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Abstract

We present a trace-hash scheme and an adaptive tree-trace scheme to improve the perfor-
mance of checking the integrity of arbitrarily-large untrusted data, when using only a small
fixed-sized trusted state. Currently, hash trees are used to check the data. In many systems
that use hash trees, programs perform many data operations before performing a critical
operation that exports a result outside of the program's execution environment. The trace-
hash and adaptive tree-trace schemes check sequences of data operations. For each of the
schemes, for all programs, as the average number of times the program accesses data be-
tween critical operations increases, the scheme's bandwidth overhead approaches a constant
bandwidth overhead.

The trace-hash scheme, intuitively, maintains a "write trace" and a "read trace" of the
write and read operations on the untrusted data. At runtime, the traces are updated with
a minimal constant-sized bandwidth overhead so that the integrity of a sequence of data
operations can be verified at a later time. To maintain the traces in a small fixed-sized
trusted space, we introduce a new cryptographic tool, incremental multiset hash functions,
to update the traces. To check a sequence of operations, a separate integrity-check operation
is performed using the traces. The integrity-check operation is performed whenever the
program executes a critical operation: a critical operation acts as a signal indicating when
it is necessary to perform the integrity-check operation. When sequences of operations are
checked, the trace-hash scheme significantly outperforms the hash tree.

Though the trace-hash scheme does not incur the logarithmic bandwidth overhead of the
hash tree, its integrity-check operation needs to read all of the data that was used since
the beginning of the program's execution. When critical operations occur infrequently, the
amortized cost over the number of data operations performed of the integrity-check operation
is small and the trace-hash scheme performs very well. However, when critical operations
occur frequently, the amortized cost of the integrity-check operation becomes prohibitively
large; in this case, the performance of the trace-hash scheme is not good and is much worse
than that of the hash tree. Thus, though the trace-hash scheme performs very well when
checks are infrequent, it cannot be widely-used because its performance is poor when checks
are more frequent. To this end, we also introduce an adaptive tree-trace scheme to optimize
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the trace-hash scheme and to capture the best features of both the hash tree and trace-hash
schemes. The adaptive tree-trace scheme has three features. Firstly, the scheme is adaptive,
allowing programs to benefit from its features without any program modification. Secondly,
for all programs, the scheme's bandwidth overhead is guaranteed never to be worse than
a parameterizable worst-case bound, expressed relative to the bandwidth overhead of the
hash tree if the hash tree had been used to check the integrity of the data. Finally, for all
programs, as the average number times the program accesses data between critical opera-
tions increases, the scheme's bandwidth overhead moves from a logarithmic to a constant
bandwidth overhead.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Thesis Overview

This thesis studies the problem of checking the integrity of operations performed on an

arbitrarily-large amount of untrusted data, when using only a small fixed-sized trusted state.

Commonly, hash trees [20] are used to check the integrity of the operations. The hash tree

checks data each time it is accessed and has a logarithmic bandwidth overhead as an extra

logarithmic number of hashes must be read each time the data is accessed.

One proposed use of a hash tree is in a single-chip secure processor [5, 10, 19], where it

is used to check the integrity of external memory. A secure processor can be used to help

license software programs, where it seeks to provide the programs with private, tamper-

evident execution environments in which an adversary is unable to obtain any information

about the program, and in which an adversary cannot tamper with the program's execution

without being detected. In such an application, an adversary's job is to try to get the pro-

cessor to unintentionally sign incorrect results or unintentionally reveal private instructions

or private data in plaintext. Thus, assuming covert channels are protected by techniques

such as memory obfuscation [10, 25], with regard to security, the critical instructions are

the instructions that export plaintext outside of the program's execution environment, such

as the instructions that sign certificates certifying program results and the instructions that

export plaintext data to the user's display. It is common for programs to perform millions of

instructions, and perform millions of memory accesses, before performing a critical instruc-
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tion. As long as the sequence of memory operations is checked when the critical instruction

is performed, it is not necessary to check each memory operation as it is performed and using

a hash tree to check the memory may be causing unnecessary overhead.

This thesis presents two new schemes, a trace-hash scheme [8, 11] and an adaptive tree-

trace scheme [7]. For each of the schemes, for all programs, as the average number of times

the program accesses data between critical operations increases, the scheme's bandwidth

overhead approaches a constant bandwidth overhead.

Intuitively, in the trace-hash scheme, the processor maintains a "write trace" and a "read

trace" of its write and read operations to the external memory. At runtime, the processor

updates the traces with a minimal constant-sized bandwidth overhead so that it can verify

the integrity of a sequence of operations at a later time. To maintain the traces in a small

fixed-sized trusted space in the processor, we introduce a new cryptographic tool, incremen-

tal multiset hash functions [8], to update the traces. When the processor needs to check a

sequence of its operations, it performs a separate integrity-check operation using the traces.

The integrity-check operation is performed whenever the program executes a critical instruc-

tion: a critical instruction acts as a signal indicating when it is necessary to perform the

integrity-check operation. When sequences of operations are checked, the trace-hash scheme

significantly outperforms the hash tree. (Theoretically, the hash tree checks each memory

operation as it is performed. However, in a secure processor implementation, because the

latency of verifying values from memory can be large, the processor "speculatively" uses

instructions and data that have not yet been verified, performing the integrity verification

in the background. Whenever a critical instruction occurs, the processor waits for all of the

integrity verification to be completed before performing the critical instruction. Thus, the

notion of a critical instruction that acts as signal indicating that a sequence of operations

must be verified is already present in secure processor hash tree implementations.)

While the trace-hash scheme does not incur the logarithmic bandwidth overhead of the

hash tree, its integrity-check operation needs to read all of the memory that was used since

the beginning of the program's execution. When integrity-checks are infrequent, the number

of memory operations performed by the program between checks is large and the amortized

cost over the number of memory operations performed of the integrity-check operation is
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very small. The bandwidth overhead of the trace-hash scheme is mainly its constant-sized

runtime bandwidth overhead, which is small. This leads the trace-hash scheme to perform

very well and to significantly outperform the hash tree when integrity-checks are infrequent.

However, when integrity checks are frequent, the program performs a small number of mem-

ory operations and uses a small subset of the addresses that are protected by the trace-hash

scheme between the checks. The amortized cost of the integrity-check operation is large.

As a result, the performance of the trace-hash scheme is not good and is much worse than

that of the hash tree. Thus, though the trace-hash scheme performs very well when checks

are infrequent, it cannot be widely-used because its performance is poor when checks are

frequent.

To this end, we also introduce secure tree-trace integrity checking. This hybrid scheme

of the hash tree and trace-hash schemes captures the best features of both schemes. The

untrusted data is originally protected by the tree, and subsets of it can be optionally and

dynamically moved from the tree to the trace-hash scheme. When the trace-hash scheme

is used, only the addresses of the data that have been moved to the trace-hash scheme since

the last trace-hash integrity check need to be read to perform the next trace-hash integrity

check, instead of reading all of the addresses that the program used since the beginning of its

execution. This optimizes the trace-hash scheme, facilitating much more frequent trace-hash

integrity checks, making the trace-hash approach more widely-applicable.

The tree-trace scheme we present has three features. Firstly, the scheme adaptively

chooses a tree-trace strategy for the program that indicates how the program should use the

tree-trace scheme when the program is run. This allows programs to be run unmodified

and still benefit from the tree-trace scheme's features. Secondly, even though the scheme is

adaptive, it is able to provide a guarantee on its worst-case performance such that, for all

programs, the performance of the scheme is guaranteed never to be worse than a parameteri-

zable worst-case bound. The third feature is that, for all programs, as the average number of

per data program operations (total number of program data operations/total number of data

accessed) between critical operations increases, the performance of the tree-trace integrity

checking moves from a logarithmic to a constant bandwidth overhead.

With regard to the second feature, the worst-case bound is a parameter to the adaptive

17



tree-trace scheme. The bound is expressed relative to the bandwidth overhead of the hash

tree - if the hash tree had been used to check the integrity of the data during the program's

execution. For instance, if the bound is set at 10%, then, for all programs, the tree-trace

bandwidth overhead is guaranteed to be less than 1.1 times the hash tree bandwidth over-

head. This feature is important because it allows the adaptive tree-trace scheme to be turned

on by default in applications. To provide the bound, we use the notion of a potential [29,

Chapter 18] to determine when data should just be kept in the tree and to regulate the rate

at which data is added to the trace-hash scheme. The adaptive tree-trace scheme is able to

provide the bound even when no assumptions are made about the program's access patterns

and even when the processor uses a cache, about which minimal assumptions are made (the

cache only needs to have a deterministic cache replacement policy, such as the least recently

used (LRU) policy).

With regard to the third feature, the adaptive tree-trace scheme is able to approach a

constant bandwidth data integrity checking overhead because it can use the optimized trace-

hash scheme to check sequences of data operations before a critical operation is performed.

The longer the sequence, the more data the tree-trace scheme moves from the tree to the

trace-hash scheme and the more the overhead approaches the constant-runtime overhead of

the trace-hash scheme. As programs typically perform many data operations before per-

forming a critical operation, there are large classes of programs that will be able to take

advantage of this feature to improve their data integrity checking performance. (We note

that we are actually stating the third feature a bit imprecisely in this section. After we have

described the adaptive tree-trace scheme, we will state the feature more precisely for the

case without caching in Section 9.2.2, and modify the theoretical claims on the feature for

the case with caching in Section 9.2.3.)

The thesis is primarily focused on providing the theoretical foundations for the trace-

hash and adaptive tree-trace schemes. For the trace-hash scheme, the thesis will present

processor simulation results comparing the trace-hash and hash tree schemes. For the adap-

tive tree-trace scheme, the thesis will present software experimental results showing that

the bandwidth overhead can be significantly reduced when the adaptive tree-trace scheme is

used, as compared to when a hash tree is used. In light of the adaptive tree-trace algorithm's
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trac-has bagfunctions

checker checker

adaptive arette untrusted
tree-trace he ee F g
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partial- hash tree
hash tree checker
checker

Figure 1-1: Interfaces

features and the results, the thesis will provide a discussion on tradeoffs a system designer

may consider making when implementing the scheme in his system.

Hash trees have been implemented in both software and hardware applications. For sim-

plicity, throughout the thesis, we will use secure processors and memory integrity checking

as our example application. The trace-hash scheme is well suited for the certified execution

secure processor application [3], where the processor signs a certificate at the end of a pro-

gram's execution certifying the results produced by the program. The adaptive tree-trace

algorithm can be implemented anywhere where hash trees are currently being used to check

untrusted data. The application can experience a significant benefit if programs can per-

form sequences of operations before performing a critical operation. The general trend is

that the greater the hash tree bandwidth overhead, the greater will be the adaptive tree-trace

scheme's improvement when the scheme improves the processor's performance.

1.2 Thesis Organization

Figure 1-1 illustrates the relationships between the different interfaces that will be introduced

in the thesis. The thesis is organized as follows:

* Chapter 2 describes related work.
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* Chapter 3 presents our model.

" Chapter 4 presents background information on memory integrity checking: it describes

the hash tree checker.

* Chapter 5 defines and describes multiset hash functions.

" Chapter 6 demonstrates how to build the secure bag checker from an untrusted bag

and the multiset hash functions.

" Chapter 7 demonstrates how to build the trace-hash checker from the bag checker.

* Chapter 8 describes how to construct the partial-hash tree checker from a hash tree

checker, and how to build the tree-trace checker from the trace-hash checker and the

partial-hash tree checker.

" Chapter 9 describes how to construct the adaptive tree-trace checker from the tree-trace

checker.

" Chapter 10 explores additional ideas that showed initial promise, but, upon careful

examination, are vulnerable to attacks.

" Chapter 11 concludes the thesis.

The bag checker is a useful abstraction that we use to prove various theorems about

the trace-hash checker. All of the interfaces in Figure 1-1 are new, except for the hash tree

checker. The main contributions of the thesis are:

1. the incremental multiset hash functions [81,

2. the trace-hash integrity checker [8, 11],

3. and the adaptive tree-trace integrity checker [7].
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Chapter 2

Related Work

Bellare, Guerin and Rogaway [23] and Bellare and Micciancio [21] describe incremental hash

functions that operate on lists of strings. For the hash functions in [21, 23], the order of

the inputs is important: if the order is changed, a different output hash is produced. Our

incremental multiset hash functions operate on multisets (or sets) and the order of the inputs

is unimportant.

Benaloh and de Mare [18], Barid and Pfitzmann [24] and Camenisch and Lysyanskaya

[13] describe cryptographic accumulators. A cryptographic accumulator is an algorithm that

hashes a large set of inputs into one small, unique, fixed-sized value, called the accumula-

tor, such that there is a short witness (proof) that a given input was incorporated into the

accumulator; it is also infeasible to find a witness for a value that was not incorporated into

the accumulator. Cryptographic accumulators are incremental and the order in which the

inputs are hashed does not matter. Compared with our multiset hash functions, crypto-

graphic accumulators have the additional property that each value in the accumulator has

a short proof of this fact. However, the cryptographic accumulators in [13, 18, 24] are more

computationally expensive than our multiset hash functions because they use modular ex-

ponentiation operations, whereas the our most expensive multiset hash function makes use

of multiplication modulo a large prime.

The use of a hash tree (also known as a Merkle tree [26]) to check the integrity of untrusted

memory was introduced by Blum et al. [20]. The paper also introduced an offline scheme to

check the correctness of memory. The offline scheme in [20] differs from our trace-hash scheme

21



in two respects. Firstly, the trace-hash scheme is more efficient than the offline scheme in

[20] because time stamps can be smaller without increasing the frequency of checks, which

improves the performance of the scheme. Secondly, the offline scheme in [20] is implemented

with an 6-biased hash function [17]; 6-biased hash functions can detect random errors, but

are not secure against active adversaries. The trace-hash scheme is secure against an active

adversary because it is implemented with multiset-collision resistant multiset hash functions.

We note that the offline scheme can be made secure against an active adversary if it used a

set-multiset-collision resistant multiset hash function, instead of an -biased hash function.

By themselves, trace-based schemes, such as the trace-hash scheme and the offline scheme

in [20], are not general enough because they do not perform well when integrity checks are

frequent. Our tree-trace scheme can use the hash tree when checks are frequent and move

data from the tree to the trace-hash scheme as sequences of operations are performed to take

advantage of the constant runtime bandwidth overhead of the trace-hash scheme.

Hall and Jutla [9] propose parallelizable authentication trees. In a standard hash tree, the

hash nodes along the path from the leaf to the root can be verified in parallel. Parallelizable

authentication trees also allow the nodes to be updated in parallel on store operations.

The trace-hash scheme could be integrated into these trees in a manner similar to how we

integrate it into a standard hash tree. However, the principal point is that trees still incur a

logarithmic bandwidth overhead, whereas our tree-trace scheme can reduce the overhead to

a constant bandwidth overhead.
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Chapter 3

Model

Figure 3-1 illustrates the model we use. There is a checker that keeps and maintains some

small, fixed-sized, trusted state. The untrusted RAM (main memory) is arbitrarily large. The

finite state machine (FSM) generates loads and stores and the checker updates its trusted

state on each FSM load or store to the untrusted RAM. The checker uses its trusted state to

verify the integrity of the untrusted RAM. The FSM may also maintain a fixed-sized trusted

cache. The cache is initially empty, and the FSM stores data that it frequently accesses in

the cache. Data that is loaded into the cache is checked by the checker and can be trusted

by the FSM.

The FSM is the unmodified processor running a user program. The processor can have an

on-chip cache. The checker is special hardware that is added to the processor. The trusted

computing base (TCB) consists of the FSM with its cache and the checker with its trusted

state.

The problem that this paper addresses is that of checking if the untrusted RAM behaves

like valid RAM. RAM behaves like valid RAM if the data value that the checker reads from a

particular address is the same data value that the checker most recently wrote to that address.

In our model, the untrusted RAM is assumed to be actively controlled by an adversary.

The adversary can perform any software or hardware-based attack on the RAM. The un-

trusted RAM may not behave like valid RAM if the RAM has malfunctioned because of

errors, or if the data stored has somehow been altered by the adversary. We are interested

in detecting whether the RAM has been behaving correctly (like valid RAM) during the ex-
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Figure 3-1: Model

ecution of the FSM. The adversary could corrupt the entire contents of the RAM and there

is no general way of recovering from tampering other than restarting the program execution

from scratch; thus, we do not consider recovery methods in this paper.

For this problem, a simple approach such as calculating a message authentication code

(MAC) of the data value and address, writing the (data value, MAC) pair to the address

and using the MAC to check the data value on each read, does not work. The approach does

not prevent replay attacks: an adversary can replace the (data value, MAC) pair currently

at an address with a different pair that was previously written to the address.

We define a critical operation as one that will break the security of the system if the

FSM performs it before the integrity of all the previous operations on the untrusted RAM is

verified. The checker must verify whether the RAM has been behaving correctly (like valid

RAM) when the FSM performs a critical operation. Thus, the FSM implicitly determines

when it is necessary to perform checks based on when it performs a critical operation. It

is not necessary to check each FSM memory operation as long as the checker checks the

sequence of FSM memory operations when the FSM performs a critical operation.
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Chapter 4

Background

This chapter describes previous work on memory integrity checking. Chapter 2 describes

how our work compares with the work presented in this chapter.

4.1 Hash Yee Checker

The scheme with which we compare our work is integrity checking using hash trees [20].

Figure 4-1 illustrates a hash tree. The data values are located at the leaves of the tree. Each

internal node contains a collision resistant hash of the concatenation of the data that is in

each one of its children. The root of the tree is stored in the trusted state in the checker

where it cannot be tampered with.

To check the integrity of a node, the checker: 1) reads the node and its siblings, 2)

concatenates their data together, 3) hashes the concatenated data and 4) checks that the

resultant hash matches the hash in the parent. The steps are repeated on the parent node,

and on its parent node, all the way to the root of the tree. To update a node, the checker:

1) checks the integrity of the node's siblings (and the old value of the node) via steps 1-4

described previously, 2) changes the data in the node, hashes the concatenation of this new

data with the siblings' data and updates the parent to be the resultant hash. Again, the

steps are repeated until the root is updated.

On each FSM load from address a, the checker checks the path from a's data value leaf

to the trusted root. On each FSM store of value v to address a, the checker updates the
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root = h(h1 .h2)

hi = h(V.V 2 ) h2 = h(V3 .V4 )

V1  V2  V3  V4

Figure 4-1: A binary hash tree

path from a's data value leaf to the trusted root. We refer to these load and store operations

as hash-tree-load(a) and hash-tree-store(a, v). The number of hashes that must be

fetched/updated on each FSM load/store is logarithmic in the number of data values that

are being protected.

Given the address of a node, the checker can calculate the address of its parent [3, Section

5.6. Thus, given the address of a leaf node, the checker can calculate the addresses of all of

the nodes along the path from the leaf node to the root.

4.1.1 Caching

A cache can be used to improve the performance of the scheme [3, 30] (the model in Chapter 3

is augmented such that the checker is able to read and write to the trusted cache as well

as to the untrusted RAM). Instead of just storing recently-used data values, the cache can

be used to store both recently-used data values and recently-used hashes. A node and its

siblings are organized as a block in the cache and in the untrusted RAM. Thus, whenever the

checker fetches and caches a node from the untrusted RAM, it also simultaneously fetches

and caches the node's siblings, because they are necessary to check the integrity of the node.

Similarly, when the cache evicts a node, it also simultaneously evicts the node's siblings.

The FSM trusts data value blocks stored in the cache and can perform accesses directly

on them without any hashing. When the cache brings in a data value block from RAM, the

checker checks the path from the block to the root or to the first hash along that path that it

finds in the cache. The data value block, along with the hash blocks used in the verification,

are stored in the cache. When the cache evicts a data value or hash block, if the block is
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clean, it is just removed from the cache. If the block is dirty, the checker checks the integrity

of the parent block and brings it into the cache, if it is not already in the cache. The checker

then updates the parent block in the cache to contain the hash of the evicted block. An

invariant of this caching algorithm is that hashes of uncached blocks must be valid whereas

hashes of cached blocks can have arbitrary values.

4.2 Offline Checker

The offline checker [20 intuitively maintains a "trace" of the sequence of its operations on

the untrusted RAM. In its fixed-sized trusted state, the checker maintains:

* the description of a hash function h,

* h(W), the hash of a string W that encodes the information in all of the checker's write

operations on the untrusted RAM,

" h(R), the hash of a string R that encodes the information in all of the checker's read

operations on the untrusted RAM,

" a counter.

The hash function h must be incremental (c.f Section 5.1) because the checker must be

able to update h(W) and h(R) quickly.

Whenever the FSM stores a data value v to address a in RAM, the checker:

" reads the data value v' and time stamp t' stored in address a,

* checks that t' is less than or equal to the current value of the counter,

* updates h(R) with the (a, v', t') triple,

" increments the counter,

" writes the new data value v and the current value of the counter t to address a,

* updates h(W) with the (a, v, t) triple.
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Whenever the FSM loads a data value from address a in RAM, the checker:

" reads the data value v' and time stamp t' stored in address a,

* checks that t' is less than or equal to the current value of the counter,

" updates h(R) with the (a, v', t') triple,

" increments the counter,

" writes the data value v' and the current value of the counter t to address a,

" updates h(W) with the (a, v', t) triple.

The untrusted RAM is initialized by writing zero data values with time stamps to each

address in the RAM, updating the counter and h(W) accordingly. To check the RAM at the

end of a sequence of operations, the checker reads all of the RAM, checking the time stamps

and updating h(R) accordingly. The RAM has behaved like valid RAM if and only if W is

equal to R. The counter can be reset when the RAM is checked.

In [20], an c-biased hash function [17] is proposed for the implementation of h. 6-biased

hash functions can detect random errors, but are not secure against active adversaries.

Because the adversary controls the pairs that are read from the untrusted RAM, the pairs

that are used to update h(R) can form a multiset. The checker's counter is incremented

each time that the checker writes to the untrusted RAM. Furthermore, the counter is not a

function of the pairs that the checker reads from RAM and is solely under the control of the

checker. This means that the pairs that are used to update h(W) are guaranteed to form a

set and a set-multiset-collision resistant hash function (c.f. Section 5.1) is sufficient for the

implementation of h.
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Chapter 5

Incremental Multiset Hash Functions

Vultiset hash functions [8] are a new cryptographic tool that we develop to help build

the trace-hash integrity checker. Unlike standard hash functions which take strings as input,

multiset hash functions operate on multisets (or sets). They map multisets of arbitrary finite

size to strings (hashes) of fixed length. They are incremental in that, when new members

are added to the multiset, the hash can be updated in time proportional to the change.

The functions may be multiset-collision resistant in that it is difficult to find two multisets

that produce the same hash, or set-multiset-collision resistant in that it is difficult to find

a set and a multiset that produce the same hash. Multiset-collision resistant multiset hash

functions are used to build our trace-hash memory integrity checker (cf. Chapter 7). Set-

multiset-collision resistant multiset hash functions can be used to make the offline checker

of Blum et al. [20] (cf. Section 4.2) secure against an active adversary.

5.1 Definition

We work with a countable set of values V. We refer to a multiset as a finite unordered

collection of elements where an element can occur as a member more than once. All sets are

multisets, but a multiset is not a set if an element appears more than once. We shall use M

to denote the set of multisets of elements of V.

Let M be a multiset in M. The number of times v E V is in the multiset M is denoted

by M, and is called the multiplicity of v in M. The number of elements in M, EVEV MV, is
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called the cardinality of M, also denoted as IMI.

Multiset union, UM, combines two multisets into a multiset in which elements appear

with a multiplicity that is the sum of their multiplicities in the initial multisets.

Definition 5.1.1. Let (N, H, +H) be a triple of probabilistic polynomial time (ppt) algo-

rithms. That triple is a multiset hash function if it satisfies:

compression: Compression guarantees that we can store hashes in a small bounded amount

of memory. H maps elements of M into elements of a set with cardinality equal to 2",

where n is some integer:

VM EM: N(M) - {O, 1}.

comparability: Since R can be a probabilistic algorithm, a multiset need not always hash

to the same value. Therefore we need -, to compare hashes. The following relation

must hold for comparison to be possible:

VM EM4: NH(M) =N(M).

incrementality: We would like to be able to efficiently compute N(M UM M') knowing

N(M) and N(M'). The +- operator makes that possible:

In particular, knowing only N(M) and an element v C V, we can easily compute

N(M UM {v}) = N(M) +H N({v}).

As it is, this definition is not very useful, because N could be any constant function. We

need to add some kind of collision resistance to have a useful hash function. A multiset hash

function is multiset-collision resistant if it is computationally infeasible to find a multiset M

of V and a multiset M' of V such that M f M' and N(M) =h N(M'). A multiset hash

function is set-multiset-collision resistant if it is computationally infeasible to find a set S of
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V and a multiset M of V such that S f M and R(S) -H 7(M). The following definitions

make these notions formal.

Definition 5.1.2. Let F be a family of multiset hash functions; each multiset hash function

in F is indexed by its own seed (key). We denote a multiset hash function's seed as k. For

(74, ku I,+k) in F, we denote by n the logarithm of the cardinality of the set into which

7-(k maps multisets of V, that is n is the number of output bits of 7 1 . By A(Hk) we denote

a probabilistic polynomial time, in n, algorithm with oracle access to (ft, =--k ±+7-k).

The family F satisfies multiset-collision resistance if, for all ppt algorithms A, any number

c.,

k + {, 1} , (M, M') +- A(ft)

]no : Vn > no, Prob M is a multiset of V and M' is a multiset of V < n-C.

and M f M' and Hk(M) _R, 74(M')

The probability is taken over a random selection of k in {0, 1}" (denoted by k A {R , 1})

and over the randomness used in the ppt algorithm A(ft).

The family F satisfies set-multiset-collision resistance if, for all ppt algorithms A, any

number c,

k + {0, 1}n, (S, M) +- A(7k) :
3no : Vn > no, Prob S is a set of V and M is a multiset of V < n-c.

and S # M and hk(S) =-H, Hk(M)

The Attack Scenario for the Multiset Hash Functions

In accordance with our model (cf. Chapter 3), the outputs of the multiset hash functions

are maintained in the checker's small, fixed-sized, trusted state. Typically, we allow the

adversary to observe the outputs but the adversary cannot tamper with them. If the multiset

hash function uses a secret key, the checker maintains the secret key in a private and authentic

manner; for clarity, if the multiset hash function uses a secret key, when the checker updates

the multiset hash function outputs, the updates occur privately and authentically, though

after the outputs have been updated, the adversary can then observe the outputs.
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collision computational secret security
resistance efficiency key based on

MSet-XOR-Hash set-multiset + Y PRF
MSet-Add-Hash multiset + Y PRF

MSet-Mu-Hash multiset - N RO/DL

Table 5.1: Comparison of the multiset hash functions

Because, in our trace-hash application, the checker adds elements to multisets one by one,

in order for the adversary to exploit a collision in the multiset hash function, the multisets

must be polynomial sized in n. An adversary may be able to compute, in polynomial

time, collisions using exponentially-sized multisets by, for example, repeatedly applying the

+- operation on a multiset hash function output (i.e., the adversary adds the output to

itself, adds the result to itself, and so on). However, these collisions cannot be used by

an adversary in our particular application because the checker can only compute hashes of

multisets polynomial sized in n. Thus, in our attack model, we require that an adversary

can only construct a collision using multisets whose size are each polynomial in n.

The adversary is a probabilistic polynomial time, in n, algorithm with oracle access to

(Nk, =Nk, +Rk). The adversary has oracle access to (N7, =k I +Rk) because the adversary

can tamper with the untrusted RAM to have the checker compute Rk, --Nk or +H k on

multisets of it choosing. The attack scenario is for the adversary to adaptively make oracle

queries to gain knowledge of at most a polynomial number of tuples [Mi ; kA(Mi)1. With

the aid of =Nk and +k, the adversary's goal is to find a collision (M, M'), M M' and

Hk(M) H k 'Hk(M), where M is a (multi)set of elements of V and M' is a multiset of

elements of V. For our trace-hash application, for a collision to be useful to the adversary,

.N and M' must each be polynomial sized in n.

Comparison of the Multiset Hash Functions

We introduce three multiset hash functions: MSet-XOR-Hash, which is set-multiset-collision

resistant, and MSet-Add-Hash and MSet-Mu-Hash, which are multiset-collision resistant. (In

MSet-XOR-Hash and MSet-Add-Hash, the seed (key) k is selected uniformly from {0, 1}'

and is secret; in MSet-Mu-Hash, the seed (key) is selected uniformly from the set of n-bit
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primes and is public.) MSet-XOR-Hash and MSet-Add-Hash are efficient because they use

addition operations. The advantage of MSet-Mu-Hash is that it does not require a secret

key; however it relies on multiplication modulo a large prime, which makes it too costly for

some applications. Table 5.1 summarizes our comparison of the multiset hash functions. In

the table, we indicate whether the security is based on assuming a pseudorandom family of

hash functions (PRF), or the random oracle model (RO) and the discrete log assumption

(]DL).

5.2 MSet-XOR-Hash

Definition 5.2.1. Let Hk be a pseudorandom function keyed with a seed (key) k. Hk

{0, 1}' -+ {o, 1}m. (In practice, one could use the HMAC method [12] to construct such an

H ). Let r 4' {0, 1}m denote uniform random selection of r from {0, 1}m. Then define 1

MSet-XOR-Hash by:

lk(M) = Hk(O, r)D e MVHk(1, v) ; M mod 2m;r where r R {o, 1}M

(h, c, r) =-, (h', c', r') = (h ED Hk(O, r) = h' @ Hk(O, r') A c = c')

(h, c, r) +7- (h', c', r') =

(Hk(0, r") ED (hEDHk(0, r)) ED (h' ED Hk(0, r')); c + c' mod 2m; r") where r" <' {0, 1}m

Frheorem 5.2.1. As long as the key k remains secret (i.e., is only accessible by the checker),

MSet-XQR-Hash is a set-multiset-collision resistant multiset hash function.

Proof. Since the algorithms clearly run in polynomial time, we simply verify the different

conditions.

'In a real implementation, the three parts of the hash need not be assigned the same number of bits.
However the size of each part is a security parameter. Also, for accuracy, Hk(O, r) is actually Hk(01', r),
where m + 1 < 1.
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Compression: The output of MSet-XOR-Hash is n = 3m bits long by construction.

Comparability and Incrementality: Follows from the definitions of ?-k, =-Hk, and ±,H,.

Set-multiset-collision resistance: We prove the set-multiset-collision resistance of

MSet-XOR-Hash in Section 5.5.1. We prove the following theorem:

Theorem 5.2.2. If Rk is modelled as a random function, then the family of

MSet-XOR-Hash hash functions is set-multiset-collision resistant (cf. Definition 5.1.2).

Remark. Theorem 5.2.2 also holds if 7 1 k is from a pseudorandom family of hash func-

tions.

5.2.1 Set-Multiset-Collision Resistance of MSet-XOR-Hash

MSet-XOR-Hash is set-multiset-collision resistant but not multiset-collision resistant. For

instance, though Nk(1, 2}) # (k({2, 2}), Yk({1, 1}) = 7 k({2,2}). In this section, we

describe the various components of MSet-XOR-Hash and show that they are necessary. The

essential notion for MSet-XOR-Hash is that Hk(O, r) conceals (,,v MVHk(1, v), preventing

an adversary (without access to key k) from gaining any information on DVEV MvHk(1, v).

Cardinality Counter

'Hk(M) includes the cardinality of M. If the cardinality counter were removed, we would

have:

V (M)= H=(0,r) MvHk(1,v ;r
vV

.In this case, Ni(S) and N(M) are equivalent for any set, S, and multiset, M, with S, = Mv

mod 2 for all v E V. For instance, R'({1}) = R'({1, 1, 1}). This contradicts set-multiset-

collision resistance.

For semantic reasons, because the output of a hash function must be of fixed size, we

express the cardinality counter modulo 2m. However, we note that the cardinality counter
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must not be allowed to overflow, else the hash function is not set-multiset-collision resistant.

For multisets polynomial-sized in m, the cardinality counter will not overflow for large enough

M. We note that, if necessary, the number of bits used for the cardinality counter can be

larger than the number of bits that are used for the other parts of the output hash.

Randomly-Chosen Nonce

Notice that r <- {0, 1}" is randomly chosen. If r was a fixed constant, T, we would have:

(H (0, T) e ( MvHk(1, v) ;MI mod 2M; ).

Given oracle access to (M/, -- ±,+c), Hk(O, T) can be easily determined: pick a ran-

dom va E V and compute (Hk(O,T),2,T) = 7C({va,Va}). Thus, knowledge of t tuples

[M ; H'(Mi)] reveals t vectors:

e Miv Hk(1, v) E 0, 1}
vV

After a polynomial, in m, number of randomly-chosen vectors, with high probability these

t vectors will span the vector space ;"m (the set of vectors of length m and entries in 22).

This means that any vector in &" can be constructed as a linear combination of these t

vectors:

(9 -@ i i1,v aiMi,) Hk (1, V).
i=1 vEV vEV i=1

Hence, for any polynomial-sized set, S, an adversary can construct a polynomial-sized

nultiset that is a collision for S using M1, M2,... , Mt. This contradicts set-multiset-collision

resistance.
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Prefixing 0 to the nonce and 1 to the elements of V

Notice that 0 is prefixed to the random nonce and 1 is prefixed to the elements of V. If this

were not the case, we would have:

H (M) = H M M HI(v) Mj mod 2m; r

A linear combination attack can be conducted, similar to the linear combination attack

that is used when the nonce is fixed. Knowledge of t tuples [Mi ; H (Mi)] reveals t vectors:

Hk(rn) E M(DHk (v) E {, 1}"m.
veV

After a polynomial, in m, number of such vectors, with high probability these t vectors will

span the vector space &'. This means that any vector in &' can be constructed as a

linear combination of these t vectors:

a - k\2 e& M)HG(v = MaiHHr i) y a@ M H(V)Hk(v).

i=1V v =1VEV i=1

The nonces in the linear combination are indistinguishable from the elements of V. For

any polynomial-sized set, S, an adversary can construct a polynomial-sized multiset that is

a collision for S using M 1 U {r 1}, M 2 U {r 2 }, ... , Mt U {rt}. This contradicts set-multiset-

collision resistance. When a 0 is prefixed to the nonce and a 1 to the elements of M, such

attacks fail with high probability because, then, the nonces are distinct from the elements

of M and thus cannot be used as members of collisions.

Secret key k

The pseudorandom function used for the evaluation of the nonce and the evaluation of

elements in V is keyed. If the key were removed in the evaluation of the nonce, we would

have:

H' (M) =(H(0, r) e Mv H (1, v) ;MI mod 2m; r.

In this case, the adversary can evaluate H(0, r) himself and obtain the vector
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i@,Ev MvHk(l, v) E {0, 1}m. After a polynomial number of such vectors, he can perform a

linear combination attack that is similar to the attack that is used when the nonce is fixed.

If the key were removed in the evaluation of the elements of V, we would have:

H'k (M) = Hk(O, r) e ( MvH(1, v)) ; IM| mod 2m; r9

In this case, the adversary can evaluate the vector DVEV Mv H(1, v) E {0, 1}m himself.

After a polynomial number of such vectors, he can perform a linear combination attack that

is similar to the attack that is used when the nonce is fixed.

Thus, if a secret key is not used, set-multiset-collision resistance is contradicted.

5.2.2 Variants of MSet-XOR-Hash

There are a couple of interesting variants of MSet-XOR-Hash. The security of these variants

is also proven in Section 5.5.2.

Count er-based-MSet-XOR-Hash

It is possible to replace the random nonce r by an m-bit counter, COUNTER, that gets

incremented before each use of 7 (k and +-H,. COUNTER is initialized at 0. Define

Counter-based-MSet-XOR-Hash by:

Hk (M) = Hk(0, s) G M, H(1, v) ;IMI mod 2m;s

where s is the value of COUNTER after it has been incremented.

(h, c, s) = Rk (h', c', s') = (h e Hk(0, s) = h' e Hk(0, s') A c = c'

(h, c, s) +-Hk (h', c', s') =

(Hk(0, s") G (heHk (0, s)) e (h' G Hk(0, s')); c + c' mod 2m;

where s" is the value of COUNTER after it has been incremented.

The advantages of using the counter, COUNTER, are:
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* the security of the scheme is stronger (cf. Section 5.5.2).

" it removes the need for a random number generator from the scheme.

" shorter values can be used for COUNTER without decreasing the security of the scheme,

as long as the secret key is changed when the counter overflows. This reduces the size

of the hash.

The disadvantage of using the counter is that more state needs to be maintained. When

a random number is used, k needs to be maintained in a secret and authentic manner. When

a counter is used, k need to be maintained in a secret and authentic manner, and COUNTER

in an authentic manner.

Obs cured-MSet-XOR-Hash

The outputs of the multiset hash functions are maintained in the checker's small, fixed-sized,

trusted state. We typically allow the adversary to observe the outputs of the multiset hash

functions, though the adversary cannot tamper with the outputs (cf. Section 5.1). For the

case of Obscured-MSet-XOR-Hash, we do not allow the adversary to observe the multiset

hash function outputs, i.e., the checker's trusted state is both authentic and private. If

the xors of the hashes of the elements of M are completely hidden from the adversary (the

adversary knows which M is being hashed, but not the value of the xors of the hashes of

the elements of M), then the nonce/counter can be removed from the scheme altogether. In

particular:

'k (M) (e M Hk(v)); IM| mod 2m

(h, c) =Hk (h', c') = (h = h' A c = c)

(h, c) +hk (h', c') = (h h; c + c' mod 2m)

This variant is the simplest, and its security is equivalent to that of

Counter-based-MSet-XOR-Hash. However, it does require that the output hashes be secret.
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Encrypted-MSet-XOR-Hash

Encrypted-MSet-XOR-Hash is an extension of Obscured-MSet-XOR-Hash, where, instead of

relying on the application to keep the xor of the hashes of the elements of M hidden, the

multiset hash function encrypts these values with a pseudorandom permutation. Let Pk be

a pseudorandom permutation keyed with seed (key) k'. Pk, : {0, 1}m - {, 1}m Let PF7 1 be

the inverse of PV'.

Again, the security of Encrypted-MSet-XOR-Hash is equivalent to that of

Counter-based-MSet-XOR-Hash. Compared to Obscured-MSet-XOR-Hash, the output hashes

no longer need to be kept secret, but there is a second key that needs to be maintained in a

secret and authentic manner.

5.3 MSet-Add-Hash

:Definition 5.3.1. Let Hk be a pseudorandom function keyed with a seed (key) k. Hk

f0, 1}' -- {o, 1}m. (In practice, one could use the HMAC method [12] to construct such an

Hk). Let 2 r +- {0, 1}m denote uniform random selection of r from {0, 1}m. Then define

MSet-Add-Hash by:

'In a real implementation, the two parts of the hash need not be assigned the same number of bits.
However the size of each part is a security parameter.
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(h, c) +Hk (h', c') = (Pk (P 1(h) e P,1 (h')); c + c' mod 2m



Theorem 5.3.1. As long as the key k remains secret (i.e., is only accessible by the checker),

MSet-Add-Hash is a multiset-collision resistant multiset hash function.

Proof. Since the algorithms clearly run in polynomial time, we simply verify the different

conditions.

Compression: The output of MSet-Add-Hash is n = 2m bits long by construction.

Comparability and Incrementality: Follows from the definitions of Hk, =nH, and +k.

Miltiset-collision resistance: We prove the multiset-collision resistance of

MSet-Add-Hash in Section 5.6.1. We prove the following theorem:

Theorem 5.3.2. If 7 k is modelled as a random function, then the family of

MSet-Add-Hash hash functions is multiset-collision resistant (cf. Definition 5.1.2).

Remark. Theorem 5.2.2 also holds if 7 k is from a pseudorandom family of hash func-

tions.

5.3.1 Multiset-Collision Resistance of MSet-Add-Hash

MSet-Add-Hash is multiset-collision resistant. Note that a cardinality counter is not neces-

sary: because the addition is being computed modulo 2' and because, for our trace-hash

application, for a collision to be useful to the adversary, the multisets in the collision must

each be polynomial sized in n = 2m, values in the multiset cannot cancel each other out

when Ev McHk(1, v) mod 2' is computed.
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H(M) = Hk(0, r)+J M, Hk(1, v) mod 2m ; r where r {0, 1} m

VEV I

(h, r) Nk (h', r') = ((h - H(O, r)) = (h' - Hk(0, r')) mod 2m

(h, r) +2k (h', r') =

(Hk(O, r") + (h-H (0, r)) + (h' - Hk (0, r')) mod 2m ; r") where r" + R {0, 1}m



5.3.2 Variants of MSet-Add-Hash

MSet-Add-Hash can be modified similar to the manner in which MSet-XOR-Hash was modified

to create Counter-based-MSet-Add-Hash, Obscured-MSet-Add-Hash and

Encrypted-MSet-Add-Hash (cf. Section 5.2.2). The security of these schemes is stronger

(cf. Section 5.6.2).

5.4 MSet-Mu-Hash

Definition 5.4.1. Let H be a pseudorandom function. H {0, 1}1 - {0, 1}m. Let p be an

r-bit prime. Then define MSet-Mu-Hash by:

(M)= (J7JH(v)MV mod p)
vEV

(h) z (h') = (h = h'

(h) +- (h') (h x h' mod p)

T heorem 5.4.1. MSet-Mu-Hash is a multiset-collision resistant multiset hash function.

Proof. Since the algorithms clearly run in polynomial time, we simply verify the different

conditions.

Compression: Because the multiplication operations are performed modulo an m-bit prime,

p, the output of MSet-Mu-Hash is n = m bits long.

Comparability: R and +H are deterministic, so simple equality suffices to compare hashes.

Incrementality: Follows from the definitions of R, -H, and +-.

Multiset-collision resistance: We prove the multiset-collision resistance of

MSet-Mu-Hash in Section 5.7.1. We prove the following theorem:
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Theorem 5.4.2. If H is modelled as a random function, then the family of

MSet-Mu-Hash hash functions is multiset-collision resistant (cf. Definition 5.1.2).

Remark. Theorem 5.2.2 also holds if Nk is from a pseudorandom family of hash func-

tions.

5.5 MSet-XOR-Hash Proofs

5.5.1 Proof of Set-Multiset-Collision Resistance of MSet-XOR-Hash

In this section, we prove Theorem 5.2.2 (cf. Section 5.2). We will first prove Theorem 5.5.1

and Theorem 5.5.7, and use these theorems to formulate a proof for Theorem 5.2.2.

Recall that Hk {O, 1}' -+ {0, 1}'. (For accuracy, Hk(O, r) is actually Hk(0l-m, r), where

rn + 1 < 1.) We first model Hk as a random function and prove that, if Hk is a random

function, then MSet-XOR-Hash is set-multiset-collision resistant. In practice, Hk is a pseu-

dorandom function; after proving the theorems modelling Hk as a random function, we then

show how to extend them when Hk is a pseudorandom function.

Let 7Z be the family of random functions represented as matrices with 21 rows, m columns,

and entries in 2Z2 . Let Hk be a randomly-chosen matrix in 7z = {H 1, H2, H 3 ,..., H2 m2 I}.

'We assume that, this matrix is secret (i.e., is only accessible by the checker). The family of

matrices 7Z from which Hk is selected is publicly known.

The rows of Hk are labelled by x E {0, 1}' and denoted by Hk(x). The matrix represents

Hk as a random function from x E {0, } to Z', the set of vectors with length m and

entries in ;22 We note that, because Hk is a random function, each row in Hk is uniformly

distributed in &7.

Theorem 5.5.1 is about the probability that an adversary, given oracle access to

( 7 (k, 7
',+uk), finds two different multisets, M and M', such that eVEV MvHk(1,v) =

eV MHk(1, v). The probability is taken over the random matrices Hk in R, the ran-

domness of the random nonce used in ik and the randomness used in the probabilistic

polynomial time adversary.
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'Theorem 5.5.1. Suppose that an adversary, given oracle access to (t, -- H,, +-H,), gains

knowledge of t tuples [Mi ; 71k(Mi)]. Let M and M' be different multisets of elements of V.

Let g be the greatest common divisor of 2 (because the xor operation is addition modulo 2)

and each of the differences |M, - M'|, v G V. (Since M, M' f 0, g = 1 or g = 2.) Given

knowledge of t tuples [Mi ; 7(k(Mi)], the probability that the adversary finds an M and an

M', M # M', such that EvVE MvHk(1, v) = @vv M'Hk (1, v) is at most t 2 /2m + (g/2).

Proof. Let Ni C {0, 1}m denote the random variable whose value is the random nonce chosen

by the multiset hash when creating 1k(Mi). Let Distinct be the event that N 1, N2, ... , N

are all distinct and Succ be the event that (DVE MvHk(1, v) = D,,v M'Hk (1, v).

We observe that:

Prob(Succ) = Prob(Succ n Distinct) + Prob(Succ n -,Distinct),

Prob(Distinct) < 1 z Prob(Succ n Distinct) < Prob(Succ n Distinct)
-t Prob(Distinct)

SProb(Succ n Distinct) < Prob(Succ | Distinct),

Prob(Succ n -,Distinct) < Prob(-,Distinct)

thus Prob(Succ) < Prob(Succ | Distinct) + Prob(-,Distinct).

Fact 5.5.2. The probability of

experiment of throwing a balls,

at least one collision (i.e., two balls in the same bin) in the

independently at random, into b bins is < 1 [23].

Using Fact 5.5.2, Prob(-,Distinct) < t 2 /2m.

Thus, we now need to show that

Prob(Succ I Distinct) 5 (g/2)m

This follows.
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Assume N1 , N2, . . . , Nt are all distinct. Let us introduce some notation. Let e(r, M) be

a vector of integers of length 2'. Its entries are indexed by all i-bit strings in lexicographic

order. Let e(r, M)(j) denote the ith entry of e(r, M). Then, we define e(r, M) by

e(r, M)(o) = 1 if and only if v = r

and

e(r, M)(IV) = MV.

e(r, M) encodes the multiset M and the nonce r that is used when 7k(M) is created.

Similarly, let e(M) be a 2'-bit vector defined by

e(M)(ov) = 0

and

e(M),) = Mv.

e(M) encodes the multiset M.

]Lemma 5.5.3. (i) Knowing [M ; Rk(M)] is equivalent to knowing

[e(r, M) ; e(r, M) Hk

(ii) k k(M) =k H (M') if and only if e(M)Hk = e(M')Hk mod 2 and >Eve M -

vEV M' mod 2".

Proof. Notice that e(r, M) encodes r, M, and, hence, the cardinality EVEV M, mod 2m of

M, and notice that

ik(M)= e(r, M)Hk mod 2 ; Mv
vV

mod 2"; rl

The lemma follows immediately from these observations. 0

Suppose that an adversary learns t tuples [Mi ; 7(k(Mi)] or, according to Lemma 5.5.3(i),
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t vectors e(ri, MA) together with the corresponding e(ri, M2)Hk mod 2. Let E be the t x 2'

matrix with rows e(ri, Mi). Because, for this part of the proof, we have assumed that the

ri's are all distinct, matrix E has full row rank.

Lemma 5.5.4. Let M and M' be different multisets of elements of V. The probability that

Hk satisfies e(AI)Hk = e(M')Hk mod 2 is statistically independent of the knowledge of a

full row rank matrix E and the knowledge K= EHk mod 2.

Proof. Without loss of generality (after reordering the first 2'-1 columns of E) matrix E has

the form E = (I E1), where I is the t x t identity matrix. Denote the top t rows of Hk by

-hlk and let Hk1 be such that

Hk-

Hk=

Clearly, K= EHk mod 2 is equivalent to

K = H 0 + E1Hk mod 2. (5.2)

e(M)Hk = e(M')Hk mod 2 =- 0 = (e(M) - e(M'))Hk mod 2. (e(M) - e(M')) has the

form (0 ei), where 0 is the all zero vector of length 21-1.

The equation 0 = (e(M) - e(M'))Hk mod 2 is equivalent to

0 = e1Hkl mod 2. (5.3)

Prob((5.3)1(5.2)) = Prob((s.3)n(s.2)) _ #Hkj such that ((5.3)n(5.2)) #Hkl such that (5.2)
Prob((s.2)) total #Hk, total #Hk,

:#Hk, such that ('(5.3)n(5.2))
#Hk, such that (53.2) . Because, for each Hk1 , there exists a unique Hk0 such that (5.2)

holds, #Hk1 such that ((s.3)n(s.2)) - #Hk, such that (5.3) = Prob((5.3)).
#Hk, such that (5.2) total #Hk,

Thus, the probability that Hk satisfies e(M)Hk = e(M')Hk mod 2 is statistically inde-

pendent of the knowledge of a full row rank matrix E and the knowledge K= EHk mod 2. L

Lemma 5.5.5. Let M and M' be different multisets of elements of V. Let g be the greatest

common divisor of 2 and each of the differences IMv - Mv,|, v G V. (g = 1 or g = 2.) Then

(e(M) - e(M')).Hk mod 2 is uniformly distributed in gZ'
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Proof. To prove this lemma, we show that each entry of (e(M) - e(M'))Hk mod 2 is uni-

formly distributed in gZ 2 . (For clarity, g;Z = {0, g, 2g..., (ca,9) - 1)g}. Thus, if gjd,

then g s {0, g, 2g,... , ( - 1)g}. Thus, ;2 = {0, 1} and 2Z2 = {O}. Also g'" is

the set of vectors with length m and entries in g22) Let y represent one of the possible

columns of Hk.

We first show that Prob((e(M) - e(M'))y mod 2 g&2) = 0. We see that g =

gcd(2, IM, - MA' such that v E V) z g12 and, Vi : 0 < i < 2', gl(e(M) - e(M'))(i). Since,

Vi : 0 < i < 2', g(e(M) - e(M'))(j), then gl(e(M) - e(M'))y. Let (e(M) - e(M'))y = a

mod 2. Then (e(M) - e(M'))y = a + q2 for some integer q, and 0 < a < 2. Since

gi(e(M) - e(M'))y and g12, then gfa. Since 0 < a < 2 and gfa, a E gZ2-

Secondly, we show that Vz 1 , z2 E g; 2, Prob((e(M) - e(M'))y = z, mod 2) =

Prob((e(M) - e(M'))y = z 2 mod 2). Define for E gZ 2, the set

C, = {y: (e(M) - e(M'))y = 0 mod 2}.

For a fixed column y' C CO, the mapping y E CO -* y - y' E Co is a bijection. Hence, all of

the sets CO have equal cardinality. Prob((e(M) - e(M'))y = / mod 2) = IC". Since all of
221

the sets CO have equal cardinality, VzI, z2 E g& 2, Prob((e(M) - e(M'))y = z, mod 2) -

]Prob((e(M) - e(M'))y = z2 mod 2).

We conclude that each entry of (e(M) - e(M'))Hk mod 2 is uniformly distributed in

g.2. Thus, (e(MA) - e(M'))Hk mod 2 is uniformly distributed in g&2-

Lemma 5.5.6. Let M and M' be different multisets of elements of V. Let g be the greatest

common divisor of 2 and each of the differences |Mv - M'|, v E V. (g = 1 or g = 2.) Given

the knowledge of a full row rank matrix E and given the knowledge K= EHk mod 2, the

probability that (e(M) - e(M'))Hk = 0 mod 2 is equal to (g12)'.

Proof. By Lemma 5.5.4, the probability that Hk satisfies e(M)Hk = e(M')Hk mod 2 is

statistically independent of the knowledge of a full row rank matrix E and the knowledge

K= EHk mod 2. By Lemma 5.5.5, (e(M) - e(M'))Hk mod 2 is uniformly distributed in

g&'. Thus, the probability that (e(M) - e(M'))Hk = 0 mod 2 is equal to one divided
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by the cardinality of g=- When g~d, lg;ZZd =. Thus, Prob((e(M) - e(M'))Hk = 0

mod 2) = (9)m=(9)m. l

Lemma 5.5.6 proves that Prob(Succ I Distinct) = (g/2)m. This concludes the proof of

Theorem 5.5.1.

l

Theorem 5.5.7 shows the necessity of including the cardinality of the multiset M that is

being hashed in Hk(M) and shows why m bits are sufficient to encode the cardinality.

Theorem 5.5.7. Let M and M' be different multisets of elements of V. Suppose that each

of the differences |M, - M |, v E V is equal to 0 mod 2, and that the multiplicities of M are

< 2 (i.e., M is a set), and that EZEv M = EvCV Mv mod 2m (i.e., |MI = IM'| mod 2m),

and that the cardinalities of M and M' are < 2m. Then M = M'.

Proof. If the cardinalities of M and M' are equal modulo 2m and < 2m, then

ZMV = MV. (5.4)

If each of the differences jMv - Mvj, v E V is equal to 0 mod 2, then, for v E V,

3aE - such that M' = Mv + 2av. (5.5)

If all of the multiplicities of M are < 2, then Vv C V, av > 0.

If, Vv E V, Q) > 0, and EVEV M = EVEV Mv, then, Vv E V, av = 0.

If, Vv C V, 0% = 0, then, Vv E V, Mv = Mv. We conclude that M = M'. E

With Theorem 5.5.1 and Theorem 5.5.7, we are now ready to prove Theorem 5.2.2.

Proof. Let A(M) denote a probabilistic polynomial time, in n, algorithm with oracle access

to (Nk, = +7k). Then A(ft) can gain knowledge of at most a polynomial number t(n)

tuples [M ; N(M)] (here t(n) denotes a polynomial in n). Furthermore, A(N) can search

For a collision among at most a polynomial number u(n) of pairs (S, M), S # M, where S is

a set of elements of V and M is a multiset of elements of V.
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According to Theorem 5.5.1, the probability that A(k) finds an (S, M), S # M, such

that evVE SvHk (1, v) = ED,, MvHk(1, v) is at most u (n)(t(n)2 /2m + (g/2) m).

Let us consider one of these pairs (S, M), S = M where E,,v Sv Hk(1, v) =

@vG McHk(1, v). Since, for our trace-hash application, for a collision to be useful to the

adversary, the multisets in the collision must each be of polynomial size in n = 3m, the

cardinality of S and M are < 2m. Since S # M, S is a set, the cardinalities of S and M

are < 2m, if Evcv Sv = EvZv Mv mod 2m, then, by Theorem 5.5.7, there is at least one

difference |Sv - Mv|, v C V that is not equal to 0 mod 2. Hence, the greatest common

divisor, g, of 2 and each of the differences IMv - Mj,', v C V, is equal to 1.

This means that, by Theorem 5.5.1 and 5.5.7, the probability that A(ft) finds a collision

(S, M), S $ M, such that ®DvE SvHk(l,v) = D,,v MvHk (1,v) and Zvev Sv = EvEV Mv

mod 2m is at most

u)t (n)2 +
( 2m +2m

Thus, for any number c, for sufficiently-large m, the probability that A(ft) finds a

collision (S, M), S # M, such that ak(S) =uH 7k(M) is < m-c. n = 3m. Thus, for all ppt

algorithms A, any number c,

k + { 0, 1}n , (S, M) -- A(ft):

3no : Vn > no, Prob S is a set of V and M is a multiset of V < n-c.

and S $ M and 7 k(S) -H, R4(M)

This concludes the proof of Theorem 5.2.2.

Remark. Theorem 5.2.2 not only holds when Hk is random function, but also holds when Hk

is pseudorandom function. Suppose that there exists an adversary, At(), that can compute

a collision of the multiset hash function ( (, =HkI +t) with a significant probability of

success, T-, in the case when Hk is a pseudorandom function. Let r, = u(n)(t) 2 + 1) be

the maximum probability with which an adversary can compute a collision of the multiset

hash function when Hk is a random function. Let Hk be chosen at random from either a

random function family or a pseudorandom function family. We build an adversary, B(Hk),
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that can distinguish whether Hk is a random function or a pseudorandom function with

significant probability, contradicting the assumption that Hk is pseudorandom. Let TD be

the probability that B(Hk) distinguishes whether Hk is a random function or a pseudorandom

function. B(Hk) runs A(N), using Hk to create the multiset hashes to respond to A(Hk)'s

multiset hash requests. If A(k) successfully produces a collision in the multiset hash

function, B(Hk) says that Hk is pseudorandom; otherwise, B(Hk) says that Hk is random.

The probability that B(Hk) says that Hk is pseudorandom when Hk is pseudorandom is the

]probability that A(Hk) successfully produces a collision in the multiset hash function when

Hk is pseudorandom: Tp. The probability that B(Hk) says that Hk is pseudorandom when

Hk is random is the probability that A(ft) successfully produces a collision in the multiset

hash function when Hk is random: Tr. Thus, TD = Tp - Tr. Because, as we have proven, Tr, is

negligible, TD is a significant probability. Thus, B(Hk) is able to distinguish whether Hk is a

random function or a pseudorandom function with significant probability. This contradicts

the assumption that Hk is pseudorandom. Thus, theorem 5.2.2 also holds when Hk is a

pseudorandom function: in particular, the probability of an adversary finding collisions in

(, -sk, +Hk) when Hk is a pseudorandom function is < u(n)( + -) + TD. (We refer

the reader to [23] for a detailed proof of a similar result.)

5.5.2 Proof of Set-Multiset-Collision Resistance of Variants

of MSet-XOR-Hash

In this section, we show how the proof of the set-multiset-collision resistance of

MSet-XOR-Hash in Section 5.5.1 is revised to prove the set-multiset-collision resistance of

each of the variants in Section 5.2.2.

Counter-based-MSet-XOR-Hash

Since the counter never repeats itself (in polynomial time), in terms of the proof of Theo-

rem 5.5.1, Prob(Dist inct) = 1. Equation 5.1 is argued as before. In terms of Theorem 5.5.1,

the bound is (g/2)m.

Theorem 5.5.1 and Theorem 5.5.7 can then be combined as before to prove Theorem 5.2.2,

for which the probability that A(Nk) finds an (S, M), S # M, such that
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vev SvHk (1,V ) =®[)vC MvHk(l,,v) and ZVEV S = EVEV MV mod 2 ' is at most:

u(n) .m

Obs cured-MSet-XOR-Hash

In terms of the proof of Theorem 5.5.1, there is no Distinct event. When the output hashes

are completely hidden from the adversary, the adversary learns no tuples [M ; 'W(M-). (The

adversary is, in essence, restricted to searching for a collision among at most a polynomial

number u(n) of pairs (S, M), S / M, where S is a set of elements of V and M is a multiset

of elements of V.)

Lemma 5.5.6 and its proof are easily revised to be as follows:

Lemma 5.5.6 Let M and M' be different multisets of elements of V. Let g be the greatest

common divisor of 2 and each of the differences IMv - Mv', v e V. (g = 1 or g = 2.) The

probability that (e(M) - e(M'))Hk = 0 mod 2 is equal to (g12)m.

Proof. By Lemma 5.5.5, (e(M) - e(M'))Hk mod 2 is uniformly distributed in g2m. Thus,

the probability that (e(M) - e(M'))Hk = 0 mod 2 is equal to one divided by the cardinality

of g27. When g~d, lg;Zd = . Thus, Prob((e(M) - e(M'))Hk = 0 mod 2) = ( )m
(9 .

Lemma 5.5.6 proves that Prob(Succ) = (g/2)m ; this is the bound for Theorem 5.5.1.

Theorem 5.5.1 and Theorem 5.5.7 can then be combined as before to prove Theorem 5.2.2,

for which the adversary will have the same probability of finding a collision as that of

Counter-based-MSet-XOR-Hash.

Encrypted-MSet-XOR-Hash

Let P be the family of random permutations represented as matrices with m rows, m

columns, and entries in 2. Let Pk, be a randomly-chosen matrix in P = {P1, P 2, P3 ,. .. , P 2m2}

We assume that this matrix is secret (i.e., is only accessible by the checker). The family of

matrices P from which Pk is selected is publicly known.
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In terms of the proof of Theorem 5.5.1, there is no Distinct event. Lemma 5.5.3 and

Lemma 5.5.4 and their proofs are revised as follows:

Lemma 5.5.3 (i) Knowing [M ;, Pk,(D,,v MvHk(v))] is equivalent to knowing

[e(M) ; e(M)HkPkl mod 2].

(ii) 7Hk(M) -Hk (M') if and only if e(M)HkPk' = e(M')HkPkl

VEV MV, mod 2".

Proof. Notice that

mod 2 and EVEV MV =

-k(M)= e(M)HkPkl mod 2 ; Z M
VEV

The lemma follows immediately from this observation. El

Suppose that an adversary learns t tuples [Mi ; 7k(M)] or, according to Lemma 5.5.3(i),

t vectors e(Mi) together with the corresponding e(Mi)HkPak mod 2. Let E be the t x 2'

matrix with rows e(Mi).

Lemma 5.5.4 Let M and M' be different multisets of elements of V. The probability that

Hk satisfies e(AM)Hk = e(M')Hk mod 2 is statistically independent of the knowledge of

matrix E and the knowledge K= EHkPk mod 2.

Proof. Observe that K = EHkPk' mod 2 means that KP ,-1 = EHk

The proof is as before, with equation (5.2) being

KPJ1 = Hko + E1Hk, mod 2.

Thus, the probability that Hk satisfies e(M)Hk = e(M')Hk mod 2 is statistically inde-

pendent of the knowledge of matrix E and the knowledge K= EHkPk mod 2. Ei

The rest of the proof of Theorem 5.5.1 is similar to that of the original proof in Sec-

tion 5.5.1, with the bound on the probability in Theorem 5.5.1 being at most (g/2) .
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Theorem 5.5.1 and Theorem 5.5.7 can then be combined as before to prove Theorem 5.2.2,
for which the adversary will have the same probability of finding a collision as that of

Count er-based-MSet -XOR-Hash.

This result also holds for a pseudorandom family of permutations Pk (cf. the remark at

the end of the proof of Theorem 5.2.2 in Section 5.5.1).

5.5.3 Set-XOR-Hash

In Definition 5.1.2, a multiset hash function is set-multiset-collision resistant if it is com-

putationally infeasible to find a set S of V and a multiset M of V such that S = M and

7-((S) -' N(M). In this section, we give a definition for set-collision resistance: a multiset

hash function is set-collision resistant if it is computationally infeasible to find sets S and

S' of V such that S # S' and 7H(S) -H N(S'). Let Set-XOR-Hash be MSet-XOR-Hash (cf.

Section 5.2) without the cardinality counter. We note that Set-XOR-Hash is set-collision

resistant.

:Definition 5.5.1. Let Hk be a pseudorandom function keyed with a seed (key) k. Hk

{0, I}' -- {0, 1}. (In practice, one would use the HMAC method [12] to construct such an

Hk). Let 3 r 4 {0, 1}m denote uniform random selection of r from {0, 1}m. Then define

Set-XOR-Hash by:

k (S) (Hk(0, r) e SvHk (1, v) ; r where r + {, 1}m

(h, r) -Nk (h', r') = (h E Hk(0,r) = 'e Hk(0, r')

(h, c, r) +Hk (h', c', r') =

(Hk(0, r") D (hE H(0, r)) e (h' ( Hk(0, r')) ; r") where r" 4 {o, 1}m

In terms of the proof of Theorem 5.2.2, Theorem 5.5.1 is proven as before, but now

Theorem 5.5.7 is not necessary. Since S and S' are sets, VV - V, SV K 1, and S' < 1. Because
31n a real implementation, the two parts of the hash need not be assigned the same number of bits.

However the size of each part is a security parameter.

52



S Y4 S', there exists a v such that S, $ S,. Thus g, the greatest common divisor of 2 and

each of the differences IS, -S'1, v E V, is equal to 1. Thus, by Theorem 5.5.1, the probability

that A(ft) finds an (S, S'), S # S', such that eVcv SvHk(1, v) = EvEV S',Hk(1, v) (i.e.,

?k(S) 7-k ak(S')) is at most:

(t(n) )
( 2m +2m

Set-XOR-Hash can be modified similar to the manner in which MSet-XOR-Hash was mod-

ified to create Counter-based-Set-XOR-Hash, Obscured-Set-XOR-Hash and

Encrypted-Set-XOR-Hash (cf. Section 5.2.2). By Theorem 5.5.1, the probability that A('t)

finds an (S, S'), S y S', such that ?k(S) NHk 7-k(S') is at most:

u(n) .m

5.6 MSet-Add-Hash Proofs

5.6.1 Proof of Multiset-Collision Resistance of MSet-Add-Hash

In this section, we prove Theorem 5.3.2 (cf. Section 5.3). We will first prove Theorem 5.6.1,
then use this theorem to formulate a proof for Theorem 5.3.2.

Recall that Hk : {0, 1}' - {0, 1}m. (For accuracy, Hk(O, r) is actually Hk(0 1-m, r), where

7n + 1 < 1.) We first model Hk as a random function and prove that, if Hk is a random func-

tion, then MSet-Add-Hash is multiset-collision resistant. In practice, Hk is a pseudorandom

function; after proving the theorems modelling Hk as a random function, we then show how

to extend them when Hk is a pseudorandom function.

Let R be the family of random functions represented as matrices with 21 rows, one column,
and entries in Z 2m . Let Hk be a randomly-chosen matrix in 7z = {H 1, H 2, H3 ,..., H 2m 2 I}-

We assume that this matrix is secret (i.e., is only accessible by the checker). The family of

matrices 7Z from which Hk is selected is publicly known.
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The rows of Hk are labelled by x E {0, 1}' and denoted by Hk(x). The matrix represents

Hk as a random function from x E {0, 1}' to 22, the set of vectors with length one and

entries in &22. We note that, because Hk is a random function, each row in Hk is uniformly

distributed in 2 2m .

Theorem 5.6.1 is about the probability that an adversary, given oracle access to

( -- +'k), finds two different multisets, M and M', such that E MvHk(1, v) =

EIeV MHk(1, v) mod 2'. The probability is taken over random matrices Hk in R, the

randomness of the random nonce used in Hk and the randomness used in the probabilistic

polynomial time adversary.

Theorem 5.6.1. Suppose that an adversary, given oracle access to (ft, -7
tk,+ }Hk), gains

knowledge of t tuples [Mi ; Hk(Mi)]. Let M and M' be different multisets of elements of V.

Let g be the greatest common divisor of 2 ' (because the addition is being computed modulo

22") and each of the differences IMv-M'j, v E V. (Since M, M' # 0, g E {1, 2,4, 8,..., 2m}.)
Given knowledge of t tuples [Mi ; hR (Mi)], the probability that the adversary finds an M

and an M', M # M', such that ZvevMvHk (1,v) = ZvE, M'Hk (1,v) mod 2m is at most

t2 /2" + g12m .

Proof. The proof is analogous to the proof of Theorem 5.5.1 (cf. Section 5.5.1). l

With Theorem 5.6.1, we are now ready to prove Theorem 5.3.2.

Proof. Let A(N) denote a probabilistic polynomial time, in n, algorithm with oracle access

to (Hk, -Hk +hI). Then A(ft) can gain knowledge of at most a polynomial number t(n)

tuples [Mi ; 7-k(Mi)] (here t(n) denotes a polynomial in n). Furthermore, A(ft) can search

for a collision among at most a polynomial number u(n) of pairs (S, M), S # M, where S is

a set of elements of V and M is a multiset of elements of V.

According to Theorem 5.6.1, the probability that A(ft) finds an (M, M'), M # M',
such that EVEV MvHk(1, v) = EVv M'H(1, v) mod 2 m is at most u(n)(2t2/2' + g/2m).

Let us consider one of these pairs (M, M'), M # M' where

;vEV MVHk(1, v) =Zvy M'Hk(1, v) mod 2m. Since, for our trace-hash application, for
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a, collision to be useful to the adversary, the multisets in the collision must each be of

polynomial size in n = 2m, each of the differences IM, - M'4, v E V is polynomial sized in

n = 2m. Since g divides each of the differences IM, - M'I, v E V, g is polynomial sized

in n = 2m. Hence, there exists a number -y > 0 such that g < m^ for m large enough.

Again, because each of the differences IMv - M'j, v E V is polynomial sized in n = 2m, there

exits a number o > 0 such that mW > each of the differences IMv - Ml, v E V. Because

g < each of the differences IM, - Mv', v E V, ml <mW. Let g> 0 be any number. Then

g m mW
2 < - < - m- for m large enough.
-m 2m - 2m

Thus, by Theorem 5.6.1, the probability that A(Hk) finds a collision (M, M'), M # M',

such that EZvV MvHk(1, v) = EVEV M'Hk(1, v) mod 2' is at most:

()(t(n)2 +M

wee M 2m v 2M

'Where mW > each of the differences |Mv - M'j, v E V.

Thus, for any number c, for sufficiently-large m, the probability

collision (M, M'), M ) M', such that Nk(M) =-H, 7Hk(M) is < m-c. n

ppt algorithms A, any number c,

that A(Hk) finds a

= 2m. Thus, for all

3no : Vn > no, Prob

k { f, 1}n", (M, M') <-- A(ft):

M and M' are a multisets of V

and M # M' and Nk(M) _71k tk(M')

This concludes the proof of Theorem 5.3.2.

Remark. Theorem 5.3.2 not only holds when Hk is random function, but also holds when

1H1k is pseudorandom function. We refer the reader to the remark at the end of Section 5.5.1

for a similar remark.
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5.6.2 Proof of Multiset-Collision Resistance of Variants

of MSet-Add-Hash

To prove the multiset-collision resistance of Counter-based-MSet-Add-Hash,

Obs cured-MSet -Add-Hash, and Encrypted-MSet-Add-Hash, the proof of MSet-Add-Hash

in Section 5.6.1 is revised in a similar manner as the proof of MSet-XOR-Hash was revised

to prove the set-multiset-collision resistance of the variants of MSet-XOR-Hash (cf. Sec-

tion 5.5.2). The probability that A('Hk) finds a collision (M, M'), M # M', such that

.1dv M H(1, ) = EveV M'H(1, v) mod 2 m is at most:

u(n) 2m

5.7 MSet-Mu-Hash Proofs

5.7.1 Proof of Multiset-Collision Resistance of MSet-Mu-Hash

In this section, we prove Theorem 5.4.2 (cf. Section 5.4). We will first prove Theorem 5.7.1,

then use this theorem to formulate a proof for Theorem 5.4.2.

Recall that H: {0, 1}' -- {0, 1}m. We first model H as a random function and prove that,

if H is a random function, then MSet-Mu-Hash is multiset-collision resistant. In practice, H

is a pseudorandom function; after proving the theorems modelling H as a random function

(oracle), we then give references that discuss into what extent the random oracle model can

be met in practice.

Let R be the family of random functions with domain equal to {0, 1}' and range C;Z*

where p is an m-bit prime. Let H be a randomly-chosen function in R =

{-Hl, H2 , H3,. H 2 . 2 }. We assume that H : {0, 1}1 -+ Z* is public. The family of matrices

7(. from which H is selected is also publicly known. Let p = I&* ; thus p = p - 1.

Theorem 5.7.1 is about the probability that an adversary, given a particular algorithm,

B(.), and given a random y E &*, finds the discrete log of y in ;*. The probability is taken
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over a random choice of the inputs to B(.), a random choice of y E Z* and the randomness

used in the probabilistic polynomial time adversary. B(.) is a probabilistic polynomial time

(in m) algorithm that, with probability at least o-, outputs weights w1 , w2,.. . , wu E ZZ for

a polynomial number of random inputs zi, z2,. .. , z * such that 1 = iz i mod p.

We show that if such an algorithm exists, then we can construct an algorithm, 3'(.) that,

given a random y E 2*, can find the discrete log of y in .* with probability at least '.

Theorem 5.7.1. Let B(.) be a probabilistic polynomial time (in m) algorithm such that there

exists a number e such that for u < me,

P (zi - 2*)_, (wi E EP)2_1 +- B(zi, z2 ,... , z)Prob P- .=pi~ -B(1 2 u (5.6)
1 =fli zw' mod p, : iwi f 0O, VIWI< me

Let g be a generator of &*. If algorithm 13(.) exists, then there exists a probabilistic polyno-

mial time (in m) algorithm B'(.) such that

Prob{y +- *, x E - B'(y, p, g) y = gx mod p}
me

Proof We show how to construct B'. B' selects a polynomial number u of random elements

r], r 2 ,.. . , ru in &7 and a random j E {1, 2, ... , u}. B' computes

z, = ygr mod p, and

zi = gr mod p, for all i j.

B' calls B to compute (w 1 , w 2 ,.. . , wu) +- B(zi, z 2 , .. . , zu). Since, by construction, u is

polynomial-sized in m and the zj's have been chosen uniformly at random from &*, we know

that, with probability at least a, the weights wI, w2 ,. . . , &P E 2 are computed such that

they are not all equal to zero, Vilwil me, and

1 = Jzi = ywigji riwi mod p

yWi = g- E riw' mod p. (5.7)
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Because the u inputs are in random order,

1 1
Prob(wj = 0) > - > - .

u me

Recall that p = I&*I i.e., p = p - 1. Suppose that wj / 0. Let d = gcd(wj, p). Then, by

Euclid's algorithm, B' can compute d and W such that wjwj = d mod p.

Because wj I < me < p, we know that d 4 0 mod p. From (5.7), we infer that

y = g mod p.

' can compute s = -wj E riwi mod p. (If d = 1, B' outputs s as the discrete log of y in

&*). y = g' which means that yd - gdx - gS, that is dx = s mod p. Because d divides p,

d must also divide s. Thus, the equation dx = s mod p has exactly d solutions between 0

an(d p - 1, all of which are congruent mod 2. Because d < I w| I me, there are a polynomial

number of solutions. B' computes p' = g and s' =. For each k 0 < k < d - 1, B' computes

Xk = s' + kp' mod p. (The solutions repeat themselves when k > d - 1; for example, when

k = d, (s'+ dp') mod p = s' mod p.) The discrete log, x, is one of the solutions. Thus, for

each k, 0 < k < d - 1, B' computes gxk and checks to see if it is equal to y. When B' finds

which Xk is such that gXk = y, it outputs the Xk as the discrete log of y in &*

This concludes the proof of Theorem 5.7.1.

Recall that p is an n-bit prime, and that p = I&* = p - 1. Again, let g be a generator

of 7*. The discrete log assumption states that, for all ppt, in m, algorithms D(.), for any

number a, for p large enough,

Prob {y +- Z*, I E C , <- D(y, p, g) :y = g mod p} < --a.

We are now ready to prove Theorem 5.4.2.

Proof. We reduce the difficulty of finding collisions in MSet-Mu-Hash to the difficulty of

finding the discrete log of a random element in Z*. We note that, because H does not use

a secret key, and because, for v E V, N(v) = H(v), oracle access to (H, H, +) also means
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oracle access to H. By A(H) we denote a probabilistic polynomial time, in n = m, algorithm

with oracle access to H.

Suppose that (7H, H, +-H) is not multiset-collision resistant. This means that there

exists a ppt algorithm A(H), and there exists a number e, and there exists a sufficiently-

large n = m, such that the probability that A(H) finds a (M, M'), M 7 M', such that

H(M) -H H(M') is > m-c. Since, for our trace-hash application, for a collision to be useful

to the adversary, the multisets in the collision must each be of polynomial size in n = m,

1M| and |M'I < me, for some number e.

H(M) = H H(v)Mv = H(v)m' = H(M').
VEV VEV

This means that

1 = H(v)mv-Mv,
vV

there exists a v E V such that (Mv - M') 7 0, and, for all v C V, I(Mv - M')| < me.

Because we model H as a random function from {0, I}l to ;*, for all v E V, H(v)

cannot be distinguished from a random element in 2*. Because A(H) runs in probabilistic

polynomial time, the number of distinct values C V on which A(H) can compute the function

H is U < me. Thus A(H) is an algorithm satisfying (5.6), with the inputs being the replies

to A's oracle queries to H.

By Theorem 5.7.1, if A(H) exists, then there exists a ppt, in m, algorithm, D, and there

exists a number, a, such that D can find the discrete log of a random element in &* with

probability at least ma = m-(c+e). For a large enough p, this contradicts the discrete log

assumption. Thus, for p large enough, A(H) does not exist, which proves multiset-collision

resistance.

Recall that p is an m-bit prime. Given a random element in *, let c be the probability

of finding the discrete log of the element in ;*. For any number a, for p large enough,
( < .- a. Because A(H) runs in polynomial time, it runs in time me, for some number e.

From Theorem 5.7.1, the probability that A(H) finds a collision (M, M'), M z M', such
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that /() a '(I'), is at most mec.

Remark. Supposing that H is a random function (oracle) is a strong assumption. Compared

to the MSet-XOR-Hash and MSet-Add-Hash we do not need a secret key at all. We refer to

[21, 22] for a discussion into what extent the random oracle model can be met in practice.

Remark. In [4], it is proven, under the strong RSA assumption [24], that the RSA group

2* is pseudo-free [27] when N is the product of two safe primes, i.e., no polynomial time

algorithm can find, with non-negligible probability, an unsatisfiable equation over the free

abelian group generated by the elements gi, g2 , .. ., gn, together with a solution to the equa-

tion in *, when g1 , g2,... ,gn are instantiated to randomly-chosen quadratic residues in

*2, . Consider the function I that maps elements of M to randomly-chosen quadratic

residues in ;*. Consider the multisets M and M'. We note that the multiset hash func-

tion defined by ( H(M) = HsvE I(v)M - mod N; (h) -H (h') = (h = h'); (h) +h (h') =

(h x h' mod N) ) is multiset-collision resistant because it is infeasible to find a relation of

the form 1 = HvEV I(v)M--M when M # M'.
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Chapter 6

Bag Integrity Checking

We introduce bag integrity checking as an abstraction for explaining and proving various

lemmas on trace-hash integrity checking on dynamically-changing, sparsely-populated, ad-

dress spaces. The scenario consists of a bag checker, a bag, and an adversary. The bag

checker performs two operations on the bag: the checker can put items into the bag and the

checker can take items out of the bag. The bag is untrusted storage and under the control

of the adversary, who can put items into the bag, take items from the bag, or alter any of

the items in the bag.

The bag checker is interested in whether the bag behaves correctly. A bag behaves

correctly if it behaves as a valid bag. Intuitively, a bag is a valid bag if it is a bag which only

the checker has manipulated with put and take operations.

6.1 Definitions

Definition 6.1.1. A bag is a triple (B, PUT, TAKE) consisting of a multiset B and two

operations

PUT, TAKE E M x M -- M defined by

PUT(B, M) = B UM M (6.1)
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and

B = TAKE(B, M) UM M. (6.2)

Intuitively, PUT(B, M) puts the multiset M into bag B. TAKE(B, M) takes the multiset

M from bag B.

Definition 6.1.2. A history is a finite sequence of put/take operations 01(., M 1 ), 02(., M 2 ),

... , On(., Mn).

Definition 6.1.3. A bag's history is valid if and only if the bag's multiset, Bn, follows from a

sequence of well defined put/take operations starting from the empty set. That is, Bn results

from the recurrence relation Bi = Oi(Bi_1 , Mj) with B0  0 where the put/take operations

O satisfy the previous definitions (6.1) and (6.2).

Definition 6.1.4. A bag is a valid bag if and only if the bag's history is valid.

Intuitively, Bi is the state of the bag at moment i. Also intuitively, a bag has a valid

history if the checker can take an item from the bag only if the item has previously been

put in the bag by the checker and has not yet been taken from the bag by the checker. This

leads to the following equivalent definition of a valid history.

Given a history of put/take operations 01(., M 1), 02(., M 2 ), ... , On(., Mn), we define the

put multisets P and the take multisets T by the recurrence relations

0

Pi_1 UMM

Pi- 1

and

Ti =

0

T_ 1 UM Mi

T-1

if i

if i

if i

if i

if i

if i

= 0,

> 0 and Oi = PUT,

> 0 and Oi = TAKE,

= 0,

> 0 and Oi = TAKE,

> 0 and Oi = PUT.

Definition 6.1.5. The history is valid if and only if for all 0 < i < n, T CM P2.
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We prove the equivalence of Definition 6.1.3 and Definition 6.1.5 in Section 6.3. It turns

out that the difference in P and T is the bag Bi, that is for all 0 < i < n

Ti UM Bi = P. (6.5)

6.2 Bag Checker

Our solution to checking the integrity of an untrusted bag is described in Figure 6-1. The

bag checker maintains multiset hashes and a counter. The checker performs two operations

on the bag:

" cbag-put: the checker puts an item into the bag

" cbag-take: the checker takes an item out of the bag.

The essence of this bag checker is that a "trace" of the sequence of its operations on the bag is

maintained in its fixed-sized trusted state. (The checker cannot maintain an actual physical

trace because it only has a small fixed-sized trusted state.)

In the bag, each item is accompanied by a time stamp. Each time the checker performs

a cbag-put operation, it appends the current value of the counter (a time stamp) to each

item, and puts the (item, time stamp) pairs into the bag. When the checker performs a

cbag-take operation, it takes pairs from the bag, and, if necessary, updates the counter so

that it is strictly greater than each of the time stamps in the pairs that were taken from the

bag. The multiset hashes are updated (+-) with the (item, time stamp) pairs that were put

or taken from the bag.

The FSM uses the bag checker as an interface to the bag. The FSM calls the bag checker's

cbag-put and cbag-take interface, and the checker performs the put and take operations

for the FSM as described in Figure 6-1. The checker records its operations on the bag,

i.e., the bag's history, in PUTHASH and TAKEHASH. When the FSM wants to check the

integrity of the bag, it tells the checker to take all of the items out of the bag, by calling

cbag-take(true). At this point, the FSM calls the checker's cbag-check operation. The

cbag-check operation returns true if the checker's PUTHASH is equal to its TAKEHASH. If
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The checker's fixed-sized state is:

* 2 multiset hashes: PUTHASH and TAKEHASH. Initially both multiset hashes are H(O).

* 1 counter: TIMER. Initially TIMER is 0.

cbag-put(Im ) puts a multiset of items, 1mS, into the untrusted bag:

1. Let t be the current value of TIMER. For each item E Ims, put the pair, (item, t),
into the untrusted bag.

2. For each item E Ims, update PUTHASH: PUTHASH +- hash(item, t).

cbag-take(P) takes the multiset of items that match the predicate P from the untrusted bag:

1. Take all pairs whose items match P from the untrusted bag. Denote this multiset
of pairs as Qms. (Qms = {(item, t): P(item) = true}).

2. For each pair (item, t) E Qms, update TAKEHASH: TAKEHASH +-H hash(item, t).

3. For each pair (item, t) E Qms, update TIMER: TIMER = max(TIMER, t + 1).

4. Return {item: (item, t) c Qms}.

cbag-check( returns true if, (i) the untrusted bag has behaved correctly (as a valid bag) and,
(ii) the untrusted bag is empty, according to the untrusted bag's history of accesses:

1. If PUTHASH =H TAKEHASH is false, then return f alse.

2. Reset TIMER to zero (this is an optimization).

3. Return true.

Figure 6-1: Bag checker
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the check operation returns true, the FSM concludes that the bag is empty (according to

the checker's operations on the bag, i.e., according to the bag's history) and that the bag

has behaved correctly (i.e., the bag's history is valid). In other words, if the check operation

returns true, the FSM concludes that the bag is empty and that the bag has behaved as if

only the checker has manipulated it with put and take operations.

The PUTHASH records information on the items that, according to the checker, should

be in the bag at any given point in time. The TAKEHASH records information on the items

that the checker takes from the bag.

Because the checker checks that PUTHASH is equal to TAKEHASH, insertion/substitution

(the checker takes an item from the bag that the checker has never put into it) and replay

(the checker takes a stale item from the bag; a stale item is one which the checker has put

into the bag, and has already taken from the bag) attacks on the bag are prevented.

The purpose of the time stamps is to prevent reordering attacks in which the checker

takes an item from the bag that the checker has not yet put into the bag, but will put in

the bag at a later time. Suppose we consider the cbag-put and cbag-take operations that

occur as occurring on a timeline. Line 3 in the cbag-take operation ensures that, with

regard to each cbag-put operation, each item that the checker puts into the bag has a time

stamp that is strictly greater than all of the time stamps of all of the pairs that the checker

had previously taken from the bag. Therefore, the first time an adversary tampers with a

particular (item, time stamp) pair that the checker takes from the bag, there will not be an

entry in the PUTHASH matching the adversary's entry in the TAKEHASH, and that entry

will not be added to the PUTHASH at a later time. Thus, PUTHASH will not be equal to

TAKEHASH when a cbag-check operation is performed.

The TIMER is not solely under the control of the checker, and is a function of what is

taken from the bag, which is untrusted. Therefore, the PUTHASH cannot be guaranteed to be

over a set. For example, for a sequence of cbag-put and cbag-take operations, an adversary

can decrease the time stamp in a pair that is taken from the bag and have pairs be added

to the PUTHASH multiple times. The TAKEHASH can also not be guaranteed to be over a

set because the adversary controls the pairs that are taken from the bag. Thus, neither set-

collision resistance nor set-multiset-collision is not sufficient, and we require multiset-collision

65



resistant hash functions.

In Section 6.4, we prove the following theorem to show that our solution to bag integrity

checking is secure:

Theorem 6.2.1. Let P, be the multiset of pairs that the checker has put into the bag. Let

Tn be the multiset of pairs that the checker has taken from the bag. That is, P, hashes to

PUTHASH and Tn hashes to TAKEHASH. Then, P, = T, if and only if the bag is empty and

the bag's history 01, 02, ... , 0, is valid.

The following corollary shows the hardness of breaking our bag integrity checking scheme.

Corollary 6.2.2. Tampering with the bag to make its history invalid without the bag checker

detecting the tampering is as hard as finding a collision Pn $ Tn for the multiset hash

function.

If the bag's history is valid, the FSM knows that whenever it took an item from the bag,
it was from among the FSM's items currently in the bag. Note that if an adversary takes

items out of the bag such that cbag-take(P) only returns some of the FSM's items that

match predicate P, the bag's history is still valid. (The adversary would have to put the
items back into the bag at a later time for cbag-take(true) to empty the bag for cbag-check

to pass.) This is not a problem in our bag checker abstraction because this tampering will be

detected by our trace-hash integrity checker (cf. Chapter 7). In the trace-hash checker, the

items are (address, value) pairs. The trace-hash checker uses a predicate, Pa, that returns

true on a pair (a', v) for which a = a'. The trace-hash checker ensures that each address is

present in the bag exactly once, and checks that cbag-take(Pa) always returns a singleton

set.

6.3 Proof of the Equivalence of the Bag Definitions

In this section, we prove the equivalence of Definition 6.1.3 and Definition 6.1.5 (cf. See-

tion 6.1).

Define B as:

B = Oi(Bi_-, MI) (6.6)
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Define B as:

T U B = P (6.7)

We prove, by induction, that, for all 0 < i < n, Q(i) is true where

Q (6) Bi = BW.

That is, (6.6) defines a unique bag, Bsj. (6.7) defines a unique bag, Bj . We prove that, for all

0 < i < n, BI == B; i.e., for all 0 < i K n, the two bags are the same.

Proof. Base case: Prove Q(0) is true. BO = 0. Also, P = To = 0; thus, B' = 0. Therefore,

when i = 0, BO B.

Inductive Step: Assume Q(i) is true, prove Q(i + 1) is true.

prove Bi+1 = BI1.

Case 1: PUT operation:

by (6.1)

That is, assume Bi = B',

Lj+1 = PUT(Bi, Mi+1)

Bj+ I= B UM Mi+1

by inductive hypothesis Bj+1 = B' Um Mi+1

by (6.7) Bi+1 Um Ti = Pi Um Mj+1

by (6.3) and (6.4) B+ 1 UM Ti+ 1 = Pi+1

by (6.7)
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Case 2: TAKE operation:

by (6. 2)

by inductive hypothesis

by (6. 7)

by (6.3) and (6.4)

by (6.7)

Bi+1 = TAKE(Bi, Mi+1)

L3+1 Um Mj+1 = Bi

Bj+j Um M±i = Bl

Bi+1 Um M+1 Um T = Pi

B1+1 Um T+1 = Pi+1

13+1 = Bi+1-

Also, as, for all 0 < i B = Oi( iP 1, Mj) -- T U, Bi = Pi, then,

for all 0 < i < n, Bi = Oi(Bi_ 1, M) < Ti Um Bi = Pi - Ti C7,IS P.

6.4 Proof of Security of Bag Checker

In this section, we prove Theorem 6.2.1 (cf. Section 6.1).

Consider the cbag-put and cbag-take operations that occur on an address as occurring

on a time line. To avoid confusion with the values of TIMER, we express this time line in

terms of processor cycles.

Let t be the current value of TIMER. t is the value of the TIMER when pairs are put

into the bag. When the checker cbag-puts a multiset of items 1ms into the bag on cycle i,

) := PUT and

Mi = {(v, t) : v E Ims}. (6.8)

When the checker cbag-takes a multiset, Mj, from the bag on cycle j, Oj = TAKE and

Ims = {v' : (v', t') E Mj}. (6.9)

If necessary, the TIMER is increased at the end of a cbag-take operation.

Proof. We show that, if P, = Ts, then the history 01, 02, ... , 0, is valid. We use Defini-
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tion 6.1.5 of a valid history, and give a direct proof. Thus, we show that, if P, = Tn, then,

for all 0 < i < n, T GMs P2 .

Let (v', t') E T. By (6.4), (v', t') E Mj with Oj = TAKE for some j < i. Because T = Pn,

(v', t') c P. By (6.3), (v', t') E Mk with 0 k = PUT for some k < n. Because of line 3 in

the cbag-take operation, all items that are cbag-put into the bag after cycle j have a time

stamp strictly greater than t'. Therefore, the checker cannot put (v', t') into the bag after

cycle j. Therefore, we have that k < j. Therefore we have k < j < i. We conclude that

(v', t') E Mk C Pk C P. This proves T C P as required.

We show that, if P, = Tn, then the bag is empty. Suppose P = T,; then, by (6.5), the

bag B, is empty.

Finally, by (6.5), if the bag Bn is empty and the history 01, 02, ... , On is valid, then

T = Rn.
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Chapter 7

Trace-Hash Integrity Checking

Our trace-hash checker [8, 11], intuitively, maintains a "write trace" and a "read trace"

of its write and read operations to the external memory. At runtime, the checker updates

its traces with a small constant-sized bandwidth overhead. When the checker needs to

check a sequence of its operations, it performs a separate integrity-check operation using

the traces. When sequences of operations are checked, the amortized bandwidth cost of the

integrity-check operation is very small and the checker's principal bandwidth overhead is the

constant-sized runtime bandwidth overhead.

7.1 Trace-Hash Checker

In Chapter 6, we developed a bag checker. Its interface is made of three functions:

cbag-put(Ims), which places all the elements in the multiset Ims into the untrusted bag;

cbag-take(P), which takes all the elements that match predicate P from the untrusted bag;
cbag-check() which returns true if and only if the untrusted bag has behaved correctly and

is empty according to its history of accesses (i.e., if PUTHASH -=- TAKEHASH). We now

show how the bag checker can be used to create the trace-hash checker.

Figure 7-1 shows how to produce the trace-hash checker for random access memory, using

the bag checker. The trace-hash checker provides the following interface: trace-hash-add(S)
adds S, a set of (address, data value) pairs, to the address space; trace-hash-remove(a)

.In [8], the trace-hash checker was referred to as an offline checker [20]. In [11], the trace-hash checker
was referred to as the log-hash checker.
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removes address a from the address space; trace-hash-store(a, v) stores data value v

at address a; trace-hash-load(a) returns the data value that is stored at address a; if

trace-hash-check() returns true, then each trace-hash-load from an address returned

the data value that was most recently placed at that address by trace-hash-store (or

trace-hash-add).

Essentially, RAM is simulated by placing (address, data value) pairs into the bag.

trace-hash-add(S) calls cbag-put(S) to put, S, a set of (address, data value) pairs, into

the bag; trace-hash-remove(a) calls cbag-take(Pa) on the bag. To perform a

trace-hash-store, the pair previously in the bag for that address is taken from the bag, and

replaced by the new pair. To perform a trace-hash-load, the pair for the desired address

is taken from the bag, the value in the pair is returned to the caller, and the pair is put back

into the bag. We denote an untrusted bag with its bag checker as its interface as a checked

bag. To check the bag, trace-hash-check empties it into a fresh checked bag, and once

the current bag is empty, it cbag-checks it before throwing it out. The operation resets

the TIMER. Because the fresh checked bag has a zero TIMER, when trace-hash-check

replaces the current checked bag with the fresh checked bag, it replaces the high TIMER in

the current checked bag with the zero TIMER in the fresh checked bag.

If, during the FSM's execution, the FSM wishes to increase its address space, the FSM

calls trace-hash-add on the set of new addresses. The FSM can then store and load from the

larger address space. If, during the FSM's execution, the FSM wants to decrease its address

space, the FSM calls trace-hash-remove on each of the addresses that will no longer be

used. The FSM then stores and loads from the smaller address space. Only the addresses

in the FSM's current address space are traversed during a trace-hash-check operation.

Because the FSM can trace-hash-add and trace-hash-remove arbitrary addresses from

its address space, there are two new issues that must be addressed. Section 7.2 describes the

issues and how we use the bag abstraction we developed in Chapter 6 to resolve them.
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To create the trace-hash checker, we use a bag checker, into whose bag we will place (ad-
dress, data value) pairs. Pa is a predicate that returns true on a pair (a', v) for which a = a'.

Intuitively, a valid RAM is a valid bag in which each address in the bag is present exactly once.
To check the RAM, we must both check that the bag is behaving like a valid bag and that the
RAM invariant (cf. Section 7.2.2) is maintained. To help check the RAM invariant, we set an
ERROR flag if cbag-take(Pa) does not return a singleton set; if the ERROR flag is set, check
returns false.

trace-hash-add(S) adds S, a set of (address, data value) pairs, to the address space.

1. cbag-put(S) into the bag.

trace-hash-remove(a) removes address a from the address space.

1. cbag-take(Pa) from the bag.

trace-hash-store(a, v) stores v at address a.

1. cbag-take(Pa) from the bag.

2. cbag-put({(a, v)}) into the bag.

trace-hash-load(a) loads the data value at address a.

1. ({(a, v)}) = cbag-take (Pa) from the bag.

2. cbag-put({(a, v)}) into the bag.

3. Return v to the caller.

trace-hash-check() returns true if and only if the memory has behaved correctly.

1. Create a temporary new checked bag T. We refer to the current checked bag as B.

2. M =cbag-take(true) from B.

3. If the ERROR flag is set, return false.

4. If cbag-check( on B is false, then return false (the check failed).

5. If cbag-check returned true, it means a set, as opposed to a multiset, of (a, v) pairs
was read in step 2. Thus, we refer to this set as S. trace-hash-add(S) into T.

6. B = T.

7. Return true.

Note that steps 2 and 5 involve a set S that is huge. In an actual implementation, we
would merge both steps, putting items into T as soon as they were removed from B.

Figure 7-1: Trace-hash checker
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7.2 Checking a dynamically-changing, sparsely-

populated address space

7.2.1 Maintaining the set of addresses that the FSM uses

In real life, the untrusted bag that the bag checker uses is actually implemented with some

untrusted random access memory. The bag checker's cbag-puts and cbag-takes of (ad-

dress, data value) pairs result in puts and takes of (address, data value, time stamp) triples

to the untrusted bag. The untrusted bag is implemented using untrusted RAM by storing

(address, data value, time stamp) triples as (data value, time stamp) pairs at the address

from the triple in the RAM.

The addresses that the FSM uses may be any arbitrary subset of the addresses in the

memory. The number of addresses that the FSM uses can also grow as the FSM uses the

RAM. When an untrusted bag is implemented using RAM, where (address, data value,
time stamp) triples are stored as (data value, time stamp) pairs, there is a problem of

determining which addresses to read to empty the bag in step 2 of a trace-hash-check

function call. As the checker only has a fixed-sized trusted state, it is not feasible to maintain

a data structure that records which addresses the FSM uses in the checker. This data

structure must then be maintained in the RAM, where it can potentially be tampered with

by an adversary. As an example, this data structure can be a bitmap to keep track of the

addresses that the FSM uses. The issue is that, if an adversary tampers with this bitmap,
the wrong addresses will be read in step 2 of trace-hash-check.

To address this issue, we argue that, implicitly, it is the untrusted bag's job to keep track

of the addresses the FSM uses. Thus the bitmap does not need to be protected when it is

stored in untrusted RAM: regardless of whether it is protected or not, if an adversary tampers

with it, the tampering will be detected and cbag-check will return false. In particular, the

cbag-take(true) call in step 2 of trace-hash-check tells the bag checker to take all of the

items out of the bag. If an adversary tampers with the bitmap so that the wrong addresses

are read, the bag will not be empty after cbag-take(true) is called. The bag checker will

detect the tampering because cbag-check( will return false if the untrusted bag is not

empty according to the checker's history of accesses.
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Though we have used a bitmap as an example for the data structure the untrusted bag

can use to maintain the addresses the FSM has used, we note that, since this data structure

does not have to be protected, the untrusted bag can use any data structure that will allow

it to most efficiently determine the addresses that the FSM has used.

7.2.2 Satisfying the RAM Invariant

The second issue is that, with the trace-hash-add and trace-hash-remove operations, it

is possible for the FSM to use the RAM in a way that is not well-defined. In particular,

(a) if trace-hash-add is performed on an address that is present in the bag, the address

will be in the bag twice. An adversary can then choose to return either of the values

of the address when the FSM next performs a trace-hash-load operation. The bag

checker we have been using so far may return true because the bag may have behaved

like a valid bag; however, the RAM may still not behave like valid RAM because the

adversary may replay the value the FSM loads from an address with an older value

because there are two pairs for the address in the bag.

(b) if cbag-take in trace-hash-load is performed on an address that is not present in the

bag, a valid bag will return the empty set, which does not present a value that the FSM

can interpret. (A similar problem exists for the cbag-take in trace-hash-remove and

trace-hash-store).

Therefore, to determine whether the RAM is behaving like valid RAM, we must both

check that the bag is behaving like a valid bag and that the RAM invariant is maintained.

The RAM invariant is stated as: according to the bag checker's operations on the bag, no

cbag-put operation is performed on an address that is already present in the bag, and no

cbag-take operation is performed on an address that is not present in the bag. Intuitively,

a valid RAM is a valid bag in which each address in the bag is present exactly once.

Part (b) of the issue is easily addressed: an ERROR flag is set if cbag-take(P) does not

return a singleton set. If the ERROR flag is set, check returns false2 .
2In an actual implementation, if the FSM performs an operation that causes cbag-take to be performed

on an address that is not in the bag, an entry that is not currently in the bag is read from the RAM.
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Part (a) is the more difficult issue. It is resolved by putting a restriction on the addresses

that are added to the bag or a restriction on the addresses that are removed from the bag.

The following two cases demonstrate how either of these restrictions is sufficient to help

check that the RAM is behaving like valid RAM. The cases demonstrate how to check the

integrity of RAM such that both the integrity of the bag and the RAM invariant are checked.

Case 1: Restricting the trace-hash-adds

In this case, the FSM ensures that, for a particular run, by the time cbag-check is called on

the bag in step 4 of the trace-hash-check operation, no address has had trace-hash-add

called on it more than once. In other words, for a particular run, the addresses which

trace-hash-add has been called on for a particular bag form a set (a simple example is,
when the new bag is created, the FSM calls trace-hash-add on a set of addresses in the set

of (address, data value) pairs, and does not call it again until trace-hash-check is called).

All of the operations in Figure 7-1 are present in the interface.

'Theorem 7.2.1. Denote the addresses on which trace-hash-add has been called on as

the multiset, Mth-add. Assuming Mth-add is a set (trace-hash-add has been called exactly

once on each address), the RAM that is being checked has behaved like a valid bag that has

satisfied the RAM invariant (i.e., like valid RAM) and the trace-hash-check operation has

read exactly the addresses in Mth-add if and only if the trace-hash-check operation returns

true.

Proof. The validity condition is that, assuming Mth-add is a set, if the RAM that is being

checked has behaved like valid RAM and the trace-hash-check operation has read exactly

the addresses in Mth-add, then the trace-hash-check operation returns true. The validity

condition is easy to verify.

We present an argument for the safety condition: assuming Mth-add is a set, if the

trace-hash-check operation returns true, then the RAM that is being checked has be-

haved like valid RAM and the trace-hash-check operation has read exactly the addresses

in Mth-add. If the trace-hash-check operation returns true, then, by Theorem 6.2.1, the bag

Therefore cbag-check will return false, and thus, check will return false. Also, in an actual implementation,
cbag-take(Pa) will not return a set/multiset with two or more elements.
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has behaved like a valid bag and the bag is empty i.e., the trace-hash-check operation has

read exactly the addresses in Mth-add. We argue that the RAM invariant has been satisfied

by contradiction. Assume that Mth-add is a set and that the trace-hash-check operation

returns true, and that the RAM invariant has not been satisfied. This means that either:

1. a cbag-put operation (in trace-hash-add) was performed on an address already

present in the bag, so the address is in the bag multiple times. This contradicts

the fact that the addresses which trace-hash-add has been called on form a set.

2. a cbag-take operation (in trace-hash-load, trace-hash-store, or

trace-hash-remove) was performed on an address not present in the bag. Since the

bag behaved like a valid bag, that cbag-take operation returned the empty set, so the

ERROR flag was set. This contradicts the fact that trace-hash-check returned true.

LI

Case 2: Omitting trace-hash-remove from the interface

In this case, there is no trace-hash-remove(a) operation in the trace-hash checker interface.

For this case, the trace-hash-check procedure must ensure that each address is taken from

the bag at most once in step 2 of the procedure in order to ensure that the RAM invariant

is met.

Theorem 7.2.2. Denote the addresses on which trace-hash-add has been called on as the

multiset, Mth-add. Assuming there is no trace-hash-remove(a) operation, the RAM that

is being checked has behaved like a valid bag that has satisfied the RAM invariant (i.e., like

valid RAM) and the trace-hash-check operation has read exactly the addresses in Mth-add

if and only if the trace-hash-check operation returns true and has taken a set (as opposed

to a multiset) of addresses from the bag.

Proof The validity condition is that, assuming there is no trace-hash-remove operation,

if the RAM that is being checked has behaved like valid RAM and the trace-hash-check

operation has read exactly the addresses in Mth-add, then trace-hash-check operation re-

turns true and has taken a set of addresses from the bag. The validity condition is easy to

verify.
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Again, we present an argument for the safety condition: assuming there is no

trace-hash-remove operation, if the trace-hash-check operation returns true and has

read a set of addresses, then the RAM that is being checked has behaved like valid RAM

and the trace-hash-check operation has read exactly the addresses in Mth-add. If the

trace-hash-check operation returns true, then, by Theorem 6.2.1, the bag has behaved like

a valid bag and the bag is empty i.e., the trace-hash-check operation has read exactly the

addresses in Mth-add. We argue that the RAM invariant has been satisfied by contradiction.

Assume that there is no trace-hash-remove operation and that the trace-hash-check

operation returns true and has taken a set of addresses from the bag, and that the RAM

invariant has not been satisfied. This means that either:

1. a cbag-put operation (in trace-hash-add) was performed on an address already

present in the bag, so the address is in the bag multiple times. Because there is

no trace-hash-remove operation, it will remain that way until trace-hash-check is

performed. If trace-hash-check ensures that it reads each address at most once, then

the bag is not empty after cbag-take(true) is called. But, trace-hash-check returns

true, so cbag-check returned true. Thus, we have a contradiction of Theorem 6.2.1.

2. a cbag-take operation (in trace-hash-load or trace-hash-store) was performed

on an address not present in the bag. Since the bag behaved like a valid bag, that

cbag-take operation returned the empty set, so the ERROR flag was set. This contra-

dicts the fact that trace-hash-check returned true.

*We note that case 1, where the addresses that trace-hash-add has been called on form

a set, is important for proving the correctness of the tree-trace checker in Chapter 8. Case

2, where there is no trace-hash-remove operation and trace-hash-check takes a set of

addresses from the bag, corresponds to our implementation of the trace-hash checker in

Section 7.5; we used this case for the trace-hash checker implementation in Section 7.5

because of its simplicity. In the implementation, there is no trace-hash-remove operation.

New addresses are added on demand while the FSM is running. The page table is used to keep

track of which addresses the FSM has used during its execution. When there is a new page
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allocated, the RAM checker calls trace-hash-add on each address in the page. When the

RAM checker performs a trace-hash-check operation, it walks through the page table in

an incremental way and reads all of the addresses in a valid page, also in an incremental way.

This ensures that, during a check, each address is read at most once (i.e., a set of addresses

is read). The page table does not need to be protected because, if an adversary changes

the page table so that the checker calls trace-hash-add on the same address multiple times

or skips some addresses during the trace-hash-check operation, the trace-hash-check

operation will fail, because the underlying bag will not be empty.

7.3 Caching

A cache can be used to improve the performance of the scheme. The cache contains just data

value blocks. The RAM contains (value block, time stamp) pairs. When the cache brings in

a block from RAM, the checker performs a cbag-take operation on the address. When the

cache evicts a block, the checker performs a cbag-put operation on the (address, value block)

pair (if the block is clean, only the time stamp is written to RAM). The trace-hash-check

operation operates as before, except it just has to perform cbag-take and trace-hash-add

operations on uncached RAM addresses.

7.4 Analysis

In this section, we present a detailed comparison of the trace-hash and hash tree schemes

when caches are used (cf. Section 7.3 and Section 4.1.1). In Section 7.4.1, we analyze the

space overhead and bandwidth overhead of trace-hash integrity checking. In Section 7.4.2,

we analytically compare the trace-hash scheme with the hash tree scheme.

In the analysis, to compare the performance of the trace-hash scheme with that of the

hash tree scheme, we compare the bandwidth overheads of the schemes. In hardware, on

each FSM access to the untrusted RAM, the FSM speculatively continues execution as soon

as the data value arrives from RAM and the checker performs the hash computations in the

background. Because the checker performs the hash computations in the background, hash
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Trace-Hash Hash Tree

per-bit space overhead ( bh

bandwidth overhead t(1 - hv)(2bt) + (nth - C)(bb + 2bt) t((1 - 6hv)zbb - (1 - hv)bb)

Table 7.1: Comparison of the trace-hash and hash tree integrity checking schemes

computation latency does not generally affect the performance of the FSM. When critical

operations occur, hash computation latency affects the FSM's performance because the FSM

must wait for the checker to complete the hash computations before the FSM can perform

the critical operation. However, we are assuming that critical operations are, generally, not

very frequent. With respect to bandwidth, the checker is using the same bus for fetching

time stamps/hashes from the untrusted RAM as the FSM is using to fetch data values from

the untrusted RAM. Thus, the time stamps/hashes are competing for the same memory bus

bandwidth as the FSM's data values. Thus, the less the bandwidth that is consumed by the

time stamps/hashes, the faster the FSM will retrieve data values from the RAM and the

faster the FSM will perform.

Table 7.1 summarizes the space overheads and bandwidth overheads of the trace-hash and

hash tree schemes. In the table, for the trace-hash scheme, bt is the number of bits in a time

stamp and bb is the number of bits in a data value/hash cache block. t is the number of FSM

stores and loads that the FSM performs before the checker performs a trace-hash-check

operation. We refer to t, the period between intermediate trace-hash-check operations, as

a check period. 1th is the number of data value blocks that the FSM uses, i.e., the number of

blocks to which a time stamp is appended when the block is stored in the untrusted RAM.

C is the number of blocks that can be stored in the cache, and h, is the cache hit rate - the

fraction of FSM load/store operations that find their data in the cache.

In addition, for the hash tree scheme, m is the number of children of each node in the

tree. bh is the number of output bits of the hash function used for the hash tree. We assume

that, in the hash tree scheme, one hash covers one cache block implying bb = mbh. 6hv,

where 0 < 6 < 1, is the data value cache hit rate in the hash tree scheme (for simplicity, we

assume that this is less than the data value cache hit rate of the trace-hash scheme because

both hash blocks and data value blocks must be stored in the cache for the hash tree scheme
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to perform well). z is the average number of data value and hash blocks that the checker

fetches and writes back to the untrusted RAM on each FSM store and load operation that

misses in the cache.

The principal points of the analysis are that:

" for a large untrusted RAM, if the size of a time stamp is less than the size of a hash,

the trace-hash scheme will have a smaller space overhead than the hash tree scheme. In

the experiments in Section 7.5, 4 GBytes of memory are used, with - of the memory16

being consumed by 32-bit time stamps. We contrast this with the experiments in [3],

where 1 of memory is used for 128-bit MD5 hashes for a 4-ary hash tree in a similar4

experimental setup.

" if t is greater than (nth-C)(bb+2bt) the overhead of fetching and caching((I1-6h,)zbb -(1 -h,) bb) - (1-h,)(2bt) I

hashes in the hash tree scheme will exceed the cost of reading addresses to perform a

trace-hash-check operation in the trace-hash scheme, and the trace-hash scheme will

consume less bandwidth and perform better than the hash tree scheme. Importantly,

we can observe that, the smaller nth is, the smaller t will be before the trace-hash scheme

will perform better than the hash tree scheme. The tree-trace scheme in Chapter 8 uses

this observation to optimize the trace-hash scheme. In the experiments in Section 7.5,

we are concerned with the number of FSM accesses to the untrusted RAM, T -

(1 - h,)t, in the trace-hash scheme. If we assume 6 = 1 for large caches, the trace-hash

scheme is better than the hash tree scheme if T > (nth-C)(bb+2bt)
- (z-1)bb-2bt

7.4.1 Trace-Hash Checker

Space Overhead

Let bt be the number of bits in a time stamp and bb is the number of bits in a data value

cache block. The per-bit space overhead of the time stamps is - bits.bb

Bandwidth Overhead

Let nth be the number of data value blocks protected by the trace-hash scheme, i.e., the

number of blocks to which a time stamp is appended when the block is in the untrusted
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RAM. Let t be the number of FSM stores and loads that the FSM performs before the

checker performs a trace-hash-check operation. C is the number of blocks that can be

stored in the cache, and h, is the cache hit rate - the fraction of FSM load and store operations

that find their data in the cache. The fraction of checker accesses to the untrusted RAM is

(1 -- he). On each of these accesses, the checker reads a time stamp and writes a time stamp as

it brings in a block and evicts a block from the cache. Thus, the cost of writing and reading

time stamps is t(1 - h,)(2bt). This is the bound on the runtime bandwidth overhead of the

trace-hash scheme. During a trace-hash-check operation, the blocks that are not in the

cache are read, with their associated time stamps; if the trace-hash-check operation is an

intermediate check, time stamps are also written back to memory to reset them. Thus, the

bandwidth consumption of the trace-hash-check operation is (nth - C) (bb+2bt). Therefore,

the total bandwidth overhead of the trace-hash scheme is t(1 - h,)(2bt) + (nth - C)(bb+ 2b,).

7.4.2 Comparison with Hash Tree Checker

Space Overhead

We provide some comparison of the overhead of storing time stamps in the trace-hash scheme

to the overhead of storing hashes in the hash tree scheme. The per-bit space overhead in the

trace-hash scheme is L bits. If the size of a data value block is the same as the size of a hashbb

block, an m-ary hash tree has a per-bit space overhead of E(;; 1 ) bits. The parameter, m,

is typically small, like 2, 4, or 8.

Suppose that, in the trace-hash scheme, one time stamp protects one data value block,

and, in the hash tree scheme, one hash covers one data value block. Let bh be the size of a

hash. Because one hash covers m leaves, bb = mbh. The space overhead of the hash tree is

thus, (( bh ). If bt < bh, then t< b < bh This means that, for a large untrusted
b hbb bb-bt bb-bh

RAM, if the size of a time stamp is less than the size of a hash, the trace-hash scheme will

have a smaller space overhead than the hash tree scheme.
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Bandwidth Overhead

For the hash tree scheme, let Jhn, where 0 < 6 < 1, be the cache hit rate of data values in

the hash tree scheme (for simplicity, we assume that this is less than the data value cache

hit rate of the trace-hash scheme because both hashes and data values must be stored in

the cache for the hash tree to perform well). z is the average number of data value and

hash blocks that the checker fetches and writes back to the untrusted RAM on each FSM

store and load operation that misses in the cache. The common case is for evicted blocks

to be clean, in which case the total bandwidth consumed by the FSM without integrity

checking is t(1 - h,)bb. Thus, the total bandwidth overhead of the hash tree scheme is

t(1 - 6hv)zbb - t(1 - hv)bb = t((1 - 6hv)zbb - (1 - hv)bb).

We see that, if t > (nth-)(bb2bt)(- the overhead of fetching and caching
((1-6hv)zbb-(1-hv)bb) - (1-hv)(2bt)' eredoIecin n ahn

hashes in the hash tree scheme will exceed the cost of reading addresses to perform a

trace-hash-check operation in the trace-hash scheme, and the trace-hash scheme will con-

sume less bandwidth and perform better than the hash tree scheme. Importantly, we can

observe that, the smaller nith is, the smaller t will be before the trace-hash scheme will

perform better than the hash tree scheme. The tree-trace scheme in Chapter 8 uses this

observation to optimize the trace-hash scheme. In the experiments in Section 7.5, we are

concerned with the number of FSM accesses to the untrusted RAM, T = (1 - hv)t, in the

trace-hash scheme. If we assume 6 1 for large caches, the trace-hash scheme is better than

the hash tree scheme if T > (nth-C)(bb+2bt)
- (z-1)bb-2bt

When the number of loads and stores performed by the FSM is large, the amortized

bandwidth consumption of reading the untrusted RAM to perform the trace-hash-check

is very small and the principal bandwidth overhead is the constant-sized runtime overhead of

reading and writing time stamps, which are also very small (32 bits). The trace-hash scheme

thus performs very well and its bandwidth overhead is very small. It is interesting to note

that, if the number of FSM load and store operations is large, trace-hash integrity checking

can consume less bandwidth and, thus, perform better than a simple, faulty, scheme, in

which a 128-bit MAC is appended to a block that is stored in RAM (cf. Chapter 3).

When trace-hash-checks are more frequent, the FSM performs a small number of

memory operations and uses a small subset of the addresses that are protected by the trace-
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hash scheme between the checks. In this case, the amortized bandwidth consumption of

reading the entire set of addresses protected by the trace-hash scheme, which is the entire

set of addresses that the FSM has used since the beginning of its execution, is more costly,

and the hash tree scheme performs better than the trace-hash scheme. (When check periods

are small, the trace-hash scheme is not optimal because the trace-hash-check operation

has to read all of the addresses that are protected by the trace-hash scheme to perform the

check, instead of just the addresses that are used by the FSM during that check period.)

7.5 Experiments

This section evaluates the trace-hash integrity checking scheme compared to the hash tree

scheme for computer processors through detailed simulations. We first investigate the impact

of the trace-hash scheme on processor performance ignoring the overhead of reading mem-

ory in the trace-hash-check operation. These experiments provide the cost of trace-hash

integrity checking when memory integrity needs to be checked only at the end of program

execution, or very infrequently in comparison to the total execution time of the program.

Then, we study the performance of the trace-hash scheme when more frequent integrity

checks are required.

Our simulation framework is based on the SimpleScalar tool set [6]. The simulator models

speculative out-of-order processors, which are standard modern microprocessors such as the

Intel Pentium. For all of the experiments in this section, nine SPEC2000 CPU benchmarks

[16] are used as representative applications: gcc, gzip, mcf, twolf, vortex, vpr, applu,

art, and swim. The SPEC benchmark suite is a standard set of programs that are generally

used in the computer architecture community to evaluate processor performance. These

benchmarks show varied characteristics and represent various types of applications.

7.5.1 Asymptotic Performance

Applications that sign results at the end of execution, or do so relatively infrequently, are

first considered. For these applications, the overhead of reading the untrusted RAM to

perform the trace-hash-check operation in the trace-hash scheme is negligible. If a typical
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Figure 7-2: Comparison of the asymptotic performance of the trace-hash scheme and the
hash tree scheme
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program executes for a minute, this corresponds to roughly 100 billion instructions on a

state-of-the-art 2- or 4-way superscalar 1 GHz processor. The trace-hash-check operation

typically takes less than a billion cycles, and if this is performed once, at the end of the

execution, the overhead is very small.

In this section, we compare the trace-hash scheme with the hash tree scheme and quantify

their overheads relative to a standard processor without integrity checking. We will ignore

the overhead of the trace-hash-check operation. This comparison will demonstrate the

advantage of the trace-hash scheme over the hash tree scheme when integrity checking is

infrequent.

Figure 7-2 illustrates the impact of integrity checking on program performance. For four

different L2 cache sizes (256KB, 512KB, 1MB, 2MB), the IPCs (instructions per clock cycle)

of three schemes are shown: a standard processor without integrity checking (base), the

trace-hash integrity checking scheme (trace-hash), and the hash tree integrity checking

scheme (hash tree). The IPC represents how fast a program executes. Therefore, higher

IPC results indicate better program performance. The cache block size is 64B, and 32-bit

time stamps for the trace-hash scheme and 128-bit hashes for the hash tree scheme are used.

The experimental results clearly demonstrate the advantage of the trace-hash scheme

over the hash tree scheme when we can ignore the cost of the trace-hash-check operation.

For all programs and configurations simulated, the trace-hash scheme outperforms the hash

tree scheme. The performance overhead of trace-hash compared to base is often less than

5% and less than 15% even for the worst case. On the other hand, hash tree has as much

as 50% overhead in the worst case and 20-30% in general.

7.5.2 Effects of Checking Periods

The experiments in the last section clearly demonstrated that the trace-hash scheme out-

performs the hash tree scheme when checking is infrequent. However, applications may need

to check the integrity of memory more often for various reasons such as exporting inter-

mediate results to other programs. In these cases, we cannot ignore the cost of frequent

trace-hash-check operations. In this section, we compare the trace-hash scheme and the

hash tree scheme including the cost of periodic trace-hash-check operations.
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We assume that the trace-hash scheme checks memory integrity every T FSM accesses to

the untrusted RAM. A processor executes a program until it makes T main memory accesses,

then checks the integrity of the T accesses by reading the memory it used before continuing.

Obviously, the overhead of the trace-hash checking heavily depends on the characteristics

of the program and the period T. We use two representative benchmarks mcf and art -

mcf is one of the benchmarks with the largest cost for the trace-hash-check operation and

art is one of the benchmarks with the smallest cost for the trace-hash-check operation.

mcf uses 195MB of main memory and takes about 140 million cycles for each check. On the

other hand, art uses only 4MB of memory and takes about 2.7 million cycles for a check.

Figure 7-3 compares the performance of the trace-hash scheme and the hash tree scheme

for various trace-hash check periods. In the figure, IPCs for the trace-hash scheme in-

cluding the trace-hash-check operation (trace-hash), the trace-hash scheme ignoring the

trace-hash-check operation (trace-hash asymptotic) and the hash tree scheme (hash

tree) are shown. Results are shown for 256KB and 1MB L2 caches with 64B blocks. 32-bit

time stamps and 128-bit hashes are used.

Experimental results show that the performance of the trace-hash scheme heavily de-

pends on the checking period. The trace-hash checking is infeasible when the application

needs to assure memory integrity frequently. In this case, the hash tree integrity checking

should be used. On the other hand, if checking is less frequent, the trace-hash scheme can

outperform the hash tree scheme. Also, as the checking period increases, the performance

of the trace-hash scheme converges to the asymptotic performance ignoring the cost of the

trace-hash-check operation (around 1 billion accesses for mcf and 10 million accesses for

art).

The break-even point between the trace-hash scheme and the hash tree scheme depends

on the characteristics of the program. For programs using a large amount of memory such as

mcf, the checking period should be long so that the cost of trace-hash-check is amortized.

However, the trace-hash scheme performs as well as the hash tree for much shorter checking

periods for programs such as art with a small amount of memory usage. For example,
with 256KB L2 caches, the break-even point for mcf is around T = 4 million accesses,
which corresponds to about 160 million instructions (0.12 seconds with 4-way superscalar
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1-GHz processors). The analysis in Section 7.4 predicts these break-even points reasonably

accurately. For example, in the case of mcf with a 256KB cache, the analysis results in

(3194880 - 4096) - (512 + 2 - 32) 8 106
0.5351 -512 - 2 32 ~ 8.8 x accesses.

The value of nth was calculated based on 195MB (1MB = 16,384 cache blocks) memory

usage, and (z -- 1) = 0.5351. For mcf with a 1MB cache, the analysis results in T >
(3194880-1634)(512+2.32 11.6 x 106 accesses. For art with a 256KB cache, the analysis0.434-512-2-32

results in T > (65536-4096) (512+2.32) ~ 1.7 x 105 accesses. For art with a 1MB cache, the- 0.5324512-2-32

analysis results in T > (65536-16384) (512±2.32) ~ 1.3 x 105 accesses.0.5572512-2-32

As is also described in the analysis in Section 7.4, when check periods are large, the trace-

hash scheme performs very well because the amortized bandwidth consumption of reading

the memory to perform the trace-hash-check is very small and the principal bandwidth

overhead is the constant-sized runtime overhead of reading and writing time stamps, which

are also very small. When check periods are small, the program performs a small number

of memory operations and uses a small subset of the addresses that are protected by the

trace-hash scheme between the checks. In this case, the amortized bandwidth consumption

of reading all of the memory protected by the trace-hash scheme, which is all of the memory

that has been used by the program, is more costly and performance of the trace-hash scheme

is not good. (When check periods are small, the trace-hash scheme is not optimal because

the trace-hash-check operation has to read all of the addresses that are protected by the

trace-hash scheme to perform the check, instead of just the addresses that are used by the

program during that check period.)

In general, our experiments show that the trace-hash scheme is well-suited for certified

execution applications [3], in, for example, commercial grid computing, secure mobile agents

and trusted third party computation. In certified execution applications, the processor is

equipped with a private key of a public-private key pair. The processor executes a program

without allowing any interference from external sources. It executes the program to produce

a result. The processor then creates a certificate that includes a hash of the program and

its inputs, and the result of the program's execution. The certificate is signed with the

processor's private key; anyone with the correct public key can verify the certificate and
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trust the result, in the certificate. In certified execution applications, the processor only

needs to check the integrity of its memory operations at the end of the program's execution,

when the processor signs the certificate. As our experiments show, the trace-hash scheme

significantly outperforms the hash tree if critical security operations are performed after

around one billion or more memory operations. Thus, the trace-hash scheme is the better

scheme for certified execution applications.
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Chapter 8

Tree-Trace Integrity Checking

Our tree-tracel checker [7] is a hybrid of the hash tree checker and the trace-hash checker.

The tree-trace checker enables the trace-hash scheme to be optimized. The tree-trace checker

can also use the hash tree scheme when critical operations are frequent and use the trace-hash

scheme when sequences of FSM data operations can be checked.

8.1 Partial-Hash Tree Checker

The partial-hash tree abstraction is a simple abstraction that we use to help build the tree-

trace checker in Section 8.2. A partial-hash tree is a hash tree (cf. Section 4.1) in which some

addresses are protected by the tree and some addresses are not protected by the tree. The

partial-hash tree checker interface consists of the hash tree checker's hash-tree-load(a) and

hash-tree-store (a, v) operations, and a third operation: hash-tree-updateParent(a, v).

The hash-tree-updateParent operation checks the integrity of the parent node of the

specified address and updates the parent node to contain a hash of the specified value (the

operation propagates the check and the update to the root of the tree).

The checker can call hash-tree-updateParent(a, NULL) to remove address a from the

protection of the tree. The NULL value is a value that address a cannot have, such as

a value greater than the maximum possible value for address a. (Though it updates the

parent node of the address, hash-tree-updateParent does not actually write a new value

In [7], the tree-trace checker was referred to as the tree-log checker.
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Figure 8-1: Illustration of tree-trace checker

for the address). If the checker performs a hash-tree-load(a) or a hash-tree-store(a, v)

operation on an address, a, that is not protected by the tree, the hash tree integrity check

will not pass (recall that hash-tree-store checks the integrity of the old value of the node

and its siblings before updating the node).

The checker can call hash-tree-updateParent(a, v) to add address a back to the protec-

tion of the tree; the parent will be updated with a hash of value v. A hash-tree-load(a) or

a hash-tree-store(a, v) operation on an address, a, that is protected by the tree operates

as the standard hash tree load and store operations in Section 4.1.

8.2 Tree-Trace Checker

Figure 8-1 illustrates the tree-trace checker and Figure 8-2 shows the interface that the FSM

calls to use the tree-trace checker to check the integrity of the untrusted RAM.

tree-trace-store calls hash-tree-store(a, v) if address a is in the tree or calls

trace-hash-store (a, v) if a is in the trace-hash scheme. tree-trace-load operates simi-

larly.

tree-trace-moveToTraceHash first calls hash-tree-load(a) to check the integrity of

the value v at address a in the RAM. hash-tree-updateParent(a, NULL) is called to remove

a from the tree. trace-hash-add(a, v) is then called to add a with value v to the trace-hash

scheme 2

2Because of the organization of the tree, whenever an address is moved to the trace-hash scheme, the
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tree-trace-check checks the integrity of the RAM that is currently protected by the

trace-hash scheme by calling trace-hash-check. tree-trace-check takes an argument

Y, representing a set of addresses. Each address in Y is moved back to the hash tree as

the trace-hash-check operation is performed. Addresses that are not in Y but are in the

trace-hash scheme remain in the trace-hash scheme.

In the event the trace-hash TIMER becomes close to its maximum value before the

FSM calls tree-trace-check, the checker can perform tree-trace-check(0) to reset it.

tree-trace-check(0) essentially performs an intermediate trace-hash check on the addresses

in the trace-hash scheme.

The tree-trace scheme allows for optimization of the trace-hash scheme. All of the

addresses are initially in the tree. Recall that we call the period between intermediate

tree-trace-check (trace-hash-check) operations a check period (cf. Section 7.4). During

a check period, the checker can move an arbitrary set of addresses to the trace-hash scheme,

where the FSM can perform store and load operations on them in the trace hash scheme.

When a tree-trace-check operation is performed, all of the addresses in the trace-hash

scheme can be moved back to the tree, where their values will be remembered by the tree.

During a subsequent check period, a different arbitrary set of addresses can be moved to the

trace-hash scheme to be used by the FSM in the trace-hash scheme. The benefit is that,

whenever a tree-trace-check operation is performed, only the addresses of the data that

have been moved to the trace-hash scheme since the last tree-trace-check operation need

to be read to perform the check, as opposed to reading the entire set of addresses that the

FSM had used since the beginning of its execution. If the tree-trace-check operation needs

to read addresses that are protected by the trace-hash scheme, but were not used during the

check period, then the trace-hash scheme is not optimal. Thus, the ability of the tree-trace

scheme to move the set of addresses that are accessed during a check period into the trace-

hash scheme and move them back into the tree on a tree-trace-check operation so that a

different set of addresses can be moved to the trace-hash scheme during a subsequent check

period, helps to optimize the bandwidth overhead of the trace-hash scheme.

block consisting of the address's data value node and its siblings is trace-hash-added to the trace-hash
scheme (the block's address is the address of the first node in the block). If the tree was organized such that
the data values are hashed first, then the tree is created over the hashes of the data values, individual data
value nodes could be moved to trace-hash scheme.
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tree-trace-store(a, v): stores v at address a:

1. If a is protected by the tree, hash-tree-store(a, v). Else, trace-hash-store(a, v).

tree-trace-load(a): loads the data value at address a:

1. If a is protected by the tree, hash-tree-load(a). Else, trace-hash-load(a).

tree-trace-moveToTraceHash(a): move address a from the tree to the trace-hash scheme:

1. v = hash-tree-load(a).

2. hash-tree-updateParent(a, NULL).

3. trace-hash-add(a, v).

tree-trace-check(Y): checks if the RAM (currently being protected by the trace-hash
scheme) has behaved like valid RAM; each of the addresses in set Y is moved from the
trace-hash scheme to the hash tree:

1. trace-hash-checkO.
Also, create a new TIMER' and PUTHASH'. As the untrusted RAM is read to perform
the trace-hash-check, for each address a that is read, where v is the data value of
a:

(a) if a E Y, call hash-tree-updateParent(a, v); else call trace-hash-add(a, v),
using TIMER' and PUTHASH', to reset the time stamps in RAM and update
PUTHASH'.

Set TIMER and PUTHASH to TIMER' and PUTHASH'; reset TAKEHASH to 0.

Figure 8-2: Tree-trace checker
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The following theorem is proven in Section 8.3 to show that the tree-trace integrity

checking scheme is secure:

T heorem 8.2.1. The untrusted RAM has behaved like valid RAM if and only if the tree-trace

integrity checks (using the hash tree and the tree-trace-check operation) return true.

8.2.1 Caching

Caching is easily integrated into the tree-trace scheme using the approaches described in

Sections 4.1.1 and 7.3. If the block's address is protected by the tree, when a data value block

is brought into the cache or evicted from the cache, the caching approach in Section 4.1.1

is used. If the block's address is protected by the trace-hash scheme, the caching approach

in Section 7.3 is used. tree-trace-moveToTraceHash brings the block and/or the block's

parent into the cache if they are not already in the cache, using the approach in Section 4.1.1.

The parent is then updated in the cache. The tree-trace-check uses an approach similar

to that in Section 7.3 when performing the trace-hash-check operation. If the block's

address is in Y, the block's parent is brought into the cache as described in Section 4.1.1

and updated in the cache.

8.2.2 Bookkeeping

In Section 8.3, we prove that, with regard to security, the data structures that the checker

uses to determine if an address is protected by the hash tree or if it is protected by the trace-

hash scheme, and to determine which addresses to read to perform a tree-trace-check

operation, do not have to be protected. The necessary information is already implicitly

encoded in the hash tree and trace-hash schemes. The data structures are strictly used

for bookkeeping and a system designer is free to choose any data structures that allow the

checker to most efficiently perform these functions.

In our experiments in Section 9.3, a range of addresses is moved to the trace-hash scheme

when the trace-hash scheme is used. The checker maintains the highest address and the

lowest address of the range in its fixed-sized trusted state. When the checker performs a

tree-trace-check operation, it moves all of the addresses in the trace-hash scheme to the
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tree, so that a separate range of addresses can be moved to the trace-hash scheme during a

subsequent check period.

Maintaining a range of addresses in the trace-hash scheme is very effective when the FSM

exhibits spatial locality in its accesses, which is common for software programs. However,

instead of using a range, a more general data structure would be to use a bitmap stored

unprotected in RAM. Optionally, some of the bitmap could be cached. With the bitmap

implementation, the checker may also maintain a flag in its trusted state. If the flag is true,

the checker knows that all of the data is in the tree and it does not use the bitmap; its

stores/loads perform exactly as hash tree store/loads. If the flag is false, the checker then

uses the bitmap.

8.3 Proof of Security of Tree-Trace Checker

In this section, we prove Theorem 8.2.1 (cf. Section 8.2).

Proof. The validity condition, that if the RAM has behaved like RAM, then the tree-trace

integrity checks return true, is easy to verify. We present an argument for the safety con-

dition: if the tree-trace integrity checks return true, then the RAM has behaved like valid

RAM.

We assume that the bookkeeping data structures (cf. Section 8.2.2) are not protected.

The adversary can tamper with the data structures, data values and time stamps at will.

We will assume that all of the hash tree integrity checks and tree-trace-check integrity

checks return true. We will prove that an adversary is unable to affect the validity of the

RAM.

Denote the addresses on which trace-hash-add has been called on as the multiset,

Afth-add. First we show that Mth-add is a set. Suppose tree-trace-mveToTraceHash is

called on an address that has already been added to the trace-hash scheme. When the

checker first called tree-trace-moveToTraceHash on the address in the tree to add it to

the trace-hash scheme, hash-tree-updateParent(a, NULL) was called to update, in the tree,

the parent node of the address with a value that the address can never have. If the checker

subsequently calls the tree-trace-moveToTraceHash operation on the address again during
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the same check period, the operation first checks the integrity of the old value of the node

and its siblings in the hash tree. The hash tree integrity check will not pass. Thus, we infer

that if all of the integrity checks pass, then Mth-add is a set and the results of Theorem 7.2.1

(cf. Section 7.2.2) apply.

We now show that the adversary cannot tamper with the bookkeeping data structures

without the checker detecting the tampering. If the adversary did tamper with the bookkeep-

ing data structures, then either the tree-trace-check operation would not read exactly the

address in Mth-add, or a hash tree store or load operation would be performed on an address

that is in the trace-hash scheme, or a trace-hash store or load operation would be performed

on an address that is in the hash tree. Suppose that the tree-trace-check operation does

not read exactly the addresses in Mth-add. This means that the trace-hash-check operation

does not read exactly the addresses in Mth-add. By Theorem 7.2.1, the tree-trace-check

operation will not pass. Suppose that a hash tree store or load operation is performed on

an address that is in the trace-hash scheme. Because the NULL value was recorded in the

address's parent in the tree when the address was first moved to the trace-hash scheme and

because hash-tree-store and hash-tree-load each check the integrity of the data value

read from the RAM (recall that hash-tree-store checks the integrity of the old value of

node and its siblings before updating the node), the hash tree integrity check will not pass.

Suppose that a trace-hash store or load operation is performed on an address that is in

the hash tree. trace-hash-store or trace-hash-load is then called on the address before

trace-hash-add is called to add the address to the trace-hash scheme. By Theorem 7.2.1,

the tree-trace-check operation will not pass (because the RAM invariant is not satisfied).

Thus, if the adversary tampers with the bookkeeping data structures, the checker will detect

the tampering.

Finally, we show that the adversary cannot tamper with the data values (or time stamps)

without the checker detecting the tampering. Suppose the adversary tampers with the data

value of an address that is protected by the tree. tree-trace-moveToTraceHash,

tree-trace-store and tree-trace-load each check the integrity of the data value read

from the untrusted RAM. If the data value is tampered with, the hash tree integrity check will

not pass. Suppose the adversary tampers with the data value (or time stamp) of an address
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that is protected by the trace-hash scheme. By Theorem 7.2.1, the tree-trace-check oper-

ation will not pass (because the bag has not behaved like a valid bag). Thus, if the adversary

tampers with the data values (or time stamps), the checker will detect the tampering.

Thus, if all of the hash tree integrity checks and tree-trace-check integrity checks

return true, then the RAM has behaved like valid RAM. This concludes the proof of Theo-

rem 8.2.1. E E

The proof demonstrates that, with regard to security, the bookkeeping data structures

do not have to be protected.
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Chapter 9

Adaptive Tree-Trace Integrity

Checking

Our adaptive tree-tracel checker [7] adaptively chooses a tree-trace strategy for the FSM

that indicates how the FSM should use the tree-trace scheme when the FSM is run. The

checker enables FSMs to be run unmodified and still benefit from the tree-trace scheme's

features.

9.1 Interface Overview

The adaptive tree-trace interface consists of just three operations:

adapt ive-tree-trace-store(a, v), adapt ive-tree-trace-load(a) and

adaptive-tree-trace- checkO; these operations call their respective tree-trace operations

(cf. Chapter 8). During the FSM's execution, the FSM calls adaptive-tree-trace-store

and adaptive-tree-trace-load to access the untrusted RAM. The FSM calls

adaptive-tree-trace-check whenever it executes a critical operation (cf. Chapter 1 and

Chapter 3).

The checker has as a parameter, a worst-case bound. The bound is expressed relative to

the bandwidth overhead of the hash tree - if the hash tree had been used to check the integrity

of the RAM during the FSM's execution. For instance, if the bound is set at 10%, then, for

'In [7], the adaptive tree-trace checker was referred to as the adaptive tree-log checker.
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all FSMs, the tree-trace bandwidth overhead is guaranteed to be less than 1.1 times the hash

tree bandwidth overhead. (The bandwidth overhead is defined as the additional bandwidth

consumed during the program's execution by the integrity checking scheme compared to the

bandwidth the program would have consumed without any integrity checking.)

During the FSM's execution, the checker monitors its bandwidth overhead, and it moves

addresses to the trace-hash scheme based on its bandwidth overhead. Whenever an

adaptive-tree-trace-check operation occurs, the checker moves all of the addresses in

the trace-hash scheme back to the tree to optimize the trace-hash scheme; the operation

does not need any arguments from the FSM because the checker moves all of the addresses

in the trace-hash scheme to the tree. The adaptive-tree-trace-check operation can be

performed at anytime; whenever it is performed, the bandwidth overhead of the checker is

guaranteed never to be worse than the parameterizable worst-case bound.

9.2 Adaptive Tree-Trace Checker

Sections 9.2.1 and 9.2.2 examine the checker in the case where the FSM does not use a cache.

'They describe the approach we use to guarantee a worst-case bound on the bandwidth

overhead of the checker and the tree-trace strategy we adopt. Section 9.2.3 extends the

methodology to caching. Throughout the discussion in this section, we will assume that the

checker uses a range for its bookkeeping (cf. Section 8.2.2). In Section 9.5, we extend the

discussion to when the checker uses a more general data structure, such as a bitmap, for its

bookkeeping.

9.2.1 Without Caching: Worst-Case Bound

First, we consider the case where the FSM does not use a cache. We make no assumptions

about the FSM's access patterns. The naive approach would be for the checker to just move

addresses to the trace-hash scheme each time it accesses an address that is in the tree. The

naive approach is a valid approach of using the tree-trace scheme. However, the bandwidth

overhead of the approach could potentially be more than twice that of the hash tree during

short check periods (primarily because of the extra cost of the tree-trace-check operation).
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Thus, to provide the parameterizable worst-case bound, the checker needs to regulate the

rate at which addresses are added to the trace-hash scheme.

Let w be the parameterizable worst-case bound (e.g., if the bound is 10%, W = 0.1).

While the FSM is running, the adaptive tree-trace checker maintains two statistics: (1) its

current total potential, (D [29, Chapter 18], and (2) the number of data value blocks currently

in the trace-hash scheme, nth. 1 = (1 + w)Bht - Bit where Bit is the current total tree-trace

bandwidth overhead and Bht is the current total hash tree bandwidth overhead, if the hash

tree had been used to check the RAM. Intuitively, (P is how many bits ahead the tree-

trace checker is of the parameterizable worst-case bound. Bt is easily determined given the

height of the tree, the size of a hash and its siblings, and the total number of FSM operations

performed thus far. 4 and nth are also maintained in the checker's fixed-sized trusted state.

nth is incremented whenever an address is moved from the tree to the trace-hash scheme, and

reset to zero on a tree-trace-check operation after the operation has moved the addresses

back to the tree. 1 is updated on each checker operation.

We itemize how D changes on each tree-trace operation:

* tree-trace-store/tree-trace-load: 1 increases with each operation.

* tree-trace-moveToTraceHash: 4 decreases with each operation. Let Ctt-mvto-th be

the bandwidth consumed by the tree-trace-moveToTraceHash operation. Then,

A4 = -Ctt-mv-to-th-

* tree-trace-check: 4 decreases with each operation. Let Ctt-chk(nth) be the band-

width consumed by the tree-trace-check operation; Ctt-chk(nth) increases with nth.

A4 = -Ctt-chk (nth)-

Table 9.1 details the amounts by which (D changes when a range is used for bookkeeping

(cf. Section 8.2.2). The potential increases on each tree-trace-store/tree-trace-load

operation. The essential idea of how we bound the worst-case tree-trace bandwidth overhead

is to have the checker build up enough potential to cover the cost of the

tree-trace-moveToTraceHash operation plus the increased cost of the tree-trace-check

operation before the checker moves an address from the tree to the trace-hash scheme.
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tree-trace-store hash-tree-store A4 = w * (2hbb - bb)
tree-trace-load hash-tree-load A = w * (h - 1)bb
tree-trace-store trace-hash-store AL = 2hbb - (2(bb + be)) + w * (2hbb - bb)
tree-trace-load trace-hash-load ZAV= hbb - (bb + 2bt) + w * (h - 1)bb
tree-trace-moveToTraceHash AdI = -(hbb + (h - 1)bb + bt)

tree-trace-check A45 -nth((bb + bt) + 2(h - 1)bb)

Table 9.1: A1 if a range is used for bookkeeping (cf. Section 8.2.2). In the table, bt is the
number of bits in a time stamp, bb is the number of bits in a data value/hash block and h is
the height of the hash tree (the length of the path from the root to the leaf in the tree).

Whenever the checker wants to move an address to the trace-hash scheme, it performs a test

to determine if it has enough potential to do so. For the test, the checker checks that the

address is in the tree and that 4 > Ctt-mv-to-th + Ctt-chk(nth + 1). If these checks pass, the

test returns true; otherwise, the test returns false. If the test returns true, the checker has

enough potential to be able to move the address to the trace-hash scheme. Otherwise, the

checker cannot move the address to the trace-hash scheme. Whenever an address is moved

to the trace-hash scheme, nth is incremented.

The mechanism described in this section is a safety mechanism for the adaptive tree-

trace scheme: whenever an adaptive-tree-trace-check operation occurs, the bandwidth

overhead of the checker is guaranteed never to be larger than (1 + w)Bht. As can be seen

from the expression for 1D, the larger w is, the sooner the checker will be able to move

addresses to the trace-hash scheme. Also, the larger w is, the larger could be the potential

loss in the case that the tree-trace scheme has to perform an adaptive-tree-trace-check

soon after it has started moving addresses to the trace-hash scheme; however, in the case

that the performance of the tree-trace scheme improves when the trace-hash scheme is used,

which is the case we expect, the larger w is, the greater the rate at which addresses can be

added to the trace-hash scheme and the greater can be the performance benefit of using the

trace-hash scheme. Also from the expression for 4, the smaller the tree-trace bandwidth

overhead compared to the hash tree bandwidth overhead, the better the tree-trace scheme

performs and the greater the rate at which addresses can be added to the trace-hash scheme.

This helps the checker adapt to the performance of the scheme, while still guaranteeing the

worst-case bound.
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9.2.2 Without Caching: Tree-Trace Strategy

Section 9.2.1 describes the minimal requirements that are needed to guarantee the bound

on the worst-case bandwidth overhead of the tree-trace checker. The approach described

in Section 9.2.1 can be applied as a greedy algorithm in which addresses are moved to the

trace-hash scheme whenever D is sufficiently high. However, it is common for programs to

have a long check period during which they process data, then have a sequence of short

check periods as they perform critical instructions to display or sign the results. If the

checker simply moved addresses to the trace-hash scheme as long as 4 was large enough,

for short check periods, the checker might move a lot of data into the trace-hash scheme

and incur a costly penalty during that check period when the adaptive-tree-trace-check

operation occurs. We do not want to risk gains from one check period in subsequent check

periods. Thus, instead of using 4, we use IcP, the potential that the checker has gained

during the current check period, to control the rate at which addresses are added to the

trace-hash scheme when we adopt the greedy approach. By using cP instead of P, for short

check periods, it is more likely that the checker will just keep addresses in the tree, instead

of moving addresses to the trace-hash scheme. If we let (Dcp-start be the value of D at the

beginning of the check period, then 4)cp = ( - (Dcp-start- bcp regulates the rate at which

addresses are added to the trace-hash scheme during the current check period.

Figure 9-1 shows the interface that the FSM uses to call the adaptive tree-trace checker.

The strategy we use is a simple strategy and more sophisticated strategies for moving ad-

dresses from the tree to the trace-hash scheme can be developed in the future. Nevertheless,

the principal point is that whatever strategy the checker uses can be layered over the safety

mechanism in Section 9.2.1 to ensure that the strategy's bandwidth overhead is never worse

than the parameterizable worst-case bound.

In the safety mechanism in Section 9.2.1, (1 +w)Bht = Btt + 1. In the safety mechanism,

at the beginning of the FSM's execution, Bht = Btt = 0, thus ( = 0; during the FSM's

execution, because the checker ensures that it has enough potential to cover the cost of the

tree-trace-moveToTraceHash operation plus the increased cost of the tree-trace-check

operation before the checker moves an address from the tree to the trace-hash scheme, the

potential is always greater than zero. Thus, as long as the checker's tree-trace strategy,
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adaptive-tree-trace-store(a, v):

1. If a is in the tree, and (Dcp > Ctt-mv-to-th + Ctt-chk(nth + 1),
then tree-trace-moveToTraceHash(a).

2. tree-trace-store(a, v).

adaptive-tree-trace-load(a):

1. If a is in the tree, and (Dcp > Ctt-mv-to-th + Ott-chk(fth + 1),
then tree-trace-moveToTraceHash(a).

2. tree-trace-load(a).

adaptive-tree-trace-checkO:

1. Let Z be the set of addresses in the trace-hash scheme. tree-trace-check(Z).

Figure 9-1: Adaptive tree-trace checker, without caching

whatever the strategy may be, is layered over this safety mechanism, the strategy will be

(1 +w)-competitive [2, Chapter 1] with the bandwidth overhead of the hash tree scheme (i.e.,

for any FSM, the strategy's bandwidth overhead will be guaranteed to be less than (1 + O)

times the hash tree bandwidth overhead).

At this point, we precisely describe the three features of the adaptive tree-trace checker.

Firstly, the checker adaptively chooses a tree-trace strategy for the FSM when the FSM is ex-

ecuted. This allows FSMs to be run unmodified, yet still be able to benefit from the checker's

features. Secondly, even though the checker is adaptive, it is able to provide a guarantee

on its worst-case performance, such that, for all FSMs, the performance of the checker is

guaranteed never to be worse than the parameterizable worst-case bound. This feature allows

the adaptive tree-trace checker to be turned on by default in systems. The third feature is

that, for all FSMs, as the average number of per data FSM operations (total number of FSM

data operations/total number of data accessed) during a check period increases, the checker

moves from a logarithmic bandwidth overhead to a constant bandwidth overhead, ignoring

the bandwidth consumption of intermediate trace-hash integrity checks. This feature allows

large classes of FSMs to take advantage of the constant runtime bandwidth overhead of the

optimized trace-hash scheme to improve their integrity checking performance, because FSMs
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typically perform many data operations before performing a critical operation.

Let ITIMERI be the bit-length of the trace-hash TIMER counter. In the third feature,

we exclude intermediate trace-hash integrity checks because they become insignificant for

sufficiently large ITIMER|. Whenever the TIMER reaches its maximum value during a check

period, an intermediate trace-hash check is performed (cf. Section 8.2). However, by using a

large enough ITIMERj, intermediate checks occur so infrequently that the amortized band-

width cost of the check is very small, and the principal bandwidth overhead is the constant

runtime bandwidth overhead of the time stamps.

9.2.3 With Caching

We now consider the case where the FSM uses a cache. The only assumption that we

make about the cache is that it uses a deterministic cache replacement policy, such as the

popular LRU (least recently-used) policy. There are two main extensions that are made to

the methodology in Sections 9.2.1 and 9.2.2. Firstly, to accurately calculate the potentials,

the checker will need to be equipped with cache simulators. Secondly, with a cache, the hash

tree may perform very well. There can exist FSMs for which the potential can decrease on

tree-trace-store and tree-trace-load operations. To handle this situation, the adaptive

checker will need an additional tree-trace operation that allows it to back off, and will need

to perform an additional test to determine whether it will need to back off. We describe the

extensions.

Cache performance is very difficult to predict. Thus, to help determine Bet and Bht,

the checker maintains a hash tree cache simulator and a base cache simulator. The hash

tree simulator simulates the hash tree and gives the hash tree bandwidth consumption. The

base cache simulator simulates the FSM with no memory integrity checking and gives the

base bandwidth consumption, from which the bandwidth overheads can be calculated. The

checker also maintains a tree-trace simulator that can be used to determine the cost of

a particular tree-trace operation before the checker actually executes the operation. It is

important to note that each simulator only needs the cache status bits (e.g., the dirty bits

and the valid bits) and the cache addresses, in particular the cache address tags [15]; the

data values are not needed. The tag RAM is a small percentage of the cache [15]. Thus,
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each simulator is small and of a fixed size (because the cache is of a fixed size) and can,

in accordance with our model in Chapter 3, be maintained in the checker. The simulators

do not make any accesses to the untrusted RAM. The simulators are being used to help

guarantee the worst-case bound when the FSM uses a cache; in Chapter 11, we discuss how

they can be dropped if the strictness of the bound is relaxed.

We expect tree-trace-store and tree-trace-load operations to generally perform

better than the corresponding hash tree operations because the trace-hash scheme does not

pollute the cache with hashes and because the runtime overhead of the trace-hash scheme is

constant-sized instead of logarithmic. However, unlike a cacheless hash tree, a hash tree with

a cache may perform very well. Furthermore, in the tree-trace scheme, because the trace-

hash scheme does not cache hashes, when the hash tree is used, the tree's cost may be more

expensive on average. Also, the tree-trace and hash tree cache access patterns are different,

and the tree-trace cache performance could be worse than the hash tree cache performance.

Potential can sometimes decrease on tree-trace-store and tree-trace-load operations.

Thus, because the FSM uses a cache, the adaptive checker needs to have an additional backoff

procedure that reverts it to the vanilla hash tree if the potential gets dangerously low.

The backoff procedure consists of performing a tree-trace-check operation and syn-

chronizing the FSM's cache by putting the cache into the exact state in which it would

have been in the hash-tree scheme. This is done by writing back dirty tree nodes that are

in the cache and updating them in the tree in RAM, then checking and bringing into the

cache, blocks from RAM that are in the hash tree cache simulator that are not in the FSM's

cache2 . We refer to the backoff procedure as tree-trace-bkoff. Let Csyc be the cost

of synchronizing the cache (it is independent of nth). Then the bandwidth consumed by

tree-trace-bkoff is Cbkoff(nth) = Ctt-chk(nth) + sync Whenever the checker backs off, it

continues execution just using the tree alone, until it has enough potential to try moving

addresses to the trace-hash scheme again.

Again, we indicate how <D changes with each tree-trace operation:

o tree-trace-store/tree-trace-load: With each operation, <1 usually increases; how-
2In the synchronized cache, the hashes of cached nodes may not be the same as they would have been

if the hash tree had been used. However, the values of these hashes are not important (cf. the invariant in
Section 4.1.1).

106



ever it can decrease. Let AbI4t-,p be the change in 4D that occurs when the store/load

operation is performed; A<Dtt-op can be positive or negative (and is different for each

store/load operation). A<) = A4bettop.

* tree-trace-moveToTraceHash: 4P decreases with each operation. AD = -Ctt-mv-to-th-

* tree-trace-check: 4b decreases with each operation. AD > -Ctt-chk(nth).

" tree-trace-bkof f: 4D decreases with each operation. AD > -Ckor (nth).

Figure 9-2 shows the adaptive-tree-trace-store operation when the FSM uses a

cache. The adaptive-tree-trace-load operation is similarly modified.

adaptive-tree-trace-check is similar to the operation in Figure 9-1. The actual costs of

A4Itt-op and Ctt-mv-to-th are obtained at runtime from the simulators. The worst-case costs of

Ctt.-chk(nth) and Cbkoff(nth) can be calculated; on the tree-trace-check and

tree-trace-bkof f operations, oD decreases by an amount that is guaranteed to be smaller

than these worst-case costs. We show how to calculate these worst-case costs in Sec-

tion 9.4. The worst-case cost of the tree-trace-check operation can be expressed as

Ctt-.chk(nth C tt-chk(0) ck(nth), where Ctt-chk(0) is a fixed cost, a cost that is inde-

pendent of nth, and Car (nth) is a marginal cost, a cost that is dependent on nth. Recall

that Cbkoff(nth) = Ctt-chk (nth) + sync

In Figure 9-2, the first test in step 1 is similar to the test in Section 9.2.2. However,

in this case, the potential that the checker uses to regulate the rate at which addresses

are added to the trace-hash scheme is <D'P, where ' is the potential that the checker has

gained after <D > Cbkoff(O) during the current check period (or, if the checker has backed

off, the potential that the checker has gained after <D > Cbkoff(O) since backing off). Thus,

), = <D - max(Ckoff(O), lcp-start) (where <Dcp-start is the value of <D at the beginning of the

check period, or, if the checker has backed off, the value of 4D after the checker has completed

backing off). 'cP only begins recording potential after (D has become greater than Cbkoff(0)

because otherwise, the checker would not have enough potential to be able to back off if

it needed to. The test also gives a small potential buffer per address in the trace-scheme,

Cbufrer(nth), for the tree-trace scheme to start outperforming the hash tree.
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adaptive-tree-trace-store(a, v):

1. If a is in the tree, and

CP > Ctt-mv-to-th C (nth + 1) + Cbuffer(fth + 1),
then tree-trace-moveToTraceHash(a).

2. If the tree-trace and hash tree caches are not synchronized,
if <' + AMit-op < Cbkoff(nth), then tree-trace-bkoff.

3. tree-trace-store(a, v).

Figure 9-2: adaptive-tree-trace-store, with caching

The test in step 2 determines whether the checker needs to back off. The tree-trace

and hash tree caches are unsynchronized if the trace-hash scheme has been used (since the

beginning of the FSM's execution or since the checker last backed off). It is only necessary

to perform the test if the tree-trace and hash tree caches are unsynchronized. From the

expression for 4p / P J4 ' + Obkoff(0). From the first test, to successfully move an address

to the trace-hash scheme, cp > (Ctt-mv-to-th + Och (nth + 1) + cbuffer (nth + 1)). Thus, P >

(Ctt-mv-to-th +Cjttij(nth + 1) + Cbuffer(nth + 1) + Cbkoff(0)). From the expression for Cbkoff(nth),

> (Ctt-v-to-th C (th + 1) + Cbuffer(Tth + 1) + Ctt-chk(O) + Csync) > (Ctt-mv-to-th +

7bkoff(th + 1) + Cbuffer (nth + 1)). Thus, 4D > (Ctt-mv-to-th + Cbkoff(nth + 1) + Cbuffer (nth + 1))

This means that, whenever an address is successfully moved to the trace-hash scheme, 1 >

(Cbkoff((nth) + Cbuffer(nth)), (recall that nth is incremented when an address is successfully

moved to the trace-hash scheme). If the trace-hash scheme has been used, the second test

uses A5tt-op, obtained from the simulators, to determine if performing the store operation

would result in its potential dropping below Cbkoff(nth). If it does, the checker backs off, then

performs the operation. Otherwise, it just performs the operation in its current state.

With regard to the theoretical claims on the tree-trace algorithm in Section 9.2.2, the first

two features on being adaptive and providing a parameterizable worst-case bound remain

the same. (With the second feature, it is implicit that if, for a particular FSM, the hash

tree performs well, then the tree-trace scheme will also perform well, because the tree-trace

bandwidth overhead will be, at most, the parameterizable worst-case bound more than

the hash tree bandwidth overhead.) With regard to the third feature, with a cache, the
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adaptive tree-trace checker will not improve over the hash tree for some FSMs. FSMs whose

runtime performance improves when the trace-hash scheme is used experience the asymptotic

constant bandwidth overhead behavior. From the expression for calculating potential (and

from our experiences with experiments), we see that the general trend is that the greater the

hash tree bandwidth overhead, the less likely it is for the checker to back off and the greater the

tree-trace scheme's improvement will be when it improves the checker's performance. Thus,

if the hash tree is expensive for a particular FSM, the adaptive tree-trace scheme will, when

it has built up sufficient potential, automatically start using the trace-hash scheme to try to

reduce the integrity checking bandwidth overhead.

Examples of cases in which the hash tree tends to be expensive, and in which one would

expect to have a significant improvement over the hash tree when the trace-hash scheme is

used are:

" an FSM that performs many stores. With many stores, there are many cache evictions

of dirty cache blocks. Recall from the caching approach in Section 4.1.1 that, in the

hash tree scheme, when the cache evicts a dirty block, the checker needs to check the

integrity of the parent block and bring it into the cache, if it is not already in the cache

(if the block were clean, the block is simply removed from the cache). There may not

be a lot of spatial locality in the cache evictions and thus, checking the integrity of

the parent block may require several hash blocks to be brought into the cache, making

the hash tree expensive. The evicted block's parent block in the cache will also be

dirty after the checker updates it, and the cost of its eviction will also contribute to

the expense of the hash tree.

" an FSM with a large program stride. The program stride is the average number of

addresses between consecutive program data operations. The general trend is that the

larger the program stride, the smaller the spatial locality in the FSM's data operations,

the larger the number of hashes that must be fetched on each FSM access to the

untrusted RAM and the more expensive the hash tree.

" an FSM with a small cache. The general trend is that the smaller the cache, the smaller

the number of hashes the cache contains, the larger the number of hashes that must be
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Figure 9-3: Bandwidth overhead comparison of the tree-trace scheme and the hash tree
scheme for various tree-trace check periods

fetched on each FSM access to the untrusted RAM and the more expensive the hash

tree.

9.3 Experiments

We present some experimental evidence to support the theoretical claims on the adaptive

tree-trace algorithm. In the experiments, a 4-ary tree of height 10 was used; the data

value/hash block size was 64 bytes and the time stamp size was 32 bits. w was set at 10%.

The benchmarks are synthetic and give the access patterns of stores and loads. The size of the

working set, the amount of data accessed by the benchmarks, is about 214 bytes. (Cbuffer(nth)

was about 4hbbrtnh = (4 * 10 * 64 * nth) bytes.) Figure 9-3(a) shows the bandwidth overhead

for different check periods for a particular benchmark, bi. The cache size was 16 blocks.

The tree-trace scheme has exactly the same bandwidth overhead as the hash tree for check

periods of 103 FSM store/load operations and less. Around check periods of 104 operations,

there is a slight degradation (tree-trace: 21.4 bytes per operation, hash tree: 21.0 bytes per

operation), though not worse than the 10% bound. Thereafter, the bandwidth overhead of

the tree-trace scheme becomes significantly smaller. By check periods of 107 operations, the

tree-trace scheme consumes 1.6 bytes per operation, a 92.4% reduction in the bandwidth

overhead compared to that of the hash tree. (We do not show the results for the trace-
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Figure 9-4: Bandwidth overhead comparison of the tree-trace scheme, the hash tree scheme
and the trace-hash scheme for an example access pattern

hash scheme for this experiment because its bandwidth overhead is prohibitively large when

check periods are small.) In Figure 9-3(b), the cache size is reduced to 12 blocks, making the

hash tree more expensive. The figure shows a greater tree-trace scheme improvement over

the hash tree bandwidth overhead when the tree-trace scheme improves on the hash tree.

Figure 9-4 shows the results for different benchmarks of an access pattern that checked after

a check period of 106 operations, then after each of five check periods of 103 operations. The

experiment demonstrates a simple access pattern for which the tree-trace scheme outperforms

both the hash tree and trace-hash schemes.

9.4 Worst-case Costs of tree-trace-check and

tree-trace-bkoff, with caching

In this section, we give the worst-case costs of Ctt-chkr(nth) and Cbkoff(nth) for the adaptive

checker in the case that the FSM uses a cache (cf. Section 9.2.3). For this analysis, we

assume a range is used for bookkeeping (cf. Section 8.2.2). Table 9.2 summarizes the costs.

The worst-case bandwidth consumption of the tree-trace-check operation is 2Chbb +

nth((bb + bt) + 2(h - 1)bb), where 2Chbb is the cost of evicting dirty tree nodes that are in

the cache and updating them in the tree in RAM, and nth((bb + bt) + 2(h - 1)bb) is the cost

of reading the addresses in the trace-hash scheme and moving them to the tree.

The worst-case bandwidth consumption of the tree-trace-bkof f operation is
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Ctt-chk(nth) 2Chbb+ nth((bb- b,) + 2(h - 1)bb)

Cbkoff(nth) Ctt-chk(mth) + 2Chbb+ Chbb

Table 9.2: Worst-case costs of tree-trace-check and tree-trace-bkof f, with caching,
when a range is used for bookkeeping (cf. Section 8.2.2). In the table, bt is the number of
bits in a time stamp, bb is the number of bits in a data value/hash block, h is the height
of the hash tree (the length of the path from the root to the leaf in the tree) and C is the
number of blocks that can be stored in the cache.

Ctt-chk (nth) +2Chbb+Chbb, where Ctt-chk (nth) is the worst-case cost of the tree-trace-check

operation and 2Chbb+Chbb = 3Chbb is the cost of synchronizing the cache (Csync). Cbkoff(nth)

covers the cost of the backing off in both the case where the cache is unsynchronized and all

of the addresses are in the tree, and in the case the cache is unsynchronized and some of the

addresses are in the trace-hash scheme.

These bounds on the worst-case costs are actually the costs of the operations if the cache

is not used for the operations. The checker could simulate the operation using the tree-trace

simulator to determine the actual costs when caching is used when the operation is called.

If this cost is less than the bound, caching is used for the operation; otherwise caching is not

used for the operation.

With reference to Section 9.2.3, Ctt-chk(0) 2Chbb and tC (th) = thbb+bt) + 2(h-

1)b6). Also CbkofF(0) = 5Chbb.

9.5 Adaptive Tree-Trace Checker with a Bitmap

In this section, we describe the modifications that are made to the adaptive checker in

Section 9.2 when the checker uses a bitmap for bookkeeping (cf. Section 8.2.2). Section 9.5.1

describes the modifications when the FSM does not use a cache. Section 9.5.2 describes the

modifications when the FSM does use a cache.

9.5.1 Without Caching

We first examine the case when the checker uses a bitmap for its bookkeeping and the FSM

does not use a cache. We assume that the bitmap is read from RAM with a granularity the
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tree-trace-store hash-tree-store Az = w * (2hbb - bb)
when FLAG = true
tree-trace-load hash-tree-load A = * (h - 1)bb
when FLAG = true
tree-trace-store hash-tree-store ZA =W * (2hbb - bb) - Cread-bmap
when FLAG = false
tree-trace-load hash-tree-load A(b W * (h - 1)bb - Cread-bmap
when FLAG = false

tree-trace-store trace-hash-store A4D = 2hbb - (2(bb + bt)) + w * (2hbb - bb) - Cread-bmap

tree-trace-load trace-hash-load A(D = hbb - (bb + 2bt) + w * (h - 1)bb - Cread-bmap

tree-trace-moveToTraceHash A(D = -(hbb + (h - 1)bb + bt) - 2 Cread-bmap

tree-trace-check A4D = -nth((bb + bt) + 2(h - 1)bb) - 2Nbmap

Table 9.3: A1D if a bitmap is used for bookkeeping (cf. Section 8.2.2). In the table, bt is
the number of bits in a time stamp, bb is the number of bits in a data value/hash block, h

is the height of the hash tree (the length of the path from the root to the leaf in the tree),
Cread-bmap is the number of bits in a bitmap segment and Nbmap is the number of bits in the

bitmap. If FLAG is true, all of the data is in the tree; if FLAG is false, there is data in the
trace-hash scheme.

size of the smallest granularity that can be read from RAM (64 bits, for example). We denote

this granularity as a segment. We denote the cost of reading a bitmap segment from the

untrusted RAM as Cread-bmap (if the size of a bitmap segment is 64 bits, then Cread-bmap = 64

bits).

Because the bitmap is stored in the untrusted RAM, there are two main changes that

are made to the descriptions in Section 9.2.1 and Section 9.2.2. Firstly, the amounts by

which 4D changes on the various tree-trace operations are slightly different. Secondly, because

ttchk (0), the fixed-cost of the tree-trace-check operation, is no longer zero when a bitmap

is used for bookkeeping, the test that the checker performs to determine whether to move

an address from the hash tree to the trace-hash scheme needs to be slightly modified.

Table 9.3 details the new amounts by which 4) changes on the various tree-trace opera-

tions. For simplicity, we assume that the bitmap is on a per data value block granularity;

it is simple to extend the analysis to a bitmap with a larger granularity. If FLAG is true,

the checker knows that all of the data is in the hash tree and it does not use the bitmap;

its stores/loads perform exactly as hash tree store/loads. If FLAG is false, there is data in

the trace-hash scheme and the checker then uses the bitmap. (A simple optimization is for
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adaptive-tree-trace-store(a, v):

1. If a is in the tree, and (cp > Ctt-mv-to-th + C ac,(nth + 1),
then tree-trace-moveToTraceHash(a).

2. tree-trace-store(a, v).

adapt ive-tree-trace-load(a):

1. If a is in the tree, and Dcp > Ctt-mv-to-th + Ct-Ck (nth + 1),
then tree-trace-moveToTraceHash(a).

2. tree-trace-load(a).

adaptive-tree-trace-checkO:

1. Let Z be the set of addresses in the trace-hash scheme. tree-trace-check(Z).

Figure 9-5: Adaptive tree-trace checker, without caching, when a bitmap is used for book-

keeping

the checker to maintain the highest and lowest addresses that have been moved to the trace-

hash scheme during a check period in its fixed-sized trusted state. On tree-trace-store

and tree-trace-load operations, if FLAG is false and if the address falls within the range

maintained in the checker, then the appropriate bitmap segment is read from the untrusted

RAM. The tree-trace-check operation only needs to read the bitmap bits corresponding

to the addresses within the range maintained in the checker.)

With the bitmap, when FLAG is false, each hash-tree-store and hash-tree-load costs

an extra Cread-bmap bits. When h > 0, (2hbb - bb) > (h - 1)bb. Thus, assuming w * (h - 1)bb >

read-bmap, the potential, <D, still increases on each tree-trace-store/tree-trace-load

operation. As an example, for w = 0.1, a block size of 64 bytes (bb - 29) and a tree

of h = 12, [w * (h - 1)bbJ = 563 bits > 64 bits and the potential increases on each

tree-trace-store/tree-trace-load operation.

The worst-case cost of the tree-trace-check operation can be expressed as Ctt-chk (nth)

tt-chk(0) + C-ach(rth), where Ctt-chk(0) is a fixed cost, a cost that independent of nth,

and Ckch(nth) is a marginal cost, a cost that is dependent on nth. From Table 9.3,

Ctt-chk(0) = 2 Nbmap and Ca(nth) = nth ((bb + be) + 2(h - 1)bb).
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Ctt-chk(nth) 2Chbb + nth((bb + bt) + 2(h - 1)bb) + 3 Nmap

Cbkoff (nth) Ctt-chk(nth) + 2Chbb + Chbb

Table 9.4: Worst-case costs of tree-trace-check and tree-trace-bkoff, with caching,
when a bitmap is used for bookkeeping. In the table, bt is the number of bits in a time
stamp, bb is the number of bits in a data value/hash block, h is the height of the hash tree
(the length of the path from the root to the leaf in the tree), C is the number of blocks that
can be stored in the cache and Nbmap is the number of bits in the bitmap.

Figure 9-5 shows the interface that the FSM uses to call the adaptive tree-trace checker.

Compared with Figure 9-1 (c.f. Section 9.2.2), 4cp is the potential that the checker has gained

after D > Ctt-chk (0) during the current check period. Thus, <bcp = 4D - max(Ctt-chk(0), cp-start)

(where bcp-start is the value of 4D at the beginning of the check period).

9.5.2 With Caching

We now examine the case when the checker uses a bitmap for its bookkeeping and the FSM

does use a cache. Because the bitmap is stored in RAM, there are two main changes that

are made to the descriptions in Section 9.2.3 and Section 9.4. Firstly, an extra term is added

to Ctt-Chk(nth) to account for using the bitmap. Secondly, bitmap segments may need to

be read from RAM in the adaptive-tree--trace-store and adaptive-tree-trace-load

operations. If a bitmap segment needs to be read, the checker needs to perform an additional

test to ensure that it has enough potential to be able to do so. Thus, the adaptive checker's

interface in Figure 9.2.3 also needs to be slightly modified.

Table 9.4 gives the worst-case costs of Ctt-chk (nth) and Cbkoffr(nth). The tree-trace simulator

needs to read the bitmap to simulate the check, which costs Nbmap. The actual check

operation needs to read and update the bitmap, which costs 2 Nbmap. Thus, compared to

Table 9.2, the cost of Ctt-chk(nth) increases by 3 Nbmap. As before, CbkOfffr(th) costs an extra

3Chbb more than the cost of Ctt-chk(nth)- Ctt-chk(O) = 2Chbb + 3Nbmap and Cm (nth)

nth ((bb + bt) + 2(h - 1)bb)- Cbkoff(0) = 5Chbb + 3Nmap.

If the checker's FLAG is true, the bitmap is not used. If it is false, the bitmap is used.

Optionally, some of the bitmap could be cached in a small part of the FSM's cache, though,

for this discussion, we assume that the bitmap is not cached.
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adapt ive-tree-trace-store(a, v):

1. Determine whether a is in the hash tree or trace-hash scheme. If the bitmap segment
for a needs to be read from RAM and 4 > Cbkoff(nth) + Cread-bmap, then read the
bitmap segment; otherwise call tree-trace-bkof f.

2. If a is in the tree, and

CP > Ctt-mv-to-th + tCh(nth + 1) + Cbuffer(fth + 1),
then tree-trace-moveToTraceHash(a).

3. If the tree-trace and hash tree caches are not synchronized,
if 'b+ Att-op < Cbkoff (nth), then tree-trace-bkoff.

4. tree-trace-store(a, v).

Figure 9-6: adaptive-tree-trace-store, with caching, when a bitmap is used for book-

keeping

For data value/hash block cache evictions, we have an extra status bit per cache line,

indicating whether the data value/hash block is in the tree or in the trace-hash scheme. On

adaptive-tree-trace-store/adaptive-tree-trace-load, if the bitmap is being used and

the data value block is not already cached (i.e., the checker will need to read the data value

block from RAM), the checker will then have to read a bitmap segment from RAM to deter-

mine which kind of store/load operation to perform in tree-trace-store/tree-trace-load.

(Let bht be the average bandwidth overhead on a hash tree operation. When the trace-hash

scheme is used, the data value cache hit rate tends to improve. Similarly to the case in

Section 9.5.1, if w * bht > Cread-bmap, then, in the calculation of the potential, 4b, the extra

cost of using the bitmap is covered by the overhead of the hash tree.)

Figure 9-6 shows the modified adaptive-tree-trace-store. The difference is in Step 1,

where there is an extra test to determine if the checker has enough potential to read the

bitmap segment if it needs to read the segment. adaptive-tree-trace-load is similarly

modified. adaptive-tree-trace-check is similar to the check when a range is used for the

bookkeeping (cf. Section 9.2.3 and Section 9.4).

On adaptive-tree-trace-store/adaptive-tree-trace-load operations, the tree-trace

simulator is used to determine the costs of tree-trace-moveToTraceHash and

tree-trace-store/tree-trace-load. These simulations occur after the checker has de-
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termined which scheme the address is in in step 1. The checker can pass this information

on to these simulations so that these simulations do not have to make any accesses to the

untrusted RAM. Thus, with a bitmap, as is the case when a range is used, the simulations in

the adaptive-tree-trace-store/adaptive-tree-trace-load operations do not make any

accesses to the RAM. (In the simulations, if the tree-trace-moveToTraceHash operation

in adaptive-tree-trace-store/adaptive-tree-trace-load needs to write a bitmap seg-

ment from RAM in order to update it, it does not actually update the segment, but simply ac-

counts for the cost of writing the segment.) With regard to the adaptive-tree-trace-check

operation, with a range, the simulation in the operation does not make any accesses to the

RAM; with a bitmap, the simulation reads the bitmap from RAM, but the cost of this

simulation is budgeted for in the check, similar to how we budget for the cost of the check

itself.

The methodology described in this section shows how to guarantee the parameterizable

worst-case bound for the adaptive tree-trace checker, with caching, when a bitmap is used for

bookkeeping. When check periods are large, the amortized cost of the tree-trace-check

operation, including reading and updating the bitmap, is small, and the principal overhead

is the constant runtime bandwidth overhead of the time stamps and the bitmap segments.

9.6 Disk Storage Model

Thus far, we have been considering hash trees with a small branching factor, such as binary

and 4-ary trees. In such trees, the bandwidth overhead on each FSM store or load operation

is clearly logarithmic in the number of data values that are being protected.

Some storage devices, such as magnetic disks, use B-trees [29, Chapter 19] to help manage

data. A B-tree is a balanced search tree that can have a large branching factor, often between

50 and 2000 nodes. A large branching factor greatly reduces the height of the tree. In disks,

besides the cost of the bandwidth consumed by the bytes being transferred from the disk,

there is also an additional fixed-cost for each disk access because of the time to position the

disk's read/write head and wait for the disk to rotate to the correct position. Thus, the disk

latency is an important performance consideration. If a single disk access fetches a node
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and its siblings, using a B-tree greatly reduces the number of extra disk accesses that are

required to fetch any leaf of the tree and thus reduces the latency incurred when fetching a

leaf in the tree.

In this section, we consider hash trees with large branching factors. In Section 9.6.1, we

study how the branching factor of the tree affects the overhead incurred on each FSM access

to the untrusted storage. In Section 9.6.2, we describe how to modify the adaptive tree-trace

checker for disks.

9.6.1 Branching Factor

Suppose that the storage consists of N data values and suppose that the hash tree's branching

factor is m. Let us first consider bandwidth overhead alone. As the branching factor of a

tree increases, the height of the tree decreases logarithmically, but the number of hashes that

need to be read at each level increases linearly. The height of the tree is, thus, log, N and

the bandwidth overhead of the hashes on each FSM load/store is e(m log, N). Minimizing

m log, N for m gives m = e. For m > e, m logn N is strictly increasing. Thus, if the goal is

to construct the tree such as to minimize bandwidth overhead alone, then trees with a small

branching factor, such as binary or 4-ary trees, are optimal.

Let us now consider latency alone. As the branching factor of a tree increases, the number

of hashes decreases and, thus, the space overhead of the hashes decreases. The number of

hashes of the tree is 8(1). If we fix the maximum amount of data value/hashes that can

be retrieved on a single disk access, as m increases, the maximum number of disk accesses

required to retrieve and verify any leaf in the tree decreases. Thus maximizing m minimizes

the maximum latency that is incurred when retrieving and verifying a leaf in the tree.

Let us consider bandwidth overhead and latency together. Suppose the cost to access

a node and its siblings is given by the cost function: c(m) = F + m, where F is the fixed

cost incurred when accessing a node and its siblings. For memory, because silicon memory

chips are entirely electronic, F is small. For disk, because of the large latency to position

the disk's read/write head and position the disk, F is large. The cost to retrieve and verify

a leaf in the tree is c(m) * logn N. Minimizing for m gives mln(m) = F. For m > e, as F

increases, m increases. Thus, for m > e, if F is large, then m should be large; if F is small,
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then m should be small.

9.6.2 Adaptive Tree-Trace Checker for Disks

For disks, because disk latency is such an important performance consideration, we com-

pare and bound the overhead on the number of disk accesses instead of the bandwidth

overhead. On each hash-tree-store/hash-tree-load there are extra disk accesses for

reading/writing the hashes. On each trace-hash-st ore/trace-hash-load, there are extra

disk accesses for reading/writing the time stamps. tree-trace-moveToTraceHash consumes

disk accesses to move an address (and its siblings) from the tree to the trace-hash scheme.

tree-trace-check consumes disk accesses to read the addresses currently protected by the

trace-hash scheme and to move them back to the protection of the tree. The equation to

calculate potential is <D = (1 + w)Dht - Dtt, where Det is the current total tree-trace disk

accesses overhead and Dht is the current total hash tree disk accesses overhead, if the hash

tree had been used to check the disk.
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Chapter 10

Initially-Promising Ideas

In this chapter, we explore ideas that showed initial promise, but, upon careful examination,

are vulnerable to attacks. The chapter helps to demonstrate the difficulty of the problem of

checking the integrity of untrusted data when using only a small fixed-sized trusted state.

Section 10.1 studies replacing standard hash functions with incremental multiset hash

functions in the hash tree. The potential advantage is that the siblings of a node will

not have to be read to update the node. However, as we shall see, care must be taken

when implementing hash trees using incremental hash functions instead of standard hash

functions. If just incremental hash functions are used, the approach is vulnerable to replay

attacks. To prevent the replay attack, we augment the approach with time stamps. In our

resulting scheme, when compared with the typical hash tree, though stores can consume less

bandwidth, loads will consume more bandwidth because of the time stamps. The checker will

also need to have an extra operation to reset time stamps periodically, which will consume

bandwidth that would not have been consumed if the typical hash tree had been used.

Section 10.2 studies an approach in which the trace-hash-check operation is modified

such that checker requests that the untrusted storage read the addresses that the FSM used,

instead of the checker reading the addresses itself. The untrusted storage computes a single

multiset hash and sends this to the checker to add to its READHASH for the check. The

potential advantage is that the trace-hash-check operation would become much cheaper

even for frequent checks. However, as we will see, the approach is vulnerable to attacks.
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Vdroot =- (WRITEH ASH = H((a,, , )) +-H 7((ad2, Vd2)),

READHASH 0)

od, = (WRITEHASH = 7((ai, vi)) + H((a2, ), Vd2 = (WRITEHASH = R((a3, V3 )) ±R N((a 4 , v 4 )),

READHASH1 = 0) READHASH = 0)

V1 2 V3 V4

Figure 10-1: Initial state of broken version of an incremental hash tree

10.1 Incremental Hash Trees

10.1.1 Broken version

Consider a binary hash tree. A typical hash tree uses a standard hash function [1, Chapter

9] to create the collision resistant hash of the concatenation of the data that is in each

of the children; the operations to check a node's integrity and to update a node are as

described in Section 4.1. Consider replacing the standard hash function with an incremental

multiset hash function. Figure 10-1 illustrates the approach. Each internal node contains a

WRITEHASH and READHASH. Consider that Encrypted-Set-XOR-Hash (cf. Section 5.5.3)

is used. Initially, each internal node's WRITEHASH is Pk'(Hk(al.vl) e Hk(a 2.v 2 )), where

a, and a2 are the addresses of the internal node's first and second child nodes respectively,

and v, and v2 are the data values at a1 and a2 respectively. Initially, each internal node's

READHASH is 0.

The operation to check the integrity of a node is similar to that in the typical hash tree.

'To check the integrity of a node, the checker:

1. reads the node and its siblings,

2. for each of the node and its siblings, creates an (address, data value) pair, and computes

an incremental multiset hash of the (address, data value) pairs; denote this hash as

CHILDHASH.

3. using the parent's WRITEHASH and READHASH, checks that:
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WRITEHASH -H, READHASH +-H, CHILDHASH.

The steps are repeated on the parent node, and on its parent node, all the way to the root

of the tree.

The operation to update a node is different than that in the typical hash tree, with the

advantage that the node's siblings are not read when a node is updated. To update a node,

the checker:

1. reads the node. The node's siblings are not read (note that since the checker does not

read the node's siblings, it cannot check the integrity of the node's data value),

2. creates an (address, data value) pair using the node's address and the node's current

value, and computes 'Hk on the pair; denote this hash as CHILDHASH,

3. creates an (address, data value) pair using the node's address and the node's new value,

and computes Hk on the pair; denote this hash as CHILDHASHnew,

4. changes the parent's data value: using the parent's WRITEHASH and READHASH,

updates READHASH: READHASH +,= CHILDHASH,

and updates WRITEHASH: WRITEHASH +-= CHILDHASHnew.

5. writes the node's new data value to the node in the untrusted RAM.

Again, the steps are repeated until the root is updated.

On each FSM load from address a, the checker checks the path from a's data value leaf

to the trusted root. On each FSM store of value v to address a, the checker update's the

path from a's data value leaf to the trusted root.

As it is, the scheme that is presented does not work because the checker does not check

the integrity of a node when it is updating the node [3, Section 5.5]. Suppose that, at address

a1 , the checker:

1. updates the address's current data value, vi , with a new data value, vlnew, then,

2. subsequently checks the integrity of the data value at address a1 .
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Let w(.) denote a value that the checker writes to RAM and r(.) denote a value that

the checker reads from RAM. Then, the check that the checker performs in Step 3 of the

node integrity check operation when it checks the integrity of the data value at address a,

is, essentially, whether:

Hk(a.w(vlld)) @ H(a.w(vnew)) = H(ai.r(vi d)) e Hk(a.r(vne.w))

If the RAM behaves like valid RAM, then H(a.w(vi d)) matches Hk(al.r(vl 9)), and

H1k(ai.w(vinew)) matches H(ai.r(vnew)).

Attack 1: Unfortunately, there are other terms that can match. The checker's check also

passes if Hk(a1.r(vl )) = H(a.w(vnew)) and Hk(al.w(vil d)) = H(a.r(vnew)). This

means that if an adversary correctly predicts the new value for the address, w(vinew), the

adversary can send this to the checker when the checker reads from the address during its

update operation. The adversary can then replay the old value of the address, w(viold), when

the checker subsequently reads the node and checks its integrity during a load operation.

'The checker's check will pass, even though the adversary has replayed the old value of the

address.

Attack 2: Because the G operation is used to update WRITEHASH and READHASH,

the checker's check also passes if Hk(al.w(viold)) = Hk(al.w(vlnew)) and Hk(aj.r(viold)) =

Hk(al.r(vnew)). This means that, if the checker updates the node with the same value,
the adversary can choose any value that it wants to give the checker to read during a load

operation. The checker's check will pass, even though the adversary has tampered with the

value of the address.

Section 10.1.2 shows how to fix the scheme by associating a time stamp with each node in

the untrusted RAM. A node's time stamp is kept in its parent node's data value (cf. Figure 10-
2). Thus the parent node's data value consists of a WRITEHASH, READHASH and a time

stamp for each of the children. The parent node's data value's WRITEHASH and READHASH

are computed over the (address, data value, time stamp) triples corresponding to the children.

Each time a node is updated, the checker increments the node's time stamp. Considering
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Vdr, = (WRITEHASH = K((adi, Vd 1, td1 )) + N((ad2, Vd 2 , t(12)),
READHASH = 0, tdi, td2)

V(1l (WRITEHASH = N((ai, v,, tj)) +H K((a2 , , t 2)), d2 = (WRITEHASH = 7((a 3 , v 3 , t3 )) ±- N((a4 , V4 , t4 )),
READHASH = 0, t1 , t2 ) READHASH = 0, t t 4 )

V1  V2  V3  V4

Figure 10-2: Initial state of iHashTree

the attacks described earlier, with the time stamps, the check that the checker performs in

Step 3 of the node integrity check operation when it checks the integrity of the data value

at address a, is whether:

Hak(aj.w(vi ol).tiol )(DHk(ai.w(vi..w).ti..,,) = Hk(ai.r(vi ol).ti l )(DHk(ai.r(Vine.).ti..w).

The purpose of the time stamp is to prevent the viold terms from ever being identical to

the Vinew terms. Thus, viold terms can only match v, old terms, and Vinew terms can only

match Vinew terms.

Because the time stamp is incremented when the node is updated, we know that tinew #
old. Consider the first of the attacks described earlier. If the adversary tries the at-

tack, the attack will fail because, when the hashes are checked in the load operation,

Hk(al.r(vl old).t old) # Hk(al.w(vinew).tinew). Consider the second attack. If the adversary

tries the attack, the attack will fail because, when the hashes are checked in the load opera-

tion, Hk(a1.w(vlold).t1 o) Hk(ai.w(vinew).tnew). Section 10.1.2 details the approach.

10.1.2 iHashTree Checker

Figure 10-2 illustrates an example tree in the iHashTree scheme. Each non-leaf node in the

tree consists of a data value consisting of a WRITEHASH, a READHASH, and a time stamp

for each of the node's children.
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Notation

Each node d consists of a data value Vd.

We denote the parent node of d as P(d). We denote P(d)'s data value as VP(d).

We denote d and its sibling nodes as the set S(d). We denote the set of S(d)'s data

values as VS(d)-

Each node d is also associated with a time stamp td. Time stamp td is kept in VP(d).

Consider the case that d is a leaf. In this case, Vd is simply the data value that the FSM

stored at the address.

Consider the case that d is a parent. We denote the set of children nodes of d as C(d).

In this case,

Vd = (WRITEHASH, READHASH, VieC(d)ti).

As before, let w(.) denote a value that the checker writes to RAM and r(.) denote a value

that the checker reads from RAM.

Interface

Each node d's WRITEHASH is initially EZ iEC(d)N((ai, vi, ti)) and its READHASH is initially

zero. The root is stored in the fixed-sized trusted state in the checker. Figure 10-3 shows

the basic iHashTree-nodeIntegrityCheck, iHashTree-nodeUpdate and

:iHashTree-nodeUpdate operations.

On each FSM load from address a, the checker calls iHashTree-nodeIntegrityCheck

on each node along the path from a's leaf node to the trusted root. On each FSM store

of value v to address a, the checker calls iHashTree-nodeUpdate on each node along the

path from a's leaf node to the trusted root. We refer to these load and store operations as

iHash-tree-load(a) and iHash-tree-store(a).

When a leaf node's time stamp has reached its maximum value, the checker must re-

set it. To reset the time stamp of the leaf node at address a, the checker first calls

iHash-tree-load(a) to check the integrity of data value at address a. The checker then

calls iHashTree-nodeTimeStampReset with this data value to update the node's parent's

data value with a zero value for the node's time stamp. The checker repeats the
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Let ad be the address of node d in the untrusted RAM.

iHashTree-nodeIntegrityCheck(ad): checks the integrity of d:

1. read VS(d) and Vp(d) from the untrusted RAM,

2. for each i C S(d), create a (ai, vi, ti) triple using the data value in VS(d) and the time
stamp in VP(d), and compute CHILDHASH = EH iES(d) H((ai, vi, ti)).

3. using VP(d)'s WRITEHASH and READHASH, check that:
WRITEHASH =--H READHASH +-H CHILDHASH.

The steps are repeated on the parent node, and on its parent node, all the way to the root
of the tree.

iHashTree-nodeUpdate(ad, vdnew): updates d to have data value vdnew:

1. read vd and Vp(d) from the untrusted RAM. d's siblings are not read (note that since
the checker does not read d's siblings, it cannot check the integrity of vd),

2. create a (ad, Vd, td) triple using td in VP(d) and vd, and compute CHILDHASH =
H((ad, vd, td)),

3. let tdnew = (td + 1). Using Vdnew and tdnew, create a (ad, vdnew' tdnew) triple and
compute CHILDHASHnew = H((ad, Vdnew, tdnew)),

4. change vP(d): using VP(d)'s WRITEHASH, READHASH and td
update READHASH: READHASH +-= CHILDHASH,
update WRITEHASH: WRITEHASH +H= CHILDHASHnew,
update td: td += 1.

5. write Vdnew to the untrusted RAM.

The steps are repeated on the parent node, and on its parent node, all the way to the root
of the tree.

iHashTree-nodeTimeStampReset (ad, Vdnew): resets td:

1. iHashTree-nodeIntegrityCheck(ad) (this checks the integrity of d's siblings).

2. compute CHILDHASH = EH ES(d) )-t((ai, vi, ti)) where Vd = Vdnew and td = 0.

3. change vP(d): using VP(d)'s WRITEHASH, READHASH and td
update READHASH: READHASH = 0,
update WRITEHASH: WRITEHASH = CHILDHASH,
update td: td = 0.

4. write Vdnew to the untrusted RAM.

The steps are repeated on the parent node, and on its parent node, all the way to the root
of the tree.

Figure 10-3: Basic iHashTree operations
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iHashTree-nodeTimeStampReset call using the parent's new value to update the parent's

parent's data value with a zero value for the parent's time stamp. The

iHashTree-nodeTimeStampReset call is repeated to the root of the tree. We refer to the

operation that resets a leaf node's time stamp as iHash-tree-timeStampReset(a).

With regard to the size of the time stamps, the maximum possible value of a parent's

time stamp must be greater than the sum of the maximum possible values of its children's

time stamps. Suppose the time stamp of a leaf node is bteaf bits large. For each leaf node,

the FSM can perform 2btleaf store operations on the node before the checker must perform

an extra iHash-tree-timeStampReset operation to reset the node's time stamp.

Proof of Security of iHashTree Checker

'rheorem 10.1.1. Assume that, for all of the nodes, the checker resets the node's time stamp

when (or before) the node's time stamp reaches its maximum value. The RAM has behaved

like valid RAM if and only if all of the checks pass.

Proof. We assume that, for all of the nodes, the checker resets the node's time stamp when

(or before) the node's time stamp reaches its maximum value. If the untrusted RAM has

behaved like valid RAM, it is easy to verify that all of the checks pass. Suppose that the

untrusted RAM has not behaved like valid RAM. We will prove that a check will fail.

Lemma 10.1.2. Consider a node d. Assume that vp(d) has not been tampered with. If vd is

tampered with, then a check will fail.

Droof. Because we assume that vp(d) has not been tampered with, we assume that, for each

i E S(d), tj has not been tampered with.

Let Rd be the multiset of triples read from node d since the checker last reset td. Let

T' be the multiset of triples written to node d since the checker last reset td. Because Rd is

only updated in the iHashTree-nodeUpdate operation (and reset in the

iHashTree-nodeTimeStampReset operation), and because d's time stamp has not been tam-

pered with and is incremented each time d is updated, each triple in Rd is unique and Rd

forms a set. For a similar reason, each triple in Wd is unique and Wd forms a set. U ies(d) Ri

hashes to vp(d)'s READHASH; U iES(d) Wi hashes to Vp(d)'s WRITEHASH. Because U iGS(d) Ri
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and U ieS(d) W are each sets, the multiset hash function used to update READHASH and

WRITEHASH simply needs to be set-collision resistant (cf. Section 5.5.3).

If the adversary tampers with vd, when the checker performs the check in step 3 of the

node integrity check operation during a load operation, there will be a triple in Rd that will

not match its corresponding triple in Wd. Wd # Rd implies that WRITEHASH is not equal to

READHASH +-H CHILDHASH, or that a collision has been found in the multiset hash function.

Thus, the check in step 3 of the node integrity check operation will fail when d's integrity

is checked during a load operation (or a collision will have been found in the multiset hash

function). This concludes the proof of Lemma 10.1.2.

Theorem 10.1.1 follows by induction by noticing that Vd =

(WRITEHASH, READHASH, ViCc(d)ti) for non-leaf nodes and Vd is equal to the FSM's data

value for leaf nodes, and that the root's data value cannot be tampered with because it is

stored in trusted state. F

Analysis

We compare the performance of iHashTree with that of a typical hash tree. We refer to the

typical hash as hashTree.

We first consider a tree in the iHashTree scheme. Consider a complete m-ary tree,

with m = 2'. Let h be the height of the tree (the length of the path from the root to

the leaf in the tree). Let btleaf be the number of bits of a leaf node's time stamp. For

efficiency, each node can maintain the difference between WRITEHASH and READHASH

instead of two multiset hashes. For simplicity, let us assume that leaf nodes' data values and

(WRITEHASH-READHASH) are the same size; let bd be the number of bits of a leaf node's

data value.

The maximum possible value of a parent's time stamp must be greater than the sum of

the maximum possible values of its children's time stamps. Let bt0 be the number of bits of

a time stamp of a node at depth h in the tree, bt, be the number of bits of a time stamp of

a node at depth h - 1 in the tree, etc. bto = btlef and bt,,+ = [log2(m * 2 bt)~ = (c + bt).

Thus, by induction, b, = btlaf + (i * c).
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Let op'athiHashTree be the bandwidth consumed by reading a path in iHashTree from

the leaf to the topmost node. 3 pathiHashTree -bd + tleaf + (i * c) d

(h - 1)mbt,: + mc Z_~2 i = hbd + (h - 1)mbtl, + mc(h-1)(h-2). Let OiHashTreeStore be the

bandwidth consumed by a iHash-tree-st ore operation. /iHashTreeStore = 20pathiHashTree'

Let /iHashTreeLoad be the bandwidth consumed by a iHash-tree-load operation.

OiHashTreeLoad = MipathiHashTree . Let iHashTreeReset be the bandwidth consumed by a

iHash-tree-timeStampReset operation. OiHashTreeReset " (m + 1)/pathiHashTree'

Let f8 , 0 < fs < 1, be the average frequency of store operations per node (the frequency

of store operations is defined as number of store operations ). For each leaf nodenumber of store and load operations
the FSM can perform 2 bleaf store operations on the node before the checker must perform

an extra iHash-tree-timeStampReset operation to reset the node's time stamp. Thus, a

iHash-tree-timeStampReset operation occurs every b I store operations on a particular
2 btleaf

node.

Let BiHashTree be the average bandwidth per store or load operation consumed by

iHashTree. BiHashTree = fs/ 3iHashTreeStore + (1 - fs)/iHashTreeLoad + 2/ f iHashTreeReset2 leaf

( 2 tbteaf 2 fs± 2 btleaf m(1-fS)+(m+1)fsOpaiHashTree 
2 btleaf

We now consider a similarly-arranged tree in the hashTree scheme. Let pathhashTree

be the bandwidth consumed by reading a path in hashTree from the leaf to the top-

most node. OpathhashTree = hbd. Let /hashTreeStore be the bandwidth consumed by a

hash-tree-store operation. /hashTreeStore = 2 m/3 pathhashTree. Let /hashTreeLoad be the

bandwidth consumed by a hash-tree-load operation. OhashTreeLoad = mnpathhashTree.

Let BhashTree be the average bandwidth per store or load operation consumed by hashTree.

BhashTree = fshashTreeStore + (1 - fs)/ 3hashTreeLoad = /pathhashTree (mfs + M).

if SBhashTree > 1, then iHashTree performs better than hashTree; otherwise hashTreeB3iHashTree

performs better than iHashTree. Thus, if

(rnfs + m)2btleaf /3pathiHashTree

2 btleaf 2 fs + 2 bleaf m(1 - fs) + (M + 1)fg /pathhashTree

then iHashTree performs better than hashTree. In this case, we see that, for bt,,ef sufficiently-

large (so that iHash-tree-timeStampResets are not frequent), as fs increases, iHashTree's
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gain over hashTree increases.

10.2 Intelligent Storage

In the trace-hash scheme in Chapter 7, the checker reads the addresses that the FSM used

to perform the trace-hash-check operation. Suppose that MSet-Mu-Hash (cf. Section 5.4),

which does not use a secret key, is used to update the checker's multiset hashes in the scheme.

Consider a new trace-hash-check operation, trace-hash-check', in which the checker

requests that the untrusted storage read the addresses that the FSM used, instead of the

checker reading the addresses itself. The untrusted storage computes the multiset hash of the

(address, data value, time stamp) triples corresponding to the addresses that it reads, then

sends this hash to the checker. The untrusted storage is able to compute the hash because

MSet-Mu-Hash does not use a secret key. The checker performs the check by adding the hash

to READHASH and checking that WRITEHASH is equal to READHASH. The advantage of

trace-hash-check' is that the bandwidth consumption of the check is significantly reduced

to primarily just the size of the hash. The trace-hash-check' operation is very cheap even

for frequent checks.

Unfortunately, the scheme does not work. Let W be the multiset of triples that the

checker writes to the untrusted storage. Let R be the multiset of triples that the checker reads

from the untrusted storage. To successfully attack the scheme, an adversary tampers with a

data value that the checker reads from the storage and maintains the multisets (W - R) and

(R -- W). Because the untrusted storage can calculate the hashes of multisets, the adversary

can also calculate the hashes of multisets. When the checker performs trace-hash-check',

the adversary calculates h, = (W - R) and h2 = (R - W), then h3 = (h, -- H h 2 ). (In

the case of MSet-Mu-Hash, h -H, h' = (h x h'-' mod p) ). The adversary sends h3 to the

checker for the checker to add to READHASH. The checker's check will pass even though the

adversary has tampered with a value read from the storage.

With the trace-hash-check' operation, the adversary is able to successfully attack the

scheme because he is able to remove triples from R that are in R but not in W, as well as

add triples to R that are in W but not in R, after he has tampered with a value that the
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checker has read from the storage. In the original trace-hash-check operation, the checker

reads the addresses in the untrusted storage and adds the triples to R itself. The adversary

is unable to remove any triples from R and any attacks he tries will be detected.
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Chapter 11

Conclusion

In this chapter, we present tradeoffs a system designer may consider making when using the

adaptive tree-trace checker and the applicability of the adaptive tree-trace checker. We then

conclude the thesis.

11.1 Tradeoffs

In this section, we discuss some of the tradeoffs a system designer may consider making when

implementing the adaptive tree-trace checker in his system. We focus particularly on the

data structures that are used for bookkeeping (cf. Section 8.2.2) and on the cache simulators

(cf. Section 9.2.3).

The thesis has described implementing the adaptive tree-trace checker with two types

of bookkeeping data structures: a range, where the checker moves a range of addresses to

the trace-hash scheme and maintains the highest and lowest addresses of the range in its

fixed-sized trusted state; and a bitmap maintained unprotected in the RAM, where the

checker incurs the extra cost of reading a bitmap segment to determine which scheme an

address is in, and incurs the extra cost of reading and updating the bitmap when performing

a tree-trace-check operation. As described in Section 8.2.2, the hash tree and trace-

hash schemes implicitly encode the necessary security information and a system designer

is free to choose any data structures that allow the checker to most efficiently perform its

bookkeeping. Using a range is very effective when there is spatial locality and a computer
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architect may consider using ranges for the system's stack and heap. A bitmap is a more

general bookkeeping data structure. If the architect uses a bitmap, the bitmap could be on a

block granularity or on a larger granularity, such as on a page granularity. If there are unused

bits in the page table, the architect may consider using page table bits for the bookkeeping.

For software or hardware systems, the system designer may consider using a hierarchical

bitmap which will make tree-trace-moveToTraceHash operations slightly more costly, but

can significantly reduce the cost of finding the addresses in the trace-hash scheme during a

tree-trace-check operation.

The cache simulators in Section 9.2.3 are being used to help guarantee the worst-case

bound on the adaptive tree-trace checker when the FSM uses a cache. Though the simula-

tors are small, they do consume extra space overhead. Firstly, if the bound was guaranteed

on bandwidth consumption, instead of bandwidth overhead, the base simulator could be

dropped. Secondly, if the strictness of the bound is relaxed, we could have conservative esti-

mates for the various tree-trace operations. The tree-trace simulator could then be dropped.

Finally, we could have an estimate on the hash tree cost, using information on its cost when

all of the data is in the tree and information on the current program access patterns. The

hash tree simulator could then also be dropped. (If the hash tree simulator is not used,
the checker will not be able to synchronize the cache if it backs off, but, in practice, the

performance of the tree after it has moved all of the addresses back into the tree should soon

be about the same with the unsynchronized cache as with a synchronized cache.) Areas

of future research are to investigate heuristics for the various estimations, as well as more

sophisticated tree-trace strategies (cf. Section 9.2.2), that would work well in practice in

different system implementations.

11.2 Applicability

In this section, we discuss the applicability of the adaptive tree-trace checker to other systems

besides secure processors. Hash trees have also been used the check the integrity of data in

software systems [14, 28, 30], where typically the client is trusted but the server and the data

it contains are not trusted. A system designer may consider using the adaptive tree-trace
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checker if the overhead of the hash tree checker is a performance bottleneck and applications

can perform sequences of data operations before performing an operation critical to the

security of the system. As the performance metric, the system designer may choose to use

bandwidth overhead, to reduce network traffic, or may choose to use the number of RPC

calls, to reduce the network latency experienced by applications.

In software systems, the storage access pattern may be more random than that in hard-

ware systems. For each of the trace-hash checker and the adaptive tree-trace checker, the

same general trends that are experienced with access patterns with spatial locality should be

experienced with random access patterns, for the same reasons. For the trace-hash checker,

if the number of store and load operations performed by the client is large, the amortized

cost of reading the storage to perform the trace-hash-check operation is very small and

the principal bandwidth overhead is the constant-sized runtime overhead of reading and

writing time stamps, which are also very small. When check periods are large, the trace-

hash checker should perform well. If the check period is small, the amortized cost of the

trace-hash-check operation is more costly and the performance of the trace-hash checker

will be poor. The adaptive tree-trace checker will be guaranteed to have a bandwidth over-

head of no more than (1 + w) of the hash tree bandwidth overhead (if bandwidth overhead is

the performance metric). Clients whose performance improves when the trace-hash scheme

is used will experience the constant bandwidth overhead asymptotic performance. Even if a

bitmap is used for bookkeeping and a large part of the bitmap needs to be read to perform a

tree-trace-check operation, the amortized cost of reading and updating the bitmap dur-

ing the tree-trace-check operation will be small when check periods are large, and the

principal overhead will be the constant runtime bandwidth overhead of the time stamps and

the bitmap segments. We observe that, with a random access pattern, the hash tree is likely

to be more expensive than with an access pattern with spatial locality because the checker is

likely to have to fetch more hashes from the storage before it finds a hash in the cache. Thus,
there is the potential for the adaptive tree-trace checker to have a greater improvement with

a random access pattern than with an access pattern with spatial locality when the checker

experiences the constant bandwidth overhead asymptotic performance.
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11.3 Summary

We have introduced a trace-hash scheme and an adaptive tree-trace scheme, which each have

the feature that, for all programs, the scheme's bandwidth overhead approaches a constant

bandwidth overhead as the average number of times the program accesses data between

critical operations increases. The trace-hash scheme is well-suited for certified execution

applications where a critical operation tends to occur after a billion or more memory opera-

tions. The adaptive tree-trace scheme is designed to be a general-purpose integrity checker.

The adaptive tree-trace scheme can be implemented anywhere hash trees are currently being

used to check the integrity of untrusted data. The application can experience a significant

benefit if programs can perform sequences of data operations before performing a critical

operation. The general trend is that the greater the hash tree bandwidth overhead, the

greater will be the adaptive tree-trace scheme's improvement when the scheme improves the

checker's performance.
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