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Abstract

Social insects build large, complex structures, which emerge through the collective ac-
tions of many simple agents acting with no centralized control or preplanning. These
natural systems motivate investigating the use of artificial swarms to automate con-
struction or fabrication. The goal is to be able to take an unspecified number of
simple robots and a supply of building material, give the system a high-level specifi-
cation for any arbitrary structure desired, and have a guarantee that it will produce
that structure without further intervention.

In this thesis I describe such a distributed system for automating construction,
in which autonomous mobile robots collectively build user-specified structures from
square building blocks. The approach preserves many desirable features of the natural
systems, such as considerable parallelism and robustness to factors like robot loss
and variable order or timing of actions. Further, unlike insect colonies, it can build
particular desired structures according to a high-level design provided by the user.

Robots in this system act without explicit communication or cooperation, instead
using the partially completed structure to coordinate their actions. This mechanism
is analogous to that of stigmergy used by social insects, in which insects take actions
that affect the environment, and the environmental state influences further actions. I
introduce a framework of extended stigmergy in which building blocks are allowed to
store, process or communicate information. Increasing the capabilities of the building
material (rather than of the robots) in this way increases the availability of nonlo-
cal structure information. Benefits include significant improvements in construction
speed and in ability to take advantage of the parallelism of the swarm.

This dissertation describes system design and control rules for decentralized teams
of robots that provably build arbitrary solid structures in two dimensions. I present
a hardware prototype, and discuss extensions to more general structures, including
those built with multiple block types and in three dimensions.

Thesis Supervisor: Radhika Nagpal
Title: Assistant Professor of Computer Science, Harvard University

Thesis Supervisor: H. Sebastian Seung
Title: Professor of Computational Neuroscience
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Chapter 1

Introduction

Social insects, such as ants and termites, are notable perhaps above all else for
their building activities. Their structures can be huge (on the scale of several meters)
and functionally complex, with features such as gardens, nurseries, royal chambers,
and extensive systems for ventilation and for temperature and atmospheric regulation
(Figure 1-1) [10, 13, 29, 61, 62]. All this is accomplished by creatures on the scale of
millimeters, with 104–105 neurons total to handle everything they need to do; they
possess only local perception, and have no centralized control to coordinate their
actions. From their collective behavior emerge these remarkable structures.

One important question is the scientific one of how these insects collectively build
the structures they do. My focus is on the complementary engineering question, of
how one could design and program a system in which an artificial swarm collectively
builds particular desired structures.

The goal of automating collective construction, as I define it, is to be able to take
an unspecified number of robots and a supply of building material, give the system a
blueprint or other set of specifications for any arbitrary structure desired, and have
a guarantee that the system will produce that structure without further intervention

12



Figure 1-1: Left: Cathedral termite mound in Australia’s Litchfield National Park.
(Photo courtesy Ralf Müller.)
Right: Sketch of internal mound structure for two termite species, indicating air circu-
lation and functional organization of architecture. (Image courtesy Dr. Jo Darlington,
from [13].)

(Figure 1-2).
Such systems would have applications to construction projects, as well as to

smaller-scale production:

• Construction is the one major human production activity from which automa-
tion is still largely absent. Automation could bring significant benefits to tra-
ditional construction, for which reported problems include low efficiency, high
accident rates, low quality, and skills shortages [52, 66]. It could further be of
great use in applications such as facilitating the production of low-cost housing.

• Many reasons automation has not been more widely adopted in construction
have to do with adapting robotic elements to traditional sites and techniques
[66]. Thus there would particularly be a call for automation in settings difficult
or dangerous for humans to work in.

Such settings include, for instance, other planets. To realize the goal of estab-
lishing a human presence on the moon or Mars, it could be enormously helpful
to be able to send robots on ahead first, to build a habitat to await the astro-
nauts’ later arrival. It might be very useful if space stations, similarly, could
be built in an automated way—and outer space would be an especially ap-

13



Figure 1-2: The ultimate goal for automated collective construction is to be able to
give a set of robots a description of a desired structure (left), and know that it will
reliably build that structure without further intervention (right).

propriate environment, due to the opportunity for three-dimensional weightless
movement.

Underwater is another setting ripe for automated construction for the same
reasons: it’s a difficult environment for people to work in, and one which allows
weightless movement in three dimensions. Moreover, it’s far more accessible
than extraterrestrial environments. Potential applications range from oil drilling
stations to temporary research bases [1,32,33]; underwater, these would be closer
to sites of interest, and insulated from storms and other such disturbances.
Conceivably a way to easily build underwater habitats could help open up the
oceans for colonization.

• In addition to building structures, mobile robots could act to maintain and
repair them during their lifetimes. Further, robots could modify them according
to changing circumstances, as termites modify their mounds to maintain internal
homeostasis in a variable environment [53, 61, 62].

• On smaller scales, automated construction of desired structures could be applied
to everyday artifacts, as for a different approach to rapid prototyping systems.

In this thesis, I show how automating collective construction can be accomplished
for solid two-dimensional structures; I demonstrate a hardware prototype, discuss
extensions to structures with holes and three-dimensional structures, and introduce a
more general principle (“extended stigmergy”) for coordinating swarm activities that
can confer demonstrated advantages for construction and will likely be useful in other
domains.
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In the remainder of this chapter, section 1.1 discusses considerations making this
a difficult problem, including difficulties associated with swarm systems and mobile
robots, and the problem of finding low-level robot actions that will achieve a desired
global result. Section 1.2 explains the principle of stigmergy used by social insects,
and how it can be extended in artificial systems. Section 1.3 summarizes the approach
I take to automating collective construction. Section 1.4 outlines the contributions of
the thesis. Section 1.5 lays out the rest of the document.

1.1 Challenges

Automating construction with swarms of mobile robots presents challenges of algo-
rithm design as well as of implementation issues.

1.1.1 Swarms

The philosophy of swarm systems is different from that where one or a few more
complicated robots are used. Rather than having a centralized planner that assigns
particular robots to perform particular tasks, the idea can be for robots to all take
potentially independent actions that end up being consistent with the overall goal.
Swarm robots should be simple, interchangeable, and expendable.

These factors have implications for algorithms. Approaches have to be robust
to unspecified and potentially variable numbers of robots, which may act with no
particular detailed timing or specified order. In a system with large numbers of
robots, it is likely that some will break; others may be added to a system mid-task.
No central coordination is available to monitor or direct the progress of a global task,
or ensure that it progresses in a particular way. Individual robots may not have
capabilities available to more complicated, non-swarm robots.

Together with these considerations, swarm systems can have a number of advan-
tages over centralized or few-robot ones.

• Robustness: because no robot is assigned particular tasks, the system is robust
to robot loss, typically without a significant effect on task completion.

• Decentralization: no coordination is necessary (or likely possible) between a
central planning authority and all the agents, which would require high relia-
bility of (possibly global) communication and/or long delays as information is
physically carried over distances.

• Parallelism: if the overall task can be broken up into many independent sub-
tasks, then members of the swarm can work on separate subtasks simultaneously
and thus complete the overall task faster than a system forced to work more
sequentially.

• Simplicity: simpler robots have fewer components or capabilities subject to
potential failure, so any individual robot may be less likely to malfunction than

15



a more complex one. Also, simpler robots are easier to envision scaling down,
toward the goal (common among futurists and works of science fiction) of micro-
or nanoscale robots for assembly and disassembly.

1.1.2 The global-to-local problem

The forward (local-to-global) problem for swarm construction is this: Given a set of
rules for a construction team to follow, what will it end up producing? It may not be
possible to predict what the team will generate by looking only at the ruleset itself.
(This is the issue of “emergence” in complex systems.) However, it is straightforward
to find out what the ruleset will do by having the team go ahead and execute it
(potentially in simulation).

Conversely, the inverse (global-to-local) problem is this: Given a desired artifact,
what ruleset will end up producing it? This problem, which has not previously been
addressed in the construction domain, is the primary focus of this thesis.

1.1.3 Mobile robots

Mobile robots present a number of practical challenges. One of these is the problem
of localization. Cues such as odometry and the use of landmarks can help, but estab-
lishing pose (position and orientation) with accuracy or certainty is an active research
area. For a swarm, that difficulty is compounded: it may be all the more difficult for
many robots to establish all their poses, particularly if simplicity considerations limit
their capabilities. Thus while it might be useful if all members of the swarm could
share a common coordinate system, achieving that goal reliably may be problematic
depending on the accuracy desired.

Another problem groups of mobile robots can encounter is with establishing and
maintaining ad-hoc communication networks. Passing a message between specific
individuals in a network with dynamic topology is nontrivial at best. Further, an ap-
proach relying on communication may not scale up well with network size, depending
on the details.

Manipulation of the physical world can also be a difficult task for mobile robots
(compared, e.g., to assembly-line robots, which are fixed in place and which have
items they are expected to manipulate brought to them in predictable locations).
When the objects to be manipulated require precise positioning, as is the case in
manufacturing or construction, this issue is especially pronounced.

1.2 Tools

One way social insects coordinate their actions is through modification of the shared
environment. I use this approach in the algorithms described herein. Moreover, I
extend it by increasing the capabilities of environmental elements, and show that so
doing can improve the system performance in a variety of ways.
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1.2.1 Stigmergy

The term “stigmergy” was coined by French biologist Grassé in a 1959 paper [23];
he intended it to mean “the evocation of work by work”1. The idea is that agents
(termites, in his case) modify the environment, for instance by depositing pheromones
or building material; other agents encountering those environmental modifications
take other actions in response. Thus stigmergy describes a way of storing information
in the environment, and using it as a means of indirect communication.

A way for agents to use such a tool in building is to take the approach of repeating
the following steps:

1. Look at the state of the locally perceivable environment.

2. Based on that state and on the agent’s internal state, take an environment-
modification action (e.g., deposit or pick up building material), an internal-
state-modification action, and a movement action (e.g., take a step in a given
direction).

That description is deliberately much like that for a Turing machine. The most
significant differences are that there may be restrictions on environmental modifica-
tion (e.g., conservation of building material); the environment may be two- or three-
dimensional rather than a one-dimensional tape2; and there are likely to be many
agents acting on the environment simultaneously. The actions agents take based on
external and internal state may be deterministic or probabilistic.

Limitations

From an engineering point of view, the use of stigmergy as described above has at
least two major drawbacks.

One is the matter of specificity of design. Typically a given ruleset, which maps
local configurations of building material onto rules for depositing or withholding ad-
ditional material (or, more generally, onto probabilities of depositing), can give rise
to a set of qualitatively similar structures if applied repeatedly to different building
sites. However, the structures produced will generally not be identical, as a result of
stochastic differences in chosen agent actions, in noisy actions executed by real-world
agents, or in initial conditions. In the same way, two termite mounds built by the
same species will look qualitatively similar without being identical. In most con-
struction scenarios, by contrast, the goal is to produce a particular desired structure,
reliably, independent of initial conditions or randomness.

Rulesets that invariably produce the same structure each time they are applied
can be found. However, as noted above, the problem of finding one that produces the
structure one wants is unsolved. There has been no general principle described for
taking a particular desired structure and coming up with a set of low-level behaviors
that building agents can follow to produce it.

1See reference [51] for a bibliography of 150 papers that have since used the word, most of them
in slightly different ways, with annotations on how many of them have used it.

2A term coined by Rudy Rucker for two-dimensional Turing machines is “turmites”.
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1.2.2 Extended stigmergy

I introduce the term “extended stigmergy” to describe augmenting the basic notion of
stigmergy by increasing the capabilities of environmental elements. In this construc-
tion setting, those elements are the building blocks; the basic information they carry
is the simple fact of their presence at a location [59,60], and extensions include cases
where they can store additional information, perform computations, and/or commu-
nicate with physically attached neighbors. Benefits can include increased robustness
and faster completion of a desired structure, as will be demonstrated.

This approach to improving the performance of the system, by improving the ca-
pabilities of the building material, can be easier and more effective than by improving
the capabilities of the robots.

1.3 Scope and overall strategy

The central goal of this thesis is to find solutions to the inverse problem of construc-
tion: to start with a desired structure, and come up with a set of low-level agent
behaviors that will reliably produce that structure.

That description, and the analogy to insects, might suggest developing a compiler
which takes as input a desired high-level structure and generates as output a minimal
set of (incomprehensible) low-level rules for agents to follow to produce it. That is
not the approach of this work. Instead, the approach is to design fixed sets of rules
for agents to follow such that, given an explicit representation of the desired high-
level structure, they will produce it by following those rules in conjunction with that
explicit representation. The resulting rulesets may not be minimal. However, they
have the advantage of being understandable.

The overall strategy is for robots to repeat the following procedure:

1. Bring building material to the structure.

2. Figure out their location in a common structure-based coordinate system.

3. Find an acceptable place to attach material, based on the desired final shape
and on where material has already been attached. “Acceptable” involves not
only the requirement that the structure ends up having the desired shape, but
also that intermediate configurations of material not end up blocking robots
from reaching places they need to go to complete the structure.

1.4 Contributions

This thesis makes the following contributions:

• It introduces schemes by which arbitrary structures can be automatically con-
structed based on a high-level user-specified design. Algorithms presented here
apply to solid two-dimensional structures with arbitrary perimeter, to a limited
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Figure 1-3: Previews of topics to be discussed.
Left: A solid 2-D structure with complex perimeter, built from three types of blocks.
Center: A solid 3-D structure (after [65]).
Right: A physical robot in the process of building a 3× 3 square structure.

class of two-dimensional structures with deliberate holes, to structures built
from functionally heterogenous blocks, to solid three-dimensional structures,
and to structures built from struts assembled into an open latticework.

• It introduces the more general principle of extended stigmergy, and demon-
strates the extent of its benefits (and costs) in this construction framework.

• It presents a hardware prototype which can assemble arbitrary solid two-dimen-
sional structures.

1.5 Organization of the rest of this dissertation

Chapter 2 reviews related work. Chapter 3 explains the approach, demonstrates the
system for 2-D solid structures, and introduces the use of extended stigmergy. Chap-
ter 4 explores the extent to which that extended stigmergy is useful vs. costly here.
Chapter 5 covers the hardware prototype and its performance. Chapter 6 consid-
ers functionally heterogeneous building blocks. Chapter 7 describes the extension
to three dimensions. Chapter 8 discusses other extensions, including issues such as
disassembly and recovery from failures. Chapter 9 concludes and suggests future
directions.
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Chapter 2

Related Work

Most work in artificial swarm frameworks focuses on tasks like exploration, for-
aging, and object transportation—all activities that social insects perform, in well-
studied ways that often inspire the artificial approaches. However, the relative dearth
of work on building is striking, considering that one of the most notable activities of
these insects is their construction of extensive and complicated structures.

Section 2.1 reviews work which does explicitly bear on automating construction.
The bulk of such work addresses problems other than the one I focus on in this
dissertation, that of automatically generating a specific structure starting from a
high-level representation. Some studies focus on more purely scientific questions,
modeling insect construction behavior or studying how features of low-level behaviors
give rise to qualitative high-level results. Most work on artificial swarm construction
either does not seek to produce particular structures, or assumes that an appropriate
sequence of attachment steps is supplied as an input to the system. Also worth noting
is work on automating construction that takes approaches not involving swarms of
building agents.
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The global-to-local shape-formation problem considered here is also related to
analogous problems in a number of other domains, including programmed self-assembly,
self-reconfigurable modular robots, and formation control, as described in section 2.2.

Section 2.3 briefly reviews practical issues for localization systems and underwater
habitats, both of which bear on realization of construction systems like I describe.

2.1 Construction

Classic studies of insect-inspired construction are primarily concerned with local-to-
global problems, starting with low-level rulesets and looking at characteristics of the
resulting structures (§2.1.1). Most work on construction with artificial swarms has
focused on different aspects of the problem, including communication, debris cleanup,
minimalism, or hardware design (§2.1.2). Non-swarm proposals for automating con-
struction have focused on centralized approaches, using one or a small number of
active elements (§2.1.3).

2.1.1 Local-to-global models

A number of studies, primarily concerned with scientific questions, take the approach
of defining a set of behaviors, simulating their use, and examining the structures
that result. The study of this forward (local-to-global) problem has not yet led to
solutions for the inverse (global-to-local) problem. Often physical constraints on agent
movement are not taken into account in these studies.

Karsai and Pénzes [34] model the nest-building activity of social wasps, using
agents with hand-designed behaviors, building combs whose cells are hexagonal cylin-
ders. They show that a multiagent approach based on stigmergy alone, in which agent
actions are based on locally perceived features of the structure in progress, can give
rise to structures like those produced by real wasps.

Théraulaz and Bonabeau [59,60] consider a three-dimensional lattice-based model,
likewise inspired by social wasps, in which stateless agents move randomly on a square
grid and have a ruleset inducing them to deposit building material based on locally
perceived configurations of existing material. Their main result is the experimental
observation that, if a “coherent” structure is to emerge from the agents’ collective
actions, construction must progress in a sequence of disjoint stages. In any such
stage, all local configurations that trigger material deposit must be unique to that
stage. Physical movement constraints are not considered; agents can move through
one another and through the structure. Like that of Karsai and Pénzes, this approach
uses the most basic sense of stigmergy for construction, in which the only information
available to agents about the progress of construction is the local presence or absence
of material.

They and others [10] have also studied more elaborate models incorporating pher-
omones, with more complicated features such as air flow and anisotropic agent move-
ment. These mathematical models are deterministic except for stochasticity in initial
conditions, and also do not take into account physical constraints such as solid walls.
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2.1.2 Collective construction

A number of researchers have studied construction-related issues involving the use of
mobile robots and moveable building material. Most have not addressed the issue
of automatically generating a particular desired structure, focusing instead on other
aspects of the problem. In most cases, either the goal is not to form a particular
structure, or the system is given a prespecified sequence of building steps to follow.

Matarić’s group at USC focuses on the use of communication in collective tasks
involving manipulation of the physical world. These include construction of linear
walls of Velcro blocks of alternating polarity [67] or two-dimensional structures of
different-colored blocks [31], as well as manipulation tasks requiring the explicit co-
operation of multiple robots [19]. In the construction tasks, the requisite sequence of
block placements is unique and specified by hand in advance.

Some researchers focus on minimalism, trying to achieve certain outcomes using
robots with deliberately limited capabilities. Parker, Zhang and Kube [47] consider
the problem of debris cleanup, a prerequisite to construction in littered environments.
They demonstrate a collection of robots with only force and collision sensors, inspired
by behavior of the ant Leptothorax tuberointerruptus [17]. These robots clear spaces
in fields of debris by simply moving straight ahead, turning in a random direction
when the force opposing their movement exceeds a threshold or when they collide with
another robot. Melhuish et al. study minimalism in collective tasks like sorting [44]
and construction [45]; in the latter, a collection of robots pushes pucks into a roughly
linear wall, using as cues a white line on the floor at one end of their arena and a
bank of lights at the other end.

Other researchers who have proposed systems for collective construction in this
vein focus on hardware design. Terada and Murata [58] present a hardware system in
which a mobile robot assembles structures of cubic blocks. The robot is confined to
movement along the structure; blocks are passive, and locked together mechanically
upon attachment by connectors manipulated by the robot. Everist et al. [14] describe
a hardware system with the aim of eventual use in space, with free-flying robots
assembling structures out of beams. Bowyer [11] proposes a scheme for a hardware
system of terrestrial robots building with polymer foam, with the goal of building
human-scale walls and arches.

Two studies describe simulated systems for swarm construction that do address the
global-to-local problem. Both make assumptions likely to make physical implemen-
tation problematic, and in both cases, the structures produced only approximate the
desired design. Mason [42] describes a system where mobile agents rearrange build-
ing material into roughly desired configurations, using artificial ‘pheromones’. The
shape-encoding scheme is fairly low-level, making specifying desired shapes somewhat
involved. Agents are assumed to be able to move through each other and through
building material, and to be able to evaluate levels of pheromone with arbitrary pre-
cision. I describe elsewhere [68] a system where mobile agents rearrange building
material into desired arbitrary configurations, specified in a moderately high-level ge-
ometric language. Agents are physically restricted in their movement by the presence
of building material and of other agents. Agents move on a discrete grid and are
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assumed to be able to localize themselves on that grid precisely; I have not shown to
what extent those assumptions can be relaxed in that framework.

2.1.3 Non-swarm approaches to automating construction

Not every possible automated construction system must rely on the use of swarms.
Other proposed approaches use more centralized methods, with single, more capa-
ble robots or other more sophisticated mechanisms. In many cases, devices are not
mobile, and may be on a scale larger than that of the building or artifact to be
produced.

Khoshnevis et al. [35, 36] propose a “Contour Crafting” approach akin to large-
scale rapid prototyping, in which a gantry is erected above a desired building site,
and an extrusion nozzle and pair of trowels deposit and shape material, respectively.
Extensions involving other manipulation attachments and relatively high-level pre-
fabricated units are proposed to handle features like plumbing and electrical systems.

Soar et al. [12,52] similarly propose using the equivalent of large-scale rapid proto-
typing for construction. They further suggest using smaller-scale rapid manufacturing
techniques to fabricate panels with desired features (insulation, ventilation, appro-
priate textures on inner and outer surfaces, etc.), to be assembled on-site by human
construction workers.

Another related issue is planning for assembly: e.g., automatic generation of a
sequence of actions to put a given set of components together to assemble a given
artifact. For instance, Wilson and Latombe [75] discuss issues associated with geo-
metrical constraints on the ordering of operations for assembly or disassembly, and
investigate the complexity of assembly sequences.

2.2 Related problems

Several areas of active research involve the global-to-local problem of finding low-
level properties or behaviors that will produce a desired high-level configuration of
elements. These areas include programmed self-assembly (§2.2.1), self-reconfigurable
modular robots (§2.2.2), and formation control (§2.2.3).

In each of these areas, there is typically a single class of elements—tiles, modules,
or mobile robots, respectively—all members of which have comparable capabilities.1

This uniformity distinguishes them from the construction problem, with its two classes
of elements, mobile robots and building materials. The latter separation into two
classes is an important one, as elaborated in the sections below. However, the global-
to-local problem they share is an important similarity.

1There may be multiple types of elements within that class, whose detailed properties can differ.
For instance, different types of passive tiles may have edges with different binding properties [49],
or two different types of modules might have complementary attachment hardware [39]. However,
the higher-level capabilities of the different types are not substantially different.
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2.2.1 Programmed self-assembly

Programmed self-assembly is the problem of designing a collection of elements with
edge binding properties such that, when they mix randomly (e.g., driven by ambient
fluid forces), they bind to form desired assemblies. The elements may be homogenous
or heterogenous; their binding properties may be fixed or dynamic; and they may have
a range of capabilities such as ability to detect binding events or exchange information
with neighbors.

This problem is not directly suited to construction as stated, mainly because of
the issue of element movement, and associated issues of spatial and temporal scale.
Programmed self-assembly assumes that units move at random. Its ultimate concern
is typically with the microscale, where ambient fluid forces are sufficient to provide
that movement. As a result, applying it to housing-scale construction is unlikely to be
straightforward. Moreover, without excess elements in sufficient density and enough
agitation, it can take an undesirably long time for elements to reach all necessary
sites through random movement.

However, there are important connections to the construction problem. As dis-
cussed in Chapter 7, the problem of building a given structure can be decomposed into
the subproblems of (1) deciding where units can be attached, and (2) getting them
there. While programmed self-assembly’s answer to the latter subproblem may not
apply well to construction, both frameworks share the same first subproblem. In par-
ticular, self-assembling tiles which can change binding properties and communicate
with attached neighbors have a great deal in common with the communicating blocks
I will describe, where building blocks are equipped with embedded processors. In this
respect, solutions to one problem may be applied toward the other. For instance,
most systems for programmed self-assembly are subject to crystalline flaws, often
as a result of not explicitly considering physical constraints on tile movement. The
approach I present, in which a central concern is taking movement constraints into
account to prevent such flaws, could then be useful for self-assembly of smaller-scale
artifacts.

A number of studies in programmed self-assembly have considered tiles with dif-
ferent levels of capabilities, experimentally or in theory, of which a sampling follows.

Rothemund, Winfree, and others make passive tiles using DNA, with edge binding
properties designed so as to stick together in certain patterns when mixed. These tiles
may form algorithmically complex patterns such as Sierpinski triangles [49] or binary
counting sequences [7].

Guo et al. [26] consider square tiles which can detect binding events, and when
triggered by same, can change state and binding properties during the assembly
process. They use a genetic algorithm to search for programs for such tiles.

Several researchers consider square tiles which, in addition to detecting binding
events and changing state and binding properties, can also communicate state with
attached neighbors. Jones and Matarić [30] show how to derive tile programs which
will reliably form particular target structures chosen from a certain class of two-
dimensional shapes. Arbuckle and Requicha [2] show how to program tiles to form
certain simple shapes, and suggest using such a system to build structures whose shape
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is not fully prespecified but rather satisfies given functional requirements. Griffith et
al. [24, 25] focus on the application of self-assembly to self-replication of ‘strings’ of
square base units in two dimensions.

Other studies involve tiles with similar capabilities but other shapes. Klavins et
al. describe theory [37] and hardware [8] for primarily triangular tiles, and detail a
framework for automatic synthesis of tile programs to generate desired assemblies.
White, Lipson, and others describe hardware designs for two-dimensional systems
with square or triangular tiles [73], and a three-dimensional system with cubical blocks
[74]. They show formation of specific structures, where the sequence of attachments
is planned by hand in advance.

2.2.2 Self-reconfigurable modular robots

Self-reconfigurable modular robotics [50] asks the question of how a collection of
mobile units can autonomously rearrange itself to achieve a desired configuration.
Movement constraints typically allow units to move over a substrate of others, and
require that all units be connected at all times. Often units are allowed to move
through the structure, an operation that can be difficult to implement mechanically.

One could imagine building structures out of modular robots—starting with a
huge collection of modules, directing them to rearrange into the desired structure,
and calling the construction problem solved. However, the separation into mobile
and structural elements in construction is an important one. Once a structure is in
place, it’s unnecessary for structural elements to have a capacity for movement. At
that point, such a capability becomes a liability: not only would self-mobile blocks
be far more expensive and complex than non-mobile ones, but they’re likely to be
less good at their structural role than dedicated building materials would be—the
latter will be more structurally sound, can more easily have insulating and other
desired properties, and so on. Optimizing the building materials for their structural
properties will make them more effective and cheaper, while mobile robots can be
reused for another building project.

A number of researchers have developed self-reconfigurable systems that address
global-to-local shape formation problems, and often demonstrate hardware capabil-
ities that would be useful in systems like those I describe, including self-aligning
connectors and communication links between physically attached modules.

Rus’s group at MIT has developed several modular robotic systems, with accom-
panying reconfiguration algorithms. The Molecule [39] has planning algorithms to
allow its two types of units (male and female) to rearrange into desired structures;
units can travel through the structure on a scaffold of other units. The Crystalline
robot [65] has cubic modules which can similarly travel through the structure in
order to reconfigure into a desired shape. Kotay and Rus [40] have also described
hand-designed algorithms for generic reconfigurable robots to perform locomotion
and reconfiguration tasks, and shown how a variety of existing modular robots can
be made to work with these algorithms.

Støy and Nagpal [55, 56] describe a scheme by which a set of modules can au-
tomatically reconfigure into a desired shape whose scale depends on the number of
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modules available. The approach is for some modules to form a scaffold which other
modules move over and through. Information about where additional modules are
needed is communicated in the form of a directional gradient that directs modules’
movement.

Yim et al. [64, 76] have introduced various self-reconfigurable systems and algo-
rithms, including Telecubes, whose cubic modules can move in three dimensions (and
through the structure) to form desired shapes.

Goldstein et al. [21, 22] have proposed a Claytronics system for dynamic three-
dimensional object reproduction. The reconfiguration algorithm is based on stochastic
motion of “holes” in the structure, which through random movement can transfer
modules to desired locations. That approach is simple and decentralized but subject
to subsets of modules becoming disconnected from the rest.

2.2.3 Formation control

Of the commonly studied topics using artificial swarms, the closest to construction
is formation control. As with self-reconfigurable robots, the goal is for a collection
of elements, all mobile, to achieve a desired configuration, sometimes in conjunction
with other criteria. Movement constraints typically include maintaining minimum
distances between all pairs of elements. Often globally available information or all-
to-all communication is assumed. These factors can make it difficult to directly apply
studies of formation control of mobile robots to the swarm construction problem.
However, the abstract goal of both domains can be seen as similar.

Bahçeci, Soysal and Sahin [4] provide a review of several centralized and dis-
tributed methods for formation control.

Formation control and flocking algorithms frequently rely on explicit communica-
tion for coordination. Sugihara and Suzuki [57] describe an approach to form shapes
such as circles and polygons. User intervention is required to select robots to play
special roles (e.g., the corners of the polygon), and every robot is assumed to know
the position of every other. Fredslund and Matarić [18] describe a scheme by which
a set of robots can form a line of a desired shape, and move in formation, led by a
“conductor” robot. Although the approach has robots broadcast identification infor-
mation globally, robots need not know the position of others. McLurkin [43] describes
algorithms for behaviors like clustering and leader-following, for a swarm of robots
that use frequent communication.

With appropriate assumptions, analytical tools can be brought to bear on for-
mation control algorithms. Spears and Gordon [54] describe an approach they call
artificial physics or physicomimetics, in which agents calculate virtual forces based
on their positions relative to others, and move as though acted on by those forces.
Like real crystals, the resulting formations are subject to crystalline defects. Ögren,
Fiorelli and Leonard [46] similarly use artificial potential functions to maintain for-
mations, along with “virtual leaders”, moving reference points used to govern the
motion of the actual robots. Their analysis assumes global communication and a
shared coordinate system. Feddema and others [15, 16] describe the design of coop-
erative control algorithms by defining a global performance index, partitioning it so

26



that it reflects only local relationships, and taking the gradient of the result to obtain
local control laws. The result may not globally optimize the original performance
index, but interactions are local and analysis is tractable.

2.3 Other practical issues

Here I briefly review issues related to localization (§2.3.1) and to underwater struc-
tures intended for human habitation (§2.3.2).

2.3.1 Localization systems

As discussed in the previous chapter, localization can be a very difficult task for
mobile robots. Approaches that rely solely on the resources of individuals cannot
avoid significant uncertainty or errors in position estimates. Odometry is notoriously
unreliable. Sufficiently sophisticated inertial navigation systems, such as those used
in submarines or strategic missiles, can give better estimates of relative movement [6].
However, the size and expense of such systems is not appropriate for artificial swarms,
where individuals are meant to be simple, small, and cheap. Moreover, such dead-
reckoning approaches require that the initial position be known with precision, which
would interfere with ease of deployment. Perception of passive environmental features
can be used to improve estimates, but considerable uncertainty is still typical.

Localization performance can be improved using active external cues, typically
artificial landmarks in known locations that communicate their position to the robots.
The best-known such example is probably the Global Positioning System (GPS) [20,
28, 48], in which satellites with known orbits transmit signals that a receiver can
use to determine position to within about 15 meters. With differential GPS, using
another receiver at a known location as an additional reference, the uncertainty can
be reduced to less than 5 meters. With still more expensive systems with sufficiently
high communication bandwidth broadcast from that fixed receiver, uncertainty in the
centimeter range can be achieved.

Trying to use GPS in a swarm construction setting may present a number of
problems. One issue is that GPS receivers rely on line-of-sight with the satellites;
obstacles (including the building in progress itself) can occlude signals or give multi-
path reflections, leading to potentially large errors in position estimates. Moreover,
while GPS is suited to open terrestrial settings, it will not work underwater, where
the satellite signals cannot reach, or in extraterrestrial settings where there are no
satellites available. Thus GPS fails in settings arguably most suited for automating
construction.

Other systems involving fixed beacons in known locations have been presented for
localization in settings where GPS is unavailable, including indoors [48] and under-
water [5]. These can suffer from the same problems of occlusion and multipath errors
in settings with obstacles, which a construction project will necessarily contain. Also,
many existing systems for underwater localization rely on the mobile robot broadcast-
ing a signal to fixed reference units, an approach unlikely to scale up well to handle
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large numbers of robots.
To deal with these problems of position estimation, as I describe in the next

chapter, I have robots use the partial structure as a collection of landmarks, by
reference to which they can determine their position in a shared discrete coordinate
system. The only time robots need to know their location is when along the perimeter
of the structure in progress, and then with no greater precision than the size of a block.

2.3.2 Underwater habitats

One potential application for automated construction systems I emphasize is under-
water structures, particularly habitats assembled out of high-level prefabricated units
each fulfilling a distinct functional role (Chapter 6). Previous studies of undersea
habitats can inform future projects such as these, with regard to physical and psy-
chological requirements, and other logistical considerations.

Allmendinger [1] and Jones [32] give extensive studies of manned underwater struc-
tures and complexes, primarily for oil production but potentially for other applications
such as oceanographic research stations. They discuss spherical and other hull shapes
for underwater units; problems manufacturing and transporting large single-unit sys-
tems could be addressed with multi-hull systems composed of smaller units—ideal for
a system that assembles a large structure out of high-level prefabricated units. Large
structures are particularly essential considering the wide range of facilities such a
habitat would require, and taking into account the factor of necessary crew sizes for
missions of more than a few days—with a crew size of six, the endurance limit is 14
days [1]; for longer missions, crews of 25 or more are preferred, and crews of 50 or
more are still better to minimize total cost [32]. These studies also present hardware
designs for features such as emergency escape capsules, transfer modules for getting
crew in and out, and docking mechanisms.

In a separate study, Jones [33] describes considerations for where an underwater
habitat might be located, including factors like currents and temperatures, and how
it might be maintained. He also discusses issues important to underwater communi-
cation and perception, including optical visibility and the location-dependent effects
on it of turbidity, and frequency-dependent considerations for sonic communication
and sonar.
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Chapter 3

Approach and Variants

This chapter introduces the framework in which I consider the collective con-
struction problem and describes the approach I take to addressing it. Algorithms
described in this chapter will let an unspecified number of robots assemble arbitrary
solid two-dimensional structures, according to high-level user-specified designs. No
explicit communication between robots is necessary; robots use the partial structure
for implicit coordination.

The problem framework can be summarized as follows (Figure 3-1). Building
blocks are square and can be attached to each other on all four sides. A block-sized
marker indicates where construction is supposed to start, acting as a seed around
which the structure grows. Robots (in unspecified numbers) fetch blocks from else-
where in the workspace, bring them to the growing structure, and travel along its
perimeter for some distance before attaching their block. The heart of the algorith-
mic problem is how and where robots decide to attach blocks, such that a desired
structure ends up reliably produced.

Section 3.1 describes the assumptions made about robot capabilities and block
attachment, and discusses how these assumptions are consistent with reduction to
practice in a physical system. Section 3.2 describes the overall approach taken here,
covers four specific algorithmic variants which depend on varying capabilities in build-
ing blocks, and discusses considerations associated with multiple simultaneously ac-
tive robots.
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Figure 3-1: Framework for the construction problem as considered here. Left: Ele-
ments in the environment are mobile robots (gray), movable building blocks (brown),
and a marker where construction is to start (yellow). Right: The object is for robots to
fetch blocks and attach them to form some specified structure starting at the marker.

3.1 Assumptions

This section collects the general assumptions I make about the capabilities of robots
(§3.1.1) and blocks (§3.1.2). In the variant approaches described in sections 3.2.2–
3.2.5, additional capabilities may be assumed; these are described in each case as
appropriate. Section 3.1.3 discusses issues related to the realization of a full system
for automated construction.

3.1.1 Robots

I assume that robots have the following capabilities:

1. They can move in any direction in the plane, alone or while carrying a block,
and avoid collisions.

2. They can follow the perimeter of the partially built structure.

3. They can find both unattached blocks and the structure in progress. (This
could be achieved in a number of ways, for instance by following long-range
beacons associated with the marker and with supplies of additional blocks; see
discussion in §3.1.3 below.)

4. They can pick up unattached blocks once found, one at a time, and attach them
to the structure.

The first three of these have repeatedly been demonstrated in a variety of autonomous
robotic systems [3].

I do not assume that robots can communicate with one another. While such
communication could be helpful, it’s preferable not to have to rely on it. In addition
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to avoiding other problems associated with communication described earlier, that
eliminates dependence on teams: robots are capable of building independently, and a
single robot could still complete the construction task if the rest of the swarm became
disabled.

It can also be useful for robots to have access to aspects of their internal state
(to monitor battery power, overall correct functioning, etc.), in order to be able to
respond accordingly (seek out a recharging station, leave the building site, travel to
a designated location for repairs, etc.).

3.1.2 Block attachment

Materials that social insects use for building include things like mud, pulp, and wax
[10, 29, 34, 62]: soft materials that come in variable-sized quantities. This factor
contributes to the fact that no two termite mounds are identical, and to the lumpy,
organic look of them. In human construction projects, we typically use rigid materials,
and build regular shapes with right angles. That’s both a limitation and a benefit.

Rigid materials can be more difficult than soft ones to manipulate. Soft materials
can be pushed into narrow spaces and plug up gaps, or can be deformed to be pushed
out of the way. Rigid materials, by contrast, will bring heavier constraints on where
and how they can be attached. For instance, it may be difficult to fit a block into a
space exactly one block wide between two other blocks (Figure 3-2A).

In everything that follows, I will make the conservative assumption that a space
one block wide between two other blocks is too physically constrained to allow a
block to be shoved into position. Disallowing that situation entirely will make it
mechanically easier for robots to maneuver and attach their blocks. Another result of
that restriction is that if such configurations are avoided, then so are more complicated
gaps where a block might have to be moved down a long tunnel, where sites are entirely
closed off and inaccessible, etc. (Figure 3-2B, C). The corollary of the restriction is the
“separation rule”: separated blocks must never be attached in the same row (that is,
with the same x- or y-coordinate) if all the sites between them are ultimately meant
to be occupied. Otherwise, as blocks are added, eventually an unfillable one-block
gap would result (Figure 3-2D).

An advantage of rigid materials is that they can be used to form regular shapes
with reliable dimensions. An assembly of square blocks forms a grid with an implicit
coordinate system. That coordinate system, and the landmarks represented by block
edges, can be used for position reference.

A generally desirable quality in construction, and an important one if the structure
is to be used for position reference, is for block alignment to be fairly precise. Ensuring
precise alignment can be a nontrivial problem for simple mobile robots, for which
manipulation of the physical world can in general be difficult. Rather than having to
make robots capable of exact manipulation, a different approach, in keeping with the
theme of extended stigmergy, is to improve instead the capabilities of the building
material. Blocks can be equipped with self-aligning connectors (which may be either
active [39] or passive [58]), so that a robot need only get a block close to an attachment
site, and the connectors then ensure fine adjustment.
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A

B C

D

Figure 3-2: Physical constraints on block placement. The desired structure here is
a solid 5 × 5 square of blocks (diagonal shading). I assume that a block cannot be
physically maneuvered into a constrained site like A. Eliminating such situations also
eliminates more complicated problematic cases like those at B and C. To avoid unfillable
gaps like A, separated blocks must never be attached in the same row (as they have
in the bottom row) if all sites between them are meant to be occupied; otherwise later
addition of blocks (light shading) will result in an unfillable gap (D).

3.1.3 Implementation issues

A number of issues fall strictly outside the domain of the algorithmic approach pre-
sented here, but would need to be considered in real applications. Here I briefly
discuss these issues and ways that they could be approached.

• Preparing the area for construction: It may be necessary to start the overall
construction process by taking steps to prepare the workspace for construction.
On land, this may involve clearing a space of material [47,68] or leveling an area.
Some applications may call for robots to maintain models of their environment,
in which case an initial stage of construction could involve surveying the area
to map the terrain, note the locations of immovable obstacles, choose the best
place for the structure, etc. [77, 78], on land or underwater. Here I will not
consider these steps, and simply assume that there’s initially a clear workspace
large enough to build in.

• Finding building materials: In some applications, robots may produce their
own building material, for instance extruding foam from compressed tanks [11],
or collect and use materials already present in the environment. In others,
specialized building material may be supplied along with the robots. The latter
is the approach taken here.

Supplied or scavenged building material could be scattered widely [42, 68] or
localized to a small number of ‘caches’ deployed outside the primary workspace
[69–71]. Robots may take a variety of approaches to finding materials, e.g.,
via random walk [42], by searching [68], or in the case of supplied caches, by
following a long-range, low-bandwidth signal broadcast by each cache [69–71].
Finding the partial structure under construction may likewise be accomplished
in any of these ways. Without restricting the domain to one of these choices, I
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assume that unattached blocks are located far enough away from the structure
so as not to interfere with the construction process, and that robots are capable
of finding blocks and returning with them to the structure in progress.

• Starting the structure: The marker indicating where construction is supposed to
start could be implemented in a number of ways and with a variety of features,
depending on the application. It could be sufficient for the marker to be simply
a block like any other; there could be more than one such block, if the system is
intended to produce multiple objects, as in some self-assembly applications. The
marker could be an active element; in such a case, a long-range beacon could be
used to help robots find the structure in progress throughout the construction
process, as noted above. In weightless settings like outer space and underwater,
it could additionally provide an anchor, with potential further benefits such as
providing power to active blocks, a repository near the structure for temporarily
unwanted blocks, etc.

Realizability

Square blocks, assembled, form a grid. The algorithmic approach I describe takes a
step further and abstracts elements to occupy discrete positions in a cellular grid-
world. That will be useful for considering algorithmic problems at a higher level of
abstraction, and later on, for simplifying simulation experiments.

In making that abstraction from a noisy world with continuous-valued positions,
it is crucial to be careful that the system remains physically realizable. Otherwise
the value of the abstracted system is questionable at best.

Physical robots in real-world environments are subject to a wide variety of internal
and environmental perturbations; the system will need to be robust to such factors.
The approach here is designed to minimize the effect or likelihood of problems that
robots and blocks might encounter. It relies on simple basic capabilities that can be
made robust and self-correcting.

Blocks can be taken to have discrete relative coordinates in the grid’s implicit
coordinate system; the marker can be taken to be the origin. Robots’ precise positions
are not important; robots only need to know their position when along the structure
perimeter, and then only as precisely as the nearest block coordinate. The physical
landmarks represented by blocks and their boundaries make it possible for robots
to establish and maintain position estimates to that extent. Self-aligning connectors
between blocks ensure the structure conforms to that grid.

These considerations make it safe to make the abstraction to the cellular-world
model. Problems, from unexpected environmental influences to breakdown of some
robots, need not prevent completion of a structure; temporary failures at any step
can be corrected.

Chapter 5 presents a hardware prototype that demonstrates the feasibility of build-
ing such a system in the real world.
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Figure 3-3: Examples of structures not allowed using the approaches described in this
chapter. (A) a structure with deliberate holes; (B) a structure with an alley too narrow
for perimeter-following.

3.2 Algorithms

In this section I describe four algorithms for the collective construction problem, using
different levels of extended stigmergy. Each algorithm is sufficient to reliably produce
structures with perimeters of arbitrary shape, specified according to an explicit high-
level representation.

This chapter and the next three will consider only two-dimensional structures
without deliberate internal holes. Also, because the approach I describe depends on
perimeter-following, any desired concavities in a structure must be wide enough for
two block-carrying robots to pass in opposite directions while following the perimeter
(Figure 3-3). The extent to which the latter consideration limits admissible structures
will depend on the implementation.

Section 3.2.1 first outlines the common approach. The next four sections then
give the four specific algorithms: using inert, identical blocks (§3.2.2), blocks that
are all distinct (§3.2.3), blocks that can store dynamic state (§3.2.4), and blocks that
can communicate with physically attached neighbors (§3.2.5). These are introduced
assuming a single robot; section 3.2.6 then discusses considerations for many robots
operating simultaneously.

3.2.1 General approach

The critical aspect of construction on which I focus is how and when a robot decides
to attach a block. It’s necessary both that the structure ultimately takes on the
desired shape, and that ‘dead-end’ states are avoided, where sites that are meant to
have blocks cannot be physically reached. This section considers these issues in turn.

Specifying the shape

Let the shape to be constructed be given a lattice-based representation, with a coor-
dinate system whose origin is the marker. Each site in this lattice specifies whether
or not a block should be attached at the corresponding site in the structure. Call this
lattice the shape map. Building a prespecified structure then means attaching blocks
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at all of the sites, and only the sites, specified by the shape map. The shape map
can be specified as a binary occupancy matrix, more compactly as a superposition of
rectangles [55], etc.

If a robot with the shape map can determine its position in the structure’s implicit
coordinate system, then it can trivially determine whether or not a given site should
be occupied. Because of limitations of position estimation and odometry, establishing
position is a very difficult task for mobile robots in general. However, robots can use
the structure as a reference to determine their location. Additionally, block edges can
act as a collection of features which can be used to correct the effects of odometry
errors. How robots agree on a shared coordinate system is described for each variant
approach below.

Ordering attachment

The order of attachment must be partially constrained, to avoid dead-end states in
which intermediate configurations prevent robots from reaching desired sites, while
still allowing parallelism. Full ordering would require that blocks be placed in a
particular sequence, in which none could be attached until the previous attachment
was complete. Putting restrictions instead on where blocks may not be attached,
rather than specifying where they must be attached, potentially allows many more
blocks to be attached at once, and also lends itself more readily to decentralization.

Disallowing attachment at sites that (1) are supposed to be left empty according to
the shape map, or (2) break the separation rule, is sufficient for the reliable completion
of any solid structure.

Intuitively, the separation rule prevents unfillable gaps, and as a result any other
concavities that would prevent robots from following the perimeter. Together with the
requirement that planned concavities be wide enough to allow perimeter-following,
that ensures that no partial structure will restrict access to sites meant to be occupied.

Further, until the structure is completed, there will always be some site along the
perimeter where a block may be attached. Figure 3-4 illustrates: If there were no
such site, then it would be the case that for every site along the perimeter meant to
be occupied, attaching a block there would break the separation rule. That is, for
each such site (e.g., A), there would be a nonadjacent occupied site in the same row
(B), with all intermediate sites (shaded) meant to be occupied. In particular, the site
adjacent to the occupied site would be meant to be occupied (C). But then one of
the following must be true: a block may legally be attached there; a block may be
attached at a different site in the perpendicular row (D); or the structure had already
violated the separation rule.

Thus it is not possible for structures built according to the above principle for
restricting attachment to get stuck in partially complete states where no further
block can be added.

It is clear that this is also the least restrictive possible partial ordering: Any
sites restricted according to this scheme would lead to a dead-end state if they were
occupied following some other scheme.

That principle could be implemented in a straightforward way with a centralized

35



A B A BC

D

A BC

Figure 3-4: Demonstration that building according to the separation rule cannot get
stuck in a partial state where no further block can be added. Sites marked with X are
meant to be left unoccupied. Suppose attaching at a site A would violate the separation
rule. Then there must be a separated block B in the same row, with all intermediate
sites (light shading) meant to be occupied. But in that case, either a block can legally
be attached at C, the site adjacent to B (left); a block can legally be attached at D,
another site in the same row as C (center); or the structure had previously violated the
separation rule (right).

approach. However, with a decentralized swarm of robots which have only local
perception, some scheme is necessary to acquire the nonlocal information regarding
whether distant blocks are attached in a given row.

3.2.2 Inert blocks

In the first variant I assume that blocks are indistinguishable, with no capacity for
communication. This approach uses the most basic sense of stigmergy for construc-
tion, where the only information blocks carry is the fact of their presence. In this case
the robots are responsible for knowing the shape map and ensuring that unwanted
gaps are avoided. Algorithm 1 sketches the following approach, consisting of two
parts: (1) establish position; (2) find an allowed place to attach a block.

Establishing location: For any fixed perceptual distance, a robot will be able
to distinguish only a limited number of distinct local configurations. Solely local
observations are then insufficient if the system is to be capable of building arbitrary
structures; a robot needs additional state to infer its location. One simple method
to do this is to make one edge of the marker distinct, so a robot can recognize it as
different from all other block edges, and to specify in the shape map that that distinct
edge is to fall along an edge of the desired structure. The marker then serves as a
landmark, which will be found by any robot following the perimeter of the structure
at any stage of construction. Upon reaching the structure, then, a robot follows the
perimeter until reaching that landmark. It then knows its position and orientation,
which it updates thereafter by keeping track of the number of blocks it passes and
turns it makes. In this way the partial structure provides a source of odometry for
the robot.

Avoiding gaps: Algorithm 1 ensures that no separated blocks are attached in the
same row if all sites between them should be occupied. The idea is as follows: Every
robot follows the perimeter in the same direction (say counterclockwise). To start a
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Algorithm 1 Pseudocode procedure for assembly of a structure of inert blocks. An
‘end-of-row’ site is one where the robot is either about to turn a corner to the left,
or the site directly ahead is not supposed to have a block according to the structure
design.

while structure not complete do

fetch new block
go to structure
while not adjacent to labeled side of marker do

5: follow perimeter counterclockwise
seen-row-start ← false
while still holding block do

if (site should have a block) and
((site just ahead has a block) or

10: (seen-row-start and (at end-of-row))) then

attach block here
else

if at end-of-row then

seen-row-start ← true
15: follow perimeter counterclockwise

new row of blocks, a robot must first check the entire row itself to make sure there are
no blocks already present. Once it has traversed a full row along the perimeter and
found it empty, then it’s allowed to start that new row by attaching a block at the
end. If a robot finds a partially complete row of blocks, it’s allowed to add a block
to extend it.

The more detailed operation of Algorithm 1 is as follows. (a) Line 9 allows a block
to be attached at a site that has two occupied neighbors, as with either of the sites to
the left and right of D in Figure 3-2A. Such attachments correspond to adding new
blocks to existing rows, and cannot result in a violation of the separation rule. (b)
Line 10 specifies that a new row can be started only if the robot has verified on its
tour that no block has been placed earlier in that row, and there are no sites further
along in the row where a block might already have been placed. Unfillable gaps are
thus avoided.

The algorithm will also result in blocks filling the whole area specified by the
structure design, as is straightforward to prove by contradiction:

Define an inside corner as an empty site with blocks at two adjacent sites, and
an end-of-row site as one where a robot there is either about to turn a corner to
the left, or the occupancy matrix specifies that the site directly ahead is supposed
to be left empty—that is, a site at the counterclockwise end of a row bordering the
structure perimeter (Figure 3-6). Attaching a block at an end-of-row site corresponds
to starting a new row; attaching at an inside corner extends existing rows.

Suppose that the algorithm can get stuck—that is, that the system can reach a
stage of construction where no further blocks can be attached, but there exists at
least one site which is empty but supposed to be occupied. That can’t be due to an
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Figure 3-5: Simulated construction of a sample structure of inert blocks, showing
successive snapshots during the process of construction by ten robots. White: blocks;
brown: robots carrying blocks; gray: empty cells where blocks should be attached;
black: empty cells that should be left empty. The marker is in the upper left corner.

unfillable gap in the sense of Figure 3-2A, as shown above.
Now, it must necessarily be the case that along the perimeter of the incomplete

structure, either (1) there are supposed to be blocks at all sites, or (2) at least one
site is supposed to be left empty.

• In case (1): Consider any closed shape drawn only with right angles, with a
robot following its perimeter counterclockwise. Geometrically, there must be a
point where the robot comes to two left turns (end-of-row sites) in a row without
a right turn (inside corner) in between. But the site just before the latter left
turn is an end-of-row site that can be occupied according to the algorithm, a
contradiction.

E

E

E

E

E

E

I

E

Figure 3-6: A sample structure in progress. Blocks have diagonal shading, empty
sites meant to be occupied have light shading. End-of-row sites are marked with E, an
inside corner with I.
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• In case (2): There can be no inside corners where blocks are supposed to be
attached, or the algorithm would be able to attach them there. So somewhere
in its perimeter tour, the robot must pass through a site not intended to be
occupied. After that it must at some point pass through a site or series of sites
meant to be occupied.

Within that set of sites, it must eventually encounter an end-of-row site. (Since
no inside corner is meant to be occupied, the robot will reach an end-of-row
before it reaches an inside corner.) If the seen-row-start flag has been set to
true, then the robot can attach a block there, a contradiction. If the flag is
still set to false, then it will be set to true at this point; and in that case, this
argument can be applied recursively. At some point in its perimeter tour, the
robot will have to reach an end-of-row site with its flag set to true.

In all cases the result is a contradiction, which completes the proof.
Thus Algorithm 1 is sufficient to generate any desired solid structure whose con-

cavities are wide enough to allow perimeter-following.
The memory and communication requirements of the system for assembly with

inert blocks are as follows (Table 3.2 summarizes the requirements for all variants
considered here):

Robots Blocks

Static state shape map none

Dynamic state
seen-row-start (one bit);
coordinates (two integers)

none

Communication none none

To implement this algorithm, robots must be capable of recognizing block boundaries,
end-of-row sites, inside corners, and the distinct edge of the marker.

Indistinguishable marker

The approach just described for inert blocks relies on the marker being distinct from
other blocks. It is possible for robots to establish their location even if the marker is
a block like all others.

Using the grid formed by the blocks as a guide, a robot can circle the structure,
keeping track of its relative movement, and determine when it has returned to a
grid space already visited on this tour. (It will eventually return to some previously
visited space even if other robots are adding blocks to the structure at the same time,
potentially occupying, e.g., the site where this robot first reached the structure.) If
it has maintained a record of its full tour, it then knows the shape of the partial
structure it has circled. This recorded shape may be out of date, if other robots have
meanwhile been attaching blocks; that makes no difference. The important thing is
that the shape can be fit into the shape map. If robots can establish their direction
(suppose, e.g., each has a compass with accuracy to within better than 45 degrees),
and all robots use the same convention to fit the observed shape into the shape map in
the same way (e.g., choosing the topmost and leftmost position where it’s consistent),
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Figure 3-7: Robot procedure for fully indistinguishable blocks. A: As a robot moves
along the structure perimeter, it keeps track of each step of its relative movement. B:
When it returns to a previously visited grid space, it can determine the shape of the
partial structure it circled, fit it into the structure design in a standard way, and thus
establish its absolute position in a structure-based coordinate system.

then at this point the robot can determine its absolute position in the shared structure
coordinate system (Figure 3-7).

After establishing position in this way, robots can go on to attach blocks at sites
consistent with the shape map and the separation rule, exactly as above.

This approach is slower than that where the marker is distinct, because robots
have to make a full circuit of the structure, rather than being able to establish their
position as soon as they reach the marker. Moreover, it requires more dynamic
memory from the robots, since they have to record their whole tour. However, it can
allow better use of parallelism by a swarm, because robots may be anywhere along
the structure perimeter when they determine their position, rather than only at the
single landmark. I will return to this point during the discussion of parallelism in
the next chapter. Otherwise, I will not consider this variant in further detail in the
remainder of this thesis.

3.2.3 Distinct blocks

Algorithm 1 requires robots to find the marker before they can attach a block, and
to keep track of their movement along the structure, with unfavorable implications
for construction speed and behavioral robustness (Chapter 4). An alternative is
to make all blocks distinct, so that each becomes a potential landmark. Reliably
distinguishing an arbitrary number of blocks could be very difficult for robots if it is
to be accomplished, e.g., visually. However, it could be done simply and reliably, e.g.,
by labeling each block with an RFID tag.1

Establishing location: With static labels, every block can be made distinct. How-
ever, there is no advance information regarding where blocks might end up attached
to the structure. A robot must then maintain a dynamic label map, storing the labels
and locations of all blocks in the structure. The initial label map has the marker at
the origin.

1Radio-Frequency IDentification tags are circuits that can store information. Passive tags can do
so without a power source. When an external transceiver focuses an RF beam at a tag, the current
induced in the tag’s antenna enables it to transmit a response—e.g., a unique ID code.
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Algorithm 2 Pseudocode procedure for assembly of a structure of distinct blocks.
The temporary map will only be necessary when multiple robots are active simulta-
neously (§3.2.6).

while structure not complete do

fetch new block
go to structure
while not adjacent to label in label map do

5: record label in temporary map
follow perimeter counterclockwise

fill in label map from temporary map
seen-row-start ← false
while still holding block do

10: if (site should have a block) and
((site just ahead has a block) or
(seen-row-start and (at end-of-row))) then

attach block here
else

15: if at end-of-row then

seen-row-start ← true
follow perimeter counterclockwise
if adjacent labels are not in label map, add them

When a robot reaches the structure perimeter, it follows it, keeping track of yet-
unknown block labels along the way, until it encounters a block whose position it
knows. Disambiguating orientation may be done in a number of ways: the robot
may have its own compass; it can go on to find a second known block (or, initially, a
distinct edge of the marker as before); or the four sides of each block can be distinct,
with robots storing in their label maps the orientation of each block as well. With
pose thus established, the robot can fill in its label map with the previously unknown
labels it had encountered.

Finding a legal attachment site, so as to avoid unwanted gaps, can then be done
as before. Any other unknown labels encountered along the way are added to the
label map. Algorithm 2 summarizes this approach.

Construction will proceed faster with this algorithm than with identical blocks.
A robot can establish its location more readily, typically not needing to follow the
perimeter all the way to the marker to do so. The marker can be located in the
middle of the desired structure, rather than along an edge, allowing construction to
proceed on all sides.

The memory and communication requirements of the system for assembly with
distinct, statically-labeled blocks are these:
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Figure 3-8: Simulated construction of a sample structure of labeled blocks, showing
successive snapshots during the process of construction by ten robots. Construction
takes place in a qualitatively similar way with both kinds of labeled blocks (distinct
and writable). White: blocks; brown: robots carrying blocks; gray: empty cells where
blocks should be attached; black: empty cells that should be left empty. The marker is
in the center.

Robots Blocks

Static state shape map label ID

Dynamic state
seen-row-start (one bit);
coordinates (two integers);
label map

none

Communication none none

Robots using this algorithm must be capable of reading block labels, and of recogniz-
ing end-of-row sites and inside corners.

3.2.4 Writable blocks

Robots have access at any time only to local information, and they need nonlocal
information to accomplish a global task. That nonlocal information can be stored
either in robot state or in the environment; different kinds of information lend them-
selves to one or the other. Here, the location in the shared coordinate system is global
information that it is natural to associate with the blocks rather than the robots.

Suppose robots can change the state of block labels. For instance, some RFID
tags are writable, with on the order of 1 kilobyte of memory2 that any transceiver can
write to and any other can read from. In this case every block can store its coordinates
explicitly, and thus act as an unambiguous landmark. A robot can quickly establish its

2Active tags, containing their own power sources, may have memory in the range of megabytes.
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Algorithm 3 Pseudocode procedure for assembly of a structure of writable blocks.

while structure not complete do

fetch new block
go to structure
read position from neighboring label

5: seen-row-start ← false
while still holding block do

if (site should have a block) and
((site just ahead has a block) or
(seen-row-start and (at end-of-row))) then

10: attach block here
write coordinates to that block

else

if at end-of-row then

seen-row-start ← true
15: follow perimeter counterclockwise

position upon reaching the structure, disambiguate orientation as with static labels,
and proceed directly to find a legal attachment site, writing coordinates to the new
block when it attaches it (Algorithm 3).

Robots need not maintain the (potentially extensive) dynamic memory for a label
map; the blocks collectively do that, embodying that information where it is needed.
The cost of dynamic rather than static labeling is that it represents a more compli-
cated capability for robots and blocks. However, depending on the implementation
(again, as with RFID tags), that additional cost may be small or negligible.

The use of writable labels will generally be unambiguously preferable to that of
static ones. Only in circumstances where writable labels are for some reason unfeasible
will static labels present a potentially preferable alternative to indistinguishable ones.

The memory and communication requirements of the system for assembly with
writable blocks are these:

Robots Blocks

Static state shape map none
Dynamic state seen-row-start (one bit) coordinates (two integers)
Communication none none

Robots using this algorithm must be capable of reading and writing block labels, and
of recognizing end-of-row sites and inside corners.

3.2.5 Communicating blocks

Embedding processors in blocks can extend their capabilities to store, process, and
communicate information. The increasingly low cost of computing power makes such
an approach feasible to consider.

If robots were to communicate explicitly, they would have to use external signaling,
which can be unreliable, subject to multipath effects and other complications, and
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open closed corner done

Figure 3-9: Examples of block faces in each of the four possible states, with the
finite state machine for a single face. Dotted lines show the potential attachment site
associated with a face.

may not scale up well with large numbers of robots. Blocks, by contrast, have a direct
physical connection to each other once they are connected to the structure; that link
can be the basis for reliable, unambiguous, rapid communication. The structure then
becomes a distributed network with nearest-neighbor connectivity.

Sensor nodes, such as the Berkeley motes, have demonstrated low-power, low-cost
computing devices [27], while modular robot research has demonstrated designs for
reliable communication between physically-connected devices [50, 76].

The responsibility for determining whether or not a site is available for block
attachment can then be shifted from the robots to the structure itself. Robots be-
come responsible only for transporting blocks to available sites. Blocks indicate to
robots passing by along their perimeter whether attachment there is allowed. That
communication need only be low bandwidth and at short range, avoiding problems
associated with signaling over distances, interference when many robots are active,
and ambiguity in which agents are signaling.

Algorithm 4 outlines control rules for robots and blocks for building a solid struc-
ture. Robots simply circle until they find a site that gives them permission to attach.
Blocks in the structure have the shape map, and give permission for attachment at
a site only if the standard two criteria are satisfied: (1) the shape map specifies a
block there; (2) there are no separated blocks in the same row, unless the shape map
specifies a deliberate gap between them.

The basic idea for how to guarantee a solid structure remains the same as for
noncommunicating blocks, but more sites are now available for potential attachment.
The first block added to a given row can be located anywhere along its length, not
just at one end. Further construction in that row can proceed in both directions from
the first block, not just in the one direction possible with noncommunicating blocks.
The active blocks communicate nonlocal structure information and make it available
to robots anywhere along the perimeter.

Algorithm 4 refers to knowledge about distant blocks having been attached in
the same row, without describing an implementation for how that knowledge can be
obtained. When all blocks are identical, the following algorithm lets them ensure the
separation rule is obeyed while maintaining only a few bits of state.

Block algorithm: Each block stores the shape map, its own location in the shared
coordinate system, and a state for each of its faces. This latter state is associated with
where blocks have already been attached in the row the face borders. There are four
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Algorithm 4 Pseudocode procedure for assembly of a solid structure of communi-
cating blocks.

A: Blocks

loop

for all sides S do

if a robot asks to attach a block to S then

if (design specifies a block there) and
(no blocks are yet attached in that row) then

get confirmation from other blocks in this row that they will not allow
attachment in that one

allow attachment
else if (design specifies a block there) and

(a block is attached in that row adjacent to that site) then

allow attachment
else

forbid attachment

B: Robots

while structure not complete do

fetch new block
go to structure
while still holding block do

ask any adjacent structure blocks if block can be attached here
if all structure blocks answer yes then

attach block here
else

follow perimeter counterclockwise

possible states (Figure 3-9): open, if no blocks have yet been attached in the adjoining
row, so that attaching at that face would start a new row; closed, if attaching at that
face would put two separated blocks into the same row, or if the shape map specifies
that the adjoining site should be left empty; corner, if an adjacent block means that
the site in question has two neighbors; done, if a block has been attached to that face.

New blocks can be attached to open or corner faces. When a robot is given
permission to attach a new block to an open face, the structure block sends a message
along that row in both directions; each recipient sets its corresponding face, formerly
open, to closed, and passes the message on, thus locking out the rest of the row from
attachment. Once a block attachment is completed, the original structure block sets
its face to done, and passes a message to neighbors on both sides to set their face to
corner.

Figure 3-10 illustrates an example, focusing on the south faces of the blocks in
the lower row. Initially (A) the leftmost is closed, because no block is meant to be
attached at site 1; the other three are open, since no block has yet been attached in
the row of sites 2–4. When a robot is given permission to attach at site 4 (B), the
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1 2 3 4

A B C

1 2 31 2 3

Figure 3-10: Example of communicating block algorithm. The shape map specifies
that blocks are to be attached everywhere except at the two shaded sites. See text for
details.

adjacent block sends a message along its row, and the blocks bordering sites 2 and 3
set their south faces to closed. After attachment (C), the block to which the new one
was attached sets its south face to done, and sends a message to its neighbor to set
its south face to corner.

A newly attached block obtains from its neighbors the shape map and its coor-
dinates, and sets the state of its faces as follows. Define a function f : f(done) =
corner, f(open) = open, f({corner, closed}) = closed. Any faces x directly attached
to the structure are set to done. Any faces y adjacent to those faces x are set to
f(y′), where y′ is the face of the block attached to x that is the same face as y (i.e.,
{north, east, south, west}). The remaining face of the newly attached block, if any,
is set to open. This strategy allows new blocks to set their states based on messages
only from directly attached blocks.

In Figure 3-10C, the new block sets its north face to done, because of the attach-
ment there; its west face to corner (= f(done)), because there is a block to the north
whose west face is done; its east face to open (= f(open)), because there is a block
to the north whose east face is open; and its south face to open, because no blocks
are attached to its east or west faces.

Communication over distances further than a single block is only necessary when
the first block is being attached in a new (open) row. Thereafter, permission for
further attachment in that row can be given or denied without communication, based
on local state only; and communication when further blocks are attached need not
involve messages passed beyond immediate neighbors. As Figure 3-11 suggests, long
open rows are rare and communication beyond immediate neighbors is seldom needed
in practice. The total number of inter-block messages during construction experimen-
tally scales linearly with the number of blocks in the structure.

Block power could be supplied centrally from the marker, or self-contained in each
block. Power on the order of 40 mW total per block would be sufficient, using, e.g.,
Chipcon CC1000 chips for wireless communication with perimeter-following robots,
and RS232 serial connections for inter-block communication (Table 3.1). Robot move-
ment will be slow compared with processing and information exchange, and commu-
nication correspondingly infrequent. Thus power consumption can easily be reduced
by having processors in a low-power standby mode most of the time, with the com-
munication devices listening for incoming messages and waking their processor when
necessary. One AA battery (∼ 2000 mAh) would then power a block for about 50
hours.
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Element Current Power
Processor 4 mA 13.2 mW
RS-232 port 1.5 mA 4.95 mW (×4)
CC1000 chip 7.4 mA 24.4 mW

Table 3.1: Sample power requirements for communicating blocks. All elements may
operate at 3.3 volts.

Figure 3-11: Simulated construction of a sample structure of communicating blocks,
showing successive snapshots during the process of construction by ten robots. White:
blocks; brown: robots carrying blocks; gray: empty cells where blocks should be at-
tached; black: empty cells that should be left empty. Block side states are shown in
the same colors as in Figures 3-9 and 3-10. The marker is in the center.

The memory and communication requirements with communicating blocks are
these:

Robots Blocks

Static state none shape map

Dynamic state none
side state (two bits per side);
coordinates (two integers)

Communication none

with other blocks: the shape map plus a few bits
upon initial attachment, a few bits thereafter;
with robots: one bit to indicate allowed or disal-
lowed attachment

With this algorithm, blocks need to be able to indicate to robots where attachment
is allowed.
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Inert Distinct Writable Communicating

Blocks
State None Static label Dynamic (C) S, C, M
Comm. No No No Yes

Robots
State F, M F, M, L F, M None

Comm. No No No No

Table 3.2: Summary table of memory and communication capabilities needed for
robots and blocks for each of the four variant approaches discussed. State abbreviations
and memory required (font size in table reflects relative amount of memory):
M = shape map: memory required depends on size and complexity of desired structure;
does not change during construction
C = coordinates: two integers
S = side state: a few bits per side
F = seen-row-start flag: one bit
L = label map: memory required depends on size of desired structure

3.2.6 Considerations for multiple robots

The algorithms described above for one robot will work nearly unchanged with mul-
tiple robots. Each robot acts in such a way that further consistent actions will lead
to the successful completion of the structure. It makes no difference whether those
further actions are taken by the same robot, or by other robots. However, there are
a few considerations to be addressed when multiple robots are active.

General considerations

Interference: A swarm of robots can physically interfere with each other, getting in
one another’s way, and as a result slowing the course of construction because of the
time they effectively have to spend avoiding each other rather than building. In the
worst case, gridlock can occur, for instance if robots end up all around the structure
perimeter such that none is able to move. Some scheme is necessary for resolving
this problem when it occurs. Section 4.3 demonstrates the effects of interference, and
discusses centralized and decentralized approaches to mitigating the problem.

Attachment delays: While a robot is in the process of attaching a block, it acts as
an obstacle along the structure perimeter. Another robot that approaches that site
during its perimeter traversal will have to respond somehow. The easiest approach is
simply to wait for the first robot to finish, and then continue. This is the approach
used here. However, this approach could lead to long backups in some circumstances,
depending on the number of robots at work, the number of sites typically available
for block attachment, the length of time it takes to attach a block as compared to
the size of the structure and robot speed, etc. In some cases, it may be desirable
to develop a scheme to let robots go around others, to keep the construction process
moving.
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Figure 3-12: Potential complication when one robot follows another very closely.
(A) The lower robot registers an end-of-row. (B) The upper robot attaches a block
extending that row. (C) The lower robot registers the new end-of-row, and decides to
attach a block at that site, inappropriately.

Noncommunicating blocks

In any of the three approaches using noncommunicating blocks, if all robots are
consistent in following the scheme of Algorithms 1–3, then the actions of multiple
robots will not conflict: Since robots all circle counterclockwise, and only start new
rows at their counterclockwise end, it’s not possible for separated blocks to wind up
attached.

The only potential complication is if one robot is following another very closely;
then, as illustrated in Figure 3-12, it may be possible for a violation of the separation
rule to occur. While this scenario may be very unlikely to occur in practice with real
robots, some scheme for preventing the situation is strictly necessary to guarantee
correct operation. For instance, when a robot attaches a block, it may send out a
short-range signal instructing any very nearby robots to reset their seen-row-start
flags to false.

Distinct blocks

As described earlier, with many robots adding blocks in parallel, each can encounter
blocks at the structure whose labels it has not previously seen. Thus upon reaching
the structure, a robot follows the perimeter, keeping track of block labels along the
way. It can add those labels to its label map once it encounters a block whose position
it knows. As it goes on to search for a legal attachment site, it can continue to update
its label map with any other unknown labels encountered along the way. Algorithm
2 includes these considerations.

With the marker located in the middle of the structure rather than along an edge,
it is possible for a robot to return to the structure to find no blocks it recognizes
along the entire perimeter. In such a case, this robot may not be able to contribute
any further to construction. However, it is impossible for all robots to be lost in this
way, since some robot(s) must have placed the blocks that form the perimeter; thus
ultimate completion of the structure is not at risk. This form of robot loss can be
avoided by requiring the marker to be along an edge of the desired structure, or, if
communication is permitted, by having robots directly communicate map information
to one another when they meet.
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Writable blocks

Because every block label stores position information, there is no risk of robot loss
through not recognizing any labels around the perimeter. Further, if blocks are
rearranged or replaced during the course of construction (as may occur, e.g., if error
correction becomes necessary (Chapter 8)), robots operating with statically-labeled
blocks could encounter conflicts between their label maps and observations, whereas
dynamically-labeled blocks will simply be rewritten.

Communicating blocks

Finite message propagation speed means that before a robot is given permission to
attach a block in an open row, the structure must ensure that no other robot is being
given permission at the same time elsewhere along the row. Thus when a robot re-
quests permission to attach at an open site, communication along the structure row
is necessary, to notify the rest of the row of the intent to attach, and to obtain con-
firmation that permission will not be granted elsewhere. Collisions between messages
corresponding to simultaneous attachment requests must be resolved. Only then does
the structure block give the robot permission to proceed, and send the message down
the row to set faces to closed.

This consultation with the row is only necessary for the first block attached in an
open row; thereafter the previously open sides in the row take on other states, and
can allow or forbid robots to attach without reference to any other blocks.

An example of a full algorithm which handles these considerations is as follows
(Algorithm 5; Figure 3-13). The set of block side states is augmented to include an
additional state waiting, indicating that attachment in the adjoining row has been
requested but not yet granted; f(waiting)=waiting. Messages, between attached
blocks or between blocks and robots, are members of the set {query-from-robot,
request, ok, no, cancel, attaching}. Messages have associated with them a block side
to which they refer (e.g., {N, S, E, W}), and a location identifying the block to which
a robot wants to attach. This side and location information associates together a set
of messages related to establishing whether a given block can be attached.

To ensure that only one robot in a row receives permission to attach, a block
sends a ‘request’ message in both directions (if applicable) down the row, and waits
to receive ‘ok’ messages in return before granting permission. The waiting state
temporarily forbids attachment, and will be replaced with closed if permission is
granted (an ‘attaching’ message conveys this information) or open if not (a ‘cancel’
message conveys this case).

An alternative to this more complicated approach is to forgo all of this additional
mechanism for preventing errors from ever arising, and instead to accept the possibil-
ity of occasional errors, which robots can detect and correct. Two separated blocks
mistakenly attached in the same row can quickly determine that fact, and one can
indicate to passing robots that it needs to be removed, while forbidding additional
attachment to it. Error correction is discussed further in Chapter 8.
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Algorithm 5 Message-passing for communicating blocks, to ensure only one robot at
a time receives permission to attach in a given row. This algorithm gives the procedure
a block should follow upon receiving a message {type, side, location}. Queries from
robots have ‘side’ matching the side of the block where the robot is located.
The direction a message was traveling in can be determined, when required, from the
location associated with the message and the block’s own location.
A given block may also make reference to the states of the sides of blocks attached to it,
information which may be obtained through additional block-to-block communication
not explicitly described here.

switch type
case query-from-robot:

if (state(side) = waiting) or (state(side) = closed) then

send robot away
else if state(side) = corner then

give robot permission to attach to side
else if state(side) = open then

state(side) ← waiting, waitloc(side) ← here
send message {request, side, here} in both directions parallel to side
{A lack of blocks in either direction is equivalent to receiving an ‘ok’ from that direction.}

case request:
if state(side) = open then

state(side) ← waiting, waitloc(side) ← location
if no further blocks in the direction of the message then

send message {ok, side, location} back the other way
else

send message {request, side, location} in the original direction
else

send message {no, side, location} back the other way
case cancel:

send message {cancel, side, location} in the original direction
if (waitloc(side) = location) and (state(side) = waiting) then

state(side) ← open
case ok:

if (state(side) = waiting) then

if location = here then

if this is the second ‘ok’ to return to the original requesting block then

send message {attaching, side, here} in both directions parallel to side
give robot permission to attach to side

else

send message {ok, side, location} in the original direction
case no:

if state(side) = waiting then

if (location = here) then

send message {cancel, side, location} in both directions parallel to side
send robot away
state(side) ← open

else

send message {no, side, location} in the original direction
case attaching:

if (not ((state(side) = done) or (state(side) = corner))) and (waitloc(side) = location) then

state(side) ← closed
send message {attaching, side, location} in the original direction
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Figure 3-13: Example of extended communicating block algorithm for simultaneously
active robots (Algorithm 5). Side states are shown only for the top side. waiting sides
are shown in gray; messages are shown as arrows.
A: A robot approaches an initially open row with a ‘query-from-robot’. The approached
block sends ‘request’s in both directions; open blocks receiving the message switch to
waiting and pass the message on.
B: The rightmost block has no further neighbors to pass the message to, and sends an
‘ok’ back.
C: Eventually a second ‘ok’ reaches the initially approached block.
D: That block gives the robot permission to attach, and sends ‘attaching’ messages in
both directions. waiting blocks receiving the message switch to closed and pass the
message on.
E: A different situation. Two robots approaching the same open row at about the same
time will give rise to competing ‘request’s traveling down the same row.
F: With the (relatively) simple algorithm given, the conflict will result in ‘no’ messages
being sent in both directions when the ‘request’s meet. A scheme for giving one request
precedence could be used to avoid turning both robots away. Also shown: if another
robot (middle) approaches a waiting row before other attachment queries have been
resolved, it will be turned away.
G: Upon receiving the ‘no’ messages, the original blocks turn away the two robots and
send ‘cancel’ messages down the row, returning all blocks to their original open state.
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Chapter 4

Experiments and analysis

In the last chapter I described several possible variant approaches to the con-
struction problem, in which building blocks have different capabilities. This chapter
compares them, in several respects.

In general, the more elaborate the capabilities put into the blocks, the more un-
necessary robot action the system can avoid, the better advantage it can take of a
greater number of robots, and the more robust it is to robot errors. Conversely, more
elaborate capabilities mean increased system expense and potentially reduced block
robustness.

Section 4.1 gives a brief comparison discussing qualitative similarities and dif-
ferences between the variants. Section 4.2 investigates quantitative differences in
construction speed and opportunity to exploit parallelism. Section 4.3 discusses ap-
proaches to reduce problems of interference between robots.

4.1 Qualitative comparison

The four variant approaches to construction described in the last chapter are similar
in many ways.

• Agents use a fixed set of simple control rules regardless of the desired structure.

• There are no ‘leader’ robots with special roles that need to be elected or main-
tained.

• The task is executed by many robots running the same control rules asyn-
chronously and in parallel.

53



• The robots act independently of one another; a robot does not maintain any
state regarding other robots in the system.

• Robots do not need to maintain any explicit multi-hop communication struc-
ture; instead, the partial structure provides a coordination mechanism.

As a result of these properties, the algorithms automatically adapt to unexpected
delays and to varying numbers of robots, which can be removed or added during the
course of construction. However, they have differences in particular with respect to
robustness, cost, and speed.

Robustness

With inert blocks, robots must keep track of their movement after passing the sin-
gle landmark represented by the marker, over potentially long distances for large
structures. The grid of blocks they move along is a crucial reference in this task.
However, if a robot does miscount its movements somehow, it will be misaligned with
the structure coordinate system and may attach a block at a site meant to be left
empty. If a robot drifts away from the perimeter, then after regaining it, it will need
to travel all the way back around to the marker to ensure knowing its location cor-
rectly. By contrast, with labeled or communicating blocks, location references are
available throughout the structure—with writable labels or communicating blocks,
available at every step—which can be used to correct such errors. Moreover, with
communicating blocks, robots need not be able to count blocks as they pass them nor
recognize geometric features of the structure; this greater simplicity can mean fewer
failure points in the robots.

Communicating blocks have a different robustness problem. Because of the in-
creased complexity, each block becomes a more likely failure point (though failure may
be less likely than in robots because no additional mobility or actuation is involved).
For large structures, failures will occur even with very high reliability components.
It is possible to recover from block failures (section 8.2), but if the components are
simpler, failure will occur less often. Noncommunicating blocks are more robust in
this respect.

Cost

Among noncommunicating blocks, labeled ones will be more expensive in terms of
materials and fabrication, and robots will require the additional capabilities necessary
to interact with the labels. Depending on the implementation, e.g., using RFIDs,
these costs need not be great: At present, the cost of RFID tags is on the order of
$0.50 each, and of transceivers, $100; manufacturers argue that these costs could fall
an order of magnitude or more in the foreseeable future.

Blocks capable of communication will in turn be more expensive than noncom-
municating ones. The relative expense will depend in part on the application; if this
approach is applied to structures assembled out of high-level prefabricated units, the
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relative additional cost of communication capabilities will be less significant than for
structures assembled out of bricks.

Overall, work on pervasive computation [27], modular robots [50], and RFID
technology for ubiquitous labeling [41] is reducing the costs of components that could
be used for systems like those described here. Already significant progress has been
made, and costs will decrease further as use of these technologies becomes increasingly
widespread.

Speed

The respect in which the four variants can be most thoroughly compared (as I do
quantitatively in the next section) is in how they affect construction speed. This will
be a function of both (1) how much traveling robots need to do to collect enough
nonlocal information to make a decision about whether to attach a block, both to
establish position and to verify the separation rule; and (2) how many places there
are to attach blocks at any given time. The latter affects both how far robots would
have to travel to reach such a site even if they had all the nonlocal information they
could use, and how much work there is that robots could be doing in parallel at once.

On average, construction with each successive algorithm (using inert, distinct,
writable, or communicating blocks) should build any given structure as fast or faster
than with the previous. In each successive case, robots are eligible to attach blocks
sooner upon reaching the structure, and need not travel as far along the perimeter—
with inert blocks, they must first reach the marker; with static labels, they must
reach a known block; with writable labels, any block will do; with communicating
blocks, robots are eligible to attach immediately upon reaching the structure, without
needing to survey a full row first to ensure that no distant blocks have been attached.
With any but inert blocks, the marker may be located in the middle of the desired
structure, so that construction can proceed on all sides. With communicating blocks,
new rows may be started anywhere, not just at the counterclockwise end, and can be
extended in both directions. These factors will also tend to result in more sites where
block attachment is permitted at one time, so that the parallelism of the group of
robots can be better exploited.

In the next section, I investigate these issues through both analysis and simulation.
In both cases, I make the assumption that robots and blocks occupy discrete positions
on a grid corresponding to the occupancy matrix, as noted earlier. The consequences
of relaxing this assumption, so that robots can have continuous-valued positions, are
discussed in section 4.2.4.

4.2 Quantitative comparisons

4.2.1 Total distance traveled along perimeter

In general, the time taken to build a given structure will be a function of a number
of factors:
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Block algorithm Best case Worst case Average case

Inert 2n3 − n− 1 5n3 + 3n2 − 4n− 5 ∼ (2.99± 0.04)n2.986±0.003

Distinct n2 + n− 1 O(n3) ∼ (1.4± 0.2)n2.90±0.03

Writable n2 + n− 1 O(n3) ∼ (0.99± 0.06)n2.954±0.014

Communicating 0 O(n3) ∼ (1.3± 0.4)n2.56±0.08

Table 4.1: Summary of best, worst, and average cases for total number of steps D′(n)
that robots must take along the structure perimeter when building an n× n square.

• the size and shape of the structure;

• N , the number of robots;

• L, the time required for a robot to fetch a block and bring it to the structure;

• D, the distance a robot needs to travel along the perimeter after reaching the
structure before it finds a valid attachment site;

• A, the time required for a robot to attach a block once it has found a valid
attachment site.

To the extent that interference between robots can be avoided, N robots will
complete the structure N times faster than one robot. However, as robot density
in the workspace increases, there will be interference as robots have to maneuver to
avoid each other, as the limit is reached as to the amount of work that can be done
at one time, and so on. Interference is neglected for now, and considered in section
4.3.

L will typically be task-specific (depending on factors like the layout of the
workspace and locations of building material), and A implementation-specific. D,
by contrast, will depend primarily on the algorithm used, and so I focus on that
quantity in comparing the three variants’ performance. I consider a fixed number of
robots building an n× n square, and investigate the total distance along the perime-
ter D′ = ΣD traveled by all robots during construction, measured in units of block
length. This metric reflects the amount of time and effort robots spend in the vicinity
of the structure, searching for a place to attach a block.

I first consider the theoretical limits on the best and worst cases for how D′ can
scale with the size of the structure, depending on where along the perimeter robots
happen to reach the structure during the course of construction. The number of
robots does not affect these limits, to the extent that interference can be neglected so
that robots can be considered to reach the structure anywhere around its perimeter.

With inert blocks, the best case occurs if the robot always hits the structure
adjacent to the labeled side of the marker. Because robots only become eligible to
attach blocks after passing that landmark, the structure grows in a very stereotyped
way, and an exact expression for the number of steps can be written. The expression
is O(n3), because a robot typically has to travel the length of a side (n) to find a place
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to attach a block, for each of n2 blocks. The worst case comes if the robot always hits
the structure just past the landmark: then in addition to that same distance it needs
to travel to find an allowed attachment site, it must first circle the entire structure
to find the landmark. That adds an additional O(n3) steps to D′.

With labeled blocks (distinct or writable), the best case for D′(n) is O(n2): New
rows have to be started n times, and for each one, a robot has to travel distance O(n)
to survey the whole row to verify it’s empty. However, additional blocks in existing
rows can be attached with no travel required, if the robot always happens to get lucky
and reach the structure at an inside corner. The worst case, again, is O(n3).1

With communicating blocks, the best possible case for D′(n) is 0: It is possible
for robots always to randomly end up on the perimeter at sites where blocks may be
attached, so that no travel along the perimeter is ever necessary. The worst case is
O(n3): if one full row of the structure is built first, and robots are especially unlucky
about where they reach the structure thereafter, they may have to travel a distance
O(n) for each of the O(n2) blocks they attach. Worse than O(n3) is not possible for
a square structure: A robot can never have to travel further than O(n) to attach any
block, and there are only n2 blocks.

In addition to the best and worst cases for scaling of D′(n), the average case is
of interest, and can be measured experimentally. In simulation experiments, block-
carrying robots are placed randomly on the circumference of a large circle surrounding
the marker, and move inward until they reach the perimeter. After a robot attaches
a block, it moves instantaneously back to that surrounding circle, and continues with
another block. For structures of side lengths {10, 20, 30, 40, 50, 100, 200} and 10
robots, experimental results for D′ appear in Figure 4-1 and in the table. Most data
points are based on 100 independent runs; data points for noncommunicating blocks
with n ≥ 100, and all blocks with n = 200, are based on 10 independent runs.

With all three varieties of noncommunicating blocks, average scaling is close to
the worst case. The multiplicative factor is considerably better for labeled than for
inert blocks; while both scale similarly with structure size, the former is consistently
two to three times faster. The performance of the two sorts of labeled blocks (distinct
and writable) is similar. With communicating blocks, the average scaling behavior is
significantly better than for the other variants, though still far from the theoretical
best case. Overall, in the range considered, robots using inert blocks travel an order of
magnitude further along the structure than those using communicating blocks, with
the labeled approaches falling in between.

Table 4.1 summarizes these results.

1With distinct blocks, as discussed in §3.2.6, it is possible for a subset of robots to end up
unable to contribute further to construction due to a lack of knowledge about any blocks along the
perimeter. In the experiments described, a small fraction of runs (on the order of 10%) see robots
getting ‘lost’ in this way. Counting their movement increases the total D′ of the system severalfold.
The resulting distribution of D′ across independent runs has a long tail that throws off the statistics
for scaling of D′ with n. For that reason, the movement of those robots is omitted from the results
shown in Table 4.1 and Figure 4-1. However, that occasional large negative contribution to the
system performance is important to note.
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Figure 4-1: Total distance (in units of block length) traveled by all robots along struc-
ture perimeter during construction, as a function of side length of square structures.

4.2.2 Opportunity to exploit parallelism

At any stage of construction, there will be some number of simultaneously eligible
sites where robots could attach blocks. That number reflects the shape the structure
grows in; and it affects how much there is for robots to do at any given time, that is,
the extent to which the parallelism of a swarm could be exploited.

Figure 4-2 shows the maximum number of available sites over the course of a run,
for the experiments described in section 4.2.1 above with ten robots building square
structures of varying side length. The very stereotyped way that structures grow with
Algorithm 1 for inert blocks means that only one site is ever admissible for attachment
at a time, no matter the size of the structure being built. Labeled blocks (with either
read-only or read/write labels) allow slightly more parallelism: not being limited to
a single landmark to establish position allows robots to work on all four sides of the
structure at once. Still, not more than a few sites can be simultaneously available,
regardless of the eventual size of the structure. With communicating blocks, the
maximum number of sites simultaneously available for attachment is much greater
still, so that robots can find one more readily and more robots can attach at once.
Moreover, this number grows with the size of the structure, contributing to the shorter
travel distances observed.

The reason can be seen by considering the following. If N is taken to be arbitrarily
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Figure 4-2: Maximum number of sites during construction where robots could simul-
taneously attach blocks.

large, and interference between robots is ignored, some robot will always be present
to attach a block at any allowed site. Construction can then be seen as taking place in
a series of steps of length A, at each of which blocks are attached at all allowed sites.
Figure 4-3 shows that with writable blocks, there will be four allowed sites at each
step, since robots must first pass through an end-of-row site before being allowed to
attach a block at another end-of-row site. The time required to attach n blocks thus
scales like nA. With communicating blocks, the number of allowed sites can increase
linearly with the step number (along with the perimeter), if growth is not limited by
the structure design. At step t, then, O(t) blocks will be attached, so that the time
to attach n blocks scales like

√
nA.

4.2.3 Theoretical lower bounds on construction time

Because not every site is available for attachment at all times, a limit exists to how
quickly a structure could be built, even if there were an optimal centralized plan
and an unlimited number of non-interfering robots. The minimum possible number
of steps it could take to assemble any given structure, in this idealized case where
construction progresses in a series of steps of length A, is equal to the longest shortest
distance from the marker. That is, starting at any block in the desired final structure
and taking one-cell hops to adjacent structure blocks, there is some minimum number
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Figure 4-4: Three possible cases where blocks (marked ?) might be attached at step
t + 1.

of hops dmin it takes to reach the marker; the fastest possible construction time is
A times the maximum dmin among all blocks in the structure. This is because a
block can only be attached if it has neighbors in the structure to attach it to; and an
inductive approach shows that the earliest step on which any block could possibly be
attached is the one equal to its shortest distance from the marker.

With communicating blocks and Algorithm 4, this minimum possible construction
time for arbitrary structures can, in theory, in fact be achieved.

I now show that, with an unlimited number of non-interfering robots, the al-
gorithm for communicating blocks results in each site that’s meant to be occupied
becoming occupied on the step which is equal to its shortest distance from the marker,
dmin.

The proof is by induction. For sites adjacent to the marker, the statement is
trivial.

Next consider a structure after t steps, where every perimeter block has dmin ≤ t.
dmin < t is possible only if sites neighboring those blocks are intended to be left empty;
otherwise blocks would already have been attached at those sites, by assumption.
Any sites bordering the perimeter, which are meant to be occupied, will then have
dmin = t + 1. I now show that every one of those sites will have a block attached at
the next time step (t + 1), without conflict.

There are three possible cases, shown in Figure 4-4.
(A) A block can be attached at an inside corner, extending two existing rows.
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Figure 4-5: Sites are labeled with their distance from the marker (marked *). No two
adjacent blocks can have the same distance.

Such an attachment cannot result in a violation of the separation rule: because a new
block here starts no new rows, if there were to be a violation at the next time step,
it would occur in the absence of this block as well. Thus attachment at this type of
site will not result in conflict, and is always allowed.

(B) A block can start a new, previously unoccupied row. If only one such block
is to be attached in that row at the next time step, then again attachment will not
violate the separation rule.

(C) The only potentially problematic case, then, is if two blocks are supposed to
be added in the same new row at the same time. In considering this case, I will use
the following lemma:

Lemma: No two adjacent blocks can have the same distance from the marker
dmin.

Proof: Because the marker is unique and occupies one site, the plane can be tiled
like a checkerboard, where white squares are an even distance from the marker and
black squares are an odd distance (Figure 4-5).

Therefore, the two blocks supposed to be added in the same new row (marked ? in
Figure 4-4) must be separated by at least one site. If they are meant to be separated
according to the shape map, then they can both be attached at once without conflict.
A problem can then only arise if all sites between them are meant to be occupied.

The two blocks must border the structure on the same side, as in the figure;
otherwise either the partial structure violates the separation rule, or the structure
design has a loop in it, neither of which is allowed.

The old neighbors (marked X in the figure) of those two new blocks (marked ?)
have dmin = t, by hypothesis. Since all sites between the new blocks are meant to
be occupied, all sites between those old blocks must also be meant to be occupied,
or else the structure design would have a loop. Further, all sites between the old
blocks must already be occupied by step t, or the structure would have violated the
separation rule.

The occupied site(s) adjacent to the old blocks (marked Y) must have dmin = t−1:
If they had dmin = t+1, they would still be unoccupied by hypothesis; by the lemma
above, they cannot have dmin = t; and if they had dmin < t − 1, the old blocks (X)
would have been occupied earlier, by hypothesis. Therefore the site(s) adjacent to
both those and the new blocks (marked Z) have dmin = t, and thus must be occupied
by hypothesis. But in that case, the new blocks to be added are not starting a new
row after all. This contradiction completes the proof.
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Figure 4-6: A desired structure (light shading) under construction using labeled
blocks; those so far added have diagonal shading. One row per side of the structure can
be simultaneously under construction at a time (arrows); each row will be completed
before construction of the next layer begins. Separations caused by areas meant to be
left empty, like those at top and bottom, allow rows on the same side to be treated
independently.

With noncommunicating blocks, there are typically many fewer sites at any given
time where blocks can be attached, as described in the previous section on parallelism.
Under the assumption of discrete positions on a cellular grid, labeled blocks allow
only one row per side to be simultaneously under construction. Separated rows on
the same side can be under construction at the same time (Figure 4-6), but the
next layer outward cannot be started until the previous row is completed. With the
algorithm for inert blocks, blocks will be attached no more than one at a time in a
predictable order. That will then require n attachment steps for an n-block structure,
no matter how many robots there are.2

4.2.4 Continuous-valued positions

If the assumption of discrete locations along the structure grid is relaxed, then it
may be possible for robots to reach the structure between grid sites such that they
recognize an end-of-row but not an inside corner (Figure 4-7). If so, then that can
allow robots building with labeled blocks to have two or more layers on the same
side under construction at once. As a result, some of the results above for labeled
blocks can change (results for communicating and inert blocks are not affected). The
best possible case for D′(n) is improved from O(n2) to O(n). More than 4 sites
can become available for block attachment at a time, allowing better use of swarm
parallelism and faster construction—in fact, a structure could in theory be completed

2Chapter 3 outlined an alternative algorithm for inert blocks which does not rely on a distinct
marker. With that algorithm, robots may be at any point along the structure perimeter when they
establish their position. As a result, more than one site can be available for attachment at a time.
However, with that algorithm, the structure must be built in such a way that the marker ends up
with blocks attached to at most two of its sides. As a result, the opportunity for parallelism with
that algorithm can never be better than with labeled blocks, for which the marker can be located
anywhere in the desired structure.
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Figure 4-7: If a robot reaches a structure between grid sites in a situation like this,
and its sensing is sufficiently limited that it can perceive the block at B but not at
A, then it could start following the perimeter counterclockwise, register the end-of-row
site as it turns the corner, and attach a block at C. Such an attachment is not possible
under the assumption of discrete positions.

with labeled blocks as quickly as with communicating blocks, if robots consistently
happen to come to exactly the right places at exactly the right times. However, the
way the robot has to reach the structure for this case to occur is a low-probability
event. Thus while the relaxation of the assumption about discrete positions can
substantially improve best-case performance, it is unlikely to have a significant effect
on average performance.

4.3 Interference between robots

While the parallelism of a swarm can result in considerable speedup, N robots will in
general not be able to complete a structure N times faster than a single robot. One
factor in that limitation is a saturation in the amount of work there is to be done
at any given moment, as discussed in the previous sections. Robots added beyond
that point will have nothing to contribute. This factor reflects diminishing returns in
increasing the number of robots, in terms of improved construction speed.

Another factor is physical interference between robots, as they restrict one an-
other’s movement, have to maneuver to avoid each other, and so on. This factor
reflects actual losses in construction speed; adding too many robots can hurt the
overall performance of the system.

In section 4.3.1 I demonstrate the effects of interference in the model system. In
section 4.3.2 I describe two possible strategies for reducing it, a centralized and a
decentralized one.

The focus here is on interference near the structure: if it occurs anywhere in the
workspace, it should occur around the structure, where robots are likely to be most
densely packed (especially near the beginning of the construction process, when the
structure perimeter is still short). Thus I continue to abstract away the details of
what robots do away from the structure. In the experiments below, robots take L
time steps to fetch a block and bring it to the structure perimeter, and A time steps
to attach it. Traveling one block-length along the perimeter takes one time step. If
blocked by another robot in front of it, a robot waits for the other to move on before
continuing.

With noncommunicating blocks, robots can end up in a fully gridlocked situa-
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tion: Because it is necessary to pass an end-of-row site before becoming eligible to
attach a block, robots can end up packed around the perimeter, such that none can
move nor yet may any attach a block. To keep this situation from preventing con-
struction entirely, I treat robots that have spent 10 time steps at an end-of-row site
as though they had attached a block: they are removed from their position along
the perimeter and allowed to continue with the next step of fetching another block.
This discontinuous removal could apply, for instance, to robots able to move freely
in three dimensions (as in outer space or underwater), assembling a two-dimensional
structure; such robots could leave the plane of the structure to return later without
violating any physical laws.

4.3.1 Effects of interference

In this section I show some simple experiments illustrating the effects interference
can have. These use L = 1 and A = 1, so that the time taken to build a structure
will reflect primarily the time robots spend around the perimeter, looking for a place
to put a block and potentially encountering other robots. I will discuss only writable
and communicating blocks here.

Figure 4-8 shows the time required for N robots to build a n×n square structure,
with N = {1, 2, 5, 10, 20, 50, 84, 100} and n = {11, 21, 31}, for both writable and
communicating blocks. Averages are over 100 independent runs.

Note in passing that construction with communicating blocks finishes much more
quickly than construction with writable blocks, by more than a factor of 2 on average,
for all numbers of robots tested.

For all three structure sizes, significant interference effects slowing the time to
completion begin to appear with around N ∼ n robots. With communicating blocks,
in the range for N tested, adding more robots gives diminishing returns on improved
construction speed, but construction time does continue to decrease. With writable
blocks, adding more robots eventually begins to slow the course of construction in an
absolute sense.

4.3.2 Reducing interference

The results above caution against the use of too many robots. However, as the struc-
ture grows, an increasing number of robots can usefully contribute to construction.
Even if the number of available sites for attachment fails to grow, as with noncom-
municating blocks, a longer perimeter means that more robots could be searching
for attachment sites at once without interfering with one another. This suggests that
varying the number of robots during the course of construction could make it possible
to take advantage of the parallelism of the swarm while avoiding interference.

The optimal number of robots N∗, in the sense of the largest number that can
work on a structure simultaneously without causing significant slowdowns due to
interference, can be estimated as follows. Consider a set of robots fetching blocks,
bringing them to the structure perimeter, and circling until they find an allowed site
at which to attach. In most cases, when a block is attached somewhere, the previous
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Figure 4-8: Time taken by N robots to build a n×n square structure. Blue, writable
blocks; green, communicating blocks. Top, n = 11; middle, n = 21; bottom, n = 31.
Dashed lines show how quickly completion would occur if there were no interference
and N robots took 1/Nth the time taken by one robot.
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site in the circuit becomes an inside corner and thus usually an allowed attachment
point. Robots should thus ideally be spaced along the perimeter by a distance A+1,
so that when one finishes attaching its block, another shows up at once to attach the
next, without having to wait for the first to finish. Then P/(A + 1) robots will fill
out a perimeter of length P evenly. Moreover, each time a robot finishes attaching
a block and goes off to fetch the next, another robot can take its place along the
perimeter. If L = c(A + D), every robot along the perimeter can have c counterparts
off fetching blocks, without interference. Therefore the prediction for the optimal
number of robots is

N∗(t) ∼ P (t)

A + 1

(

1 +
L

A + D(t)

)

This value will increase as construction proceeds and P grows.3

The prediction could be used to direct the gradual addition of robots to a con-
struction site, so that construction consistently proceeds as quickly as possible without
substantial interference occurring.

Another way to address the issue, and a more natural and decentralized one, would
be to use an adaptive tactic inspired by recruiting during foraging in social insects:
have a pool of idle robots, which can be drawn from if more robots can usefully be
added to the construction team, or increased if significant interference is occurring
among the working robots. A distributed algorithm based on each robot’s individual
pattern of encounters has been shown to be effective in simulated foraging systems [9].
I demonstrate the suitability of a similar approach here, using writable blocks, which
showed the most pronounced interference effects in the previous section.

Robots keep track of whether or not they have been able to move for each of the
last ta time steps. If that freedom of movement falls below some threshold θa, the
robot leaves the construction area, and waits in some out-of-the-way location to avoid
interference. A robot inactive in this sense has some fixed probability per unit time
pa of reactivating and rejoining the construction team. Traveling to and from the
waiting area will incur some time cost Ta.

The experiments whose results are shown below use (somewhat arbitrarily) ta =
5, θa = 0.3, pa = 0.01 per time step. In order to ask what is the best this approach
can achieve, Ta is set to 0, so there is no switching cost between active and inactive.
A pool of 100 robots assembles a square structure with side length 31 blocks. In
the experiments of Figures 4-9–4-11, L = A = 1 as above; in those of Figure 4-12,
L = 31, A = 11. Averages are over 100 independent runs.

Figure 4-9 shows the number of robots active as a function of time during the
course of construction. That number initially decreases sharply, and then increases
again slowly as the structure grows and more room around the perimeter is available
for robots to occupy without interfering.

Figure 4-10 shows the fraction of sites along the structure perimeter which are
occupied by robots. It can be seen that the algorithm acts to add or remove robots
to maintain an equilibrium occupancy rate along the perimeter, as the perimeter

3While D, in the denominator of the second term, will also increase with time, it can grow no
faster than P , so that N∗(t) is monotonically increasing.
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Figure 4-9: Number of robots active as a function of time with adaptive recruiting as
described in the text. L = 1, A = 1. The dotted line shows P/(A+1) · (1+L/(A+D)).
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Figure 4-10: Fraction of structure perimeter occupied by robots as a function of time,
with adaptive recruiting as described in the text. L = 1, A = 1.
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Figure 4-11: Number of active robots as a function of length of the structure
perimeter, with adaptive recruiting as described in the text. The dotted line shows
P/(A + 1) · (1 + L/(A + D)). L = 1, A = 1.

0 1000 2000 3000
0

20

40

60

80

100

Time step

# 
of

 r
ob

ot
s 

ac
tiv

e

0 50 100
0

20

40

60

80

100

Perimeter length (P)

# 
of

 r
ob

ot
s 

ac
tiv

e

Figure 4-12: Number of active robots as a function of time (left) and of perimeter
length (right), with adaptive recruiting as described in the text. The dotted line shows
P/(A + 1) · (1 + L/(A + D)). L = 31, A = 11.
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grows. Figure 4-11 accordingly shows an approximately linear relationship between
the length of the structure perimeter and the number of robots active.

In these experiments with L = A = 1, structures of writable blocks are completed
faster with adaptive recruiting (1024 ± 175 time steps) than with any fixed number
of robots.

Figure 4-12 shows the results of repeating these experiments with L = 31 and
A = 11. For both sets of parameter values, the observed curves for N(t) and N(P )
are consistent with the predictions for N∗, showing that this adaptive recruiting
method can be effective in dynamically modifying the size of the construction team
in a decentralized way.
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Chapter 5

Hardware

While the approaches I describe are high-level algorithmic ones, care has been
taken to ground them on simple basic capabilities that can be made robust and self-
correcting, crucial to a hardware realization. I have implemented a prototype system
that demonstrates these key capabilities and can build arbitrary solid structures using
any of the three algorithms for noncommunicating blocks (communicating blocks have
not at present been implemented physically).

Section 5.1 describes the hardware. Section 5.2 gives details of the implementation
of low-level capabilities. Section 5.3 evaluates its performance.

5.1 Overview

Figure 5-1 shows the hardware: a laptop controller drives an ER1 (Evolution Robotics)
wheeled base and gripper, and obtains visual feedback from a CMUcam2 mounted to
one side and in front, pointing downward. That robot hardware is sufficient for the
use of inert blocks. For use with labeled blocks, a RightTag RFID read/write board
and antenna is mounted on the left side of the robot, such that it will pass over the
centers of neighboring blocks as the robot follows the perimeter.

Blocks are 8.5′′×8.5′′×1.5′′, made from sheet metal, with foam handles affixed to
the top surface for the gripper to grasp. RFID tags can be mounted atop the handles
to implement labeled blocks. For self-alignment, the blocks use neodymium magnets,
mounted in alternating-polarity pairs on each side so that two blocks brought into
proximity will be drawn together for any pair of faces. Magnets would be a poor
choice for connectors in any real application—their range and strength is limited,
and once connected, they are difficult to detach—but they are sufficient for this
proof-of-concept demonstration.
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Figure 5-1: Hardware (robot and block).

The camera is configured to register white areas. Tests were conducted in various
areas of MIT’s Stata Center, in open spaces with blue or red carpeting. In these envi-
ronments, it is sufficient to outline blocks with white borders; in a more complicated
environment, a more complex approach or the use of different sensors could improve
robustness.

The gripper has no vertical degree of freedom. It is mounted such that a gripped
block is held above the ground with about 2′′ of clearance. When the robot finds
a site where a block should be attached, it maneuvers so that the held block is
approximately above that site, and drops it; the magnets bring it into alignment.

The robot fetches new blocks from a single cache, implemented as a 2′′ pedestal
on which blocks are placed by hand to await pickup (Figure 5-2). A line on the floor
nearby acts as a visual reference to guide the robot into position to pick up the block.

The robot demonstrates the key elements of the approaches with noncommuni-
cating blocks (Figure 5-2):

• the ability to maneuver to a cache, pick up a block, and bring it to the structure;

• perimeter-following;

• recognition of grid points and sites where block attachment is valid;

• reading and writing block labels;

• attachment of blocks to form a desired final structure.

The additional key elements necessary for communicating blocks have been demon-
strated in work on modular robots [50, 76].
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Figure 5-2: Process of adding one block to the structure, using writable blocks. The
cache is at top, structure in progress at bottom, with the marker at its upper right.
Inset: the robot’s knowledge about the structure’s progress and its own position: desired
structure in gray, known existing blocks in white, robot location (if known) shown as
arrow.
(A) The robot, traveling toward the cache from the vicinity of the structure, initially
knows only that the marker must be present.
(B) Using the line on the floor as a reference, it maneuvers to and picks up a block
from the cache.
(C) Once at the structure, it can use its RFID reader to determine its position, and
its camera to follow the perimeter. Existing blocks are added to the robot’s map as it
observes them.
(D) Eventually the robot reaches an empty site where a block is desired, and where one
may be attached according to Algorithm 3.
(E) It maneuvers to attach its block at that site, dropping it into place...
(F) ...and writes the block’s new coordinates to its tag.
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5.2 Implementing low-level behaviors

This section describes the routines used for perimeter-following (§5.2.1), block at-
tachment (§5.2.2), block fetching (§5.2.3), and (with labeled blocks) interactions with
block labels (§5.2.4).

The overall robot behavior in this prototype implementation is comparatively
slow, particularly when the robot is moving through a featureless area searching for
the structure or cache. This is in part a result of the very limited interface to the ER1
provided by Evolution Robotics. It would be desirable, for instance, to command the
robot to move forward at some speed, while the camera continuously monitors the
environment, and then to send a new motor command as appropriate when some
feature comes into view. However, the ER1 API allows specifying only distances
to travel (forward or backward, or rotations to the left or right), not translational
or rotational speeds to be maintained indefinitely. Moreover, sending a new motor
command has the effect of first bringing the robot to a halt, and then starting the
new motor command.

For these reasons, I instead took the approach of using a series of discrete steps,
in each of which the robot polls the camera, sends a motor command, and waits for
that movement to be completed before continuing. Coupled with the small field of
view the camera must have compared to block size (see below), the distance traveled
in any given step is limited to about two inches, if no visual landmarks are available.
When the robot is along the structure perimeter, block edges provide cues allowing
it to take larger steps.

5.2.1 Perimeter-following

The CMUcam2 communicates with the laptop via a serial connection. This commu-
nication is too slow to allow transfer of full images (which take several seconds each).
Instead, preprocessing is done onboard the camera and then only a few bytes are sent
over the serial line.

The camera is configured as follows:

• Poll mode: The camera sends one packet at a time when requested by the
computer, rather than sending information continuously.

• Track color: The image is thresholded such that any pixels with an RGB value
within the range {150 ≤ R ≤ 255, 150 ≤ G ≤ 255, 0 ≤ B ≤ 255} are considered
‘active’.

• Noise filter: Pixels are considered on a row-by-row basis. Two consecutive
active pixels are required before a third pixel is considered ‘detected’. This
filtering eliminates isolated pixels that do not represent real features.

• Bounding box: The camera sends the laptop only the coordinates of the bound-
ing box around the set of detected pixels.
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A B C D E

Figure 5-3: Using bounding boxes to distinguish different situations.
Top: Actual situation; boxes are black with white borders, robot is red with arrow
indicating direction of travel, dotted outline indicates camera field of view.
Bottom: bounding box returned (white).
(A) At a junction between blocks, (B) at a left-turn corner, (C) at an inside corner,
(D) mid-wall, (E) just finished turning a left-turn corner.

If the camera field of view is smaller than a single block, then this approach can
distinguish between the various relevant possibilities for perimeter-following (Figure
5-3): (A) at a junction between blocks, (B) about to turn a corner to the left, (C) at
an inside corner, (D) in the middle of a wall, or (E) just turned a corner to the left.
The camera is mounted slightly ahead and to the left of the robot base so that it can
recognize corners just before reaching them.

• In case (A), the robot can move ahead a distance equal to the block side length,
which should put it into one of cases (A) through (C).

• In case (B), the robot can go around the corner to continue following the perime-
ter. The goal is, in effect, to pivot the robot around the camera. Because the
robot is nonholonomic, this involves a predefined sequence of {move forward,
turn left, move forward}, done blindly and with preset distances such that at
the end, the robot is in situation (E) and can see the same corner of the same
block from a different angle.

• In case (C), the robot can turn to the right by a similar predefined sequence
of {move backward, turn right, move backward}, which is again equivalent to
a rotation around the camera. With the current hardware, however, to have
the effect of pivoting the robot around the camera, that last move-backward
step would make the robot back up over part of the structure. Instead, then, it
moves a shorter distance backward, and checks the camera to see if the wall now
to its left continues far enough to be in view. If so, it can continue following
that wall. If not, it infers the presence of a left-turn corner, and executes a
modified left-turn sequence to put it into situation (E) at that corner (Figure
5-4).

74



A B C D

Figure 5-4: When the robot turns right at an inside corner, it may not be able to back
up far enough at the end of the turn for the camera to see the structure. (A) Before
the turn. (B) After the turn, if the wall now to the robot’s left continues far enough,
the camera can see it and wall-following can continue. (C) If the wall is not visible, the
robot infers a left-turn corner and performs a modified left-turn sequence to put it at
the position shown in (D).

• In case (D), the robot can take a series of small steps until it comes to the end
of that block, which will put the robot into one of cases (A)–(C).

• Case (E) is functionally equivalent to case (A).

Further, the camera can be temporarily configured to return the bounding box of
a set of detected pixels within a limited subwindow of the field of view. This capacity
is useful in making finer adjustments to the robot’s position along a wall, as described
next.

Position adjustments

As discussed earlier, the robot can easily get off track in a continuous-valued world.
Blocks can be used as landmarks to readjust position at any step. Readjustment is
particularly important before executing multi-step operations that require the robot
to move blindly, as when turning corners or attaching blocks.

The robot can adjust its angle and distance from a wall to its left by requesting
a set of bounding boxes around detected pixels for thin horizontal slices of its field
of view (Figure 5-5). Any slices for which a bounding box is too wide (indicating
a horizontal block edge) can be discarded. Remaining slices can be used to fit a
line indicating the robot’s angle to the wall and its distance from it. On that basis,
the robot can rotate to align itself more precisely with the wall. Again, because the
robot is nonholonomic, adjusting distance from the wall must be done via a sequence
of steps: rotate 90◦, move forward or backward an appropriate distance, rotate 90◦.
When the robot faces a wall head-on (as when at an inside corner, or when first
reaching the structure), it can make the equivalent adjustments using the horizontal
wall by requesting a set of vertical slices.

At block junctions, a vertical slice further into the structure than the edge (Figure
5-5) will reveal how far forward or backward the robot is from perfect alignment with
the junction. Similarly, just before or after left turns, such a vertical slice will tell
the robot how far in its direction of travel it is from the corner, which will need to be
taken into account in its next movement.
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Figure 5-5: Left: Bounding boxes for horizontal slices of an image let the robot fit
a line to estimate its angle from the wall. Wide bounding boxes (like the third from
the top) are discarded. Right: A vertical slice within the body of the structure reveals
the horizontal position of a block junction. Top, raw camera image with slices marked
(dashed red lines); bottom, after processing.

5.2.2 Block attachment

There are three kinds of sites where a block might need to be attached: in the middle
of a wall (Figure 5-3A), at the site before a left turn (Figure 5-3B), or at an inside
corner (Figure 5-3C).

The attachment procedure for the first two cases is similar. The robot first adjusts
its angle and distance from the wall, and then its distance from the junction or corner,
as described above. Once in position as appropriate, it spins in place 180◦ and then
opens its gripper to drop the block. The gripper is mounted so as to carry the
block as close as possible to the wheeled base, to reduce the robot’s footprint; the
camera is mounted such that this 180◦ rotation after alignment will put the block
in approximately the right location to be dropped into place. The magnets ensure
precise block alignment.

The geometry prevents the robot from following the same procedure to attach a
block at an inside corner. Instead, it first adjusts its position and angle with respect
to both the wall to its left and the wall in front of it. Once in position, it moves
{backward, left, forward} to put the block in place, and then opens the gripper.

5.2.3 Block fetching

To retrieve a new block from the cache, the robot starts in empty space (away from
the structure), heading roughly in the direction of the cache and aimed anywhere to
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its left. It moves straight ahead in a series of short steps, checking the camera at
each step. At some point it will reach the line on the floor. It can use that reference
to orient itself towards the cache, adjusting its angle and direction as above. Next it
follows the line along the floor until it reaches the end. That landmark triggers it to
turn left and move forward a short distance.

The gripper has an infrared beam between the two ‘fingers’, and can be configured
so that if that beam is broken, the gripper will close. The line, cache, and block are
positioned such that when the robot takes that last step of moving forward, the
gripper passes over the block so that the handle breaks the IR beam. The gripper
then closes on the handle quickly enough to grasp it, although the robot’s forward
movement continues. Once the gripper is fully closed, the robot backs up, rotates
180◦, and starts moving forward.

The relative position of the cache and the marker is such that, if the robot moves
straight ahead from its pose after obtaining a block, it will reach the marker (or, if
present, a block that has been attached in front of the marker). This scheme for
finding the structure is not general, but suffices for the prototype system.

The robot finds the structure the same way it finds the cache line, by taking a
series of short steps while checking the camera. When it reaches the structure, it
uses the perimeter as a reference to adjust its position and angle, then turns so the
structure is to its left. Thereafter it can follow the perimeter as described above.

The remaining task is to return to the cache after attaching a block. Again the
approach taken here is not general, but sufficient for this system. The robot uses its
knowledge of the structure’s geometry and size to maneuver away from it and then
to a pose where, with no structure ahead of it, it’s aimed to the left of the cache. The
routine from the beginning of this section can then be used again to obtain the next
block.

5.2.4 Interactions with block labels

The RFID transceiver is mounted such that when the camera is over the forward
corner of one block, the transceiver is over the tag of the block behind it (Figure
5-6). This choice was made to help the robot in making right turns at inside corners;
the transceiver provides an additional sensor which the robot can use to establish the
presence of blocks behind those visible to the camera.

While perimeter-following, at each step where the robot is positioned with the
camera at the forward corner of one block, it can use the RFID transceiver to read
the coordinates of the block (if any) behind it. This lets it monitor its position
continually so that, if there were an error in its discrete position estimate, it could
correct it. Right and left turn sequences have an extra step in addition to the three
described in §5.2.1 above, in which the robot pauses to read the position of a block
as the transceiver passes its tag during the turn.

After attaching a block in the middle of a wall or at the site before a left turn, as
described in §5.2.2 above, the robot next moves into position to write coordinates to
the newly attached block. The position of the RFID transceiver lets it do this by a
motion sequence {move forward, turn left, move backward}. At the end, the robot
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Figure 5-6: The camera is at the forward corner of block 1, relative to the robot, and
the RFID transceiver is at the tag on the handle of block 2.

is facing away from the wall with the transceiver over the block tag. After attaching
a block at an inside corner, a motion sequence {back up, turn right, back up, turn
right} puts the transceiver into position without risking the robot running over the
structure.

5.3 Evaluation

Several tests evaluated the reliability of the basic behaviors.

• The robot traveled repeatedly around the perimeter of a 2×2 square structure,
measuring its progress by visual reference to the marked block edges, and check-
ing this discrete position estimate for accuracy against the coordinates stored
in read/write RFID tags. In addition, each time it passed a block, it wrote two
random bytes to the tag and read them back. In approximately 30 minutes, it
recognized 122 block boundaries to measure its progress by, turned 41 corners,
located 82 block tags, read 328 bytes from and wrote 164 bytes to those tags,
without any errors in any of these actions or in its discrete position estimate.

• The robot successfully found and retrieved blocks from the cache in 10 of 10
trials.

• In 10 trials for each of the three kinds of block attachments (mid-wall, just before
a left-turn corner, and at an inside corner), the robot successfully attached
blocks, and wrote their new coordinates to their RFID tags, respectively 9, 10,
and 9 times.
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As expected, the hardest robot tasks were those involving physical manipulation.
This difficulty was compounded by the fact that with the current hardware configu-
ration, the camera is the only source of feedback for position evaluation, and is more
than 75 cm away from the gripper. When attaching a block, the robot adjusts its
position using the camera at the attachment site, and then maneuvers blindly to move
the gripper into place, relying on the not infallible precision of the ER1 drive system.
Adding sensors at the gripper in the next hardware revision, to allow further position
adjustment after the gripper is approximately in position, should greatly improve the
reliability of block attachment.
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Chapter 6

Functional heterogeneity

In this chapter I consider the more general case where building blocks are identical
in shape but heterogenous in function, and a given set of functional constraints governs
how they can be put together.

With structures built from multiple types of building materials, it will in general
be significant what materials are attached where. This factor introduces additional
considerations into the construction algorithms.

If blocks can be arbitrarily custom-designed for particular structures, then any
structure could be built using only local rules for assembly. A trivial, inefficient
approach would be to designate specific blocks for specific locations in a blueprint,
and engineer the blocks so that each one can be attached solely to the neighboring
blocks in that layout and nowhere else.1 However, I take the opposite approach,
assuming that the block types are defined by the application, and the task is to work
within those limits.

An example of such an application might be a system for building structures with
more complex features such as plumbing and electrical wiring. Such features could
be incorporated by prefabricating more elaborate modular blocks with embedded
sections of pipe or wiring; attaching such a block to the structure would connect up
those components, in order to form a network of these utilities [35]. These blocks
would accordingly come in different varieties (containing straight segments, corner
units, etc.), and a consideration in building would be attaching the various types at
appropriate locations to produce a network as desired. Another application using
even higher-level blocks is the building of underwater structures (for marine research,

1The separation rule will still restrict the order in which blocks may be attached.
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oil drilling, etc.), where the building blocks are larger-scale pods that each fill one
of several distinct and predefined roles—living quarters, lavatory, power generation,
airlocks, emergency escape centers, laboratory space, cooking facilities, exercise and
recreation areas, storage, etc. [1, 32].

The building design then might specify what block type should go at each location
in the structure. Alternatively, the specifics of the layout may not be considered
significant; instead there may be desired constraints on where different block types
are attached relative to other types. For instance, in the latter application, one might
want all living pods to be located in a contiguous block, no two airlock pods to be
adjacent to one another, or no pod to be further than three pods away from an
emergency escape center. The goal is then to build any structure satisfying those
constraints.

Section 6.1 introduces the use of constraints of these sorts. Section 6.2 details
several issues associated with the use of constraints that do not fully prespecify a
structure, which are potentially more powerful but also more problematic.

6.1 Functional constraints

Overall, constraints on block placement can be divided into two classes: those inde-
pendent of block type, and those based solely on block type. Geometric constraints,
the former, are those discussed up until now; these ensure that the final structure is
free of unwanted internal gaps and has a perimeter of the desired shape. Functional
constraints, the latter, encompass whatever restrictions based on block types may be
dictated by the particular application.

The algorithms previously presented considered only geometric constraints. In-
corporating functionally heterogenous blocks involves an additional check before at-
tachment is permitted. The two checks can be treated independently but both are
necessary; the test becomes “are all geometric constraints satisfied, and are all func-
tional constraints satisfied?”

Algorithms 6 and 7 give the appropriate generalizations of earlier algorithms for
noncommunicating and communicating blocks, respectively. There are three main
differences:

• An extra check must be performed (Algorithm 6, line 10; Algorithm 7A, line 4)
to ensure that a potential attachment will satisfy the functional constraints.

• With noncommunicating blocks, robots must clear their seen-row-start flags in
some situations to avoid unwanted gaps (Algorithm 6, lines 15–16).

• It is possible at any time for there to be no site where a block of a given type
could legally be attached. As a result, robots must be able to leave the perimeter
and get a different block type if no attachment site can be found (Algorithm
6, lines 12–13; Algorithm 7B, lines 8–9). What the robot does with the old
block will depend on how blocks are obtained. If free blocks are scattered away
from the structure, the robot could return the block to that region; if there are
caches of blocks, each of a unique block type, the robot would need to return the
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Algorithm 6 Pseudocode procedure for assembly of a solid structure of noncommu-
nicating, functionally heterogenous blocks.

while structure not complete do

fetch new block of type t
go to structure perimeter
establish position, by whatever means

5: seen-row-start ← false
while still holding block do

if (site should have a block) and
((site just ahead has a block) or
(seen-row-start and (at end-of-row))) and

10: (t at site consistent with functional constraints) then

attach block here
else if taking too long to find a place for block then

discard block appropriately
else

15: if at inside corner then

seen-row-start ← false
if at end-of-row then

seen-row-start ← true
follow perimeter counterclockwise

block to the appropriate cache. In a weightless, three-dimensional environment,
as in outer space or underwater, a cable extending outside the plane of the
structure might have temporary attachment sites where blocks can be left in
this situation. Then if and when such a block is called for later in the course
of construction, it can be readily available so a robot need not travel as far to
retrieve it.

Functional constraints may involve a full prespecification of the desired structure
(section 6.1.1), or lower-level constraints on relative locations of different block types,
the latter allowing structures to be built in a more adaptive way (section 6.1.2). Both
sorts of constraints may be used in different regions of a single structure (section
6.1.3).

With noncommunicating blocks, robots are responsible for ensuring that func-
tional constraints are satisfied. With structures not fully prespecified, whether a
block may be attached at a given site depends not only on location but on the types of
other blocks in the structure. In this case communicating blocks can make functional
constraint satisfaction significantly easier, particularly for some classes of constraints
(see section 6.2.2), because of limited robot perception. The use of communicating
blocks also extends more naturally to three dimensions, where blocks can be walled in
within a structure, so that robots would be unable to determine the types of blocks
not accessible from the structure surface. For these reasons, when I discuss adap-
tive satisfaction of lower-level constraints involving relative block placement, I will
consider only communicating blocks.
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Algorithm 7 Pseudocode procedure for assembly of a solid structure of communi-
cating, functionally heterogenous blocks. For convenience, this description assumes
each block maintains a complete dynamic map of the structure, in addition to the
shape map and the list of functional constraints.

A: Blocks

loop

if a robot asks to attach a block of type t to side s then

if (block at s consistent with geometric constraints) and
(t at s consistent with functional constraints) then

5: coordinate with other blocks to lock out appropriate part of the structure
from simultaneous attachment

allow attachment
update map with t block at s
pass message about (t, s) to neighboring blocks

10: else

forbid attachment
if neighboring block sends message about t at s then

if message represents new information then

update map with t block at s
15: pass message about (t, s) to neighboring blocks

B: Robots

while structure not complete do

fetch new block of type t
go to structure perimeter
while still holding block do

5: ask adjacent structure blocks if t can be attached here
if all structure blocks answer yes then

attach block here
else if taking too long to find a place for block then

discard block appropriately
10: else

follow perimeter counterclockwise
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Figure 6-1: Snapshots of ten robots (white) building a prepatterned structure of four
block types (yellow, red, blue, green), using communicating blocks.

6.1.1 Prepatterned structures

An important capacity of a construction system is the ability to create predefined
patterns of block types. This can be achieved with functional constraints that act as
a blueprint, specifying exactly what block type should be attached at every location
in the desired structure. Like the shape map, this specification can be more compact
than a full enumeration, just as an image specification can be more compact than
a bitmap. Robots may only attach the blocks they carry if the latter are the single
type allowed at the site in question. Figures 6-1 and 6-2 show rectangular and non-
rectangular structures built using such functional constraints.

6.1.2 Adaptive patterns

In many cases the design of structures does not require specific patterns, but rather
functional relationships between the locations of blocks of various types. Any struc-
ture that satisfies those relationships will be considered acceptable. The more relevant
way to specify the constraint in this case is by reference not to absolute coordinates,
but to relative placement of different block types. For instance, no two blocks of a
given type may be permitted to be attached adjacent to one another; Figure 6-3 shows
three possible structures built using such a constraint. The construction framework
I have described extends naturally to building structures in this flexible way.

It is always a valid approach to come up with a blueprint ahead of time that
satisfies all such constraints, give that to the system, and have it produce that par-
ticular structure. But satisfying constraints on the fly during the building process
instead can let the structure be adaptive, and respond to changing circumstances or
conditions unknown in advance.
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Figure 6-2: Snapshots of ten robots (blue) building a prepatterned structure with a
complex shape, using communicating blocks.

Figure 6-3: Examples of structures built with two block types, with the geometric
constraint that the final structure be a 21 × 21 square, and the functional constraint
that no two yellow blocks be adjacent.

Satisfying constraints on the fly can have additional benefits, such as increased
speed of construction. As an example, consider the class of 21× 21-block structures
of Figure 6-3. If it is assumed that bringing blocks from caches to the structure
perimeter, attaching a block, and moving one block length along the perimeter each
take one time step (L = A = 1), then the time required to build a structure will
reflect primarily the time robots spend following the perimeter looking for a place to
attach their block. Averaging over 100 independent runs with 10 robots, on-the-fly
construction completes in 650± 140 time steps, while building exactly the same 100
structures as prespecified patterns takes 1100± 300 steps, or 70% slower on average.
Robots come to the structure already carrying some type of block; the speedup for
on-the-fly construction occurs because sites can accept any type of block consistent
with the constraints, rather than having to wait for a particular block type to appear,
and robots can accordingly find places to attach their blocks more readily.
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Figure 6-4: Example of a structure assembled according to the following constraints:
Region 1, border of upper-left area: only blue blocks allowed.
Region 2, interior of upper-left area: blue and white blocks both allowed; no white block
may be in the eight-neighborhood of another white block.
Region 3, elsewhere: blocks must be either red or white depending on their y-coordinate
(prepatterned).

6.1.3 Regional constraints and multiple levels

Constraints may also be specified on multiple levels of organization. Different regions
of the structure can be defined, in each of which some different set of constraints is to
be imposed. Figure 6-4 gives an example where such regions are designated according
to specific coordinates, combining prepatterned and adaptive constraints into a single
structure.

Regions can be designated in this rigid way, or more fluidly: it may be permissible
for a region to occur anywhere in the structure, with variable size, aspect ratio,
orientation, multiplicity, etc. For instance, instead of requiring that a particular
region of red blocks be located in the rectangle between coordinates (3,5) and (6,10),
the structure description might specify only that a region of 4 by 6 red blocks be
located somewhere; that a region of 4 by n blocks, 4 ≤ n ≤ 10, be located somewhere;
or that m such regions, 1 ≤ m ≤ 12, be located throughout the structure.

In this way, regions can be treated analogously to blocks, in that they can be
positioned according to a fully prespecified blueprint, or given lower-level constraints
and flexibility in satisfying them adaptively. In the same vein, just as blocks can
have constraints on their relative locations restricting their placement, so can regions
occur in the structure in locations restricted based on the locations of other regions.
Dimensions, etc. of regions may also be specified with reference to each other (e.g.,
region A must be larger than region B).

Moreover, regions can be nested in this framework. An application might, for
instance, call for a complex, which is composed of wings. One wing might be residen-
tial, made up of apartments; another might be made up of lab spaces. An apartment
can be broken down into bedroom, bathroom, kitchen, etc.; and so on until the low-
est level, which is decomposed into blocks as before. Each region may have its own
constraints governing the placement of its sub-regions.

Figure 6-5 gives an explicit, abstract example. An 8× 8 structure is constrained
to have four 4× 4 regions, one of type A, one B, two C. In a region of type A, only
red blocks are allowed; in B, only blue blocks are allowed. In C, there must be four
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Figure 6-5: Three examples of structures that can all equally well be built based on
the constraints given in the text.

2 × 2 subregions, one of type D, one E, two F. In a region of type D, only yellow
blocks are allowed; in E, only green blocks are allowed. Finally, a region of type F
must contain an arrangement of {purple, cyan, magenta, white} blocks, in that order
clockwise; rotation is permitted, reflection is not. A great variety of structures can be
built consistent with this set of constraints, all equally valid; the figure shows three.

6.2 Adaptive constraint satisfaction

There are a number of considerations associated with the use of adaptively satisfied
constraints on relative block placement. To begin with, there’s the question of whether
a solution to a given set of constraints can be found (section 6.2.1). Low-level func-
tional constraints can be classified into different types, with different requirements on
block memory (section 6.2.2). Constraints may be satisfied in an immediate way, or
in a way looking ahead to future stages of the structure’s completion (section 6.2.3).
And keeping multiple robots from taking mutually contradictory actions becomes
slightly more involved than when a full blueprint is used (section 6.2.4). This section
describes these issues in terms of low-level constraints between blocks, but the same
considerations apply to low-level constraints between regions.

6.2.1 Satisfiability

A task involving fitting a given set of blocks into a given shape subject to given
constraints may have no solution; and if one exists, it may be hard to find. In general,
the problem of finding a solution to such a scenario, or showing that none exists, is
NP-complete [63]. However, many cases of interest will have the property that a
solution can be found quickly by a straightforward trial, and no exhaustive search
is necessary. The system here provides a natural and effective way of assembling
structures for constraint sets that are easy to satisfy in this sense. Constraint sets
difficult to satisfy would best be handled by finding a solution prior to construction,
and building that solution as a blueprint.

6.2.2 Types of adaptive constraints

In general, there are several classes of low-level functional constraints to consider,
which may be characterized as follows:
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• Absolute, without reference to neighboring blocks: e.g., type A may be attached;
B is forbidden.

• Proximity, where the types of neighboring blocks are important but their lo-
cations are not: e.g., every A must have at least one B somewhere within a
neighborhood of radius 3; no C can be adjacent to a D.

• Relational, involving both types and locations of neighboring blocks: e.g., every
A must have a B bordering its west edge and a C bordering its north edge.
Rotation and reflection may each be allowed or forbidden in such a constraint.

Proximity and relational constraints imply an associated distance d within which
blocks are relevant to satisfaction of the constraint. One approach with communi-
cating blocks is for blocks to maintain a local map of their area of the structure,
whose size is at least of radius d. Blocks refer to this map to determine whether
robots should be allowed to attach blocks at a neighboring site; when a new block is
attached, a message to that effect is sent to blocks within d, for them to update their
maps accordingly. The larger the value of d, the more memory is required of blocks,
but the farther-reaching constraints may be.

Another type of constraint can result if only finite numbers of each block type
are supplied. For instance, there might be only two blocks of type A, which must be
attached adjacent to one another. The first A attached to the structure could be put
anywhere, but the second would have to be added next to the first. In order to give
an A-carrying robot the proper instruction, blocks would need to establish whether
another A had already been attached anywhere, a global property of the structure.
In such a case, blocks might use one bit of memory to indicate whether an A had
yet been attached somewhere. Such an approach would be memory-efficient but not
generalize well—what if there were four blocks of type A, which had to be attached
in adjacent pairs?

The most straightforward way to ensure being able to handle all possible con-
straints, though not the most memory-efficient, would be to have blocks capable of
maintaining a dynamic global map of the structure. Such a map could be of contin-
ued use after the structure is completed—in the underwater-structure example given
above, for instance, every pod would be able to give its occupants a map of the full
layout, directions to the nearest escape pod in case of emergency, and so on.

6.2.3 Short- and long-term constraint satisfaction

There are two ways to satisfy the condition that no functional constraint be violated
by attaching a block of type t at a site s. One is to consider only blocks that are
part of the structure at that time. The condition is simply: if attaching t at s would
result in a structure that violates any constraint, then forbid the attachment. The
examples of Figures 6-1–6-4 were assembled in this way.

In many cases, however, it will be desirable to look further ahead in time while
ensuring constraints are met. For some constraint sets, situations may occur where
attaching a block gives an acceptable structure, but one to which no further blocks
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can legally be attached. Looking ahead can prevent becoming trapped in such dead
ends. A structure like that of Figure 6-4 gives one example: guaranteeing exactly 50
‘stars’ would require looking ahead during assembly of Region 2, to ensure sufficient
remaining room for the white blocks not yet attached. It may also be desirable to
allow constraints to be violated temporarily, so long as some future way of satisfying
them remains possible. Consider, e.g., a structure of two block types, each of which
is constrained always to have at least one neighbor of its own type. Without the
possibility of violating the constraint temporarily, the structure would necessarily
turn out to consist entirely of one block type: no block of the other type could ever
be attached, since it would have no neighbor of its own type until a second such block
were attached to it.

Such looking ahead may be limited to a fixed number of steps f into the future.
Like constraints associated with larger d, larger f will be more powerful but more
difficult for the blocks. Putting no limit on f , so that blocks always look ahead to
the completion of some finished structure, will be slow but will prevent the structure
from getting trapped in dead ends of partial completion.

6.2.4 Considerations for multiple robots

Section 3.2.6 discussed the need with communicating blocks to ensure that no two
robots be given near-simultaneous permission to attach blocks at conflicting sites.
The approach described there to satisfy geometric constraints involved locking out a
row from further attachment before giving a robot permission to attach.

For functional constraints with finite d, the corresponding approach is to lock
out all blocks within radius d before giving a robot permission to attach. When d
is large (and, in particular, since for some constraints d may extend over the entire
structure), so doing can become unwieldy: considerable message-passing over the
entire structure will take place for every block attached, and robots may be turned
away from attaching more often than necessary.

However, message-passing within the structure will be much faster than physical
movement of robots. As described in section 3.2.5, geometric constraints only re-
quire consulting with other blocks when the first block in a row is being attached
(and typically, only a few blocks will need to be consulted); thereafter, allowing or
forbidding other blocks to be attached in the same row can be reliably done without
communication within the structure. And d is small for many functional constraints
of interest.

All this means that, even without this strategy of locking out before attaching,
errors should be infrequent. An alternative approach, then, is to correct errors when
they arise rather than being scrupulous about preventing them in the first place.
Blocks can allow or forbid robots to attach based solely on their own knowledge;
if that causes a conflict that is only detected later, the blocks can direct robots to
correct the error by removing the offending blocks, as described in section 8.2.1.
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Chapter 7

Three dimensions

A construction or fabrication system that can only produce objects in two dimen-
sions will, in most cases, be of limited utility. The real goal is for the automated
construction team to be able to produce fully three-dimensional artifacts.

While implementation issues can become significantly more complicated, the al-
gorithmic approach can be extended fairly directly to three dimensions in the case
of communicating blocks. Here I describe that extension, with three variants on how
blocks can find their way along the surface of the structure to attachment sites.

In this chapter, I will consider the problem in terms of two components: where
blocks need to go, and how they can get there.

1. For any target structure, there are constraints on where elements can be added
at any valid intermediate stage of construction, to avoid reaching dead-end
states where construction cannot proceed.

2. Elements must reach, or be transported to, sites allowed by those constraints.

Section 7.1 considers the first of these components. Section 7.2 considers the
second, and discusses three variant approaches—based respectively on a systematic
search, random walks, and the use of gradient information—in which different in-
formation needs to be communicated, and in which different amounts of robot and
block state are necessary. Section 7.3 experimentally compares the tradeoffs of these
variants with respect to simplicity of approach, amount of communication, and con-
struction speed.
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A CB

Figure 7-1: (A) Physical restriction on block placement. A block could be attached,
e.g., at site A. Site B, though it has fewer neighbors, cannot accomodate a block be-
cause neighboring blocks occupy sites at opposite faces.
(B) As in two dimensions, if two separated blocks are attached in the same row, then
an unfillable gap will ultimately result as blocks are added between them (shaded).
(C) This partial structure can occur without violating the separation rule. However,
attaching further blocks at any of the twelve sites marked * would violate that restric-
tion.

7.1 Allowed attachment

I assume the same basic constraint on block placement as before: a potential at-
tachment site will be too physically restricted to accomodate a block if there are
neighboring blocks at any pair of opposite faces (Figure 7-1A). Again, the corollary
of that restriction is that no two non-adjacent blocks may be attached in the same
row if all spaces between them are intended to be occupied. Otherwise, the further
addition of blocks will eventually lead to an unfillable gap (Figure 7-1B).

In three dimensions, unfillable gaps can result in another way, via situations like
that shown in Figure 7-1C. Configurations can arise in which the separation rule
has been satisfied up to that point, but additional blocks cannot be added to any
sites meant to be occupied without breaking it. In that example, building a 4× 4× 2
target structure taking only the separation rule into account could result in the partial
structure shown. But that partial structure is a dead-end state: no further blocks
can be attached without violating the separation rule.

A sufficient way to prevent such situations is as follows. Consider any 2-D slice
through the structure design, perpendicular to one of the Cartesian axes. Desired
blocks in that plane form one or more contiguous groups. For any such group, require
that as blocks are added, they must be added contiguously: i.e., once the first block
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Figure 7-2: Left: A desired structure. Right: a possible intermediate stage in its
construction. Site A violates the first check: the structure design specifies that no
block is to be attached there. Site B passes checks 1 and 3 but fails 2: there is a block
above it and an intermediate site that needs to be occupied. Site C passes checks 1
and 2 (since the design specifies that the center region is to be left empty) but fails 3:
it would not be attached contiguously to the block previously attached in the locally
contiguous group in one plane (red border).

in such a group has been added to the structure, successive blocks in that group must
be added adjacent to previous ones1 (Figure 7-2C).

Thus with functionally homogenous blocks, the following three checks are sufficient
when a site is being considered for attachment (Figure 7-2):

1. Does the structure design specify this site is to be occupied?

2. For each of the three axes passing through this site, is the separation rule
satisfied?

3. For each of the three planes passing through this site, is a block here being
attached contiguously to the locally contiguous group?

If the answer to all three of the above questions is ‘yes’, then block attachment may
proceed. Otherwise, attachment is forbidden.

With functionally heterogenous blocks, a fourth check can be added to ensure that
a prospective attachment satisfies all functional constraints as well.

For robots building with noncommunicating blocks, ensuring that all of these
checks are satisfied can be a significantly more complicated task than in the two-
dimensional case. In particular, for functionally heterogenous blocks and correspond-
ing constraints, robots will be unable to determine the types of noncommunicating
blocks that have become entirely buried within the structure. Communicating blocks,
by contrast, will still be able to determine those block types as necessary; and as be-
fore, they can share information to check that geometric constraints are satisfied. For
these reasons, I consider only communicating blocks in this chapter.

1This rule can be viewed as the analogue of the separation rule, in the next higher dimension.
Conversely, the separation rule can be viewed as a statement that contiguous one-dimensional groups
of blocks must be assembled contiguously.
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Figure 7-3: Simulated construction of a sample structure in three dimensions, showing
successive snapshots during the process of construction by ten robots, using gradient-
based movement (§7.2.3). For clarity, only blocks that have been attached to the
structure are shown.
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The algorithm for blocks is analogous to the two-dimensional case. Each side of
each structure block now maintains state associated with blocks in the adjoining plane
and in the two orthogonal rows passing through the adjoining site. Before any blocks
have been attached in a given plane or row (label it “P1”), the corresponding side of
blocks in the adjoining plane/rows (“P2”) will be in a state indicating that attachment
in P1 is allowed. When the first block (“B”) in P1 is attached, the associated blocks in
plane/row P2 take on a state locking out further attachment in plane/row P1, except
for the allowed sites adjacent to block B.2 Passing messages over distances is needed
only when the first block is being added to a new row, or to a new contiguous group
in a plane. For the addition of further blocks in that row or plane, communication
beyond immediate neighbors is not required.

7.2 Block transportation

While the approach is straightforward to extend from the two-dimensional case al-
gorithmically, it would be significantly more difficult physically. One obvious com-
plication in terrestrial settings is the presence of gravity. In the following, gravity is
neglected. Thus the solutions presented here could be applied to weightless situations
(e.g., outer space or underwater), but more work would be required to extend them
to terrestrial contexts.

There are several different methods by which blocks might reach the structure and
the potential attachment sites.

7.2.1 Systematic search

Recall that in the 2-D case, block-carrying robots come to the structure and then
circle it counterclockwise until reaching a site where their block can be attached. A
direct extension of that approach works for a limited class of solid 3-D structures.

The straightforward modification is to treat the structure as a stack of layers.
Robots3 bring blocks to the structure and circle it at the level at which they arrive
(constant z-coordinate), keeping track of visited locations. If they return to a pre-
viously visited site without having found any available sites at that level, they move
up or down one level and circle again.4 To implement this approach, robots should
have a sensor indicating which direction is up. Additionally, either robots need suffi-

2Once again, an alternative to locking out planes/rows is to accept the possibility of occasional
errors and to expect to have to correct them (section 8.2).

3In some applications, blocks may be self-mobile, or driven by, e.g., ambient fluid forces. In
such cases, with no separate class of mobile agents to transport blocks, references to robots in the
discussion may be replaced by references to the blocks.

4Depending on the geometry of the structure, moving up or down a level may first require
some movement at the original level to reach a point where vertical movement is possible, or some
movement might be necessary at the new level to reach the structure perimeter in that layer. Further,
robots using this approach must have some way of distinguishing ‘inward’ from ‘outward’, when
moving along the top or bottom surface of the layer next to their own while not adjacent to any
blocks in their own layer. Otherwise they may have no basis for choosing a direction of movement.
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cient memory to keep track of visited locations, to be able to determine when they’ve
returned to a previously visited site; or blocks need to determine when there are no
available sites on a given level, and direct robots to higher or lower levels.

A primary disadvantage of this approach is that it imposes the following require-
ments on permissible structures:

1. Every level of the structure design must have a block at x = y = 0, which
further must be the first block attached at that level.

2. Each level must constitute a contiguous solid structure.

The first requirement ensures that a block will be able to find some place at each
level where attachment is desired. The second reduces the problem at each level to a
previously solved case.

7.2.2 Random movement

On small enough scales, or in weightless environments, blocks may drift at random
or via Brownian motion [26, 30, 74]. Blocks will then eventually reach potential at-
tachment sites at random of their own accord, and can, e.g., be drawn into position
when close enough through the use of some attractive force [74].

Advantages of this approach are its parallelism (all blocks can be in motion and
eligible for potential attachment at once), its potential suitability to very small scales,
its applicability to structures that are not limited by the requirements in the previous
section, and the lack of a need for a separate class of mobile robots at all. Disad-
vantages include difficulty of feasibility at larger scales and in terrestrial and other
environments, and the fact that stochasticity can result in very long assembly times:
some sort of more directed search is likely to be faster.

Another approach based on random movement, more applicable to the case of
building blocks manipulated by mobile robots, is one in which robots bring blocks to
the structure (for example, by following a beacon) and thereafter move at random
along the structure’s surface. This approach will be slower in general than the sys-
tematic search, but is a very simple way to avoid the latter’s constraints on admissible
structures.

7.2.3 Gradient-based movement

A third approach, which both avoids the systematic search’s restrictions on admissible
structures and can significantly shorten the search for an attachment site, is for the
structure to direct a searcher’s movement more explicitly. Any blocks in the structure
with exposed faces at which further blocks could be attached send out a directed
numerical gradient along the surface of the structure, reflecting this availability [55,
56].

The gradient value represents additional state maintained by and communicated
between blocks in the structure, and must be communicated also to robots moving
along the structure surface. For the latter, following this gradient means moving in
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the direction of the closest site where a block could be attached. The fact that the
gradient is restricted to the surface prevents becoming stuck in local minima. The
drawback to this approach is that it involves much more extensive message passing.

With functionally heterogenous blocks, a separate gradient must be associated
with each block type. A site that can accomodate more than one type of block sends
out information associated with each corresponding gradient.

7.3 Experiments

This section compares these three different assembly methods by their performance on
several example structures. Relevant quantities are the time necessary for structure
completion, and the amount of communication required. The latter factor includes
both messages passed within the structure (that is, between blocks which are physi-
cally connected), and messages passed from the structure to robots moving along its
surface.

As in two dimensions, the physical presence of robots will be an implementation-
dependent restriction on possible structures: any deliberate infoldings of the surface
need to leave enough room for robots to move over the surface freely. The size and
geometry of robots will also affect how close they can get to one another. In these
experiments I do not explicitly consider the physical presence of robots; a robot
carrying a block takes up the same space (one grid cell) as a block alone. The effect
is equivalent to self-mobile blocks. Blocks are allowed to move in any direction along
the structure surface, and to approach each other as closely as to occupy two adjacent
sites.

Experiments proceed as follows. A structure begins with a seed block in an empty
workspace. Ten robots carrying blocks are placed at random a constant distance
away. Each moves inwards until it reaches the growing structure, then moves along
its surface according to one of the three approaches discussed above. At each step
adjacent to the surface, a robot receives a message from neighboring blocks about
whether it can legally attach at that site; with the gradient approach, direction infor-
mation is communicated as well. Additional communication may take place within
the structure, as blocks are added and allowed attachment sites change, and (when
applicable) as gradient information is updated. The simulations implement the algo-
rithms in a centralized way, but calculate at each step the approximate number of
messages that would be sent in a decentralized implementation. Each time a robot
finishes attaching a block, it moves instantaneously back to a random position at the
original distance from the seed, holding a new block. Messages travel infinitely fast
compared to the speed of robot movement. Movement updates are asynchronous.

Figure 7-4 shows experimental results, averaged over ten runs each for various
structures, for the total distance robots move along the surface of the structure during
assembly, the number of messages sent to robots from the structure, and the number
of messages passed within the structure.

1. The random walk approach requires more robot travel than do the other ap-
proaches. This difference increases for structures with greater surface area.
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Figure 7-4: Performance comparison for the three movement approaches, for various
structures. S: Steps taken along surface. M1: Messages passed to robots from structure.
M2: Messages passed within structure.

2. The systematic search eliminates a great deal of repeated movement and guar-
antees that robots will reach every allowed site in bounded time.

3. With the gradient-based approach, robots travel distances an order of magni-
tude smaller still, as they are directed straight to the closest available site. How-
ever, the cost is at least an order of magnitude more communication within the
structure, to establish and maintain the gradient. Additionally, the (fewer) mes-
sages sent to robots from the structure will need to contain more information,
specifying movement direction in addition to whether attachment is allowed.
These costs may be bearable in practice for the sake of the speedup in con-
struction, since communication between blocks which are physically connected
should be rapid, unambiguous, and reliable, and hence of low cost compared to
movement or less direct communication.
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Chapter 8

Other extensions

This chapter discusses other extensions to the approach described in previous
chapters. Section 8.1 discusses how temporary structures could be disassembled by
the same robot construction team. Section 8.2 discusses recovery from failures (of
the blocks, robots, or marker). Section 8.3 discusses building structures with de-
liberate holes. Section 8.4 discusses the isomorphism of this approach using square
or cubic blocks to a “Tinkertoy”-style approach using rods and hubs to build open
lattices. This chapter describes these issues in two dimensions, but three-dimensional
extensions are straightforward.

8.1 Disassembly

Many applications will involve structures intended to be temporary. If block at-
tachments are reversible, a swarm construction system like those described here can
dismantle a structure following its use and reuse its parts for another structure. Disas-
sembly can be accomplished by having robots follow the structure perimeter, removing
any blocks they find that satisfy the following criteria:

1. The block has at most two neighbors, bordering adjacent sides; i.e., if that site
were unoccupied, it could physically accomodate a block.

2. If it does have two neighbors along adjacent sides, then the other site which
those two neighbors border is occupied by a block (Figure 8-1).
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Figure 8-1: A structure in the process of disassembly. Numbered blocks can be
removed. The block marked X meets criterion 1 in the text but not 2; if removed, it
would split the structure into two parts.

Also, if the application involves a marker which acts as a tether and/or a beacon
to let robots find the structure, then the marker must be the last block removed.

The first criterion assumes that physical constraints on block motion are the same
for disassembly as they are for assembly. The second criterion ensures that throughout
disassembly, the structure remains one contiguous piece. Violating this rule can result
in part or all of the remaining structure becoming isolated. In a system where robots
follow a beacon to reach the structure, a disconnected component will be lost to
perimeter-following robots. If the structure is physically tethered to some anchor
point via the marker (as would likely be the case, e.g., in underwater or space-based
applications), then violating those criteria would mean that blocks could drift off and
be lost in a more literal sense.

Care must also be taken with multiple robots that two blocks not be chosen for
removal at the same time such that each block considered alone satisfies the criteria,
but would violate criterion 2 if the other block were removed. Blocks 1 and 3 in
Figure 8-1 illustrate such a pair.

Either blocks or robots may be responsible for determining whether blocks satisfy
these criteria, according to whether communicating or noncommunicating blocks are
involved.

8.2 Recovery from failures

There are a number of possible failure modes to consider. These include cases where a
block breaks or otherwise needs to be replaced; where a beacon breaks, if applicable;
or where robots go wrong. Section 8.2.1 describes the case for block replacement;
section 8.2.2 outlines considerations for other failure modes.

8.2.1 Block error correction

Suppose that a block mistakenly ends up attached at a location where it violates some
constraint, or needs to be replaced due to malfunction or some other reason. It may
be some time before this error arises or is detected. I will thus consider the problem
of replacing any arbitrary block in the structure. I outline the high-level approach
and omit elaboration of an explicit algorithm to be carried out by individual robots
or blocks.
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Figure 8-2: Error correction. The letter B indicates a beacon; the block to be replaced
is marked *. See text for discussion.

Because of the assumption that a block can only be removed from the structure if it
is already free on two sides, it is necessary to remove all blocks in an entire ‘quadrant’
of the structure in order to free up the target block. Figure 8-2 demonstrates the
demarcation of quadrants. (A) shows a completed structure, using a marker which
acts as a beacon, marked with the letter B; a block to be replaced is marked *.
Extending horizontal and vertical arms from the target block, as in (B), defines the
four (overlapping) quadrants, crosshatched in (C)–(F). A quadrant is constructed
essentially by flood-filling the area including and to one side of a pair of arms.

Note that a quadrant may contain blocks whose absolute coordinates go beyond
those of the associated arms (as in (D), where a quadrant nominally above the right-
hand arm includes blocks that extend below it). Also, any blocks that would otherwise
be left isolated from the rest of the structure if a quadrant were removed must be
included in that quadrant. This issue arises if an arm lies along an edge of the
structure for all or part of its length. In this example, the right-hand arm lies along
such an edge, at the top side of the second and third blocks from the target block; any
blocks above and further along that arm must therefore be included in the quadrant
nominally below it, as shown in (E).

For efficiency, the quadrant containing the fewest blocks should be chosen for
removal. As with disassembly, a block representing a beacon or anchor must remain
intact, and so any quadrants containing that beacon are omitted from consideration
in this choice. Here the quadrant in (F) contains the fewest blocks, but cannot be
removed because it includes a beacon (as does the quadrant in (C)). The quadrant
chosen for removal will be that in (E).

Once the target block has been removed, that section of the structure can be
restored by construction as usual. Construction may also progress as usual in other
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parts of the structure throughout the correction process.
Previous chapters suggested, as an alternative to temporarily locking out parts of

the structure from attachment to prevent errors, instead accepting the possibility of
inappropriate attachments transiently occurring, and correcting them when they do.
This sort of error would likely be detected quickly, and require the removal of only
one or a few blocks along the perimeter, rather than the potentially large numbers
necessary to replace a failed block in the middle of the structure.

Noncommunicating vs. communicating blocks

As with other issues, the tasks described above can be accomplished much more
easily with communicating blocks than with noncommunicating ones. Several aspects
involve the use or dissemination of nonlocal structure information: the determination
of which quadrant to remove, the restriction against attaching additional blocks in
that quadrant during correction, the requirement for blocks in that quadrant to be
removed, and even the detection of the erroneous block.

With noncommunicating blocks and no inter-robot communication, some of these
tasks may be very difficult to accomplish. One possibility could be to make use of a
probabilistic strategy, where additional blocks may (inappropriately) continue to be
attached in the quadrant chosen for removal, but at a lower rate than that at which
blocks are (appropriately) removed. If communication between robots is allowed,
another possibility could be to make use of a team approach, for instance setting up
robots to act as sentries marking a region for removal.

Conversely, communicating blocks make these tasks straightforward. A block
may determine that it needs to be replaced, or if it malfunctions more severely,
its neighbors may make that determination. Any block could obtain the structure
information necessary to carry out the computation determining which quadrant is
to be removed, and send messages out to the affected blocks accordingly. Blocks in
the chosen quadrant could forbid robots from attaching any further blocks to them,
and ask to be removed.

8.2.2 Other failure modes

In keeping with the swarm approach, the algorithm does not depend on particular
robots completing particular assigned tasks, nor on blocks being attached in a partic-
ular order. Thus breakdowns of individual robots almost anywhere in the workspace
need not impede the system’s ability to complete the structure. The exception is at
the edge of the growing structure, where a broken robot could serve as an obstacle to
others following the perimeter, and prevent growth of the structure in that area. Such
perimeter breakdowns would need to be detected and towed away by other robots.

In an approach in which robots use marker and cache beacons to find materials
and return to the structure, those beacons represent failure points, in that if they
fail, the system may be unable to complete its assigned task. One possible safeguard
against their loss would be to build into robots or blocks the potential to replace
them [68].
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Figure 8-3: (A) Näıve application of Algorithm 4 to a structure intended to contain
internal gaps frequently leads to the situation shown, which can easily be reached with-
out the separation rule ever being violated. Blocks are shown with diagonal shading;
cells intended to be left empty have light shading.
(B) Attaching a block at either of sites 1 or 2 will give a configuration in which it may
be difficult for a block to reach the other site.

8.3 Deliberate holes

In all of the preceding, I have been treating internal gaps as an evil to be avoided
at all costs. But what if we want to build a structure which intentionally contains
gaps—a wall with windows in it, for instance?

Unfortunately, the algorithm for communicating blocks does not extend easily to
include deliberate gaps. Applying it without modification leads to situations like that
shown in Figure 8-3A. If blocks are placed in both a cell above site 1 and a cell to
the right of site 2 before either 1 or 2 is filled in, which is possible using Algorithm 4,
then the problem shown will result.

That configuration does not involve explicitly attaching a block between two oth-
ers on opposite sides, and so might be construed as allowed. However, in order to
maneuver it into place, the block will have to pass through a position where there
are blocks on both sides at once (Figure 8-3B). Thus it is preferable to disallow it for
the same reason for disallowing the more explicitly problematic case.

8.3.1 Alternate algorithm

An approach significantly different from that so far described can handle deliber-
ate holes, for a limited class of structures. Moreover, it lends itself more readily to
decentralization in a sense, in that no information is needed about whether distant
blocks have been attached. Once position is established, the check necessary to de-
termine whether attachment at a given site is allowed depends solely on the presence
or absence of immediate neighbors.

That check can be described informally as follows (Algorithm 8, Figure 8-4). If
a site is meant to have a block attached according to the shape map, check the two
neighboring sites which are one step closer to the marker, one in each coordinate. (If
the site in question is in the same row or column as the marker, there will be only
one such neighboring site.) For each, if the shape map specifies a block there but the
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Algorithm 8 Pseudocode procedure for assembly of a structure which may contain
deliberate holes. The text and Figure 8-5 describe the class of structures this approach
applies to. The marker is defined to have coordinates (0, 0).

while structure not complete do

get block from cache
go to structure
establish position, by whatever means

5: while still holding block do

(x, y)← coordinates of prospective attachment site
A← ((x = 0) or

(shape map specifies no block at (x− sgn(x), y)) or
((shape map specifies a block at (x− sgn(x), y)) and

10: (block at (x− sgn(x), y))))
B ← ((y = 0) or

(shape map specifies no block at (x, y − sgn(y))) or
((shape map specifies a block at (x, y − sgn(y))) and
(block at (x, y − sgn(y)))))

15: if (shape map specifies block at (x, y)) and A and B then

attach block here
else

follow perimeter counterclockwise

site is unoccupied, then attachment at the site in question is forbidden. Otherwise,
attachment is allowed.

Let A be the following class of structures: Every block in the structure must be
reachable by some sequence of steps, starting at the marker and moving to adjacent
blocks, that involves at most two directions (e.g., ‘right’ and ‘up’). Structures that
would require taking steps in more than two directions to reach any given block will
not be correctly built by this algorithm.

Algorithm 8 will reliably produce structures of classA which have only rectangular
holes. It may be able to produce any structure of that class, but not reliably: with
non-rectangular holes and no further restrictions on ordering of block attachments,
some blocks near holes could fail to be attached (Figure 8-5). The algorithm will
reliably fail on structures outside that class.

Class A is the same class of structures that Jones and Matarić’s Transition Rule
Set Compiler [30] applies to; and this algorithm (derived independently) appears sim-
ilar to theirs. Their approach eliminates some state redundancy in blocks, and so is
closer to the style of approach where a compiler generates minimal but incomprehen-
sible rulesets, though it does not claim to achieve minimalism.

I have been investigating extensions to the approach of Algorithm 8. For instance,
an approach which decomposes a structure into multiple regions, each of which uses
a separate ‘seed’ as position reference in the equivalent of the above algorithm, can
extend the class of admissible structures. However, a single algorithm that handles
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Figure 8-4: Examples of sites where attachment is allowed or disallowed according to
Algorithm 8. Blocks are shaded with diagonal lines; the marker is crosshatched; sites
meant to be left empty have light shading.
Attachment is allowed at sites 1 and 2, because the two neighboring sites in the direction
of the marker are occupied; at 3 and 4, because they are in the row/column of the marker
and the one neighboring site in the direction of the marker is occupied; and at 5 and
6, because although only one of the neighboring sites in the direction of the marker is
occupied, the other is meant to be left empty.
Attachment is forbidden at sites 7 and 8, because one neighboring site in the direction
of the marker is unoccupied and meant to have a block; and at 9, because although
both neighboring sites are occupied, the shape map specifies that the site itself should
be left empty.
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Figure 8-5: (A) Example of a structure Algorithm 8 will reliably produce; (B) example
of a structure it may be able to produce, depending on ordering of block attachment;
(C) example of a structure it will fail on. The marker is in the center, crosshatched.
In (B), the blocks bordering the lower-left hole could be attached before the block
marked *, making it impossible for the latter site to be reached.
In (C), the blocks marked * are impossible to attach with this algorithm.
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truly arbitrary structure designs, with respect to both perimeter and internal holes,
remains elusive. Finding one is an important area for future work.

8.3.2 Non-algorithmic solutions

In future work I hope to find a manageable algorithmic solution to the problem, or
prove that it is in general impossible to avoid. Other possible resolutions could include
the following:

• Stipulate that blocks must be constructed such that they can be added to both
sites 1 and 2 in the situation of Figure 8-3. That both makes things harder
for the mechanical designer, and undermines the rationale for maintaining the
separation rule in the first place.

• Leave one of the two cells unfilled and let construction continue. The resulting
structure will have a gap in the designated place but not of exactly the desig-
nated shape. For that reason, this approach is unsatisfying as a solution to the
problem of constructing designated structures.

• Take advantage of the third dimension by adding blocks in such configurations
from out of the plane, avoiding that difficult transition. This approach will not
extend to higher dimensions.

• Build strictly according to the algorithms already described, filling in cells in-
tended to be part of gaps with a special class of blocks which are designed so as
to be able to be removed at the end of construction. This approach is analogous
to apoptosis (programmed cell death) in morphogenesis.

8.4 Building open lattices

Many structures are built not as solid units but as open frameworks of struts and
connectors. These frameworks might represent the final structure, as in the examples
of Figure 8-6, or they might be intended as an internal skeleton which will support
additional material at a later stage of construction.

The approach so far described is isomorphic to such a case, if the block shape is
modified appropriately (Figure 8-7A, B). Cross-shaped blocks could be used to build
an open lattice, with no modifications to the algorithms.

In practice, cross-shaped blocks are likely to be unwieldy to manipulate, to be
more difficult to attach together than solid blocks, and to have weaker connections. A
better alternative is to build using rods and node connectors as in Figure 8-7C and D.
The same algorithmic approach could still be used; only the implementation details
of the robots, and how they manipulated the building elements upon attachment,
would change.
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Figure 8-6: Many structures are built as open frameworks rather than as solid units.

A B

C D

Figure 8-7: The same framework described above can be used to build an open lattice
rather than a solid figure.
(A) A cross-shaped block. (B) Treating such blocks exactly like the square blocks
hitherto described leads to the assembly of a lattice.
(C) A method likely to enable easier and stronger connections, and more portable
building materials, is for the structure to be built out of rods and node connectors as
sketched here. (D) Adding a block, in the original formulation, then corresponds to
putting a connector in the center of the associated cell and attaching it with rods to
any neighboring connectors.
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Chapter 9

Conclusions

In this thesis, I have presented decentralized algorithms by which a collection of
simple robots could assemble structures out of square blocks according to a high-
level user-specified design. I demonstrated how extending the idea of stigmergy, by
putting increased capabilities into the building materials, could improve construction
speed and the system’s ability to make use of the swarm’s parallelism. This chapter
concludes with a summary and outline of open questions for future work.

9.1 Summary

Earlier chapters explored the following issues:

• Robots can reliably build a specific structure, even when all blocks are identical,
by using the partially completed structure as a reference and block edges as
landmarks.

• Labeling blocks, as with passive RFID tags, can allow faster construction.
Writable blocks speed construction still further.

• Blocks which can communicate enable the dissemination of nonlocal structure
information still more readily. As a result, robots can be made simpler; the
parallelism of the swarm can be better exploited; and structures can in theory
be completed as quickly as with any centralized algorithm.

• Interference between robots can be effectively reduced in a decentralized way by
having individuals temporarily remove themselves if they encounter too much
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interference. In this way the size of the construction team changes dynamically
according to the size of the task.

• Structures can be built using heterogenous blocks, in either a fully prepatterned
way, or adaptively according to a set of low-level constraints.

• The algorithmic approach extends to three dimensions, particularly with com-
municating blocks.

• Recovery from various kinds of failures is feasible.

• A limited class of structures with deliberate holes can be built.

• Building with open lattices rather than square blocks can be cast as the same
problem algorithmically.

• A hardware prototype demonstrates building solid 2-D structures with noncom-
municating blocks.

9.2 Future work

A number of areas for future work have been pointed out along the way. These include
the following:

• Algorithms for building fully arbitrary structures, with internal holes of any
shape as well as arbitrary perimeters.

• Algorithms for three-dimensional structures which take into account factors
such as gravity.

• Improvements to hardware. For instance, additional sensors near the gripper
should increase the success of block attachment. Further, extensions to allow
awareness of other robots (for, e.g., collision avoidance) would permit physical
swarms consisting of more than one member.

Other important open questions include the following:

• While functional heterogeneity has been discussed, the problem of shape hetero-
geneity—assembling a structure out of blocks whose shape may vary—remains
for future work. It is worth noting that the related polyominoes problem, tiling
a space of a given shape with blocks from a given set, is NP-complete [38].
Thus, as with the situation with functionally heterogenous blocks, building a
structure in an adaptive way rather than a fully prespecified way will likely be
appropriate only in cases where the set of requirements turns out to be easy to
satisfy.
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• This dissertation considers the problem of reliably building structures of speci-
fied shape. I have stressed this problem as distinct from the way social insects
build, which is to produce any structure that “works”, but not necessarily any
particular one. That specificity is a desirable feature in most building projects.
However, in some situations, it will be desirable to produce structures whose
overall shape is flexible. It should be possible to develop algorithms that take a
set of high-level shape requirements and guarantee that the system will come up
with some shape that satisfies them. Solving that problem will also allow the
structure to adapt to an immutable environment: for instance, to build around
a boulder or tree if that obstacle cannot be moved.

• In the formulation presented here, one robot can complete the entire task by it-
self if necessary; and N robots can potentially achieve an N -fold speedup purely
through parallelism. Robots act independently and, except for considerations
like collision avoidance, essentially ignore what the others are doing. However,
there may be advantages that can be gained from explicit cooperation [31].
Tasks can be considered which one robot working alone could not perform, but
multiple robots can accomplish together [19]. A coordination of effort could
potentially allow a greater than N -fold speedup.

• Other problems may benefit from the use of extended stigmergy. It may well
prove to be a useful framework for coordinating other multiagent systems which
can affect their environment, with the potential for advantages like those shown
here over the basic stigmergy that’s been employed in foraging and other swarm
applications.
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