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Abstract—
Network coding substantially increases network throughput.

But since it involves mixing of information inside the network,
a single corrupted packet generated by a malicious node can
end up contaminating all the information reaching a destination,
preventing decoding.

This paper introduces the first distributed polynomial-time rate-
optimal network codes that work in the presence of Byzantine
nodes. We present algorithms that target adversaries with different
attacking capabilities. When the adversary can eavesdrop on all
links and jam zO links , our first algorithm achieves a rate of
C − 2zO, where C is the network capacity. In contrast, when the
adversary has limited snooping capabilities, we provide algorithms
that achieve the higher rate ofC − zO.

Our algorithms attain the optimal rate given the strength of
the adversary. They are information-theoretically secure. They
operate in a distributed manner, assume no knowledge of the
topology, and can be designed and implemented in polynomial-
time. Furthermore, only the source and destination need to be
modified; non-malicious nodes inside the network are oblivious to
the presence of adversaries and implement a classical distributed
network code. Finally, our algorithms work over wired and wireless
networks.

I. I NTRODUCTION

Network coding allows the routers to mix the information
content in packets before forwarding them. This mixing has
been theoretically proven to maximize network throughput [1],
[17], [13]. It can be done in a distributed manner with low com-
plexity, and is robust to packet losses and network failures[8],
[21]. Furthermore, recent implementations of network coding
for wired and wireless environments demonstrate its practical
benefits [16], [6].

But what if the network contains malicious nodes? A ma-
licious node may pretend to forward packets from source to
destination, while in reality it injects corrupted packetsinto
the information flow. Since network coding makes the routers
mix packets’ content, a single corrupted packet can end up
corruptingall the information reaching a destination. Unless this
problem is solved, network coding may perform much worse
than pure forwarding in the presence of adversaries.

The interplay of network coding and Byzantine adversaries
has been examined by a few recent papers. Some detect the
presence of an adversary [10], others correct the errors he injects
into the codes under specific conditions [7], [12], [19], anda
few bound the maximum achievable rate in such adverse envi-
ronments [3], [28]. But attaining optimal rates using distributed
and low-complexity codes is still an open problem.

This paper designs distributed polynomial-time rate-optimal
network codes that combat Byzantine adversaries. We present

three algorithms that target adversaries with different strengths.
The adversary can always injectzO packets, but his listening
power varies. When the adversary is omniscient, i.e., he ob-
serves transmissions on the entire network, our codes achieve
the rate ofC−2zO, with high probability. When the adversary’s
knowledge is limited, either because he eavesdrops only on a
subset of the links or the source and destination have a low-rate
secret-channel, our algorithms deliver the higher rate ofC−zO.

The intuition underlying all of our algorithms is that the
aggregate packets from the adversarial nodes can be thought
of as a second source. The information received at the desti-
nation is a linear transform of the source’s and the adversary’s
information. Given enough linear combinations (enough coded
packets), the destination can decode both sources. The question
however is how does the destination distill out the source’s
information from the received mixture. To do so, the source’s
information has to satisfy certain constraints that the attacker’s
data cannot satisfy. This can be done by judiciously adding
redundancy at the source. For example, the source may add
redundancy to ensure that certain functions evaluate to zero
on the original source’s data, and thus can be used to distill
the source’s data from the adversary’s. The challenge addressed
herein is to design the redundancy that achieves the optimal
rates.

This paper makes several contributions. The algorithms
presented herein arethe first distributed algorithms with
polynomial-time complexity in design and implementation,yet
are rate-optimal.In fact, since pure forwarding is a special
case of network coding, being rate-optimal, our algorithmsalso
achieve a higher rate than any approach that does not use
network coding. They assume no knowledge of the topology
and work in both wired and wireless networks. Furthermore,
implementing our algorithms involves only a slight modification
of the source and destination while the internal nodes can
continue to use standard network coding.

II. I LLUSTRATING EXAMPLE

We illustrate the intuition underlying our approach using
the toy example in Fig. 1. Calvin wants to prevent the flow of
information from Alice to Bob, or at least minimize it. All links
have a capacity of one packet per unit time. Further, Calvin
connects to the three routers over a wireless link, shown in
Fig. 1 as a dashed hyperedge. The network capacity,C, is by
definition the min-cut from Alice to Bob. It is equal to3 packets.
The min-cut from Calvin to the destination iszO = 1 packet
per unit time. Hence, the maximum rate from Alice to Bob in
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Fig. 1—A simple example. Alice transmits to Bob. Calvin injects
corrupted packets into their communication. The grey nodesin
the middle perform network coding.

this scenario is bounded byC − zO = 2 packets per unit time
as proven in [12].

We express each packet as a vector ofn bytes, wheren is
a sufficiently large number. The routers create random linear
combinations of the packets they receive. Hence, every unitof
time Bob receives the packets:

ỹ1 = α1x̃1 + β1z̃

ỹ2 = α2x̃2 + β2z̃

ỹ3 = α3x̃3 + β3z̃,
(1)

where x̃i’s are the three packets Alice sent,z̃ is the packet
Calvin sent,αi andβi are random coefficients.

In our example, the routers operate over bytes; theith byte
in an outgoing packet is a linear combination ofith bytes in the
incoming packets. Thus, (1) also describes the relation between
the individual bytes iñyi’s and the corresponding bytes iñxi’s
and z̃.

Since the routers mix the content of the packets, Alice cannot
just sign her packets and have Bob discard all packets with
incorrect signatures. To decode, Bob has to somehow distillthe
x̃i’s from the ỹi’s he receives.

As a first attempt at solving the problem, let us assume
that Bob knows the topology, i.e., he knows that the packets
he receives are produced using (1). Further, let us assume that
he knows the random coefficients used by the routers to code
the packets, i.e., he knows the values ofαi’s and βi’s. To
decode, Bob has to solve (1). These are three equations with
four unknowns̃z, x̃1, x̃2 and x̃3. Hence, Bob cannot decode.

To address the above situation, Alice needs to add redun-
dancy to her transmitted packets. After all, as noted above,for
the particular example in Fig. 1, Alice’s rate is bounded by 2
packets per unit time. Thus, Alice should send no more than2
packets worth of information. She can use the third packet for
added redundancy. Suppose Alice sets

x̃3 = x̃1 + x̃2. (2)

This coding strategy is public to both Bob and Calvin. Com-
bining (2) with (1), Bob obtains a system of4 equations with
4 unknowns, which he can solve to decode.

But in the general case, Bob knows nothing about the
coefficients used by the routers, the topology, or the overall
network transform. To keep the example tractable, we assume
that theβi’s are unknown to Bob, whereas the other coefficients
are known.

Given (1) and (2), Bob is faced with4 equations and7
unknowns, and thus cannot decode. But note that Bob does not
need to find bothβi’s and z̃; finding their product is sufficient

to find x̃. (This is because theβis and~z always appear as the
product termβi~z in (1).) Hence he is left with4 equations and
6 unknowns.

The first idea we use is that whilẽz is a whole unknown
packet ofn bytes, each of the coefficientsβi is a single byte.
Thus, instead of devoting a whole vector ofn bytes for added
redundancy (as in (2)), Alice just needs three extra bytes of
redundancy to compensate for theβi’s being unknown.

Alice imposes constraints on her data to help Bob to decode.
For instance, a simple constraint could be that the first bytein
each packet equals zero. This constrain provides Bob with three
additional equations. So, rewriting (1) for the first byte ofeach
packet, Bob would get a scaled version of theβi’s i.e., they are
all multiplied by z1.

y1,1 = α1x1,1 + β1z1 = β1z1

y2,1 = α2x2,1 + β2z1 = β2z1

y3,1 = α3x3,1 + β3z1 = β3z1

, (3)

Our second observation is that the scaled version of theβi’s
suffices for Bob to decodẽx. This can be seen by a simple
algebraic manipulation of (1). Bob can rewrite the equations
in (1) by multiplying and dividing the second term withz1 and
appending (2) to obtain

ỹ1 = α1x̃1 + (β1z1)(z̃/z1)
ỹ2 = α2x̃2 + (β2z1)(z̃/z1)
ỹ3 = α3x̃3 + (β3z1)(z̃/z1)
x̃3 = x̃1 + x̃2.

(4)

Notice that Bob already knows all threeβiz1 terms from (3).
The term(z̃/z1) can be considered a single unknown because
Bob does not care about estimating the exact value ofz̃. Now
Bob has4 equations with4 unknowns and they can be solved
to decode as before.

One complication still remains. If Calvin knows the con-
straints on Alice’s data, he knows that the first byte of each
packet is zero. So to ensure that Bob does not obtain any
information about theβi’s from (4), Calvin can just set the
first byte in his packetz1 to zero.

There are two ways out of this situation. Suppose Alice
could communicate to Bob a small message that is secret from
Calvin. In this case, she could compute a small number of
hashes of her data, and transmit them to Bob. These hashes
correspond to constraints on her data, which enables Bob to
decode. If Alice cannot communicate secretly with Bob, she
leverages the fact that Calvin can inject only one fake packet.
Since Calvin’s packet isn bytes long, he can cancel out at most
n hashes. If Alice injectsn + 1 hashes, there must be at least
one hash Calvin cannot cancel. This hash enables Bob to find
the βi’s and decode. Notice, however, that then + 1 additional
constraints imposed on the bytes in~x1 and~x2 means that Alice
can only transmit at mostn − 1 bytes of data to Bob. For a
large number of bytesn in a packet, this rate is asymptotically
optimal against an all-knowing adversary [3].

The rest of this paper considers the general problem of
network coding over completely unknown topology, in the
presence of an adversary who has partial or full knowledge of
the network and transmissions in it.
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Fig. 2—A simple scenario showing how network coding improves
throughput. All links have a capacity of one packet per unit of
time. By sending the XOR ofai and bi on the middle link, we can
deliver two packets per unit of time to both receivers.

III. R ELATED WORK

We start with a brief summary of network coding, followed
by a survey of prior work on Byzantine adversaries in networks.

A. Network Coding Background

The idea underlying network coding is often illustrated using
the famous butterfly example by Ahlswede et.al [1]. Consider
the network in Fig. 2, where sourceS1 wants to deliver the
stream of packetsai to bothR1 andR2, and sourceS2 wants to
send the stream of packetsbi to the same two receivers. Assume
all links have a capacity of one packet per unit of time. If routers
only forward the packets they receive, the middle link becomes
a bottleneck, which for every unit of time, can either deliver ai

to R1 or bi to R2. In contrast, if the router feeding the middle
link XORs the two packets and sendsai ⊕ bi, as shown in the
figure, both receivers obtain two distinct packets in every unit
of time.

Work on network coding started with a pioneering paper
by Ahlswede et al. [1], which establishes the value of coding
in the routers and provides theoretical bounds on the capacity
of such networks. The combination of [20], [17], [13] shows
that, for multicast traffic, linear codes achieves the maximum
capacity bounds, and coding and decoding can be done in
polynomial time. Additionally, Ho et al. show that the above
is true even when the routers pick random coefficients [8].
Researchers have extended the above results to a variety of
areas including wireless networks [21], [15], [16], energy[27],
secrecy [2], content distribution [6], and distributed storage [14].

B. Byzantine Adversaries in Networks

A Byzantine attacker is a malicious adversary hidden in
a network, capable of eavesdropping and jamming commu-
nications. Prior research has examined these attacks in the
presence of network coding and without it. In theabsence
of network coding, Dolev et al. [5] consider the problem
of communicating over a known graph containing Byzantine
adversaries. They show that fork adversarial nodes, reliable
communication is possible only if the graph has more than
2k + 1 vertex connectivity. Subramaniam extends this result
to unknown graphs [25]. Pelc et al. address the same problem

Scheme Charles et.al. [4] Jaggi et.al. [12] Ours
Info. Theoretic Security No Yes Yes
Distributed Yes No Yes
Internal Node Complexity High Low Low
Decoding Complexity High Exponential Low
General Graphs No Yes Yes
Universal No No Yes

TABLE I —Comparison between the results in this paper and some
prior papers.

in wireless networks by modeling malicious nodes as locally
bounded Byzantine faults, i.e., nodes can overhear and jam
packets only in their neighborhood [23].

The interplay of network coding and Byzantine adversaries
was first examined in [10], which detects the existence of an
adversary but does not provide an error-correction scheme.
This has been followed by the work of Cai and Yeung [28],
[3], who generalize standard bounds on error-correcting codes
to networks, without providing any explicit algorithms for
achieving these bounds. Our work presents a constructive design
to achieve those bounds.

The problem of correcting errors in the presence of both
network coding and Byzantine adversaries has been considered
by a few prior proposals. Earlier work [19], [7] assumes a
centralized trusted authority that provides hashes of the original
packets to each node in the network. More recent work by
Charles et al. [4] obviates the need for a trusted entity under the
assumption that the majority of packets received by each node
is uncorrupted. In contrast to the above two schemes which are
cryptographically secure, in a previous work [12], we consider
an information-theoretically rate-optimal solution to Byzantine
attacks forwired networks, which however requires a centralized
design. This paper builds on the above prior schemes to combine
their desirable traits; it provides a distributed solutionthat is
information-theoretically rate optimal and can be designed and
implemented in polynomial time. Furthermore, our algorithms
have new features; they assume no knowledge of the topology,
do not require any new functionality at internal nodes, and
work for both wired and wireless networks. Table I highlights
similarities and differences from prior work.

IV. M ODEL & D EFINITIONS

We use a general model that encompasses both wired and
wireless networks. To simplify notation, we consider only the
problem of communicating from a single source to a single
destination. But similar to most network coding algorithms, our
techniques generalize to multicast traffic.

A. Threat Model

There is a source, Alice, and a destination, Bob, who
communicate over a wired or wireless network. There is also an
attacker Calvin, hidden somewhere in the network. Calvin aims
to prevent the transfer of information from Alice to Bob, or at
least to minimize it. He can observe some of the transmissions,
and can inject his own. When he injects his own packets, he
pretends they are part of the information flow from Alice to
Bob.
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Calvin is quite strong. He is computationally unbounded. He
knows the encoding and decoding schemes of Alice and Bob,
and the network code implemented by the interior nodes. He
also knows the exact network realization.

B. Network and Code Model

This section describes the network model, the packet format,
and how the network transforms the packets.

Network Model: The network is modeled as a hypergraph [22].
Each packet transmission corresponds to a hyperedge directed
from the transmitting node to the set of observer nodes. For
wired networks, the hyperedge is a simple point-to-point link.
For wireless, each such hyperedge is determined by instanta-
neous channel realizations (packets may be lost due to fading
or collisions) and connects the transmitter to all nodes that hear
the transmission. The hypergraph is unknown to Alice and Bob
prior to transmission.

Source: Alice generates incompressible data that she wishes
to deliver to Bob over the network. To do so, Alice encodes
her data as dictated by the encoding algorithm (described in
subsequent sections). She divides the encoded data into batches
of b packets. For clarity,we focus on the encoding and decoding
of one batch.

A packet contains a sequence ofn symbols from the finite
field Fq. All arithmetic operations henceforth are done over
symbols fromFq. (see the treatment in [18]). Out of then
symbols in Alice’s packet,δn symbols are redundancy added
by the source.

Alice organizes the data in each batch into a matrixX as
shown in Fig. 3. We denote the(i, j)th element in the matrix by
x(i, j). Theith row in the matrixX is just theith packet in the
batch. Fig. 3 shows that similarly to standard network codes[9],
some of the redundancy in the batch is devoted to sending the
identity matrix, I. Also, as in [9], Alice takes random linear
combinations of the rows ofX to generate her transmitted
packets. As the packets traverse the network, the internal nodes
apply a linear transform to the batch. The identity matrix
receives the same linear transform. The destination discovers
the linear relation between the packets it receives and those
transmitted by inspecting howI was transformed.

Adversary: Let the matrixZ be the information Calvin injects
into each batch. The size of this matrix iszO × n, wherezO is
the size of the min-cut from Calvin to the destination.

Destination: Analogously to how Alice generatesX , the des-
tination Bob organizes the received packets into a matrixY .
The ith received packet corresponds to theith row of Y . Note
that the number of received packets, and therefore the number
of rows ofY , is a variable dependent on the network topology.
The column rank ofeY , however, isb + zO. Bob attempts to
reconstruct Alice’s information,X , using the matrix of received
packetsY .

C. Definitions

We define the following concepts.
• The network capacity, denoted byC, is the time-average

of the maximum number of packets that can be delivered

`` B – Batch Size

n – packet size

n - redundant symbolsδ

X I

Z L

Y

n – packet size

n – packet size

zo - No. of packets 
Calvin injects

B + zoT̂

Fig. 3—Alice, Bob and Calvin’s information matrices.

from Alice to Bob, assuming no adversarial interference,
i.e., the max flow. It can be also expressed asthe min-cut
from source to destination. (For the corresponding multicast
case,C is defined as the minimum of the min-cuts over all
destinations.)

• The error probability is the probability that Bob’s recon-
struction of Alice’s information is inaccurate.

• The rate,R, is the number of information bits in a batch
amortized by the length of a packet in bits.

• The rateR is said to beachievableif for any ǫ > 0, any
δ > 0, and sufficiently largen, there exists a block-length-n
network code with a redundancyδ and a probability of error
less thanǫ.

• A code is said to beuniversalif the code design is indepen-
dent ofzO.

V. NETWORK TRANSFORM

This section explains how Alice’s packets get transformed
as they travel through the network. It examines the effect the
adversary has on the received packets, and Bob’s decoding
problem.

The network performs a classical distributed network
code [9]. Specifically, each packet transmitted by an internal
node is a random linear combination of its incoming packets.
Thus, the effect of the network at the destination can be
summarized as follows.

Y = TX + TZ→Y Z, (5)

whereX is the batch of packets sent by Alice,Z refers to the
packets Calvin injects into Alice’s batch, andY is the received
batch. The variableT refers to the linear transform from Alice
to Bob, whileTZ→Y refers to the linear transform from Calvin
to Bob.

As explained in§IV, a classical random network code’sX
includes the identity matrix as part of each batch. The identity
matrix sent by Alice incurs the same transform as the rest of
the batch. Thus,

T̂ = TI + TZ→Y L, (6)

whereT̂ and L are the columns corresponding toI ’s location
in Y andZ respectively, as shown in Fig. 3.

In standard network coding, there is no adversary, i.e.,Z =
0 and L = 0, and thusT̂ = T . The destination receives a
description of the network transform in̂T and can decodeX as
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Variable Definition
b Number of packets in a batch.
zO Number of packets Calvin can inject.
zI Number of packets Calvin can hear.
n Length of each packet.
δ Fractional redundancy introduced by Alice.
T̂ Proxy of the transfer matrixT representing the

network transform.
TABLE II —Terms used in the paper.

T̂−1Y . In the presence of the adversary, however, the destination
needs to solve (5) and (6) to extract the value ofX .

By substitutingT from (6), (5) can be simplified to get

Y = T̂X + TZ→Y (Z − LX) (7)

= T̂X + E, (8)

whereE is a b × n matrix that characterizes Calvin’s interfer-
ence. Note that the matrix̂T , which Bob knows, acts as aproxy
transfer matrixfor T , which he doesn’t know.

Note that in (5), all terms other thanY are unknown. Further,
it is non-linear due to the cross-product terms,TX andTZ→Y Z.
In contrast, (8) is linear in the unknownsX and E. The rest
of this work focuses on solving (8) under different assumptions
on Calvin’s strength.

VI. SUMMARY OF RESULTS

We have three main results. Each result corresponds to a
distributed, rate-optimal, polynomial-time algorithm that defeats
an adversary of a particular type. The optimality of these rates
has been proven by prior work [3], [28], [12]. Our work,
however, provides a construction of distributed codes/algorithms
that achieve optimal rates.

(1) Shared Secret Model:This model assumes that Alice and
Bob have a very low rate secret channel, the transmissions on
which are unknown to Calvin. It considers the transmission of
information via network coding in a network where Calvin can
observe all transmissions, and can inject some corrupt packets.

Theorem 1:The Shared Secret algorithm achieves a rate of
C − zO with code-complexityO(nC2). This is the maximum
achievable rate.
In §VII, we prove the above theorem by constructing an algo-
rithm that achieves the bounds. Note that [7] proves a similar
result for a more constrained model where Alice shares a very
low rate secret channel with all nodes in the network, and the
operations performed by internal nodes are computationally ex-
pensive. Further, their result guarantees cryptographic security,
while we provide information-theoretic security.

(2) Omniscient Adversary Model: This model assumes an
omniscient adversary, i.e., one from whom nothing is hidden. In
particular, Alice and Bob have no shared secrets hidden from
Calvin. It also assumes that the min-cut from the adversary
to the destination,zO, is less thanC/2. Prior work proves
that without this condition, it is impossible for the source
and the destination to reliably communicate without a secret
channel [12]. In§VIII, we prove the following.

Theorem 2:The Omniscient Adversary algorithm achieves
a rate ofC − 2zO with code-complexityO((nC)3). This is the
maximum achievable rate.

(3) Limited Adversary Model: In this model, Calvin is limited
in his eavesdropping power; he can observe at mostzI transmit-
ted packets. Exploiting this weakness of the adversary results
in an algorithm that, like the Omniscient Adversary algorithm
operates without a shared secret, but still achieves the higher rate
possible via the Shared Secret algorithm. In particular, in§IX
we prove the following.

Theorem 3:If zI < C − 2zO, the Limited Adversary
algorithm achieves a rate ofC − zO with code-complexity
O(nC2 + (nδ)3C4). This is the maximum achievable rate.

VII. SHARED SECRET MODEL

In the Shared Secret model, Alice and Bob have use of a
strong resource, namely a secret channel over which Alice can
transmit a small amount of information to Bob that is secret
from Calvin. Note that since the internal nodes mix corrupted
and uncorrupted packets, Alice cannot just sign her packetsand
have Bob check the signature and throw away corrupted packets.
Alice uses the secret channel to send a hash of her information
X to Bob, which Bob can use to distill the corrupted packets
he receives, as explained below.

Shared Secret: Alice generates her secret message in two
steps. She first choosesC parity symbolsuniformly at random
from the fieldFq. The parity symbols are labeledrd, for d ∈
{1, . . . , C}. Corresponding to the parity symbols, Alice’sparity-
check matrixP is defined as then × C matrix whose(i, j)th

entry equals(rj)
i, i.e., rj to the ith power. The second part of

Alice’s secret message is theb×C hash matrixH , computed as
the matrix productXP . We assume Alice communicates both
the set of parity symbols and the hash matrixH to Bob over
the secret channel. The combination of these two creates the
shared secret, denotedS, between Alice and Bob. The size of
S is C(b+1) symbols, which is small in comparison to Alice’s
informationX . (The size ofX is b×n; it can be made arbitrarily
large compared to the size ofS by increasing the packet size
n.)

Alice’s Encoder: Alice implements the classical random net-
work encoder described in§IV-B.

Bob’s Decoder: Not only is P used by Alice to generateH ,
but is also used by Bob in his decoding process. To be more
precise, Bob computesY P − T̂H using the messages he gets
from the network and the secret channel. We call the outcome
the syndrome matrixS.

By substituting the value ofH and using (8), we obtain

S = Y P − T̂H = (Y − T̂X)P = EP. (9)

Thus, if no adversary was present, the packets would not be
corrupted (i.e.,E = 0) andS would be an all-zero matrix. As
shown in§IV, X then equalsT̂−1Y . If Calvin injects corrupt
packets,S will be a non-zero matrix.

Claim 1: The columns ofS span the same vector-space as
the columns ofE.
Claim 1, proved in the Appendix, means that Calvin’s interfer-
ence,E, can be written as linear combinations of the columns
of S, i.e., E = AS, whereA is a C × n matrix. This enables
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Bob to rewrite (8) as the matrix product

Y = [T̂ S]

[

X

Â

]

, (10)

Bob does not care aboutA, but to obtainX , he must solve (10).
Claim 2: The matrix[T̂ S] has full column-rank.

Claim 2, proved in the Appendix, means that Bob can decode by
simply inverting the matrix[T̂ S] and multiplying the result by
Y . Since Alice encodes at a rateR = C−zO, the shared secret
algorithm achieves the optimal rate shown by prior work [12].
Of code design, encoding and decoding, both encoding and
decoding requireO(nC2) steps. The costliest step for Alice
is the computation of the hash matrixH , and for Bob is the
computation of the syndrome matrixS.

The scheme presented above is universal, i.e., the parameters
of the code do not depend on any knowledge aboutzO, which in
some sense functions as the “noise parameter” of the network.
Alice therefore has flexibility in tailoring her batch size to the
size of the data which she wishes to transmit and the packet
size allowed by the network. 2

VIII. O MNISCIENT ADVERSARY MODEL

What if we face anomniscient adversary, i.e., Calvin can
observe everything, and there are no shared secrets between
Alice and Bob? We design a network error-correcting code to
defeat such a powerful adversary. Our algorithm achieves a rate
of R = C−2zO, which is lower than in the Shared Secret model.
This is a direct consequence of Calvin’s increased strength.
Recent bounds [3] on network error-correcting codes show that
in fact C − 2zO is the maximum achievable rate for networks
with an omniscient adversary.

Alice’s Encoder: Alice encodes in two steps. To counter
the adversary’s interference, she first generatesX by adding
redundancy to her information. She then encodesX using the
encoder defined in§IV-B.

Alice adds redundancy as follows. Her original information
is a length-(bn−δn−b2) column vectorŨ. (Here the fractional
redundancyδ, is dependent onzO, the number of packets Calvin
may inject into the network.) Alice converts̃U into X̃, a length-

bn vector





Ũ

R̃

Ĩ



, where Ĩ is just the column version of the

b × b identity matrix. It is generated by stacking columns of
the identity matrix one after the other. The second term,R̃

represents the redundancy Alice adds. Theredundancy vector
R̃ is a length-δn column vector generated by solving the matrix
equation forR̃.

D





Ũ

R̃

Ĩ



 = 0.

whereD is a δn× bn matrix defined as theredundancy matrix.
D is obtained by choosing each element as an independent
and uniformly random symbol from the finite fieldFq. Due
to the dependence ofD on δ and thus onzO, the Omniscient
Adversary algorithm isnot universal. The redundancy matrixD
is known toall parties – Alice, Bob, and Calvin – and hence
does not constitute a shared secret.

Alice then proceeds to the standard network encoding. She
rearranges̃X, a length-bn vector, into theb× n matrix X . The
jth column ofX consists of symbols from the((j− 1)b+1)th

through (jb)th symbols of X̃. From this point on, Alice’s
encoder implements the classical random network encoder de-
scribed in§IV-B, to generate her transmitted packets.

Bob’s Decoder:As shown in (8), Bob’s received data is related
to Alice and Calvin’s transmitted data asY = T̂X + E. Bob’s
objective, as in§VII, is to distill out the effect of the error matrix
E and recover the vectorX . He can then retrieve Alice’s data
by extracting the first(bn− b2 − δn) symbols to obtaiñU.

To decode, Bob performs the following steps, each of which
corresponds to an elementary matrix operation.

• Determining Calvin’s strength:Bob first determines the
strength of the adversaryzO, which is the column rank of
TZ→Y . Bob does not knowTZ→Y , but sinceT andTZ→Y

span disjoint vector spaces, the column rank ofY is equal
to the sum of the column ranks ofT andTZ→Y . Since the
column rank ofT is simply the batch sizeb, Bob determines
zO by subtractingb from the column rank of the matrixY .

• Discarding irrelevant information:Since the classical ran-
dom network code is run without any central coordinating
authority, the packets of information that Bob receives
may be highly redundant. Of the packets Bob receives, he
selectively discards some so that the resulting matrixY has
b + zO rows, and has full row rank. For him to consider
more packets is useless, since at mostb + zO packets of
information have been injected into the network,b from
Alice andzO from Calvin. This operation has the additional
benefit of reducing the complexity of linear operations
that Bob needs to perform henceforth. This reduces the
dimensions of the matrix̂T , since Bob can discard the rows
corresponding to the discarded packets.

• Estimating a “basis” forE: If Bob could directly estimate
a basis for the column space ofE, then he could simply
decode as in the Shared Secret algorithm. However, there is
no shared secret that enables him to discover a basis for
the column space ofE. So, he instead chooses aproxy
error matrix T ′′ whose columns (which are, in general,
linear combinations of columns of bothX and E) act as
a proxy error basisfor columns ofE. This is analogous to
the step (8), where the matrix̂T acts as a proxy transfer
matrix for the unknown matrixT .
The matrix T ′′ is obtained as follows. Bob selectszO

columns fromY such that these columns, together with the
b columns ofT̂ , form a basis for the columns ofY . Without
loss of generality, these columns correspond to the firstzO

columns ofY (if not, Bob simply permutes the columns of
Y to make it so). The(b + zO)× zO matrix corresponding
to these firstzO columns is denotedT ′′.

• Changing to proxy basis:Bob rewrites Y in the basis
corresponding to the columns of the(b + zO) × (b + zO)
matrix [T ′′ T̂ ]. ThereforeY can now be written as

Y = [T ′′ T̂ ]

[

IzO
FZ 0

0 FX Ib

]

. (11)
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Here

[

FZ

FX

]

is defined as the(b + zO)× (n− (b + zO))

matrix representation of the columns ofY (other than those
in [T ′′ T̂ ]) in the new basis, withFZ and FX defined as
the sub-matrices of appropriate dimensions.

Bob splitsX as X = [X1 X2 X3], whereX1 corresponds to
the first zO columns ofX , X3 to the lastb columns ofX ,
and X2 to the remaining columns ofX . We perform linear
algebraic manipulations on (11), to reduce it to a form in which
the variables inX are related by a linear transform solely to
quantities that are computable by Bob. Claim 3 summarizes
the effect of these linear algebraic manipulations (proof in
Appendix).

Claim 3: The matrix equation (11) is exactly equivalent to
the matrix equation̂TX2 = T̂

(

FX + X1F
Z
)

.
To complete the proof of correctness of our algorithm, we need
only the following claim, proved in the Appendix.

Claim 4: For δ > n(zO + ε), with probability greater than
q−nε, the system of linear equations

T̂X2 = T̂
(

FX + X1F
Z
)

(12)

DX̃ = 0 (13)

is solvable forX .
The final claim enables Bob to recoverX , which contains
Alice’s information at rateR = C − 2zO. Of code design,
encoding and decoding, the most computationally expensive
is decoding. The costliest step involves inverting the linear
transform corresponding to (12)-(13), which is of dimension
O(nC). 2

IX. L IMITED ADVERSARY MODEL

We combine the strengths of the Shared Secret algorithm
and the Omniscient Adversary algorithm, to achieve the higher
rate of C = C − zO, without needing a secret channel. The
caveat is that Calvin’s strength is more limited; the numberof
packets he can transmit,zO, and the number he can eavesdrop
on, zI , satisfy the technical constraint

2zO + zI < C. (14)

We call such an adversary aLimited Adversary.
The main idea underlying our Limited Adversary algorithm

is simple. Alice uses the Omniscient Adversary algorithm to
transmit a “short” message to Bob at rateC − 2zO. By (14),
zI < C−2zO, the ratezI at which Calvin eavesdrops is strictly
less than Alice’s rate of transmissionC − 2zO. Hence Calvin
cannot decode Alice’s message, but Bob can. This means Alice’s
message to Bob is secret from Calvin. Alice then builds upon
this secret, using the Shared Secret algorithm to transmit the
bulk of her message to Bob at the higher rateC − zO.

Though the following algorithm requires Alice to knowzO

and zI , we describe in§IX-A how to change the algorithm to
make it independent of these parameters. The price we pay is
a slight decrease in rate.

Alice’s Encoder: Alice’s encoder follows essentially the schema
described above, except for a technicality – the information she
transmits to Bob via the Omniscient Adversary algorithm is
padded with some random symbols. This is for two reasons.

Firstly, since the Omniscient Adversary algorithm has a prob-
ability of error that decays exponentially with the size of the
input, it isn’t guaranteed to perform well to transmit just asmall
message. Secondly, the randomness in the padded symbols also
ensures strong information-theoretic secrecy of the smallsecret
message, i.e., we can then show (in Claim 5) that Calvin’s best
estimate ofany functionof the secret information is no better
than if he made random guesses.

Alice’s informationX decomposes into two parts[X1 X2].
She uses the information she wishes to transmit to Bob, at rate
R = C − zO −∆, as input to the encoder of the Shared Secret
algorithm, thereby generating theb× n(1−∆) sub-matrixX1.
Here∆ is a parameter that enables Alice to trade off between
the the probability of error and rate-loss.

The second sub-matrix,X2, which we call thesecrecy matrix
is analogous to the secretS used in the Secret Sharing algorithm
described in§VII. The size ofX2 is b×∆n. In fact, X2 is an
encoding of the secretS Alice generates in the Shared Secret
algorithm. Theb(C + 1) symbols corresponding to the parity
symbols{rd} and the hash matrixH are written in the form
of a length-b(C + 1) column vector. This vector is appended
with symbols chosen uniformly at random fromFq to result in
the length-(C − zO − δn)∆n vectorŨ′. This vectorŨ′ could
function as the input̃U to the Omniscient Adversary algorithm
operated over a packet-size∆n, with a probability of decoding
error that is exponentially small in∆n; however, we actually
use a hash of̃U′ to generate the input̃U to the Omniscient
Adversary algorithm. To be more precise,Ũ = V Ũ′, where
V is any squareMDS code generator matrix1 of dimension
(C−zO− δn)∆n, known to all parties Alice, Bob, and Calvin.
As we see later, hashing̃U′ with V strengthen the secrecy ofS

(and enables the proof of Claim 5 below). Alice then uses the
encoder for the Omniscient Adversary algorithm to generateX2

from Ũ.
The two components ofX , i.e., X1 and X2, respectively

correspond to the information Alice wishes to transmit to Bob,
and an implementation of the low rate secret channel. The
fraction of the packet-size corresponding toX2 is “small”,
i.e., ∆. Finally, Alice implements the classical random encoder
described in§IV-B.

Bob’s Encoder: Bob arranges his received packets into the ma-
trix Y = [Y1 Y2]. The sub-matricesY1 andY2 are respectively
the network transforms ofX1 andX2.

Bob decodes in two steps. Bob first decodesY2 to obtainS.
He begins by using the Omniscient Adversary decoder to obtain
the vectorŨ. He obtainsŨ′ from Ũ, by multiplying byV −1.
He then extracts from̃U′ the b(C + 1) symbols corresponding
to S. The following claim, proved in the Appendix, ensures that
S is indeed secret from Calvin.

Claim 5: The probability that Calvin guessesS correctly is
at mostq−b(C+1), i.e.,S is information-theoretically secret from
Calvin.
Thus Alice has now sharedS with Bob. Bob usesS as the side
information used by the decoder of the Shared Secret algorithm

1 Secret Sharing protocols [24] demonstrate that using MDS code generator
matrices guarantees that to infer even a single symbol ofŨ′ from Ũ requires
the entire vector̃U.
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Adversarial
Strength

Rate Complexity

Shared
Secret

zO < C,
zI = network

C − zO O(nC2)

Omniscient zO < C/2,
zI = network

C − 2zO O((nC)3)

Limited zI+2zO < C C − zO O(nC2 + (δnC)3)

TABLE III —Comparison of our three algorithms

to decodeY1. This enables him to recoverX1, which contains
Alice’s information at rateR = C − zO. Since the Limited
Adversary algorithm is essentially a concatenation of the Shared
Secret algorithm with the Omniscient Adversary algorithm,
the computational cost is the sum of the computational costs
of the two (with ∆n replacing n as the block-length for
the Shared Secret algorithm). This quantity therefore equals
O(nC2 + (∆nC)3). 2

A. Limited Adversary: Universal Codes

We now discuss how to convert the above algorithm to
be independent of the network parameterszO and zI . Alice’s
challenge is to design for all possiblezO andzI pairs that satisfy
the constraint (14). For any specificzI , Alice needs to worry
only about the largestzO that satisfies (14) because what works
against an attacker with a particular traffic injection strength
works against all weaker attackers. Note thatC, zO, andzI are
all integers, and thus there are onlyC − 1 such attackers. For
each of these attackers, Alice designs a different secrecy matrix
X2 as described above. She appends theseC−1 matrices to her
informationX1 and sends the result as described in the above
section.

To decode Bob needs to estimate which secrecy matrix to
use, i.e., which one of them is secret from the attacker. For
this he needs a good upper bound onzO. But, just as in the
omniscient adversary algorithm, he can obtain this by computing
the column rank ofY , and subtractingb from it. He then decodes
using the secrecy matrix corresponding to(zO, C − 1 − 2zO).
This secrecy matrix suffices sincezI can at most beC−1−2zO,
which corresponds to Calvin’s highest eavesdropping strength
for this zO. 2

X. CONCLUSION

Random network codes are vulnerable to Byzantine adver-
saries. This work makes them secure. We provide algorithms
which are information-theoretically secure and rate-optimal for
different adversarial strengths as shown in Table I. When the
adversary is omniscient, we show how to achieve a rate of
C − 2zO, where zO is the number of packets the adversary
injects andC is the network capacity. If the adversary cannot
observe everything, our algorithms achieve a higher rate,C−zO.
Both rates are optimal. Further our algorithms are practical; they
are distributed, have polynomial-time complexity and require no
changes at the internal nodes.
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APPENDIX

A. Proof of Claim 1
The parity-check matrixP is, by construction, aVandermonde ma-
trix [26], and therefore has full row rank. Further, sinceP is hidden
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from Calvin, with probability at least1 − Cnq−1 he cannot choose
interference such that the matrix productEP has a lower column rank
than doesE (the proof of this statement follows from [12]). 2

B. Proof of Claim 2

The proof of Claim 2 follows directly from [11]. Essentially, it is a
consequence of the fact that with high probability over network code
design,T̂ andS both individually have full column rank, and the vector
spaces their columns intersect only in the zero vector. Hence (10) the
transform corresponding to[T̂ S] has full column rank. 2

C. Proof of Claim 3

Rewriting the right-hand side of (11) and substituting forY from (7)
results in

T̂X + TZ→Y (Z − LX) = T̂ [0 F X Ib] + T ′′[IzO
F Z 0]. (15)

Since the columns ofT ′′ are spanned by the columns of[T̂ TZ→Y ],
therefore we may writeT ′′ as T̂M1 + TZ→Y M2, where the matrices
M1 andM2 represent the appropriate basis transformation. Thus (15)
becomes

T̂X + TZ→Y (Z − LX) =

T̂
“

[0 F X Ib]
”

+
“

T̂M1 + TZ→Y M2

”

[IzO
F Z 0]. (16)

Since the vector spaces spanned by the columns ofT̂ andTZ→Y are
disjoint (except in the zero vector), therefore we may compare the term
multiplying the matrixT̂ on both sides of 16 (we may also compare
the term corresponding toTZ→Y , but this gives us nothing useful).
This comparison gives us the equation

T̂X = [0 F X Ib] + T̂M1[IzO
F Z 0]. (17)

We split the matrix equation (15) into three parts, corresponding to
the sub-matricesX1, X2 andX3] of X. Thus (17) now splits into the
three equations

T̂X1 = T̂M1IzO
, (18)

T̂X2 = T̂F X + T̂M1F
Z , and (19)

T̂X3 = T̂ . (20)

The equation (20) is trivial, since it only reiterates thatX3 equals
columns of an identity matrix. The equation (18) allows us toestimate
thatM1 equalsX1. We are finally left with (19), which by substituting
for M1 from (18) reduces to

T̂X2 = T̂
“

F X + X1F
Z

”

. (21)

2

D. Proof of Claim 4

We rewrite the termX1F
Z in (21) as (F ZT

XT
2 )T . We denote by

X̃
′

1 the vector obtained by stacking the columns ofXT
2 one after the

other. LetD = [D1 D2], whereD2 corresponds to the lastb2 columns
of D and D1 corresponds to the remaining columns ofD. Define
α = n − (b + zO). Denote by ~F X the vector formed by stacking
columns of the matrixF X one after the other, and byfi,j the (i, j)th

entry of the matrixF ZT
. The system of linear equations (12)-(13) can

be written in matrix form as

A

„

X̃
′

1

X̃2

«

=

„

T̂ ~F X

−D2Ĩ

«

whereA is given by
2

6

6

6

6

6

6

6

6

6

6

4

−f1,1T̂ −f2,1T̂ . . . −fzO,1T̂ T̂ 0 . . . . . . 0

−f1,2T̂ −f2,2T̂ . . . −fzO,2T̂ 0 T̂ 0 . . . 0

−f1,3T̂ −f2,3T̂ . . . −fzO,3T̂
... 0 T̂ 0 0

...
...

...
...

...
... 0

. . . 0

−f1,αT̂ −f2,αT̂ . . . −fzO,αT̂ 0 0 0 0 T̂

D1

3

7

7

7

7

7

7

7

7

7

7

5

This matrix A is described by smaller dimensional matrices as
entries. The matrixT̂ has dimensions(b + zO) × b. The jth row
of matrices in the top portion of matrixA describes an equation
corresponding to thejth column of the matrix equation in Equation 12.
The bottom portion ofA corresponds to Equation 13.

Bob can recover the variablesX(i, j) if and only if the above
matrix A has full column rank. We now analyzeA to show that this
is indeed the case (with high probability) for sufficiently largeδn.

Let ε > 0 be a small constant. Since, with high probability,T̂ has
full column-rank, the lastαb columns of the matrix (represented by the
right side ofA) have full column rank with probability at least1− ε.

We now address the left columns ofA. Consider performing
column operations from right to left, to zero out thêTs in the left
side of the top rows ofA (that is, to zero out the upper left sub-matrix
of A). A has full column rank iff after this process the lower left sub-
matrix of A has full column rank. We show that this is the case with
high probability over the random elements ofD (when δn is chosen
to be sufficiently large).

Let fij ’s be the values appearing in the upper left sub-matrix
of A. We show that for any (adversarial) choice offij ’s, with high
probability, the act of zeroing out thêT ’s yields a lower left sub-
matrix of A with full column rank. Then using the union bound on all
possible values offij we obtain our assertion.

For any fixed values offij , let C(j), for j = 1 to bzO, denote
the columns of the lower left sub-matrix ofA after zeroing out the
T̂ ’s. For eachj, the vectorC(j) is a linear combination of the (lower
part of the)jth column ofA with columns from the lower right sub-
matrix of A. As the entries ofD1 are independent random variables
uniformly distributed inFq, the columnsC(j) for j = 1, . . . , bzO

consist of independent entries that are also uniformly distributed inFq.
Standard analysis shows that the probability that the columnsC(j) are
not independent isqbzO−δn. For the union bound we would like this
probability to be at mostq−αzO−nε = q−(n−(b+zO))zO−nε. Thus, it
suffices to takeδn = n(zO+ε) for an error probability of at mostq−nε.
Recall thatb = C−zO. We conclude that the total rate ofX transmitted
in our scheme is((n−b)b−δn)/n = ((n−C)(C−2zO)+logq

1
ε
)/n.

As n grows large, the rate approachesC − 2zO as desired. 2

E. Proof of Claim 5

The vectorŨ was generated from̃U′ via an MDS code generator
matrix (see Footnote 1), and a folklore result about networkcodes
is that with high probability over random network code design the
linear transform between Alice and Calvin also has the MDS property.
Thus, for Calvin to infer even a single symbol of the length-(C −

zO −nδ)n∆ vectorŨ′, he needs to have received at least(C − zO −

nδ)n∆ linear combinations of the variables in the secrecy matrixX2.
Since Calvin can overhearzI packets, he has access tozIn∆ equations
that are linear in the unknown variables. The difference between the
number of variables unknown to Calvin, and the number of equations
Calvin has, is linear inn∆ – for large enoughn∆, this difference is
larger thanb(C + 1), the length of the vectorS. By a direct extension
of [24], Calvin’s probability of guessing any function ofS correctly is
q−b(C+1). 2




