C ranges between 0 (the terrorist will never be selected by the PSS) and 1 (the PSS
will always select him), in units of 0.1.

* r ranges between 0 and 0.20, in units of 0.05. Selecting more than 20% of passengers
at random would not be realistic given the goal of reducing the amount of screening
for presumed innocent passengers.

* Pi, the effectiveness of the primary screening, will range from 0% to 100% effective, in
10% increments.

* P2, the effectiveness of the secondary screening, ranges from Pi to 100%, in 10% incre-
ments.

*· will be allowed to range between 0, in the case where the terrorists would attempt
the plot no matter what, and 1, in the case where the terrorists would attempt the
plot only if guaranteed success, in 0.05 increments.

For each combination of these values, which we call a scenario, we calculate the proba-
bility of a successful attempt, according to Equation (3.5), using the Averaging method for
updating C, assuming a group of five members. (In Section 3.5.2, we will also discuss how
the choice of updating method and assumptions on the number of terrorists influence the
results).

Because we don't know which scenarios are more likely to occur than the others, we
weight each one equally when aggregating similar scenarios to create an average value for
P(AS). This assumption is not without its flaws, however. The restriction P2 > Pi causes
certain types f scenarios to carry greater weight than others in our analysis. For instance,
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when pi = 0, P2 can take on any value between 0 and 1, but when Pi = 1, P2 can equal only
1, corresponding to far fewer scenarios. Thus when we take averages, there is more variance
amongst scenarios in which pl= 0 than those in which pl=l. There is a symmetric problem
if we fix P2 and examine the corresponding valid range of pi. It seems reasonable that
certain scenarios should be more likely to occur than others. However, since this probability
distribution is unknown to us, we use a uniform prior probability distribution and average
equally over all scenarios. Individual scenarios will be considered when greater subtlety is
warranted.

3.5 Interpreting the model
We examine now the influence each parameter has on the likelihood of a successful terrorist
attack and relate these conclusions to the original hypotheses of supporters and critics of
passenger pre-screening systems.

3.5.1 Effects of screening effectiveness parameters on attack suc-
cess

The arguments raised by supporters of profiling systems rely heavily on the assumption that
the profiling system will be very good at identifying terrorists (i.e. that C 1). Admiral Loy
claimed that "CAPPS II will dramatically enhance customer service by identifying the vast
majority of air travelers as innocent passengers" [143]. But they do not say precisely why
they are confident. Not all potentially dangerous individuals appear on terrorist watch lists,
and data-mining algorithms meant to sort out suspicious behavior need not be especially
successful. [20] notes that at the time of the 2002 Washington sniper crisis, historical data
mining about serial killers led to the widespread belief that the perpetrators were white,
when in fact, they were not.

However, even if we temporarily assume the profiling system to be accurate, placing
faith in passenger screening solely based on the performance of the profiling system may
constitute wishful and incomplete thinking. Aggregating scenarios into (P1, P2) groupings
of twenty percentage points each, we found the average probability of a successful attack
attempt, P(AS), over all scenarios within each group. Figure 3-4 shows the relationship
between this average probability of a successful attack and the effectiveness of the primary
and secondary levels of screening, when n = 5 and n = 10 and for each of the updating
schemes discussed earlier. As expected, for all six of the charts, P(AS) decreased drastically
in scenarios where screening was nearly perfect (P1 and P2 both very high), but was perhaps
uncomfortably high for even moderate values of pi and P2. For instance, in most of the
charts, if the primary screening was less than 60% effective, there was at least a 10% chance
on average that the plot would be attempted and successful, regardless of the effectiveness
of secondary screening.

This varies, however, by the number of terrorists in a group and the ability of the profiling
system to detect ties between terrorists. Comparing the two columns of charts for n = 5 and

44



0.47

0.51

0.56

0.65

0.25

0.28

0.34

0.12

0.15

0.04 0.0

0.0

1
P2

0.8

0.6

0.4

0.2

0.

0.4/

0

U 0.2 0.4 0.6 0.8
P(AS), Independence Updating, n = 5

0.24

0.28

0.38

0.54

0.7

0.13

0.17

0.27

0.06

0.11

0.02 0.

0.54

0.58

0.62

0.69

.8

0.29

0.31

0.36

0.14

0.16

0.05

0.

0.2

.4

1 u 0.2 0.4 0.6 0.8
P1 P(AS), Independence Updating, n = 10

1
P2

0.8

0.01"
0.6

.2 0.4

/1' 0.2

U 0.2 0.4 0.6 0.8 lpi
P(AS), Max:imum Dependence Updating, n = 5

0.24

0.28

0.38

0.54

0.13

0.17

0.27

0.06

0.11

1
Pi

0.02 0

0.

0.

0.4

0
U 0.2 0.4 0.6 0.8 lp1
P(AS), Maximum Dependence Updating, n = 10

0.39

0.43

0.50

0.60

0.8

0.20

0.24

0.31

0.10 0.04

0.0 0
1

P2

0.8

0.14

0.2

0.6

0.4

(.4

0.2

u 0.2 0.4 0.6 0.8 1
P(AS), Average Updating, n = 5 pi

0.48

0.51

0.57

0.65

.8

0.25

0.28

0.34

0.

0.12

0.15

0.04 0

0.

.2

u 0.2 0.4 0.6 0.8 1
P(AS), Average Updating, n = 10 P1

Figure 3-4: The probability of a successful attack attempt, P(AS), by (P1, P2) range, averaged
over all other parameter values, under n = 5 and n = 10 and the three updating schemes
used: Independence, Maximum Dependence and Average updating.
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n = 10, we see that having a larger terrorist group generally increased the probability of a
successful attempt in the Independence and Average updating schemes but did not change
the chance of success within two significant digits for the case of Maximum Dependence. It
can be shown that as n increases, the probability of a successful attack is non-increasing
under Maximum Dependence updating, as will be discussed in Section 3.5.2. When the
terrorists are treated independently by the profiling system, then having a larger pool from
which to select an attacker increases the likelihood that at least one low-profile member
will be identified during the probing trials. However, when the profiling system is very
good at detecting links between terrorists such that one member's high-risk rating implies
a high-risk rating for the other members, then having more members does not offer any
benefit. The Average updating scheme is somewhere in between the two, and therefore
having additional members in the group helps somewhat. The amount by which the success
probability increases from n = 5 to n = 10 under the Independence updating scheme also
depends on the effectiveness of the primary and secondary screening. When there is little
difference between primary and secondary screening (either both are poor or both are very
good) then there is less of an advantage for the terrorists in avoiding secondary screening.
Having additional members in the group does not increase the average value of P(AS)
significantly. By contrast, when secondary screening is much better than primary screening
(as in the upper left-hand corner of the charts), then avoiding the secondary screening by
sending additional probes to find a low-profile member is more beneficial to the terrorists.

If we compare the average probability of a successful attempt between updating schemes,
we see that a profiling system capable of detecting ties between terrorists, as in the Maximum
Dependence scheme, yields lower probabilities of attack than a system that selects terrorists
independently. This is particularly true in the region of the chart corresponding to low
primary screening effectiveness and high secondary screening effectiveness. Once again,
having a profiling system that is more robust to probing (as would be the case if the profiling
system can detect ties between terrorists) reduces P(AS) the most when the secondary
screening that selectees receive is significantly better than the primary level of screening.

However, is this robustness possible within the framework of civil liberties? The original
CAPPS algorithm supposedly bases its decision on passenger record information collected
by the airlines, such as class of ticket, method of payment, or whether the flight is one-
way or round-trip. While a group of terrorists coordinating an attack might share these
characteristics, these are also simple characteristics that apply to many low-risk passengers
as well. A higher-performing profiling system, capable of identifying ties between terrorists,
would likely need access to more personal information, which raises questions of whether the
collection of such information is a violation of civil liberties. As pointed out in [20], after
many revisions to the algorithm in response to criticism, the profiling system that remains
might not be as effective at detecting ties between terrorists as we might hope. The system
would then be more vulnerable to probing and other loopholes, limiting its value.

Even if the profiling system is quite effective, we still might not be as safe as we think,
as the next example shows. Suppose that the PSS is 100% effective at identifying terrorists
(C = 1). As seen in Equation (3.1), the terrorists' probability of success in this case,
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equal to 1 - P2, depends entirely on the effectiveness of the secondary screening. If their
plot involves the use of weapons not currently prohibited from aircraft or not detectable by
the secondary screening process, then their success is guaranteed, despite a perfect profiling
system! Supporters of profiling never speak explicitly of the effectiveness of screening imposed
on selectees. One gets the impression they tacitly assume that secondary screening is highly
effective (i.e. that P2 1). But evidence for that viewpoint is limited. On September
11 itself, six of the nineteen terrorists were subjected to additional scrutiny, but not one
was stopped from boarding the aircraft. At the time, the additional screening consisted of
checked luggage screening and did not search for (let alone forbid) the box-cutters that were
apparently instrumental to the plot.

Secondary screening today, of course, is more demanding, but its effectiveness has been
sharply questioned. A recent report of the (then) Inspector General to the Department of
Homeland Security, Clark Kent Ervin, was not encouraging. Undercover tests conducted in
2003 revealed weaknesses in employee training; screening equipment and technology; security
policy and procedures; and management and supervision [136]. According to the report, the
passenger screening process in place at fifteen airports repeatedly failed to detect weapons
and explosive materials. Even worse, a report released in 2005 indicated that the performance
still had not improved and likely would not improve without advanced technology [90, 138].
According to DHS Inspector General Richard Skinner, the screeners "fared no better than
the performance of screeners prior to September 11, 2001" [46]. And in February 2005 the
country's confidence was further shaken when, in two separate incidents at New Jersey's
Newark Interrnational Airport, a butcher knife and a fake test bomb made their ways onto
the plane (the fake bomb went even as far as Amsterdam) [99]. Representative John Mica,
chairman of the subcommittee, declared the results of the tests to be "bad enough" for
general screening and "absolutely horrendous" with respect to detecting explosives [58].
The main screening devices used at checkpoints are an x-ray machine and a metal detector,
but as Representative Peter DeFazio of the House Aviation Subcommittee noted, "You're
not going to find plastic explosives with a metal detector, no matter how hard you try" [58].
For certain types of plots, the true value of P2 might be far below one. In that circumstance,
directing the terrorists to secondary screening might be a hollow victory.

The optimists also seem indifferent to pi, the detection rate for primary screening. But if
C < 1, we cannot ignore this parameter. As discussed earlier, terrorists could use innocent
passengers in an attack without their knowledge or find a low-risk terrorist through probing.
Thus, if C is low, any inadequacies of primary screening may substantially raise the chance
of a successful attack. Figure 3-5 shows the smallest values of C (amongst those explored),
by (pl, P2) grouping, in which the average probability of a successful attempt would be less
than 20%, 10% or 5%. An entry of "None" indicates that no value of C yielded an average
value of P(AS') sufficiently low over scenarios in that group. If we interpret 20%, 10% and
5% as tolerance levels for acceptable risks of attack, we see first that as the acceptable risk
of attack decreases from 20% to 5%, we require substantial improvements in the quality of
secondary screening and in the quality of the profiling system to reduce the chance of attack
below those levels. We see that when the primary screening is fairly effective, then our
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Figure 3-5: The minimum profiling effectiveness (C) required to experience an average P(AS)
less than or equal to 20%, 10% or 5%, by (Pl,P2) grouping.

dependence on an effective profiling system is minimal. Over the set of scenarios in which
the primary screening had an 80-100% chance of detecting the plot (corresponding to the
upper right-hand quadrant of the charts), a successful attack would occur with less than 5%
probability (when averaged over r and T), regardless of the profiling system's effectiveness.
Scenarios in which pi ranged between 60% and 80% yielded an average P(AS) between 5%
and 10% regardless of the value of C, and an average P(AS) less than 5% if the secondary
screening was in the 80-100% effectiveness grouping and the profiling system at least 40%
effective. Thus, stringent primary screening might be costly and time-consuming but could
render profiling unnecessary.

For the groupings in which both the primary and secondary screening were less than 60%
effective (lower left-hand quadrant), the probability of a plot being successfully attempted
was found to be greater than 20%, even when considering scenarios in which the profiling
system perfectly selected all terrorists. In short, having ineffective primary screening could
be dangerous even if the PSS is effective at identifying terrorists and especially if it is not.
Even if we assume highly effective secondary screening, we may need a very effective profiling
system to be comfortable with a low level of primary screening.

Figure 3-5 shows the same trend seen in Figure 3-4 that if both primary and secondary
screening have similar detection rates, then profiling offers little value. When both pi and
P2 are very high, the average probability of a successful attack is fairly low, regardless of
the quality of the profiling system. Similarly, when both levels of screening are ineffective,
then not even a perfect profiling system can substantially reduce the threat of attack. It is
only when the secondary screening is significantly better than the primary screening that
profiling appreciably decreases the terrorists' success rate.

Thus, though many supporters believe the pre-screening systems will be effective at
identifying terrorists, this alone is not sufficient reason to be optimistic about their overall
ability to prevent terrorism. Without explicitly considering the values of Pi, P2, or P2 - P,
they miss the point that identifying high-risk people is beneficial only if that capability
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Figure 3-6: The probability of a successful terrorist attempt as the deterrence threshold 
varies from 0 (never deterred) to 1 (deterred unless guaranteed success), averaged over all
scenarios under n = 5 and Averaged updating.

reduces the chance that an attack would succeed.

3.5.2 Deterrence effects

While C, pl, and P2 may indeed be far below one, are they still high enough to convince the
terrorists to stay away? Supporters of profiling systems rely at least partially on deterrence
effects for their optimism, while critics such as Chakrabarti and Strauss ignore the possibility
that terrorists might be deterred. How important is the deterrence threshold, T?

Figure 3-6 shows the relationship between the average likelihood, P(AS), of a success-
ful terrorist attack and the deterrence threshold, . The average P(AS) decreases as the
terrorists require a higher chance of success in order to attack, as we would expect, and is
also concave in . As T initially increases from zero, those plots first to be abandoned are
those that were unlikely to succeed in the first place. Because they contribute little to the
total probability of success, their abandonment as initially increases causes only a slight
decrease in the probability of success. However, as approaches 1, the average probability
of success falls close to zero.

Given its influence on the average likelihood of a successful attempt, we would like to
explore how deterrence affects probing. The primary argument used in [28] is that by prob-
ing, the terrorists are guaranteed to find somebody who will slip through the system, thus
assuring a probability of success equal to S, rather than S. First, they assume an arbitrarily
large group of' independent terrorists. But are the groups really arbitrarily large? Next,
the assumption that group members are each classified independently as high- or low-risk
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Figure 3-7: Probing the system can sometimes discourage rather than reassure the terrorist.
(p = 0.2 ,P2 = 0.85, r = 0, C = 0.6, T = 0.25)

suggests that U.S. intelligence services are unable to recognize connections between dan-
gerous individuals. This could be true, but models that effectively assume independence
in probabilistic calculations could substantially overestimate the chance of finding a group
member who gets only primary screening. Perhaps most important, however, is the point
that terrorists might cancel their plans if they get evidence of an unacceptable probability
of success. Probing might provide that evidence.

Consider a lone terrorist, and suppose that he has made the following (presumably ac-
curate) estimates about the system:

* Primary screening is 20% effective at detecting his plot, (Pl = 0.20),

* Secondary screening is 85% effective at detecting his plot (P2 = 0.85),

* No passengers are selected at random for additional screening (r = 0),

* The PSS has a 60% chance of selecting the terrorist for secondary screening (C = 0.60).

Assume that the terrorist will not attack unless he has at least a 25% chance of success
('r = 0.25). In Figure 3-7, we compare the terrorists chance of success if he does not probe the
system before attacking to that if he does probe. If he does not probe, he first compares his
estimated probability of success with : With 60% probability, he would undergo secondary
screening at the time of the attack and thus would have a 15% chance of success. Otherwise,
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he would pass through primary screening and experience an 80% chance of success. His
total chance of success is then (0.60)(0.15)+(0.40)(0.80) = 41%, which is larger than T. He
decides to attack, and as per his calculations, succeeds with probability 41%.

However, if he does probe, then he waits to decide whether or not to attack until after
the probing run. During this trial there are two possibilities:

1. With 60'% probability, he is selected for secondary screening, knows he is classified as
high-risk and updates his estimate of C to 1 (This is just the conditional probability
that he was flagged by the PSS and not at random, as we have assumed there is no
random screening in this example). Knowing that if he were to attack, he would face
secondary screening and succeed with only 15% probability, which is less than T, he
gives up without attacking.

2. With 40% probability, he avoids secondary screening during his trial run and knows
for certain that he is considered low-risk (he updates C to 0). If he were to attack, his
probability of success under primary screening would be 80%. Because this is higher
than his deterrence level T, he decides to attack.

Because he attempts the attack only if he is deemed low-risk during the probing run, which
happens with 40% probability, and subsequently succeeds with 80% probability, his overall
chance of success if he probes first is only 32%, which is lower than if he had not probed.

What causes this? As the September 11 Commission [107] explained, "Terrorists should
perceive that potential targets are defended. They may be deterred by a significant chance
of failure". VWhen terrorists probe to gain information about the system, the information
they get might be discouraging, and they might cancel an attack that otherwise would have
had an appreciable chance of success. Unless one believes that terrorists cannot be deterred
(the widely accepted opinion is otherwise. See, e.g., [41].), analyses that treat deterrence
as a negligible phenomenon might be too pessimistic. We will now show mathematically
conditions under which probing does not improve the terrorists' chance of success.

Probing decreases chance of success, n = 1

For the case of a lone terrorist, we can show that the probability of success is never higher
when the terrorist probes than when he does not probe. Let P(AS)probe be the probability
of a successful attempt when the lone terrorist first probes the system, and P(AS)noprobe the
same probability when he attacks directly without first probing. Let

A = (1 - C)(1 - r)(1 - pi) + (C + (1 - C)r)(1 - P2), (3.12)

then P(AS)noprobe equals A when A > and 0 otherwise. P(AS)probe is as in Equation (3.5),
with q = (1 -- C)(1 - r), S and S are as in Equations (3.2) and (3.3), and C - +(-c)
(Because there is only one terrorist, the question of selecting an updating scheme for finding
q and C is moot).

Using the fact that P2 > pl, then S > A > S and A > qS, giving us four cases to
consider:
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* Case 1: S > A> 5> T

P(AS)probe - P(AS)noprobe

= (qS + (1 - q)S)-A
= -C)1--r)[(I-r)(1 -)( - -- 2)]

+ (C + (1 -C)r) C(1 C)r(1 -r)( - C+((I-C))r2 P2)
+ __________I + -C)r C + (1 -C)r(1-
- [(1 - r)()(1 -(1 - P) + (C + (1 -C)r)(1 - P2)]
=0,

* Case 2: A > qS > , S < 

P(AS)probe- P(AS)noprobe

= qS-A
< 0,

* Case 3: A > T, qS < , S < T

P(AS)probe- P(AS)noprobe

= -A
< 0,

* Case 4: A < , qS < , S < T

P(AS)probe- P(AS)noprobe

=0-0
< 0.

In each of the four cases, the probability of a successful attempt when the terrorist first
probes the system is always less than or equal to that if he does not probe the system. If
he attacks directly without first probing then he might succeed, even in circumstances that
would have caused him to give up had he first probed.

Probing decreases chance of success, n > 1, Maximum Dependence

Similar statements can be made in certain cases involving multiple terrorists. For instance,
if the Maximum Dependence updating scheme of Section 3.3.3 is assumed, then regardless
of the number of terrorists, the probability of a successful attempt is lower if they probe the
system first than if they select a member arbitrarily amongst the group of n and send this
member on the attack directly. The proof of this is similar to that above for n = 1, but we
se q = (1-C)(1-r) and C = descibed in Section 3.3.3.use q =1-C)(1-r) and C- c+(1-c)rn, as described in Section 3.3.3.

52



A related observation is that the probability of a successful attack under the Maximum
Dependence assumption actually decreases as the size, n, of the terrorist group increases.
Recall that the Maximum Dependence scheme is equivalent to sending a same person on
n consecutive probing flights. If this person is considered high-risk, then on each of these
flights he will be selected for additional screening. Had he probed only once, then perhaps he
might believe he was pulled aside at random rather than due to a high-risk rating. However,
after n tries, particularly as n gets large, he becomes more convinced of his high-risk rating
and more pessimistic about his chances of success. Thus, as n gets larger, he is more likely to
give up on the attack. This is the opposite effect than that seen when terrorists are assumed
independent.

Probing may increase or decrease chance of success, n > 1, Independent terrorists

If we have reason to believe that terrorists are selected independently of one another by the
profiling system, then there exist examples both where probing helps and where it does not
help the terrorist. While we saw in Section 3.3.3 that the likelihood of finding a low-profile
member approaches 1 as the size, n, of the terrorist group gets very large, for moderate
values of n, the group might become too discouraged to attempt the attack.

To see this., we consider two examples. Once again we have P(AS)noprobe equal to A when
A > r and 0 otherwise, where A is as in Equation (3.12). P(AS)probe is again as in Equation

(3.5), but now with q = - [C + (1 - C)r]n and C = c+(1-c), as in Equations (3.6) and
(3.7).

· Example 1 pi = 0.2,P2 = 0.5, C = 0.8, r = 0.01,T = 0.55, n = 5

If a terrorist were to commit the attack without probing, his probability of success
would be A = 0.5594. Because this is greater than T, he commits the attack, and
P(AS)noprobe = 0.5594. If, instead, the group considers probing, their probability of
success if they find a low-profile member, S, would be 0.797 and greater than T, but
their probability of success if they must use a previously-flagged member, S, would be
0.5007 and less than T. If they decide to probe, they will commit the attack only if
they finl a low-profile member. However, their probability q of doing so is only 0.6682,
and their probability of success is therefore qS = 0.5326. Because this is less than -r,
they actually decide to give up without probing, and thus P(AS)probe = 0, which is
less than had they attacked directly, without considering probing.

* Example 2 pi = 0.2,P2 = 0.5, C = 0.3, r = 0.01,T = 0.55, n = 5

In this example, if a terrorist were to commit the attack without probing, his probability
of success would be A = 0.7079. Again, this is greater than T, so he will commit the
attack, and P(AS)noprobe = 0.7079. If the group considers probing, their probability
of success using a low-profile member, S, would be again 0.797 and greater than T,

and their probability of success using a previously-flagged member, S, would be 0.5068
and still less than T. Again, they will commit the attack only if they find a low-
profile member, but this now occurs with a greater probability, q, since C is smaller
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in this example. We have qS = 0.7948 > , so they decide to probe and will attempt
and succeed with their plot with probability P(AS)probe = 0.7948. Here we have
P(AS)probe > P(AS)noprobe.

In the first example, the likelihood of finding a low-profile member, q, and the chance of
success using a high-profile member were too low to justify probing, causing the terrorists
to give up. The terrorists' chance of success would be higher proceeding directly with the
attack than if they probed first. In the second example, the probability of being selected by
the PSS was lower, improving the terrorists' chances of finding a low-profile member during
the probing runs. In this case, conducting probing flights would improve their chance of
success.

This highlights a few important conclusions. First, excluding deterrence from an evalu-
ation of profiling systems can create an overly pessimistic assessment of such systems. Law
enforcement measures (whether against terrorism or other crimes) serve not only the purpose
of intervention during an infraction but also the purpose of deterring such infractions. Such
capability must be considered and modeled.

A second conclusion is that different assumptions about how the profiling system selects
terrorists can influence the system's vulnerability to potential loopholes. If the system is
unable to detect ties between terrorists, such that they are selected independently of one
another for secondary screening, then the probing behavior outlined by Chakrabarti and
Strauss can, at least in some cases, cause the terrorists to achieve a higher chance of success,
particularly if they have a large pool of members from which to choose an attacker. However,
as the system becomes better able to detect relationships between members of a same group,
then the probing flights might discourage the terrorists if they realize the system is more
hardened than they initially thought.

3.5.3 Role of random screening

Lastly, we examine the role of random screening. Many supporters of random screening argue
that it acts as a deterrent: by keeping the passenger screening process even moderately
unpredictable, terrorists will be less able to game the system to their benefit and might
get discouraged from attempting an attack. Figure 3-8 shows the relationship between the
average P(AS) over all other parameters and r. We see that the curve is roughly linear and
decreasing in r, but with a shallow slope: when r = 0, the average P(AS) is near 0.38, and
when r = 20%, this decreases by less than seven percentage points to around 0.31. This
suggests that random screening, at the relatively small level that airports could conduct
it without frustrating passengers, is not an influential parameter in reducing the likelihood
of a successful attack. Because our system does not want to screen too many "innocent"
passengers, we are forced to keep r low, and as such, its effect is limited.

Furthermore, terrorists will not fear random screening if the additional screening is not
able to detect their plot. Similar to the PSS effectiveness parameter C, random screening
yielded a greater effect at reducing the risk of a successful attack in scenarios where P2 was
high relative to pi than when the two screening levels had similar effectiveness.
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Figure 3-8: The probability, P(AS) of a successful terrorist attempt as a function of the per-
centage, r, of randomly selected low-profile passengers, averaged over all possible parameter
values.

3.6 Conclusions and policy implications
There have been conflicting interpretations of computerized pre-screening systems. Optimists
feel that profiling is the "right answer" and will facilitate the screening process for the
majority of passengers believed to be low-risk. Pessimists feel that using a profiling system
in the case of personal pre-boarding screening will allow terrorists to obtain information
about their status that they can use to their advantage. Both factions' arguments may be
somewhat shortsighted, however.

Critics of profiling systems may have given insufficient weight to deterrence (), because of
which the selection and screening system, although imperfect themselves, might still prevent
attacks from being attempted. Moreover, although we assumed that the terrorists' estimates
of system parameters match the parameter's true values, this does not have to hold in reality.
If terrorists believe the values of C, pi or P2 are higher than they actually are, then this belief
alone might discourage them. We have also seen that probing the system could sometimes
prevent a terrorist act rather than ensure its success.

Supporters of such systems have focused mostly on the ability of the algorithm to identify
terrorists (C) and say little about screening effectiveness of both lower-risk passengers and
selectees (l and P2). Depending on the true value of C, our conclusions on where to focus
security efforts may change. For instance, the work of [157] used an estimate of C equivalent
to roughly 90-96%, while the percentage achieved on September 11 was only 32%. Figure
3-5 shows that; if C = 0.32, then primary screening must be more than 40% effective and
secondary screening more than 60% effective in order to attain an average probability of
attack less than 20%, while if C = 0.96, only the secondary screening is relevant. To have
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less than a 5% chance of attack, both primary and secondary screening must be at least 80%
effective if C = 0.32, and again only the secondary screening is relevant if C = 0.96. If we
are unsure of the effectiveness of the profiling system, then it is necessary to focus efforts
on improving the primary screening that every passenger receives. If we have evidence that
the profiling system is effective, then this, too, is insufficient as we must ensure that the
secondary screening received by selectees is effective. Having a robust and effective profiling
system does not help if the underlying screening is incapable of preventing an attack.

However, once a profiling system is developed, how will we know whether or not it is
effective? First, such systems are fundamentally difficult to test. While a security screener
operating an x-ray scanner can be tested by sending fake weapons through the x-ray and
measuring whether the employee detects them, similar tests are impossible with profiling
systems. An algorithm in preliminary testing might achieve a very high likelihood of select-
ing a terrorist having the characteristics the system has been designed to detect. However in
practice, the true characteristics of a terrorist might be more difficult to recognize, and there
would be no way of knowing this in advance of an attack. Second, as we have seen in this
chapter, a profiling system capable of detecting ties between terrorists is significantly more
robust to terrorist loopholes, such as probing, than a system selecting terrorists indepen-
dently of one another. Yet, limitations on the nature of data that is allowed to be collected
might drastically limit the ability of a profiling system to draw such ties, and may further
reduce its overall effectiveness. In light of this, in order to increase the likelihood of selecting
a terrorist, the system would likely have to cast a wide net and select a greater percentage of
passengers in general, thus increasing the "hassle-factor" profiling was expected to reduce.

It appears that profiling systems are neither right answers nor mere carnival games, but
instead lie somewhere between the two assessments. Immediately dismissing their benefit
as negligible due to the existence of loopholes is short-sighted, since the intricate issues
surrounding terrorist behavior and deterrence are difficult to capture in a model, and could
set a dangerous precedent for other security measures for which loopholes might exist (one
could argue that there exist loopholes around most security measures). Yet, basing the
"foundation" of aviation security on a single parameter without consideration for the entire
system is likewise myopic. Straightforward mathematical reasoning can help clarify the
rhetoric surrounding many of these issues.
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Chapter 4

Securing Cargo Holds of Passenger
Aircraft: A Cost-Benefit Perspective

In addition to the effectiveness of security systems, another important consideration is their
cost. The attacks of September 11 showed us that the costs of a terrorist attack can be
greater than previously imagined, and that updating our security systems to protect against
a wider range of attacks is likewise expensive. In light of this tradeoff, how do we decide
which security systems are worth implementing?

In this chapter, we examine measures to protect cargo compartments on passenger aircraft
against Improvised Explosive Devices (IED's), focusing on three avenues by which such a
device might find its way onto a passenger aircraft: through checked luggage, via United
States Postal Service airmail, or in commercial cargo. Correspondingly, we consider three
measures protecting against such attacks. The first, known as Positive Passenger-Bag Match
(PPBM), prevents a suitcase from remaining on an aircraft if its accompanying passenger
has not boarded the plane by the time of departure. The next is a policy implemented
immediately after 9/11 prohibiting United States Postal Service airmail packages weighing
more than one pound from passenger aircraft. One concern with this policy, however, is
that it might appear contradictory to prohibit airmail packages while significantly larger
cargo shipments can be transported on passenger planes largely unscreened. Therefore, we
consider a third hypothetical policy, parallel to that for airmail, in which cargo packages
would be prohibited from passenger aircraft.

Our objective in this chapter is to explore how to evaluate the cost-effectiveness of a
policy in light of the uncertainty surrounding the cost of the policy, cost of attack and
threat of attack, and how to draw meaningful conclusions from such analysis. We begin in
the following section by discussing the three measures in detail. In Section 4.2, we provide
a cost-benefit method for assessing the value of a security policy, and then in Section 4.3
we apply the method in the context of the three policies described above. The results are
interpreted in Section 4.4. We find PPBM to be cost-effective even if attacks on checked
luggage occur rarely, while the removal of cargo is not cost-effective unless there is reason to
believe an attack on cargo is imminent. Although the case of removing airmail is somewhat
inconclusive, we are able to demonstrate that the implementation of one security measure
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does not set a precedent for instituting another measure protecting against a similar type
of attack if the two vary considerably in cost. Thus, it is not necessarily inconsistent to
remove airmail packages from planes while continuing to ship cargo. However, there is some
potential inaccuracy in focusing on each security measure individually and not considering
the system as a whole. In particular, as one possible target is fortified, the threat, rather
than disappearing completely, may instead be diverted to a more vulnerable target. Such
issues are discussed in Section 4.5. The conclusions are summarized in Section 4.6.

4.1 Three security measures

4.1.1 Positive Passenger-Bag Match

After the bombing of Pan Am Flight 103 over Lockerbie, Scotland, caused by an explosive
packed in a checked suitcase unaccompanied by its owner, international flights implemented
Positive Passenger-Bag Match (PPBM), a policy that ensures that any bag loaded onto a
plane has its accompanying passenger on-board. If the passenger does not board the plane
in time, the baggage is "pulled" from the aircraft prior to departure.

Shortly following the September 11, 2001 attacks, Congress mandated in the Aviation
and Transportation Security Act (ATSA) [133] that all checked luggage on domestic flights
be screened for explosives prior to departure from the originating airport. Such screening
could take various forms: CT-scanning Explosive Detection Systems (EDS), Explosive Trace
Detectors (ETD), bomb-sniffing dogs, hand searches and PPBM. Up to this point, most
airports were not screening checked luggage for explosives except in the case of passengers
selected by the Computer-Assisted Passenger Pre-Screening System, CAPPS (see Chapter 3).
Thus, when the requirement for 100% screening took effect, most airports struggled to acquire
the equipment and staffing necessary to attain full screening. In the meantime, PPBM
was the security measure used most because it did not require the staffing and equipment
acquisitions of the other acceptable policies. However, as Inspector General Kenneth M.
Mead of the U.S. Department of Transportation testified, "...positive passenger bag match
will not prevent a suicidal terrorist from blowing up an aircraft by putting a bomb in his
baggage..." [102]. Given this, as airports began acquiring EDS/ETD machines and bomb-
sniffing squads, PPBM was slowly phased out at most airports.

The question raised by this decision is whether the increased risk of allowing unaccompa-
nied bags on planes outweighs the cost of maintaining PPBM. Critics of PPBM worry that
bag-matching would cause system-wide delays and require additional staffing and equipment,
costing the airlines money. Citing PPBM's inability to thwart suicidal terrorists as a ma-
jor weakness, they argue that the threat posed by the few attack scenarios preventable by
PPBM is not sufficiently large to justify this cost. On the other hand, supporters of PPBM
argue that while EDS and ETD can be effective at screening bags, they are not perfect, and
PPBM in conjunction with screening could help narrow the gap (See, e.g., [19]). Imagine,
for instance, that a terrorist is planning to send an explosive in a checked suitcase. Under
an EDS/ETD regime alone, he can arrive at the airport, check the suitcase and leave the
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airport. If the EDS/ETD detects the suitcase, then the attack is averted, but it might be
difficult, if not impossible, to apprehend the terrorist. Had PPBM been used in addition to
EDS/ETD, he would first have to be willing to board the plane (and thus to commit suicide
if EDS/ETD dloes not detect the bomb) and be willing to risk arrest (if the EDS/ETD suc-
cessfully detect the explosive and officials apprehend the terrorist at the gate). Thus, PPBM
can prevent attacks by non-suicidal terrorists who are unwilling to board the plane with
the explosive, and it can also prevent attacks by suicidal yet otherwise risk-averse terror-
ists who are unwilling to be incarcerated. [41] note that "mission success is very important
and leaders are in some ways risk-averse. Terrorists recognize that their power depends on
perceptions of whether they are winning or losing;... martyrdom in a stymied mission lacks
the appeal of dying in a spectacular, successful attack". Not all terrorists are suicidal, and
furthermore, not all terrorists willing to risk their lives are also willing to risk imprisonment.

4.1.2 Moratorium on larger Postal Service airmail packages

The United States Postal Service (USPS) had been using commercial airlines for much of
their airmail service since the 1920's. In 2000, 70% of the 2.5 billion revenue ton miles
of airmail was shipped on passenger aircraft [147]. In the aftershock of the September 11
attacks, another change to aviation security procedures was the removal of USPS packages
weighing more than one pound from the cargo holds of passenger planes [141]. (Prior to
9/11, USPS requested permission from its customers shipping larger packages to screen
such packages if necessary [48].) It was believed that terrorists might try to ship explosives
through the airmail system, and that one pound or more of explosives would be sufficient to
down a passenger aircraft [67]. This new law forced the USPS to route larger packages on
all-cargo airlines, such as Federal Express, resulting in a loss of revenue to the airlines and
additional costs to the Postal Service1 . Because the airlines were losing at least $250 million
in revenue annually under the moratorium [7, 131], in May 2003, the Transportation Security
Administration (TSA) began a pilot program at eleven airports where the larger packages
would be permitted on passenger aircraft provided they were first screened by bomb-sniffing
dogs. The intent of the pilot program was to test the bomb-sniffing dog policy in preparation
for nationwide adoption [141]. However, not publicly addressed was the risk posed by attacks
on airmail, the extent to which this risk can be mitigated by the bomb-sniffing dogs, and
how this risk balances with the costs of the moratorium. Is the additional revenue to the
airlines and the reduction in costs to the USPS sufficiently large to justify the increase in
risk incurred if airmail packages were to be placed back on passenger aircraft?

1Although the Postal Service and FedEx had entered into an agreement in August 2001 where FedEx
would carry some USPS airmail on their all-freight aircraft, this agreement included only mail on certain
routes where it was economically advantageous. When packages were prohibited from passenger airlines, the
USPS was forced to expand its agreement with FedEx.
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4.1.3 A hypothetical policy on cargo

While airmail packages weighing only a pound are forbidden from passenger aircraft, signifi-
cantly larger cargo shipments continue to be carried. In 2000, roughly 20% of the 12.2 billion
revenue ton miles of air freight in the U.S. was shipped on passenger aircraft [147], and less
than 5% of this was screened for explosives [48]. Although cargo screening is mandated in
ATSA, the primary policy in use is the "Known Shipper" program, where cargo sent by
companies with a history of working with the airlines is permitted on passenger aircraft,
mostly unscreened. Any shipments by unknown shippers are sent on all-cargo carriers [147].
The concern is, therefore, that a terrorist having connections to the shipping department
of a Known Shipper could possibly send explosives as cargo on passenger aircraft. This
possibility was made apparent in 2003 when a man working in the shipping department of
a company successfully shipped himself in a cargo package from New York to Texas [3, 82].
Though he was not a terrorist, and his particular package was not sent on a passenger aircraft
but on an all-cargo carrier, this highlights the possibility that a Known Shipper might not
always be able to control the actions of its employees. Terrorists might also forge shipping
documentation and could take advantage of other loopholes [119].

Because of the difficulty in developing technology capable of screening cargo for explo-
sives, however, laws requiring additional screening of cargo have stalled in Congress. Asa
Hutchinson, Under Secretary for Border and Transportation Security, responded in 2003 to a
proposed cargo security bill saying, "Only a small percentage of the nation's air cargo could
be physically screened efficiently with available technology without significantly impeding
the supply chain" [36]. And of the $30.4 billion Homeland Security 2004 funding bill, only
$85 million was intended for air cargo screening [95].

The question we explore here is whether or not it is contradictory to allow unscreened
cargo to be sent on passenger aircraft when significantly smaller airmail packages are for-
bidden from these same aircraft at most airports. Does the removal of airmail packages set
a precedent for the case of cargo, and if not, under what conditions would the removal of
cargo from passenger planes make sense?

4.2 A cost-benefit model

In this section, we develop a model that finds the threat of attack required to justify a
particular security policy, and we discuss how to interpret these threat thresholds in the
time horizon. We will later use this model to evaluate the three policies discussed above.

A common technique for calculating an indifference point between two opposing policies
is to compute the expected value (or cost) of these policies and determine parameter values
for which they are equal. We use this technique here as we compare the expected costs of
instituting each of the above security measures to the expected costs of not instituting them,
as a function of the cost of a terrorist attack that would have been prevented by the policy,
and the likelihood of such an attack.

Our approach is similar to that in [124], who examine an "efficiency criterion" for a
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security policy: how does the incremental benefit (risk reduction) of a particular policy
compare to its incremental cost, or put another way, how much protection is the public
willing to buy to achieve such a risk reduction? We phrase the question slightly differently,
by asking what must be the risk reduction (measured as a decrease in attack likelihood)
anticipated from a measure in order for society to be willing to pay for this measure?

Other work also emphasizes the likelihood of an attack. In quantitative risk assessment,
in addition to understanding possible attack scenarios and their consequences, an equally
important question is the likelihood of such scenarios occurring. While [13] and [53] suggest
estimating the likelihood of terrorism scenarios based on the occurrence of similar events, we
instead use the probability of attack as a decision threshold. Rather than knowing the exact
likelihood of a particular attack, it is sufficient to know only whether the true likelihood is
higher or lower than this threshold.

[33] perform a cost-benefit analysis of a counterterrorism policy by focusing on resource
diversion rather than the likelihood of an attack. The authors compare several possible tech-
nologies to thwart attacks by MANPADS, Man Portable Air Defense Systems, on passenger
aircraft. They compare costs of attacks having varying magnitudes with estimated costs
of anti-MANIP'AD measures, and view these security costs as funds that would have to be
diverted from other Department of Homeland Security initiatives. The decision of whether a
particular measure is cost-effective or not depends on the measures that would be supplanted
by it. This is a different framework than that to be presented in this chapter as it assumes
a fixed Homeland Security budget and assesses measures in the context of that budget. We
do not consider budgetary constraints, arguing instead that if the likelihood of a terrorist
attack is sufficiently high, it is in society's best economic interest to implement counterattack
measures, rather than to risk incurring the costs of an attack.

4.2.1 Parameters and constants

We consider a proposed policy that protects against a specific type of attack (for instance,
PPBM protecting against IED's in unaccompanied checked luggage). If we choose not to
implement the policy, then we assume a backup security plan (such as the original security
policy in place), which has associated with it the following parameters:

* CB: the annual cost of maintaining any backup security that is used in lieu of the
proposed policy,

* PB: the effectiveness of such backup security (i.e., the probability that this backup
device can detect the attempted plot),

* CA: the cost of a successful terrorist attack that might occur,

* rpre: the risk per flight of an attempted attack in the absence of the proposed policy. We
allow for the possibility that this attempt might be thwarted by the backup security
system (which happens with probability PB), but assume that if not detected, the
explosive will detonate.
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The parameters associated with the proposed policy are:

* Cp: the annual cost of maintaining the policy,

* F: the number of U.S. domestic flights annually, estimated at roughly 6 million per
year,

rp,,st: the probability per flight of an attempted attack after the policy has been im-
plemented. This allows us to assume that there may be some deterrence effects of
implementing the policy, such that the chance of an attempted attack decreases,

* pp: the effectiveness of the policy (i.e., the probability that the policy can thwart an
attempted attack).

Throughout this chapter, we will focus on the probability of an attempted attack rather
than a successful attack. This allows us to isolate and vary the effectiveness of the backup
security policy and explore, for instance, whether the proposed policy is still worthwhile even
if the backup policy is reasonably good.

4.2.2 Model based on cost per flight
There are two logical models for determining whether or not to implement a security policy.
The first is to estimate the expected cost of the security policy on a per flight basis and
compare this to the expected cost per flight without the policy. The per flight cost is the
annual cost of the policy divided by the number of flights, plus the cost of an attack that
occurs on a flight weighted by the likelihood of such an attack. Using the parameters defined
above, we calculate the expected value per flight of implementing a policy as follows:

E[Value of policy per flight] = Cost of not implementing policy - Cost of implementing policy

= [CB/F + rpre(l -PB)CA] - [Cp/F + rpot( - PP)CA]
Cp - CB

= (rpre(1 -PB) - rpost(1 - PP))CA- (4.1)F

In order for the policy to be worthwhile we must have E[value per flight] > O, or

CP - CB - pp
rpre > FC ( 1- post P(4.2)pre - FCA(1 - P) 1 - PB

Thus, if our threat of attempt per flight, absent the policy, is at least CP-CB + rP

then we should implement the policy, otherwise we should not.

4.2.3 A renewal model
We might also use a renewal method to estimate this threat threshold. This method uses the
assumption that if the policy is not initially implemented, it will be implemented once an
attack that might have been prevented by the policy occurs. Up until the first attack, there
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is only the cost of the backup policy, but once an attack occurs, we incur both the cost of the
attack and the cost of instituting this new security measure at this time and maintaining it
throughout the future. It turns out that this method yields the same threshold as the cost
per flight method.

To show this, we assume first that attack attempts absent the proposed policy follow a
Poisson process of rate rpreF attempts per year. Given that the backup security measure has
a chance PB of thwarting the attempt, successful attacks therefore follow a Poisson process
of rate (1 - pB)rpreF. In this case, the expected time, T, until the first successful attack
takes place is F Until the first attack, we incur the cost of the backup policy,

C13T; at time T, we incur a cost of CA due to the attack; and from time T until infinity, we
incur an annual cost of Cp for implementing the policy after the attack, plus the cost of any
subsequent at-tacks not prevented by the policy. Thus, the total expected cost if the policy
is not implemented immediately is:

CB
E[cost of no policy] (1 + CA + E[Total Policy Cost after time T].

(1 - PB)rpreF
(4.3)

If, instead, the proposed policy is implemented, attempted attacks will occur at rate
rpostF per year, and successful attacks with rate (1 - pp)rpostF per year. In this case, up
to time T (letting T be the same value as in the previous equation), we have the annual
cost of the policy, Cp, incurred over T years. Over this time period, the expected number of
successful attacks, given that the proposed policy is in place, is (1-pp)rpostFT = (1-pp)rpotF(1-pB)rpreF'
From time T until infinity, we incur the same cost of maintaining the policy that we had
above. This gives us the total expected lifetime cost of implementing the policy:

of policy] = CP ( - PP)post CA
E[cost of policy] (1 - PB)rprF (1 - PB)rpre

+ E[Total Policy Cost after time T]. (4.4)

If the cost of instituting the policy is less than that of not instituting it, then the policy has
a positive expected value and should be implemented. This occurs when rpre FCA(-PB) +

rr 1
PP the same threshold we saw above using the cost per flight method.

This threshold can be further simplified for the three specific cases we consider here.
Removing airmail or cargo from passenger aircraft, for instance, would completely eliminate
the risk posed by such parcels. In this case, pp = 1 (or equivalently, rpost = 0), and we have
the threshold

pre - FCA (1 -pB )'

The case of PPBM is somewhat trickier. Some attempts to put explosives in luggage
would be thwarted (those in which the terrorist leaves the premises and the bag is pulled by
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PPBM) while others would not be (those in which the terrorist is willing to board the plane
with the explosives and the EDS/ETD machines fail to detect the IED). As such, we define
two types of attacks involving explosives placed in checked luggage:

* Type 1 attacks are those preventable by PPBM (attacks by nonsuicidal terrorists or by
terrorists willing to commit suicide but not willing to risk arrest). These attacks will
not occur if PPBM is instated and may or may not occur if it is not, depending on the
performance of the EDS/ETD at detecting the explosive.

* Type 2 attacks are those that are not preventable by PPBM. These are attacks by
suicidal terrorists who are willing to risk the possibility of arrest. These attacks could
occur even if PPBM is used, again depending on the performance of the EDS/ETD at
detecting the explosive.

Using the framework presented earlier, we can see that re = rl + r 2, the risk per flight
of an attempt on checked luggage, absent PPBM, is the overall risk per flight of Type 1 and
Type 2 attempts (we assume that the chance of a Type 1 and Type 2 attempt occurring
simultaneously on the same flight is zero). rpost, the chance of attempt in the presence of
PPBM is then equal to r2. Furthermore, given that a Type 2 attack is attempted, it can
be stopped by the EDS/ETD machines with probability PB. Thus, when the PPBM policy
is in place (which assumes that EDS/ETD continue to be used), its chance of thwarting
Type 2 attempts, pp, is equal to PB. Substituting into pre > FCAPB) rpos 1-P , we get- FCA(1-pB) FPOs 1-P--B'
rl > FCA1PB) which is similar to the expression found for the cases of airmail and cargo,
where we consider the threat of only Type 1 attempts. The rate of Type 2 attempts (those
not preventable by PPBM) is irrelevant for this model because the costs associated with
such attacks are incurred regardless of the presence of PPBM.

Because we have eliminated rpost from the expression for the risk threshold, we will
simplify notation by using r in place of rpre for the remainder of the chapter, and using as
the risk threshold the expression

CP - CB
FCA(1 - PB)' (4.6)

4.2.4 Interpretation

Many of the parameters above are unknown random variables, and for any realization, i,
of the parameters (Cp, CB, CAi, PBi), a different risk threshold ri can be calculated. We
rely, therefore, upon a summary statistic that might be useful in interpreting the model.
For each scenario (CBji,Cp,CA ,pBi), and risk level r, we let di(r) = r(1 - PB)CAI - FCB
be the expected value of implementing the policy in that scenario. We would like to find a
threshold value of r, to be called r*, such that E[d(r*)] = 0, where the expectation is taken

64



over all scenarios:

E[d(r*)] 0,

E [r*(l -PB)CA CP - ] = 0,

.,,_ CP - CB 0r*E [(I-PB)CA] [C r F
E [CP-CB]

E[(1 -PB)CA]

E[CB] - E[Cp]

FE[CA]E[1 - PB]

The last equation holds if we assume the random variables CB, Cp, CA, and PB to be
independent, which appears to be a reasonable assumption. If the true chance of attempt
per flight is greater than r*, then the expected value of the policy will outweigh the expected
cost in the long run. We will implement a policy, even if the threat of attempt is small, if the
ratio of policy costs to attack costs is relatively high. A pleasing feature to this threshold is
that it depends on the distributions of the parameters only through the first moment.

Relating risk thresholds to the time to first attempt

The difficulty with using risk thresholds is that they are difficult to interpret. What is
meant by a risk per flight of, say, 10-9? When events occur so rarely, and have such large
impacts when they do occur, it is often difficult to distinguish perceived risks, which might
be emotionally charged, from true risks. So there is benefit in adjusting the above thresholds
to an appropriate scale and metric.

One simple way is to translate a risk threshold into the time by which there will be a x%
chance that at least one attempt will have occurred. We prove the following theorem:

Theorem 4.1. For T = In(1-x/100) and r* = E[CB]-E[CP] the expected value of implement-
In (1r*) FE[CA]E[1-B]'

ing the policy is equal to (or greater than) zero if and only if there is an x% (or greater)
chance of an attempted attack within the next T flights (T/F years).

Proof. We begin by proving that having an x% or greater chance of attempt within T flights
at the true risk level, rtrue, implies a non-negative expected value of implementing the policy:

P(At least one attempt in first T flights) > x/100
= P(No attempts in first T flights) < 1 - x/100

(1 - rtrue) < 1 - x/100

= Tn (1 - rtrue) < ln (1 - x/100)

> (1 -x/100)
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rtrue > r*

=E[d(rtrue)] > E[d(r)] =O.

By reversing the above steps we find that if the expected value of the policy is non-negative
at our current risk level rtrue, then the chance of attempt within the next T = In(1-x/1)In l-r*
flights is at least x%. O

For example, if the expected value of implementing the policy is greater than or equal
to zero, then there is a 10% chance of an attempt in the next Fin(0.9) years, a 20% chance

within the next in (0.8) years, etc. Focusing our attention on a 50/50 likelihood threshold,Fin(1-r*)

if there is there is at least a 50% chance of an attempted attack within the next Fn (0.5)FIn (l-r*)
years, then we should implement the policy.

4.3 Parameter Estimation
With the cost-benefit framework in place, we can now evaluate the three security measures
mentioned earlier: Positive Passenger-Bag Match, the removal of larger Air Mail packages
from commercial passenger aircraft, and the removal of cargo from commercial passenger
aircraft, by estimating their corresponding parameters. The term r* in Theorem 4.1 above
depends only on the expected values of the parameters and not on their distribution. We will
therefore discuss plausible distributions for each parameter and then find the time thresholds
corresponding to setting each parameter equal to the expected value. To examine how the
thresholds vary with the parameters, we will also evaluate thresholds using low and high
settings for each parameter. We will consider any costs from society's, rather than the
airlines', perspective (at least to a first-order approximation) because the ramifications of
terrorist attacks affect society as a whole. Considering costs from the airlines' perspective
alone would underestimate the true costs of an attack. For example, [120] argues that airlines
and airports (who before September 11 were primarily responsible for security screening)
were typically less willing to pay for security measures than the general public because "the
benefits flowing to their organizations from tightened security did not justify the added costs.
However, from a social point of view a tighter security regime would have been desirable".
(The issue of who should pay for security measures is out of the scope of this thesis, and the
interested reader can instead refer to [38, 59, 85]) We start our parameter estimation with
the cost of an attack.

4.3.1 The cost of attack

The three policies we considered all protect against a similar type of attack, namely the
placement of an explosive somewhere in the cargo hold of commercial passenger aircraft.
Because the damage incurred in each type of attack is likely to be roughly the same, we
assume an identical distribution of CA across all three policies.
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The natural tendency in estimating attack costs is now to use September 11 as a bench-
mark. The short-term direct costs of September 11 (loss of physical assets, rescue and
cleanup) have been estimated to be roughly $27.2 billion [92], but the indirect costs, includ-
ing economic repercussions, are believed to be much larger, and fundamentally difficult to
estimate. For instance, the airline industry was the hardest hit due to a sharp reduction
in demand for air travel following September 11. The ATA estimates that during the two
years following the 9/11 attacks, the airline industry lost roughly $25 billion [7]. Second,
the insurance and reinsurance industries suffered losses of at least $30B [92]. Businesses
and victims' families have received an estimated $38.1 billion in compensation, both from
the government and from private donations [29, 44]. Lastly, the general economic malaise,
present prior to September 11, but accelerated by the attacks, caused many industries to
suffer. To further complicate matters, some industries benefitted from the attacks, such
as defense and security industries, but occasionally at the expense of the government and
tax-payers.

However, the September 11 attacks were, hopefully, atypical. They were coordinated
attacks involving four hijacked planes, as opposed to an isolated attack on a single plane
that we consider in our model. The Air Transport Association has estimated that the cost to
the airline industry of a future attack on aviation would be roughly $5 billion [7]. However,
depending on where the explosive detonates (while the plane is empty and parked in the
hangar, or while it is full of passengers parked near a crowded airport, for instance), the
costs could be significantly different from this estimate. Not only might the physical damages
vary, but the economic disruption, so prominent after the 9/11 attacks, could vary as well.
For instance, a RAND Corporation study [33] estimated that the reaction to an attack could
include a temporary shutdown of airspace, inflicting from $1.4 billion to $70.7 billion in lost
revenues to the industry. While the latter figure corresponds to a one-month shutdown, an
unlikely reaction to a single attack that we consider here, it highlights, nonetheless, this
variability. (Furthermore, some suggest that even knowing that an attack was attempted,
let alone successful, might damage the delicate financial state of the airline industry [165].
However, we focus here only on costs associated with successful attacks).

We assume the attack costs come from a triangular distribution ranging from $0.5B to
$15B and peaking at $5B. This was chosen so that the mode of the distribution would
be at $5B, the Air Transport Association's estimate. Such a distribution has a mean of
$6.83 billion. For sensitivity analysis, we will also examine CA equalling the extremes of the
distribution, $0.5 billion and $15 billion.

4.3.2 Policy costs

Positive Passenger-Bag Match

In 1997, Barnett et al [21] conducted a two-week trial of Positive Passenger-Bag Match at
Chicago's O'Hare Airport. Although PPBM had been in use for years on international flights,
the study explored whether such bag-match would be feasible on domestic flights. They
studied delays imposed on Chicago flights as a result of bag-match, how such delays would
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be propagated throughout the entire air system, and what other costs might be incurred if
PPBM were implemented. They found that the average PPBM delay per flight would be
about 1 minute systemwide. Furthermore, the airlines involved in the trial estimated that
if PPBM were to be imposed on a permanent basis, they would need additional staff and
special equipment for comparing who had boarded the plane with who had checked luggage,
keeping track of where in the plane the luggage had been stored and conducting bag-pulls.
Lastly, delayed flights could possibly result in overnight stays for some passengers, to be paid
for by the airlines. Their study predicted that the sum of these costs would be between 25
and 52 cents per passenger.

After September 11, 2001, many airlines and airports initially used PPBM to satisfy the
ATSA mandate for checked luggage screening, since explosive detection systems and trace
detectors were in short supply. At this time, [75] conducted a survey of major airlines to
estimate the actual costs of PPBM, and found that the delays and costs actually realized
were significantly lower than those originally predicted in [21]. While the original study
predicted roughly one minute of delay per flight system-wide as a result of the bag-matching
and pulling process, the updated survey found that the true delay was actually only 7 seconds
per flight (ignoring delay propagation effects). Furthermore, it revealed that no additional
staff were hired as a result of PPBM and that no additional equipment was acquired.

Using the same delay propagation multiplier, 1.2, as in [21], the average systemwide
delay per flight caused by PPBM is estimated to be 8 seconds, which at $20 per minute
(the estimate used by [21]) totals $2.80 per flight, or 2.75 cents per passenger (assuming
610 million passengers on 6 million flights annually, post-9/11). [21] found that 1 in 2700
passengers would miss their connecting flight due to the average PPBM-induced delay of 1
minute. 15% of these misconnections would result in overnight stays at the expense of the
airline. Scaling by the revised average delay of 8 seconds, the revised cost of overnight stays
is less than one cent per passenger. Thus, to have originating bag-match, the total cost
would be roughly 3 cents per passenger, or $18.3 million per year. To include bag-match
on connecting flights, we note that roughly one-third of passengers require connections, so a
rough estimate of the cost of connecting and originating PPBM would be $24.4 million, or
33% higher than the estimate for originating bag-match alone. We use these two values as
estimates of Cp for PPBM.

Removal of Air Mail Packages

Carrying airmail has long been a simple means for the airlines to obtain revenue with little
marginal cost. The ATA estimates that the revenue lost by the airlines in losing the right to
carry airmail packages is roughly $250 million per year [7], while other estimates extrapolated
from quarterly losses are closer to $350 million [131]. There is also the additional cost to
the U.S. Postal Service in having to send these packages on commercial freight carriers, such
as FedEx. [118] estimates this is at most twice the cost of sending the mail by the airlines,
although others argue that the Postal Service benefits from improved service provided by
FedEx [115]. We assume Cp ranges according to a triangular distribution from $250 million
to $500 million, peaking at $250 million, the expected value of which is $333.3 million, and
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Airmail and bomb-sniffing dogs

For the case of airmail, the pilot policy at a few airports allows larger airmail packages to
be shipped on passenger planes provided they are first screened by bomb-sniffing dogs. So

PB in the case of airmail is the probability that an explosive placed in an airmail package is
detected by a bomb-sniffing dog.

It is widely believed that well-trained dogs can achieve 95% accuracy at detecting trace
levels of explosives that they have been trained to detect [14, 34, 42, 43]. Secret Service
dogs, for instance, are tested weekly, and are retired if they do not demonstrate greater than
90% accuracy during the test [14]; TSA appears to recertify annually [141]. Many argue
that dogs are better than even the best explosives detection machines due to their ability to
examine large volumes of packages quickly and accurately [134, 141]. They can be trained
to recognize up to at least ten different scents without losing accuracy, and they can retain
these scents in their memory for long periods of time without refresher training [14, 164].
Their accuracy also appears unaffected by the presence of other masking odors, even at
strengths 10-100 times greater than the target odor [51]. Accounts of an appropriate duty
cycle vary, with some scientists claiming dogs can work for up to two hours without a break
under comfortable climatic conditions, provided they are trained to do so [52]. Under normal
working conditions in a cool, dry environment, others (including Secretary of Transportation
Norman Y. Mineta) say 40-60 minutes is more reasonable [34, 158].

Others raise concerns that bomb-sniffing dogs' performance can be variable, often un-
beknownst to the handler, and is sensitive to a wide array of environmental factors. If
the weather is hot and humid, they can lose focus in as little as 10-20 minutes [116, 134].
Says Susan F. Hallowell of the Transportation Security Administration, "The problem with
canines is that they are like little children with IQs of 10. It's very hard to keep their at-
tention" [4]. Dogs also appear to be highly sensitive to the behavior of their handler, who
might accidentally cue the dog to respond a certain way [116]. Poor handling can reduce
their effectiveness to as low as 60% [42, 43], and the use of explosive material that the dog has
never encountered before, or wrapping the explosive in a material preventing the emission
of odor vapors, would likely drop this effectiveness to near zero [134].

PB taking on the value 0% corresponds to these latter cases, or to the pre-9/11 situation
where airmail was carried on passenger planes without any backup screening. The values
0.75 and 0.95 represent the range of performance levels these dogs might exhibit depending
on the explosive used, the trainer's behavior and environmental factors.

Cargo

Estimating backup security effectiveness for the case of cargo is somewhat trickier because
currently, there is no backup security method in place apart from the Trusted Shipper
program. This program does not actually screen cargo (except for a very small fraction
of items), but is rather an agreement where companies sending cargo on passenger airlines
certify that they are not sending dangerous items as cargo.

As early as 1999, recommendations were made to research technologies suitable for screen-
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ing cargo, but nothing has yet been implemented. Proposals for cargo screening have included
the use of bomb-sniffing dogs or EDS technology similar to that employed for checked luggage
but modified to accommodate large cargo pallets. The U.S. General Accounting Office (now
the Government Accountability Office) feels that dogs are the best choice for screening cargo
because EDS technology can be slow to screen densely packed pallets and currently cannot
accommodate large cargo [147]. ETD is even more time consuming and seems an unlikely
option for cargo-screening [48]. Thus, we assume that bomb-sniffing dogs are currently the
most likely option, and we adopt the same values for PB as in the case of airmail.

4.3.4 Backup security costs
The final parameter to estimate is CB, the cost of the baseline security measure used in lieu
of the proposed policy of interest. For the case of PPBM, explosives detection systems and
explosives trace detectors would continue to be used even if PPBM were instated, so we set
CB = 0 for this case.

For the prohibition on airmail and cargo, the backup policy considered is the use of bomb-
sniffing dogs. Acquiring an untrained dog costs roughly $3,000, training it from $2,000 to
$5,000, and it typically has a working life of 7-9 years [79, 134]. More significant, however, are
the annual expenses, since each dog is assigned to a salaried handler, who typically takes the
animal into his home and is compensated for additional costs and overtime work in caring for
it. In the case of United States Secret Service dogs, this corresponds to a 6% salary increase
for the Secret Service agent, plus two hours of daily overtime wages [134]. There are also
medical and retraining costs. As such, $100,000 seems to be a reasonable estimate for the
annual cost of aE government explosives dog team ([116] indicates that private companies can
charge up to $200,000). There are 429 commercial airports in the United States. While not
all of these likely carry sufficient airmail or cargo packages to warrant a bomb-sniffing dog
team used solely for this purpose (some airports might also use dogs for luggage screening
and general surveillance of the airport), other airports may require multiple teams to screen
all of the packages. If we suppose that one to two dog teams will be needed at each airport
for screening airmail or cargo, then we arrive at an estimate of CB between $42.9 million
and $85.8 million, which will serve as our low and high estimates. We will assume CB is
uniformly distributed over this interval, and has expected value E[CB] = $64.4 million.

4.4 Comparing the cost-effectiveness of cargo-hold mea-
sures

We apply these parameter estimates to the model of Section 4.2 to determine the minimum
threat level needed to adopt each of the three policies. For each policy, Table 4.1 shows the
threshold probability of attempt per flight from Equation (4.6) and the threshold number of
years obtained from Theorem 4.1 such that if there is at least a 50% chance of an attempted
attack in this time, then the policy should be implemented. Both are evaluated with each
parameter taking on its expected value as estimated in Section 4.3.
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E[d]> 0
Policy r* Threshold (years)
PPBM 1.79x10- 9 64.7
Airmail 2.62x10-8 4.4
Cargo 2.86x10- 7 0.4

Table 4.1: Threshold probability of attempt per flight, r*, required for each policy's expected
value to be positive, and threshold time (in years) such that a 50% chance of attempt within
this time causes the expected value to be positive.

We see that as long as there is at least a 50% chance within nearly 65 years that a
terrorist will try to place an explosive in an unaccompanied suitcase (even if the EDS/ETD
machines might detect it before it is loaded onto the plane), then implementing PPBM is
cost-effective. By contrast, one would need to anticipate an attempt on airmail within the
next 4.4 years, and an attempt on cargo within the next 0.4 years (less than five months) in
order to justify the expense (primarily in revenue lost by the airlines) of removing them.

The results for PPBM are interesting because PPBM is a security measure that was
allowed to slip away quietly on domestic flights. Yet, of the three policies considered, it may
be the most cost-effective. While attempted attacks on unaccompanied checked luggage
might be particularly rare in our current era of explosives detection technology, as long as
such an attempt is more likely than not to be attempted within nearly 65 years, the costs of
PPBM will be outweighed by its benefits. By contrast, one must feel an attempt on cargo
is imminent before considering its prohibition from passenger planes. The case of airmail is
less conclusive. If there is a greater than 50/50 chance of an attempted attack on airmail
within the next 4.4 years (even if bomb-sniffing dogs might intercept the explosive), then
the value of removing airmail exceeds the cost. It is difficult to know in this case whether
our true risk is higher or lower than this threshold. There have been no attacks on airmail
since September 11, 2001, but with the exception of a handful of trial airports, most airports
were not allowed to load airmail packages onto passenger planes anyway. Prior to September
11, 2001 such an attack was committed by Ted Kaczynski, the Unabomber, in 1979 and
threatened again in 1995.

In addition to considering thresholds corresponding to a 50% likelihood of attempt, we
can let the value of x in Theorem 4.1 vary, as is shown in Figures 4-1 through 4-3, again
with parameters set to their expected values. For each value on the x-axis, we must feel
an attempt has probability x or higher of occurring within the corresponding number of
years plotted on the curve for the policy to be cost-effective. For instance, selecting x = 50
corresponds to the 50/50 thresholds of Table 4.1. The thresholds shown on the curves are
equivalent for any value of x: Selecting x = 10, we must feel there is at least a 10% chance
of an attempt on checked luggage within approximately ten years, a 10% chance of attempt
on airmail within eight months and a 10% chance of attempt on cargo within three weeks to
be willing to accept the proposed policy. This is equivalent to selecting x = 80 and believing
there is at least an 80% chance of an attempt on checked luggage within approximately 150
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Figure 4-1: PPBM: Time threshold for which the expected value of the policy is positive,
versus attempt likelihood, when parameters are taken at their mean estimates
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Figure 4-2: Airmail: Time threshold for which the expected value of the policy is positive,
versus attempt likelihood, when parameters are taken at their mean estimates.
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Figure 4-3: Cargo: Time threshold for which the expected value of the policy is positive,
versus attempt likelihood, when parameters are taken at their mean estimates.

years, an 80% chance of attempt on airmail within 10.2 years and an 80% chance of attempt
on cargo within eleven months to be willing to accept the proposed policy. We note that
there is roughly an order of magnitude difference in time thresholds between PPBM and
airmail, and between airmail and cargo, which is reasonable given the order of magnitude
difference between the costs of the policies.

We can also explore how sensitive the thresholds are to variations in the parameter
estimates. Figure 4-4 shows the threshold times until the first attempted attack under a 50%
likelihood for the range of values considered for CA, Cp and PB under the PPBM policy. We
see immediately that the parameters causing the largest change in the time threshold are the
attack cost and the backup security effectiveness, where an increase in the attack cost from
$0.5 billion to $15 billion causes the time threshold to increase (we are willing to implement
PPBM even if the time until the first attempt is quite long), and where an increase in the
backup security effectiveness decreases the time threshold (if our alternate security is quite
good, then an attempt must be likely to occur soon for us to be willing to incur the costs of
PPBM). We see time thresholds as little as one year, when the cost of an attack is only $0.5
billion and the backup screening is 95% effective, and over 500 years when the cost of an
attack is $15 billion and the backup screening is poor. For the average attack cost of $6.83
billion, we see that changing the effectiveness of the backup security causes the threshold to
range from around ten years when PPBM is coupled with highly effective backup screening
to over 200 years when the backup screening is poor.
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effectiveness, over policy costs of $18.3 million and $24.4 million.

Figures 4-5 and 4-6 show similar charts for the cases of airmail and cargo. For these
policies, the threshold also depends on the cost CB of the backup security measure, bomb-
sniffing dogs, which is not shown these figures. However, because the range in which CB was
allowed to vary- is quite small compared to the cost of either policy, variations in CB were
found not to affect the threshold time significantly. For the case of airmail, we see that the
50% probability threshold time until an attempted attack ranges from as little as 2 weeks (if
the cost of an attack is very low, the policy cost is $500 million and the bomb-sniffing dogs
are believed 95% effective) to as high as 41 years (for a high cost of attack, low policy cost
and no backup security). Furthermore, at the mean attack cost of $6.83 billion, if there is
no backup security in place (as was the case prior to September 11), then as long as there
is a 50/50 chance of an attempt on airmail within 10-20 years (depending on Cp), then the
removal of airmail is cost-effective.

In the case of cargo, even if an attack is believed to be very costly and there is no
alternative security policy available, we still would need a 50% chance of attempt within
approximately five years to justify the expense of removing cargo. If effective backup security
is available or if the attack costs are not quite so high, this time threshold drops even lower.
Thus, we still would require evidence of an imminent attack in order to remove cargo from
passenger aircraft.

This emphasizes that despite the uncertainty in the parameters' true values, we can still
draw important; conclusions. Even if we determine that removing airmail from planes is cost-
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Figure 4-5: Airmail: 50% threshold time to first attempt by attack cost and backup security
effectiveness, over policy costs of $250 million, $333 million and $500 million.

effective, this does not set a precedent for cargo, despite the similarity in the two policies
and the type of attacks they prevent. The costs of removing cargo are roughly ten times
those of removing airmail, so we require a significantly shorter period of time until the first
attempted attack in order to justify cargo's removal. Similarly, unless the costs of a terrorist
attack on checked luggage are quite small, continuing to use positive passenger-bag match
in addition to explosives detection might be a cost-effective policy.

4.5 Diversion of threats
One criticism raised against this analysis is that it focuses on measures against seemingly
small threats (such as matching luggage to passengers even when explosives detection tech-
nology is in use) when one could argue larger homeland security risks exist requiring im-
mediate attention. Says, Charles V. Pefia, director of defense policy studies at the Cato
Institute, "You can only think of maybe a million things that a terrorist might do, and then
you have to ask yourself if you're prepared to pay the costs of dealing with each and every
one of them" [165].

This chapter shows that society should be prepared to pay the costs of dealing with
even minute security threats if the likelihood of such threats is sufficiently high and the
cost of addressing them sufficiently low. If a terrorist attack occurs, the costs incurred
could be significantly larger than the costs of preventing such an attack. However, we have
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Figure 4-6: Cargo: 50% threshold time to first attempt by attack cost and backup security
effectiveness, over policy costs of $2 billion, $3 billion and $4 billion.

argued in this chapter that mathematical analysis should be used to help identify those
measures that are most cost-effective. "Without a comprehensive plan that incorporates
a risk management approach, TSA and other federal decisionmakers cannot know whether
resources are being deployed as effectively and efficiently as possible to reduce the risk and
mitigate the consequences of a terrorist attack", United States General Accounting Office,
2002 [147].

Nevertheless, there is the possibility of threat diversion. We assumed in our model that
rp,,t, the probability of an attempted attack if the proposed policy is implemented, is zero.
For instance, if airmail packages are completely removed from aircraft, then there is no
opportunity for an explosive to be placed in airmail and end up on a passenger plane. Yet
terrorists, aware that this particular plot will no longer succeed, might then divert their
attentions towards a less-hardened target. So while the likelihood of the particular type of
attack considered has been driven to zero, the probability of a different attack occurring may
increase.

However, we submit that while the post-intervention probability of attempt might not
completely disappear, it will diminish, and this too can be captured in the model (by suppos-
ing a non-zero value of rpost in Equation (4.2). Because no small subset of security policies
can guarantee to completely eliminate the threat of terrorism, to say that certain security
measures are useless because they do not eliminate this threat is to suggest that no security
measures should be implemented. According to terrorism experts at the RAND Corporation,
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"Even if terrorists are not generally deterrable, specific terrorist actions may be deterrable
even today. We know empirically that terrorists feel constraints, that they argue and plot
amongst themselves, review and adapt strategies, worry about their perceived constituencies,
and sometimes back away from tactics that seem to have gone too far" [41]. By securing
obvious access points to aircraft, terrorists might be forced to explore riskier plots with lower
net payoffs, and could, hence, be deterred.

4.6 Conclusion
This study has shown that just because a type of security policy might be efficient in one
context, it is not necessarily efficient in all contexts. We saw that even when assuming a
high rate of effectiveness of bomb-sniffing dogs, it might be more cost-effective to society to
remove the airmail completely from passenger aircraft if the threat of attempt is sufficiently
high. However, that bomb-sniffing dogs might not be an efficient strategy for the mail does
not imply that they are inefficient for all types of packages. To the contrary, we saw that
removing cargo completely from aircraft would probably never be a cost-effective option,
and that bomb-sniffing dogs could provide a reasonable alternative. The airlines needn't
fear that keeping airmail packages off passenger aircraft would set an expensive precedent
for the case of cargo. Unless we are in imminent danger of suffering an attempt of this type,
it is not cost-effective to remove cargo entirely from the planes, even if backup screening
measures are unavailable.

We have also shown that in the upheaval following September 11 Positive Passenger-Bag
Match slipped by the wayside despite the fact that its continuance would have required
minimal cost (for originating PPBM, 3 pennies per customer) and would have provided a
net expected benefit even under extremely low levels of risk. Its removal can be taken as a
sign that quantitative analysis can help guide aviation security policies. We have provided
a mathematical framework that can be used as a decision tool by those developing such
policies.
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Chapter 5

Dynamic Security Screener Allocation

While the earlier chapters of this thesis have focused on evaluating and selecting aviation
security measures, another important problem is to improve the operational performance of
a given security measure. Two commonly cited concerns with passenger screening at security
checkpoints is the high level of manpower required and the delays experienced by passengers.
Secretary of Transportation Norman Y. Mineta stated that "Passengers should not have to
wait longer than 10 minutes in the security line" [158], yet reducing waiting times often
requires an increase in staffing at the queue. Can operations research help reduce staffing
levels and/or passenger waiting times? We explore this question in this chapter by examining
techniques for the efficient allocation of security employees to different security checkpoints
at an airport.

The direct benefit of efficient server allocation is reducing waiting times or staffing levels,
but there may also be an indirect benefit on the quality of the security screening itself. It
has been observed in some instances that human servers might work more quickly when
they observe a long queue of waiting customers than if the line were short. While the op-
posite occasionally holds - servers become discouraged by the long lines and work slower -
the emphasis placed by the TSA on efficient customer service as well as anecdotal evidence
suggests that airport screeners might not be as thorough in examining x-ray images, veri-
fying identification and conducting searches during peak periods as they are during quieter
times of day. (I:[ndeed, the author once observed a TSA screener wave passengers past the
identification phase of security after a small line had formed). To the extent that long lines
might negatively impact security, it is important to study how best to manage checkpoint
queues.

The queueing problem studied here is motivated by techniques observed at San Fran-
cisco International Airport (SFO), where video cameras are focused on the different security
checkpoints and project their images onto screens in a central control center. Transportation
Security Administration (TSA) officials examine the monitors, looking primarily for security
breaches. However, if they notice that the queue at one of the checkpoints is getting too long
or suspect that it will grow quickly in the near future, they can decide to close a lane at a
less busy checkpoint in the airport and transfer those screeners to a previously idle lane at a
busier checkpoint. This decision of when to switch is made based on current queue lengths,
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knowledge of future entry rates to the checkpoint according to scheduled flight departures,
and employee experience. We use operations research techniques to find near-optimal antic-
ipatory switching policies as a function of the system state, future entry rates and switching
times. Though this research was inspired by the situation at SFO, airports across the U.S.
could use the results of such work, and the underlying queueing problem is of general interest
as well.

We find that while it is certainly important to vary server allocations over the day to
accommodate changes in the customer arrival rate, the benefit of deviating dynamically
from such schedules in response to stochastic fluctuations is minimal, unless the stochastic
impulses are large and affect customers on an aggregate, rather than individual, level. In
the following section, we describe the queueing decision problem and introduce parameters
and terminology that are used throughout the chapter. Section 5.2 relates our problem
to work already conducted on similar queue control models. In Section 5.3 we present
five different formulations for this problem: one in which both arrivals to the queue and
service times are deterministic, three in which the arrival pattern is altered in a deterministic
or stochastic fashion and a formulation in which service times are stochastic. Section 5.4
addresses computational issues associated with these formulations and presents approximate
dynamic programming techniques that are used in the analysis. To evaluate our models,
we rely upon data provided by Boston Logan International Airport, which is described in
Section 5.5. Section 5.6 presents the results obtained in this analysis and discusses the
performance of dynamic allocations on the four models, and a discussion of the weaknesses
of the models can be found in Section 5.7. We offer a few concluding remarks in Section 5.8.

5.1 Problem description
We consider two airport security checkpoints, A and B, either at two different terminals or
within a same terminal but serving different aircraft departure gates. Arrival processes to
these checkpoints are independent with time-varying, piecewise constant rates, A(t) and
AB(t). A fixed number, N, of screening teams (which we call servers), can be allocated
to the two checkpoints, subject to the constraint that the number of screening teams at a
given checkpoint cannot exceed the number of x-ray machines and metal detectors at that
checkpoint (NmaxA, NmaxB). The question is how to find an allocation (nA, nB)t at each
decision epoch, t, such that nA(t) + nB(t) = N, nA(t) NmaxA and nB(t) < NmaxB that
minimizes the total time spent by customers waiting in line.

However, rather than determining an allocation schedule at the start of the day that
cannot be changed, we allow this allocation to be determined on-line, at regularly spaced
decision epochs of duration T, as a function of the current system state (number of people
in the respective queues, and current server allocation) and also knowledge of the future
expected arrival rates. Thus, this is a dynamic server allocation problem where the goal is to
determine optimally the conditions under which a server should be switched from one queue
to another. If a queue loses one or more servers, this loss is experienced immediately, while the
queue receiving the additional servers experiences a lag of 0 minutes before the servers come
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on duty, as they have to walk to the new checkpoint and activate the screening equipment.
Hence, there is a tradeoff between responding to fluctuations in queue and arrival rate loads
and maintaining sufficient service capacity. We note that because passengers arriving at
the airport must wait in the security checkpoint line corresponding to their departure gate
and are, therefore, not permitted to choose which queue they enter, load balancing can be
achieved only by switching servers, rather than passengers, between queues.

To avoid confusion between people arriving at the security checkpoint to be screened
and passengers arriving on incoming flights, we use the term "checkpoint entry rate" rather
than "arrival rate" to refer to the rate at which people arrive at the security checkpoint to
receive screening. We also refer to such people by the common queueing term "customers"
rather than "passengers" since employees and vendors must also pass through the security
checkpoints.

5.2 Literature review
A survey of Markov decision models used for controlling queue networks is found in [127].
Much of the literature pertaining to queue control addresses the optimal assignment of
incoming customers (generally distinguished by classes having different arrival and service
distributions) to parallel servers. See, for instance, [23, 61, 121]. The latter uses fluid models,
which we will use in this chapter, to determine priorities of customer classes served at a
same station. [55] and [64] consider the simultaneous allocation of servers and customers
to service stations, and find that overall system performance improves as the individual
facilities become more unbalanced in the number of allocated servers (the best policy is to
assign one server to each station and then any extra servers to a single station). However,
we note that a key difference in this problem is that after the servers have been allocated to
stations, the optimal routing of customer classes to these stations can then be determined,
whereas our problem assumes customer assignments to queues are fixed. Furthermore, they
consider only static allocations that do not change in response to system evolution. All of
these models assume that no switching costs or time are incurred if a server begins serving
a new customer class and that the arrival and service distributions are stationary.

However, the situation at many airport security checkpoints is fundamentally different.
First, customers must enter the queue corresponding to their departure gate, so any at-
tempts to load--balance must be made on the service side, by switching screening teams
between queues. There are also three additional characteristics that distinguish our work
from the work in the literature: time-varying customer arrival rates, non-zero switching
times, and decision epochs occurring at fixed intervals, rather than continuously or at "event
epochs" marking a customer's entry or completion of service. While work in the literature
incorporates one or two of these characteristics at a time, none appears to address all three
simultaneously.

The simplest version of the dynamic server allocation problem assumes constant arrival
rates and zero switching times when servers come on- or off-duty or are switched between
queues. [105] is among the first papers in this category. They study a single queue having
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exponential arrivals and services and develop thresholds to determine when additional servers
should be brought on-duty and when they can be taken off, assuming a maximum number
of servers available. They address the possibility of variable arrival rates by proposing that
the problem be solved sequentially on segments of the time horizon over which the arrival
rates are roughly constant, but their policy does not anticipate such variations. [57] studies a
special two-queue, two-fixed-server problem where each queue is assigned to a single server.
In addition, a third class of customers exists that are probabilistically routed to join one
of the two other queues, and a third server is available that can choose which of the two
queues to serve at any time. He shows the existence of switching curves that determine a
threshold policy. [18, 27] explore parallel queues, having different service rates and holding
costs, who are served by a single server. They demonstrate the optimality of the c-rule,
which assigns the server to the fastest, most expensive queue first, under an assumption of
geometric service times and linear holding costs. [39] proves the existence of a stationary
optimal policy for the dynamic allocation under heavy traffic conditions of M servers to N
customer types where queues are not allowed to form (customers not assigned to a server
are rejected from the system). [30] examine the dynamic control of a fluid queueing network
with feedback and show that myopic optimization, minimizing the cost over the near future,
yields a globally optimal solution over the entire time horizon. (In Section 5.3.1 we show
that the myopic policy is not optimal when switching times are non-zero). [104] show that
the optimal policy for the fluid limit model of a heavily congested network with deterministic
routing is a good approximation for the optimal policy in the original model. They show that
linear switching curves define the optimal policy for the fluid network and suggest that affine
shifts of such curves (for instance, shifting the threshold so that the queue lengths stay close
to their optimal mean values) might work well when translating the optimal fluid solution
back into the discrete domain. [31] also find a relationship between an optimal fluid solution
and the optimal discrete solution by showing that the optimal fluid solution can be used
as an initial value for the dynamic programming value iteration algorithm on the stochastic
model. [9] study servers in tandem and show that when service rates depend only on either
the server or the customer class and not on both, all non-idling policies are optimal. The
model studied in [126] most closely approaches our framework as they study the dynamic
allocation of parallel servers to waiting jobs to minimize holding costs of customers in the
system. They offer an example showing how the cu-rule, optimal in the fluid network, can be
unstable in certain types of stochastic systems. In addition, they propose threshold policies
for determining when to switch a server from one customer class to another. [94] shows
heavy-traffic optimality of the generalized cu-rule when costs are convex. Most recently, [22]
explores continuous control of queueing systems where service stations having one or more
servers can be fractionally assigned to multiple customer classes.

There has also been extensive work on problems in which arrival distributions are again
homogeneous but time is lost or a cost incurred whenever a server switches between customer
classes. Such models are the subject of the survey paper found in [117]. Switching times
typically render server allocation problems significantly more difficult, and policies, such as
the c/z-rule, that are known to be optimal in the case of zero switching times are generally
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sub-optimal under non-zero switching times. (Indeed, [93] saw, in the case of M/M/1 queues
in which the arrival and service rates can change in response to queue length changes, that
placing costs on such changes causes hysteresis, where the changes occur less frequently
than they would absent switching costs). Furthermore, only partial characterizations of
optimal policies have been obtained for such problems. [56] looks at a system having fewer
servers than queues and a deterministic transfer time between queues. At any time, only
a single server call be assigned to a queue, and each queue might have a different service
distribution. Assignment heuristics such as serve-longest-queue-first, first-come-first-serve
and serve-shortest-processing-time-first are evaluated, and it is found that if the heuristics
are modified to account for switching times, they perform better than if they ignore switching
times. [65] and [83] examine a polling system having two queues with identical service
distributions and holding costs and a single server. [65] proves that to minimize the sum of
holding costs and setup charges, an optimal policy will be exhaustive: the queue being served
must- be depleted before the server can switch to the other queue. They and [83] propose a
threshold policy as a likely optimal policy in this case. [84] uses dynamic programming to
examine the two-queue, single server polling problem where the queues are not symmetric
and provides switching thresholds in the limiting case as the queue with the smallest value
of c1t gets long. [91] find polling policies for single-server, multiple-queue systems that
stochastically minimize the number of customers in the system. They find, as above, that
optimal policies are exhaustive and that for symmetric systems (where each queue has the
same arrival, service and switching time distribution) the server will never switch queues
if the system is empty, and when a switch occurs it will never switch to a queue having
a stochastically smaller queue length. [45] partially characterize an optimal policy that
favors "top-priority" queues and develop a heuristic policy for minimizing expected holding
costs based on the c policy adapted for switching times. [10] approach the problem from
the perspective of maximizing throughput rather than minimizing holding costs and use a
linear program on the corresponding deterministic fluid model to determine the percentage
allocation of each server to each customer class that achieves maximum throughput. They
then construct round-robin allocation policies for the original stochastic model that achieve
capacities arbitrarily close to the maximum capacity. However, because such policies can
leave some queues unattended for long periods of time, they are unlikely to achieve minimum
waiting times, which we seek here. The work of [24] offers an application for dynamic server
allocations in the context of United States Postal Service offices, in which some employees are
serving customers at the front desk while others are sorting mail in the back room of the post
office. Similar to [105], if the queue of customers (or the total number of customers inside the
store) grows large, back room employees can be brought out front to help serve customers.
When the queue diminishes, they can return to sorting mail in the back. The objective is
to minimize the total number of employees needed on staff, subject to a constraint on mean
queue delay and a constraint requiring a minimum time average number of workers in the
back room to ensure that all of the mail is sorted. Switching times are incurred on switches
from the front room to the back room. The authors assume the existence of a threshold
policy to determine when employees should be switched back and forth, and they develop
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a heuristic to determine values of these thresholds for all possible system states, subject to
constraints that switches from the back room to the front room are not allowed to occur prior
to the formation of a queue and switches from the front room to the back room cannot occur
if a queue remains, and must occur immediately following either an arrival or a departure
from the customer queue.

The next class of server allocation problems features time-varying arrival processes, but
no switching times or costs. [72] study a single queue having sinusoidal arrival rates over
time and explore how to determine time-varying staffing levels, but do not address how
to change the staffing level adaptively in response to realized arrivals, nor do they study
tradeoffs when two time-varying queues must vie for a fixed number of servers. [98] exam-
ine server allocation amongst multiple queues in the context of airport customs procedures
where customs officials can be switched (with no switching time) between arriving customs
posts and departing customs posts subject to level of service requirements and limitations
on the number of customers that can be re-queued when a post closes during a switch. They
consider this problem on a tactical rather than operational level to construct a feasible daily
schedule that cannot be changed dynamically and that is then used to construct weekly
employee work schedules. The work examining dynamic allocation of servers in the context
of nonhomogeneous arrivals with no switching times or costs appears to begin with [155]
who explores the fluid flow model using differential equations to solve for the optimal con-
tinuous service rates, requiring an assumption of differentiability in the arrival and service
process. To maintain differentiability of the service process, allocations of servers to classes
are kept proportional to queue lengths (which are differentiable) and can be fractional. [130]
estimates the average waiting time under dynamic telephone operator staffing in a single
queue environment with abandonment and retrials where the staffing levels are estimated
based on half-hourly load forecasts. He assumes, similar to [24] and [105], that operators
not staffing the phones can engage in other lower-priority work until they are brought back
on-duty again. A similar assumption is made in [163] who study a telephone call center
where the goal is to immediately answer all calls. Changes in the staffing level are made
based on the number of calls currently in progress and an estimate of the number of calls
that will arrive and remain in service in the near future, which is similar to the anticipatory
assumption we make here.

It is the final category, covering nonhomogeneous arrivals and non-zero switching times,
that sets the work in this chapter apart from that in the literature. As we described ear-
lier, problems involving non-zero switching times are typically more difficult than their zero
switching time counterparts, and incorporating nonstationarity via the arrival process ren-
ders the problem even more intractable. As such, very little research in this area could
be found in the literature. [50, 113, 114] study the problem in a general framework of M
heterogeneous queues (whereas we consider only two queues having identical service distri-
butions, switching times and holding costs, but different arrival distributions) and a total
of N servers. However, in their framework, switches can take place only one server at a
time (whereas we allow multiple servers to be switched at a time) and can occur almost
continuously, whenever an arrival or service is completed as opposed to at regularly spaced
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decision epochs that are independent of arrivals, services and switches, as in our model.
'Their focus on event epochs under memoryless distributions allows the use of Markov deci-
sion processes which can model state changes as simple one-step transitions. In our model,
such a simplification is not possible because from one decision epoch to the next, there can
be a sequence of many arrivals and departures. However, the most salient difference is that
although they develop heuristics that can adapt to time-varying arrival rates (by assuming
piecewise constant arrival rates and running the heuristics sequentially over the time inter-
vals), these heuristics, and the dynamic program to which these heuristics are compared, do
not use knowledge of future arrival rate shifts in determining the current period's allocation.
Thus, their framework is actually closer to a constant arrival rate framework that is applied
on a few time-varying test cases. This allows them to rely upon steady-state behavior and
assume stationary policies, which we are unable to do here.

5.3 Problem formulations

We present now the optimization model for this problem. Our objective function is to
minimize the total waiting time incurred by all customers who pass through the system.
Because allocating additional servers to reduce Queue A, for instance, could cause Queue
B to increase, the problem is therefore to determine an allocation that minimizes the total
waiting time over the two queues. The total waiting time spent by customers in a queue is
the integral of the instantaneous queue length over time, or the area between the cumulative
entries and cumulative services curves, as shown in Figure 5-1.

Minimizing the total waiting time does not address the variability in waiting times,
however. Under a minimum waiting time allocation, some customers might actually have
to wait a very long time before service, even if most customers are served relatively quickly.
Other possible objective functions could be to minimize the variance in waiting times between
the two queues, or to minimize the fraction of passengers that must wait longer than, say,
ten minutes. Nonetheless, much of the work in the literature uses holding cost rates that are
linear in queue lengths (such as waiting time). As this work is among the first in the category
of queueing control problems involving time-varying arrival rates and switching times, we
focus on total waiting times, recognizing that other performance measures might be more
appropriate and could be the focus of future research.

One simple allocation, which we call a fixed allocation, is to allocate (nA, nriB) servers to
Queues A and 13 at the start of the day and to keep this same allocation throughout the day.
If Qi(t, ni) is the instantaneous queue length at time t at Queue i having ni servers on-duty,
then the best allocation (nA, riB) is the one achieving the minimum in:

F T
min E QA(t, nA)+QB(t, nB)dt , (5.1)

(nA,nB) J J
such that max(N - NB, 0) < nA < min(NmaxA, N) and nA + nB = N, and where the
expectation is taken with respect to the stochastic entry and service times.
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Figure 5-1: Cumulative entries (upper curve) and services (lower curve) in a queue having
stochastic entry and service times. The instantaneous queue length is the vertical distance
between the cumulative entry curve and the cumulative service curve. The total waiting
time in a queue over a period is the integral of the instantaneous queue length over that
period, represented as the area between the two curves.

This fixed allocation is quite restrictive, however, in that the allocation, once determined,
is never allowed to change. Indeed, more realistic would be to use a schedule allocation where,
at each time period, the screeners can be shifted between the queues based on expectations
of customer entry rates at the queues. For instance, if Queue A tends to be quite busy
in the morning while Queue B tends to be busy in the afternoon, it might make sense to
allocate more servers to Queue A in the morning and then switch some over to Queue B
in the afternoon. A schedule allocation changes only according to the time of day and not
the particular stochastic evolution of the system, and can thus be determined at the start
of the day for all decision epochs i. That is, we look for a pair of vectors, (A, nB), (where

(nA(i), n'B(i)) is the allocation during decision epoch i), achieving the minimum in

main E[i J QA(t, A) + QB(t, nB)dt , (5.2)

with max(N - Nax, 0) • nA(i) < min(NmaA,, N) and nA(i) + nB(i) = N, Vi. A schedule
allocation is the one that typically comes to mind in the context of staff scheduling: it
designates, for each decision epoch, how many employees are to be assigned to each post.

However, we are interested in a dynamic allocation that depends not only on the time
period and expected entry rates (as in a schedule allocation), but that also can be modified
as the day progresses based on the actual state of the system that arises due to the system's
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Time
3:00

3:30

4:00

QA QB (NA, NB) Allocation
10 10 (7,3) (7,3)
0 30 (7,3) (6,4)

0 30 (7,3) (7,3)
10 10 (6,4) (7,3)

0 60 (7,3) (6,4)
0 30 (7,3) (8,2)

...

Allocation

(7,3)

(7,3)

(7,3)

...

Allocation
(7,3)

(7,3)

(8,2)

.. .

'Table 5.1: Sample solutions under fixed, schedule and dynamic allocations. The fixed al-
location cannot; change during the day. The schedule allocation is determined in advance
for each time period, regardless of how the system evolves stochastically, while the dynamic
allocation can vary depending on the time and the system state (number in queue and initial
allocation).

stochasticity. The optimal decision at time t depends on the current queue lengths, QA and
QB, and current server allocation (NA, NB), as well as on the expected future entry rates
AA(t) and AB(t), assumed to be known in advance. (For queues with general entry and
service distributions, the system state also includes the values SA and B, the time since
the last customer entry to queues A and B, respectively, and the vectors vA and v of time
already spent in service by each customer in service at queues A and B.)

To summarize, a fixed allocation is determined at the start of the day and remains con-
stant over all epochs. A schedule allocation is determined at the start of the day but provides
a different allocation for each decision epoch. And a dynamic allocation is determined on-
line, varying depending on the time of day, queue lengths and current server allocation.
Table 5.1 illustrates how the three types of allocations (fixed, schedule and dynamic) can
differ.

To find the optimal dynamic allocation, we use a dynamic programming formulation
(DP). We define the following:

* S = (QA, QB, (NA, NB), SA, B, SB, , V), the system state,

* Wt(S), the expected "wait-to-go", or total waiting time incurred by all customers in
the system at time t or who will enter the system from time t onward to the end of
the day (time T), under an optimal allocation, starting in state S at time t,

* wt(S, (A, riB), 0) the waiting time incurred over the current decision period starting in
state S at time t and selecting allocation (nA, nB), when switches require 0 time units
to be completed,
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* St+,(S, (nA, nB), 0), the state of the system at the end of the current decision epoch
(time t + T) when starting at time t in state S, choosing allocation (nA, nB) and when
switches require 0 time units.

Starting with an empty system, So, the optimal dynamic allocation is the choice of
(nA, nB) for each state S that minimizes the expected wait-to-go Wo(So), where Wt(S) is
given by:

WT(.) = 0

Wt(S) = min E [wt (S, (nA, nB),0) + Wt+T (St+(S, (nA,nB), 0))1 ,Vt < T,
(nA ,nB) 

(5.3)

where the expectation is taken with respect to the entry and service distributions and where
max(N - NmaxB, ) < nA < min(NmaxA, N) and nA + nB = N. The first term is the wait
experienced over the current decision epoch by every customer already in the system or
entering the system. Given the initial queue lengths and server allocation at time t, the new
allocation chosen, the switching time 0 and the stochastic of entries and services over the
epoch (t, t + T), one can compute the state of the system at time t + T, St+,. The second
term in (5.3) is then just the expected wait-to-go from time t + T onwards, starting in state
St+,-

With all of the possible combinations of queue lengths, allocations and residual entry and
service time vectors, s and v¥, there is a large set of possible states at each decision epoch.
The formulation in (5.3) is rendered even more complicated by the large number of possible
trajectories of the state space (different sequences of inter-entry and service times) that must
be considered in order to compute the expected values wt and Wt+,.

To get around these difficulties, we use fluid models, in which customers are not considered
to be discrete entities but rather as a fluid, entering and departing at continuous rates (refer
to [108] for an introduction to fluid queues). While it is not completely accurate to replace
discrete entities with a fluid, airport security checkpoint queues typically see a large volume
of customers entering and departing as a flow, such that distinguishing individual passengers
becomes less important. We no longer need to keep track of the residual inter-entry times,
SA and SB, and the vectors vI and viB, of residual service times for each customer in service,
which greatly simplifies the model.

We begin by considering a deterministic fluid model in which not only are the entries
and services of customers continuous, but the rates are deterministic (yet still time-varying).
Temporarily considering only the deterministic case will allow us to avoid computing each
possible stochastic trajectory of the system, as required in (5.3). After analyzing the deter-
ministic case, we will introduce some uncertainty into the fluid framework, first by considering
deterministic and then stochastic disruptions to the entry process, and then by considering
a stochastic service process. For each of these variants, we find the three types of allocations
described above:

* a best fixed allocation, where (nA, nB) is determined at the start of the day and is not
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allowed to change,

* a schedule allocation, where a time-varying schedule is determined at the start of the
day that indicates the best allocation for each time period,

* a dynamic allocation that is determined on-line, depending not only on time but also
on the system state arrived at by the stochastic trajectory.

In the following sections, we discuss in greater detail the formulations for the deterministic
and stochastic fluid models.

5.3.1 Deterministic fluid model

In our deterministic fluid model, the entry rates to Queues A and B, A(t) and AB(t), are
assumed piece ise constant, with changes coinciding with decision epochs. The service rate
per server is constant at /u customers per minute, yielding a total service capacity at Queues
A and B of NAPI and NBIU, respectively, depending on the allocation (NA, NB) being used at
the time. As discussed in [108] and shown in Figure 5-2, if the service capacity at a queue
exceeds the entry rate when no queue has formed, then fluid is processed linearly at the
entry rate (fluid cannot be processed faster than it appears at the queue). Because it is
processed as soon as it enters, no queue is formed in this case, and the total waiting time
remains zero. On the other hand, if the entry rate is greater than the total service rate,
then a queue grows linearly with time at a rate equal to their difference. Whenever a queue
has formed, fluid is processed at the maximum service rate. If this maximum service rate
exceeds the entry rate, then the queue is depleted linearly with time at a rate equal to their
difference, otherwise the queue continues to grow. The instantaneous queue length is again
the difference between the cumulative entries and cumulative services curves, and we wish
to find an allocation of servers that minimizes the total waiting time, which is the integral
of the queue length over time, or the area between the two curves.

Obtaining a best fixed allocation is straightforward: for every feasible (nA, nB) pair, we
calculate the total waiting time that will be incurred in the system over the day as a result
of the allocation, then select the allocation yielding the smallest waiting time. The small
number of possible allocations (there are at most N + 1) and the deterministic nature cause
this to be a fast and simple calculation.

To find the best schedule allocation, where the allocation can change at each time period,
we have to consider the future effects of each period's allocation throughout the day. In other
words, at the start of each half-hour block, we find the allocation (nA, nB) that minimizes
not just the short-term waiting time over that period but the total waiting time incurred over
the remainder of the time horizon as a result of this and future optimal allocations. However,
because of the deterministic nature of this model, an allocation made at a particular decision
epoch causes the system to transition to exactly one possible state at the next epoch. These
transitions can be predicted in advance, and as such, the time-dependent schedule allocation
is actually equivalent to a state-and-time-dependent dynamic allocation. Therefore, we use
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Figure 5-2: Cumulative entries (upper curve) and services (lower curve) in a fluid queue

with piecewise constant entry rates. The instantaneous queue length is the vertical distance
between the cumulative entry curve and the cumulative service curve. The total waiting
time in a queue over a period is the integral of the instantaneous queue length over that
period, represented as the area between the two curves. If the service capacity exceeds the
entry rate before a queue has formed, then fluid is processed immediately as it enters and
no queue forms. If the entry rate exceeds the service rate, then a queue develops that can
be reduced only when the entry rate falls below the service capacity.

the dynamic programming framework given in (5.3), where the expectation is replaced by
the true value.

To solve this, we must derive expressions for the waiting time function and the system
state evolution. For any allocation (nA, nB) chosen to succeed a current allocation (NA, NB),
if Queue i loses one or more servers (i.e. the new allocation has ni < Ni), then this loss is
felt immediately and is not subject to the switching time 0. So, for any allocation such that
ni < Ni, we can have one of the three cases shown in Figure 5-3. In the first, the initial
queue is equal to zero, and the service rate ni/t exceeds the entry rate Ai(t). Arriving fluid
is processed immediately, so no queue is formed and no waiting time is incurred over the
decision period (t, t + ). At the end of the period, the new queue length, Qi, is equal to 0,
and the current period waiting time, wi, equals 0. In the second diagram, we start with an
initial Qi > 0 but the maximum service capacity is high enough to work off the queue and
all new entries to the system before the end of the decision period (i.e., Qi + Ai(t)T- < nifu),
leaving Qi 0. Because the queue will be completely depleted at time t = -Qi the

waiting time, wi, is equal to the area of the triangle, Qi (t). In the final case, we have
the initial queue length Qi > 0, and the ni servers on duty are unable to work off the queue
and the new entering customers over the period (i.e. Qi + Ai(t)r > ni/-T). In this case, the
end queue length, Q = Qi + T(Ai(t) - nij), and the waiting time incurred is the area of the

trapezoid formed by the two curves, or wi = 2i.
If a queue gains one or more servers (ni > Ni), then it must wait a time of 0 before
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Figure 5-3: Three possible fluid system evolutions when the number of servers at a queue is
decreased from Ni to ni. In the first, the system starts empty and entries occur at a rate
Ai(t) smaller than the new service capacity, nilp. In the second, a queue exists at the start of
the period, but the service capacity is large enough to deplete the queue by time t + niQi(t ) .
In the third, the service capacity is insufficient to deplete the queue by the end of the period.

those servers arrive on-duty. For the first 0 minutes of the period, therefore, there are the
original Ni servers on duty (with a maximum service capacity of Nipa), and then after time
0, that number increases to ni and the maximum service capacity to nip. The possible cases
are shown in Figure 5-4. In the first, the initial Qi is empty, and the service capacity of
the initial allocation of servers, Nip, meets or exceeds the entry rate Ai(t). Because the
arrival of additional servers will only increase the service capacity, no queue forms over the
entire period (Q'i = 0), and, therefore, no waiting time is incurred (wi = 0). In the second
diagram, Qi + ,\i(t)0 < NilpO, so the queue is depleted at time t + -Qi before the arrival

of additional servers at time t + 0. Again, Qi = 0, and we have wi = - Ni i(In the third
case of Figure 5-4, the queue is not depleted before the arrival of the additional servers, but
it is depleted before the end of the period (i.e., Qi + Ai(t)0 > NiO, but Qi + Ai(t)T < NigO +

ni/(r - 0)). So Q' = 0 and wi = Qi+[Qi((i(t)-Ni)] + Qi+O(A(t)-Nip)) (Qi+O(Ai(t)-Nip))
i- 2 2 ni-Xi(t)

The last case is where we start with an initial Qi > 0 and see that even once the new
servers have arrived on-duty, there is still not enough capacity to deplete the queue before
the next epoch (Qi + Ai(t) > NipO + nip(T - 0)). In this case, the queue length at the
end of the period is given by Q = Qi + Ai(t)r - I(NiO + ni(T - 0)). The total waiting
time wi is the sum of the areas between the curves from t to t + 0 and from t + 0 to t + T:

Qi+[ Qi+Oi(t(t)-N i [Qi+(i(t)-Nip)]+Q ( ).
2 2

The expressions for Qi and wi are summarized below. Using these expressions, we solve
(5.3) to find the optimal schedule allocation for the deterministic fluid model, where S =
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Figure 5-4: Four possible fluid system evolutions when the number of servers at a queue is
increased from Ni to ni. In the first, the system starts empty and entries occur at a rate
smaller than both the initial and the new service capacities, Ni/L and nip. In the second, a
queue exists at the start of the period, but the original servers are able to deplete the queue
before the additional servers come on duty at time t + 0 (NipQi(t) < 0). In the third, the
queue is not depleted before the new servers arrive, but the additional service capacity after
time t + 0 is sufficient to deplete the queue before the end of the period. In the last diagram,
the service capacity is insufficient to deplete the queue by the end of the period, even with
the arrival of additional servers at time t + 0.
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(QA, QB, NA, iAB), Wt = Wl,t + W2,t, and S = (QA, Q'B, (nA, riB)).

Qi + Ai(t)T - nipL
Qi - Ai(t) - (NipOI + niL(T - 0'

0 ni < Ni, Qi + i(t)7
or, ni > Ni, Qi + Ai(

T ni < Ni, Qi + Ai(t)T
)) ni > Ni, Qi + Ai(t)T

< nipT
t)T < NipO +- ni( - )
> nipT
> NipO + ni(r - 0),

(5.4)

0

Q2

Q2

2(Ni+p-Ai(t))
2Qi+O(Ai (t)-Nil) 0 + (Qi+(Ai(t)-Nil))2

2 2(nip-Ai(t))

Qi+Q
2 T

2 + 2( _ e2

ni < Ni, Qi = O, Ai(t) < niLp
or, ni > Ni, Qi = 0, Ai(t) < Nipu

ni < Ni, Qi > 0, Qi + Ai(t)T < nil/iT

ni > Ni, Qi + Ai(t)0 < NipO

ni > Ni, Qi
Qi + Ai(t)T

+ Ai(t)O > NiuO, and
< NipO + nip(T - 0)

ni < Ni, Qi + Ai(t)T- > nipr

ni > Ni,
Qi + Ai(t)r > NiuO + nip (T- 0).

(5.5)

A reasonable question to raise is whether an allocation that minimizes the wait incurred
over only the current decision epoch (a myopic, or "greedy" solution) might be optimal over
the entire time-horizon. If this were the case, then a dynamic programming framework would
not be needed, and the allocations could be selected on the basis of the current period alone
without considering the future. However, a counterexample shows that this is not the case.

Consider two fluid queues, A and B, of lengths QA = 75 and QB = 15 at time t for
which, for simplicity, there will be no future arrivals through the end of the day at time
t + 90. Let [t, the service rate, be equal to 0.5 units per minute, decisions occur every 30
minutes, switches require 15 minutes to be completed, and suppose that there are N = 2
servers and both are allocated to Queue B immediately prior to time t. Our state S at
time t is thus (75, 15, (0, 2)). Consider a greedy allocation that minimizes only the wait to
be incurred over the immediate period, (t, t + 30). There are three possible allocations to
consider: (0,2), in which all of the servers remain at Queue B; (1,1), in which one server is
switched from Queue B to Queue A; and (2,0), in which both servers leave Queue B to serve
Queue A.

Allocation (0,2): All 75 customers in Queue A will continue to wait in line from time
t to t + 30, contributing a total wait of (75)(30) = 2250 person-minutes. Meanwhile,
the two servers at Queue B, operating at rate 2 = 1 person per minute, will deplete
the queue by time t + 15, causing a waiting time of (15) (15) = 112.5 person-minutes.
The total waiting time in this case is 2362.5 person-minutes.
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Figure 5-5: System evolution under greedy server allocations: (0,2), (2,0), (2,0). Although
the waiting time during the period (t, t + 30) is minimized, the total wait over (t, t + 90) is
not, as demonstrated by the optimal allocation shown in Figure 5-6.

* Allocation (1,1): From time t to t + 15, the customers in Queue A will wait unserved
before the switched server arrives. Over this period of time, the wait will be (75)(15)
= 1125 person-minutes. From time t + 15 to t + 30, they will be served at rate 0.5
units per minute (7.5 units total), and the queue length at the end of the period will
be 67.5. The waiting time in Queue A during this half of the period will therefore
be (75+67.5) (15) = 1068.75 person-minutes. In Queue B, the switched server will be
lost immediately, and the 15 customers in Queue B will be served at rate 0.5 units per
minute until time t + 30, at which point the queue will be depleted. The wait for Queue
B will be (15) (30)=225 person-minutes. The total waiting time in this case is
2418.75 person-minutes.

* Allocation (2,0): If both servers are switched from Queue B to Queue A, then the
customers in Queue A must wait 15 minutes before the switched servers arrive on
duty, incurring a total wait of (75)(15)=1125 person-minutes. But once the servers
arrive on duty, they will operate at a combined rate of 1 unit per minute, and will
serve 15 of the 75 customers. The waiting time for this half of the period will thus
be (75+60) (15) = 1012.5 person-minutes. Meanwhile, Queue B will have no servers on
duty, and the 15 customers there will incur a wait of (15)(30)=450 person-minutes.
The total waiting time of this allocation is 2587.5 person-minutes.

Because Allocation (0,2) yields the smallest total wait over the period (t, t + 30), the best
greedy choice is to maintain the initial allocation of zero servers at Queue A and two servers
at Queue B. Following this allocation, the system state S at time t + 30 will be (75, 0, (0, 2)).
Simple calculations show that the greedy allocation at both times t + 30 and t + 60 is (2,0),
for a total wait over the period (t, t + 90) of 5850 person-minutes. Figure 5-5 shows the
evolution of both queues as a result of this greedy allocation.

However, solving the dynamic program reveals that the optimal allocation is to select
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Greedy Optimal
Initial Allocation Wait Initial Allocation Wait

Time State Chosen Incurred State Chosen Incurred
t (75,15,(0,2)) (0,2) 2362.5 (75,15,(0,2)) (1,1) 2418.75

t + 30 (75,0,(0,2)) (2,0) 2137.5 (67.5,0,(1,1)) (2,0) 1743.75
t + 60 (60,0,(2,0)) (2,0) 1350 (45,0,(2,0)) (2,0) 900

TOTAL: I 1 5850 11 I 1 5062.5

'Table 5.2: System evolution and waiting time incurred under a Greedy Allocation (mini-
mizing only the current period's waiting time) and an Optimal Allocation (minimizing the
waiting time incurred over the entire interval from time t to the end of the time horizon
at time t + 90). Although the Greedy Allocation yields a smaller waiting time in the first
period, the Optimal Allocation yields a smaller overall wait.

(1,1) at time t rather than (0,2), and then to select allocation (2,0) at times t+30 and t+60,
yielding a total wait of only 5062.5 person-minutes! The evolution of the queues under the
optimal allocation is shown in Figure 5-6, and the optimal allocation is compared with the
greedy-allocation in Table 5.2. We can see that although the greedy method selects an
allocation at time t that yields a smaller waiting time over the period (t, t + 30) than does
the optimal allocation, by choosing instead allocation (1,1) in the first period, the system
would experience lower waits in the long run.

Thus, it is insufficient to determine server allocations based on the current period alone,
and the aforementioned dynamic program must be solved to find an optimal schedule al-
location. Throughout this chapter, we will refer to this schedule allocation as the original
allocation. Because our objective is to evaluate the improvement offered by reallocating
servers dynamically as opposed to adhering to a predetermined schedule, we will use this
original schedule allocation to test stochastic variants of the model, comparing its perfor-
mance under stochasticity to that of their own best dynamic allocations.

5.3.2 Deterministic disruptions to passenger entry pattern

Though an airport might have estimates of half-hourly and hourly passenger entry rates,
there can be disruptions (such as forecasted storms) that might cause these estimates to be
higher or lower than expected. We would like to know whether changing the server allocation
in response to such disruptions could be beneficial.

The first model we consider examines such disruptions on a deterministic level: suppose
that at the start of the day it is expected that there will be bad weather throughout the day.
During a bad weather scenario, we assume that a fraction of passengers might arrive at the
airport an hour or two early to try to get on an earlier flight and avoid missed connections
caused by delays. Still others might show up somewhat later than expected because of traffic
delays. How does such a disruption alter the allocations and expected waiting time?
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Figure 5-6: System evolution under optimal server allocations: (1,1), (2,0), (2,0). The
waiting time in the period (t, t + 30) is not as small as under the Greedy allocation, but
because of this initially suboptimal allocation, the total wait over (t, t + 90) is minimized.

We assume that during bad weather, 65% of the expected passengers enter the queue
in their expected time period, while 5% enter two hours early, 10% an hour and a half
early, 10% an hour early, 5% a half hour early and 5% a half hour late, with adjustments
for boundary conditions at the start and end of the day. If decision epochs occur every 30
minutes (r = 30), then we have for the revised entry process i(t):

Ai (0)

Ai (30)

Ni (60)

i (90)

Ai (t)

i(T - 120)

i(T - 90)
i(T - 60)

Ai(T - 30)

= 0.95Ai(0) + 0.05Ai(30) + O.1OAi(60) + O.lOi(90) + 0.05Ai(120)

- 0.05Ai(0) + 0.90Ai(30) + 0.05Ai(60) + 0.1OAi(90) + 0.10Oi(120) + 0.05Ai(150)

= 0.05Ai(30) + 0.80Ai(60) 0.05i(90) + 0.05A,(90) + O.lOAi(120) + O.10Oi(150) + 0.05Ai(180)
= 0.05Ai(60) + 0.70Ai(90) + 0.05Ai(120) + O.1OAi(150) + O.1OAi(180) + 0.05Ai(210)

= 0.05Ai(t - 30) + 0.65Ai(t) + 0.05Ai(t + 30) + 0.10Ai(t + 60) + 0.10Ai(t + 90)

+0.05Ai(t + 120),Vt = 120, 150, ...,T - 150

= 0.05Ai(T - 150) + 0.65Ai(T - 120) + 0.05Ai(T - 90) + 0.10Ai(T - 60)

+0.10Ai(T - 30)

= 0.05Ai(T - 120) + 0.65Ai(T - 90) + 0.05Ai(T - 60) + 0.10Ai(T - 30)
= 0.05Ai(T - 90) + 0.65Ai(T - 60) + 0.05Ai(T - 30)

= 0.05Ai(T - 60) + 0.70Ai(T - 30),
(5.6)

where Ai(s) refers to the passenger entry rate over the period (s, s + 30).
Using again a deterministic fluid framework on this problem with modified customer

entry rates, we evaluate the performance of the best fixed allocation, the original schedule
allocation from the previous section applied to this new entry pattern, and a new schedule
allocation obtained by solving the dynamic program of (5.3) using entry rates adjusted for
this bad weather scenario and true values in place of expectation.
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5.3.3 Stochastic disruptions to passenger entry pattern

However, most weather disruptions (or other changes to customer entry rates) are not de-
terministic. Suppose now that a prediction of bad weather occurs during a period with
probability p and that once it occurs, the customer entry rates over only the next four hours
are affected in a manner similar to that described above. Once the bad weather period has
passed, we assume that there will not be another bad weather period that day. For a bad
weather watch beginning at time s > 0 well before the end of the day, we have:

+ 150)

+ 180)

+ 210)

= Ai(t),V0 < t < s, Vs + 240 < t T - 30
0.95i(s) + 0.05Ai(s + 30) + 0.10Ai(s + 60) + 0.10Ai(s + 90) + 0.05Ai(s + 120)
0.05i(s) + 0.9i(s + 30) + 0.05Ai(s + 60) + 0.10Ai(s + 90) + 0.10Ai(s + 120)
+0.05Ai(s + 150)
0.05Ai(s + 30) + 0.8Ai(s + 60) + 0.05Ai(s + 90) + 0.10Ai(s + 120)

+0.10Ai(s + 150) + 0.05Ai(s + 180)

0.05Ai(s + 60) + 0.7Ai(s + 90) + 0.05Ai(s + 120) + 0.10Ai(s + 150)

+0.10Ai(s + 180) + 0.05Ai(s + 210)

.05Ai(s + 90) + 0.65Ai(s + 120) + 0.05Ai(s + 150) + 0.10Ai(s + 180)

+0.10Ai(s + 210)

0.05Ai(s + 120) + 0.65Ai(s + 150) + 0.05Ai(s + 180) + 0.10Ai(s + 210)

0.05Ai(s + 150) + 0.65Ai(s + 180) + 0.05/Ai(s + 210)

= (0.05Ai(s + 180) + 0.7Ai(s + 210).

(5.7)

If the bad weather watch begins within four hours from the end of the day, we have the
additional boundary conditions that A(t) = 0, for t > T, and that the 5% of the last period's
customers that would otherwise arrive late due to the weather must arrive during their
originally scheduled period.

In this version of the problem, the decision of when to switch servers depends not only
on queue lengths, the current server allocation and expected future customer entry rates,
'but also on whether or not bad weather has been announced and if so, at what time. This
is now a stochastic dynamic program of the form:

WT(.) = 0

Wt(S, tbw)

(5.8)

where tbw equals -1 if bad weather has not yet been announced, and equals s if bad weather
was announced at time s > 0. tbw is the new value of tbw in the next decision period,
depending on whether bad weather is announced during the current period (with probability
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p) or not. The expectation in (5.8) is taken with respect to tbw, yielding the following:

WT(.) = 0
Wt(S,-1) = min t (S, (nA, nB), 0,-1) + pWt+ , (+,( nA, (nA, B), 0, -1) t + r)

nA ,nB

+(1 - p)Wt+ (t+T(S, (nA ), , --1), --1)

Wt(S, s) = min wt (S, (A, nB), 0, ) + -, (, ) + W+ (+r(S (A, B), 0, ), ), s > 0.
nA nB

(5.9)

Because the evolution of the system over time is no longer deterministic, the above DP
yields a dynamic allocation that changes not only for different decision epochs but also
dependent on the queue lengths and weather pattern observed. We can compare the perfor-
mance of this dynamic allocation to that of the best fixed allocation and the original schedule
allocation applied to this stochastic system.

5.3.4 Randomized entry rates

Another way to introduce stochasticity to the entry pattern is to consider entry rates that
are, independently in each period and for each checkpoint, a factor (1 - a) lower or (1 + a)
higher than originally estimated, for 0 < c < 1, with probability /3 (such that 0.5).
Such a situation might arise if the estimated entry rates are not very accurate, or if gate
changes or flight cancellations change the number of passengers passing through the security
checkpoints. High values of a and /, indicate greater uncertainty about the entry rates.

The dynamic program is given by:

WT(.) = 0
Wt(S) = min 2 [wt(S,(nA,nB),, (1 -O)AA,t,(1 -a)B,t)

(nA,nB)

+Wt+ (t+(S, (nA, nB), 0, (1- a)AA,t, (1 - a)AB,t))

+wt (S, (nA, nB), 0, (1 - a)AA,t, (1 + a))AB,t)

+Wt+T (St+r(S, (nA, nB), 0, (1- a)AA,t, (1 + a)AB,t))

+wt (S, (nA, nB), 0, (1 + a)/AA,t, (1 - a)AB,t)

+Wt+ (t+r(S, (nA, nB), 0, (1 + )AA,t, (1 - a)AB,t))

+t (S, (nA, nB), , (1 + a))A,t, (1 + -a))B,t)

+ Wt+ (t+-(S, (nA, n), , (1 + a)AA,t, (1 + a)AB,t))]

+0(1 - 2) [wt (S, (nA, nB), 0, (1 - a)AA,t, AB,t)

+Wt+T (St+r(S, (nA, nB), 0, (1 - )AA,t, AB,t))

+wt (S, (nA, nr), 0, (1 + )AA,t, AB,t) + Wt+ (St+T(S, (nA, nB), 0, (1 + a)AA,t, AB,t))
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+Wt (S, (nA, nB), 0, AA,t, (1 - a)AB,t) + Wt+ (t+T(S, (nA, nB), 0, AA,t ( - a)AB,t))

+Wt (S, nA, nB), 0, AA,t, (1 + C)AB,t) + Wt+, (+(s, (nA, B), 0, AA,t, (1 + a)AB,t))

+(1 - 23)2 [Wt (S, (nA, nB), H, AA,t, AB,t) + Wt+ (t+T(SI (nA, nB), 0, AA,t, AB,t))] 

(5.10)

where the functions wt(S) and Wt(S) depend on the actual arrival rate experienced at each
time and checkpoint. Again, we compare the waiting time incurred in the solution of the
dynamic program to those under fixed and schedule allocations.

5.3.5 Stochastic service times

We now return to deterministic entry rates and consider instead stochasticity in the service
process. We have been assuming that each unit of flow, representing a customer, has a
constant service time equal to 1//. However, different customers can take different amounts
of time to pass through security, and we can model this by assigning to each unit of fluid,
k, in a queue i an exponentially distributed service time Xk with mean 1//i minutes, which
represents the total amount of "work" that must be done on that unit of flow. However,
that work is divided over all Ni servers on-duty at that queue, such that the unit of fluid
is processed at a uniform rate equal to Ni/Xk, and when completed, a new service time for
the next unit of flow is randomly generated. Thus, we maintain the continuous fluid form of
the model while stochastically changing, on a unit-by-unit basis, the rate at which the fluid
is processed.

We can use (5.3) to describe the optimal dynamic allocation for this case where service
times are stochastic, taking the expectation over the service time process, and augmenting
the system state S from the deterministic fluid model to include the remaining service time
of the unit of fluid currently being processed. We can then compare the solution given by
the DP to a best fixed allocation and to the original schedule allocation of the deterministic
fluid model.

5.4 Approximate dynamic programming solution tech-
niques

Although the fluid formulations allow us to ignore the individual processing of customers
(except in the stochastic service times variant), we must still keep track, at each time point,
of the amount of fluid in each queue and of the current allocation, causing the state space in
(5.3) to become prohibitively large. Furthermore, the nonstationarity of the entry processes
over the course of the day forces the wait-to-go function to be dependent on time, preventing
steady-state conditions from setting in which would simplify the system of equations. As
a result of this, at the kth decision epoch, there could be as many as (min(NmaxA, N) -
max(N - Nma, 0) + 1)k-1 possible combinations of queue lengths and server allocations
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to consider in the deterministic setting, and an infinite number of states under stochastic
service times. If we consider decision epochs arising every half hour over the course of an
entire day, this can get prohibitively large, even in the deterministic model, and it becomes
even harder if decision epochs occur more frequently.

Thus, in order to be able to solve the models described in the previous sections, we must
resort to approximate dynamic programming techniques. (A detailed discussion of such
techniques is provided in chapter six of [25]). For all of the models considered (deterministic
and stochastic), we rely upon state space aggregation and restricting the number of periods
into the future explored by the dynamic program. For the stochastic service model, we also
use simulation and reduce the solution space considered in order to facilitate computation.

5.4.1 Aggregated state space with limited lookahead

To reduce the number of different states per stage requiring evaluation, we aggregate queue
lengths into multiples of ten. During a decision epoch, the current period wait incurred, w, is
computed exactly, as described in (5.5), but to compute the wait-to-go starting from the next
decision epoch, the queue lengths QA and QB at the end of the period are rounded to the
nearest multiple of ten. Because the fluid model can yield fractional values of QA and QB,
this rounding can significantly reduce the number of states visited by the DP. Furthermore,
since queue lengths in an airport setting are generally not monitored precisely, choosing
server allocations based on rough estimates of queue lengths is a realistic approximation.

An additional difficulty stems from dynamic programming's "curse of dimensionality":
the number of possible solutions (and states to explore) grows exponentially with the time
horizon considered. The optimal server allocation at time t depends on the repercussions
such an allocation will cause through the remainder of the time horizon T. However, although
a dynamic program takes into account the full extent of such repercussions, realistically it
seems improbable that a decision made at 6:30AM could cause a significant impact on the
state of the system at 4:00PM, particularly if reallocations can be made every half- or quarter-
hour. So we also use a limited lookahead approximation, where rather than determining an
allocation based on the total wait-to-go for the remainder of the time horizon, T, we consider
only the next two or three hours of the time horizon (in most of our tests, a three hour
lookahead is used with thirty minute decision epochs, while in one test having fifteen minute
decision epochs, a two hour lookahead is used). If we let L be the length of the lookahead
period, then at time t and state S, the allocation selected is the (nA, nB)S,t that achieves the
minimum in

min E [wt (S, (nA, nB), 0) + Wt+ (St+,(S, (nA, nB), 0))] , (5.11)
(nA,nB)

where

Wt+L(.)= 

Wt(S) = min E [wt (S, (nA, nB), 0) + WVt+ (St+T(S, (nA, nB),))] . (5.12)
(flA,nB)
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Although the policy (nA, nB)s,t is computed using a truncated wait-to-go function, Wt(S),
the true wait-to-go from any time t and state S, Wt(S), is obtained by stepping through the
system using the best allocations (nA, nB)S,t found above:

WT(.) = 0

Wt (S)= E [Wt (S, (nA, nB)S,t, 0) + Wt+ ((S, (nA, nB)S,, O)) . (5.13)

For the first two models, having deterministic entries and services, we can ignore the
expectation in equations (5.11)-(5.13). For the model with stochastically arising disruptions
to the entry process, we note that although the bad weather may arise unexpectedly, the
entries and services are deterministic once the weather status is revealed. Thus, the only
uncertainty is when, if ever, bad weather will start. Because it can start in any one of the
decision epochs (or never start), there are only T/1 + 1 stochastic trajectories to explore,
rendering the expectations in equations (5.11)-(5.13) relatively simple to compute. So state
aggregation with a limited lookahead period is sufficient for exploring the deterministic
models and the model with stochastic disruptions to the entry process.

5.4.2 Approximating expected values
By contrast, calculating the expected value in the above equations is significantly more
difficult in the case of stochastic service times. Because each unit of flow is assigned its
own exponentially distributed service time, there are an infinite number of trajectories to
consider. To address this, we implement two different heuristics, both involving simulation
rather than exact computation of the expected value.

A hybrid allocation

The first of these is a "hybrid" of a stochastic dynamic program and a deterministic dynamic
program, in which the allocation at each state and stage is made based on the deterministic
version of the dynamic program in (5.11)-(5.12) (i.e. the decision is based on the assumption
that the systerl evolves deterministically), but in which the actual evolution of the system
(as in (5.13)) is stochastic, allowing the system to visit states not visited by the original
deterministic DP and from those states to select allocations different from those in the
original schedule allocation. (This is similar in spirit to the BIGSTEP method of [60] in
which the system status is reviewed at a decision epoch, and based on this system state, a
new processing plan is determined from a heuristic and is used for that period, over which
the process evolves stochastically until the next decision point). Rather than computing the
expected value in (5.13) exactly, we simulate the evolution of the system. For iterations
k = 1...K having stochastic trajectory k, we compute Wo(So)k from an initial state So
recursively, as follows:

* Function Wt(S)k:

1. If t =- T, return 0. Otherwise,

101



2. Find (nA, nB)s,t which is

arg min wt (S, (nA, nB) , 0) + WVt+ (St+(S, (nA, nB) , 0)) 
(nA,nB)

where

Wt+L(*) 0

Wt(S) = min wt (S, (nA, nB), 0) + Wt+T (St+T (S, (nA, nB), 0)).
(nA ,nB)

is the solution to the deterministic fluid flow problem with limited lookahead L.

3. Return

Wt(S)k = Wt (S., (nA, nB)S,t, ,wk) + Wt+T (t+r (S, ( A, nB)S,t,0,Wk)) 

The average total waiting time is Wo(So) = Ek Wo(So)k. It is in Step 2 above that the
allocation is selected based on the deterministic model, and it is in Step 3 that the system
evolves stochastically, according to Wk, resulting in a new state S from which to recurse.

Nearest neighbor solutions

Although the above hybrid allocation introduces some stochasticity in the form of system
evolution between allocations, ideally we would like to allow the allocations chosen by the
DP in Step 2 above to consider the stochastic evolution. We again use simulation to achieve
this, by selecting in Step 2, for each state encountered, an allocation that minimizes the
average limited lookahead wait-to-go over several simulation runs. Once an allocation has
been chosen, we simulate the system evolution until the next decision epoch, as we did in Step
3 of the hybrid heuristic. Note that by simulating the lookahead period, we are performing
several times the very step that takes the longest to evaluate. In this heuristic, therefore,
we choose to restrict the solution space to a subset (nA, rinB) of "reasonable" allocations
by recognizing that the optimal stochastic allocation is likely to be close to the original
deterministic schedule allocation. As such, if the original schedule called for an allocation
of (nA, nB), then our allocation in the stochastic model must be a "nearest neighbor" of

(nA, nB): (nA, nB) = {(nA -1, nri + 1), (nA, nB), (nA + 1, nB - 1)}. (Using a neighborhood
of ±2 servers did not appreciably change the results on our data. The total number of servers
in our data is relatively small so that each additional server shifted caused a disproportionate
shift in load balance).

The heuristic is as follows. For general iterations k = 1...K having stochastic trajectory
Wk, and lookahead iterations j = 1...J within each general iteration k having stochastic
trajectory 4 kj we compute Wo(So)k from an initial state So recursively, as follows:

* Function Wt(S)k:

1. If t = T, return 0. Otherwise,
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2. Find (nA, nB)s,t which is

1arg min(,., J E (w t (S (A, B) , 0, Okj)
(nA,nB)E(nA,nB)t J

+ Wt+,,j,k (t+r (S, (nA, nB) , 7Okj)) )

where

Wt+L,,. = 0

Wt,j,k(S) = min wt (S, (A, nriB) , 0, Vkj)
(nAL ,nB)C(nB)
+Wt+,j,k (t+T (S, (A, nB) , kj)) -

3. Return

"t(S)k = Wt (S. (nA, nB)S,t, 0 Wk)+ Wt+ (t+r(S, (nA, nB)S,t 0, Wk) k-

,Once again, the average total waiting time is Wo(So) = K' Ek WO(SO)k.

5.5 Data

To test these models, we use data provided by Massport, the Port Authority for Massa-
chusetts that operates Boston Logan International Airport. This data contains throughput,
estimated average wait and total number of lanes open at each security checkpoint at Lo-
gan airport, on an hourly or half-hourly basis, for the week of January 18-24, 2005. Unless
otherwise stated, we use the January 18 data.

Logan Airport is divided into five terminals, Terminal A (which recently opened in March
:2005 and serves Delta Air Lines), Terminals B and C which handle primarily domestic flights,
Terminal D which handles domestic flights primarily for Air Tran Airways and Terminal E
which is the int rnational terminal but which also accommodates a few domestic departures
(See Figure 5-7),. Each terminal has at least one security checkpoint, each serving subsets
of gates within the terminal: Terminal A has one, Terminal B has seven (although only six
were ever open at the time the data provided to us were collected), Terminal C has three,
'rerminal D one, and Terminal E two, and each checkpoint has a certain number of lanes
through which passengers pass (ranging from one lane at Terminal D's checkpoint to eight
lanes at Terminal A's checkpoint). The checkpoints are equipped with an x-ray bag scanner
for screening carry-on luggage and a metal detector gate through which passengers walk. We
use the term server to refer to an open lane including equipment (x-ray machine and metal
detector) and manpower (employees to operate the equipment, direct passengers through
the lane and conduct searches). For example, at checkpoint E2, while there is capacity
for up to seven open lanes, at any given time, there might be only five "servers" on-duty,
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Terminal C

o . : :'":' Terminal 8

Airport. Source: Delta Air Lines website (edited),
http: //www.delta.com/travel/before/airportinfo/airport naps/boston-bos/index.jsp

corresponding to five sets of x-ray machines, metal detectors and screening employees.
Unless explicitly stated, our analysis uses the data of Terminals C and E, treating Ter-

minal C's three checkpoints (having a total of eleven possible screening lanes) as one mega-
checkpoint, and treating Terminal E's two checkpoints (having a total of nine lanes) as one.
Any additional data from other sets of terminals or other days used for sensitivity analysis
will be specifically indicated.

We estimate the entry rate, Ai(t) for any terminal i from the throughput information
provided by Massport. We let Ai(t) be equal to the average throughput per minute recorded
during the corresponding half-hour block, and if the data at a particular time are given for
an hour-long block, we divide the stated throughput by two to estimate the half-hourly rate.
These estimated entry rates for Terminals C and E are shown in Table 5.3 for the period
from 5:00 AM to 6:30 PM.

The service rate, , is harder to estimate. According to Massport, the maximum possible
service rate, a, of a single x-ray machine and metal detector is approximately two hundred
passengers per hour (3.3 passengers per minute). However, in the data, the stated throughput
(TP) is rarely ever this high. While estimates thihi.Wiletme te service rate of each of ni servers on-duty
during the corresponding half-hour period, this does not indicate thie service capacity because
at some times there might have been one or more servers idle. One remedy is to consider
only those periods where the average waiting time stated in the data is nonzero, as the
formation of queues indicates servers were likely working near maximum capacity. During
these periods, the average throughput is closer to 2.8 passengers per minute. Although this
estimate varies greatly across time of day and terminals (for instance, if any of the machines

were set to be more sensitive than usual to triggers, or if screeners were encouraged to workonly those priods where he average aiting time tated in t, ,,,,, ," 4'ner,' . . . .
formation of queues indicates servers were likely working near maximum capacity. During~~~~~~~~~~~~~~~~~~~~~~,,ithese perio,, eaeaetruhu scoe o28psegr e iue lhuhti

estiate arie gretly cros tim of ay ad teminas (fr in,,,c,' ,,ayo hemcie
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Time Terminal C Terminal E Time Terminal C Terminal E
5:00 AM 6.20 2.90 12:00 PM 8.70 1.98

5:30 7.23 7.2 12:30 11.68 4.05
6:00 16.97 6.93 1:00 11.68 4.05
6:30 14.70 8.73 1:30 17.13 2.85
7:00 21.00 8.13 2:00 17.13 2.85
7:30 26.77 7.23 2:30 14.35 7.45
8:00 25.30 7.23 3:00 14.35 7.45
8:30 17.03 4.50 3:30 19.03 9.17
9:00 13.27 5.43 4:00 22.47 9.97
9:30 12.52 4.28 4:30 15.83 10.60

10:00 12.52 4.28 5:00 13.93 11.47
10:30 12.38 4.97 5:30 8.80 13.00
11:00 12.38 4.97 6:00 10.57 10.50
11:30 8.70 1.98

rFable 5.3: Customer entry rates (in customers per minute) to Terminals C and E at Boston
Logan International Airport on January 18, 2005, from 5:00 AM to 6:30 PM

more quickly during peak hours to accommodate the additional load, service rates might be
lower or higher than usual), it seems to be a reasonable estimate of the average service rate,
based on calibration simulations1 .

We consider decision epochs of 30 minutes in general ( = 30), but we also explore
whether more frequent epochs (e.g., = 15) yield significant improvements. We consider a
range of switching times, 0, equal to 0, 5, 10, 15, or 30 minutes, provided 0 < .

Because this model holds the total number, N, of servers on-duty constant, we hypothe-
size that dynamic server allocation might be useful primarily on systems where the individual
customer entry rates at the two queues vary in opposite senses to each other, but where the
total number of servers needed to serve the two queues is relatively constant. According to
the data from Logan airport, from 5:00 AM to 6:30 PM on January 18, 2005, the actual
number of checkpoint lanes open at Terminals C and E at Logan airport stayed fairly con-
stant around 10, though the entry rates at the two terminals varied, so we use N = 10 in
our trials.

In summary, we examine two queues representing Terminals C and E at Logan Airport

1Airports such as Logan may occasionally use different checkpoint configurations to accommodate larger
volumes of passengers. Most of the time, each lane has one metal detector and one x-ray bag scanner. Those
familiar with United States airports will agree that walking through the metal detector is generally a rapid
process, while waiting for one's bags, coats, laptops and shoes to pass through the x-ray machine can take
much longer, causing it to be the bottleneck stage in the screening process. To compensate during periods of
heavy traffic, Logan occasionally uses a 2-1 configuration, meaning they use two x-ray machines in parallel
Kwith a single metal detector. Successive customers use alternate x-ray machines for their bags but pass
through the same metal detector. Though the use of such configurations can increase the service rate, /, we
do not consider such configurations in our model.
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-=30 T = 15
Fixed Schedule Number of % Schedule Number of %

0 Alloc. Alloc. Switches Imprvmt. Alloc. Switches Imprvmt.

0 1.886 18 54.38 1.846 16 55.35

5 4.135 2.089 8 49.47 2.061 10 50.15

10 (7,3) 2.298 8 44.44 2.257 11 45.41

15 2.486 9 39.88 2.506 11 39.39

30 3.051 9 26.21 N/A N/A N/A

Table 5.4: Average waiting times (minutes per customer) under the best fixed allocation,
(nA, nB) = (7,3), and schedule allocations with decision epochs every thirty minutes and
every fifteen minutes; the total number of servers switched and the percentage improvement
of the schedule allocations over the fixed allocation, by switching time, 0.

that share N = 10 servers who are each capable of processing 2.8 units of flow (customers)
per minute and where flow enters the queue at the rates given in Table 5.3. The servers
can be reallocated every = 30 minutes (unless otherwise indicated) and they require
0 = 0, 5, 10, 15 or 30 minutes to arrive to their new post after a reallocation. Using this data,
we evaluate fixed, schedule and dynamic allocations for the cases of deterministic entries and
services, deterministically disrupted entries, stochastically disrupted entries, and stochastic
service times. The results are presented in the following section.

5.6 Results

5.6.1 Deterministic entries and services

Table 5.4 shows the performance, measured by the average waiting time per customer, of the
different allocations in the simple fluid model with deterministic entries and services. The
average waiting time under the best fixed allocation is roughly four minutes per customer,
and is achieved by allocating seven servers to Terminal C and three servers to Terminal E
(note that this average wait does not vary with the switching time 0 because servers are not
allowed to be switched under a fixed allocation). Nearly 70% of the total entries to the two
queues, as given in Table 5.3, are to Terminal C, so a (7,3) fixed allocation is not surprising.

In a schedule allocation, where switches are allowed to occur every r = 30 minutes, the
average waiting time decreases significantly as compared to the fixed allocation, ranging from
just under 2 minutes per customer if switches are instantaneous to 2.5 minutes if they take
15 minutes. Even in the extreme case of 30 minute switching times, the waiting time per
customer is still only approximately 3 minutes, meaning that even if switches take a very
long time to complete, we would still prefer to switch than maintain a fixed allocation.

As we would expect, the number of switches is generally smaller under non-zero switching
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Time =0-0 0=5 Time 0=0 0=5
5:00 AM (3,7) (3,7) 12:00 PM (5,5) (7,3)

5:30 (3,7) (7,3) 12:30 (5,5) (7,3)
6:00 (7,3) (7,3) 1:00 (5,5) (7,3)
6:30 (6,4) (7,3) 1:30 (7,3) (7,3)
7:00 (7,3) (7,3) 2:00 (7,3) (7,3)
7:30 (9,1) (8,2) 2:30 (7,3) (7,3)
8:00 (9,1) (8,2) 3:00 (7,3) (7,3)
8:30 (7,3) (8,2) 3:30 (7,3) (7,3)
9:00 (5,5) (7,3) 4:00 (8,2) (7,3)
9:30 (5,5) (7,3) 4:30 (5,5) (6,4)
10:00 (5,5) (7,3) 5:00 (5,5) (5,5)
10:30 (5,5) (7,3) 5:30 (5,5) (5,5)
11:00 (5,5) (7,3) 6:00 (5,5) (5,5)
11:30 (5,5) (7,3)

Table 5.5: Schedule allocations under the deterministic fluid model for T = 30 minute
decision epochs and decision times of 0 = 0 or 5 minutes.

times than when switches can occur instantaneously. However, the magnitude of the switch-
ing time does not seem to influence the number of switches made as much as the existence of
a switching delay. There is a sharp decrease in the number of switches required as 0 increases
from 0 to 5 minutes, but little change as the switching time increases from 5 to 30 minutes.
Table 5.5 shows the allocations selected at each period for 0 = 0 and 0 = 5. First we note
that the allocation when switches are instantaneous fluctuates a lot, particularly in the early
morning peak period. By contrast, the allocation when 0 = 5 minutes remains relatively
steady throughout the day. This suggests that when there is essentially no cost to switching,
the model can accommodate minor imbalances between the two queues. However, if time is
lost while switching, the model prefers to maintain service capacity by switching only when
necessary. We note that in the early morning and the late afternoon, the two allocations are
generally within ±1 server of each other. From approximately 9 AM to 1:30 PM, however,
the allocations differ by two servers. This should not be interpreted as a difference caused
by the switching times. In fact, during this period, the total entry rate to both queues is
significantly lower than the total service capacity available, so under either allocation ((5,5)
or (7,3)), the waiting time incurred over this period is zero.

A somewhat surprising result is the increase in the number of switches that take place
as increases from 10 minutes (in which the schedule switches 8 servers over the course of
the clay) to 15 minutes (in which the allocation has 9 switches). In fact, there are instances
when switches must occur in order to accommodate sharp changes in the relative entry rates
between the two queues. However, higher switching times cause there to be a longer delay
before the switched servers become available. This extra delay can cause sufficiently longer
queues to form at the recipient queue that the system must switch even more servers to this
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Table 5.6: Total waiting times (person-minutes) incurred under two different allocations,
(4,6) and (5,5), and two different switching times, 0 = 10 and 0 = 15 minutes, for the
last two periods of the day when all previous allocations have been identical and the initial
allocation at 5:30 PM is (6,4). The optimal allocation when 0 = 10 is to switch one server
from A to B, while when 0 = 15, it is optimal to switch two servers from A to B.

queue to compensate. To see this, we discuss the cases of 0 = 10 and 0 = 15 in greater

detail.

The two allocations are identical throughout the day until 5:30 PM. At this time, the
initial allocation is (6,4), and when 0 = 10 the system has 55 customers at Queue A, 8
customers at Queue B, and for 0 = 15, Queue A has 55 customers, but Queue B has 18
customers (although the allocations up to this point are identical, different switching times
cause the queue lengths to differ). The optimal allocation for the decision epoch 5:30-6:00
PM under 0 = 10 is to switch one server from Queue A to Queue B for a final allocation of
(5,5), whereas for 0 = 15 the decision is to switch two servers from Queue A to Queue B for
a final allocation of (4,6). This additional switch is due to the queue that develops during
the extra time required by the servers to complete the switch2 . Table 5.6 shows the system
evolution for the two cases under the (4,6) and (5,5) allocations.

With respect to the timing of switches, we would generally expect the fraction of the
N servers allocated to a queue i to be roughly proportional to the fraction of that period's
total entry rate attributed to queue i. If we let (NA, NB) be the number of servers we would
expect at queues A and B based on the entry rate proportion, then we have:

AA(t) AB(t)
(-NA(t),NB(t)) =(AA (t) + AB(t) N, AA (t) + AB(t)N) (5.14)

20One might suggest that the extra switch when 0 = 15 is due to the initial queue length at Queue B being
larger when 0 = 15 than when 0 = 10. However, even if the initial queue lengths at 5:30 PM at Queue B for
the two cases were both equal to 8, we would still find a (5,5) allocation to be optimal when 0 = 10 and a
(4,6) allocation to be optimal when 0 = 15.
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0 = 10 .0 = 15

(4,6) 5:30 PM (8.8,13) (55,8) (0,0) 889.15 (55,18) (0,0) 1369.16

(4,6) 6:00 PM (10.6,10.5) (0,0) (0,0) 0 (0,0) (0,0) 0

Opt.
Total 889.15 1369.16

(5,5) 5:30 PM (8.8,13) (55,8) (0,6) 780.87 (55,18) (0,30) 1325.87

(5,5) 6:00 PM (10.6,10.5) (0,6) (0,0) 5.14 (0,30) (0,0) 128.57

Opt.
Total 786.01 1454.44



Expected and Actual Allocations to Queue C

10

9

8

8 7

>-6

· 4E
z 3

2

n

--- Actual, Theta = 0

Expected

Time

Figure 5-8: Expected and actual server allocations to Terminal C under the deterministic
fluid model with zero switching times. There does not appear to be a strong correlation
between the proportionate entry rate to Terminal C and the allocation chosen by the model.

where the values can be rounded to the nearest integers. However, if we plot NA(t) for
the Terminal C and E data (a mirror plot would be obtained for NB(t)), and compare the
curve to the actual allocation selected by the program for the case of zero switching times
(Figure 5-8), we see that the two curves are not very similar. First, we note that from
9:00 AM to 1:30 PM, the entry rates to both queues are lower than the service capacity
provided by the ten servers considered, so during this period, several different allocations
can be used and still maintain zero waiting times. However, even outside this period there
does not appear to be a strong correlation between the actual allocations yielded by the
model and those expected based on entry rates. There is, however, a closer correspondence
of the proportionate entry rates to the allocations chosen by the models having non-zero
switching times, as shown in Figure 5-9. It is difficult to ascertain whether switches occur
earlier or later than in the expected allocation as a result of increased switching times. One
might hypothesize that switches should occur earlier when switching times are high so that
the switched servers can arrive at their new post before a surge in demand. While this does
happen in some of the switches shown in Figure 5-9, there are others where a switch occurs
later than the expected switch. An intuitive rule for timing switches based on 0 is difficult
to obtain.

Lastly, we see in Table 5.4 that there is not an appreciable difference in the waiting times
achieved by selecting an allocation every thirty minutes versus every fifteen minutes in this
deterministic case. Although, as expected, the fifteen minute allocation generally performs
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Figure 5-9: Expected and actual server allocations to Terminal C under the deterministic
fluid model with non-zero switching times. Although the actual server allocations follow
roughly the expected allocation based on proportionate entry rates, there does not appear
to be a consistent effect of switching time on the timing of such switches.

somewhat better than the thirty-minute allocation, the approximate nature of the dynamic
program used resulted in it faring worse for the case of 0 = 15. We also see that there is not a
large difference between the number of switches taking place under a T = 30 minute decision
epoch versus a = 15 minute decision epoch, even though the latter case offers twice as
many opportunities to switch. It seems that choosing a new allocation every fifteen minutes
offers some moderate flexibility as to the timing of switches, but does not cause additional
switches to take place, nor is it pivotal in reducing average waits. One possible explanation
is that the passenger entry rates in the data are given in half-hour blocks. Because the
entry rates do not change over the course of a thirty-minute decision epoch, offering more
opportunities to switch during that period of time is perhaps unnecessary. It is possible
that for quarter-hourly entry rates, for instance, having more frequent decision epochs might
prove more useful. For the remainder of the analysis, we focus on = 30 minute decision
epochs.

5.6.2 Deterministically disrupted entries

In the case where the entry rates shift in a predictable pattern from the expected rates (for
instance, due to a prediction of bad weather), we examine how the original schedule allocation
from the deterministic "fair-weather" system compares to a new schedule allocation that is
based on the expected changes. Table 5.7 shows the average waiting time under a fixed
allocation, the original schedule allocation from the previous section and a new schedule

110



Best Original New Number % %
0 Fixed Schedule Schedule of Imprvmt. Imprvmt.

Allocation (T = 30) (T = 30) Switches (fixed) (original)
0 3.800 0.566 10 76.69 85.10
5 1.104 0.782 5 67.80 29.17

10 2.428 (7,3) 1.105 0.851 5 64.93 22.99
15 1.406 0.919 5 62.14 34.64
30 ._______ 3.745 1.086 9 55.25 71.00

Table 5.7: Average waiting time under a deterministic bad weather scenario, under the best
fixed allocation of (NA, NB) = (7, 3), the original schedule allocation from the fair weather
deterministic model and a new schedule allocation computed for this particular scenario,
when decision epochs occur every thirty minutes; the total number of servers switched under
the new schedule allocation; and the percentage improvement of the new schedule allocation
over the fixed and original schedule allocations, by switching time 0.

allocation using the revised entry rates discussed in Section 5.3.2. First, we see that in
general, the average waiting times are lower in this case where entry rates are shifted due to
bad weather than in the fair-weather model. This unexpected result is easily explained: in
this scenario, passenger entries are dispersed over a period of a few hours, distributing more
evenly the load over the day. This is especially pronounced during typical peak periods,
because the number of passengers shifted away from the peak period is greater than the
number shifted into the peak period from non-peak periods. Thus, the peaks, which had
caused most of the delays in the previous model, are now flatter, causing a disproportionate
reduction in the average waiting time.

We note next that the fixed allocation for this case is once again (7,3), which is reason-
able because the total expected number of customers entering Terminals C and E has not
changed, only the distribution of these entrances over time. What is interesting, however,
is that this fixed allocation can actually outperform the schedule allocation obtained from
the original entry rates for certain values of 0. This suggests that in the face of widespread
disruptions, relying on the same server allocation schedule as on a normal day can be worse
t;han not allowing the server allocation to vary at all over the day. For instance, when 0 = 0,
the original allocation mandates 18 switches over the course of the day, fluctuating to accom-
modate minor changes in entry rates. If the entry rates change, however, these fluctuations
no longer match the new entry rates. And because queueing delays tend to propagate, even
a one-period misallocation can cause large waiting times to be incurred over several hours.
(As we see later in the chapter for the other model variants, the original schedule allocation
for 0 = 0 is not a very robust allocation in that by being sensitive to queue imbalances in
the original system, it is unable to do well if the entry pattern changes). When 0 = 30, we
also see that the original schedule allocation fares worse than a fixed allocation. Here, only
nine switches took place in the original allocation, so the large average waiting time is due
not so much to fluctuations in the allocation but instead to large queues that form at the
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Fixed Original DP Allocation % Expected Number
0 Allocation Allocation (T = 30) Imprvmt. of Switches
0 2.865 2.284 20.3 18.79
5 2.611 2.582 1.1 7.33

10 4.521 (7,3) 2.739 2.741 -0.1 7.54
15 3.013 2.902 3.7 8.18
30 3.707 3.420 7.7 8.10

Table 5.8: Average waiting time (minutes per customer) under a stochastically occurring bad
weather scenario (p = 1/15), using the best fixed allocation of (NA, NB) = (7,3), the original
schedule allocation, and a dynamic allocation; the percentage improvement of the dynamic
allocation's waiting time over that of the original allocation; and the expected number of
servers switched, by switching time, 0

start of the day and propagate. In our bad weather model, 30% of customers enter earlier
than their scheduled period. In the first hour of the day, the original schedule allocation for
0 = 30 does not have enough servers on-duty at Terminal C to accommodate the customers
who decide to enter early. Because it takes thirty minutes for any switched servers to come
on-duty, queues that begin to form in the first period grow even longer while the system
waits for servers to be reallocated.

The schedule allocation for the revised entry pattern yields significantly lower waiting
times than either the original schedule allocation or the fixed allocation. Because misallo-
cations can cause such large queueing delays, if a systematic change in the passenger entry
pattern is anticipated, it is better to recompute an appropriate schedule allocation for that
new pattern rather than relying upon the original schedule.

5.6.3 Stochastically disrupted entries
A more interesting case to consider is that described in Section 5.3.3 in which a bad weather
watch is announced in a period with probability p and, once announced, affects the customer
entry rate to the airport terminals over the next four hours. Such unexpected shifts in the
passenger entry rates are more realistic, and the stochastic nature of this problem allows us to
explore the potential advantages of dynamic allocations over schedule allocations. Table 5.8
shows the average waiting times incurred under a fixed allocation, the original schedule
allocation from the deterministic case and the dynamic allocation of Equation (5.9), as well
as the percentage improvement of the dynamic allocation over the original schedule and the
expected number of switches that take place in the dynamic allocation, as a function of the
switching time 0, for p = 1/15.

First we see that the average waiting times in this stochastic bad weather situation are
significantly higher than those in the deterministic bad weather situation and also higher
than the average waiting times under the original deterministic fair weather case. Recall
that in the deterministic bad weather scenario, the reduction in waiting time was achieved
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by the spreading out of passenger entries throughout the day. In this stochastic scenario,
we assume that the bad weather, if it occurs, can affect up to four hours only, limiting the
smoothing effects of dispersing passenger entries. Furthermore, the uncertainty around when
the bad weather will start (and thus when servers might need to be reassigned) also naturally
causes the optimal waiting time to increase.

We note that the original schedule allocation obtained for 0 = 0 did not perform well in
this stochastic scenario, as it yielded a higher average waiting time than some allocations
having non-zero switching times. Once again, this indicates a lack of robustness in the alloca-
tion, where it fails to perform well when applied to a new problem instance with moderately
different entry rates. By contrast, the allocations obtained under non-zero switching times
are characterized by a small number of switches occurring in response to important shifts
rather than minor fluctuations in the customer entry pattern. Because these major shifts
might only be somewhat affected by bad weather disruptions (for instance, a peak might be
smoothed but will still remain a peak), allocations that respond only to major shifts in entry
patterns but ignore slight fluctuations might be more robust to stochastic disruptions.

As a result of the original schedule's poor performance when 0 = 0, we see that a dynami-
cally determined allocation offers a 20% reduction in the average waiting time. In cases with
moderately larger switching times, the reduction is minimal because the original schedule
allocation, to which the dynamic allocation is compared, is not as bad. As the switching
times become even larger, the reduction in waiting time offered by a dynamic allocation in-
creases. This suggests that when switching times are large, it is very important that switches
be timed properly. The expected numbers of switches in the dynamic allocations are compa-
rable to those of the schedule allocations, suggesting that dynamic allocations change only
the timing of switches to achieve reductions in the average wait. However, these reductions
are not guaranteed. When 0 = 15 minutes, the approximations made to solve the dynamic
program resulted in the dynamic allocation actually performing somewhat worse than the
original schedule allocation.

Figure 5-10 shows the histogram of deviations (in numbers of servers at Terminal C)
between the dynamic allocation and the original schedule allocation for the periods prior to
a bad weather watch, during a bad weather watch and after a bad weather watch, for small,
medium and large switching times ( = 0, 15, 30). The frequency indicated is the number
of states visited by the model having a particular deviation, and is not weighted by the
likelihood that a state is visited.

We see that the dynamic allocation typically corresponds very closely to the original
schedule allocation prior to the announcement of bad weather. Though we might expect the
allocations to be identical during this period because the entry rates are unchanged prior
to the start of bad weather, the dynamic program anticipates possible future disruptions
to the entry pattern, causing its allocation to differ sometimes from the original schedule
allocation. Nonetheless, in the majority of system states visited prior to the start of bad
weather, anticipating the possibility of future bad weather yielded no difference from the
original allocation.

The dynamic allocation differs most from the original schedule during the bad weather
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Figure 5-10: Difference between actual dynamic allocation and original schedule allocation
to Terminal C in the stochastically disrupted entry model, before, during and after a bad
weather watch for switching times of T = 0, 15 and 30 minutes.

114

30
25

° 20
15

. 10
5
0

Actual -Original Server Allocations,
Pre-Bad Weather, Theta = 30 minutes

25

20

u 5

0

-4 -3 -2 -1 0 1 2 3 4

Deviation

I--------- ---------------------------------------

l



Fixed Original DP Allocation % Expected Number
0 Allocation Allocation (T = 30) Imprvmt. of Switches
0 3.32 2.56 22.3 18.76
5 2.91 2.87 1.4 7.24

10 4.760 (7,3) 3.12 3.03 2.2 6.90
15 3.32 3.19 3.9 7.92
30 4.08 3.68 9.8 7.22

Table 5.9: Average waiting time (minutes per customer) under a stochastically occurring bad
weather scenario (p = 1/7), using the best fixed allocation of (NA, NB) = (7, 3), the original
schedule allocation, and a dynamic allocation; the percentage improvement of the dynamic
allocation's waiting time over that of the original allocation; and the expected number of
servers switched, by switching time, 0

and after it has finished, with the distribution of deviations centered roughly around zero.
When 0 = 0, we see that the dynamic allocation deviates more from the original allocation
than when 0 = 15 or 30, which is not surprising given the significant improvement achieved
by the dynamic allocation in that instance.

The value p corresponds to the likelihood bad weather is announced in any given period.
Taking p = 1/15, the average time until bad weather is announced is 15 periods. This
corresponds to noontime in our data, where neither queue is particularly busy. If we choose
a different value of p, this could cause the bad weather to be more likely to be announced
during a period of peak traffic at the security checkpoints, and might yield different results
than p = 1/15. We tested the dynamic allocation for the case of p = 1/7, the results of
which are shown in Table 5.9 We see, first, that the average waiting time is higher here than
if p = 1/15, which we would expect because the bad weather is more likely to occur during
busy periods. However, the percentage reduction in waiting time offered by the dynamic
allocation is only somewhat greater.

In general, we conclude that the overall benefit of using a dynamic allocation in this
situation where customer entry rates are affected by stochastic disruptions is minimal if the
original schedule allocation is relatively stable. If the original allocation was very responsive
to imbalances in the original system (e.g. when 0 = 0), there is greater benefit to altering
the allocation to accommodate new disruptions. The charts shown in Figure 5-10 emphasize
that much of the need for reallocation of servers occurs during or in the wake of bad weather,
and that taking into account future bad weather before it starts has little influence over the
server allocation. It is possible that stochastic disruptions of a greater magnitude or affecting
the two queues unevenly might show greater benefits of dynamic allocation.

5.6.4 Randomized entry rates
In Section 5.3.4, we formulated a dynamic program for a system in which at each period
and for each checkpoint independently, the arrival rate was a factor (1 - a) or (1 + a)
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a = 0.1, = 0.1 a = 0.25, = 0.25
Fixed Original Dynamic % Fixed Original Dynamic %

0 Alloc. Alloc. Alloc Imprvmt. Alloc. Alloc. Alloc. Imprvmt.
0 2.05 1.94 5.4 4.34 3.17 27.0
5 4.24 2.27 2.25 0.9 5.41 3.80 3.53 7.1

10 (7,3) 2.46 2.42 1.6 (7,3) 4.00 3.72 7.0
15 2.64 2.59 1.9 4.22 3.92 7.1
30 3.18 3.21 -0.9 4.74 4.51 4.8

Table 5.10: Average waiting time (minutes per customer) when entry rates are randomized
to equal (1 -a)A.(t) or (1 + a)A.(t) with probability A, using the best fixed allocation
of (NA, NB) = (7,3), the original schedule allocation, and a dynamic allocation; and the
percentage improvement of the dynamic allocation's waiting time over that of the original
allocation, by switching time, 0, for (a = 0.1,3 = 0.1) and (a = 0.25, 4 = 0.25)

lower or higher than the original arrival rate A.(t) with probability 4. Table 5.10 shows
the average waiting time in such a system under fixed, schedule and dynamic allocations,
for the cases of (a = 0.1, = 0.1) and (a = 0.25, = 0.25). We see that in the
system where the actual entry rates are very close to the expected entry rates (a = 0.1, =
0.1), dynamic allocation offers little reduction in the average waiting time over the original
schedule allocation. However, in a system with a high level of uncertainty about the actual
entry rates (a = 0.25,/ = 0.25), dynamic allocation yields at least a 5% reduction in the
average waiting time over the original schedule allocation. This suggests that the poorer the
quality of information about entry rates, the more the system can benefit from determining
allocations dynamically rather than relying upon a pre-determined schedule.

5.6.5 Stochastic service times
To explore the benefits of dynamic server allocation in the presence of stochastic service
times, we use the two approximate dynamic programming heuristics described in Section 5.4.2:
a hybrid allocation, in which the system evolves stochastically but allocations are decided as-
suming deterministic evolution, and a nearest neighbor allocation, in which the system evolves
stochastically and allocations are determined based on this stochasticity but are restricted
to a set of "nearest neighbors" of the original schedule. We compare, in Table 5.11, the
performance of these heuristics to a fixed allocation and to the original schedule allocation
applied to this stochastic instance.

We see first that the best fixed allocation is again to assign seven servers to Terminal
C and three servers to Terminal E, and in this case it yields an average waiting time of
4.438 minutes per customer, an increase of about twenty seconds over the deterministic case,
which indicates a "price of stochasticity". If we compare the original schedule allocation's
performance in this stochastic case to the deterministic case shown in Table 5.4, we find that
this price of stochasticity is relatively stable across the different switching times at around

116



Fixed ()riginal Hybrid % Avg. Nearest % Avg.
0 Alloc. Schedule DP Imprvmt. Switches Neighbor Imprvmt. Switches
0 2.357 2.297 2.5% 20.1 2.213 6.1% 20.9
5 4.438 2.490 2.552 -2.5 10.6 2.496 -0.2 16.1
10 (7,3) 2.810 2.723 3.1 9.7 2.692 4.2 12.1
15 2.943 2.904 1.3 10.0 2.891 1.8 12.3
30 3.457 3.448 0.3 8.76 3.418 1.1 11.1

Table 5.11: Average waiting time (minutes per customer) under a fixed allocation, the
original schedule from the deterministic model, the hybrid dynamic allocation and the nearest
neighbor dynamic allocation, as well as the average number of switches performed under
the two dynamic programs, by switching time . Boldface entries indicate a statistically
significant difference from the original schedule at the a = 0.05 level.

25-30 seconds per customer.
We see further that while the dynamic allocations occasionally yield a statistically sig-

nificant decrease in the average waiting time, the practical significance of such reduction is
limited. In the best simulation (occurring when 0 = 10), the hybrid DP yielded only a 3.1%
improvement over the schedule allocation, a difference of around five seconds per customer.
In the worst case ( = 5), it performed 2.5%, or roughly four seconds, worse. The nearest
neighbor DP performed only slightly better, but still did not offer consistent improvement
over a schedule allocation. This suggests that one might be able to get an adequate solu-
tion using only the deterministic allocation without altering the allocation dynamically to
accommodate variable service times.

The original schedule allocation corresponding to 0 = 0 did not perform as poorly in
this instance of stochastic entries as it did under disrupted passenger entry rates. In those
cases, the original 0 = 0 allocation was not robust to changes in the entry rates. Here, where
only the service rates are stochastic, the original allocation seems largely unaffected by the
stochasticity. This suggests, first, that optimal server allocations are generally more sensitive
to changes in customer entry rates than to service rate fluctuations. Second, stochasticity on
the level of individual customers appears to have less influence on the optimal allocation than
do stochastic disruptions on an aggregate level. The entry rate disruptions we considered in
the previous section occurred over a large period of time, affecting all customers scheduled
to enter during that period. Such widespread change to the entry rate should naturally
cause significant increases in waiting times if an allocation is not robust to these changes.
By contrast, when a system's uncertainty is at the level of individual customers' service
times, stochastic fluctuations tend to more or less even out over a decision epoch, and the
ability to reallocate servers to accommodate this variability is less beneficial. It is possible
that systematic changes to service times spanning one or more decision epochs might have
a greater influence on the optimal server allocation. However, it is difficult to construct
a realistic situation in which service rates of all customers would change over an extended
period of time during the day.
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5.6.6 General observations

Because we would like queue managers to be able to decide quickly whether to order a
switch of servers between queues, it would be useful to distill the optimal switching policy
into simple rules of thumb based on system state characteristics.

We attempt this first through the use of logistic regression. Logistic regression derives
an expression for the likelihood that the DP heuristic switches a given number of servers, as
a function of the explanatory variables. It is appropriate for models in which the response
variable is ordinal (here, the response variable is the number of servers switched to Terminal
C from Terminal E). The logistic regression model's best allocation is that having the highest
likelihood.

The explanatory variables to include in the model are the queue lengths, QC and QE,
the log-ratio of queue lengths (with a correction factor to accommodate null queue lengths),
the number of servers Nc initially allocated to Terminal C at the start of the period, the
entry rates Ac(t) and AE(t) and their ratio Ac(t)/AE(t), the entry rates in the next period
Ac(t + 7) and AE(t + T) and their ratio, and the ratio AC(t+)/E (t)+ which measures how
the load balance between the two queues is expected to change in the next period. If nc is
the best new allocation to use at Terminal C, then our decision variable in the logistic model
is the value nc - Nc, that is, the number of servers that should be switched to Terminal
C from Terminal E, where a negative value means that servers should be switched out of
Terminal C.

The logistic model assigns coefficients, ai to each of the continuous variables, xi, above
(e.g., those pertaining to fluid queue lengths and entry rates) and assigns a coefficient j for
each possible value, j, of ordinal variables (e.g., Nc). From this, it finds a linear expression

I =Z xi + INc=j [ , (5.15)
i j i<j

where INc=j equals one if the number of servers currently allocated to Terminal C is j, and
zero otherwise. Using intercept coefficients y(k) that are non-decreasing in k, the cumulative
probability that the new allocation at Terminal C is no more than k - 1 higher than the
current allocation is given by

1
CumProb(k - 1) = + e-(k)+)' (5.16)

and the total probability of selecting nc - Nc = k is given by

Prob(k) = CumProb(k) - CumProb(k - 1). (5.17)

The best allocation at each state is to switch k servers from Terminal E to Terminal C,
where k is the value having the highest Prob(k). Parameters that cause to increase cause
the cumulative probabilities to increase, which generally favors smaller values of k (servers
should be moved away from Terminal C). Parameters that cause I to decrease generally favor
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"Fable 5.12: Coefficients from the logistic regression of change in server allocation (nc - Nc)
on system state characteristics, for variables that are significant at the ac = 0.05 level. Not
shown: intercept coefficients and ordinal coefficients for the variables representing the initial
server allocation. See Appendix B for complete regression analysis.

an increased number of servers at Terminal C. The significant (at a = 0.05 level) continuous
parameters and their estimated coefficients are shown in Table 5.12 for each of the switching
times considered. (A (.) indicates that the parameter was not statistically significant in
the model corresponding to that column's switching time). The complete regression output
for the five models is given in Appendix B. We see that the coefficients for QC and QE
have opposite signs, which we would expect, and that an increase in Qc, which causes I
to decrease, tends to favor an increased server allocation at Terminal C, and an increase
in QE favors an increased allocation at Terminal E, which we would also expect. The
magnitude of these two effects is roughly equal and unaffected by the switching time T. The
effects of the arrival rates Ac(t) and AE(t) are also consistent in sign with what we might
expect, but vary in magnitude for different values of 0. Other parameters tend to vary in
significance level, magnitude and even sign across the different switching times. This makes
it difficult to discern general rules about when switches should take place based on system
state characteristics.

Nonetheless., even if general conclusions cannot be drawn from the logistic regression,
it is interesting to explore whether the allocations recommended by the logistic regression
model constitute a good server allocation policy. That is, rather than solving the dynamic
program to determine when switches should occur, could an airport rely solely on this logistic
regression model? To answer this, we simulate the system using the logistic regression model
solution at each state for the server allocation. The average waiting times are summarized
in Table 5.13, along with the original results from Table 5.11 for the stochastic service times
model. We see that the logistic regression model performs roughly as well as the two
dynamic allocations and the schedule allocation when tested on the same "training" data
from which the model was created. However, we would like to know whether the relationship
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Parameter 0 =0 0 = 5 0 = 10 0 = 15 0 = 30
QC -0.063 -0.047 -0.048 -0.042 -0.057
QE 0.050 0.060 0.062 0.060 0.043

log(QE) . -0.128 -0.234 -0.147 -0.188
Ac(t) -2.072 -1.477 -1.217 -1.223 -2.616
AE(t) 0.965 3.235 3.553 3.661 12.221

Ac(t + 7) 0.554 . -0.527 -0.374 -0.787
AE(t + T) -0.531 -0.536

Ac(t)/AE(t) -4.527 . 2.539 3.087 6.757

Ac((t + T)/AE(t + T) 1.173 1.125
AC(t) AE(t) 5.931 3.517 11.734Ac(t+T)/AE( t+)



Fixed Original Hybrid Nearest Logistic
0 Allocation Schedule DP Neighbor Regression
0 2.357 2.297 2.213 2.448
5 2.490 2.552 2.496 2.542

10 4.438 (7,3) 2.810 2.723 2.692 2.680
15 2.943 2.904 2.891 2.911
30 3.457 3.448 3.418 3.397

Table 5.13: Average waiting time (minutes per customer) under
tested on the training set, by switching time 0, as compared to
hybrid and nearest neighbor allocations of Table 5.11.

the logistic regression model
the fixed, original schedule,

Schedule
Allocation Hybrid Nearest Logistic

0 (Stochastic) DP Neighbor Regression
0 0.997 0.972 0.986 1.174
5 1.214 1.202 1.151 1.340

10 1.313 1.276 1.318 1.425

15 1.361 1.402 1.351 2.197

30 1.629 1.578 1.561 3.346

Table 5.14: Average waiting time (minutes per customer) under the logistic regression model
tested on a test data set having entry pattern equal to that of Section 5.3.2 and stochastic
service times, versus Section 5.3.2's original schedule allocation under stochastic service times
and the hybrid and nearest neighbor allocations, by switching time 0.

derived in the regression holds across other sets of data. If we were to consider a new queueing
system, could the logistic regression model predict when servers should be switched between
the queues?

The first pitfall is that the above logistic regression model is based on the initial assump-
tion that there are N = 10 servers that can be allocated to the queues. If N is smaller
than 10, then the logistic regression model might suggest an allocation that is infeasible.
If N is greater than 10, then there would a range of feasible allocations that would never
be considered by the regression model. So an immediate constraint is that a given logistic
regression model can be applied only to a system having the same number of servers as the
system that generated the model.

To test our model's performance, we consider Terminals C and E again but use the entry
rates given in Section 5.3.2 for the case of deterministic disruptions to the entry process.
Table 5.14 shows the average waiting times under the schedule allocation of Section 5.3.2
applied to stochastic service times, the hybrid and nearest neighbor dynamic allocations and
the logistic regression model allocation.
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Although the logistic regression allocation does comparably well for small switching times,
as the switching time increases, it begins to perform significantly worse than the schedule
and dynamic allocations. This indicates that there might be additional variables excluded
from the regression model that help to explain switching behavior in cases where switching
times are higher. Though the possibilities are endless, one likely guess would be that the
allocation under high switching times depends not only on the next period's entry rates but
on entry rates in later future periods. When switches require significant amounts of time to
be completed, it might become more important to consider changes to the entry rate further
into the future.

Another heuristic that we considered was a modification of Duenyas and Van Oyen's
heuristic in [45] to accommodate multiple servers, variable arrival rates and decision epochs
of duration T. In their heuristic, they modify the traditional c-rule in a single-server system
so that the decision considers not the maximum possible service rate /i but the time average
service rate that, is realized over the next busy period (the time until the queue being switched
to empties), given that any switches cause the server to be temporarily unavailable, reducing
total service capacity. In our version, we select the allocation that maximizes the total service
rate over the next two decision epochs3 , computed as follows.

If all servers remain in their current positions, then the time average service rate at queue
i will be nip if the servers will be unable to work off any existing queue or arriving fluid
over the next two time periods. If the queue is completely worked off by the end of the
-two periods, then the time average service rate is o + Ai2(t)+i(t+). If the queue is worked
off during the first decision epoch but reappears during the second decision epoch, then the
average service rate at queue i is + Ai(t)+n. This is summarized below:

ni Qi + Ai(t)T > nit, and Qi + T(Ai(t) + Ai(t + T)) > 2nitT

atj Qi + Ai(t)(t+T) Qi + A(t)T- > ni-T, and Qi + (AXi(t) + Ai(t + T)) < 2ni/7T
or, Qi + Ai(t)r < ni/IT, and Ai(t + ) < nt

2T + A2(t)+np Qi + Ai(t)r < niLT, and Ai(t + T) > n.

(5.18)

On the other hand, if k servers are switched from queue A to queue B, then the average
service rate at queue A is the same as above, with ni = nA - k. At queue B, the average
service rate is /L(nB + k) - k if the queue is never worked off during the two decision
epochs. If the initial queue is worked off and no additional queue forms during the two
decision periods, then the average service rate is Q + AB(t)+B(T) Lastly, the average2r 2

service rate is equal to QB + AB(t)+(nB+k)t if the queue is worked off during the first decision2r 2

3 Had we considered only the next decision epoch, then under very large switching times, servers would
almost never be switched. For instance, if the switching time, 0, is equal to the decision interval, , then
switching a server would be equivalent to permanently losing a server, as he would not arrive at the new
queue before the end of the current period. In addition to this, considering two decision epochs allows us to
consider a change in entry rate at the next period.
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Schedule Nearest Number of Max. Rate Number of %
0 Alloc. Neighbor Switches Heuristic Switches Imprvmt.
0 2.357 2.213 20.9 2.500 10.0 -13.0
5 2.490 2.496 16.1 2.647 10.0 -6.0

10 2.810 2.692 12.1 2.804 10.1 -4.2
15 2.943 2.891 12.3 2.972 10.2 -2.8
30 3.457 3.418 11.1 3.609 10.4 -5.6

Table 5.15: Average waiting times (minutes per customer) under the maximum service rate
heuristic, by switching time 0, as compared to the original schedule and dynamic (nearest
neighbor) allocations of Table 5.11. Also given are the average number of switches under
the dynamic and heuristic allocations, and the percentage improvement of the heuristic
allocation over the dynamic allocation.

epoch but reappears during the second decision epoch. This is summarized below:

p(nB + k) - kT

QB + AB(t)+AB(t+T)
2r 2

QB + AB(t)+(nB+k)p2Tr + 1 2

{ QB + AB(t)T > (nB + k)l7- - kl, and
QB + T7(B(t) + AB(t + T)) > 2(nB + k)pT - kO
QB + AB(t)O < nB/LO, and
AB(t + T) < (nB + k)p

QB + AB(t)O > nlBO, and
or, AB(t + T) < (nB + k)p, and

QB + AB(t)7 < (nB + k)u7 - kpO
QB + AB(t)O > nBO, and

or, QB + AB(t)T > (nB + k)Ur - kpiO, and1 QB + T7(B(t) + AB(t + 7T)) < 2(nB + k)LT - kO
QB + AB(t)O < nBpO, and
AB(t + 7) > (nB + k)p

QB + AB(t)O > nBLO, and
or, AB(t + T) > (nB + k)1i, and

. QB + AB(t)T < (nB + k)puT - kO

(5.19)

The heuristic is to select the number of servers, k, to switch from A to B (where k = 0
refers to the case of no switching in Equation (5.18), and k < 0 refers to switching from
B to A, where A is substituted for B in Equation(5.19)), that yields the maximum average
service rate, RateA + RateB, over the next two periods. Table 5.15 shows the average waiting
time and average number of switches under this heuristic as compared to those under the
nearest neighbor dynamic programming algorithm and original schedule allocation, for the
case of stochastic service times. We see not only that the heuristic performs worse than
the dynamic allocation, but that it generally fares worse than even the original schedule
allocation.
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Because the relationship between each system state and the allocation selected at that
state is complex, it is difficult to identify rules of thumb for when switches should occur
that would simplify the dynamic allocation computations but still perform better than the
original schedule allocation. For situations where dynamic server allocation is warranted,
the dynamic program would be more reliable than the heuristics tested above, and for other
situations, a pre-determined schedule allocation might be sufficient.

Despite our inability to characterize the decision as a simple function of queue lengths and
arrival rates, however, we can still make a few observations. First, as explained earlier, the
number of switches conducted does not always decrease as 0, the switching time, increases.
When switches require a very long period of time, additional servers may need to be switched
to accommodate queues that grow during that time.

It is also seen in the results that the DP's decision may occasionally be to switch servers
away from a longer queue, to a shorter queue. This is in contradiction with many results
found in the literature for systems with or without switching times, and is most likely due
t;o the fact that the decisions made in our models are allowed to anticipate future changes
in the entry rates at each queue. Although Queue A might be longer than Queue B in the
current period, knowledge that Queue B's arrival rate might suddenly increase in the near
future could support a decision to move servers away from Queue A.

Another phenomenon that contradicts results found in the literature for simpler systems
is that even when one queue is empty and the other queue very long, the dynamic program
might not decide to switch a server to the very long queue. In a stochastic context, this is
known as idling, where servers remain idle at an empty queue while another queue is very
long. In a fluid model, however, as long as the entry rate to a queue is nonzero, no idling
is possible. When the entry rate is smaller than the total service capacity, the servers work
continuously to process the fluid as it arrives. Thus, even though a queue may not form, the
system is not empty and servers are not idle. This could explain why the dynamic program
may elect, in some cases, to leave servers at an "empty" queue rather than switch them over
to a busier one.

5.6.7 Sensitivity analysis
According to Susan F. Hallowell of the Transportation Security Administration, the airline
industry has a saying, "If you've seen one airport, you've seen one airport" [4]. That is,
airports are served by different sets of airlines, have different flight schedules and traffic
patterns, and most importantly in the security context, different floorplans affecting how
security checkpoints are arranged and operated. A dynamic server allocation would be
infeasible at an airport in which all passengers pass through the same security checkpoint or
in which security checkpoints are separated by great distances. Some airports have multiple
checkpoints serving a same set of gates, so that airport customers can select which checkpoint
they use based on which has the shorter lines. In such a system, customers themselves could
balance queue loads, reducing the need to allocate dynamically the security screeners. Still,
other airports might be better suited to dynamic security allocation than Logan Airport, for
which we found dynamic allocation to offer at best only moderate improvement in waiting
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Table 5.16: Average waiting time (minutes per customer) in the stochastic entry pattern
disruption model when the number of servers is reduced from N = 10 to N = 9, under the
original schedule allocation and the dynamic allocation.

times. Recognizing this renders it difficult to make any specific statements about when
dynamic allocations should be conducted, but we will discuss how the benefits of dynamic
allocations are sensitive to characteristics of the system under study. We explore here whether
dynamic allocations could be used to reduce staffing levels at checkpoints, and in the next
section, we discuss the limits of our dynamic server allocation framework.

Using dynamic allocation to reduce the number of servers

In the previous results sections, we have focused on the extent to which different types of
allocations (fixed, schedule or dynamic) affect average customer waiting times in parallel
queues where the total number of servers, N, is kept constant. An equally valid question is
whether staffing levels can be reduced via dynamic allocations while maintaining satisfactory
levels of service for the queue customers. Indeed, in the postal service study of [24], it was
found that dynamically allocating back room employees to the front room in response to
shifts in queue length could yield a reduction of 1-2 servers in test cases in which 6-15
servers were originally required.

Specifically of interest is the question of whether, in a stochastic system, the waiting
times using N- 1 servers under a dynamic allocation are comparable to those using N
servers under a schedule allocation, when otherwise having only N- 1 servers would be
insufficient. Does dynamic allocation permit us to use fewer servers than would a schedule
allocation? Based on the results from the previous section, the initial hypothesis is that
dynamic allocation does not reduce waiting times sufficiently as compared to a schedule
allocation to permit a reduction in staffing. Tables 5.16 and 5.17 demonstrate this.

Table 5.16 shows the average waiting times in the stochastically disrupted entry pattern
model when N = 9 and 10 and under both schedule and dynamic allocations. We see that
the average waiting times when only N = 9 servers are on-duty are significantly worse than
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Allocation 0 N =9 N =10
0 7.217 2.865
5 7.100 2.611

Original 10 7.368 2.739
Schedule 15 7.573 3.013

30 8.320 3.707

0 6.639 2.284
5 7.070 2.582

Dynamic 10 7.299 2.741
15 7.522 2.902
30 8.036 3.420



Allocation 0 N = 9 N = 10
0 6.441 2.357
5 6.576 2.490

Original 10 6.904 2.810
Schedule 15 7.065 2.943

30 7.580 3.457

0 6.391 2.297
5 6.615 2.552

Dynamic 10 6.873 2.723
(Hybrid) 15 7.116 2.904

30 7.542 3.448

0 6.374 2.213
Dynamic 5 6.535 2.496
(Nearest 10 6.836 2.692

(Neighbor) 15 7.050 2.891
30 7.520 3.418

Table 5.17: Average waiting time (minutes per customer) in the stochastic service rate model
when the number of servers is reduced from N = 10 to N = 9, under the original schedule

allocation and the dynamic allocations yielded by the hybrid and nearest neighbor heuristics.

when N = 10. Although the dynamic allocation offers moderate improvement over the
original schedule allocation when N = 9, it is not sufficient to justify a reduction in staffing
from N = 10. Table 5.17 shows similar results for the stochastic service rates model. Once
again, neither of the dynamic allocations offers significant improvement over the schedule
allocation even for a same value of N = 9, let alone as compared to a system having N = 10
servers available.

To explore whether another system having different characteristics might yield more
optimistic results, we examine server allocations between security checkpoints B2 and B5
(both in Terminal B at Logan) for entry rates experienced on January 19, 2005 between
8:30 AM and 7:30 PM. Checkpoint B2 has a capacity of up to two checkpoint lanes and
:135 up to six. On January 19, Logan had a time average of 4.7 lanes open between the two
checkpoints, so we run the allocation heuristics using N = 4 and N = 5. Table 5.18 shows
the average waiting times for the case of stochastic service rates. Although the waiting
times achieved by N = 4 servers are satisfactory, and an airport might be willing to incur
these waiting times to reduce the number of screening teams, we note that it is not due to
the dynamic allocation that this is possible, as the dynamic allocation performs on par with
the original deterministic schedule.

We conclude, therefore, that while dynamic allocations can occasionally provide moderate
reductions in average waiting times, they are unlikely to provide opportunities to reduce
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Table 5.18: Average waiting time (minutes
model applied to Checkpoints B2 and B5, for

per customer) in
N = 4 and N = 5,

the stochastic service rate
under the original schedule

allocation and the dynamic allocations yielded by the hybrid and nearest neighbor heuristics.
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Allocation 0 N = 4 N-5
0 1.152 0.263
5 1.538 0.256

Original 10 1.778 0.256
Schedule 15 1.977 0.259

30 2.596 0.269

0 1.169 0.271
5 1.506 0.255

Dynamic 10 1.764 0.259
(Hybrid) 15 1.962 0.258

30 2.534 0.267

0 1.120 0.205
Dynamic 5 1.481 0.212
(Nearest 10 1.767 0.217

(Neighbor) 15 1.959 0.219
30 2.571 0.247



staffing levels significantly.

5.7 Model limitations
Because this work is among the first in a relatively unexplored topic of queueing, we do
not claim that the modeling techniques used here are the only valid methods for studying
this problem. Rather, we have made a first cut at a fairly difficult queueing problem, and
in the process, we have identified new avenues of exploration that might reveal improved
performance of dynamic allocations. For instance, this work has focused on minimizing the
total waiting time a passenger spends in queue at the airport. One might similarly consider
an allocation that maximizes the total utilization (or throughput) of servers over the day.
However, an optimal solution to such objective functions might force some passengers to wait
very long while most experience no wait. A different objective function might be to minimize
the variance in waiting times or to minimize the probability that any passenger waits longer
than, say, ten minutes. However, these nonlinear objective functions are fundamentally more
difficult to model.

We also assumed that the decision to switch would occur at pre-specified decision epochs.
While it is unrealistic to assume that airport checkpoint queues could be monitored contin-
uously and switches prescribed at any time, a rigid assumption of decision epochs automat-
ically limits the potential responsiveness dynamic allocations are intended to provide. One
possible solution is to allow the employees themselves to decide whether or not to switch
to a different queue once they become idle. This could allow switches to occur more fre-
quently but introduces a few obstacles. First, the servers would need to know the length of
queues elsewhere in the airport and expected future entry rates in order to make an opti-
mal decision. Without such information, the server might accidentally switch away from a
temporarily idle queue that is likely to see a sudden surge in the entry rate or choose not
to switch when perhaps he should. Secondly, even with access to this information, we have
seen that the decision of when to switch is not easily expressed as a simple function of the
queue lengths and entry rates. The heuristics tested here proved unreliable in determining
when switches should occur, so each server would likely need to solve a dynamic program to
decide whether or not to switch. While such obstacles could be overcome through the use
of pagers and computers, they also demonstrate that the framework used here, involving a
centralized queue manager, is perhaps more realistic, if less flexible.

Next, the server allocation framework presented here, involving two parallel queues and
a fixed pool of servers, is not appropriate for all systems. As an example, we consider two
checkpoints within Terminal C: Checkpoint C2, having five possible lanes, and Checkpoint
C3, having four possible lanes. The time-average number of servers allocated to these check-
points on January 18, 2005 between 5:00 AM and 6:30 PM was 5.62 servers. Because our
model requires the number of servers, N, to remain constant over the day, we might expect
that choosing either N = 5 or N = 6 could result in reasonable average waiting times. How-
ever, even using N = 6 (a more costly, on average, staffing level than that used by Logan)
yields significantly higher waiting times than we have seen previously (see Table 5.19).
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Schedule
0 Allocation
0 5.958
5 6.517

10 7.090
15 7.385

30 8.064

Table 5.19: Average waiting times (minutes per customer) for the deterministic fluid model
schedule allocation applied to Checkpoints C2 and C3, when N = 6.

These waiting times might not initially appear unacceptable, but these are average waiting
times over the entire day, including long periods of time where passengers experience near
zero delays. Much of the contribution to this average delay occurs during the morning peak
period, when both queues grow to nearly 300 customers for certain values of 0. The reason
for this lies in how the entry rate varies across the two queues over the day. Figure 5-11
shows the expected entry rates at checkpoints C2 and C3 over the day. We see that their
peaks and valleys roughly coincide, so that when queue C2 needs additional servers, C3 also
needs additional servers and vice versa. The net result is that there are periods of time,
such as between 9 AM and 1:30 PM, when the system can function well with relatively few
servers on-duty (and indeed, Logan allocated fewer servers at this time), while between 7
and 8:30 AM, for instance, the system needs 8-10 servers to accommodate the entries (and
Logan allocated more servers at this time). Holding the value of N constant over the day, as
our model does, forces the system to be overstaffed during off-peak periods and understaffed
during peak periods. As there is no reward for being overstaffed and only penalties for being
understaffed, we require a larger value of N to achieve reasonable average waiting times from
our heuristics. Thus, our framework is too restrictive for queueing systems in which the two
queues experience peaks and valleys simultaneously. In such systems, it would be better to
vary the total number of servers, N, over the day rather than changing just the allocation
of these N servers between the two queues.

Dynamic server allocations also do not work very well between queues having only a
few security checkpoint lanes. When NAma, or NBma, is relatively small, then changing the
allocation by even one server can dramatically affect the utilization ratio ( -i) at each queue.
Because of this, dynamic reallocations are unlikely to occur often.

Lastly, most airports have more than two security checkpoints. An important extension
to this work would be to consider switches between several queues. While this could pro-
vide additional flexibility to a dynamic allocation, it would also increase dramatically the
complexity of the problem.
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Customer Entry Rates to Checkpoints C2 and C3, January 18, 2005
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Figure 5-11: Entry rates (in customers per minute) to Checkpoints C2 and C3 at Logan
Airport on January 18, 2005.

5.8 Are dynamic allocations of servers beneficial?
The models tested here have not provided evidence to support the dynamic allocation of
servers at airports. Although it is clear that an anticipatory time-varying allocation, such as
that provided by a deterministic schedule allocation, is superior to a fixed allocation, to take
this time-sensitivity a step further and allow the allocation to depend on stochastic queue
imbalances does not appear to significantly reduce waiting times in the examples considered.

One explanation is that the stochasticity we considered here was on a very small level.
Stochastic service times, for instance, may cause some variability in queue lengths between
decision epochs, but for the most part, the variability cancels itself out and the optimal server
allocation is unaffected by this variability. Furthermore, in the presence of switching times,
heuristics are reluctant to prescribe switches unless a major shift in customer entry pattern
has occurred. Thus, the minor fluctuations in queue length caused by variable service or
entry rates do not necessitate a dynamic response.

In the case of stochastic weather disruptions to the entry pattern, in which all passengers
over a four-hour period were affected, the benefit of a dynamic allocation was more significant,
and even more so in a system having randomized entry rates. This suggests that dynamically
allocating servers might be more useful to counteract large stochastic effects (such as a gate-
change in which a wave of passengers might need to pass through a different checkpoint
than expected) on an occasional rather than continuous basis. Stochastic disruptions that
affect the two queues unequally are also more likely to necessitate dynamic adjustments
than disruptions that affect both queues proportionately. During normal queue operations,
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the use of a schedule allocation based on deterministic entries and services appears to be
sufficient.

In those cases where dynamic allocation could be useful, rules of thumb for when switches
should occur are difficult to generalize and typically perform no better than the original
schedule allocation. Fortunately, in these cases, the dynamic programming heuristics formu-
lated in this chapter could be used to prescribe switches.

Certain system properties can also limit the benefit offered by dynamic allocations. For
instance, queues in which the combined customer load varies widely over the day will not
be well-served by a formulation where the total pool of servers is held fixed. And queues
requiring only a few servers at any time generally wouldn't benefit from dynamic server
allocation because temporarily losing even one server can cause the queue's load factor to
skyrocket.

When airline passengers at the airport notice that one security queue is longer than
another, a common reaction is to wonder why the airport does not reassign a screening team
from the shorter queue to the longer one. Indeed some airports, such as Logan Airport
in Boston and San Francisco Airport, do this. However, we have shown here that if the
scheduled server allocation has been created based on accurate estimates of the customer
entry rates to the respective queues, then dynamic reallocation of servers to compensate for
stochastic fluctuations is not necessary unless those fluctuations are significant and affect
customers on the aggregate, rather than individual, level.
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Chapter 6

Conclusions

This thesis has examined some important problems in aviation security that have arisen
in recent years. By relying on quantitative methods, we have tried to shed light on some
of the intricacies of these issues, which are sometimes ignored in public debate. We began
by quantifying the risk posed by aviation terrorism relative to that posed by other types
of terrorism, and found that, even before 9/11, a randomly chosen American civilian was
hundreds of times more likely to be killed by terrorists during an hour of an air journey than
during an hour on the ground. While the Department of Homeland Security is often criticized
'or over-protecting aviation at the expense of other possible targets, we have demonstrated
that terrorists have historically been fascinated by aviation and offered several examples to
suggest that this fascination continues. Thus, an emphasis on aviation security is perhaps
not simply fighting the last war but could be a reasonable reaction to a history of attacks.

We proceeded to examine specific security measures from the standpoints of detection
capability, cost effectiveness and operational efficiency. A parameterized model for passen-
ger pre-screening systems demonstrated that while public debate of such systems typically
:ocuses on the criteria used for pre-screening, more important is the effectiveness of the ac-
t;ual screening performed on both general and high-risk passengers alike. When the profiling
system is not robust to terrorist loopholes, such as their ability to probe the system prior
to attacking, or when it is unable to draw ties between terrorists within a same group, it is
far more important to ensure that the base level of screening experienced by all passengers
be sufficient to thwart attacks. However, even when the profiling system is effective and
robust, identifying high-risk passengers for additional screening is insufficient if the addi-
t;ional screening they receive is unable to detect a terrorist plot. Furthermore, our model
Ialso incorporated deterrence effects, by assuming that terrorists can gauge their likelihood
of success prior to attacking and attack only if it is sufficiently high. While many critics
cite terrorists' ability to probe the system as a major shortcoming of profiling systems, we
have shown here that extensive probing could actually discourage terrorists from attacking,
if the information they gain by probing reveals a lower chance of success than they initially
anticipated. Although the lack of data and understanding of terrorist behavior impedes our
ability to draw definite conclusions about profiling systems, our model can accommodate a
wide range of assumptions and parameter values and it can serve as a tool for policy-makers
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to evaluate the potential value of profiling systems.

We also investigated certain security measures from a cost standpoint, determining deci-
sion thresholds for the level of threat of attack required in order for a measure to be deemed
cost-effective. The metric provided is a time threshold such that if an attempted attack is
more likely than not to occur within this period of time, then the security measure should be
implemented. Taking into consideration the costs of such measures, the costs of an attack
and the cost and effectiveness of alternate security measures, we applied this model to three
policies pertaining to luggage, airmail and cargo carried in the belly of passenger aircraft.
We found that while the tendency might be to address all three issues as being identical,
in fact, the policies have quite different costs and possibly different levels of threat, so that
the cost-effectiveness of one does not necessarily imply the cost-effectiveness of the others.
In particular, we find that even if attempts on checked luggage occur infrequently, match-
ing checked bags to passengers on-board the aircraft is so inexpensive that it might still be
cost-effective. On the other hand, unless an attempt to place an explosive inside of a cargo
shipment is imminent, then removing cargo from passenger aircraft is not cost-effective, even
if there exists no alternative screening method.

Finally, we considered an operational issue at passenger checkpoints at the airport,
namely whether opening and closing lanes at security checkpoints across the airport dy-
namically, in response to fluctuations in queue lengths and arrival rates to the queue, can
yield shorter waiting times than adhering to a pre-determined schedule for lane openings
and closures. We used dynamic programming techniques on stochastic fluid models to deter-
mine optimal switching policies for systems having stochastic arrival patterns or stochastic
service times. We found that, for the types of stochastic effects considered, dynamic alloca-
tion does not yield significant reductions in the average waiting time over a pre-determined
schedule, despite its use at a few major U.S. airports. In particular, when the stochasticity
affects passengers individually, such as in their service times, then the benefits of dynamic
server allocation are negligible. However, when the stochasticity affects passengers on the
aggregate, such as during weather disturbances in which the arrival rate experienced by all
customers might shift or when the anticipated arrival rates are not very accurate, then dy-
namic allocation could be useful. In light of this, we explored, but were unable to attain,
general rules guiding when such switches should occur. We found that switches were related
in complex ways to the system state and that the use of general rules did not perform any
better than a pre-determined schedule allocation and performed worse than the dynamic
allocation heuristics we developed here.

The greatest limitation to these techniques is the lack of information. However, even
absent key parameter values, we can still draw meaningful conclusions using these models.
For instance, though we may not fully understand how terrorists are deterred by the presence
of certain security measures, we can still observe the effects of deterrence assuming different
levels of risk-averseness and show how the end assessment of the policy varies across these
levels. Though we may not know the exact risk of an attack, we might believe that an
attempt is more likely than not to occur over the next, say, twenty years. Given that looser
statement of belief, a policy decision might defensibly be made.
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These are just some of the issues facing aviation security policy, and there continue to be
gaps that could be addressed using quantitative techniques. A common complaint against
current efforts in aviation security is the lack of a system-wide perspective. While certain
aspects of aviation security have been bolstered, others have been ignored, and policies
appear to be implemented with little regard to how they interact with each other. For
instance, much has been done to improve passenger security but little has been done to
protect airport perimeters and aircraft access points. Said Dawn Deeks, spokeswoman for
the Association of Flight Attendants, "It creates an illusion that we're doing everything we
can. What passengers see is a very thorough search. We see behind the scenes at the airport,
and the back door is wide open." [5]. Other concerns are threats to general aviation and
commercial cargo aircraft.

Such a system-wide analysis should be a focus of future research, and the studies pre-
sented here are the building blocks of such work. Any large scale study would first need to
evaluate the performance and costs of individual components of the security system prior
to considering how they interact. The methodology presented here can help in this initial
assessment and identify influential variables at the component level that might remain in-
fluential at the system level. Moreover, a systematic approach would require understanding
-how security measures interact to deter and thwart terrorism, which might involve extensive
research over a long period of time. The frameworks given here applied to individual security
measures could guide decisions in the meantime. Furthermore, the spirit of these techniques
(incorporating terrorist behavior into a probabilistic assessment of a policy's performance,
using the time until a first attack is likely to occur as a decision threshold for a policy's
cost-effectiveness, and improving the operational performance of a security process) can also
'be applied to systems of security measures.

Future research must also keep up with the evolution of technology. Improvements to
existing technology continue to be made and new technology for improving passenger and
'baggage screening continues to be developed, such as a "sniffer" capable of detecting traces
of explosives on a person's body [4], radio frequency identification baggage tags and in-line
baggage screening conveyor systems [32]. As faster screening technology becomes available,
policies currently deemed too expensive or time-consuming might eventually be rendered
cost-effective. Thus, aviation security decisions should not be considered to be one-time
proclamations but should be continuously reviewed and updated to respond to new tech-
nologies and new threats. A key recommendation made by the 9/11 Commission was to "find
a way of routinizing, even bureaucratizing, the exercise of imagination" [107] to conceive of
new plots before they arise and to develop security policies accordingly.

As security policies are revised, a quantitative systems analysis approach should be used
to model the interplay between security measures and guide security decisions. Even if
aspects of terrorist deterrence or particular parameter values are not well understood, a broad
sensitivity analysis can shed light on which measures might yield the greatest overall threat
reduction, and which might simply cause the terrorists' attention to be diverted to other
similar targets. While operational considerations, such as the efficient implementation of
security procedures, are important and can also benefit from operations research techniques,
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more important are the broader questions of which security policies to implement and what
reduction in risk to expect from such policies. Some of the frameworks presented here could
be used on future proposed security measures to evaluate their cost-effectiveness and their
ability to thwart terrorism.

134



Appendix A

Fatal Terrorist Attacks Against
American Civilians,
1/1/1968 - 9/10/2001

We list here fatal terrorist attacks against American civilians over the period 1/1/1968 to
9/10/2001, showing the number of civilians killed and the location category for the attack.
A * denotes those attacks for which a location was not clearly stated in the source and that
was assigned to a likely category based on similar types of
101, 125, 145, 151, 152, 153].

attacks. Sources: [1, 2, 17, 26,

Table A.1: Fatal Terrorist Attacks

US Civilians
Date Description Killed Category
1-16-1968 Military advisor shot in car; Guatemala 2 Other Travel
8-28-1968 Ambassador taken/killed from car; Guatemala 1 Other Travel
10-12-1968 Army captain killed outside home; Brazil 1 Home
1-11-1970 Soldier killed in tavern; Ethiopia 1 Leisure
2-21-1970 Swissair Flight 330; Zurich 6 Aviation
2-23-1970 Tourist bus shooting; West Bank 1 Other Travel
6-10-1970 Murder of U.S. Army Assistant Attache at home 1 Home
7-31-1970 USAID worker kidnapped and killed 1 Home*
8-24-1970 Anti-Vietnam attack; U. of Wisconsin-Madison 1 Work
1-16-1972 Nurse killed in car; Gaza Strip 1 Other Travel
5-8-1972 Hijacking of Sabena Flight 1 Aviation
5-30-1972 Shooting at Lod Airport; Israel 16 Aviation
12-8-1972 Carbomb; Australia 1 Leisure
3-1-1973 Hostages at S. Arabia Embassy reception; Sudan 2 Leisure
5-21-1973 Killing of businessman; Argentina 1 Work
6-2-1973 American military advisor shot; Iran 1 Other Travel*
8-5-1973 Shooting of boarding flight passengers; Greece 2 Aviation
10-18-19'73 Killing of hostage in bank robbery; Lebanon 1 Work
11-6-1973 Murder of school superintendent; California 1 Work
11-22-1973 Businessman and bodyguards shot; Argentina 3 Other Travel*
12-17-1973 Flight attacked at Fiumicino Airport; Italy 14 Aviation
8-6-1974 Bombing at Los Angeles Airport; California 2 Aviation
8-19-1974 US Ambassador killed at office; Cyprus 1 Work
9-8-1974 Bombing of TWA flight; Greece 17 Aviation
1-27-1975 Bombing of Fraunces Tavern; New York City 4 Leisure
2-26-197,5 U.S. Consular agent kidnapped/killed; Argentina 1 Work*

Continued on next page
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Table A.1: Continued

Description
USAF officers shot on way to work; Iran

Shooting of diplomat outside home; Greece
Bombing at Laguardia Airport; New York City

Diplomats killed at roadblock; Lebanon
Attack on passengers at Yesilkoy Airport; Turkey

Assassination of officials in car
Bomb at Grand Central Station; New York City

Shooting of businessman; Mexico
Takeover of three buildings; Washington D.C.

Missionary killed by rebels; Ethiopia
Missionary killed by rebels; Zaire

Businessman killed; Indonesia
Businessman and bodyguards shot; Argentina

Crash of hijacked aircraft; Malaysia
Bus bombing; Jerusalem

Evangelist killed at work; Zimbabwe
Murder of policeman; Puerto Rico

Businessman shot in car; Iran
Businessman killed in home; Iran

Ambassador kidnapped and killed; Afghanistan
Two noncommissioned USAF officers shot; Turkey

Killing of volunteer; Zimbabwe
Shooting of teacher at home; Turkey

Guerrilla attack on Instruction Center; El Salvador
Storming of US Embassy; Pakistan

Killing in front of government mini-bus stop; Turkey
Bombing of Airlines and Tourist Office; Turkey

Navy officer killed outside home; Turkey
Bombings; Philippines

Killing of two USAF officers at home; Turkey
Shooting of Catholic workers; El Salvador

Businessman kidnapped and killed; Guatemala
Killing at restaurant; El Salvador

Linguist kidnapped and killed; Colombia
Kidnapping and killing of two tourists; Colombia

Bombing at JFK Airport; New York City
Kidnapping and killing of tourists; Zimbabwe

Priest shot and killed; Guatemala
Pastor shot and killed; Guatemala

Robbery at Nanuet Mall; New York
Assistant Military Attache shot outside home; France

Missionary shot and killed; Guatemala
Killing at plantation; Guatemala

Arson of restaurant; New York
Ambush of Navy sailors outside bar; Puerto Rico

Shooting; Puerto Rico
Bombing and shooting at Ankara Airport; Turkey

Bombing of restaurant; France
Terrorist Robbery; Puerto Rico

Shooting; North Dakota
Bombing of US Embassy; Lebanon

US Military advisor killed in car; El Salvador
Bombing of Orly Airport; France

Terrorist robbery of armored truck; Puerto Rico
Terrorist shooting; Michigan
Explosion of airlines; UAE

US Naval Mission chief killed in car; Greece
Bombing at Harrod's Dept. Store; U.K.

Pres. of American U. of Beirut killed; Lebanon
Woman shot in car; El Salvador

Force and Observer Dir. Gen'l murdered; Italy
Continued on next page
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Date
5-21-1975
12-23-1975
12-29-1975
6-16-1976
8-11-1976
8-28-1976
9-11-1976
1-20-1977
3-9-1977
3-27-1977
4-1-1977
11-29-1977
12-2-1977
12-4-1977
6-3-1978
6-17-1978
8-1-1978
12-28-1978
1-14-1979
2-14-1979
4-12-1979
4-30-1979
6-2-1979
9-23-1979
11-21-1979
12-14-1979
4-10-1980
4-16-1980
9-12-1980
11-15-1980
12-2-1980
12-7-1980
1-3-1981
1-19-1981
2-1-1981
5-16-1981
6-23-1981
7-27-1981
9-14-1981
10-20-1981
1-18-1982
2-13-1982
3-18-1982
4-5-1982
5-16-1982
5-19-1982
8-7-1982
8-9-1982
11-16-1982
2-13-1983
4-18-1983
5-25-1983
7-15-1983
7-15-1983
8-8-1983
9-23-1983
11-15-1983
12-17-1983
1-18-1984
1-26-1984
2-15-1984

US Civilians
Killed

2
1
11
2
1
3
1
1
1
1
1
1
3
1
1
1
1
1
1
1
4
1
1
3
2
4
1
1
1
2
4
1
2
1
2
1
2
1
1
3
1
1
1
1
1
1
1
2
1
2
17
1
2
1
1
1
1
1
1
1
1

Category
Other Travel

Home
Aviation

Other Travel
Aviation

Work
Other Travel

Work
Work
Home

Other Travel*
Other Travel*
Other Travel

Aviation
Other Travel

Work
Work

Other Travel
Home
Work*

Other Travel
Work
Home
Work
Work
Home

Leisure
Home

Other Travel*
Home

Other Travel
Home

Leisure
Work

Leisure
Aviation
Leisure
Home
Home
Work
Home
Home
Home

Leisure
Leisure
Leisure*
Aviation
Leisure
Leisure
Work
Work

Other Travel
Aviation

Work
Home

Aviation
Other Travel

Leisure
Work

Other Travel
Home
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Table A.1: Continued

Description
Restaurant bombing; Spain

Bombing at gas station; Namibia
Shooting of Alan Berg; Colorado

Bombing of Embassy Annex; Lebanon
Librarian killed at Amer. U. of Beirut; Lebanon

Hijacking of Kuwaiti flight; Iran
Bombing of restaurant; Guadeloupe

Terrorist murder of American; Philippines
Hijacking of TWA Flight 847; Lebanon

Shooting at cafe; El Salvador
Bombing of Air India flight; Ireland

Serviceman killed outside nightclub; West Germany
Bombing; New Jersey

Car bomb; Spain
Killing of kidnapped CIA officer; Lebanon

Hijacking of Achille Lauro cruiseship
Bombing; California

Hijacking of Eqyptair; Malta
Attack at Rome Airport; Italy

Bombing of TWA Flight 840; Greece
Bombing of nightclub; West Germany

Terrorist murders; Lebanon
Terrorist shooting; Puerto Rico

Death of kidnapped engineer; Colombia
Bombing of tourist train; Peru

Hijacking of Pan Am Flight 73; Pakistan
Killing of missionaries; Zimbabwe

USAID subcontractor killed
Car bomb of US Defense Attache; Greece

Sabotage of tourist train; Peru
Pan Am Flight 103; Scotland

Shooting of crop dusting plane; West Sahara
Political killing; El Salvador

Shooting of missionaries; Bolivia
Terrorist bus takeover; Israel

Shooting of teenage girl; West Bank
Bombing of UTA Flight 772; Niger

Shooting of technicians in car; Philippines
American killed by terrorist crossfire; El Salvador

Terrorist murderer of reporter; Peru
Shooting in pub; N. Ireland

Bombing of nightclub; Panama
Shooting of rancher; Philippines

Killing of missionary; Liberia
Killing of missionary at home; Lebanon

Shooting of Iranian-born American; France
Shooting of contractor; Turkey

Bombing of apartment building; Greece
Shooting of contractor; Turkey

Bombing of parked vehicle; Turkey
Kidnapping and killing; Colombia

Killing of kidnapped America; Colombia
Attack on car; Liberia

Kidnapping of missionaries; Colombia
Bombing of World Trade Center; New York City

Attack of student in car; South Africa
Shooting of Jew on highway; New York

Church shooting; South Africa
Bombing of Panamanian Atlas Flight; Panama

Kidnapping and killing; West Bank
Attack on tourist's car; Cambodia

Continued on next page
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Date
4-12-1984
4-15-1984
6-18-1984
9-20-19841
11-30-1984
12-4-1984
3-13-1985
5-12-198,5
6-14-1985
6-19-198,5
6-23-198.5
8-8-1985
8-15-1985
9-9-1985
10-4-198,5
10-7-198,5
10-11-1985
11-23-1985
12-28-1985
4-2-1986
4-5-1986
4-17-1986
4-29-1986
5-17-1986
6-25-1986
9-5-1986
10-25-1987
6-13-1988
6-28-1988
12-1-198,8
12-21-1988
12-8-1988
3-15-1989
5-24-1989
7-6-1989
8-18-1989
9-19-1989
9-26-1989
11-11-1989
11-21-1989
11-30-1989
3-2-19901
3-6-1990
3-24-1990
3-27-1990
10-23-1990
2-7-1991
3-12-1991
3-22-1991
10-28-1991
1-8-1992
10-1-1992
10-20-1992
1-31-1993
2-26-1993
8-24-1993
3-1-1994
3-13-1994
7-19-1994
10-9-1994
1-15-1995

US Civilians
Killed

18
2
1
2
1
2
1
1
1
13
19
1
1
1
1
1
1
1
5
4
2
1
1
1
2
2
2
1
1
1

189
5
1
2
1
1
7
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
6
1
1
1
3
1
1

Category
Leisure

Other Travel
Home
Work
Work*

Aviation
Leisure
Home

Aviation
Leisure

Aviation
Leisure
Home
Leisure

Other Travel*
Leisure
Work

Aviation
Aviation
Aviation
Leisure
Work*
Work*
Work*

Other Travel
Aviation
Home*
Home*

Other Travel
Other Travel

Aviation
Work
Home*
Home

Other Travel
Home*

Aviation
Other Travel

Home*
Home*
Leisure
Leisure
Home
Home*
Home
Home
Home
Home
Work
Home

Leisure*
Work*

Other Travel
Work
Work

Other Travel
Other Travel

Leisure
Aviation
Leisure*
Leisure
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3-8-1995
4-9-1995
4-19-1995
6-16-1995
7-5-1995
8-21-1995
9-5-1995
10-9-1995
11-13-1995
11-19-1995
2-25-1996
5-13-1996
6-9-1996
7-27-1996
2-23-1997
7-30-1997
9-4-1997
11-12-1997
1-29-1998
8-7-1998
2-25-1999
3-1-1999
8-10-1999
5-25-2000
9-6-2000
1-13-2001
5-9-2001
5-27-2001
5-29-2001
8-9-2001
7-2-1999-
7-4-1999

Table A.1: Continued

US Civilians
Killed CategoryDescription

Shooting of Consulate shuttle bus; Pakistan
Suicide bombing; Gaza Strip

Oklahoma City Bombing
Killing of kidnapped missionaries; Colombia

Kidnapping-Murder India; trekker
Suicide bombing; Jerusalem

Attack outside home; Jerusalem
Amtrak derailment; Arizona

Car bombing at gov't office; Saudi Arabia
Shooting of UN worker; Bosnia-Herzegovina

Suicide bombing on bus; Jerusalem
Shooting near apartment complex; West Bank

Shooting on a car; Israel
Centennial Olympic Park bombing; Georgia

Killing of kidnapped geologist; Colombia
Suicide bombing on outdoor market; Jerusalem
Suicide bombing at shopping mall; Jerusalem
Shooting of businessmen in vehicle; Pakistan

Abortion Clinic bombing; Georgia
Kenya Embassy Bombing

Kidnapping and killing; Colombia
National Park killings; Uganda

Shootings; California
Journalist killed in ambush on vehicle; Sierra Leone

Attack on UNHCR compound; Indonesia
Killing of kidnapped oil worker; Ecuador
Stoning of American teenager; West Bank
Kidnapping/Killing at resort; Philippines

American killed in car; West Bank
Restaurant suicide bombing; Jerusalem

Multiple Shootings: Illinois

Other Travel
Other Travel

Work
Leisure*
Leisure

Other Travel
Home

Other Travel
Work

Leisure*
Other Travel

Home
Other Travel

Leisure
Work

Leisure
Leisure

Other Travel
Work
Work
Work

Leisure
Work

Other Travel
Work

Other Travel*
Leisure
Leisure

Other Travel
Leisure
Leisure
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2
1

168
2
1
1
1
1
5
1
3
1
1
1
1
1
1
4
1
12
3
2
1
1
1
1
1
1
1
2
2

Date
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Appendix B

Logistic Regression of Dynamic
Server Allocations

On the following pages we see the regression output for the final logistic regression models
described in Section 5.6.6. The number of servers switched from Terminal E to Terminal
C by the dynamic allocation is regressed on system variables such as queue lengths, entry
rates, and functions thereof, for each value of 0. The coefficients for the variables Nc[j - i]
correspond to the coefficients j in the expression for I in equation (5.15) of Chapter 5 when
the initial number of servers allocated to Terminal C, Nc, is equal to j.
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For = 0
obtained from

minutes, we have the following expression for I (where the coefficients are
Figure B-1):

1 = -0.06Qc + 0.05QE - 2.07Ac(t) + 0.96AE(t)

+0.55AE(t + T) + 5.93Ac(t) * AE(t + T)

AE(t) * AC(t + 7)
- 4.53 A(t)

AE(t)
+ 1.17Ac(t + r)

AE(t + T)
: 0

17.54
: 17.54 + (-2.73) = 14.80

14.80 + 14.86 = 29.66
6 : 29.66 + 10.01 = 39.67
7 : 39.67 + 10.13 = 49.80
8 : 49.80 + 8.00 = 57.80
9 : 57.80

10 : 66.72

+ 8.92 = 66.72
+ 7.49 = 74.21,

and the following expressions for the cumulative probabilities:

Cumprob(-4)

Cumprob(-3)

Cumprob(-2)

Cumprob(-1)

Cumprob(O)

Cumprob(1)

Cumprob(2)

Cumprob(3)

Cumprob(4)

I + e51.23-1
1

1 + e4 2.86- 1

1

I + e34 43-1
1

1 + e 23 .66 -1

1

1 + e14 43 -1

1

1 + e 2.34- 1

1

1 + e-4 82 -1
1

1 + e-6 .6 7 -1

= 1
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Ordinal Logistic Fit for Servers Switched, Theta = 0
Whole Model Test
Model
Difference
Full
Reduced

-LogLikelihood
1828.5006
456.2884

2284.7890

RSquare (U)
Observations (or Sum
Wgts)

DF ChiSquare Prob>ChiSq
17 3657.001 0.0000

0.8003
1336

Converged by Objective
Lack Of Fit
Source
Lack Of Fit
Saturated

DF
10663
10680

Fitted 17
Parameter Estimates
Term
Intercept[-3]
Intercept[-2]
Intercept[-1]
Intercept[0]
Intercept[1]
Intercept[2]
Intercept[3]
Intercept[4]
QC
QE
N_C[3-0]
N_C[4-3]
N_C[5-4]
N_C[6-5]
N_C[7-6]
N_C[8-7]
N_C[9-8]
N_C[1 0-9]
A_C(t)
A_E(t)
A_C(t+T)
A_E(t+T)
A_C(t)*A_E(t+T)/
A_E(t)*A_C(t+T)
A_C(t)/A_E(t)
A_C(t+T)/A _E(t+T)

-LogLikelihood
456.28838

0.00000
456.28838

ChiSquare
912.5768

Prob>ChiSq
1.0000

Estimate
-51.229757
-42.859226
-34.436702
-23.66549

-14.433052
-2.3433848
4.82413226
6.66982981
-0.0637495
0.05027258
17.5358507
-2.7315493
14.8596858
10.0076901
10.1291601
8.0027656

8.92005749
7.49404213
-2.0720982
0.96353281
0.55380564
-0.5309909
5.93132688

-4.526884
1.17318598

Std Error
4.0972367
3.9008146
3.7362442

3.524452
3.296644

3.3247669
3.0913492
2.9898767
0.0035012
0.0034559
2.5331746
2.1687445

1.786541
0.6045313
0.6932371
0.5356627

0.745849
0.7723033
0.1397872
0.2306196
0.0986257
0.1684485
1.2805777

0.588268
0.4593916

ChiSquare
156.34
120.72
84.95
45.09
19.17
0.50
2.44
4.98

331.53
211.61
47.92

1.59
69.18

274.05
213.49
223.20
143.03
94.16

219.73
17.46
31.53

9.94
21.45

59.22
6.52

Prob>ChiSq
<.0001
<.0001
<.0001
<.0001
<.0001
0.4809
0.1186
0.0257
<.0001
<.0001
<.0001
0.2078
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0016
<.0001

<.0001
0.0107

Figure B-1: Logistic Regression of Number of Servers Switched, 0 = 0
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For 0 = 5 minutes, we have the following expression for 1 (where the coefficients are
obtained from Figure B-2):

= -0.05Qc + 0.06 QE - 1.48Ac(t) + 3.24AE(t)

-0.54AE(t + T) - 0.13

+if Nc =

0,1,2
3

4

5

6

7

8

log (Q ) + 1.12 (t + )
QE )E(t + T)

0

-7.54
-7.54 + 20.37 = 12.83
12.83 + 16.51 = 29.34
29.34 + 10.15 = 39.49
39.49 + 11.13 = 50.62
50.62 + 11.13 = 61.75,

and the following expressions for the cumulative probabilities:

Cumprob(-2)

Cumprob(- 1)

Cumprob(O)

Cumprob(1)

Cumprob(2)

Cumprob(3)

1

1 + e 6 5 .13 -1

1

1 + e 55 .94 -1

1

1 + e 40.35 -1

1

1 + e 26 .6 1- 1

1

1 + e 22 .09 -1

= 1
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Ordinal Logistic Fit for Servers Switched, Theta = 5
Whole Model Test
Model -LogLikelihood DF ChiSquare Prob>ChiSq
Difference 1058.5270 14 2117.054 0.0000
Full 298.1917
Reduced 1356.7187

RSquare (U)
Observations
Wgts)

(or Sum
0.7802

1156

DF -LogLikelihood
5761 298.19166
5775 0.00000

14 298.19166
Parameter Estimates
Term
Intercept[-1]
Intercept[0]
Intercept[1 ]
Intercept[2]
Intercept[3]
QC
QE
N_C[3-0]
N_C[4-3]
N_C[5-4]
N_C[6-5]
N_C[7-6]
N_C[8-7]
A_C(t)
A_E(t)
A_E(t+T)
log(Q_C/Q_E)
A_C(t+T)/A_E(t+T)
A_C(t)/A_E(t)*A_E(t+T)/A_C(t+T)

ChiSquare
596.3833

Prob>ChiSq
1.0000

Estimate
-65.134496

-55.93979
-40.347935
-26.611485
-22.086682
-0.0466762
0.0595645
-7.5419657
20.3699701
16.5112984
10.1478202
11.1294028
11.1308641
-1.4773548
3.23547703
-0.5360498
-0.1275191
1.12506193
3.51724402

Std Error
5186.7247
5186.7245
5186.7241
5186.7241
5186.7235
0.003572

0.0051176
6297.7869
3572.1182

1.735034
0.7111973
0.8819304

0.822756
0.1114318

0.256
0.1020765
0.0358273
0.5061198
0.8838447

ChiSquare Prob>ChiSq
0.00
0.00
0.00
0.00
0.00

170.75
135.47

0.00
0.00

90.56
203.59
159.25
183.03
175.77
159.73
27.58
12.67
4.94

15.84

0.9900
0.9914
0.9938
0.9959
0.9966
<.0001
<.0001
0.9990
0.9955
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0004
0.0262
<.0001

Figure B-2: Logistic Regression of Number of Servers Switched, 0 = 5
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For 0 = 10 minutes, we have the following expression for 1 (where the coefficients are
obtained from Figure B-3):

1 = -0.05Qc + 0.06QE - 1.22AC(t) + 3.55AE(t)

-0.53Ac(t +

+if Nc =

) + 2.54 t
AE(t)

0, 1, 2, 3

0.23 log (Qc)
QE

0

4 : 12.20

5 : 12.20 + 19.81 = 32.01
6 : 32.01 + 10.37 = 42.38
7 : 42.38 + 12.01 = 54.39
8 : 54.39 + 13.90 = 68.29,

and the following expressions for the cumulative probabilities:

Cumprob(-2)

Cumprob(-1)

Cumprob(O)

Cumprob(1)

Cumprob(2)

Cumprob(3)

Cumprob(4)

1

1 + e 73 .3 6-1

1

1 + e 64 .2 0-1

1

1 + e43 7 0-1
1

1 + e 30 .5 1-1

1

1 + e 26 .1 9-1

1

1 + e15 .21-1

= 1
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Ordinal Logistic Fit for Servers Switched, Theta = 10
Whole Model Test
Model
Difference
Full
Reduced

-LogLikelihood
1130.0995
314.1461

1444.2456

DF ChiSquare Prob>ChiSq
12 2260.199 0.0000

RSquare (U)
Observations (or Sum
Wgts)

Converged by Objective
Lack Of Fit
Source
Lack Of Fit
Saturated
Fitted

Term
Intercept[- 1 ]

Intercept[0]
Intercept[1]
Intercept[2]
Intercept[3]
Intercept[4]
QC
QE
N_C[4-0]
N_C[5-4]
N_C[6-5]
N_C[7-6]
N_C[8-7]
A_C(t)
A_E(t)
A_C(t+T)
logQ_C/Q_E
A_C(t)/A_E(t)

DF
7680
7692

12

0.7825
1283

-LogLikelihood
314.14615

0.00000
314.14615

Estimate
-73.357841
-64.205187
-43.698745
-30.507077
-26.189666
-15.206751
-0.0477533
0.06254654
12.1990331
19.8087184
10.3698427
12.0129075
13.9028895
-1.2170473
3.55346168
-0.5274068
-0.2336195
2.53784685

Std Error
229.04293
229.03725
229.02142
229.02342
229.04388
225.49936
0.0033012
0.0048716
229.00903
1.7821284
0.7076285
0.9023659
1.0471295
0.0943355
0.2696832
0.0732887
0.0373829
0.4572289

ChiSquare
628.2923

Prob>ChiSq
1.0000

ChiSquare Prob>ChiSq
0.10
0.08
0.04
0.02
0.01
0.00

209.25
164.84

0.00
123.55
214.75
177.23
176.28
166.44
173.62

51.79
39.05
30.81

0.7488
0.7792
0.8487
0.8940
0.9090
0.9462
<.0001
<.0001
0.9575
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Figure B-3: Logistic Regression of Number of Servers Switched, 0 = 10
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For 0 = 15 minutes, we have the following expression for I (where the coefficients are
obtained from Figure B-4):

1 = -0.04Qc + 0.06QE - 1.22Ac(t) + 3.66AE(t)

-0.37Ac(t +

+if Nc -

T) ±3. 0 9 AC(t) - 0.15 log ( Q

AE(t) QE

0,1,2,3 : 0

4 : 10.55

5 : 10.55 + 13.52 = 24.07
6 : 24.07 + 11.60 = 35.67
7 : 35.67 + 11.00 = 46.67
8 : 46.67 + 12.78 = 59.45,

and the following expressions for the cumulative probabilities:

Cumprob(-2)

Cumprob(-1)

Cumprob(O)

Cumprob(1)

Cumprob(2)

Cumprob(3)

Cumprob(4)

1

1 + e7 .22-1

1 + e6 0.84 -1

1

1 + e4 1.02 -1

1

1 + e 26 .37-1

1

1 + e 1 7.0 1-1

1

1 + e 1 7.0 1 -1

= 1
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Ordinal Logistic Fit for Servers Switched, Theta = 15
Whole Model Test
Model
Difference
Full
Reduced

-LogLikelihood
1030.6242
299.2240

1329.8482

DF ChiSquare
12 2061.248

Prob>ChiSq
0.0000

RSquare (U)
Observations (or Sum
Wgts)

0.7750
1292

Converged by Objective
Lack Of Fit
Source
Lack Of Fit
Saturated
Fitted

DF
6443
6455

12

-LogLikelihood
299.22400

0.00000
299.22400

Parameter Estimates
Term Estimate
Intercept[-1] -70.22245
Intercept[0] -60.845699
Intercept[1] -41.024094
Intercept[2] -26.369412
Intercept[4] -17.009164
QC -0.042322
QE 0.06047581
N_C[4-0] 10.5472906
N_C[5-4] 13.5257208
N_C[6-5] 11.6046121
N_C[7-6] 11.0051471
N_C[8-7] 12.7750639
A_C(t) -1.2236107
A_E(t) 3.66130822
A_C(t+T) -0.3742362
log(Q_C/QE) -0.1474304
A_C(t)/A_E(t) 3.08700784

ChiSquare
598.448

Prob>ChiSq
1.0000

Std Error
162.32381

162.3165
162.2986

162.29553
154.86194
0.0031334
0.0048496
162.28428
1.5086083
0.787972
0.857905

1.1801356
0.1016892
0.2851798
0.0682733
0.0371215
0.4845432

ChiSquare
0.19
0.14
0.06
0.03
0.01

182.43
155.51

0.00
80.38

216.89
164.56
117.18
144.79
164.83
30.05
15.77
40.59

Prob>ChiSq
0.6653
0.7078
0.8004
0.8709
0.9125
<.0001
<.0001
0.9482
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001

Figure B-4: Logistic Regression ofNumber of Servers Switched, 0 = 15
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For 0 = 30 minutes, we have the following expression for I (where the coefficients are
obtained from Figure B-5):

= -0.06Qc + 0.04QE - 2.62Ac(t) + 12.22AE(t)

-0.79Ac(t + T) + 6.76 - .19 log(QC) + 11.73 (t)
A (t) QE AE(t) *

0,1,2,3
4

5

6
7

8

: 0
5.65
5.65 + 1
21.86 +
41.84 +
77.57 +

AE(t + T)

Ac(t + T)

6.21 = 21.86
19.98 = 41.84
35.73 = 77.57
46.80 = 124.37,

and the following expressions for the cumulative probabilities:

Cumprob(-2)

Cumprob(-1)

Cumprob(O)

Cumprob(1)

Cumprob(2)

Cumprob(3)

Cumprob(4)

1

1 + e 181 . 08 -1

1 + e1 64.90 -1

1

1 + e 10 7 .1 3-1

1

1 + e 8 1.00 -1

1

1 + e8 ' °0 0-

1
1 + e 64 .1 4-1

= 1
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Ordinal Logistic Fit for Servers Switched, Theta=30
Whole Model Test
Model
Difference
Full
Reduced

-LogLikelihood
926.5193
195.6852

1122.2045

RSquare (U)
Observations (or Sum
Wgts)

DF ChiSquare Prob>ChiSq
13 1853.039 0.0000

0.8256
1250

Converged by Objective
Lack Of Fit
Source DF -
Lack Of Fit 6232
Saturated 6245
Fitted 13
Parameter Estimates
Term

LogLikelihood
195.68520

0.00000
195.68520

Intercept[-1I
Intercept[0]
Intercept[1]
Intercept[3]
Intercept[4]
Q C
QE
N_C[4-0]
N_C[5-4]
N_C[6-5]
N_C[7-6]
N_C[8-7]
A_C(t)
A_E(t)
A_C(t+T)
log(Q_C/Q_E)
A_C(t)/A_E(t)
A_C(t)A_E(t+T)/A_E(t)A_C(t+T)

ChiSquare
391.3704

Prob>ChiSq
1.0000

Estimate
-181.08013
-164.89572
-107.13248
-81.005845
-64.140488
-0.0569997
0.04261333
5.6504764

16.2119156
19.9836521
35.7344952
46.7950946
-2.6160023
12.221469

-0.7871487
-0.1877921
6.75746241
11.7343758

Std Error
290.85988
290.77909
290.58657
287.34256
269.49584
0.0052079
0.0049356
281.86729
70.414781
2.4113066

4.427086
4.8638664
0.4151297
1.3357913
0.1313489
0.0518556
1.3275267
1.8204331

ChiSquare
0.39
0.32
0.14
0.08
0.06

119.79
74.54

0.00
0.05

68.68
65.15
92.56
39.71
83.71
35.91
13.11
25.91
41.55

Prob>ChiSq
0.5336
0.5707
0.7124
0.7780
0.8119
<.0001
<.0001
0.9840
0.8179
<.0001
<.0001
<.0001
<.0001
<.0001
<.0001
0.0003
<.0001
<.0001

Figure B-5: Logistic Regression of Number of Servers Switched, 0 = 30
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