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Abstract 

This thesis examines a small corpus of artifacts from Tal-i Iblis, Iran dating to the mid-fjth 
millennium BCE. When excavated in the late 1960s, these artifacts were presumed to be evidence 
of an early copper smelting technology on the Iranian Plateau, and they were delivered to MIT for 
further analysis. In this thesis I briefly describe the origns of early metallurgical activity in the Old 
World focusing mainly on the Iranian Plateau. This will provide a basis for the significance of the 
thesis and of the early date associated with the metallurgcal objects. I have studied six of the Tal- 
i Iblis artifacts curated at MIT through extensive qualitative and quantitative analytical methods. 
These methods are described in Chapter IV The results and discussion are presented in Chapters V 
and VI. I have found that these Iblis sherds provide substantial evidence for the presence of a 
copper smelting technology during the early occupation levels at Tal-i Iblis, Iran. 
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Chapter I: Introduction to Early Metallurgy 

1.1 Background 

This thesis is focused on the analysis of ceramic crucibles recovered fiom the 6" to lSt 

mdlenniurn BCE Iranian site of Tal-i Iblis. These crucibles provide some of the earliest evidence 

for the onset of extractive copper metallurgy on the Iranian Plateau. They each have been exam- 

ined with thermal and chemical compositional analyses to determine the nature of this technology 

developed by the inhabitants of Tal-i Iblis. 

1.2 History of Metallurgy 

This section outlines the background information that will help to establish the historical 

significance of the Tal-i Iblis crucibles. In this thesis, a materials technology (such as metallurgy) 

is defined as any process involving the use of tools with the intent to manipulate materials found in 

the environment. The advent of a true metallurgical technology-i.e., a technology in which metal 

ore is heated with the intention of reducing it to a pure metallic form-is a debated topic even 

today. There is evidence for early metallurgical activity in many areas of the Old World, and as 

materials archaeologists it is our job to interpret t h ~ s  evidence to determine where, when, and how 

such technologies began. Prior research concludes that the earliest metallurgical technologies re- 

sulted fiom familiarity with the properties of both stone and fire. Beyond that, however, the devel- 

opment of metallurgy took different paths in different geographic regions (both in the Old World as 

well as the New World). Approximate dates for the advent of the earliest metallurgical technolo- 

gies in the Old World are reported in Table 1 .I .  

Despite the relatively small amount of archaeological evidence for early metal technolo- 

gies, there are multiple proposals as to exactly how the crucial transition from stone working to the 

production of metal objects occurred. One proposal is that the use of colorful copper ores for 
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Table 1.1. Approximate dates for the onset of some ancient technologies (BCE) 
Technological onset Mesopotamia Levant Anatolia Iranian Plateau 
Lithic 30 000 30 000 30 000 30 000 
Agriculture 8 500 9 000 8 000 8 500 
Pottery 8 500 5 500 6 500 8 500 
Native copper 8 500 8 700 7 200 9 000 
Smelting 3 800 3 200 5 500 3 800 
Bronze 3 000 3 000 3 000 3 000 

Dates for this table have been taken from: 
Lamberg-Karlovsky and Sabloff 1995: 62-66, 80-84; Craddock 2001:153,157; Tylecote 1976:5,9 

decoration on pottery triggered the onset of a new technology (Tylecote 1976). Tylecote believes 

that the well-documented use of green and blue copper ores in Neolithic societies provides some 

verification of this idea. Azurite has been found in Crete at levels dating to as early as 6000 BCE 

(Tylecote 1976: 1 ; Charles 1979:9). If copper oxide or car- 

bonate minerals such as azurite or malachite (Figure 1.1) 

were used as powdered pigments to decorate pottery before 

firing, these early potters would have noticed the effects of 

heat on the mineral. In an oxidizing atmosphere, the min- 
l.31 

= T- 

era1 turns black (Tylecote 1976), but if the pottery were fired 

in a sufficiently reducing atmosphere, the mineral could in- 

stead transform to nodules of metal on the surface of the 

fired vessel. Although this relationship between heat and 

the appearance of metals may have been noticed in conjunc- 

tion with the firing of pottery, the transformation of ore to 
(b) 

metal was not likely to occur in pottery kilns because early Figure 1 .I.  Some examples of 
carbonate copper ores. (a) 

kilns did not create suitably reducing atmospheres (Craddock Malachite; @) Azurite 
http://minerals.gps.caltech.edu/ 

2001). Furthermore, it is not necessary that a sophisticated COLOR_CauresMeta?lod 

pottery technology be developed before the onset of a metallurgical one because a ceramic crucible 

necessary for smelting ore requires thermal and structural properties that are different from those 

necessary for a cook pot (Tylecote 1982). 



Another possible scenario for the advent of metallurgy could stem from the discovery of 

native copper-a metal that occurs naturally as an outcrop when sulfide ores have been leached by 

corrosive ground water, or when heavily saturated ground water courses through fissures in rocks to 

deposit metallic copper in the crevices (Craig and Vaughan 198 1). Craftsmen of the Neolithic age 

were experts in materials selection because their livelihood was based on being able to knap certain 

kinds of rock efficiently to produce desired tools. It is quite possible that upon collecting stone to 

use for various tools, native copper was collected as well (either by accident, or intentionally as a 

novelty item). It would have become obvious immediately that this material possessed properties 

distinct fiom those of other rocks. Presumably for this reason, native copper objects appear very 

early in the archaeological record (9& to 7& millennium BCE) at Ali Kosh in western Iran and at 

Cayonii Tepesi in Anatolia (Tylecote 1976; Craddock 200 1). Figure 1.2 provides the locations of 

these sites and other sites mentioned in this thesis. 

Following the discovery of native copper, craftsmen also realized that they could increase the 

malleability of native copper by heating it at low temperatures. Temperatures of 600°C (Thompson 

1958) are easily attainable with a charcoal fire; anything hotter would require a forced draught. 

These temperatures are well above the temperatures used to anneal copper, which can be done as 

low as at 300°C, but not high enough to melt it (Tm=1083"C). It is likely that melting native copper 

followed this annealing process (Tylecote 1976). Some scholars argue that smelting followed melt- 

ing (Craddock 2001; Charles 1979). Even though these suggestions make logical sense, they rely 

on general theories concerning the evolution of metal technologies, and these theories cannot be 

proven with the little evidence that we have. There are many isolated cases of copper use early in 

prehistory, but these few isolated cases do not determine the onset of a new technology. Rather they 

determine the presence of inquisitive craftsmen. Therefore, we cannot make the leap fiom observ- 

ing the use of native copper objects by a prehistoric society to determining this society's role in the 

evolution of some metal technology. 

For this reason, we can only establish an approximate date for the onset of metallurgical 

technology in the Near East and Central Asia. Scholars do not currently agree on a specific date for 
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this onset. Tylecote (1976) suggests that smelting began in the 4fi millennium BCE, while Pigott 

(1 999) suggests an older date of 5" millennium BCE. Craddock (2001) theorizes that smelting of 

copper ore began during the Neolithic period in the 6" millennium BCE, but states that the "first 

fum evidence for smelting in the Middle East" comes from the 4" millennium BCE (Craddock 

1985: 126). The uncertainty in establishing this date stems fiom both the difficulty in identifying 

the origin of copper objects (i.e., were they formed fiom melted or smelted copper) and from the 

vague definition of metallurgical technology. Tylecote suggests that the transition from lithic to 

metal technologies should be defined as the presence of copper smelting, not by the ability of 

ancient craftsmen to recognize and shape native copper by cold hammering and annealing. In the 

Old World, this period of early copper smelting technology is often referred to as the Chalcolithic 

period. It corresponds to the transition fiom the Neolithic to the Copper Age (or sometimes, the 

transition from the Neolithic to the Bronze Age). "Chalcolithic" literally means "copper-stone" 

and is not a term used ubiquitously even by archaeologists in the Old World. It is sometimes called 

Eneolithic, or omitted altogether. In this thesis the Chalcolithic period is taken to span the period 

from 5500 to 3200 BCE (Pigott 1999). 

1.3 Metal production during the Chalcolithic period 

The Chalcolithic period is characterized by a very basic method of copper smelting. This early 

smelting technology involved the reduction of copper oxide or carbonate ores in small ceramic 

crucibles to produce copper metal. 

Crushed ore and charcoal were placed ,'-'--'--\ Cl,arcooi 

within the crucibles and heated to low 

temperatures-at least 600°C (Thomp- 
/ 

son 1958). A schematic of this setup can C r u c l O l ~  \ 
be seen in Figure I .3 .  When the carbon c ; I ~ -  I I ~  ~4 n o l l c l n  

h e l  source burns, carbon monoxide is Figure 1.3. An exmIple of a pit smelting operation in 
Ambelikou, Cyprus drawn by Tylecote (1982:233). No 

created. As long as the atmosphere is date or site information provided. 



reducing, the CO readily combines with the oxygen present in the ore, leaving behind copper metal. 

If the ore is cuprite (Cu,O), the chemical reduction reaction is given by: 

Cu,O + co + co, +2Cu 

The reduction of copper carbonate ores like azurite and malachite (azurite: Cu,(CO,),(OH),; mala- 

chite: Cu,(CO,)(OH),) follows a similar reaction, but more CO, is produced: 

c u c o ,  + CO 3 2C0, + Cu 

If the reduction of the copper ore is carried out at these low temperatures, the metal exists in the 

crucible containers in the form of "sponge copper" (Charles 1979). Unfortunately there seems to 

be no published metallographic analysis of the microstructure of sponge copper, but Charles (1979:9) 

states that it can be "melted and agglomerated" to form a solid piece of copper metal. If the 

crucible is heated to slightly higher temperatures, the copper will exist as small, scattered spheres 

of copper, or prills, within a vitrified matrix. To put this copper in a usable form, the prills need to 

be isolated by first mechanically crushing the vitreous matrix of charcoal and crucible material that 

holds the prills. Then these prills are hand sorted or panned and winnowed (Tylecote 19765). The 

prills are melted together in a crucible to form a larger piece of copper (sometimes referred to as an 

ingot). 

These procedures leave behind evidence that allows archaeologists to estimate the level of 

production and sophistication of the technology in use. For example, slag-the vitrified by-product 

of melting or smelting-is produced both when smelting copper ore and when melting copper in a 

crucible. However, the slag formed from each of these operations is slightly different, and these 

differences enable us to determine which of these procedures was used. Non-smelting slags are 

those derived from the melting of copper metal. Tylecote (1 976) informs that these slags develop 

from the reaction between alkali in the he1 ash and silicates in the ceramic crucible. Large amounts 

of entrapped copper are usually contained within this slag. Tylecote distinguishes smelting slags 

(from slags formed upon melting) as ferrous silicates containing small amounts of copper. (The 

cut-off for "large" versus "small" amounts of copper is roughly 4wt%.) Similarly Craddock (1 985) 

says that the main difference between smelting and non-smelting metallurgical slags is that smelt- 
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ing slags are uniform and darker in color than the "more glassy" non-smelting slags. 

The earliest evidence for slaggy copper material is at Catal Hiiyiik in Anatolia (c. 7000- 

6000 BCE). However, because there are no iron silicates found in the material, there is debate as to 

whether this constitutes evidence for the earliest smelted copper production (Tylecote 1976). If 

nothing else, the presence of this slaggy material and associated ore fragments indicates that these 

peoples were on the verge of discovering copper smelting technologies as early as the 6~ millen- 

nium BCE (Craddock 200 1). 

The earliest metallurgical technology (i.e., the smelting of copper ores) is believed to have 

developed during the early 4'h millennium BCE (see section 1.2). This is largely due to the associa- 

tive evidence in the Middle East and the eastern Mediterranean fiom this period. For example, 

early copper artifacts produced from smelting have been excavated from Tepe Yahya in Iran (c. 

3800 BCE). These artifacts include awls and chisels and are made of arsenical copper (Tylecote 

1976). Similar artifacts (such as axes) were also excavated at Egypt dating to c. 4000 BCE and 

were made of "impure smelted copper" (Tylecote 1976:9). There is abundant evidence of copper 

smelting after 3500 BCE, and it seems that a metallurgical technology spread rapidly throughout 

the Near East after multiple Surnerian city-states were established (Tylecote 1976:5). However, 

there is little evidence of earlier peoples using anything more than pieces of raw ore and cold 

hammered native copper. The date and location for the onset of this early copper smelting technol- 

ogy is difficult to establish because our evidence for copper smelting sites is sparse, both spatially 

and temporally. 

By the 3rd millennium BCE the smelting of copper ores was widespread, and many places 

began to employ a more sophisticated method than that utilizing crucibles. Furnaces designed to 

maintain a reducing environment replaced crucibles as the containers for ore and fuel (Craddock 

2001). The presence of this furnace smelting technique is usually implied when labels such as 

Copper Age or Bronze Age denote a time period, although this is not always the case. 

The presence and development of an early extractive metallurgical technology throughout 

the Old World was closely related to the local geology. Metallurgical activity is evident earlier in 
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regions with higher concentrations of copper ore deposits, and many scholars agree that smelting 

took place at settlements existing only a short distance from mines or source areas (Craddock 

2001). We know today that it was not mere coincidence that the Iranian Plateau, a region contain- 

ing a high concentration of copper ore, is also a region with a high concentration of early metallur- 

gical sites. 

The next Chapter will focus more closely on the metals and metallic ore bodies in the 

Iranian Plateau and on early metallurgical sites, such as Tal-i Iblis, where the artifacts for this thesis 

were excavated. 



Chapter 11: Tal-i Iblis Region 

2.1 Metals on the Iranian Plateau and at Tal-i Iblis 

This section concentrates on the general setting of the Iranian Plateau, both geologically 

and archaeologically. The site of Tal-i Iblis lies in the southern region of this plateau in the Kerman 

Province (Figure 1.2), and its place in metallurgical history can be understood better once one has 

a general knowledge of the surrounding area. 

We find the earliest evidence of metallurgical technology on the Iranian Plateau in the form 

of smelting debris (ore and crucible fragments as well as metal objects). It is not surprising to find 

this evidence in this particular setting, because the region is an "ore-rich metallogenic zone" (Pigott 

1999:73). Figure 2.1 reveals the concentration of copper ore bodies identified in Iran and Anatolia. 

There are five main copper districts in Iran, one of which is located in the Kerman Province (Figure 

2.2). Being a zone rich with copper, the Iranian Plateau was a perfect environment for the develop- 

ment and use of metals. This development proceeded in generally the same way as in other regions 

of the Old World. During the Neolithic period (7500-5500 BCE on the plateau), cultures became 

familiar with the appearance and properties of both native copper and metal ores. The reduction of 

oxide ores to produce copper is a technology that first appears in the archaeological record during 

the Chalcolithic period (5500-3200 BCE). One site showing evidence of this technology is Tepe 

Ghabristan, which dates to the 6th millennium BCE1 and is located on the Iranian Plateau (Thornton 

et al. 2002). Another site, Tal-i Iblis (6th millennium BCE), produced metallurgical evidence simi- 

lar to that found at Tepe Ghabristan. The location of both sites can be identified in Figure 1.2. 

' Pigott (1999:77) states that the smelting technology at this site dates to the late 5~ millennium BCE. 





Figure 2.2. The five main copper districts of Iran (Bazin and Hiibner 1969:lO) 

2.1.1 The Ore Geology of the Iranian Plateau 

The copper district located in the Kerman province includes numerous copper ore deposits, 

which presumably would have also been accessible during the Chalcolithic period. Many of these 

deposits occur in sedimentary and volcanic rock outcrops, and are the product of copper-rich ground 

water seeping through cracks and forming mineralized veins (Lur'ye 1986). Concerning metal- 

lurgy on the Iranian Plateau alone, there are three major mines that were used in prehistoly: Anarak, 

Veshnoveh and Taknar. However, these mines are located in close proximity to each other, and 



little research has been carried out on the possibility of other sources of ores mined in prehistory. 

Today most of our knowledge of the geological setting of Iran comes from studies of oil fields, and 

only one extensive study, carried out in 1969, focused primarily on copper deposits (Bazin and 

Hiibner 1969). We must assume that, in addition to the the ore bodies shown in Figure 2.1, there are 

a number of unknown ore sources, some of which could have been used in prehistory. This assump- 

tion is based on the fact that there has been little systematic geological and archaeological research 

to document ore deposits in Iran, and we have no reason to suspect that we have discovered all ore 

sources used by societies of the distant past. There may have also been ore sources fully exploited 

in prehistory, leaving no evidence to indicate mining or other extraction operation. 

The three major mines of the Iranian Plateau mentioned above, are located a great distance 

fiom the site of interest for this thesis. Tal-i Iblis is located 500 km from the nearest of these three 

mines (Anarak); therefore it is highly unlikely that the Iblis occupants were obtaining their ores 

fiom this prehistoric mine. Rather, there are many local deposits of carbonate copper ore that were 

more easily accessible to the inhabitants of Tal-i Iblis. In a 100 krn radius, there are 40 known 

deposits of copper metal or copper ore. Of these 40,27 contain carbonate copper ores. Within a 50 

krn radius, there are 13 sources, eight of which are carbonate ore (Figure 2.3, Bazin and Hiibner 

1969). Because smelting for non metallurgical purposes is believed to have occurred largely by 

accident (section 1.2), it is likely that the Iblis occupants were obtaining these colorful carbonate 

ores for decorative purposes as they found them during regular gathering activities, and only later 

discovered their functional properties. 

It is possible that once smelting became an established technology, raw material fiom the 

three major mines was transported to many comers of the Iranian Plateau along Neolithic trade 

routes (Pigott 1999), but we lack evidence to establish this unequivocally. 

2.2 Tal-i Iblis 

This investigation focuses on Tal-i Iblis as one of the earliest metallurgical sites in the 

world. Understanding the metallurgical technology present at this site may help archaeologists 
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interpret the effects of a more advanced pyro-technology, such as metallurgy, upon the develop- 

ment of society, the formation of trade networks and the exchange of information in prehistory. 

Because it is such an early site, the examination of its artifacts and metallurgical material must be 

treated with utmost care. Therefore, I will provide a complete description of the relevant history of 

the site, as well as its artifacts 

of consequence. 

Tal-i Iblis is located in 

the Mashiz Valley (also known 

as the Bard Sir Valley, or the 

Lalehzar Valley) southwest of 

the Kerman mountains in 

southern Iran. The name 

means "Devil's Mound," 

(Stein 1937) and it is an ob- 

long tell site that measured ap- Fig.55) from North-west view. 

proximately 11 8m by lOOm and rose over 1 lm  in height at its zenith during the late 12" century 

BCE (Caldwell and Shahmirzadi 1966). Sir Mark Aurel Stein took these measurements when he 

studied the site in 1933 (Figure 2.4); however, he noted that the mound "may have been consider- 

ably reduced by prolonged digging for manuring earth" (Stein 1937: 166). It is fortunate that Stein 

documented the tell site in 1933, for when Joseph Caldwell rediscovered the site in 1964 he found 

that the "entire center of this large mound had been dug out and destroyed" (Caldwell 1967:9, 

Figure 2.5). Local farmers had slowly carted away the fill of the mound to use for fertile soil in 

their valley fields. The farmers' excavation of the middle of this tell did, however, reveal the site's 

stratigraphy. Immediately, Caldwell was able to decipher six distinct deposits of cultural material. 

Radiocarbon dates were determined based on the abundant charcoal contained within each level2. 

* Throughout this thesis the term "level" denotes the occupation periods as defined in Table 2.1. In other publications 

(Caldwell 1967; Voigt and Dyson 1992; Pigott 1999; Pigott and Lechtman 2003) this tenn is sometimes replaced with 
"Iblis." For example, in this thesis, level l=Iblis 1. 



Table 2.1 surnmarj.zes these dates, which range from the mid-Sh millennium BCE to the late 12th 
- 

century BCE. 

This cultural material includes an unusually large amount of artifacts related to metallurgi- 

cal activities. These artifacts 

Figure 2.5. Photograph taken by Caldwell in 1964 (1967:lO). 

include metallurgical cru- 

cible fragments, pieces of 

copper ore, small copper ob- 

jects, and some slag. Be- 

cause of its overwhelming 

abundance, much of this ma- 

terial was discarded; how- 

ever, hundreds of artifacts 

were kept and are currently 

curated in the Georgia Mu- 

The center of the mound was dug out. seum of Natural History at 

the University of Georgia at Athens. The late Cyril Stanley Smith (MIT Institute Professor, Depart- 

ment of Materials Science and Engineering) also collected a small amount of material during his 

visit to the site in 1966. In addition, Caldwell later sent a selection of his catalogued artifacts to 

Professor Smith at MIT for further analysis. Some of the metal artifacts sent to MIT were analyzed 

35 years later by Professor Heather Lechtman (Pigott and Lechtman 2003). These artifacts include 

a tack (MIT No. 249), a pin (MIT No. 247) and two hand tools (MIT Nos. 248,250). However, the 

crucible and slag artifacts were not studied extensively prior to the research reported here. The 

crucibles were concentrated most heavily in the early levels of the site, indicating the early devel- 

opment of metallurgy at Tal-i Iblis. 

Level I (5290-4420 BCE, see Table 2.1) contained the first crucibles at the site with a char- 

acteristic "green stain of copper residue" on their interior surfaces (Caldwell and Shahmirzadi 

1966: 11). A dump~ng area excavated in level I1 (5205-4685 BCE) contained crucibles at a concen- 
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Table 2.1 : Chronology and dates for the levels of occupation at Tal-i Iblis 
Penod - Date (BCE;) Correction from Voipt and Dvson (BCE) (1 992 

From Caldwe117s radiocarbon dating 
Iblis VI 1130h120 Not determined 
Iblis V Unknown Not determined 
Iblis IV 2869*57 (questionable) 4415-3365 
Iblis I11 3792k60 4460-4400 
Iblis I1 4110k150 - 409W74 5205-4685 
Iblis I 4287k40 5290-4420 
Iblis 0 4502*72 - 441 0k165 Does not exist 
Note: When a range in radiocarbon dates is shown here, it indicates the earliest and latest date from that period. Onc 
date indicates only one reliable sample tested for that level. (Caldwell 1967:24,32,34,36;Voigt and Dyson 1992: 13 1) 

tration of 128/m3, which is a considerably higher concentration than that found in the dumping 

areas of level I (Caldwell 1967:34). Ralph C. Dougherty, a chemist at Ohio State University, was 

asked by Caldwell to examine one of the crucible sherds found at Tal-i Iblis. He concluded that 

these crucibles were used for smelting copper ore and that, therefore, they provided some of the 

earliest evidence of copper smelting in the Iranian Plateau (Caldwell and Dougherty 1966). Caldwell 

interpreted the substantial number of crucible fragments in the level I1 occupation as indicative of 

a production quantity exceeding that necessary for local needs. He suggested that Tal-i Iblis might 

have been a production center for a surrounding copper-trade network (Caldwell 1967). 

Most of the crucibles found at Tal-i Iblis came from levels I and 11; Iblis level 0 appeared 

only in some excavation trenches at the site and contained only a small amount of pottery. Voigt 

and Dyson (1 992: 143) go so far as to say that level 0 "cannot stand as a time unit distinct from Iblis 

I, and.. .should be rejected." In addition to these crucibles in levels I and 11, one small hearth was 

found in level 11. This hearth was "scooped out of the ground" (Caldwell 1967:35). I have inter- 

preted this description to be similar to that described by Tylecote (1 982), reproduced here as Figure 

1.3. The hearth at Tal-i Iblis contained small fragments of copper oxide, copper ore and one cru- 

cible fragment, but the presence of this single hearth does not provide substantial indication of the 

process used for the metallurgical technology present (Caldwell 1967:35). There was also a sub- 

stantial number of small copper objects found in Iblis levels I and 11; Table 2.2 summarizes these as 

well as the copper objects found in subsequent levels. 



Iblis level [I1 (4460-4400 BCE) was badly destroyed and contained fine pottery but no coarse 

crucibles; this level also contained the first furnace at the site, which was a "gypsum-burning fbr- 

nace" (Caldwell 1967:36). However, level IV (441 5-3365 BCE) also contained evidence of copper 

metallurgy (copper objects, malachite ore fragments and fragments of larger and deeper crucibles), 

giving Caldwell reason to speculate that copper-processing technology had continued to grow and 

flourish at the site (Caldwell 1967). Caldwell clearly states that more excavation is necessary at 

levels IV and V to improve our understanding of the cultural detail during these periods. In fact, 

Caldwell says that level I is the only level at Tal-i Iblis where sufficient detail has been obtained 

(Caldwell 1967:39). The pressing question for Caldwell, and the issue addressed by this thesis, is 

whether the level I and level I1 crucibles were being used for copper smelting or for copper melting. 

Table 2.2. Copper metal objects excavated fiom Tal-i Iblis and documented in Caldwell's prelimi- 
nary site report (Chase et al. 1967:153,168,185-6). 

Obiect 
Copper pin (tack) 
Copper pin (awl:) 
Copper pin (tack) 
Copper pin (bent awl) 
Copper pin ti-agrnent 
Copper ring 
Copper pin (tack) 
Copper bead 

1 Copper pin (tack) 
1 Copper pin (tack) 
1 Flat-ended copper pin (awl) 
Copper pin (nail) 

I Copper pin (tack) ' Copper pin (nail) 
Copper pin (awl) 

1 Copper pin (awl) 
Copper pin fragments 
Copper ornament 
Copper pin (awl) 
Copper fragment 

Caldwell Cat. No. 
6 
3 2 
3 5 
38 
39 
12 
3 6 
43 
21 7 
275 
274 
2 5 
122 
121 
99 (MIT No.248) 
98 
Unknown 
222 
84 
8 6 

Flat-ended copper pin (awl) 56 
Flat-ended copper pin (awl) 5 1 

Level 
Iblis I 
Iblis I 
Iblis I 
Iblis I 
Iblis I 
Iblis I 
Iblis I 
Iblis I 
Iblis 11 
Iblis 11 
Iblis I1 
Iblis 111 
Iblis I11 
Iblis I11 
Iblis IV 
Iblis IV 
Iblis IV 
Iblis IV 
Iblis IV 
Iblis IV 

Find spot 
Area A, Section A 
Area A, Section B 
Area A, Section B 
Area A, Section B 
Area A, Section B 
Area A, Section B 
Area A, Section B 
Area A, Section B 
Area C, 270-3 10cm 
Area C, 270-3 10cm 
Area C, 270-3 10cm 
Area A, Section A 
Area E, Section F 
Area E, Section F 
Area E, Section F 
Area E, Section F 
Area C, 160- 190cm 
Area C, 120- 150cm 
Area C, 120-1 50cm 
Area C, 120- 150cm 

Iblis IV Area C, 90- 1 10cm 
Iblis IV Area C, 60-90cm 

Descriptions in parentheses are provided by the author of this thesis and are defined as follows: a pin with a flat head 
is described as a tack; a pin with no head and little variation in width is described as an awl, and a pin with a small 
head is described as a nail. 
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Chapter 111: Motivation for the Research 

3.1 Purpose of the research 

This section outlines the need for further analytical materials research on the crucibles from 

Tal-i Iblis that we presume provide evidence for metallurgy during the 6h millennium BCE. Ralph 

Dougherty and Joseph Caldwell(1966) invested research efforts into determining the extent of the 

metallurgical technology available to the Iblis occupants. Unfortunately, their studies were limited 

in both scope and analysis. I have at my disposal today more analytical and historical resources 

than were available to them in 1966. I have also found that some of my findings differ from those 

of Dougherty (Dougherty and Caldwell 1966) and therefore these results deserve attention. 

Previous research conducted on the metallurgical crucibles recovered from Tal-i Iblis was 

carried out at the site as well as in a controlled laboratory environment. Prior to Dougherty's 

laboratory analysis of a single crucible sherd, Caldwell assembled an international team of metal- 

lurgists to visit Iran with the goal of understanding the metallurgical role of the site of Tal-i Iblis. 
Interior 
(usually 

/ vitrified) 

Exterior 
/ (usually 

tanlsalmon 
color) 

Rim 
(occasion 
slumped 
over) 

Figure 3.1. Drawing of a crucible restored from a large fragment found in level I1 (Caldwell 
Cat. No. 277, 1967: 185) 



This team included the noted met- 

allurgists Cyril Stanley Smith of 

MIT's Department of Materials Sci- 

ence and Engineering and Radomir 

Pleiner of the Archaeological Insti- 

tute, Prague. Geologist Gholam- 

Hossein Vossouqzadeh with the 

Ministry of Economy of Iran, 

Theodore Wertime of the 

Smithsonian Institute, and Joseph 

Caldwell completed the team 

(Pleiner 1967:340). This team of 

professionals conducted a smelting 

experiment at the site of Tal-i Iblis 

to assess the possibility that the Tal- 

?'i:Q - k % m m m  i Iblis crucibles could have been 
i:t. ,,, 

used for the reduction of copper 

Figure 3.2. Photograph of a replica (MIT No. 5277) of an oxide ores, One of their colleagues, 
Iblis crucible made in 1966 by Hildegard Wulff at Tal-i Iblis, 
using local clay. Hildegard Wulff, constructed a rep- 

lica (Figures 3.1 and 3.2) of the Iblis level I and level 11-type crucible using "local clay," which she 

fired at low temperatures (Caldwell 1967:35). The experimental setup is shown in Figure 3.3. The 

crucible was placed in a simple bowl-shaped hearth similar to one found in Iblis level I1 (see section 

2.2). The metallurgists placed small pieces of malachite found around the site into the crucible and 

piled charcoal above the ore. They heated the crucible for approximately one-half hour with a 

forced draught from a "simple bellows" while monitoring the temperature3 with a thermocouple 

It is unclear as to whether the temperature measured by the thermocouple was the temperature at the center of the fire, 

or at the contact point with the crucible. 
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placed at the end of a tuyere (Pleiner 1967:375). This experiment produced only a few small pieces 

of copper and completely melted the crucible. The temperature measured by the thermocouple 

reached 11 00°C during the experiment (Pleiner 1967). 

The experiment was suc- 
e 

b cessful in that it demonstrated that 

copper could be produced from an 

,---r oxide ore by heating in a simple 

I !  i Iblis-type crucible in the setting 

h described. Unfortunately, the ex- 
a d 

periment, or at least the documen- 
--- -- - " *.--.::. - -- .- - - - - - 2  -- - tation of the experiment, had sev- 

era1 deficiencies: (1) the only de- 
Figure 3.3. Set-up for on-site experiment conducted 
by Pleiner (1967:369) (a) the shallow pit dug out scription of the construction of the 

of the earth; (b) the replica crucible made of local replica crucible stated that it was 
clay; (c) charcoal fhel; (d) tuyere; (e) simple bel- 
lows. made from "local clay" (Caldwell 

1967:35). This clay was not analyzed to determine its mineral type, porosity or mineral inclusion 

concentrations, nor were we told the original firing temperature for the replica vessel. (2) The ore 

used in the experiment was described as coming from the site of Tal-i Iblis, but it was not analyzed 

to determine its mineralogy or chemical composition. (3) Since no tuyeres were found at Tal-i 

Iblis, they should not have been used in the experiment. (4) None of the ancient crucibles is de- 

scribed in the literature as having melted to the extent of the crucible used in the experiment, 

suggesting that the temperature reached during the smelting experiment exceeded that obtained by 

the Iblis metal workers. 

In addition to this on-site experiment, Dougherty analyzed one crucible sherd fiom Iblis 

level I at the Argonne National Laboratory in Chicago. The results of this analysis were first pub- 

lished in Science (Dougherty and Caldwell 1966) and later reproduced in the Tal-i Iblis site report 

(Dougherty and Caldwell 1967). Based on his analysis, described below, Dougherty came to the 



conclusion that the Iblis crucibles had been used for the "reduction [smelting] of a copper ore" 

(Dougherty and Caldwell 1966:985). 

Dougherty obtained samples fiom three regions of the crucible cross-section: fiom the inte- 

rior surface, the inner core, and the exterior surface. He heated them on a tungsten filament while 

temperatures were monitored with an optical pyrometer4. Dougherty determined that the interior 

surface melted at 11 5W50"C, the inner core melted at 99W5O0C, and the exterior surface melted at 

99W50°C (Dougherty and Caldwell 1966:984). Dougherty explains the difference in melting tem- 

perature between the interior surface of the crucible and the rest of the ceramic material as related 

to a difference in composition of the interior surface. Dougherty argues that such a change in a 

chemical composition caused a change in the melting temperature and that the increase in melting 

temperature on the interior surface indicates that the crucible was used for smelting copper ore. He 

states that melting native copper in the crucible would have involved heating the interior of the 

vessel without changing its composition sufficiently to result in the measured difference in melting 

point temperatures. 

In addition, Dougherty pointed out that the melting point range of the crucible fabric that he 

measured (990-1 100°C) is close to the melting point of copper metal (1083°C). Therfore, he ar- 

gued, if the Iblis crucibles were being used to melt native copper, they likely would have vitrified 

and collapsed before the process was complete. Dougherty claims that it is possible to smelt pure 

copper oxide ore at temperatures that are considerably lower (700-800°C) than the predicted melt- 

ing point of the ceramic fabric. This suggests the possibility that the Iblis crucibles may have been 

used for smelting copper oxide or carbonate ore without loss of their integrity (Dougherty and 

Caldwell 1966). Thompson (1 958) previously determined that this low smelting temperature is 

possible. He states that smelting a carbonate ore such as malachite at temperatures as low as 500- 

600°C will produce a "spongy mass of metallic copper" (Thompson 1958:3). Furthermore, Thomp- 

son argues that a campfire can reach temperatures upwards of 600°C, suggesting that one would not 

Dougherty also provides as a footnote, that these temperatures were 'bcorrected" (Dougherty and Caldwell, 1966: 

985), though the exact meaning of this is unclear. 
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even need bellows to create enough heat for the smelting reaction to occur. Charles (1979) has 

verified a similarly low smelting temperature of 700°C experimentally. 

Finally, Dougherty noted that the core of the ceramic crucible sherds exhibit a greyblack 

color, whereas the exterior surface is usually colored tadsalmon. This information suggests that 

the crucibles were "intentionally" (Dougherty and Caldwell 1966:984) fired in a reducing atmo- 

sphere. He uses the word "intentionally," because other pottery at the site was fired well enough to 

have oxidized the organic materials present in the clay, yielding a uniform tantsalmon color across 

the entire cross-section of the potsherds (Dougherty and Caldwell 1966). Dougherty uses this 

evidence to assert that a reducing atmosphere is necessary for smelting copper oxide or carbonate 

ores, but it is not necessary for melting copper. Dougherty does not point out, however, that one can 

melt copper in a reducing atmosphere, even if it is not necessary to do so. 

These conclusions drawn by Dougherty leave several questions unanswered, both about 

the analytical methods employed in his research and more significantly, regarding the technologi- 

cal level of the metallurgy practiced at the site during this time period. A more complete analysis 

of the sherds is necessary to understand fi1ly the use and history of these Tal-i Iblis crucibles. 

3.2 Preparation for the research 

This thesis reports my experimental and analytical investigations of a small collection of 

crucible sherds excavated at Tal-i Iblis and now in the collections of the MIT Center for Materials 

Research in Archaeology and Ethnology. This collection of materials arrived at MIT shortly after 

Cyril Smith's visit to Tal-i Iblis in 1966. Smith collected some items on-site in addition to those 

that were sent to him later by Caldwell for further analysis. Until recently it was believed that the 

materials received by MIT in 1967 (and still curated there) were the only ones from the site 

available for study. However, during the spring of 2003, it was discovered that many cartons of 

artifacts excavated by Caldwell at Tal-i Iblis are held in storage at the Univeristy of Georgia in 

Athens, GA. These artifacts have not been examined and will not be addressed here. 

The collection of Tal-i Iblis artifacts at MIT includes nineteen artifacts sent by Caldwell, 



and eight artifacts collected separately by Smith (see Table 3.1). Ten of these have been studied for 

this thesis; they are described briefly in Table 3.2. These ten are illustrated in Appendix A, and are 

discussed in more detail in section 5.1. In his original site report, Caldwell refers to these ceramic 

vessels as "crucibles" (Dougherty and Caldwell 1966:984), and 1 will continue to use that designa- 

tion throughout this thesis. The reconstruction of the crucibles (Figures 3.1 and 3.2) (Pleiner 

1967:369,374) shows that the length is approximately 1.5 times the width, and the height is ap- 

proximately 0.5 times the width. The convention I use to describe the areas of the artifacts is also 

indicated in Figure 3.1. Because there are so few of them, the documentation of these artifacts is 

extremely important. For this reason, I have carefblly chosen methods of analysis to optimize the 

information I gather in exchange for the amount of the artifact that I am forced to sacrifice. The 

aim of this research is to present a clear and complete understanding of the role of these artifacts in 

the development of metallurgy at the site of Tal-i Iblis. 



Table 3.1. Artifacts curated at MIT via Caldwell and Smith. 
MIT No. 1 Caldwell 1 Description I Find Spot 

I I I room 4 

-- 

242 1 326 I Hematite 1 Structure B 3-8; comer of 

Cat No. 
79 

247 

Copper ore (?) 

243 
240 

Structure B 3-8; floor of 

173 

244 
241a* 

199 
- - 

241p* 

Couuer uin 

-- I Crucible fragment I West profile; levels 1 and 2 
241y* 
241 6* 

25 0 151 [ Copper pin with flattened end 1 level 5b 

room 4 
Floor of B 13 

Hematite 
Crucible fragment , 

West profile, level 1 
West wofile; levels 1 and 2 

- 
B-19 
Level 1 (collected bv Smith) 

-- 
-- 

-- 
-- 

West profile; levels 1 and 2 
West profile; levels 1 and 2 
West profile; levels 1 and 2 
Area C, level 2 
Area E, section F, level 4 
Level 5a 

241s* 
24 I<* 
241q* 
249 
248 
245 

Fragments of ore and slag 
Crucible fragment 

-- 
246 

Crucible fragment 
Crucible fragment 

-- 
-- 
-- 
295 
9 9 
6 3 

252 
25 1 
5274 

West profile; levels 1 and 2 
West profile; levels 1 and 2 - 

Crucible fragment 
Crucible fragment 
Crucible fragment 
Copper pin 
Copper pin 
Crucible fragment (larger than 
others) 

-- 
-- 

5275 
5276 

Professor smith issigned the MIT No. 24 1 to the entire bag. I have amended the numbers for these objects 
to be able to distinguish them f?om one another. 

-- 
-- 
-- 

- - 

5277 

5278 
5279 

Copper ore 
Copper oxide (?) 

-- 
-- 

Level 5b 
Level 5b 

Ore (?) 
Fused cupriferous bead 
Crucible fragment 

*These seven obiects were contained within the same bag, and when the material was received in 1967, 

-- 

-- 
-- 

Area B, level unknown 
Unknown 
Unknown 

Crucible fragment 
Crucible fragment 

Unknown 
Unknown 

Y 

Modern replica crucible 

Crucible fragment 
Crucible fiagrnent 

Constructed on-site with 
local clay 
From on-site experiment 
From on-site experiment 



MIT 
No 

Table 3.2. The 'Tal-i Iblis artifacts examined in this thesis. 
I 

Caldwell's Cat. 
NoJSample No. 

-- 

Description 

Ancient crucible fragment including 
rim, ext, and int. wall, and base. 
Green residue present on interior 
base. 
Ancient crucible fragment including 
ext. and int. wall. And a unique 
4mm thick deposit of copper 
corrosion product interspersed with 
Zones 2 and 3 on interior surface of 
sherd. 
Ancient crucible fiagment including 
rim, ext. and int. wall. Most heavily 
vitrified of all ancient sherds. 
Ancient crucible fragment including - 

rim and ext. and int. wall. Green 
residue and nodules present on 
interior wall and base.. 
Ancient crucible fragment including 
ext. and int. wall and base. Green 
residue ~resent  on interior of base. 
Ancient crucible fragment including 
rim, ext. and int. wall, and base. 
Green residue and nodules present 
on interior wall. 
Ancient crucible fragment, much 
larger than all others. Includes thick 
rim, ext. and int. wall. Green 
residue and nodules present on 
interior wall 
Ancient crucible fragment 
containing rim, ext. and int. wall, 
and base. Green residue present on 
interior wall and base. 
Complete crucible replica 
cons&cted by Miss ~ u l f  in 1966 at 
Tal-i Iblis. 
Experimental crucible. A fiagment 
of the crucible used for the 
experiment performed by the team 
of metallurgists at Tal-I Iblis. 
Fragment includes rim, ext. and int. 
wall. and base. 

Level 

Level I 

West profile wall 
of levels I and I1 

West profile wall 
of levels I and I1 

West profile wall 
of levels I and I1 

West profile wall 
of levels I and I1 

West profile wall 
of levels I and I1 

Level V 

Unknown, 
probably 
collected by Prof. 
Smith 
Modern 

Modem 



Chapter IV: Methodology 

4.1 Methods for Analyses 

I used many analytical methods to determine the likely fimction of these crucibles. These 

methods can be roughly divided into three categories: (1 ) microscopy: low power optical examina- 

tion of the crucible sherds; micrographic analysis; scanning electron microscopy examination of 

sherd cross-sections; petrographic microscopic examination of sherd thin sections; (2) thermal analy- 

sis: differential thermal analysis, furnace experiments; (3) compositional analysis: x-ray diffrac- 

tion, electron microprobe analysis; inductively coupled plasma optical emission spectroscopy. These 

three categories of analysis provide a well-rounded view of the fabrication and use of these crucible 

sherds. The suite of microscopic methods was essential both in developing an overall plan for my 

analytical procedure and in determining mineralogical differences within various zones of the sherds 

caused by heat alteration. Thermal analysis methods were employed to compare the ancient sherds 

with heated samples of the modern crucible replica (MIT No. 5277). Compositional analysis meth- 

ods were employed to detemine the compositional similarities and differences among the crucible 

sherds at both a macro and microscopic level. 

4.2 Microscopy 

It was necessary to acquire a thorough knowledge of the appearance and characteristics of 

the artifacts in this study. This was achieved through a number of methods of visual inspection. 

The crucible sherds examined over the course of this study are outlined in Table 4.1 with the corre- 

sponding methods of analysis used for each sherd. They were examined initially using the incident 

light, low power microscopes located in the CMRAE Graduate Laboratory. Opaque sections were 
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Table 4.1 : Methods of analysis for each artifact studied. 

Object 
(MIT No.) 
240 

Visual Analysis 

Micrographic 
ESEM 
Thin Section 

Micrographic 
ESEM 
Thin Section 

Micrographic 
Thin Section 

Micrographic 
ESEM 
Thin Section 

Micrographic 
Thin Section 

Thin Section 

Thermal Analysis 

DTA 

DTA 
Re-firing Experiments 

DTA 

Composition Analysis 

Bulk Analysis 
EDSiWDS 

Bulk Analysis 
XRD 
SEM 
EDSlWDS 

Bulk Analysis 

- 
Bulk Analysis 
EDStWDS 

BuLk Analysis 
Bulk Analysis 
Bulk Analysis 
Bulk Analysis 

Bulk Analysis 
XRD 
EDS/WDS 

Key of terms: 
ESEM Environmental Scanning Electron Microscopy 
DTA Differential Thermal Analysis 
EDS Energy Dispersive Spectroscopy with microprobe 
WDS Wavelength Dispersive Spectroscopy with microprobe 

constructed for some of the sherds and documented with the micrographic microscope in the CMRAE 

photography facility. 

4.2.1 Environmental Scanning Electron Microscopy 

The sherds were cut with a gem saw and the cut surfaces were ground smooth on silica 

carbide strip grinding papers. The cut-and-ground surfaces were examined with the Environmental 
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Scanning Electron Microscope (ESEM) in the Center for Materials Science and Engineering at 

MIT under the supervision of Dr. Anthony Garratt-Reed. The samples were not mounted or carbon 

coated because the ESEM employs a low-vacuum environment to prevent charging. This micro- 

m scope emits an electron beam, 

Electron gun + - 
T \ I which is collimated and directed 

onto the surface of the sample 

(see Figure 4.1). The electron 

beam is absorbed and deflected 
Condenser lense 

by the material it hits. These de- 

flections are detected by electron 
Objective lense - "collectors" and are then inter- 

preted to create a digital image 

of the sample surface. 
Specimen 

Rice (1 987:46) illustrates 

Figure 4.1. Schematic diagram of Scanning Electron an SEM image of clay platelets 
Microscope (MIT 3.08 1 lecture notes 200 1) 

at a magnification of 3700. The 

photomicrograph is reproduced here as Figure 4.2. These hexagonal discs are contained in all types 

of clay and normally fuse at approximately 1000°C. I used this photomicrographic image from 

Rice as a guide during my microscopic examination of the crucible sherds. My goal was to com- 

pare the microstructure of each crucible at various points along its cross-section to characterize the 

heating history of the material. The platelets should be present and unaltered in zones that have not 

been subject to temperatures in the range of 1000"C, and they should appear hsed, or be absent in 

the vitrified areas. 

The SEM images were collected at a beam voltage of 10-15kV and a vacuum pressure of 

1.4torr in an atmosphere environment. In addition to gathering SEM images, this microscope is set 

up to determine the elemental composition of the material. This determination is achieved by 

detecting the X-rays emitted as a result of the interactions of the electrons with the sample rather 



Figure 4.2. Kaolin clay platelets at a magnification of 3700 (Rice 1987: 46). 

than by detecting only the deflected electrons. Once this preliminary ESEM examination was 

finished, I mounted the samples in Epotek Epoxy and returned to undertake the second stage of 

SEM work. This was performed with the goal of providing an elemental analysis of the sherd 

material and is described in section 4.4. 

4.2.2 Petrographic thin section microscopy 

Thin section analysis is a microscopic method of identifying minerals in rocks, ores or in 

clay bodies. It involves the passage of polarized light through a thin section of rock or ceramic, 

which has been ground and polished to a thickness of 30 microns. As the polarized light passes 

through the minerals, it is refracted depending on the crystal structure of the mineral. Minerals 

have characteristic colors and textures when observed in polarized light, allowing an observer to 

distinguish them. All of the crucible sherd thin sections were prepared following the method out- 

47 



Table 4.2. Artifacts studied with thin section analy- lined in the CMRAE thin section protocolm 
sis and the finishing methods for each. 

sections were constructed from each of the ar- 
MIT No. 
240 
241p 
241y 
2416 
5277H 
5277B 
52776 
5277L 
5277N 
52775 
5277U 
52774 
5277T 
5279 

tifacts listed in Table 4.2 with finishing meth- 

ods (cover slip or fine polishing) indicated. The 

Finishing Metbod 
Fine polish 
Cover slip 
Cover slip 
Cover slip 
Fine polish 
Fine polish 
Cover slip 
Cover slip 
Cover slip 
Cover slip 
Cover slip 
Cover slip 
Fine polish 
Fine polish 

petrographic analyses were carried out with an 

Olympus polarizing microscope under 50, 100 

and 200 magnifications. Minerals were identi- 

fied using both plane and cross-polarized light. 

In order to determine the volume fiac- 

tion of the minerals identified in each sherd thin 

section, I performed point counts on the cru- 

cible thin sections that were large enough to obtain 1000 data points. Point counting was carried 

out in the CMRAE Ceramics Research Laboratory. During point counting, the microscope stage 

moves automatically by increments of 200 microns upon identifying the mineral in the cross hairs 

of the microscope field of view. The analytical categories I used included: Clay matrix, Void, 

Quartz (including both polycrystalline and monocrystalline), Plagioclase Feldspar, Amphibole (usu- 

ally hornblende), Biotite, Opaque minerals, Basalt clumps, Calcite, Pyroxene (usually orthopyroxene), 

Other (including both unidentifiable minerals and minerals not listed above). 

The grain size distribution was also studied. The grain size of each identified mineral was 

recorded in terms of how many data points it occupied. For example, if a quartz grain was large 

enough to receive two clicks in a row, then it was marked under the category "2." The relationship 

between category (number of "clicks" for one mineral) and 
Table 4.3. Grain size ranges for cat- 

the size range for the minerals in that category is shown in egOvgroupings. 

Table 4.3. This method of grain size analysis provided a rough 

estimate of the grain size distribution. I chose to look at grain 

size in this fashion because the distribution looked homogenous 

for most minerals. The results of the mineral identifications 

Category # Grain size range (p) 
1 0-400 
2 200-600 
3 400-800 
4 600- 1000 
5 goo+ 



and grain size determinations appear in section 5.2.1. After point counting was complete, I studied 

the morphology of'the minerals to become familiar with the appearance of the minerals at locations 

across a complete cross-section (i.e., from the interior to the exterior surface) of a crucible sherd, 

since they experienced different levels of heat depending upon their location in the vessel fabric. 

4.3 Thermal Analysis 

Determining the temperatures to which the regions of these ceramic vessels were heated is 

critical to understanding how they were used in prehistory. It is also necessary to understand the 

highest temperatures that these ceramic containers are capable of sustaining in order to determine 

the metallurgical processes for which they could be used. Since the sherds often present a vitrified 

interior surface, one might assume that the ceramic crucibles were near their limit in ternls of the 

maximum temperature to which they could be heated before collapsing. My goal was to determine 

this maximum temperature while also examining any other morphological changes that occur in 

the ceramic as a function of temperature. 

4.3.1 Differential Thermal Analysis 

My first attempt to determine the melting temperature of the ceramic of the crucible sherds 

was through Differential Thermal Analysis (DTA). This method involves monitoring the tempera- 

tures by means of thermocouples of two samples heated simultaneously (a schematic drawing of 

this method of analysis is shown in Figure 4.3. One sample is a non-reactive standard (aluminum 

oxide), and the other is the test sample. As the samples are heated the test sample may go through 

changes where heat is released (exothermic reactions) or absorbed (endothermic reactions) but the 

standard does not. Therefore, a temperature difference (AT) is created between the two samples, 

and while the temperature of the standard increases linearly the test sample will show peaks and 

dips in its heating curve. These curves are then plotted on a graph of temperature vs AT. 

It has been well established that endothermic and exothermic events occur at predictable 

temperatures in ancient ceramics depending on the original firing temperature of the clay. There- 
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Furnace 

Figure 4.3. Schematic of DTA experiments. 

fore DTA is a useful method in determining the original firing temperature of a ceramic (Kingery 

1974). This technique is useful because clay will undergo a series of alterations when it is fired. 

For example, one can detect low firing temperatures if DTA peaks correspond to the combustion of 

organic material (e.g. chaff) in the clay, or if the peaks signal the loss of water from the clay miner- 

als during firing. The presence of these peaks on a DTA curve of an Iblis sherd would reveal that 

the ancient ceramic was never heated to these temperatures in prehistory. However, if the ceramic 

was heated to higher temperatures (above 950°C), it would only be possible to detect the tempera- 

ture at which the material melts. At these higher temperatures there are no fixther thermodynamic 

indicators corresponding to structural changes in the clay. In the present study I am interested in 
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determining the melting temperature of the Tal-i Iblis ceramic crucibles, and determining if there is 
- 

a difference in the melting temperature of the exterior and interior zones. 

The test samples for DTA were prepared by scraping with a scalpel blade, the vitrified 

region of a Tal-i Iblis crucible sherd (MIT No. 240) as well as the region unaltered by heat. The 

coarse ceramic sample was then powdered using a mortar and pestle. A small amount of this 

powdered sample was loaded into an aluminum oxide test crucible, and surrounded by A1,0, pow- 

der so that the powdered Iblis sherd sample did not make contact with the walls of the test crucible. 

This sample and a standard sample (A120, crucible filled with onlyA120, powder) were then loaded 

into the Perkin Elmer DTA furnace associated with the Center for Materials Science and Engineer- 

ing (CMSE) Crystal Growth Facility and under the supervision of Dr. Fangcheng Chou. The samples 

were run utilizing two different heating programs. The highly vitrified zones of the crucibles were 

heated from 500°C to 1500°C at a rate of 40°C per minute, held at 1500°C for one minute, then 

cooled back to 500°C at the same rate. The exterior zones of the crucibles, which were unaltered by 

heat, were heated from 100°C to 2200°C at the same rate. 

4.3.2 Re-firing experiments with modern replica crucible 

To determine the morphological changes occurring within the matrix of the crucible sherds 

as a hnction of temperature, I monitored the heat alteration experienced by samples cut from the 

modem crucible replica (ANT No. 5277). Portions of the modern replica were cut into cubes mea- 

suring 1-2 cm on a side. Each cube was placed on a fire brick and loaded into a CM Rapid Tem- 

perature Furnace located in Professor Thomas Eagar's Joining Laboratory at MIT. Under the in- 

struction of Dr. Harold Larson, I positioned a Type K Thermocouple inserted into the back of the 

furnace, lcm above the crucible sample (see Figure 4.4 for a schematic drawing of the experimen- 

tal setup). Nitrogen gas flowed into the furnace to create a neutral environment. Sample cubes 

were heated in 100°C intervals fiorn 300°C to 1 100°C and in 25°C intervals from 1 100°C to 1200°C. 

Once the desired temperature was reached, each sample was maintained at that temperature for 20 

minutes. 
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Figure 4.4. Schematic diagram of the re-firing experiments. 

4.4 Compositional Analysis 

Compositional analyses were carried out with three objectives: (1) to compare the bulk 

chemical composition of the modern crucible replica and the ancient sherds (2) to determine the 

mineralogical composition of the crucible sherds and of the modem replica (both (1) and (2) will 

provide evidence to validate the use of the modem replica as a proxy in the fbmace experiment and 

in thin section mineral comparisons); and (3) to provide a highly specific, quantitative chemical 

analysis of the constituents of the vitrified regions of the Tal-i Iblis crucible sherds. 

4.4.1 Bulk chemical compositional analysis 

The composition of the crucibles was determined through inductively coupled plasma opti- 

cal emission spectroscopy (ICP-OES) at the Activation Laboratories Ltd. under the supervision of 

C. Douglas Read. These results were reported as oxides, and the protocol for the Actlabs analysis 

are included in Appendix C. 



4.4.2 X-Ray Diffraction 

X-Ray Difiaction (XRD) was also used to compare the mineral components of the ceramic 

material in a Tal-i Iblis crucible sherd and in the modem crucible. All XRD was performed at 

MIT's CMSE. Under the guidance of Joseph Adario, I analyzed the samples using a Rigaku Rotoflex 

RTP 500 RC XRD unit at settings of lo convergence slit, lo scatter slit, 0.3 rnm receiving slit, 60 kV 

and 300 mA. 28 values were set at 5-50°, and the sampling interval was set at 0.02O. The scan 

speed was 1 OO/min for the initial scans and 2"Imin for the slower scans. The samples were prepared 

in powdered form and dry-mounted on a glass slide. 

XRD determines the crystalline structures of minerals and compounds. As an x-ray beam is 

incident upon a sample and as the angle of incidence changes, the crystalline lattice of the material 

diffracts the beam in a unique pattern, and the diffraction pattern can then be analyzed to determine 

the lattice spacing and the compounds present in the sample. A schematic of this method is shown 

in Figure 4.5. In this way we were able to determine the major minerals present in the ceramic 

samples. 

X-ray 

Figure 4.5. Schematic diagram of x-ray diffraction apparatus 



4.4.3 SEM X-Ray Mapping 

Samples cut from the sherds were mounted in Epotek Epoxy and polished with 6-micron 

synthetic diamond paste. They were carbon coated and examined with a JEOL 6320FV Scanning 

Electron Microscope in its high-resolution mode with a beam voltage of 5kV. The examination was 

carried out at CMSE under the supervision of Dr. Anthony Gamatt-Reed. The energy dispersive x- 

ray detector was used to create x-ray maps of the sample cross sections. This helped to develop an 

understanding of the elemental distribution in the matrix of the material. For example, it would be 

valuable to know if elements were evenly dispersed across the section or tightly focused in one 

region of the section. A montage of SEM and X-ray map images were created of the cross-section 

from MIT No. 241 p to provide a better view of the morphological changes in the sherds from the 

interior zone to the exterior zone. 

4.4.4 Electron Microprobe Analysis 

Several sherd samples were examined at the Electron Microprobe facilities in the Depart- 

ment of Earth, Atmospheric and Planetary Sciences at MIT. Electron microanalysis was performed 

under the guidance of Dr. Nilanjan Chatterjee on a JEOL JXA-733 Superprobe. This method was 

employed to determine the purity of metallic copper prills visible in MIT No. 241y at the macro- 

scopic level. In addition, this method provided a more complete analysis of the vitrified region, 

which was in direct contact with the contents of the crucible in prehistory and therefore may pro- 

vide evidence as to what those contents were. 

The analyses were performed with Energy Dispersive Spectrometry (EDS, a qualitative 

analytical method) and Wavelength Dispersive Spectrometry (WDS, a quantitative analytical 

method). In both analytical modes a beam of electrons is incident orthogonally onto a sample. As 

the beam penetrates the inner shell electrons, they gain energy and are displaced. The outer shell 

electrons move to fill the vacancies in the inner shells and release X-rays as they do so. The energy 

released is unique to each element and provides an energy spectrum for the sample. As the x-rays 
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are collected either by EDS or WDS, one can determine the elemental composition of the small 

(lmicron in diameter) sample areas. The minimum detection limit is loppm, and elements with 

atomic number of 4 or greater can be analyzed (EMPA website). 

The methods outlined here are the relevant procedures employed during the research period 

of this project. The next chapter, Results, will present the outcomes of these procedures. 



Chapter V: Results 

5.1: Macroscopic Description of the Crucible Sherds 

During my initial examination of the crucible fragments, it became necessary to develop a 

nomenclature to describe the zones of the heat alteration within the sherd fragments. These zones 

are visible at the macroscopic level across a section of the sherd fragments. This nomenclature is 

shown in Figure 5.1 as it relates to a schematic rendition of a section through a crucible sherd. The 

crucible sherds possess four distinct zones, though not all zones are present in each sherd. Zone 1 

exhibits a tadsalmon color, and usually appears as a thin layer on the exterior wall of the crucible 

sherds. This oxidized zone seems to be the least affected by the heat applied during the metallurgi- 

cal use of the crucibles. Zone 2 is a re- Zone Macroscopic Feature 
1 TanISalmon color; oxidized 

duced core, and every sherd contains this 2 
3 

Grey; reduced 
Light grey; slightly vitrified; small round pores 

grey-colored region; when Zone 1 exists, 4 Black; heavily vitrified; large round pores 
3 

Zone 2 is found adjacent to it. This means / 
that the reducing environment present for 

Zone 2 did not reach the exterior of the cru- 

cible. Therefore the reducing atmosphere 

must have been created within the interior 

of the crucible, and this environment was 

not sustained at the exterior. 

In addition to these oxidized and 

reduced zones, two vitrified zones may also 

be present on the sherds. Zone 3 is found 

along the rims and interior base of the cru- Figure 5 . l .  Zones of heat alteration across a sec- 
tion of a crucible fragment. (Traced from sec- 

cible sherds. It also serves as a transition tion photograph of MIT No. 240). 



zone between Zone 2 and Zone 4. Zone 4 lies on the upper interior wall of the crucibles, and is 

glassy in appearance-Zone 3 is lighter grey in color and contains many small spherical pores. Zone 

4 is almost black in color and contains large pores. The larger pores and vitrified appearance 

indicate that the sherd reached a higher temperature at this location (see section 5.3.2). Zone 4 is 

referred to as heavily vitrified and Zone 3 as slightly vitrified. 

5.1.1 Photography and Drawings 

Each of the 10 artifacts described in Table 5.1 was drawn and photographed before analyses 

were performed. This table lists the find spot of the artifacts as well as a brief description of each. 

Accompanying photographs and drawings of each can be found in Appendix A. Replicas of these 

ancient crucibles were constructed by Hildegard Wulff at Tal-i Iblis in 1967 with "local clay" 

(Caldwell 1967:35:). One of these (MITNo. 5279) was used for the onsite experiment mentioned in 

Figure 5.2. MIT No. 5279: Modern replica crucible sherd used in experiment at Tal-i Iblis 
in 1967. Left: top view; Right: profile view showing slumped rim. 

section 3.1, and fragments of it were subsequently sent to MIT for analysis. This used replica is 

more heavily vitrified than any Tal-i Iblis crucible sherd held at MIT, and this fragment can be seen 

in Figure 5.2. Another replica (MITNo. 5277) that was not used for experimentation was also sent 

to MIT; however, this modern replica was fired at a low temperature on site. This is apparent from 

the carbon core found within the crucible. As a ceramic vessel is fired, the organic material con- 

tained within the clay matrix combusts. As firing temperatures reach 200°C and above, the carbon 



Table 5.1. Artifacts examined in this thesis with descriution and find mot. 
~ - 

MITNo 

240 

241p 

241y 

including rim and ext. and int. wall of levels I 
wall. Green residue and nodules 

& 

41.25g 
4.3x4.8x0.3cm 

8.8g 
3x2.2x1.8cm 

2416 

4.8g 
2.3x0.8xlcm 

0.9x3.6x5.2cm including ext. and int. wall and Zone 2: 100% 1 wall of levels I I 
base. Green residue present on Zone 3: 0% and I1 

Description 
- 

Ancient crucible fragment 
including rim, ext, and int. wall, 
and base. Green residue present 
on interior base. 
Ancient crucible fragment 
including ext. and int. wall. And 
a unique 4mm thick deposit of 
copper corrosion product 
interspersed with Zones 2 and 3 

41.7g 

2418 

1 interior of base. I Zone 4: 0% 
241q 1 32.88 / Ancient crucible fragment ) Zone I :  3% ) West profile ) --I7 

on interior surface of sherd. 
Ancient crucible fragment 
including rim, ext. and int. wall. 
Most heavily vitrified of all 

Zones (% Volume 
fraction of cross section) 
Zone 1 : 7 
Zone 2: 8 1 
Zone 3: 5% 
Zone 4: 7% 
Zone 1 : 0% 
Zone 2: 90% 
Zone 3: 10% 
Zone 4: 0 

ancient sherds. 
Ancient crucible fragment 

24.0g 

Zone 1: 7% 
Zone 2: 20% 
Zone 3: 13% 

including rim, ext. and int. wall, 
and base. Green residue and 
nodules present on interior wall. 
Ancient crucible fragment, much 
larger than all others. Includes 
thick rim, ext. and int. wall. 
Green residue and nodules 
present on interior wall 
Ancient crucible fragment 
containing rim, ext. and int. wall, 
and base. Green residue present 
on interior wall and base. 
Complete crucible replica 
constructed by Miss Wulf in 1966 
at Tal-i Iblis. 

- Level 

Level I 

West profile 
wall of levels I 
and I1 

Zone 4: 60% 
Zone 1: 40% 

present on interior wall and base.. 
Ancient crucible fragment 

25.1g 
1.4x4.8x3.6cm 

Caldwell's Cat. 
NoJSam~le No. 

-- 

-47 

West profile 
wall of levels I 
and I1 

Zone 2: 77% 
Zone 3: 5% 
Zone 4: 15% 
Zone 1 : 62% 
Zone 2: 13% 
Zone 3: 9% 
Zone 4: 16% 

Zone 1: 7% 
Zone 2: 90% 
Zone 3: 3% 
Zone 4: 0% 
Zone 1: 100% 
Zone 2: 0% 
Zone 3: 0% 

-47 

West profile 

Zone 4: 8% 
Zone 1: 0% 

Experimental crucible. A 
fragment of the crucible used for 
the experiment performed by the 
team of metallurgists at Tal-I 
Iblis. Fragment includes rim, ext. 
and int. wall, and base. 

-47 

wall of levels I 
and I1 

Level V 

Unknown, 
probably 
collected by 
Prof. Smith 
Modem 

West profile 

63/10 

-- 

-- 

Zone 4: 0% 
Zone 1 : 3% 
Zone 2: 5% 
Zone 3: 32% 
Zone 4: 60% 

--I7 

Modem -- 



Figure 5.3a. MIT No. 5277: Modem crucible replica; Top: view of interior from above; 
Bottom: profile view 



within the clay begins to burn out and oxidize. This causes the carbon to travel from the interior to 
- 

the surface leaving a blackened core. This core will only fully disappear when the ceramic material 

is heated to above 600°C in a hlly oxidizing environment (Rice 1987:88). This modern replica is 

shown in Figure 5.3a, and the carbon coring can be seen in Figure 5.3b. 

Figure 5.4 illustrates the 

most representative of the ancient 

sherds (MIT No. 240). It includes 

a preserved base, wall and rim. 

Most of the artifacts examined 

here are fragmentary and include 

at least the walls and rims of the 
.7 ,-j 1 3 1  2 3 4 5 1 5  ; c! 4 1 i) 

ancient metallurgical crucibles of 

which they were a part. Only MIT 

N ~ ~ .  240, 24lT, 5274 and 5279 Figure 5.3b. MITNo. 5277: Section of modem crucible rep- 
lica; Carbon coring provides proof that this replica was fired 

contain bases as well (Figures 5.4, at a low (below 600°C) temperature when constructed. 

5.5, 5.6 and 5.2, respectively). 

MIT Nos. 24 1 p and 241 E do not contain any part of the rim, though 24 1 E contains a base (Figures 

5.7 and 5.8). 

MIT Nos. 24 1 y and 245 (Figures 5.9 and 5.10) are the only ancient sherds that exhibit heavy 

vitrification at their rims (Zone 4); all of the other sherd rims are slightly vitrified (Zone 3). Figure 

5.9 shows the extreme vitrification of MIT No. 24ly at the rim and along the interior wall. Zone 4 

occurs along the interior wall of all sherds except MIT Nos. 241 P and 2 4 1 ~  (Figures 5.7 and 5.8). 

MITNo. 240 exhibits a hybrid of Zones 3 and 4 on its interior surface. Many large pores typical of 

Zone 4 characterize the interior surface, but it is light grey in color, like Zone 3. 

The interior surfaces of the lower walls and the bases of most of the sherds are covered with 

a green residue. This residue is characteristic of copper corrosion and was believed by Caldwell to 

be indicative of an early smelting technology at Tal-i Iblis; however I will discuss this in section 



Figure 5.4. MIT No. 240: Tal-i Iblis Crucible sherd, Level I. Lefi: profile view; Right: view of 
interior wall and portion of base. 

Figure 5.5. MIT No. 24 1 q : Tal-i Iblis crucible sherd, Level I and 11 profile wall. Lefi: profile 
view; Right: view of interior surface. 



Figure 5.6. MIT No. 5274: Tal-i Iblis crucible sherd, collected by Prof. Smith. Left: profile 
view; Right: view of interior surface. 

6.2. In addition to this green residue, the interior bases and lower walls occasionally exhibit a thin 

layer of Zone 3, but the interior bases and lower walls never show the morphology typical of Zone 

4. Zone 2 is present in all of the ancient crucible sherds, and Zone 1 can be located on the exterior 

wall for every sherd with an identifiable wall, but it is not present on any identified bases. Interest- 

ingly, MIT Nos. 241 p and 2 4 1 ~  (Figures 5.7 and 5.8) are the only two sherds that do not exhibit 

Zone 4 morphology and do not contain a rim, but they are completely reduced, with green accre- 

tions on their interior surfaces. Notice that this accretion is especially thick on the interior surface 

of MIT No. 241 P (Figure 5.7). This leads me to suspect that these two fragments (MIT Nos. 241 P 

and 241s) are from the interior bases of their respective crucibles, and I return to this argument in 

the next chapter (section 6.2). 

In addition to these visual indications of the sherds' contact with copper metal and that they 

were heated to temperatures that resulted in zonal vitrification, many mineral inclusions and voids 

can be seen in the ceramic matrix of the sherds. Voids are also present as psuedomorphs of chaff 

added to the clay as temper. It is likely that this temper was added to increase the refractory 

properties of the clay, allowing it to become a better heat insulator. This discussion is addressed in 

the next chapter (6.3). 



Figure 5.7. MIT No. 241P: Tal-i Iblis crucible sherd, Level I and I1 profile wall. Left: 
profile view; Right: view of interior surface exhibiting a thick green accretion. 

Figure 5.8. MIT No. 241s: Tal-i Iblis crucible sherd, Level I and I1 profile wall. Left: profile 
view; Right: view of interior surface showing green accretion. 

Figure 5.9. MIT No. 241y: Tal-i Iblis crucible sherd, Level I and I1 profile wall. Left: view of 
interior heavily vitrified surface; Middle: profile view with slumped rim shown; Right: view 
of exterior surface. 



- 
5.1.2 Environmental Scanning Electron Microscopy (ESEM) 

The zones outlined above are visible not only at a macroscopic level. We can also detect 

differences in the microstructure of the clay by comparing environmental scanning electron micro- 

scopic (ESEM) images of these zones. I cut complete sections through the crucible sherds to reveal 

the zoning in preparation for their microscopic analysis. The locations of these sections are indi- 

cated on the drawings for the relevant artifacts (Appendix A). Using ESEM I was able to document 

at a microscopic level the morphological changes visible in the clay fabric on the macroscopic 

level. 

Recall from section 4.2.1 that all clays are comprised of platelets (disc-shaped features) that 

cause the characteristic plasticity of wet, un-fired clay. A photomicrograph of these platelets of 

kaolinite clay was reproduced as Figure 4.2. Upon heating to above a given temperature these 

platelets lose their interstitial water and then bond to each other during a process called 

Figure 5.10. MIT No. 245: Tal-i Iblis crucible sherd, Level V. Left: profile view (this sherd is 
much larger than any of the other ones, and it is also from a much later level); Right: view of 
interior surface. 



Figure 15 

Figure 14 

Figure 13 

Figure 

Figure 5.11. Cross-section of MIT No. 241 8 with locations of ESEM images indicated 
with arrows. 

dehydroxylation. This fusion of platelets increases the yield strength of the clay, however the 

temperature for fbsion depends on the type of clay and heating environment (Rice 1987: 90). 

In the reduced zone of the ancient sherds platelets are visible. They are fused at locations 

that approach the interior surface of the ceramic. Figure 5.11 shows the section cut from MIT No. 

241p and indicates the points within this section that correspond to the ESEM images shown in 

Figures 5.12- 15. One can clearly see the hsion of platelets in Figures 5.12 and 5.13 in contrast to 

the unhsed, distinct shape of individual platelets in Figure 5.14. Figure 5.15 completely lacks 

fused platelets. Figures 5.16 and 5.17 show Zone 4 of ancient sherd MIT No. 240. The microstruc- 



Figure 5.12. ESEM image of MIT No. 241P at a magnification of 650, in Zone 3 near the 
interior surface, within the thick green accretion. (1) These streaks are artifacts of sample 
preparation. (2) The platelets are hsed together in this area, (3) but not as much so in this area. 
(4) These pores are due to vitrification. 

Fig 
the green accretion zone and Zone 2, 0.8rnrn from the interior surface. The arrow indicates 
where the platelets are more distinct (less fused). 
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Figure 5.14. ESEM image of MIT No. 241b at a magnification of 1000, within Zone 2 (re- 
duced core), 2.5rnrn from the interior surface. The arrow indicates stacks of clearly defined 
platelets. 

Figure 5.15. ESEM image of MIT No. 24 1 P at magnification of 1000, within Zone 2, 5mm 
from the interior surface. Notice the complete lack of fused particles. 
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ture is very different from that of MIT No. 241p in that the platelets are completely fused and 

indistinguishable. Because Figures 5.16 and 5.17 were recorded at a lower magnification than the 

images shown in Figures 5.12-1 5, for purposes of comparison, I included Figure 5.1 8.  Figure 5.1 8 

captures the region shown in Figure 5.12 at a correspondingly lower magnification. 

5.1.3 Summary 

The sherds studied in this thesis have been characterized as exhibiting evidence of use as 

part of a metallurgical technology practiced during the occupation of levels I and I1 at Tal-i Iblis. 

They exhibit four discrete microstructural zones that correspond to differential heating. These 

descriptions of the sherds and their microstructural zones provided a framework for their subse- 

quent analysis and for interpretation of the analytical results. 

5.2 Comparison: Ancient Sherds and the Modern Replica of a Tal-i Iblis Crucible 

The goal of this thesis is to determine the role of the ceramic crucibles in the metallurgical 

processes employed at Tal-i Iblis levels I and 11. The nature of this technology can be determined 

through various modes of analysis. By examining the thermal properties of the crucible sherds, one 

can determine the temperature to which the crucibles were heated, thereby providing some clues as 

to their original use. By studying the composition of the heavily vitrified zone of the sherds, one 

can infer the nature and likely composition of the substances heated within the crucible. These two 

avenues of investigation are key to understanding the use of these crucibles at Tal-i Iblis, and will 

be addressed in section 5.3. In order to establish the level of correspondence between the archaeo- 

logical sherds and the modem replica (MIT No. 5277), I had to demonstrate the compositional 

similarity between them. Different clay compositions can exhibit different thermal properties, and 

differing amounts of temper can change the refractory properties of a clay vessel. Therefore, close- 

ness in ceramic composition indicates the likelihood that the sherds and the replica would exlubit 

similar thermal properties. In that case, I could use the modem replica as a proxy for the sherds in 

experiments designed to determine the thermal properties of the sherds. The constraints set by the 
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igure 5.16. ESEM image of MIT No. 240 ata magnification of 100, Zone 4 on the interior 
urface. There are no discernable platelets. Notice the smooth surfaces of the void interiors and 
le large spherical voids. 

igure 5.17. ESEM image of MIT No. 240 at a magnification of 100, Zone 4 on the interior surface. 
:ven at broken sections through void wall, no platelets can be identified. 



Figure 5.18. ESEM image of MIT No. 241 P at a magnification of 250. At interior surface, 
Figure 13 is a detail of this photomicrograph. 

limited number and small size of Tal-i Iblis crucible sherds in the MIT collection required the use of 

this proxy. 

5.2.1 Thin Section Analysis of Archaeological and Replica Crucibles 

The compositional similarity between the ancient sherds and the modem replica was stud- 

ied through petrographic thin section analysis. As defined here, composition similarity includes 

possessing a similar clay mineral type, mineral inclusion type, mineral inclusion abundance, and 

void abundance (porosity). Petrographic thin section analysis allowed me to address three of these 

points in detail, and the fourth will be addressed in sections 5.2.2 and 5.2.3. This analytical method 

focused on studying the minerals contained within the clay fabric and their abundance, as well as 

the porosity of the clay. In addition, I was able to compare the clay mineral type on a qualitative 

level by examining the optical activity of the clay. 

Petrographic thin sections were constructed from four of the Iblis sherds (MIT Nos. 240, 

241 P, 241y, 24 16), the used experimental modem crucible (MIT No. 5279), and the modem replica 
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(MIT No. 5277), with the aim of performing point counting with a petrographic microscope. Of the 

four Iblis sherds, the point count data for two (MIT No. 240 and 2416) are shown in Table 5.2. The 

point count data for the modern replica are also shown in Table 5.2, however the data reported here 

are fiom the samples used in the re-firing experiments performed on the modem replica (these re- 

firing experiments are discussed in section 5.3.2). The point counts revealed that the mineral 

assemblages present in both the ancient and modem crucible fragments were remarkably similar. 

The thin sections that underwent point counting were scrutinized at 1000 points over a 

regular interval as outlined in the last chapter. All thin sections contained large amounts of quartz 

and plagioclase feldspar. The point count data of Table 5.2 includes the minerals identified in the 

thin sections, their abundances, and the re-firing temperatures for the samples fiom the modem 

replica (MIT No. 5277). Samples 12D and 12+Sa were removed fiom ceramic briquettes con- 

structed with clay from Patambo and Santa Cruz, Mexico. Sample S2-101 was removed from a 

ceramic vessel also constructed with clay from Mexico. These three thin sections were borrowed 

from Jennifer Meanwell, at MIT, to provide a distinctly different set of ceramic material as a 

control during point counting (Meanwell 2001). 

Some graphical comparisons of the results of the point counts are shown in Figures 5.19 

through 5.24. I have limited 

most of these plots to an analy- 

sis of quartz, plagioclase feld- 

spar, clay matrix and voids. 

Figure 5.19 is the exception, 

and it shows a bivariant plot 

of the volume fraction of the 

clay matrix material versus the 

volume fraction of all mineral 

inclusions combined. The 

modem replica samples heated 

Matrix (%) 0 S2-I 01 
1- 

- -- 

Figure 5.19. Bivariant plot of thin section mineralogy. 
Clay Matrix vs. All Inclusions 



Table 5.2. Point count data for thin sections based on 1000 data points per sample (% Volume Fraction) 

Artifact number 
5277 H 
5277 B 
5277 G 

5277 U 
5277 Q 
5277 T 
240 
2416 
12D 
12 + Sa 
S2-101 

Temp. ("C) 
No heat treatment 

500 
700 

1150 
1175 
1200 

Tal-i Iblis 
Tal-i Iblis 

34.9 26.1 10 17.2 0.3 0 1.6 7.1 0 0.5 0 1.9 0.4 39 

26.1 28.7 10.5 23.2 0.9 0 3.4 5.7 0 1.5 0 0 0 45.2 
18.3 62.3 4 11.4 0.1 0 1.5 2 0 0.3 0 0.1 0 19.4 

57 25.3 8.1 3.6 0.2 1.5 1.7 2 0 0 0 0.6 0 17.7 
62.4 17 5.9 8.3 0.4 2.3 0.8 1.4 0 0.4 0 1.1 0 20.6 

Mexico 950 
Mexico 700 
Mexico 

55.9 7.1 22.9 7.1 0 0.9 0.2 0 0.5 0 0 5.4 0 3 7 
48.7 8.2 29.7 9.7 0.2 0.3 0.1 0 1.2 0 0 1.9 0 43.1 
53.2 5.6 21.4 7.7 0 1.1 1.1 6.7 0.7 0 0 2.2 0.3 41.2 

Clay 
52.1 16.1 6.3 6.2 0.8 3 1.8 4.4 6.2 0.6 0.8 1.7 0 31.8 
51.2 13.1 10 8.2 1 2.5 1 7.9 3.8 0.3 0.5 0.5 0 35.7 
51.5 12.3 9.1 6.1 0.8 3.4 1.2 7.4 6.8 0.6 0 0.7 0.1 36.2 

Voids Quartz Biotite Plagioclase Amphibole Opaque Basalt Calcite roxene Fe-rich Muscovite Other 



to 1 1 5W3,1175°C and 1200°C ~ I 70 

(MITNos. 5277U, 52774 and 1 60 

50 
52777. respectively) have ~ - 

5 40 
larger void sizes due to their ' 

higher re-firing temperature5, 

and therefore are not con- 
10 

tained within the cluster. The 0 
I 

Tal-i Iblis sherds (MIT Nos. 0 20 40 60 
Matrix ( O h )  80012+SaI  

I 052-101 ~ 
L - - 2  

240 and 241d) also are not - --- 
Figure 5.20. Bivariant plot of thin section mineralogy. Clay 

contained within the cluster 
Matrix vs. Voids 

because overall they have fewer mineral inclusions than the modem replica (the implications of 

this will be discussed in the next chapter, section 6.3). However, in all of the remaining bivariant 

plots, MIT Nos. 240 and 2416 fall within the main cluster of data points. In Figure 5.20 all samples 

cluster except for three, the modem replica samples that were exposed to the highest heat treat- 

ments. These same three 

samples are again separate 

fiom the main cluster in Fig- 

ures 5.21 and 5.22. In addi- 

tion, the samples from 

Mexico are distinctly differ- 

ent fiom the main clusters in 

Figures 5.21,5.23, and 5.24. 
I 

Matrix (%) o ~2-1-10, ~ The consistent outli- 
I 1- I 
LP 

Figure 5.2 1. Bivariant plot of thin section mineralogy. ers in these plots are the three 

Clay Matrix vs. ~ u a r k  high-fired samples (1 1 50°C, 

Heating a ceramic to higher temperatures causes densification of the material and therefore a decrease in the porosity 
(Kingery 1976:469; Rice 1987:35 1); however, these re-fired samples exhibited an apparent increase in porosity due to 
the densification of the matrix and an accompanying expansion of the pores. 
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Figure 5.22. Bivariant plot 
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Figure 5.23. Bivariant plot 
of thin section mineralogy. 
Quartz vs Voids 
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Figure 5.24. Bivariant plot of 
thin section mineralogy. 
Quartz vs. Plagioclase 
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1175°C and 120OC), and the three Mexican samples. The tight clusters that are shown in Figures 

5.20-23 each include the ancient sherds and the samples re-fired at lower temperatures. These data 

together with the data presented in Table 5.2 provide strong evidence for the similarity in type and 

abundance of the minerals in both the ancient and modem replica crucibles. However, this similar- 

ity in the mineralogy of the ceramic inclusions, does not translate to similarity in the clay mineral 

type of the ceramic materials. Therefore, additional analytical methods are necessary to establish 

the parallel between the thermal properties held by the ancient and modem crucibles. These meth- 

ods included X-ray diffraction and bulk chemical analysis. 

5.2.2 X-Ray Diffraction (XRD) of Archaeological and Replica Crucibles 

X-Ray diffraction analysis was performed on one Iblis sherd (MIT No. 24 18) and the mod- 

em replica (MIT No. 5277). Samples from both of these artifacts taken from the most homogenous 

regions (Zone 2 of MIT No. 24113; all of MIT No. 5277 consisted of similar material) were ground 

into a fine powder. The resulting spectra reveal remarkable similarities between the chemical 

compositions of these two clays. Figures 5.25 and 5.26 reproduce the spectra obtained fiom slow 

scans of MIT Nos. 241 P and 5277. Many of the differences between these two spectra are likely 

due to different orientations of the crystals and to the different thermal histories of the artifacts 

(MIT No. 5277 was probably only fired once at a low temperature, whereas MIT No. 241 p was 

used in a high-temperature metallurgical process). Most of the spectral peaks reveal the mineral 

constituents of the clay and have been identified as quartz, pyroxene (augite and diopside) and 

plagioclase feldspar (albite and anorthite); however there are some unidentified peaks (indicated as 

peaks A, B and C on the spectra). I believe that these peaks represent the clay phase present in the 

samples as distinct from the mineral inclusions in the clay. Figure 5.27 shows some spectra of 

common clay types. Based on the comparison of these spectra with the XRD spectrum obtained 

from the scan of the crucible replica sample (MIT No. 5277), I believe that the clay used for the 

modem sample is an illitehmectite mixture. Illite clay mixtures are commonly found in environ- 

ments with high mica content and with many shales, mudstones and limestones (Deer et al. 1966:263). 
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ILLITE ORIENTED-AGGREGATE MOUNT 
ILLITE - BEARlNG SHALE UNTREATED 
ROCHESTER. NEW YORK pa GLYCOlATED 

I HEATED (400 C 
r H ~ A T E D  (550 c 

I / MONTMORILLONITE MI # I I  
SANTA RITA, NEW MEXICO 

ORIENTED-AGGREGATE MOUNT I 
r UNTREATED 

GLYCOLATEO 
r HEATED (400) 
r HEATED ( 5 5 0 )  

ORIENTED-AGGREGATE MOUNT 

MACON, GEORGIA I UNTREATED 
CLYCOLATED 
I HEATED (400 C) 
r HEATED (550 C) 

Figure 5.27. X-ray diffraction spectra for common clay types. 
(a) illite of the illite group; (b) monmorillonite of the smectite 
group. Notice the shift in the initial peak at 20 value of 7 
when the sample is heated to 400°C. This peak is also greatly 
diminished when the clay is heated; (c) kaolinite of the ka- 
olinite group. 

Smectites form from volcanic 

rocks (tuffs and ash), fiom cal- 

cium- or sodium-rich deposits, 

and are common in soils mixed 

with illites weathered fiom basic 

rocks in poor drainage environ- 

ments (Deer et al. 1966:268). 

The geological environ- 

ment of the Kerman Province and 

that of the area immediately sur- 

rounding Tal-i Iblis is reproduced 

in the geological map in Figure 

5.28. The area surrounding Tal-i 

Iblis consists of secondary sedi- 

mentary deposits of mud, clay and 

sand. There are neighboring out- 

crops of volcanic tuffs, shale, and 

limestone. These surroundings 

would provide a good environ- 

ment for the paragenesis of illites 

and smectites. 



Table 5.3. Bulk chemical analysis of Zones 1 and 2. (wt%) (Original data can be found in Appendix B, protocol can be found in Appendix C) 
1 SAMPLE # I I SiO2 I A1203 ] Fe203 I FeO I MnO I MgO I CaO I Na20 I K 2 0  I Ti02 1 P201 1 LO1 I LOU* 1 TOTAL2' I TOTAL 

*LO12 and Total2 correspond to Fe203. 

MIT 240-1 
MIT 241P-1 
~ 1 ~ 2 4 1 6 - 1  

MIT 245-11 Ancient1 364 444 181 19( 124 4 1131 
Analysis provided by Activation Laboratories Ltd. 

MIT241s-1 
MIT 241 1-1 

Ancient 
Ancient 
Ancient 
Ancient 
Ancient 

387 
423 
401 
398 
407 

429 
507 

508 
498 

18 
17 

556 17 
17 
17 

20 
18 
17 
19 
19 

116 
132 
118 
118 
137 

2 
2 

140 
133 

1 
2 
2 

126 
137 
137 





.. . . 
Kavir (Salt Desert) 

. . . - 
~ - . . . . 

a . Sand Dunes 
.I 

'1 
'\ 
\ ,  Volcanic Tuff 

.- 1 
Lava and Tuff 

Intrusive 
+ .  
t Extrusive 

Ophiolitic melange 

Kavir Deposits-Playa type: sl, m, cl, 
st 

Coastal Deposits: s, m, cl, m1,cg 
1 
I 

1 Neogene-Quaternary Red Beds: ep, 
ml, ss/cglv 

- -  Makran F.: cl, ml, st, s, shelly Is, cg, 
ss, st, sh 

Terraces and volcanics: g, v 

Chahar Gonbad F: Is, ss, ml, cg, v, 

Lower Red F.: sh, rnl, ss, gy, cg, v 

Alimoradi F.: v, Is, cg 

Nummultic Series: ss, sh, ml, 1s; and 
Volcanics, flysch 

Orbiolina Limestone; Cretaceous 
red beds: cg, ss, sh, ml; Biabanak 
Shales 

Upper Jurasic Salt F.: sl, gy, sh, 
1s; Red Terristic F.: ss; Pectinid 
Limestone and Gypsum Facies: 
Is, ml, gy; Garedu Red Beds: ss, 
sh, cg, 1s 

Baghamshah F. : sh, ss, ml 

1 Abadeh Upper Triassic: is, sh 

Nakhlak Grouu: Is, sh, cg, ss 

Abedeh Lowe; Triassic: Is, ss, sh 

Bahram Limestone: Is, sh, dl; 
Padcha F.: ss, dl, gylb, sh, cg, Is, 
sts: Sibzar Dolomite 

Niur F.: Is, ss, sh 

Gushkamar Group 

Abbreviations: b-basalt, cg- 
conglomerate, cl-clay, dl-dolomite, ep- 
evaporite, g-gravel, gy-gypsum, ls- 
limestone, m-mud, ml-marl, s-sand, sh- 
shale, sl-salt, ss-sandstone, st-silt, sts- 
siltstone. v-volcanic 

Marl: Is, ss, cg 

Kerman Conglomerate: cg, ss 



5.2.3 Bulk Chemical Analysis of Archaeological and Replica Crucibles 

The Tal-i Tblis crucible clay was also compared to the clay of the modern replica through 

bulk chemical analysis. The method used for this analysis was ICP-OES (see Appendix I3 for 

original data and standards, see Appendix C for protocol). The results of this analysis are shown in 

Table 5.3. All of the sherds are similar in composition with main constituents of SiO,, A1,0,, CaO, 

Fe,O,, MgO, K20, and Na20 in their order of relative abundance. 

5.2.4 Dissimilarities between modern replica and ancient sherds 

The data presented in this section provide evidence for the similarity between the modern 

replica crucible (MIT No. 5277) and the ancient sherds from Tal-i Iblis. However, there are a few 

dissimilarities that should be addressed. These include differences in porosity, overall mineral 

inclusion abundance, and the XRD spectra for MIT Nos. 5277 (modem replica) and 241 p. 

The samples from the modern replica contain fewer voids on average (17.5%) than the 

average of two of the Iblis sherds (MITNo. 2416 and 240) (21.2%). This difference in porosity no 

doubt affects the thermal conductivity of the ceramic material (as will be discussed in section 6.2). 

However, the standard deviation for volume fraction of voids in both the modem replica and the 

ancient sherds is high (see Table 5.4). For the modem replica samples this large variation in pore 

density is due to the heat treatments the samples received; for the ancient sherds, it is due to the 

problem of point counting across zones in the section of the sherd that reached different tempera- 

tures when the crucible was used. This means that there is no one porosity that represents the 

Table 5.4. Porosity of Tal-i Iblis crucible sherds and modem crucible replica. 

IMIT NO. I porosity I Standard I (hnments 
(%Vol. Fraction) Deviation I 

This is an average of all re-fired samples, 
with the highest and the lowest values of 
porosity discarded. 

I This is an average of tow ancient sherds. 



characteristics of all zones of any one Iblis crucible sherd. It also means that at least some of the 

modem replica sherds (e.g. the samples heated to temperatures in the range of 1125-1 175°C) pos- 

sess the same volume fraction of voids that is present in the ancient sherds. In addition, the re- 

firing experiments were designed to allow inspection of the changes occurring in the ceramic fabric 

of the replica itself, not in the transfer of heat across the ceramic sample. Consequently, the differ- 

ences in thermal conductivity that may result from different pore densities are not a concern when 

justifying the validity of the re-firing experiments. The presence of these pores, however, are 

important insofar as the changes in their morphology can be used to estimate the temperature reached 

by the crucible. Pore shapes reflect the alterations occurring in a ceramic material as a result of 

increases in temperature. 

A second dissimilarity between the ancient sherds and the modem replica can be found 

when comparing the total volume fraction of mineral inclusions in each thin section. The thin 

sections constructed from the samples of the modem crucible replica contained slightly more min- 

eral inclusions overall than did those from the ancient crucible sherds. For our purposes, similarity 

in the type of minerals is more important than similarity in the abundance of inclusions, for many 

reasons. First, if the same types of minerals are present in both the ancient sections and in the 

modem replica, morphological changes occurring in these minerals can be compared in the two 

sets of samples. Second, the presence of the same types of minerals in both sets of samples (mod- 

em replica samples and ancient sherds) could indicate a similarity in the paragenesis of the clays or 

possibly even establish that the same source of clay was used for both the ancient and replica 

crucibles. It should be noted, however, that clay sources are easily manipulated by the environment 

and could change drastically over a period of six thousand years. In addition, clays are so ubiqui- 

tous with so much variation that distinguishing between clay sources is very difficult (Neff 2000:81). 

Furthermore, within even a single clay source, the variation in the concentration of mineral inclu- 

sions can vary tremendously. A third reason supporting the importance of mineral type over min- 

eral inclusion abundance in the ceramic material is that the effect of heat will alter certain minerals, 

causing the clay composition to change. Calcite provides an example of this. When calcite is 
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heated to above 850°C (this temperature varies depending on the time and atmosphere of the heat- 

ing application) it decomposes to form lime and carbon dioxide: 

CaCO,+CaO+CO, 

The lime can react with both the vessel and the environment to change the chemistry of the 

ceramic. For these reasons, the analysis of the thin sections was focused largely on mineral 

inclusion type rather than on overall mineral abundance. 

A final dissimilarity between the data for the ancient crucible sherds and the modern cru- 

cible replica lies in their x-ray diffraction analyses. The peaks from the spectra created through 

slow scans of the modem replica and one ancient crucible are slightly different. In fact, some of the 

peaks found in the spectrum for the modem crucible replica are missing in the spectra for the 

ancient sherds. This is explained by the fact that the clay undergoes crystalline transitions when 

heated above 600°C. These transitions are both minor (resulting in shifted peaks on an XRD spec- 

trograph) and major (resulting in the disappearance of peaks on an XRD spectrograph). In the 

former case, these changes, studied by others (USGS), and are presented in Figure 5.27. 

All of these dissimilarities are products of natural, expected, and inconsequential variations 

in the ceramic material. Although the ancient crucible sherds and the modem crucible replicas are 

not identical, they are adequately analogous for the purposes of this study. 

5.2.5 Summary 

The close similarity between the ceramic fabric of the ancient sherds and the modem rep- 

lica was established through petrographic thin section analysis, x-ray diffraction, and bulk chemi- 

cal analysis. Because the modern and ancient sherds are similar, it was feasible to perform re-firing 

experiments on samples of the modem replica crucible. The aim of these experiments was to 

determine changes in the chemistry and microstructure of the modem crucible replica as samples 

fiom this object were heated under a controlled regime of temperatures and environment. These 

changes could later be correlated with the chemistry and microstructure observed in the Tal-i Iblis 

crucibles to establish the temperatures to which the sherds were heated. 
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5.2.5 Thermal Analysis 

The temperatures to which the Tal-i Iblis sherds were heated during their use were deter- 

mined through Differential Thermal Analysis (DTA) as well as by a series of re-firing experiments. 

DTA was used to develop an estimate of the temperature at which the fabric of the ancient sherds 

slumped. The re-firing experiments provided samples of the modem crucible replica that were 

heated whthin that temperature range. These samples were used for both macroscopic and micro- 

scopic evaluation and to study morphological changes in the ceramic material as a function of 

temperature. As mentioned in section 5.2, the chemical composition of the modem crucible replica 

is sirmlar enough to the chemical composition of the ancient sherds that it could be used as a proxy 

for the Tal-i Iblis sherds in the re-firing experiments. Because the study corpus included so few 

artifacts from Tal-i Iblis, I did not attempt to use the Tal-i Iblis sherds for the re-firing experiments. 

5.3.1 Differential Thermal Analysis of Tal-i Iblis and Modern Replica Sherds 

As mentioned in the previous chapter, a dip in the DTA curve represents an endothermic 

reaction and a peak in the curve represents an exothermic reaction. Figure 5.29 is a hypothetical 

DTA curve showing the main reactions that occur in pottery during a heating cycle of 0-1000°C 

(Tite 1972:296). Only those reaction temperatures will appear on an experimental DTA curve that 

occur above the final temperature to which the ceramic was heated. Therefore, DTA can be a 

Table 5.5. Morphological changes predicted for a ceramic as a function of temperature 
(Tite 1972:296). 

250-500 I Exothermic 1 Combustion of organic material 

Temperature ("C3 Peak type on DTA curve 

600 

Morphological change 

750 

825 
950 

Loss of absorbed water 100-200 

Endothermic 

Endothermic 

" 
Loss of chemically combined hydroxyl 
water 

NA 

Endothermic 
Exothermic 

Hornblende transforms from green to 
brown (Rice 1987:43 1) 
Decomposition of calcite 
Formation of high temperature minerals 



Temperature of sample ("C) 

Figure 5.29. Hypothetical DTA curve for ceramic material over the range of 0-1000°C (Tite 
1972:296) 

useful method for determining a range of temperatures over which the ceramic was originally fued 

or heat-altered. These predicted temperatures are summarized in Table 5.5. However, if the ce- 

ramic reached a temperature above these reaction temperatures, the only determinants one can 

obtain fiom DTA are the slumping and melting temperatures of the material. Slumping and melting 

of the ceramic material appear as endothermic peaks for all ceramic materials. 

I sampled Zones 1 and 4 of an Iblis sherd (MIT No. 240) and compared the results to (1) an 

analysis of the modem replica vessel that was later used in the re-firing experiments (MIT No. 

5277) and (2) a fragment of a modern replica vessel (MIT No. 5279) used at Tal-i Iblis in an ore 

smelting experiment at the site (Pleiner 1967). Figures 5.30-33 present the DTA curves for these 

artifacts. Figure 5.30 shows that for the modem replica (MIT No. 5277), the decomposition of 

calcite occurred at approximately 780°C and slumping occurred at about 1180°C. One can see in 

Figure 5.31 that Zone 1 of the Iblis sherd (MITNo. 240) slumps at around 1150°C. The curves for 

Zone 4 in both Iblis (MIT No. 240; Figure 5.32) and the used experimental modem replica (MIT 

No. 5279; Figure 5.33) also show a slumping temperature of approximately 11 50°C. 



PshlwElmer Thermal Andy315 

Figure 5.30. DTA curve for modem replica (MIT No. 5277); arrows indicate loss of 
calcite and slumping temperature. 
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Figure 5.31. DTA curve for Zone 1 of Iblis crucible (MIT No. 240); arrow indicates 
slumping temperature. 
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Figure 5.32. DTA curve for Zone 4 of Iblis crucible (MIT No. 240); arrow indicates 
slumping temperature. 
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Figure 5.33. DTA curve for sherd of experimental modem crucible replica (MIT No. 
5279); arrow indicates slumping temperature. 



5.3.2 Re-firing Experiment using Modern Replica crucible (MIT No. 5277) 

I designed the re-firing experiments so that they would allow me to examine the morphol- 

ogy of the ceramic material as it was altered at different temperatures. I cut cubic pieces measuring 

approximately 1-2cm on a side from the modem crucible replica and re-fired the samples to 12 

successively higher temperatures all of which were within the range of temperatures determined by 

DTA. All of these re-fired samples are shown in Appendix A. There were many macroscopic 

changes that occurred during heating; all of the changes noted are summarized in Table 5.6. The 

grey carbon-rich zone in the interior of the walls (discussed in section 5.1.1) disappeared upon 

firing to 700°C. At 1000°C the ceramic was significantly less powdery; above this temperature 

there were macroscopic changes in the color and shape ofthe fired samples. At 1125°C the ceramic 

began to darken in color, and by 11 50°C it was uniformly grey. At 1175°C the ceramic began to 

vitrify, and at 1200°C it had fully slumped. Figure 5.34 shows these morphological changes for 

some of the re-fired samples. This visual verification for the slumping temperature reinforced the 

DTA estimate of 1180°C for a slumping temperature. Nonetheless, further investigations were 

necessary to document more precisely the temperatures reached at locations along the cross-sec- 

tion of the ancient sherds. 

Thin sections were made from the modern replica samples heated to 500°C, 700"C, 100O0C, 

1 100°C, 1125"C, 1 150°C, 1175"C, and 1200°C and including an unheated sample. With the aid of 

mineralogical references (Rice 1987; Tite 1972; Obstler 1996; Deer et al. 1966) I identified the 

mineral inclusions of these ceramic samples and performed point counts to determine the volume 

&action of the minerals in each thin section. The point count data are presented in section 5.2.1. 

After thoroughly investigating these samples (see Figure 5.35a-n), I discovered that in addition to 

macroscopic morphological changes, there are microscopic morphological changes that occur as a 

function of temperature (presented in Table 5.6). These include the complete disappearance of 

calcite above 708°C:. At low temperatures, the thin sections contained significant amounts of cal- 

cite (3.8-6.8 vol.%), and some of these minerals can be seen in Figure 5.37. The disappearance of 
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Figure 5.34. Photographs of hrnace-heated samples from MIT No. 5277. MIT No. 5277D heated 
to 300°C in re-firing experiment; MIT No. 5277N heated to 1100°C; MIT No. 5277J heated to 
1125°C; MIT No. 5277U heated to 1 150°C; MIT No. 52774 heated to 1175°C; MIT No. 5277T 
heated to 1200°C. 



calcite above 700°C (see Figure 5.35d) agrees with the data presented by Tite (1972) in the theoreti- 

cal DTAcurve (Figure 5.29). Tite stated that calcite would decompose at 825OC, and Rice (1987) 

concurs. I also found that the optical activity6 of the ceramic matrix changed considerably as a 

function of temperature, beginning at 1000°C. When viewed in both plane and cross-polarized 

light, the matrix gradually made the transition from colorful (Figure 5.35a-c) to mostly red (Figure 

5.3 5d-f), to mostly grey (Figure 5.35g-j), to yellowish-grey (Figure 5.35k-n). 

The void size and shape in the ceramic also change as a function of temperature. In the 

samples fired at low-temperatures, the voids are irregularly shaped, and usually resemble pieces of 

chaff temper (see Figures 5.36a-c). However, at approximately 1150°C (Figure 5.36d) the voids 

Table 5.6. Morphological changes in ceramic of modern replica crucible (MIT No. 5277) as a function of 
temperature. 
I~em~erature PC) Macroscopic Change Microscopic Change 

*Carbon core begins to disappear .(Voids are irregular in shape until 
11 50°C) 

Carbon is completely gone .No changes obeserved 
1000 Ceramic is more cohesive .Ceramic is bright peach in color 

(less powdery) Calcite is no longer present. 
.Optical activity is greatly reduced, clay I: looks dark reddish in xpl* 

Ceramic is bright peach in color *Optical activity is reduced, clay is grey 
in xpl 

.The color of the ceramic begins .Optical activity continues to diminish, 
to darken clay looks grey in xpl 

Ceramic is grey in color .Clay is grey in xpl 
avoids are more rounded. 

Ceramic begins to swell and .Most voids are rounded, but small 
vitrify, it turns greenish-grey in C l a y  is grey in xpl and light greenish- 
color grey in PP~*  

Ceramic has slumped and is .Voids are all large and rounded 
black in color .Clay is grey in xpl, yellowish-green in 

I P P ~  
*xpl: cross polarized light; ppl: plane polarized light 

Here, optical activity refers to the birefringence of the clay. 



No heat applied to sample, optically active, irregular void shapes. 

Re-fued at 700°C, optically active, irregular void shapes. 

Figure 5.35a-n. Optical activity changes with 
temperature. All images are taken at a mag- 
nification of 100; images on the left are in 
cross-polarized light, images on the right are 
in plane-polarized light. 

Re-fued at 1000T. not o~ticallv active. irreeular void sha~e.  ceramic is reddish-brown. . disappearance of calcite. 

Re-fired at 1 1 OO°C, 
grey, irregular void 

ceramic 
shapes. 



Re-fired at 11 75"C, ceramic is grayish-yellow, voids 

(h) 
iapes. 

Ci 
ound at 

( 
are mu 

Re-fired at 1200°C, ceramic is yellowish-green, voi ds are T 

edges. 

ch rounder and larger 

lery large and rounded. 
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. , 
no heat (irregular void shape) 1 100°C (irregular void shape) 

1125°C (voids begin to round, but most are 11 50°C (voids slightly rounded) 
irregular) 

11 75°C (rounded voids) 1200°C (large rounded voids) 

Figure 5.36. Void morphology. Plane-polarized light, taken at a magnification of 50. 



Figure 5.37. Presence of calcite in re-fired samples. (a) MIT No. 5277H (not heated); (b) MIT 
No. 5277B (500°C); (c) MIT No. 52776 (700°C). All images are in cross-polarized light at a 
magnification of 50. 

Figure 5.38. Zone 1 of Iblis sherd (MIT No. Figure 5 -39. Zone 1 of Iblis sherd (MITNo. 
240) does not possess optical activity. Cross- 2418) does possess optical activity in one 
polarized light, magnification of 50. region. Cross-polarized light at a magnifi- 

cation of 50. 

Figure 5.40. Zone 1 of Iblis sherd (MIT No. 2416) contains calcite in one region. Cross- 
polarized light at a magnification of 50. 



become more rounded (though some chaff-shaped voids still remain). At 11 75°C (Figure 5.36e) the 
- 

voids are mostly small and round, and at 1200°C (Figure 5.36f) all of the voids are round and much 

larger. 

These microscopic morphological changes in the modem crucible replica were compared 

to the thin section samples of the Iblis sherds with the aim of determining the temperatures reached 

at points in the various zones across each sherd section. Thin sections were made of four Iblis 

Figure 5.4 1. Voids present in Zone 3 of Iblis sherds. (a) MIT No. 240; (b) MIT No. 241 P; (c) 
MIT No. 2417; (d) MIT No. 2416 all taken in plane-polarized light at a magnification of 50. 

sherds (MITNos. 240,24IP, 24ly, and 2418). In Figure 5.38 (MITNo. 240) one can appreciate the 

lack of optical activity for Zone 1 of the sherd, as well as the distinct red color. When compared to 

the optical activity of the re-fired samples shown in Figure 5.35d-f, it is apparent that Zone 1 in Iblis 

sherd MIT No. 240 reached approximately 1000-1 100°C. In contrast, sherd MIT No. 2418 was 
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Figure 5.42. Voids present in Zone 4 of Iblis sherds. (a) MIT No. 240; (b) MIT No. 241y; (c) 
MIT No. 24 16 all taken in plane-polarized light at a magnification of 50. 

optically active in one region of Zone 1 at the lower exterior tip of the thin section. This optical 

activity is shown in Figure 5.39, and can be compared with the sections shown in Figure 5.35a, c. 

Figure 5.40 shows the presence of calcite mineral inclusions in this region as well. These two 

pieces of evidence allow me to suggest a firing temperature of 700°C for this region of Zone 1. 

Zone 2 of sherd MI'T No. 241 6 is similar to the remaining major portion of Zone 1, which suggests 

that the predicted temperature range of 1000- 1 100°C also applies to this zone. 

Figure 5.41 reveals the shape and size of voids present in Zone 3 of some of the ancient 

sherds. The small, rounded appearance of the voids in Zone 3 for all four Iblis sherds, when com- 

pared with the heated modem replica sections shown in Figure 5.351, j, and 5.36d leads me to 

suspect that Zone 3 reached at least 1 150°C. The voids in Zone 4 of the Iblis sherds are large and 

rounded (as seen in Figure 5.42). This zone was probably heated to above 11 75°C and quite possi- 

bly to 1200°C (compare Figure 5.42 with Figures 5.35k-n and 5.36e,f). 
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Figure 5.43. Temperature profile for Iblis crucible (MIT No. 240). Dotted line indicates the 
extent of the thin section sample. This sherd is also shown in Figure 5.4 

Figure 5.44. Temperature profile for Iblis 
crucible (MIT. No. 24 1 P). This sherd is 
also shown in Figure 5.7. 



Figure 5.45. Temperature profile for Iblis 
crucible (MIT. No. 241 y). This sherd is also 
shown in Figure 5.9. 

Figure 5.46. Temperature profile for Iblis crucible (MIT. No. 2416). This sherd is also 
shown in Appendix A. 



5.3.3 Summary 

Through DTA and re-firing experiments, I have determined the temperatures to which the 

Tal-i Iblis sherds were likely fued or heat-altered. The re-firing experiments have also allowed me 

to identify key morphological changes that occurred in the sherd ceramic fabric and in the mineral 

inclusions as a function of temperature. These temperature profiles help us to reconstruct the 

thermal history of the ancient ceramic vessels and provide some indication of the orientation of the 

vessels with respect to the heat source. The estimated temperatures to which these sherds were 

heated are shown in Figures 5.43-46, and this will be discussed in the next chapter. 

5.4. Characterization of Tal-i Iblis Crucible Sherd Zones 3 and 4 

Zone 4 of the Iblis crucible sherds (see Figure 5.7) is the most heavily vitrified zone and is 

the zone that had direct contact with the contents of the crucible during its use. Zone 3 also had 

contact with the contents of the crucible at the interior base and possibly at the rim. However, Zone 

4 is clearly the area most affected by the processing of the contents of the vessel. For this reason, I 

examined the chemical composition of Zones 3 and 4 in the hope that they might provide evidence 

about the contents of the crucibles and about their metallurgical use. These analyses were per- 

formed by means of microscopic visual characterization, electron microprobe analysis, and by 

comparison of the composition of the Zone 4 material with the bulk chemical analysis of the unal- 

tered sherd fabric discussed in section 5.2.3. 

5.4.1 Scanning Electron Microscopy and Elemental X-Ray Mapping 

Zone 3 of one of the Iblis sherds (MIT No. 241p) was especially interesting because of a 

thick green accretion found on its interior surface (Figure 5.7). When analyzed with the X-ray 

mapping technique described in section 4.4.2, it was discovered that this accretion contained cop- 

per and chlorine. These X-ray maps are reproduced in Figure 5.47. Copper and chlorine concen- 

trated in the same regions signifies the presence of copper chloride, a common copper corrosion 
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Figure 5.47. X-ray map of MlT No. 241 0 in Zone 3. Copper and chlo- 
rine concentrated in the same regions of this surface zone, which I have 
interpreted to signify the presence of copper chloride. (a) SEM image at 
interior surface of MIT No. 241p at location of green accretion (b) chlo- 
rine concentrations; (c) copper concentrations. 



product. This verifies that this sherd (MIT No. 241 P) came into contact with copper metal at some 

point in the past. 

5.4.2 Photomicrography and Electron Microprobe Analysis 

During my microscopic visual investigation of Zone 4 of the Iblis sherds, I was able to 

identify five phases7. These phases include copper prills, cuprous oxide dendrites, clasts and needles, 

and two matrix phases. Each of these phases was photographed and studied before being analyzed 

on the microprobe. 

Metallic prills were present in Zones 3 and 4 of the Iblis crucible sherds (MTT Nos. 241 P, 

2416, and 241y). These prills can be seen in Figure 5.48. All of the prills contain over 95wt% 

copper metal (Tables 5.7a and 5.7b list the components of all phases identified, expressed in wt%). 

The largest prill, in MIT No. 241y, contains copper sulfide inclusions (Figure 5.49). These inclu- 

sions contain 10- 15wt% sulfur and approximately 75wt% copper. One inclusion in this same prill 

also contains 2wt% arsenic. The prills located within MIT No. 241p were not analyzed with the 

electron microprobe because they were so much smaller than those contained within the other 

sherds. 

Dendrites (Figure 5.50) were found only within Zone 4 of MITNo. 2416. The quantitative 

analysis carried out on the microprobe revealed that these dendrites are copper oxides that grew in 

a silica-rich matrix. They appear to contain small amounts of silica, alumina, iron, magnesi~un, 

calcium, sodium and potassium (see calculation in Table 5.7b corrected for matrix "noise" and 

section 6.5 for discussion ofthis correction). The dendrite arm width is approximately 1 pm in size; 

the diameter of the electron microprobe beam is also lpm. Thus the microprobe was used at its 

limit of detection with respect to the dendrites, and the many of the elements recorded for the 

dendrites may represent contributions from the surrounding ceramic matrix material. The clasts 

and needles have been grouped together because they are the same composition, and in some of the 

In ths  discussion I use the word "phase" to denote any part of Zone 4 with a discrete chemical composition. 
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Figure 5.49. Copper sulfide inclusions in the largest prill; MIT No. 241y, at a 
magnification of 200. 

photomicrographs the needles seem to be nucleating from the clasts. The composition of this phase 

consists primarily of iron and oxygen, although it contains about 5wt% copper in solution. The 

morphologies of this phase appear in Figure 5.5 1. 

The matrix of Zone 4 is also of great interest. It is composed of two phases, however these 

phases are not the same for both artifacts in which they appear. Figures 5.52 and 5.53 show the 

matrix material for Zone 4 in the two crucible sherds, MIT No. 2416 and 241y. Table 5.7a shows 

that the lighter phase in MIT No. 2416 consists mostly of silicon, iron, magnesium, aluminum and 

calcium8, and the darker phase of the same artifact consists primarily of silicon, aluminum, iron, 

Oxygen is indicated in Table 7b to be able to report every element as an oxide, but it was not measured with the 

microprobe. 
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Total Total MIT No. Phase SiO2 Ah03 Fe203* FeO* MgO CaO Na20 K 2 0  SO3 CuO* Cu20* 
(hi 

241y 

I 

*Copper and iron are reported both in their higher oxidation states and lower oxidation states, and the totals have been calculated for each of these. 

ND not detected; -- not sought 

Large Prill 

Prill inclusions 

Lighter Matrix 

Darker Matrix 

97.226 
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NA 

NA 
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0.866 
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0.17 
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-- 
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13.263 

-- 
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18.857 

19.06 

-- 
-- 

6253 

3.95 

-- 
-- 

40.423 

41.543 

97.972 

91.528 

95.43 

98.478 



BE 241 D h4atr1x inorphulu~ly  

Figure 5.50. Dendrites in MIT No. 2416 Zone 4 (a) photomicrograph at a magnification 
500; and (b) SEM image with scale bar indicated. 
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BE 2410 h'lalrt:: ;no~phoIogy 

Figure 5.5 1. Clast and needle phases in MIT No. 2416. SEM unage with scale bar shown. 

calcium and copper. In artifact MIT No. 241 y, the lighter phase is similar to the darker phase of the 

previous artifact, that is, it consists mostly of silicon, aluminum, iron, calcium and copper. The 

darker phase of MIT No. 24 1 y consists mainly of silicon, aluminum, magnesium and calcium. The 

chemical compositions of the matrix material in Zone 4 of these two sherds are slightly different, 

implying that slightly different procedures or materials were involved in the use of each of these 

vessels. When these Zone 4 matrix analyses are compared to the bulk chemical analyses of the 

unaltered zones of the sherds, (section 5.2.3 and Table 5.3), one notices the drastic increase in 

copper and calcium in the Zone 4 matrix phases. The significance of these data is discussed in the 

next chapter. 

5.5 Summary 

The results presented here show that the modem crucible replica is close in composition to 

the Tal-i Iblis crucible artifacts. This similarity allowed me to design valid re-firing experiments on 
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the modern replica with the aim of comparing these re-frred samples to the Tal-i Iblis crucible 

fragments. Upon studying the morphological changes that occurred in the ceramic of the modern 

replica as a function of temperature, I was able to compare these with the microstructure of the Iblis 

crucible sherds. The comparison allowed me to estimate the original temperatures to which the 

Tal-i Iblis artifacts were fired or heat-altered. The interior surfaces of these crucibles (Zone 4) 

reached approximately 1200°C. I characterized Zone 4 to clarify the structure and chemical corn- 

position of the five phases found within the zone. This chemical composition was compared to the 

bulk chemical analysis of the ceramic matrices of Zones 1 and 2 of the Iblis sherds. In the Discus- 

sion chapter I will present explanations for and interpretations of these results, as well as the impli- 

cations of such data. 



Chapter VI: Discussion 

6.1 Copper at the site of Tal-i Iblis 

The early inhabitants of Tal-i Iblis had their choice of ores to exploit from many nearby 

copper ore deposits. The site's prime location in one of the five main copper districts of Iran 

enabled its inhabitants to benefit fiom the numerous mineralized veins and contact joints between 

igneous intrusions and sedimentary deposits (Bazin and Hiibner 1969: 10). It is likely that the Iblis 

miners did not travel far to obtain their ore because there were so many source outcrops near to 

them. As mentioned in section 2.1, the majority of the ore sources immediately surrounding Tal-i 

Iblis include deposits of copper carbonate ore, which means that it would have been relatively easy 

to obtain this weathered oxidized ore for metallurgical activity. Furthermore, bits of malachite 

were found in level I1 at the site of Tal-i Iblis in many locations (Caldwell 1967). This indicates that 

the Tal-i Iblis inhabitants were at least obtaining some of these carbonate ores. 

6.2 The use of crucibles at Tal-i Iblis 

The presence of crucibles such as those discussed in this thesis is interesting in itself; how- 

ever, the more crucial question remains as to their purpose. The ancient crucible sherds discussed 

in this thesis share many of the same qualities. Their shapes are similar enough to assume that they 

all came fiom crucibles shaped like the modem crucible replica that was fashioned on-site (Figure 

5.3a) by Hildegard Wulff. They are also similar in their alterations as a result of heating. The 

crucible cross-section zones defined in section 5.1 (Figure 5.1) indicate that the source of heat was 

located above the crucible and directed to the interior of the vessel. The zoning also reveals that a 

reducing atmosphere was achieved within the vessel hollow. The heavy vitrification on only the 

upper interior surfaces of the crucible sherds provides the clearest evidence that the intense heat 
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that caused vitrification was concentrated within the vessel. The exterior surfaces of the sherds 

show no evidence of this intense heat. Previous studies (Obstler 1996; Freestone and Gamester 

1997) on archaeological ceramics have established a correlation between the presence of a reduc- 

ing atmosphere during the heating of pottery and a color change in the ceramic fabric, fiom tan to 

grey. This color change is largely due to the reduction reaction that occurs when iron oxide in the 

ceramic fabric is reduced under the influence of heat: 

2Fe20,+2CO-34Fe0+2CO, 

This reaction occurs in the temperature range of 900-1000°C. The presence of the grey color in 

Zone 2 of the Iblis sherds indicates that the ceramic was exposed to a reducing environment gener- 

ated within the crucible. Furthermore, the characteristic tanlsalmon color of Zone 1 shows that the 

atmosphere to which the crucible was exposed at the exterior wall was oxidizing. 

This evidence, taken together, suggests that the metallurgical operations at Tal-i Iblis were 

carried out in a set-up similar to that shown in Figure 6.1. This figure shows a schematic section of 

a smelting operation uncovered archaeologically in Cyprus in which a fuel source was piled above 

the contents of a crucible to create a high-heat, reducing region within the crucible suitable for 

smelting carbonate or other copper oxide ores. Not only would this installation create a reducing 

atmosphere at the interior, it could also permit an oxidizing atmosphere at the exterior rim of the 

vessel if the fuel source were piled 

only within the crucible and not 

around it. A set-up with features 
Charccol  

similar to those shown in Figure 6.1 

was found in level I1 at Tal-i Iblis. 
- 

Called a "hearth" by Caldwell, it 

was described as having been 
Clc~y- I rred hclloh 

"scooped out of the ground and 
Figure 6.1. An example of a pit smelting operation in 

show[ing] neither much preparation Ambelikou, Cyprus drawn by Tylecote (1 982:233). No date 
or site information provided. 

nor evidence of repeated firing" 



(1967:35). This pit scooped out of the ground contained metallurgical artifacts including small 

fragments of copper oxide mineral, one crucible sherd, and fragments of a brick. Since this was the 

only "hearth" found in either level I or level I1 at Iblis, it does not provide conclusive evidence of 

having been used in the metallurgical processes occurring at Tal-i Ibis. Keeping this in mind, it is 

necessary to look for additional evidence to support the use at Iblis of a set-up similar to that shown 

in Figure 6.1 . 

Tylecote (1 982: 235) suggests that the Cypriot installation (Figure 6.1) would also optimally 

exploit the refractory properties of the crucible. The open shape of such crucibles may provide for 

easy loading of the crucible contents, but it also allows for slow heat transfer fiom below and rapid 

heat loss fiom above, if not covered. If a crucible were used such as in the Cypriot set-up, it could 

be designed to insulate rather than conduct heat, and one could avoid the problem of trying to move 

heat through the base and walls of the container in order to heat the contents of that container. In 

support of this, it seems that the crucibles at Tal-i Iblis were in fact designed to act as insulators. 

Both Rice (1987) and Tylecote (1982) report that increasing the porosity of a clay fabric can 

reduce its thermal conductivity (increasing its insulating properties). The Tal-i Iblis crucibles were 

tempered with chaff, presumably to serve this purpose. Being an organic compound, chaff will 

bum off when the ceramic is fired above 500°C, leaving behind air-filled pores (Rice 1987: 103; 

Tylecote 1982:235). Air has a much lower thermal conductivity (K=0.0249 WImK at 26.7OC) (Weast 

198 1 :E-2) than the ceramic material (K=0.472W/mK at 70°C) (Touloukian 1970:806), which means 

that with every additional pore, the vessel becomes a better heat insulator. Figure 6.2 provides 

supporting evidence for this arguement with data taken from a standard reference book (Touloukian 

1 970). 

However, Rice (1987) and Tylecote (1982) also note that increasing the porosity of clay 

with chaff temper can also greatly weaken the fabric by reducing its yield strength9, since the pores 

act as stress concentrators within the fabric of the ceramic vessel. This weakening is not a concern, 

Yield strength is the stress at which a material makes the transition horn elastic to plastic deformation. 
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copper corrosion products commonly caused during burial when metallic copper is in contact with 

corrosive ground water. In section 5.4.1 I have identified this residue as a copper chloride. In 

addition, many sherds contain copper prills in Zone 4. These features all constitute direct evidence 

for the use of these crucibles as part of a metallurgical technology at Tal-i Iblis, regardless of 

whether that activity involved melting copper metal or smelting copper ores. The vitrification on 

the interior of these sherds provides further evidence of this metallurgical technology. 

With a fuel source piled inside and above the crucible, as shown in Figure 6.3, the concen- 

tration of heat and slag formation should occur along the upper interior walls and rim of the cru- 

cible, not at the interior of its base. In the case where metal is being melted inside the crucible, slag 

formation might occur as a result of the interaction between the alkali fuel ash and the silicate 

material in the crucible. When metallic ores are being smelted within the crucible, slag may form 
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Figure 6.3. Schematic drawing for crucible smelting or melting operations. The region indi- 
cated by the arrow on the crucible wall would experience contact between the contents of the 
crucible and the fuel source piled on top. 

as a result of the interaction among the gangue of the ore, the alkali fuel ash, and the silicates of the 

ceramic material ('Tylecote 1976). In either case, slag would form where the contents of the cru- 

cible came in contact with the fuel at the upper wall of the ceramic (see Figure 6.3). Therefore, we 

would expect to see heavy vitrification there, but not at the interior base of the crucible. 

Two sherds (MIT No. 241P and 2 4 1 ~ )  appear to be from the bases of their respective cm- 

cibles (section 5.1. I ;  Figures 5.7 and 5.8). Their complete lack of vitrification in comparison with 

the heavy vitrification present on the interior walls of other crucible sherds (MIT Nos. 240, 241y, 

2416, 2 4 1 ~ ~  5274) indicates that the temperatures affecting the interior base of the crucibles were 

far lower than those that affected the upper interior wall. 

There is little doubt that the Tal-i Iblis crucibles were used for a metallurgical technology in 

an arrangement similar to those shown in Figures 6.1 and 6.3. It should be noted, however, that no 

evidence of tuyeres (shown in Tylecote's reconstruction of the Cypriot smelting operation) or of 

refractory ceramic blow-tube tips was found by the archaeologists at Tal-i Iblis. We are still in the 

dark about the methods used to raise the temperature within the crucibles to direct the heat to the 

interior of the vessels. 

6.3 The temperatures reached in the crucible fabric during crucible use 

The comparative data presented in section 5.3 reveal the temperatures reached in each of 

the zones of the ancient crucible fragments. The interior of every crucible fragment reached at least 

1150°C indicating that each crucible could have withstood the temperatures necessary for smelting 
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copper carbonate ore (600-700" for 

sponge copper; 1083°C for prills: Thomp- 

son 1958; Charles 1979) and for melting 

native copper (Tm= 1083OC). This evidence 

is strikingly different from the evidence 

reported by Dougherty (Dougherty and 

Caldwell 1966) that the crucible material 

he tested melted at a temperature of 

990*50°C. It also differs from the tem- 

~era ture  measurement made by Pleiner Figure 6.4. Temperature profile for fragment of mod- 

(1 967) during the on-site experiment per- em crucible (MIT No. 5279) used in the on-site experi- 
ment at Tal-i Iblis. 

formed at Tal-i Iblis. Pleiner reported that 

the temperature measured with a thermocouple at the tip of a tuyere during the smelting experiment 

reached 1100°C. My analysis of a fragment of that experimental crucible (MIT No. 5279) shows 

that the interior surface must have reached at least 1200°C (Figure 6.4). Given the variety of labo- 

ratory analytical and experimental procedures I used in this research and the close agreement of the 

determinations of all my temperature measurements, I am confident in my results. 

6.4 The significance of Zone 4 in the ancient crucibles 

The five phases present in Zone 4 of the crucible sherds can be used to determine the 

thermal history and changes in composition of the fabric of the crucible. Here I will discuss the 

significance of the copper prills contained within this zone, and attempt to reconstruct a solidifica- 

tion sequence for the phases in Zone 4 of Iblis sherd MIT No. 241 P. In addition, it is interesting to 

consider the differences between the bulk chemical analysis of the sherd and the chemical analysis 

of the matrix phases of Zone 4. 

The largest copper prill found in any of the ancient crucible sherds also contains inclusions. 

These inclusions consist of copper sulfide containing small amounts of arsenic, nickel, cobalt, iron 
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and silver. Such inclusions are expected to be present in copper smelting slags (Craddock 1985), 

but native copper usually has much greater purity than this. In a study done by Tylecote (1976) on 

less pure native coppers from Western Asia, it was shown that some of the same elements occur in 

those coppers as are found in the Iblis crucible prills (MIT No. 241y). However, in the case of the 

Iblis prills, the presence of this suite of elements within discrete sulfide inclusions provides strong 

evidence for the prill as a product of a smelting operation. Such multi-element inclusions are not 

characteristic of native coppers (Rapp 1988; Maddin et al. 1980). 

The matrices of Zone 4, in which the copper prills occur, were analyzed to fully understand 

how each constituent phase could have formed (see Figures 5.5 1 and 5.52). The wt% of the three 

main constituents for each of these phases has been recal~ulated'~ and plotted on their respective 

phase diagrams (see Figures 6.5,6.6,6.7,6.8,6.9) to determine approximate melting temperatures 

for each phase. Table 6.1 reports these temperatures. The melting point temperatures given in 

Table 6.1 correspond to each discrete phase. However, when all the phases occur together as a 

vitrified melt, the temperatures at which these phases solidify will be lowered according to the 

concentration of each phase in the melt. The information in Table 6.1 provides the basis for an 

estimate for the solidification sequence of the constituent phases. For Iblis sherd MIT No. 2416, 

the solidification sequence was: light phase (Si0,-Fe0-Ca0)+ dark phase (Si0,-A1,0,-Ca0) in- 

Table 6.1. Melting temperatures for phases present in Zone . 

'O The wt'?? of the three main oxides present in the phase were normalized to correct for the fact that they alone did not 

add to 100% of the phase. 

Melting temperature ("C) 

1083 
1227 
1250 
1300 

1083 
1400 
1300 

MITNo. 

2416 

241y 

Phase 

Prills 
Dendrites 
Dark 
Light 

Prills 
Dark 
Light 

Corresponding phase diagram 

Cu 
Cu-Si-Fe 
Si0,-Al,O,-Ca0 
Si0,-Fe0-Ca0 
-- 

Cu 
Si0,-Mg0-Ca0 
Si0,-A1,0,-Ca0 
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Figure 6.5. MIT No. 2416: Normalized composition of dark phase of Zone 4, plotted on Si0,- 
A120,-CaO phase diagram. 

cluding cuprous oxide dendrites+prill. For MIT No. 24 1y the sequence follows: dark phase (Si0,- 

Mg0-Ca0)jlight phase (Si0,-A1,0,-CaO)+pri11. The solidification sequences determined by 

this method correspond to my analysis of the matrix microstructures shown in Figures 5.51 and 

5.52. The light phase (crystalline) solidifies first; the dark phase (glassy/amorphous) solidifies next 

with the formation of copper oxide dendrites; and the metallic prills solidify as the final phase. 

The solidification of the dendrite phase in sherd MIT No. 2416 is especially interesting 

because these dendrites exhibit such a small interdendritic spacing and dendrite arm width (1 pm). 
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Figure 6.6. MI'T No. 2416: Normalized composition of light phase of Zone 4, plotted on Si0,- 
FeO-CaO phase diagram. 

The fineness of the dendrite morphology indicates that dendrite growth was constrained. It is likely 

that these dendrites formed as an exsolution of the Al,O,-rich phase over time, and the high viscos- 

ity of the matrix phase inhibited their further development. Table 6.2 reports the microprobe analy- 

sis of several of these dendrites. Because the probe beam size was approximately the same dimen- 

sion as the dendrite arm width, it seems clear from the analysis that some of the elements reported 

likely represent the composition of the surrounding material. In an effort to eliminate these matrix 

effects I recalculated the dendrite element determinations. These recalculations were carried out 



Figure 6.7. MIT No. 2416: Normalized composition of dark phase of Zone 4 dendrite phase 
of Zone 4, plotted on Fe-Cu-Si phase diagram (Temperatures given in degrees Kelvin). 

Table 6.2. MIT No. 2416: Recalculation of dendrite composition 

Si 

8.17 

3.163 

5.442 

Al 

2.159 

0.970 

Na 

0.777 

0.495 

Dendrite 

Probe analyses 

Recalculated 
analyses 

Normalized 

K 

1.205 

0.662 

Fe 

2.63 1 

1.491 

2.565 

Cu 

55.165 

53.481 

91.993 

Mg 

0.288 

0.212 

Ca 

3.62 

0 
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Figure 6.8. MIT No. 241 y: Normalized composition of dark phase of Zone 4, plotted on SO,- 
MgO-CaO phase diagram. 

assuming the absence of CaO (zero wt?h). CaO was chosen because of its high concentration in the 

surrounding matrix and low concentration in the measured dendrite composition. The location of 

the recalculated dendrite composition has been plotted on the Cu-Fe-Si ternary phase diagram 

illustrated in Figure 6.7. 

The bulk analysis of Zone 4 was calculated based on the volume fraction of the major 

phases present anti the composition of each as determined with microprobe analysis. These esti- 

mated values of bulk composition (for MIT Nos. 24 1 y and 24 16) are shown in Table 6.3. Compar- 

ing these values with the bulk chemical composition determined for the rest of the crucible, one can 



WEIGHT % 

Figure 6.9. MIT No. 24ly: Normalized composition of light phase of Zone 4, plotted on Si0,- 
A1,0,-CaO phase diagram. 

evaluate the overall change in composition in Zone 4 as a result of the metallurgical process taking 

place within the crucible. Zone 4 exhibits a dramatic increase in the amount of calcium and iron in 

comparison with the concentration of those elements in the remainder of the sherd, while other 

constituents either remain the same or decrease in concentration. 

The increase in iron is expected for a smelting slag but not for a melting slag (section 1.2 

and Tylecote 1976). The increase in calcium is not so easily explained. It could have been contrib- 

uted to Zone 4 via three sources: the use of a flux, the use of a calcium-rich fuel such as wood ash, 
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Table 6.3. Estimated composition for Zone 4 of 24 16 and 24ly based on volume fraction of phases. 

( MIT No. ( SiO, A120, Fe,O,* FeO* MgO CaO Na,O &O SO, CuO* Cu,O* 

dendrites) 

241y 40.528 9.929 7.188 6.467 4.950 26.779 1.603 0.401 0.022 3.719 3.344 
*Copper and iron are reported both in their lugher oxidation states and lower oxidation states. 

or the gangue associated with the copper ore. Given the 6" millennium date of these Tal-i Iblis 

metallurgical activities, it is highly unlikely that the inhabitants of Tal-i Iblis levels I and I1 knew 

the effects of adding CaO (or other oxides) as a flux to a smelting charge of ore and &el. The other 

sources are both likely candidates. It has been shown (Lechtman and Klein 1999) that wood ash 

can be a major contributor of calcium to a smelting slag. However, we do not see a corresponding 

increase in the amounts of Na,O or K,O in Zone 4, although minerals of both of these elements are 

also associated with wood ash. As a result of adding wood ash to a crucible, it is possible, but not 

likely, to find a substantial increase in CaO accompanied by a decrease in Na,O and K,O, as is the 

case in Zone 4 of MIT No. 2416, However, it is most likely that calcium was introduced to the 

vessel as the limestone (CaCO,) gangue associated with the copper ore, which converted to CaO 

under the influence of heat. There are deposits of copper carbonate ore in the veins of a limestone 

outcrop located less than lOkm from Tal-i Iblis. Assuming that Iblis inhabitants mined these ores, 

residual limestone in the crucible charge is the most likely supplier of calcium to the upper crucible 

walls. 





Chapter VII: Conclusion 

The data reported in this thesis provide strong evidence that the early inhabitants of Tal-i 

Iblis had developed a crucible-based extractive metallurgical process for reducing local copper 

carbonate ores to metallic copper. The primary evidence includes: (1) the presence of spherical 

copper prills in the highly vitrified, upper interior walls of the crucibles; (2) the presence of copper 

sulfide inclusions containing the suite of elements Ag, As, Ni, Co, and Fe in the copper prills; (3) 

the increase in iron and the dramatic increase in calcium, likely derived from limestone gangue, in 

the highly vitrified interior walls of the crucibles. 

This conclusion cannot be definitive until further research can be undertaken on a larger 

corpus of crucible fragments from the site. Perhaps this investigation can continue with the Tal-i 

Iblis material curated at the University of Georgia at Athens. Nevertheless, the results are inter- 

nally consistent, compelling, and I report them with a high degree of confidence. 

With dates falling unequivocally within the 6h millennium BCE, these laboratory analytical 

and experimental results make Tal-i Iblis the earliest site in Western Asia and in the world whose 

archaeological remains indicate the development of a copper extractive metallurgy. I hope that this 

analysis will enable archaeologists to understand more clearly, the early development and spread of 

this technology throughout the Old World. 





Appendix A 

Photographs and drawings of artifacts studied during the thesis research. 

MIT No. 240: Tal-i Iblis Crucible sherd, Level I. Left: profile view; Right: view of interior wall 
and portion of base. 

A '  A' 

MIT No. 240: Drawings. (a) fi-ont; (b) proper left; (c) back; (d) proper right; (e) top; (f) bottom. 
A-A' line represents the cut made through the sherd prior to analysis. 



MIT No. 241 P: Tal-i Iblis crucible sherd, Level I and I1 profile wall. Left: profile view; 
Right: view of interior surface exhibiting a thick green accretion. 

MTT No. 241 P: Drawn, (a) front; (b) proper left; (c) back; (d) proper right; (e) top; (f) bottom. A- 
A', B-By and C-C' lines represent the cuts made prior to analysis. 
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MIT No. 241y: Tal-i Iblis crucible ~herd,  Level I and I1 profile wall. Left: view of interior 
heavily vitrified surface; Middle: profile view with slumped rim shown; Right: view of exterior 
surface. 

MIT No. 24ly: Drawn. (a) interior; (b) front; (c) proper left; (d) back; (e) proper right; (0 top; (g) 
bottom. A-A' and B-B' lines represent the cuts made prior to analysis. 



MITNo. 2416: Tal-i Iblis crucible sherd, Level I and I1 profile wall. Left: profile view; Right: 
view of interior surface. 

IvlIT No 2416: Drawn. (a) front; (b) proper left; (c) back; (d)proper right; (e) top; (f) bottom. A- 
A' and B-B' represent the cuts made prior to analysis. 



MIT No. 2 4 1 ~ :  Tal-i Iblis crucible sherd, Level I and I1 profile wall. Lefl: profile view; Right: 
view of interior surface showing green residue. 

MIT No. 2418: Drawn. (a) front; (b) proper right; (c) back; (d)proper lefl; (e) top; (f) bottom. 



MIT No. 2 4 1 ~ :  Tal-i Iblis crucible sherd, Level I and I1 profile wall. Left: profile view; Right: 
view of interior surface. 
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MIT No. 2417: Drawn. (a) front; (b) proper left; (c) back; (d)proper right; (e) top; (f) bottom. 



MIT No. 245: Tal-i Iblis crucible sherd, Level V. Left: profile view (this sherd is much larger than 
any of the other ones, and it is also from a much later level); Right: view of interior surface. 



MIT No. 245: Drawn. (a) front; (b)top ; (~)proper right; (d)back; (e)proper left; (f) bottom. 



MIT No. 5274: Tal-i Iblis crucible sherd, collected by Prof. Smith. Left: profile view; Right: 
view of interior surface. 

MIT No. 5274: Drawn. (a) back; (b)front; (c)proper right; (d)proper left; (eltop; (f) bottom. 



MIT No. 5277: Modem crucible replica; Top: view of interior from above; Bottom: 
profile view 
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MIT No. 5277: Drawn. (a) top view; (b) long profile view; (c) short profile view. Dotted 
line indicates section removed for analysis. 



MIT No. 5277: Drawn. (a) bottom view; (b) long profile view; (c) short profile view. 
Dotted line indicates section removed for analysis. 



MIT No. 5279: Modem replica crucible sherd used in experiment at Tal-i Iblis in 1967 
Left: top view; Right: profile view showing slumped rim. 

MIT No. 5279: Drawn. (a) front; (b) proper left; (c) back; (d) top; (e) bottom; (f) proper right. 
Line A-A' indicates cut made for analysis. 





Re-fired samples from MIT No. 5277 
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C 5I~al-i lblis rnit241 D Prill5 51.021 0.5931 0) 01 01 01 0) 51.621 

Quant# 
1 

2 

3 

4 - 

Label 

Tal-i lblis rnit241 D Prilll 

Tal-i lblis rnit241 D Prill2 

Tal-i lblis mit241 D Prill3 

Tal-i lblis mit241 D Prill4 

6 

7 

C u 
97.96 

96.61 

79.15 

100.67 

Tat-i lblis rnit241 D Prill6 

Tal-i lblis mit241D Dendrite1 

Fe 

0.7102 

1.5292 

1.2549 

1.0862 

85.72 

49.27 

Ele Wt% 

As 
0 

0 

0 

0.0434 

0.9575 

2.0818 

Co 

0.0189 

0.0055 

0 

0.0135 

0 

0 

Ni 

0.0258 

0 

0 

0.103 

0.0515 

0 

Ag 
0.0478 

0.0332 

0.0738 

0.1285 

0.0225 

0 

S 

0.6898 

0.1932 

0.2914 

0.187 

0 

0 

Total 

99.45 

98.38 

80.77 

102.23 

0 

0 

86.75 

51.35 
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Quant# 
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2 

3 

4 

5 

6 

7 

Label 

Tal-i lblis mit241 D Prilll 

Tal-i lblis mit241 D Prill2 

Tal-i lblis mit241 D Prill3 

Tal-i lblis mit241 D PrilW 

Tal-i lblis mit241 D Prill5 

Tal-i lblis mit241 D Prill6 
- - -  

Tal-i lblis mit241 D Dendrite1 

Cu 

0.19543 

0.01038 

0.01038 

0.01038 

0.01 038 

Fe 

0.1 1548 

0.00209 

0.00209 

0.00209 

0.00209 

0.01 038 

MDL:EI% 

As 

0.18728 

0.1873 

0.18733 

0.18727 

0.1 8736 

0.00209 

Co 
0.00181 

0.00181 

0.00181 

0.00181 

0.001 81 

0.1 8738 

Ni 

0.14841 

0.14843 

0.14845 

0.1484 

0.14847 

0.001 81 

Ag 
0.01 194 

0.01195 

0.01195 

0.01194 

0.01 195 

0.14849 

S 

0.0503 

0.05031 

0.05032 

0.0503 

0.05033 

0.01 195 

X 
32.473 

32.465 

32.48 

35.362 

36.755 

Y 
36.108 

36.188 

36.251 

39.109 

43.342 

0.05033 36.103 40.529 



Input numbers in the yellow region; see output in the blue region. 
All Fe considered as Fe2+, and all Cu consider 
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1 
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Tal-i lblis mit241 G Matrix light phase 

Tal-i lblis mit5277Q Matrix dark phase 

Tal-i lblis mit5277Q Matrix light phase 

18.99 
Si 

24.78 
25.45 

5.93 
Al 

14.12 
7.67 

8.26 
Fe 

0.1703 
4.55 

1.7585 

Mg 
0 

3.05 

15.04 
Ca 

6.52 
5.9 

0.5463 
Na 

4.47 

1.9601 

0.442 
K 

0.0736 
2.0292 

0.0158 
S 

0 

0 

3.94 
Cu 

0 
0 

40.47 
0 

47.83 
46.76 

95.39 
Total 

97.96 
97.37 



Input numbers in the yellow region; see output in the blue 
region. 
All Fe considered as Fe2+, and all Cu considered as Cu+ (lower oxidation states) 
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Activation Laboratories Ltd. Work Order No. A04-0635 Report No. A04-0635 

MIT 5274-1 
MIT 5277-1 
MIT 5277-2 
MIT 240-1 
MIT 240b-I 
MIT 241d-1 
MIT 241 e-1 
MIT 241 h-1 
MIT 245-1 

SY3 CERT 
SY-3IA 
NlST 694 CERT 
NlST 694lA 
W-2 CERT 
W-21A 
DNC-1 CERT 
DNC-11A 
BIR-1 CERT 
BIR-1/A 
GBW 071 13 CERT 
GBW 071 13lA 
NBS 1633b CERT 
NBS 1633blA 
STM-1 CERT 
STM-11A 
IF-G CERT 
IF-GIA 
FK-N CERT 
FK-N/A 
MRG-1 CERT 
MRG-1 CERT 
AC-E CERT 
AC-E CERT 

Si02 A1203 Fe203 FeO MnO MgO CaO Na20 K20 Ti02 P205 LO1 LO12 TOTAL2 TOTAL Ba Sr Y Sc Zr Be V 
% % % % % % % % % % % % %  % % P P ~  P P ~  P P ~  P P ~  P P ~  P P ~  P P ~  

52.54 15.78 5.04 1.08 0.123 3.21 6.54 2.07 2.92 0.609 0.31 9.10 9.22 99.43 99.43 367 475 16 17 118 2 123 
55.29 15.13 5.30 -0.01 0.107 3.04 8.26 2.64 2.22 0.587 0.22 5.99 5.99 98.79 98.79 427 699 14 13 116 1 105 
55.12 15.32 4.87 0.36 0.109 3.04 8.29 2.63 2.16 0.578 0.20 6.03 6.07 98.76 98.76 427 690 15 13 115 2 106 
56.08 17.97 6.33 0.83 0.150 3.76 6.97 2.16 2.78 0.657 0.25 1.95 2.04 99.96 99.97 387 429 18 20 116 2 140 
58.21 17.43 4.18 2.16 0.129 3.34 7.57 2.14 2.54 0.665 0.25 0.20 0.44 99.05 99.05 423 507 17 18 132 2 133 
55.39 17.76 5.23 1.00 0.131 3.22 7.62 2.09 2.63 0.650 0.26 2.60 2.71 98.71 98.71 401 556 17 17 118 1 126 
55.81 18.03 5.32 1.44 0.141 3.51 7.66 1.88 2.47 0.643 0.26 1.39 1.55 98.71 98.71 398 508 17 19 118 2 137 
57.25 17.46 4.76 2.01 0.141 3.44 6.72 2.10 2.48 0.661 0.32 0.96 1.19 98.53 98.53 407 498 17 19 137 2 137 
54.99 17.46 5.51 1.24 0.149 3.73 8.20 2.20 2.48 0.640 0.27 1.65 1.79 98.66 98.66 362 446 18 19 122 2 113 

450 302 718 6.8 320 20 50 syenlte 

440 307 727 8 31 1 21 50 
1736 western phosphate rock 

116 961 140 3 94 21598 
182 194 24 35 94 1.3 262 diabase - 
176 196 18 36 81 1 2 6 3  
114 145 18 31 41 1 148dderite - 
107 143 16 31 32 -1 139 
7.7 108 16 44 22 0.58 313 basalt 

8 108 13 44 15 -1 322 
506 43 42.5 5.2 403 4.09 3.8 granite - --  
495 41 44 5 392 4 34 
709 1041 -- 41 296 fly ash 

700 1038 81 39 207 12 290 
560 700 46 0.61 1210 9.6 (8.7 syenite 

590 700 40 -1 1210 9 -5 
1.5 3 9 0.36 2.4 4.7 4 Iron fonn sample 

7 4 8 -1 10 5 -5 
200 3 0.3 0.05 13 1 3 K-feldspar - 
203 37 -1 -1 -1 1 -5 

Note: Certificate data underlined are recommended values; other values are proposed except those preceded by a "(" which are information values. 
Note: The Fe203 for the standards is Total Fe203 and has not been adjusted for the FeO. 

Negalive values indicate less then the reportlng limd 
LO1 values less than -0 01% represenl a Gain on lgnillon 

C. Douglas Read, B.Sc. 
Laboratory Manager 
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Appendix C 
ActLabs Inc. protocol 

Quality Analyses Innovative Technologies 

Code 4B Fusion ICP-OES Whole Rock Analysis 

Samples are prepared and analyzed in a batch system. Each batch contains a method reagent blank. 
certified reference material and 17% replicates. Samples are mixed with a flux of lithium metaborate and 
lithlum tehaborate and fused in an induction furnace. The molten melt IS immediately poured into a 
solution of 5% nitric acid containing an Internal standard, and mixed continuously until completely 
dissol\ied (-30 minutes). The samples were run for major oxides and selected hace elements (Code 4B) on 
a combination s~multaneous/sequential Thermo Jarrell-Ash ENVIRO I1 ICP. Calibration is performed 
using 7 prepared USGS and Canmet certified reference materials. One of the 7 standards is used during the 
analysls t:)r every group of ten samples 

Totals should be between 98.5% and 101%. If results come out lower, samples are scanned for base metals. 
Low reported totals may indicate sulphate being present or other elements like Li which won't normally be 
scanned Car. Samples with low totals however are automatically refused and reanalyzed. 

1336 Sandhill Drive, Ancaster, Ontario, Canada L9G 4V5 
Tel: + I  ,905.648.961 1 or +I ,888,228,5227 Fax: + I  ,905,648,9613 

E-mail: ancaster@actlabs.com ACTLABS Group Website http://www.actlabs.corn 

Fusion I(::P: Trace Elements: 
Oxide 
SIO? 
AI:O1 
Fe:O1 
\ I ~ O  
MnO 
CaO 
TiO: 
Na10 
K:0 
P 2 0 !  

Loss On lgnitlon 

DttraBn I.imit4 
001% 
OOI?o 
o 0 I "to 

O O I ~ .  
0.0140 
001% 
001% 
0 0 1 ?n 

0.01'," 
0 0 1 '/. 
001'h 

Element 
Ba 
Sr 
Y 
Zr 
Sc 
Be 
V 

Detcctioll Llm~t  
2 P P ~  
2 PF 
2 P P ~  
2 P P ~  
2 P P ~  
I P P ~  
5 Q P m  
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