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Abstract

The steady-state confinement of tokamak plasmas in a fusion reactor requires non-
inductively driven toroidal currents. Radio frequency waves in the electron cyclotron
(EC) range of frequencies can drive localized currents and are thus particularly at-
tractive for control of the current profile. In the high-3 regimes of spherical tokamaks
(ST) such as NSTX and MAST, heating and current drive (CD) by conventional
electron cyclotron waves is not possible. However, electron Bernstein waves (EBW)
have been proposed as an alternative for CD in these overdense devices. Given the
important role predicted for CD by EBWs in high-3 STs, a detailed study of EBWCD
must be undertaken.

In this thesis a systematic analysis of EBWCD is provided. In particular, the
characteristics of EBWs, the physics of resonant wave-particle interaction, and the CD
mechanisms are investigated in detail. The CD efficiency and the current deposition
profile are calculated using the numerical code DKE, which solve the drift-kinetic
equation. Two scenarios for EBWCD are identified. The first scenario consists of
approaching a harmonic of the EC resonance from a lower B-field region and drives
current in the plasma core using the Fisch-Boozer mechanism. The other scenario
consists of approaching a harmonic of the EC resonance from a higher B-field region
and drives current off-axis on the outboard side using the Ohkawa mechanism. Both
schemes drive current in the toroidal direction opposite to the parallel wave vector.
The EBWCD efficiency is found to be higher than ECCD efficiency because the EBW
power is deposited in the tail of the electron distribution function. The results of this
thesis confirm the important role of EBWs for driving currents in high-3 plasmas.

The analytical and numerical tools developed as part of this thesis can be used
to design, predict, and analyze future EBWCD experiments. Among these tools is
the kinetic solver DKE, which can be used for electron current drive calculations in
toroidal plasmas for different types of radio-frequency waves, such as lower hybrid
and electron cyclotron waves.
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Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction and Background

1.1 Motivation, Objectives and Outline

1.1.1 Motivation

Electron Bernstein Waves (EBW) have been theoretically predicted [1] and exper-
imentally identified [2] more than forty years ago. Recently [3] [4] [5], they have
received much consideration for heating and current drive (CD) in spherical toka-
maks (ST) such as NSTX, MAST and CDX-U.

STs are small aspect ratio toroidal devices that differ from conventional tokamaks
by their ability to achieve high-3 regimes, where 8 = 2uq (p) /B? is the ratio of the
kinetic pressure to the magnetic pressure ({p) is the volume-averaged pressure and B
is the toroidal magnetic field on axis). In complement to the large bootstrap current
(BC) fraction expected in these high-3 plasmas, sustaining a steady-state operation
in ST's requires one to drive non-inductive currents. For that matter, radio-frequency
(RF) CD in the electron-cyclotron (EC) range of frequency is particularly attractive
because of its ability to drive very localized currents, and thus to provide an accurate
control of the g¢-profile and a means to stabilize MHD modes such as neoclassical
tearing modes [6].

However, high-3 plasmas in STs are typically very overdense, meaning that the

electron plasma frequency wy, is several times larger than the electron cyclotron fre-
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Figure 1-1: Radial profile of characteristic frequencies in a NSTX high-3 plasma.
Solid lines correspond to harmonics of the EC frequency, while dashed lines represent
the R, O and L cut-off frequencies wg, wpe, and wy, respectively. The dash-dotted line
shows the upper-hybrid frequency wyg.

quency we., except near the edge of the plasma. In that case, heating and current
drive by electromagnetic EC waves (O- and/or X-mode), which have been used exten-
sively in low-3 tokamaks, becomes very difficult because ECWs can propagate only
above the cut-off frequencies wp (X-mode) and wy, (O-mode), several times above
the cyclotron harmonics. Unfortunately, ECWs experience little if any damping at
high harmonics of the cyclotron frequency. To illustrate these observations, a radial
profile of characteristic frequencies in a overdense high-g NSTX plasma is shown in
Fig. 1-1.

However, lower frequency ECWs can be mode-converted to EBWs at the upper-
hybrid resonance (UHR) near the edge [7] [8], and EBWSs can propagate into the
overdense plasma at frequencies below the electromagnetic cut-offs. In addition, they

are completely damped at any harmonic of the cyclotron frequency [8].

Although EBWCD has been demonstrated in toroidally confined fusion plasmas
[9] [10] and numerical prediction of EBWCD can be found in the litterature [11] [10]
[12], no systematic description of EBWCD has been given. Given the important
role predicted for EBWCD in high-8 STs, a thorough understanding of EBWCD
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mechanisms and an extensive calculation of CD efficiency and localization are much
needed. In addition, analytical and numerical tools must be developped in order to

design and analyze future EBW experiments.

1.1.2 Objectives

The goal of this thesis is to provide an extensive analysis and understanding of EB-
WCD. I will identify the possible scenarios and mechanisms of EBWCD. For each
of the two EBWCD scenarios considered in this work, I will study the parametric
dependence of the current drive localization and efficiency. Several ways to optimize
the CD efficiency will be discussed. The possible locations of EBWCD and the extent
of the current deposition region will be calculated. More generally, I will investigate
the robustness of EBWCD with respect to variations in plasma and wave parameters.

A systemetic calculation of EBWCD requires to study extensively the properties
of EBWs and the kinetic calculation of RFCD in toroidal plasmas, with numerical
developments. These topics are addressed in separate chapters of the thesis, which
are fairly independent and could be used in different areas of research.

In addition, the set of analytical and numerical tools developed in this thesis could
be used to design, predict and analyze EBWCD experiments.

The present work focuses on high-8 STs, because the possible role of EBWCD
in these devices is clearly apparent, and because the particular magnetic geometry
of high-3 STs is suitable to study different scenarios for EBWCD. However, most of
the results and analyses are also applicable to other overdense toroidal plasmas in a
magnetic field. In particular, EBWCD could also be an attractive method for CD in

high- conventional tokamaks.

1.1.3 Outline

In the rest of this introductory chapter, I outline a more general approach to the
EBWCD problem, and give a review, with historical perspective, of the research on

EBW excitation, description of wave-particle interaction and numerical calculations

27



of RFCD. Then, the particular magnetic geometry of high-8 STs is introduced, and
two possible EBWCD scenarios in STs, schematically illustrated on Fig. 1-2, are
proposed (Section 1.3):

e The low B-field (LBF) approach, in which the EBW (with frequency w) ap-
proaches the n't cyclotron harmonic resonance from a lower field region (nwee <

w), and which typically takes place in the core of the plasma.

e The high B-field (HBF) approach, in which the EBW approaches the n*® cy-
clotron harmonic resonance from a higher field region (nw. > w), and which

typically takes place off-axis on the outboard side of the plasma.

LBF Approach
(ncoce <)

-

HBF Approach
(no)Ce > )

]
EC resonance
th .
n harmonic

Figure 1-2: Ilustration of the LBF and HBF schemes.

In Chapter 2, the characteristics of EBWs are studied in details. Because EBWs
are kinetic waves that do not exist in the cold plasma description, the basic concepts
of the linear kinetic theory of waves are reviewed (Section 2.1). This theory is applied
specifically to EBWs in the electrostatic approximation (Section 2.2), which allows
one to carry approximate analytical calculations of EBW characteristics, thus provid-
ing useful insight on the behavior of EBW. In particular, characteristics of EBWs in
the vicinity of cyclotron harmonic resonances are very different depending on whether

the resonance is approached from a LBF or a HBF region. Then, in Section 2.3, the
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exact dispersion relation for EBWs is solved using the numerical dispersion solver
R2D2 developed by A.K. Ram [13], and the relevant wave parameters for studing
EBWCD are calculated.

Current drive by radio-frequency (RF) waves, such as EBWs, results from the

combined effects of three physical mechanisms:

e The resonant interaction between the waves and particles in the plasma. In the
case of high frequency waves in the electron cyclotron range of frequencies, such

as EBWs, the interaction is between the waves and electrons.
e The collisions between particles, which involve energy and momentum exchange.

e The motion of particles in the toroidal magnetic field, including effects of

trapped particle orbits and particle drifts.

Although the motion of particles and the interaction with RF waves can generally
be described from the perspective of a single particle moving in an electromagnetic
field, the essential role of collisions requires a collective description of the plasma,
such as provided by kinetic theory, which we adopt in the present work. The motion
of electrons in a toroidal magnetic plasma, the wave-particle interaction, and the
collisions between particles are described in Chapter 3 where the appropriate electron
kinetic equation including these three mechanisms is derived. This equation accounts
for the particle radial drifts, which generate the bootstrap current. Therefore, RFCD
and the bootstrap current are kinetically calculated self-consistently, and possible
synergistic effects can be investigated.

This equation can only be solved numerically, and a kinetic code, named DKFE, was
developed in close collaboration with Yves Peysson from CEA-Cadarache, France, to
solve the electron kinetic equation and calculate the distribution function describing
electrons in a toroidal plasma in the presence of collisions, interaction with RF waves,
and the particles radial drifts that generate the bootstrap current. This code and its
application to solving the kinetic equation for EBWCD are described in Chapter 4.

EBWCD calculations are presented in Chapter 5. The mechanisms of the interac-

tion between EBWs and electrons are studied in detail and the EBW power deposition
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is calculated. This description is used to analyze the results of CD calculations, which

are presented separately for the two EBWCD scenarios (LBF and HBF approach).

1.2 Introduction to Electron Bernstein Wave Cur-

rent Drive

The problem of modeling current drive by RF waves can be generally divided into

three main aspects:

e FEzcitation from a launching structure, such as waveguides, antennas and mir-
rors. One investigates the launching efficiency (what fraction of the incoming RF
power will actually propagate in the mode under consideration) and the char-
acteristics of the wave in the excitation region: spectral properties and spatial
power distribution. This work requires a modeling of the launching structures
and knowledge of the plasma edgé physics. In the case of indirect launching - as
for EBWs - this work includes the modeling of mode-conversion and sometimes
requires the study of non-linear effects, such as parametric instabilities where
different modes are non-linearly coupled and power can be transmitted from

one to another.

e Propagation of the RF wave through the plasma to the region of absorption and
current drive. The evolution of the wave characteristics along its propagation
needs to be calculated, which typically involves ray-tracing or full-wave calcu-
lation techniques. In addition, the problem of accessibility investigates whether
all or part of the power in the wave is reflected (for example, at a cut-off) or
mode-converted (for example, at a propagation resonance) instead to reaching

the region of wave-particle resonance.

o Wave-particle interaction, power absorption and current drive. Wave-particle

interaction can occur when the resonance condition

W — k“’U” — ’I’LQ =0 (1.1)
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is satisfied for some particle velocity v < c, some wave frequency w and parallel
wave number kj (with respect to the magnetic field), and some harmonic number
n at some location where the particle’s gyrofrequency is 2 = ¢.B/ym,.. Here B
is the magnetic field and ~ is the relativistic factor. The effect of wave-particle
interaction is the exchange of energy and momentum between the wave and the
particles. This exchange can modify the distribution function of the particles
and therefore lead to current drive if this distribution becomes asymmetric in

’UH .

ECR

harmonic \

Py

Figure 1-3: General scheme of the EBWCD problem.

EBWs are excited by mode conversion at the upper-hybrid frequency and damped
at the Doppler-shifted location of cylotron resonance harmonics. The general scheme

of EBWCD is illustrated in Fig. 1-3.

The present work does not encompass the study of EBW excitation and prop-
agation. Rather, previous work on EBW excitation and propagation will be used
to extract the information relevant to the present study, which is focusing on the
vicinity of the EBW damping region in the plasma and addresses the wave-particle

interaction, power absorption and current drive problems.
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1.2.1 Excitation and propagation of electron Bernstein waves
Historical background

The existence of electrostatic waves in the electron cyclotron frequency range, propa-
gating perpendicularly to the magnetic field and not subject to Landau damping, was
first shown by I. Bernstein [1], who gave the corresponding dispersion relation. The
experimental verification of EBW was done by F.W. Crawford, et al. [2]. Because
EBWs do not exist in vacuum, they need to be excited either by an in-plasma antenna
structure or by MC from the slow electromagnetic extraordinary mode (SX) at the
upper-hybrid resonance (UHR). Among the MC methods with launching from the low
field side (LFS) - the only ones applicable to STs - the O-SX-B scheme [7] was first
experimentally demonstrated in a linear device [14], and then at high harmonics [15].
It has been successfully used for ECH on Wendelstein 7-AS [16]. A second scheme,
noted FX-SX-B [17] [4], has been demonstrated first on linear devices [18] and then
on STs [19] [20]. These two MC schemes have been extensively studied in [8]. Be-
cause of the symmetry properties of the MC process [21], significant knowledge has
been gained from the theoretical [22] and experimental [16] study of EBW emission
(EBE). EBWCD in tokamaks was first demonstrated on COMPASS-D [9], showing
the high dependence of EBW properties, such as the parallel index of refraction, on
the propagation path, as predicted in [§].

Description of EBW excitation

The FX-SX-B and O-SX-B schemes for EBW excitation are described on Fig. 1-4,
where propagating modes are shown in the vicinity of the upper-hybrid resonance
(UHR), represented by a vertical dashed line. These modes are characterized by their
perpendicular wave number N (w, N ”), calculated by solving the dispersion relation
(2.16) assuming a fixed frequency w/ (27) = 14 GHz and using the full non-relativistic
kinetic plasma susceptibility tensor (2.65) Xy (k,w) in (2.10) and (2.15). The solution
is obtained using the code R2D2 [13], which solves the dispersion relation. The wave

number is defined as N = kc/w.
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Figure 1-4: ECW and EBW roots N, (real part) as a function of a = w?,/w? for (a)
perpendicular (N, = 0) and (b) oblique (N = N|o) propagation. The dashed vertical
line corresponds to the location ayggr of the upper-hybrid resonance.

The mode-conversion region is typically located very near the edge where the wave
characteristics are dominated by the strong density variations. A scan of the mode |
conversion region is therefore obtained by varying the electron density normalized to
the frequency, o = w2, /w?, keeping all other plasma parameters constant, including
the temperature (Typ = 1.3 keV) and the magnetic field amplitude (B = 0.3 T). The
upper-hybrid resonance is obtained for o2 = a?yg = 1 — (Wee/w)?. The roots of the
dispersion relation (NN, ) are shown on Fig. 1-4, where two separate values of IV} are

considered:

e Graph (a): N = 0 for perpendicular propagation. This is a case where FX-
SX-B mode conversion is favored. In that case, if an ECW is launched into
the plasma with X-mode polarization, it reaches a cut-off (R) where part of the
wave power is reflected and part of the power is tunneled across the evanescent
region between the cut-off and the UHR to the slow X mode. The power is
then reflected at the L cut-off and propagates back to the UHR when it can be
mode-converted to the EBW. In fact, the FX-SX-B scheme present a resonator
configuration [8], and under some favorable conditions, up to 100 % of the wave

power can be mode-converted to the EBW.
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e Graph (b): Ny = Ny = (1 + w/weeo) " ~ 0.61, for oblique propagation. Njo
is the value for which the O- and L- cut-offs coincide, and therefore where O-
SX-B mode conversion is favored. In that case, if an ECW is launched obliquely
into the plasma with O-mode polarization and N = N, it reaches the plasma
cutoff (O) where w = w,, which coincide with the L cut-off. Part of the power
is transmitted to the SX mode, which propagates back towards the UHR where
the power can be mode-converted to the EBW.

Detailed calculations of the mode-conversion processes [8] show that the FX-SX-
B scheme is favored by steep density gradients, such that the evanescent region is
narrower and more power can tunnel though. These conditions are typically found
very near the edge, and thus the FX-SX-B scheme is better at lower frequencies. By
contrast, the O-SX-B scheme is favored by smaller density gradients, such that little
if any power is tunneling back to a FX mode at the UHR after conversion from O to
SX mode. This scheme requires the UHR to be located farther away from the edge,

and is thus adapted for larger frequencies.

1.2.2 Description of wave-particle interaction

The idea of using radio-frequency (RF) waves to drive currents in tokamak plasmas
goes back to the 1970’s. It was shown that lower-hybrid waves (LHW) could be
used to transfer parallel momentum to the electrons [23] [24], and that LHWSs with
sufficiently high power lead to the creation of a plateau in the parallel momentum
direction in distribution function, and drive a large current [25]. Important 2D effects
(in momentum space) in LHCD, due to collisional pitch-angle scattering, were later
described [26] [27].

Waves in the electron cyclotron (EC) range of frequency are attractive for heating
and current drive, because they are easily coupled to the plasma and the location
of their damping, at the Doppler-shifted cyclotron resonance or its harmonics, can
be precisely controlled and adjusted with mirrors. While ECW transfer mostly per-

pendicular momentum to the electrons, it is possible to use them for driving parallel
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current through several mechanisms:

¢ One method was described by Fisch & Boozer (FB) [28] and shows that asym-
metric (in py) perpendicular heating of the distribution function leads to an
asymmetric resistivity of electrons, since hotter particles are less collisional.
More precisely, if electrons with p; > 0 are heated, ions collide more frequently
with electrons going in the opposite direction (p; < 0) and there is a net ion
momentum gain in the py < 0 direction. By reaction, there must be a net (op-
posite and equal in magnitude) electron momentum gain in the p| > 0 direction.
Although both species then drive a current in the same direction (in that case,
p| < 0, since electrons carry a negative charge), the contribution from electrons
to the current is dominant because they are much lighter. Note that no current
could be generated without collisions of electrons with ions, in which case the

total parallel momentum of electrons would be conserved.

¢ Another method, proposed by Ohkawa (OK) [29], uses electron magnetic trap-
ping to drive current. Indeed, perpendicular heating near the trapped/passing
boundary leads to the magnetic trapping of barely passing electrons. Because of
the fast bounce motion of trapped electrons, the collisional detrapping of elec-
trons is quasi-symmetric in py. In steady state, the RF and collisional fluxes
through the trapped/passing boundaries must compensate, so that there must
be a depletion of passing electrons with negative p||, along with an accumulation
of both trapped electrons and passing electrons with positive p;. These effects
combine to drive a current in the same direction as the resonant electrons, since
electrons carry a negative charge. Note that a more accurate description of the
Ohkawa effect should account for the radial pinch effect associated with the

trapping of electrons, in order to conserve toroidal canonical momentum.

To sum up, the FB effect drives a current in the opposite parallel direction to the
resonant electrons, while the OK effect drive a current in the same parallel direction as
the resonant electrons. A schematic representation of the Fisch-Boozer and Ohkawa

effects is shown in Fig. 1-5 on graphs (a) and (b) respectively. While all experiments
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in tokamaks have relied on - and optimized - the FB effect in ECCD, we have shown
that the OK method for CD may be more efficient when current is needed far off-axis
[30], as it is often the case in recent advanced tokamak (AT) scenarios. We gave a
precise description of the kinetic mechanisms of ECCD in the presence of magnetic

trapping [31].

[
[

T

(a) (b)

Figure 1-5: Schematic illustration of the Fisch-Boozer (a) and Ohkawa (b) mecha-
nisms for ECCD.

The first kinetic description of the kinetic interaction between BC and LHCD was
given by S. Schultz [32]. We further studied this interaction [33], showing the positive
effect of temperature gradient on the synergism between LHCD and BC, and also

investigated the synergism of FBCD and OKCD with the BC [34][30][35].

1.2.3 Numerical Calculations of Radio-Frequency Current

Drive

An accurate calculation of RFCD requires one to solve a kinetic equation including
the effect of collisions and RF fields [36]. Collisions are well described by a Fokker-
Planck operator, which accounts for the cumulative effect of small angle bilinear
collisions, which is the dominant collisional process. A differential expression for the
fully relativistic Fokker-Planck collision operator has been developed by Braams and

Karney [37] by expanding Rosenbluth potentials in spherical harmonics.
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RFCD calculations also use the so-called adjoint method to describe the effect of
RF waves [38]. This description, which calculates the current drive efficiency analyti-
cally in the linear limit where the distribution function remains close to a Maxwellian,
ignores the effects of particle trapping, which are very important in small aspect ratio
toroidal devices like STs. Modifications to the adjoint method that include the effect
of magnetic trapping have been proposed [39] [40]. However, analytical calculations of
the current drive efficiency are then no longer possible and numerical calculations are
needed. Quasilinear theory, which accounts for distorsions of the distribution function
to calculate the densities of current and power dissipated self consistently, is more
appropriate to describe the effect of externally imposed RF waves. A quasilinear
operator was developed by Kennel and Engelmann [41], and extended to relativis-
tic plasmas by Lerche [42]. However, these operators apply only to infinite uniform
plasmas, and are not immediately suitable for simulations in tokamaks and STs. A
quasilinear operator for slab and mirror plasmas was later derived [43]. Operators
were also derived for toroidal plasmas by using a direct approach to reduce the ki-
netic equation by averaging over fast gyro- and wave frequencies [44], and also by
using a Hamiltonian approach to adiabatically remove these fast time scales [45] [46].

However, these operators were only applicable to plasmas without toroidal magnetic

field.

It is necessary to use numerical tools to solve the 2D Fokker-Planck equation
(FPE) with quasilinear diffusion. Such solvers have been developed by Kerbel and
McCoy [47] also with Killeen [48], and their work was continued by Harvey and McCoy
[49]. Other solvers were developed independently by Karney and Fisch [50], Giruzzi,
et al. [51], Bizarro, et al. [52], Shoucri and Schkarofski [53] [54], and also Peysson
and Shoucri [55]. A good review paper on FP QL codes was written by Karney [56].
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1.3 High-8 Plasmas and EBWCD Scenarios

1.3.1 Magnetic field configuration in STs

The tight geometry of STs rules out
the possibility of inboard launching.

L5 pT The only remaining possibilities are
top launching and outboard launch-

1F- ing. However, in a ST, launching
from the outboard horizontal mid-

0.5} plane does not necessarily imply that
the resonance region is approached

N 0 from a low-field region, as it would be
in a conventional tokamak. Indeed,

-0.5r because of the important contribution
of the poloidal magnetic field in a ST

~1r with sufficiently high 3, the lower field
region is generally not at the point

-1.5 . farthest outboard, but somewhere be-

tween the core and the edge near the

outboard horizontal midplane.

Figure 1-6: NSTX high-8 plasma poloidal To illustrate this, we show the

cross section. The red solid contours are . .
poloidal cross-section of our sample

flux-surfaces labeled by p = 0,0.1,--- 1 and NSTX plasma on Fig. 1-6 where

the blue labeled dashed lines are contours the red solid contours are Aux-surfaces

of constant magnetic field magnitude (in labeled by p = 0,0.1,---1 and the

Tesla). blue labeled dashed lines are contours

of constant magnetic field magnitude.
Here p is the normalized distance form the magnetic axis, measured along the out-
board horizontal midplane. The enclosed magnetic well on the outboard side is clearly

apparent, and is centered at the point Xy of minimum magnetic field, which is lo-
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cated at (R = 1.31 m, Z = 0) where the corresponding radial coordinate is p = 0.63.
The important contribution of Bp to the total magnetic field magnitude appears on
Fig. 1-7 which shows a profile of the magnetic field components along the horizontal
mid-plane (Z = 0). Near the outboard edge, the poloidal component of the magnetic

field becomes comparable and even larger than the toroidal component.

NSTX
1 — :
W\ T
N T
_ 06k -\ i =B
3 | ~ | :
M 0.4} e
04 06 08 1 12 14

Figure 1-7: Toroidal (red), poloidal (blue) and total (black) magnetic field amplitudes
along the Z = 0 horizontal midplane.

As we show in Section 2.2, the EBWs are strongly absorbed at any Doppler-shifted
electron cyclotron harmonic. Because of the particular magnetic field configuration of
high-3 STs, with a dip in the field magnitude profile as shown on Fig. 1-7, it should be
possible, with outboard launch only, to approach a Doppler-shifted electron cyclotron
harmonic from either a low B-field (LBF) region (nw.. < w), or a high B-field (HBF)
region (nw. > w), depending on the propagation path, the angular frequency w, and
the parallel wave vector k. These schemes are illustrated in Iig. 1-2. The terms
low-field side and high field side are not used here because of the confusion with con-
ventional tokamaks where they are also used to describe outboard and inboard sides,
respectively. We will show in Chapter 2 that the EBW characteristics differ greatly
upon whether the wave approaches a resonance from a LBF or a HBF region. As a

consequence, as will be shown later, these two scenarios for wave-particle interaction
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are very different and should be treated separately.

1.3.2 Equilibrium profiles

NSTX NSTX
35 : : 2.5 ;
2
g O
o %
2 [_‘eu 1+
e
o 0.5
1 0
0 0.2 0.4 0.6 0.8 1 0 02 04 0.6 0.8
n ¥,

Figure 1-8: Density (a) and temperature (b) profiles in NSTX, as a function of v/,

where 9, = 1/, is the normalized flux function.

The calculations presented in this thesis are based on a 8 = 42% NSTX equi-
librium with the magnetic configuration presented in Section 1.3.1 and equilibrium
profiles calculated consistently with a MHD code [57]. The electron temperature and

density profiles are shown on Fig. 1-8. The effective charge is Z.4 = 2 and is assumed

to be uniform across the plasma.
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1.3.3 Accessibility

Because EBWs are generated - mode

converted from EC modes - at the
2

1.5F upper-hybrid resonance where w* =
wZ, + w?,, the EBW frequency is nec-

1t essarily higher than the electron cy-
clotron frequency. In order to choose

0.5 a suitable launching frequency, N
spectrum and location for EBWCD

N Or generation, it is important to know
which regions of the plasma are ac-

-0.5f cessible to a given frequency and what
type of CD scenario is associated with

-1t the wave propagation (HBF or LBF).
In our case, we define a plasma loca-

—1.56 tion to be inaccessible to an EBW,

characterized by their frequency w
and their parallel wave number Ny, ei-
ther if EBWs do not propagate in this

Figure 1-9: NSTX high-f# plasma poloidal

. . region (where w, < w), or if the wave
cross section. The red solid contours are & ( ce ),

fux-surfaces labeled by p = 0,0.1,---1. is completely damped before reaching

The thick solid line give the location of the 1S location. In any other case, the

first cyclotron harmonic for the frequency location is said to be accessible to this

fu = 14 GHz, and the blue dashed lines EBW, regardless of the existence of an
M = ’

are the corresponding Doppler-shifted har- actual propagation path, from a re-
monics w = nwe % 3ureky for Ny = 0.5. gion where mode-conversion is possi-

ble, to the location under considera-
tion. Because we do not address the problems of EBW mode-conversion and prop-

agation in this work, additional studies would be required to determine whether a
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location defined here as accessible can indeed be reached in an experiment and what

the EBW characteristics - in particular N - would be in that case.

On Fig. 1-9, we show the same the poloidal cross section as in Fig. 1-6, where the
location of cyclotron harmonics for the frequency fir = 14 GHz is shown as labeled
(by the harmonic number) solid black lines. In addition, dashed blue lines show the

location of the Doppler-shifted resonances, calculated for Ny = 0.5 by
W = NWee & 3ureky (1.2)

where vr, = y/T./m, is derived from the local temperature (See Fig. 1-8-b), and the
strong damping condition is given by v = 3vre, which is the typical value for EBWs
as we will show in Section 5.1.6. The striped regions represent the plasma locations
that are inaccessible to this wave, either because w < w. (on the inboard side)
or because the location is enclosed by Doppler-shifted cyclotron harmonics, where
complete damping of the wave occurs. In principle, any Doppler-shifted cyclotron
harmonic resonance location (dashed blue lines) which borders an accessible region of
the plasma is a possible location for EBW damping and CD, and the type of scenario
for EBWCD - HBF or LBF - depends on whether the magnetic field in the bordering
accessible region is higher or lower, respectively, than it is at the location of the
harmonic. For example, in the case considered on Fig. 1-9, HBF EBWCD is possible
in principle at locations along the second harmonic Doppler-shifted resonance on the
outboard side, while LBF EBWCD is possible on the first harmonic Doppler-shifted

resonance on the inboard side.

Such general investigation of accessibility and possible scenarios is easily done
for any frequency w and parallel wave number Ny, by drawing the poloidal cross
section of the (axisymmetric) plasma and showing the locations of Doppler-shifted
harmonic resonances. To illustrate this, we show on Fig. 1-10 the accessible regions
corresponding to two frequencies often mentioned in the NSTX design plan, which
are fpr1 = 21 GHz (graph (a)) and fpro = 28 GHz (graph(b)), still with Ny = 0.5.
At f = 21 GHz, outboard launching would in principle give access to HBF CD at
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Figure 1-10: Same as Fig. 1-9 with N = 0.5 but for different frequencies: (a) f = 21
GHz and (b) f = 28 GHz

third harmonic and LBF CD at second harmonic, while top (or bottom) launching
would allow HBF CD at second harmonic and LBF CD at first harmonic. At f = 28
GHz, outboard launching is restricted to the midplane locations and therefore allows
only HBF CD at fourth harmonic.

Comparing results obtained with three different frequencies (Figs. 1-9 and 1-10),
we observe that at higher frequencies, the various cyclotron harmonics are closer to
each other, which effectively restricts the accessible regions of the plasma. Therefore,
for the sake of keeping a wide range of possible CD scenarios, low frequencies, typically
favorable to X-B mode-conversion schemes!, are better than high frequencies, usually

favorable to O-X-B mode-conversion schemes. However, this fact is balanced by other

1See discussion in Section 1.2.1.
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experimental constraints. For example, higher frequencies require smaller mirrors and
therefore allow for a wider range of launching angles, which can be adjusted to control
the location of CD. In addition, the mode-conversion process is subject to large density

fluctuations close to the edge, which could decrease the MC efficiency.

1.3.4 Summary

A poloidal cross-section of accessible regions can be easily drawn for a given frequency
and parallel wave number, as done in Figs. 1-9 and 1-10. Such maps are useful to
determine schematically the location of EBWCD as well as possible scenarios - HBF
or LBF CD.

High B-field CD appears to be possible at any harmonic n > 2 with launching
near the midplane, and therefore seems to work for either low or high frequencies. In
such CD scenario, wave-particle resonance occurs off axis on the outboard side and
will likely involve strong magnetically trapped electron effects.

On the other side, the accessibility of LBF CD requires to use low frequencies -
between first and second harmonic. In addition, the location of resonance is generally
located in the core of the plasma, where magnetically trapped electrons are expected

to play a lesser role.
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Chapter 2

Description of Electron Bernstein

Waves

In order to study EBWCD, it is necessary to calculate and describe the characteristics
of EBWs. Indeed, the interaction between a given EBW mode and electrons depends
on wave properties such as the frequency w, wave vector k, polarization vector ey and
electric field amplitude |Ex||. In a plasma where inhomogeneities occur on a scale-
length much larger than the wavelength, the wave properties can be approximately
calculated using the model of linear waves in a uniform plasma, and assuming there-
after that the plasma characteristics k, ex and ||Ey|| are slowly varying functions of
space. This is known as the WKB approximation.

The basic concepts of the linear kinetic theory of plasma waves are reviewed
in Section 2.1, where we focus in particular on the dispersion relation and on the
energy equation, which relates in steady state the wave energy flow density and power
dissipated and is the basis for the calculation of EBW power deposition. The non-
relativistic kinetic susceptibility tensor is derived in many textbooks on kinetic waves,
for example [58] [59] [60], and is recalled here.

In Section 2.2, the dispersion relation is solved analytically in the electrostatic
approximation for EBWs propagating perpendicularly to the magnetic field, and the
initial description of EBWs [1] is retrieved. This approximate description provides a

useful insight into the behavior of EBW. In particular, characteristics of EBWs in the
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vicinity of cyclotron harmonic resonances are very different depending on whether the
resonance is approached from a low B-field (LBF) or a high B-ficld (HBF) region.
The kinetic linear dispersion relation and wave equation are solved exactly in
Section 2.3, using the numerical solver R2D2 [13]. Particular attention is given to
the wave properties which enter the calculation of the quasilinear diffusion coefficient
(3.192). In this work, vectors are written in bold characters, like v, and unit vectors

are covered with a hat, like V. Tensors are written in blackboard characters, such as

T.

2.1 High-Frequency Linear Waves in a Hot Uni-

form Plasma

2.1.1 Linear wave equation and dispersion relation

Detailed and consistent derivations of linear wave theory can be found in {61], [59]
and [58]. Elements of the theory relevant to the study of wave-particle resonance are

presented here.

Maxwell’s equations

Electromagnetic fields are generated by charge and current densities, according to

Maxwell’s equations

vV.E=2 (a)
€o
V-B=0 (b)
OB (2.1)
V x B = pioJ + poco—- (c)
5B ot
VxE= _W (d)

where E (r, ) and B (r,t) are the electric and magnetic (induction) fields, and p (r, t)

and J (r,t) are the charge and current densities, respectively. The conservation of
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charge density leads to the continuity equation

Op _
5—;+V-J—O (2.2)

In the absence of static fields, equation (2.1-b) can be derived by taking the divergence
of Faraday’s equation (2.1-d), and Gauss’ law (2.1-a) can be derived by taking the
divergence of Ampere’s law (2.1-c) and using the continuity equation (2.2). In order
to obtain a complete set of equations, we need an expression for p(r,t) and J(r,t)

as a function of E (r,t) and B (r, t).

Linear wave equation

Under some conditions - which generally include sufficiently small-amplitude electro-
magnetic fields - non-linear effects, such as particle trapping in waves or non-linear
coupling of waves, can be neglected. Then, the current density has a linear depen-

dence on the electric field, and can in general be expressed as a convolution

J(r,t) = ///d3r' /dt' S(r,r',t,t")- E(r,t) (2.3)

where S is the conductivity tensor, which depends on the equilibrium properties of the
medium. In an infinite plasma with a homogeneous, constant equilibrium, which is
invariant by translation in space and time, the conductivity tensor is only a function

of the relative distance in space and time, and we can rewrite (2.3) as

3 (r,8) = / / / & / @#Sr—r,t—t) B, (2.4)

If we take a Fourier transform of this equation, defined for a field F'(r,t) as
B (k,w) = / / / i / dt e Tt (x. p) (2.5)

Jk (k,w) = S(k,w) - By (k,w) (2.6)

we obtain
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In addition, the Fourier transform of Maxwell’s equations (2.1) gives

ik By = X (2)
€
ik - By =0 (b) 2
ik X By = podi — pocoiwEyx (c)
ik x By = iwBy ()

Combining the two last equations, and using (2.6), we find the linear wave equation

kxkx Ek = _iMOWS . Ek — /J/()E()LUQEk

w2

2
w

where we defined the susceptibility tensor

and the permitivity tensor

K=I+X (2.10)

Introducing the normalized wave vector, or index of refraction

c
N=-k .
” (2.11)
the wave equation (2.8) becomes
NxNxE+K-E,=0 (2.12)
and hence
(NN - N 1+K) -E, =0 (2.13)
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which is rewritten as

D-Eyx =0 (2.14)

where

D=NN- N I+K (2.15)

is called the dispersion tensor.

Dispersion relation

In order to find a non-trivial solution to the wave equation (2.14), the determinant

of the dispersion tensor must be zero
D (k,w)=|D|=0 (2.16)

This equation is called the dispersion relation, and can solved for either w (k) or
k; (w, k;, k) where 4, j, k is a permutation of coordinates of k. This relation gives the
natural electromagnetic modes that can be independently excited in the homogeneous

plasma. We also define a wave phase velocity and group velocity, respectively given

by

v, = 2K
P E’ D(k,w)=0
Ow (2.17)
Vy = —
! ok D(k,w)=0
where k = ||k|| and k = k/k is the unit vector in the direction of the wave vector.

Note that in a dispersive medium, w and k are not proportional in general, and thus
we can have v, # vy. In addition, if the medium is anisotropic (for example, in the
presence of a strong magnetic field), the group velocity v, is not necessarily in the

direction of the wave vector k.
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Uniform plasma with static magnetic field
For a uniform plasma in a externally applied static magnetic field
B=Bb (2.18)

with B = ||B|| and where the bar refers to the static nature of the field, the cylindrical
symmetry around the magnetic field direction b imposes that the dispersion relation

be only a function of kj and k,, with

kj=k-b
~ (2.19)
ki =[x rb]
and therefore the dispersion relation (2.16) can be written as
D (ky, ky,w) =0 (2.20)

The cylindrical symmetry also imposes that the group velocity v, be in the (E, E)

plane.

2.1.2 Energy equation for linear waves

In a uniform, weakly dissipative plasma, the conservation of energy for the linear

mode Ey is given by [61]

awk in

where wy is the time-averaged energy density, sy is the time-averaged energy density
flow, and P}" is the density of power dissipated. This equation is function of the real

parts of w and k, which will be implicit in this Subsection.

Note that any tensor T = T + T4 can be decomposed into hermitian T and

50



antihermitian T4 parts, which are given respectively by

TH = -;- [T + T1]
(2.22)
A= [T-T]

where the operator { = tx is the combination of a transposition and a complex

conjugation.

Wave energy density

The time-averaged energy density wi
Wk = Wkp + Wkt (2.23)

includes the electromagnetic energy density wyp and the kinetic energy associated

with the coherent motion of charged particles in the field wyr. These are given by

Eo 2, 1 2
= — ||E —||B
wir = Bl + 7= By
(2.24)
€0 u 0 (wXH)
Wkt 4 Ei ow k
Using Faraday’s equation (2.7-d), we normalize the energy density wy as
€0 2
Wk = o || Ex||” Exc (2.25)
where the normalized energy density Xx thus decomposes as
Yx = Zkp + Xyr (2.26)

51



with the definitions

1
Ykp = > [1 + [IN x ek“2]

(2.27)
1 9 (wxH )
Y= —ef .
kT 2ek EW €k
where ex = Ey/ ||Ex|| is the polarization vector. The normalized energy density (2.26)

can be rewritten as

T = %e;; : ?—(%E—H) — (NN~ N’T) | - ex (2.28)
where we used the identity
IN x ex||” =ef - (N[ — NN) - ¢ (2.29)
With N = ke/w we have at constant k
a% [w? (NN = N?I)] =0 (2.30)
so that
a% [w (NN — N?I)] = — (NN — NI) (2.31)

and we can rewrite, using the expression (2.15) for the dispersion tensor

9 (.
Tk = -a——;(ek-DH-ek) (2.32)

N €

where we used the wave equation (2.14) so that

]D)H-ek=0

(2.33)
el -DF =0

in the limit of weak dissipation.
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Wave energy density flow

The time-averaged energy flow density sy
Sk = Skp + Skr (2.34)

includes both the electromagnetic Poynting flow sp and the flow associated with the

coherent motion of charged particles in the field sy, which are expressed as

1 *
Skp = % Re [Ek X Bk]

Eow oxH
ser =~ B S B

(2.35)

Using Faraday’s equation (2.7-d), we normalize the energy flow density s (2.34) as

sic= 2 [Ex* @ (2.36)

where the normalized energy flow density ®, thus decomposes as
&y = Pyp + Pir (2.37)

with the definitions

P p =Relef x N x ex] =N — Re|(ef - N) ey]
1 OXH (2.38)

@ =——*._.
kT = 75C% " N %k

Using (2.77), the normalized energy flow density (2.37) can be rewritten as

10

k = —--2--8—1(1- (eﬁ . DH . ek) (239)

where we used the identity

_ N2
N—-Re[(ef(-N)ek]=——-;—ek- 9 (NN = N'T) e

N : (2.40)
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and the expression (2.15) for the dispersion tensor.

Relation between power flow and group velocity

In the limit of weak dissipation, we have (2.77)
D (k,w)=¢e}f-D¥ ., =0 (2.41)

which can be viewed as a dispersion relation for the mode ex. Using (2.17) we can

rewrite the group velocity as

8DH (k, w) /0k

= — 2.42
Vo= TDH (k,w) [0w (242)
and, with (2.32) and (2.39), we obtain the useful relation
By = zk‘—;?- (2.43)
or equivalently
Sk = VgaWk (244)

which states that the wave energy flows at the group velocity. Like the group velocity,
the energy flow density @, must be contained in the (ﬁ, E) plane.

Density of power dissipated

For weakly damped linear waves in an infinite homogeneous plasma, the time-averaged

density of power dissipated Pl™ associated with the Fourier mode Ej is given by

1
Pi» = 5Bk SH (k,w) - Ex (2.45)

where S¥ is the hermitian part of the conductivity tensor.

The relation between the conductivity and susceptibility tensors (2.9) is

S = —gqwiX (2.46)
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so that the hermitian part of the conductivity tensor is

_S+5§t

H
S 2

= —igowX? (2.47)

where X4 is the anti-hermitian part of the susceptibility tensor (2.22). The density
of power absorbed (2.45) becomes

i .EoW
Pll(“‘ = —z—Ef‘c XA Ex

= —i— |EJ|* —ef - X4 - ey (2.48)
where ey is the polarization vector.

Absorption coefficient

With the normalization (2.36) of the time-averaged energy density flow sy, (2.48)

becomes

Plin=_~||sk”£ * WA ]
o Z||‘I)k||cek X% - ex (2.49)

The absorption coefficient is by definition

. Plin
lin k
tn (2.50)
sl
and therefore we obtain an expression for the absorption coefficient
ot = —z'—-l—‘ﬁel"; ‘X4 . e (2.51)
@]l

2.1.3 Plasma description and Vlasov equation

In a plasma, the charge and current densities depend on electromagnetic field through
the motion of charge particles. The j* charged particle, of mass m;j, charge g;,
position r; and momentum pj, is accelerated by electromagnetic fields according to
Lorentz’ force

F (pj;1;,t) = ¢; [E(r;,t) +v; x B; (1}, )] (2.52)
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The equations of motion are

dp;
el g
7 dt 7
dr; (2.53)
at
where the velocity is given by
Pj
v; = — 2.54
=2, (2.54)
where -y; is the relativistic factor
2
bj
vi=1/1+ mfcz (2.55)

The charge and current densities are then obtained by adding the contribution of all

N charged particles

M-

p(r,t)=> gd[r—r;(t)

It

)

o (2.56)
J(r,t) = Z%‘Vﬂs [r —r; (t)]

This is overall a closed system of equations, but with a very large number of un-
known (of order V), and it cannot be solved for a typical fusion plasma. Therefore, a
statistical approach is generally used, in order to solve for a hierarchy of probability
functions. For plasmas with n.A2 > 1 - where )\, = \/m is the Debye
length - it suffices to consider only the ”one-particle” distribution function f; (p,r,t)
for each type s of particles, and account for correlations by a binary ”collision inte-
gral” among the f,. In general, collisions between particles can be neglected for the
calculation of electromagnetic waves in plasmas, provided that the wavelength of the
wave is much longer that the Debye length, since the fluctuating Coulomb fields asso-
ciated with discrete particles occur on distances smaller than A.. In a typical NSTX
plasma (T, ~ 1.3 keV, n, ~ 3 x 10'®* m~2), the Debye length is A, ~ 50 um, while

the wavelength of EBWs in such plasma is of the order or larger than a millimeter.

In collisionless dynamics, the evolution equation for the distribution function
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fs (p,r,t) is the Vlasov equation

0fs
ot

+v-V.fs +F(p7r7t)'vpfs=0 (2.57)

where p, r and t are independent, continuous phase space variables, and F (p, r,t) is
given by (2.52). When the plasma thermal effects on the characteristics of electro-
magnetic fields are small, it is possible to consider only a few moments of the Vlasov
equation, which form a set of hydrodynamic - or fluid - equations and are much easier
to solve than the full Vlasov equation. However, electron Bernstein waves (EBWs)
are kinetic plasma waves, meaning that their characteristics depend of the velocity
distribution of the plasma particles. Indeed, EBWs are waves in the electron cy-
clotron range of frequencies and may have a short wavelength comparable to the
Larmor radius of electrons, and thus interact differently with particles depending on

their velocity.

2.1.4 Hot plasma dielectric tensor

The linearized motion of charged particles in electromagnetic fields, in an infinite
plasma with a homogeneous, constant equilibrium, leads to the existence of a suscep-
tibility tensor such as (2.9). Such a tensor is derived from the Vlasov equation (2.57)
after linearization and Fourier transformation. In addition, the plasma is assumed to
be immersed in a uniform constant magnetic field, which generates anisotropy in the
conductivity tensor. Retaining all thermal effects - by solving the Vlasov equation -
and including a constant magnetic field, this susceptibility tensor is then appropri-
ate to describe EBWs. An analytical expression for the susceptibility tensor can be
obtained in the non-relativistic limit, when the zero-order, equilibrium distribution

function for each species s is a non-relativistic Maxwellian

msv"‘] (2.58)

nr — Ng
fos (V) = fifs (V) = Wexp [‘" 5T,
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where n, and 7T, are the density and temperatures for the species s.

relativistic Vlasov equation

Ofs qs .
v +V-Vrf3+—m—[E(r,t)+vxB(r,t)]-vas—-O

3

is then linearized and used to derive the conductivity tensor.

Non-relativistic hot plasma susceptibility tensor

The non-

(2.59)

The hot plasma susceptibility tensor Xy (k,w) for a non-relativistic plasma has been

derived for example in [58] and [60] and is recalled here. The plasma frequency for

the species s is given by

g2n,
Wps = 4| ——
EgMg

Vs = V2vps With vps = VEkTs/mg

The particle thermal velocity is

The constant uniform magnetic field is assumed to be in the Z direction
B=D5z

and we define the rest mass cyclotron frequency for the species s:

- |qS|§
mg

wCS

(2.60)

(2.61)

(2.62)

(2.63)

where B is the magnitude of the static magnetic field. The Z direction is chosen such

that the k vector lies in the (Z, Z) plane

k=kZT+ ku?
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The susceptibility tensor is then the sum over the contribution of all species s
Xu (k,w) = > X3 (k,w) (2.65)
S

where the susceptibility tensor X3, (k,w) associated with a given species s is the sum

over contributions from all harmonic numbers n

o0

2
w S S,1n
X3 (k,w) = ;P;g(,s E Y (2.66)

n=—oQ

which decompose as

n2

Yh?gz = )\_FnsZns

o _ (7
Yo, = (A—srns - zAsr;,S) Zos

thl,:z = _Fﬂsgnsz;ls

Yﬁfy = i0snl"  Zns

YI\?I’;w = _Yhify (267)
T

YMa:z = —0j \/2_)\3117182"8

Vin =Y

[As
Yl\fl,;lz = iasa” EP;ISZ:LS

YI:I’:y = - I\‘TI,zT;;
with
Ty = €21, (As) ()
Ins =14 (Cns) (b)
2
)\s = (k:UTs> = (k_Lst)2 (C) (2 68)
W — NWeg :
Cns = W (d)
o) = sign (k) (e)
o, = sign (gs) (f)

where I, is the modified Bessel function of the first kind, Z is the plasma dispersion

function, and pr, is the thermal Larmor radius for the species s.
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Hermitian part of the susceptibility tensor

In a non-relativistic hot plasma, the susceptibility tensor is given by (2.66). The
hermitian part of X3 (k,,w,), which is used to calculate energy flow density through

expressions (2.39) (2.15) and (2.10), is expressed as

X (k) = G, 3 Wl (269)
n=-—oa
where Y1>" is the hermitian part of Yi* (2.67) and decomposes as

H, n’
YMmin = A_Pns Re (Zns)
Hssn 3”2 ’
YM'yy = -/\—SI‘m - 2)‘8Fns Re (Zns)

Y™ = —TheCas Re (Z1))

YI\ZEZ" iosnl Re (Zns)

Yien — (Yhf;;’") = —y;len (2.70)
Vit = —g \/_r sRe(Z.,)

i = (vien) = v

YI\{IIyz ZO’SU"\/‘ Re Z’

Yl\lézn_ (Yl\izn) "YI\Z;?

Antihermitian part of the susceptibility tensor

In a non-relativistic hot plasma, the susceptibility tensor is given by (2.66). The anti-
hermitian part of X3, (k,,w,), which is used to calculate damping through expression

(2.51), is expressed as
2 o
w
X (kow) = G0, D Vi (2.71)

n=—oco
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where Y{:*" is the antihermitian part of Y3;* (2.67) and decomposes as

A n?
YM;;;” = z'/\—Fns Im (Z,s)
2

Asn - n ’
ity =10 <)\_SF"S — 2)\3Fns) Im (Z,s)
Y™ = —ilpsCns Im (Z1,)
Yiai™ = —gonl”, Im (Z,,)

Mzy
Asn A,sn * A,s,mn
YMy:)c == (YMa:y ) = _YM:;; (272)
T
YAfz’n = —i0 —'—Fns Im (Z;L )
M { \/2—/\';* s
v = - (her) = wae

A
Yiga" = —0s0y\) 5 T Im (Z,,)

Asn Asn * _ A,s,n
Ysz = - (YMyz ) - _YMyz

We have the following properties of the plasma dispersion function [62] for real argu-

ments
Im (Z,,) = /Te e
(Zna) = V7 . (2.73)
Im (Z!,) = —2Cns\/me Sne
so that Y;*" can be rewritten as
Yo — Yo, freChe (2.74)
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TA
where Y3;*" decomposes as

v Asn .1
YMa:x =1 /\_F"3

v A,sn n2 !
Wiy = )\_Srns = 2X\,I0,

A,S,n R y 2
YMzz - 2anans

~A731n —— /
YMmy = —ognl,
vAsn v Asn * . <rAsn
YMya: - (YMwy ) - _YMmy (275)
v-A,s.n . n
Yo, = 2i0)(ps—=T"
M ns ns
zz I oW
vAsn A,sn * _ ~A s,n
YMzz - (YMmz ) - Ma:z
ASn
YMyz 20’30'[|Cns\ / F
YA s,n A s,n A 3,n
Mzy Myz Myz

2.2 Electrostatic Description of EBWs

The theory of linear plasma waves in a kinetic plasma described in Section 2.1 is used
to calculate analytically the EBW characteristics in the electrostatic approximation,
which gives an insight in the behavior of EBWs.

In general, for a kinetic plasma, the resolution of the dispersion relation (2.16)
involves root finding techniques and requires one to have a good guess for k. It
is possible to obtain a good guess for the EBW £k, root by solving an approximate

dispersion relation, in the electrostatic limit.

Moreover, it is possible to calculate the absorption coefficient and the normalized
energy flow density for EBWs in the electrostatic approximations. These calculations

will be used to characterize EBW damping in Chapter 5.

2.2.1 Electrostatic approximation

In all generality, we can decompose the electric field into its longitudinal Ejy; and

transverse Exr components with respect to the wave vector direction N=N /N
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Ex = BN + Exr (2.76)
Inserting this decomposition in the wave equation (2.13) leads to
(K — NI) - Exr + Ex K- N =0 (2.77)
If the following relation is verified for all components of the dielectric tensor
N? > |Ky] (2.78)
then the wave equation (2.77) is approximately
~N?Eyr + B K- N ~0 (2.79)
and, projected on the wave vector direction, leads to an equation for Eyj
(N-K-N)Eyx, ~0 | (2.80)
while the equation (2.79) then gives an expression for the transverse field
Eir =~ %K ‘N (2.81)
The equation (2.81) with the relation (2.78) leads to ||Exr|| < |ExL|, and therefore

ex ~ N (2.82)

which means that the electric field is mostly longitudinal, or electrostatic. This
justifies the names electrostatic approzimation for the relation (2.78) and electrostatic

wave equation for (2.80).
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Electrostatic dispersion relation

In order to have a non-trivial solution to the electrostatic wave equation (2.80), it is
therefore required that the following relation, called electrostatic dispersion relation,
be satisfied.

Dp(k,w)=N-K-N=0 (2.83)

With the normalized wave vector (2.11) and the decomposition (2.64), the electro-

static dispersion relation (2.83) gives

NYKyp + NLNy (Koo + Kop) + NP K. = 0 (2.84)

Energy flow density

In the electrostatic limit for the polarization (2.82), the energy flow density (2.51)

becomes
10 /-~ ~
ES [ — . H .
@ e~ (N K N) (2.85)
where we used
N.(NN-N)-N=0 (2.86)
and we obtain
@ES . 1 8 1 N2XH N, XH XH N2XH
k __55—N- TV—Z- [ 1 X+ N1 II( ezt z:c)+ I zz] (287)

Absorption coefficient

In the electrostatic limit for the polarization (2.82), the absorption coefficient (2.51)

becomes

lin,ES 1 W 2 v A A A 2v A
o "= ——— |INT XL+ N Ny (X2 + X + Ny X 2.88
k “(I’ku cN?2 [ 132 LAV ( zz za:) Il zz] ( 8 )
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2.2.2 High frequency waves
Electrostatic dispersion relation for perpendicular propagation

In the case of perpendicular propagation, Ny = 0 and the dispersion relation reduces

to

Ko =0 (2.89)

If we consider only high frequencies, in the electron cyclotron range such that w >

Wpi, Wei, the ion dynamics can be neglected and (2.89) becomes, using (2.10)
1+ X2, (ki,w) =0 (2.90)

where X¢ (k,w) is the electron contribution to the susceptibility tensor.

Energy flow density
Neglecting the ion dynamics, the energy flow density (2.87) becomes

10 1
S __ H, He H, H.e
BE __5__( = [N2XEe + NNy (XEe + X2°) + NP XE ]) (2.91)

where X#¢ is its antihermitian part of X¢.

Absorption coefficient

Neglecting the ion dynamics, the absorption coefficient (2.88) becomes

: 1
lin,ES __ i Ae Ae A, Ae
= N2XA¢ 4+ N, N X X N2 X, 2.92

where X#4¢ is the antihermitian part of X¢.
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2.2.3 Non-relativistic kinetic plasma
Dispersion relation

In a non-relativistic kinetic plasma, the susceptibility tensor is given by (2.66). The

X§10e (K, w) component is, using (2.67) and (2.68-a)

2 0o
w,
Xl%[xa: (kvw) = w_pze<0€ Z Yl\?ar:lz

= E%C()e i n—ze"\eln (Ae) Z (Cne) (2.93)
w n=—00 /\8
with )
)\e _ (kJ_UTe)
b 2 (2.94)
e = K| vee

In the limit of perpendicular propagation, ¥y — 0 and the factor (,. diverges unless the
wave frequency is exactly at a cyclotron harmonic resonance, in which case relativistic
effects must be included. It is thus necessary to do an asymptotic expansion of the
plasma dispersion function Z ({,e) for large arguments. This expansion gives for

|Gnel > 1 [62]

1 1 1
Z =—— |1+ —=+0| = 2.95
==+ oz o ()] (299
so that, in the limit kj — 0, the electrostatic dispersion relation (2.90) becomes
2 A, ® 2

Wpe €72 n‘w
— = I, (M) —m— = 2.96
2o 2 0 =0 (2.96)

Defining the normalized quantities

o e

(U2
K (2.97)

q= o



we obtain

e he 1 n?
1=0 I, (Xe) — 2.
T nzz_oo A o (2.98)
which becomes
e 2 n2
= I,(Ae) 5—— :
1=20 " ; ( )qz—nz (2.99)
where we used the following property of the Bessel functions
I ,(2)=1I,(2) (2.100)

Equation (2.99) is the electrostatic EBW dispersion relation, which can solve for
q® () to give w(ky). It has an infinite number of roots. However, if we consider
only the N first harmonics, the equation (2.99) is a N*® order polynomial for ¢2 ().),
which has therefore N roots. Polynomial equations are easily solved by standard
numerical routines, and our polynomial was implemented in a numerical code to
solve the electrostatic dispersion relation. We found that a N*® order polynomial is
sufficient to accurately solve for the NV —1 first roots, while the correct determination

of the N*® root requires at least the (N + 1)* order polynomial.

= 3 5 : N =10
ON 10 : i i 0

Figure 2-1: Electrostatic EBW roots calculated with N = 10 for (a) w?, = 2w, and
(b) w2, = 4w?2. The thermal velocity is expressed as vr, = dc, where we assumed
6 =0.1.
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On Figure 2-1 we show the four first electrostatic EBW roots calculated using
N =10 and ¥ = 2 (graph a) and ¥ = 4 (graph b) respectively. The dashed red line
corresponds to the location of the upper-hybrid resonance (UHR) where EBWs can
be mode-converted from electromagnetic EC waves. We see a structural difference
for the EBW root issued at the UHR between the two graphs, depending on whether
the UHR is below the second harmonic (a) where the root remains below the UHR
frequency towards the first cyclotron harmonic (¢ = 1), or above the second harmonic
(b) where the root starts above the UHR frequency and then crosses this frequency
towards the second cyclotron harmonic (¢ = 2). The transition occurs for quur = 2,

which means for wygr = 2w, or for ¥ = 3 since the UHR frequency is given by

WiHR = Whe + WE, (2.101)

Because this dispersion relation was derived in the electrostatic approximation,
the solution fails when electromagnetic effects becomes important. Clearly, we do
not expect the electrostatic approximation to be valid when the phase velocity of the
wave becomes of the order of the speed of light, that is, for w 2 &k, ¢. Equivalently, it

means that our solution fails for

kipre S Breq (2.102)
where
Bre = U% (2.103)

In particular, it is not valid near the MCR. In Section 2.3, the full electromagnetic
dispersion relation (2.16) will be solved for the non-relativistic hot plasma electron
susceptibility tensor (2.66), and we will investigate the validity of the electrostatic

root when compared to the exact solution of the dispersion relation.
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Energy flow density

The high-frequency electrostatic energy flow density (2.91) becomes, in a non-relativistic

kinetic plasma (2.69)

o o]

=Y o (2.104)

n=—oQ

where the contribution of the harmonic n is

lw2, 9
BES ~ e T (% [N2vHe + Ny Ny (VEe +vEe) + Aﬁsz’;”e]> (2.105)

which, using (2.70), is explicitly expressed as

2 2 A72
oFS = 1%66( n Vil ‘ﬁﬂ%a—WM&f“”“quﬂ)

" 2w? AN \ V2|N| Bre N2, V2y2
(2.106)
where we used the definitions (2.94) rewritten as
2
de = N2,
) Cenwce
G W (2.107)
V2 |Ny| Bre
VUre
6Te = e
c
and the definition
MWee
n = —— 2.108
Yn = — (2.108)
Using the following differential property of the plasma dispersion function
Z’l”Le (Cne) = —2 [1 + (nel (Cne)] (2-109)
the expression (2.106) simplifies to
oFS _ _19e 0 (n’Nilw | Re(Zn) (1 +gn) (2.110)
kn = T2 W2 AN \ N2AGE | V2 |Ny| Bre o |
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Away from the resonance, we have |(ne| > 1 and we can use the expansion (2.95)
for the plasma dispersion function, which gives Re (Z,e) =~ —1/(,. so that, using

N, ~ N, we find

1w2, 8 n? T
ES ~ pe ne
@k,n - 2 wg 8N ((1 — yn) )\e ) (2111)

Adding all harmonic contributions, the total energy flow density can be written as

(2.104)

19 wle e & n*w
8~ [1--E n(Ae) = -
kon 20N ( w? A Z I () (w— nw)) (2.112)

n=—00
and we find that in the limit |(,.| 3> 1, the normalized energy flow density (2.112) is
related to the electrostatic dispersion relation (2.96) in accordance with the relation
(2.39).

In the non-relativistic electrostatic limit, far from resonances, there is no flow in
the parallel direction, since I'ne/Ac is independent of Ny. The perpendicular compo-

nent of the energy flow density becomes

lw2, & n? o (T
P8 = —_F ne 2.
kL™ 9 w2 n:z_oo (1 —y,) ON, (/\e ) (2.113)

which can be rewritten as

2
w ~
D = —5Bre® (2, A) (2.114)
ce

with

L oa—m OAe \ A
= n2gvVAe 0 (The
=S VA 9 .
; g ( x ) (2.115)

We will show in Section 2.3 that A\, = (k. pre)” is rather insensitive to variations
in the temperature and density (except near the MCR). Therefore, the perpendicular
power flow of EBWs is roughly proportional to the density and the thermal velocity
of electrons (2.114). The density dependence can be understood in the sense that a

higher density means that there are more electrons to coherently transport energy
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with the wave.

Absorption coefficient

The high-frequency electrostatic absorption coefficient (2.92) becomes, in a non-
relativistic kinetic plasma (2.71)
oo

o = Y WS (2.116)

n=—0o0

where the contribution of the harmonic n is, using (2.74)

1 w Wi
S = i N e/ (VT + N (Ve + W) + NV
(2.117)

which, using (2.75), is explicitly expressed as

. 1 2
hn,ES pe —(2,
C“k,n “@ “ CN2 COe \/—8

Lpe 2
53 [\/QNLn +2v/ 2 | N cne] (2.118)
With the definitions (2.107) and (2.108), we find

VEN.n + 2/ [Ny Gue = V2NL— (2.119)

so that we obtain

lin,ES __ 7'(' 1 w wIZ)e 1 Fne (1 — yn)2
Yen = BV 2 DY T
”@k” c w |N]|| )BTe e 2N, Te

where we used N; ~ N.

We see that the n*" harmonic contribution of the absorption coefficient includes
a Gaussian term that peaks at the resonance (y, = 1) and is dominated by magnetic
field variations.

The expression (2.114) for the power flow is valid only far from resonances, where
|Crel > 1. However, more detailed studies of the plasma dispersion function show

that the the expansion for large arguments remains valid down to (| 2 3. In that
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case, inserting (2.114) in (2.120) gives (since there is no parallel energy flow in that

lin,ES Tw 1 Lpe (1—y,)°
QT =4 —— = exp | —~——— 2.121
o \/;C |Nj| B2 \.® (g, \.) { 2N Bz, (2.121)

and we see that unlike ECWs, the absorption of EBWs does not depend upon the

limit)

density.

Optical depth and EBW absorption

We assume that the plasma is in a slab geometry, and that the inhomogeneity scale
length is much larger than the wavelength, such that the results from this section
are valid in the WKB approximation. The magnetic field, in the uniform Z direction,
is a slowly varying (and monotonically increasing) function of z. All other plasma
parameters are assumed to be constant.

The optical depth defined as the integral of the absorption coefficient along the
propagation path of the wave across the resonance. For a given mode (w,k) and a

given cylotron resonance harmonic n, it is defined as

X
T = f ds i (2.122)

—0o0

where s is the distance along the propagation path, in the direction of the group
velocity and the power flow ®). Because of the slab symmetry, the power flow is in

the (X,Z) plane and thus

dx lq)k J_I
—_—=— 2.123
& (2:12)
From the definition of y, (2.108), we find, using y, ~ 1
dyn 1
—_ o~ — 2.124
dzx LB ( )
where Lp is the magnetic field variation scalelength. We obtain
®
/ Ay ” k“LB Qem (2.125)
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We also define the parameter
pp = =
" Bre

which measures the distance from resonance (y, = 1) in terms of magnetic field

(2.126)

variation, and accounts for the Doppler shift effect through the term Br./N|. We can

rewrite (2.125) as
[ @l
|Dre |

Tkyn = / dpn Pre |]V|l|

-0

Lpoxn (2.127)

Because A is very different for HBF and LBF approaches to the resonance, we

calculate the two contribution to 7y, separately and define the optical half-depth

ILBak,n for LBF approach (y, < 1)

Dy
TLBF —_ Ood n . N “ k
k,n fo Pn Br I ||I | P |
(2.128)
P
THBF — ffoo dpn Bre | N} :l@kiHILBak’" for HBF approach (y, > 1)

On each side, the values for A, and |®y | can be considered as being approximately
constant, and the variations of the other factors outside the exponential in (2.128)
can be neglected compared to the strong variations of the Gaussian term, such that

we can approximately integrate (2.128) using the expression (2.120) and find

w2
LBF _ TW%e Ls [F"e] for LBF approach (y, < 1)
LBF

|
(2.129)

2
c L Fne
HBF _ T WY B [ } for HBF approach (y, > 1)
HBF

C2c w2, IcI)k-LIHBF Ae

The optical half-depth 7 , will be evaluated in Section 5.1.6, where we will show
that 7p5F > 1, which means that EBWs are completely absorbed at harmonics of

the cyclotron frequency.
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2.3 Characteristics of Electron Bernstein Waves

In this section, we calculate the wave characteristics using the full electromagnetic
kinetic plasma susceptibility tensor (2.66) for electrons X§; (k,w) in (2.10) and (2.15).
The solution is obtained numerically using the code R2D2 [13]. The guess for finding
the appropriate root of the dispersion relation is provided by the electrostatic root
(2.99) for EBWs. Once the appropriate k| roots of the dispersion relation (2.16) have
been found, the polarization vector ex = Ey/ ||Ex|| can be obtained by calculating
the normalized eigenvectors of the wave equation (2.14) for the mode (w,k). The
power flow density sy and the density of power dissipated Py are obtained using the
expressions (2.34) and (2.45) respectively.

In this section, we focus in particular on the wave characteristics that enter the
RF quasilinear diffusion coefficient (3.192) and thus determine the wave-particle in-
teraction. These are the normalized components of the wave vector Ny and ki pr.,
the polarization vector ey, and the normalied perpendicular power flow &y, = ||®y],
which is also a measure of the electric field amplitude for a given incident power
density, since @} o [|Ei|]® / ||skL|| (2.36). For comparison, electromagnetic waves in
vacuum have &' = 1.

We calculate the EBW characteristics assuming a fixed frequency wy/ (27) = 14
GHz, as a function of Ny and the equilibrium properties of the plasma, namely the
density n., the temperature 7, and the static magnetic field B or, equivalently, the

following normalized parameters:

e the squared ratio of the plasma frequency to the wave frequency, proportional

to ne.

w2

o = w—”; X 7, (2.130)

e the ratio of the cyclotron frequency to the wave frequency, proportional to B

b= x B (2.131)



e the ratio of the thermal velocity to the speed of light, proportional to /T,

)BTe = ’UZE &y Te (2132)

Our nominal parameters are ag = 10, by = 0.6 and Bres = 0.05. For the frequency
wp, these parameters correspond to ne = 2.4 x 101° m™3, T,p = 1.3 keV, and B = 0.3
T. They are typical of core parameters in a NSTX-type plasma. Note that the value
by = 0.6 means that the closest cyclotron harmonic is n = 2 (which occurs at b = 0.5).

Results from R2D2 will be compared to those obtained within the electrostatic
approximation in Section 2.2 with Ny = 0. In the electrostatic approximation, the
electric field is assumed to be longitudinal, and therefore the polarization vector e®S
is simply (2.82)

e =N (2.133)
The polarization plays an important role in the wave-particle interaction, where the

diffusion coefficient depends on the rotating field and parallel components of the

polarization vector, defined as

e ek + iek,y
k,+, = \/—
2
Gow ~ ey 2.134
ex,- = (2.134)

V2

€k, = €k,z

In the electrostatic approximation, the components of ef> (2.133) are then

ES Ny
€+ = V2N
Ny
GES = 2.135
k,— \/§N ( )
os _ N0
k|| N

We anticipate that our analytic description in the electrostatic approximation is ex-
pected to fail when the large argument expansion (2.95) of the plasma dispersion

function becomes invalid. In fact, a detailed study of the dispersion function shows

75



that the expansion fails completely for |(,.] < 1, that is,
1 <2 (2.136)

In that case, the imaginary part of the plasma dispersion function, which goes like
exp [—(2.] [62], is expected to become significant, and therefore strong damping of
the EBWs should occur. This occurs near cyclotron resonances where b ~ 1/n. The

presence of IN ||| and fBr. in the denominator is a signature of the Doppler-shift effect.

2.3.1 Effect of N“ on EBW characteristics

2 0.8
(op/co =10 | — Full DR (o /(o -10 :
— 150 /0=0.6 L__" ESDR 1 . 0.60) /(,) 06 ______ _—
Q: 1[3 -005 Q:O4B '
- A o ] o104}
E 5 .....__; e T =
0 1 2 3 4 0
N
I
(a)

Figure 2-2: Real part (a) and imaginary part (b) of the EBW root NV, as a function
of Nj, showed as blue solid lines. On graph (a), the electrostatic EBW root is also
shown, as a dashed red line.

The EBW root k) pre is calculated as a function of N keeping all plasma pa-
rameters constant, and displayed as a blue solid line on Fig. 2-2, with the real part
on graph (a) and the imaginary part on graph (b). On graph (a), the electrostatic
root calculated using (2.99) is shown for comparison, as a red dashed line; it does not
vary with IV} since it was derived for Nj = 0. We see that the real part of the root
calculated from the full dispersion relation does not differ much from the electrostatic
root up to Ny =~ 1, and that differences remain small for N < 3. We observe that

the electrostatic approximation is very good for calculating the real part k) pr. for

76



EBWSs, since we can hardly distinguish between the roots for Ny = 0. For large
parallel wave numbers, N > 3, two approximations made in deriving (2.99) become
questionable: (1) the two first terms in (2.84), which are neglected in the Ny — 0
limit, may now have a significant contribution, and (2) the inequality (2.136), which
with our parameters gives IN ||| 2 3, is a condition for the failure of our analytical de-
scription. In addition, the Doppler broadening of the cyclotron resonance appears as
the imaginary part of N, increases, according to (2.136). A significant imaginary part
(Im [k, pre] ~ Re [k pre]) means that there is strong resonant damping on electrons,

which may also generate current. The role of Ny on EBWCD will be investigated in

Chapter 5.

1 :
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Figure 2-3: Graph (a): components of the polarization vector ey as a function of IVy.
The electrostatic (ES) polarization is shown for comparison. Graph (b): normalized
electric field amplitude, 1} o ||Eo||? / |si.L]||, as a function of Ny.

The components of the polarization vector are shown on Fig. 2-3 as a function
Ny (graph (a)) and we see that the parallel component of the polarization increases
linearly with NV} as predicted in the electrostatic limit (2.135), which is a good ap-
proximation for the polarization. On graph (b) we show that the normalized energy
flow @y, = Py, does not vary much with Ny for Ny < 3. This is in accordance with
the expression (2.114) obtained for ®i, in the electrostatic limit. For N > 3, the
weak dissipation limit used in deriving the expression (2.39) for ®y is no longer valid.

To summarize, the EBW root Re [k, p7.), polarization ey and perpendicular power
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flow @y, do not vary much with the parallel wave number N, except for the parallel
component of the polarization which varies as ey ~ Nj/N. In the remaining of this
section, we will consider a fixed value Ny = Njg = (1 +1/ bo)_l/ 2 ~ 0.61 for which the

O- and L- cut-offs coincide, and therefore where O-X-B mode conversion is favored.

2.3.2 Effect of the magnetic field on EBW characteristics

5 ; T 33— ;
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Figure 2-4: Real (a) and imaginary (b) parts of the EBW root N, as a function of
b = wee/w for Ny = Njo, calculated using the full non-relativistic dispersion relation
(blue solid line) and, on graph (a), the electrostatic dispersion relation (red dashed
line). The dashed vertical lines show to the location of cyclotron resonances.

We calculate the variations of the EBW characteristics as a function of the mag-
netic field ratio b = wee/w, between the second (b = 1/2) and first harmonic (b = 1).
All other plasma parameters are kept constant and we take Ny = Ny = 0.61.

The real part of the EBW root k, pre is shown on Fig. 2-4, graph (a). We observe
strong variations of Re [k} pre] are a function of we./w, from low values (Re [k pre] <
0.5 corresponding to N; < 5) near second harmonic, to very high values (Re [k} pre] 2
3 corresponding to N; 2 50) near the first harmonic (the dashed vertical lines show
to the location of cyclotron harmonic resonances). The electrostatic root, shown as a
red dashed line, seems a good approximation to the exact root (blue solid line) except

near the resonances. In fact, this graph is an inverted representation of graph (b) in

Fig. 2-1, for values 1 < g < 2.
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The condition (2.136), which sets a limit on the validity of our analytical de-
scription in the electrostatic approximation (failure of our Z ({,.) function expansion
(2.95)), gives b 2 0.95 near first harmonic and b < 0.52 near second harmonic. The
region where the expansion is invalid is therefore twice as wide on the n = 1 side,
which explains why the approximate description fails ”earlier” on that side. The con-
dition (2.136) also explains why Im [N, ], shown on graph (b), picks up further from
resonance on the n = 1 side. The imaginary part of the wave vector characterizes

damping near the Doppler-shifted resonances.
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Figure 2-5: Graph (a): components of the polarization vector ey as a function of
b = wee/w. The electrostatic (ES) polarization is shown for comparison. Graph (b):
normalized electric field amplitude,®; ! o ||Eo||* / |lsk.]l, as a function of b.

The components of the polarization vector are shown on Fig. 2-5 as a function
wee/w (graph (a)). Near the n = 1 resonance, where k| pr. - and therefore N - is very
large, the parallel component of the polarization is very small, in accordance with
(2.135), and the polarization is basically electrostatic. On the opposite side, towards
the n = 2 resonance, the wave number N is much smaller and the contribution
of ey more significant. In addition, the polarization becomes very different from
the electrostatic limit (2.133) near the second harmonic, a sign that electromagnetic
effect are important. In graph (b) we see that the normalized power flow ®y; = Py,
varies significantly with b, and ®; ! o ||Eol|*/ ||si.]|| follows essentially the profile of

Re[kipre] (Fig. 2-4). When Re [k} pre] becomes large (near n = 1 resonance), the
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wave becomes electrostatic and, for a given incident power density sy, the electric
field amplitude is very large (®;] > 30). However, when Re [k, pre] is low (near
n = 2 resonance), the wave has strong electromagnetic features and the electric field

amplitude is small (¥} < 1).

2.3.3 Effect of the temperature on EBW characteristics
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Figure 2-6: Real (a) and imaginary (b) parts of the EBW root N; as a function of
Bre = vre/c for N = Ny, calculated using the full non-relativistic dispersion relation
(blue solid line) and, on graph (a), the electrostatic dispersion relation (red dashed
line).

The EBW characteristics are calculated as a function of Gr, = \/7_“;/—77105 keep-
ing all other plasma parameters constant and taking Ny = Njo = 0.61. The real
part of the EBW root kj pr. is shown on Fig. 2-6, graph (a), where the solid blue
line represents the exact root and the dashed red line is the approximate root in
the electrostatic limit. The electrostatic root does not depend on Br., which was
expected since there is no temperature dependence in the electrostatic dispersion re-
lation (2.99) solved for w(\,) where A, = (k1pre)®>. The exact root does not vary
much with the temperature, and is very close to the electrostatic root for fr. < 0.05.

The approximate form is expected to fail completely when the condition (2.136) is

satisfied for n = 2 (the nearest harmonic), which gives Gr. 2 0.2 with our parameters.

~

As expected from (2.136), increasing Ore lead to larger Doppler-shift and therefore
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increasing imaginary part of the root, as seen on graph (b), which means increasing

damping.
1 ; 8 ;
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Figure 2-7: Graph (a): components of the polarization vector e as a function of 8z, =
vre/c for Ny = Njyo. The electrostatic (ES) polarization is shown for comparison.

Graph (b): normalized inverse electric field amplitude, ®y; o (|[Eol|* / ||sk Lll)_l, as
a function of Bre.

The components of the polarization vector are shown on Fig. 2-7 as a function
of Bre (graph (a)) and we see that the polarization differs significantly from the

electrostatic limit (2.135) for fBre 2 0.05. The temperature also has an important

effect on the normalized power flow, as shown on graph (b) where @y ; = ®y, increases
linearly with Sr. for small SBr., in accordance with the expression (2.114) obtained

for &, in the electrostatic limit.

2.3.4 Effect of the density on EBW characteristics

The EBW characteristics are calculated as a function of the normalized density a?® =
wge /w? keeping all other plasma parameters constant and taking Ny = Njp = 0.61.
The real part of the EBW root k, pre is shown on Fig. 2-6, graph (a), where the solid
blue line represents the exact root and the dashed red line is the approximate root
in the electrostatic limit. We see that the EBW root does not depend much upon

the density as long as it is far from the upper-hybrid resonance, which is located at
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Figure 2-8: Real (a) and imaginary (b) parts of the EBW root N, as a function of
o = wZ /w? for Nj = Njo, calculated using the full non-relativistic dispersion relation
(blue solid line) and, on graph (a), the electrostatic dispersion relation (red dashed
line).

very low densities (typically near the plasma edge) and shown as a vertical dashed
line. We also notice that the exact root is very close the electrostatic approximation,
although the difference increases slightly with increasing density. The imaginary part
is shown on graph (b) and has a similar dependence as the real part.

The components of the polarization vector are shown on Fig. 2-7 as a function
of a? (graph (a)) and we see that the polarization also diverges steadily from the
electrostatic limit (2.135) as w2, /w” increases. The density also has an important
effect on the normalized power flow, as shown on graph (b) where @y, = ®,, increases
linearly with o2, which agrees with the expression (2.114) obtained for @i, in the

electrostatic limit.

2.3.5 Conclusions

When the results obtained in this section are considered in perspective of a EBW
heating or current drive experimental situation, they lead to the following qualitative

observations:

o EBWs are kinetic waves that are found to be well described in the electrostatic
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polarization

Figure 2-9: Graph (a): components of the polarization vector ey as a function of @ =
w2, /w? for Ny = Njo. The electrostatic (ES) polarization is shown for comparison.

Graph (b): normalized inverse electric field amplitude, ®y; o (HEOH2 / |Isx L||)—1, as
a function of a.

approximation away from the resonances. The approximate analytical results
(2.99) and (2.114), obtained in the electrostatic limit, are generally valid as long
as the expansion (2.95) of the plasma dispersion function remains valid, which

breaks down when the condition (2.136) is satisfied.

e EBWs are propagating waves between two harmonics of the cyclotron frequency.
However, they are completely absorbed at the Doppler-shifted harmonic reso-
nances. The wave absorption coefficient is independent of the plasma density,
a property of waves for which the energy flow is mostly carried by electrons

coherently moving with the wave.

e In accordance with the electrostatic dispersion relation (2.99), the root of the
dispersion relation, or normalized perpendicular wave vector Re [k pre, does
not vary much as a function of N and the temperature, and is rather insensitive

to density variations away from the MCR.

o After the EBWs are generated at the MCR (Description in Section 1.2.1),
they propagate towards the central, high density (o? > 1) and temperature

(Bre 2 0.05) region until they eventually approach an electron cyclotron har-
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monic resonance, where they are damped. There is also a possibility that the
wave encounters no resonance along the propagation and reaches the edge again,
where it can be reflected or mode-converted to EC modes. Therefore, inside the
plasma, the behaviour of EBWs is dominated by magnetic field variations. We
have shown on Fig. 2-4 and Fig. 2-5 that the EBW characteristics depend
very much on whether a harmonic is approached from the lower B-field (LBF)
region, where w, < w, or a higher B-field (HBF) region where w, > w. A

comparative summary of these two scenarios is given in Table 2.1.

The polarization is mostly electrostatic - along the wave vector - except near
the HBF harmonic where Re [k} pr.] is small and electromagnetic effects on the

polarization are important.

The condition (2.136), which is a measure of the proximity to cyclotron reso-
nances and includes (temperature and N)-dependent) Doppler shift effects, also

characterizes the strong damping condition measured by Im [k} pre].

The normalized electric field amplitude ®;! o ||Eo||®/ [|sk.|| has a strong de-
pendence upon density and temperature. It typically evolves as @y, o 1,07,
meaning that for a given incident power flow, the electric field amplitude is
larger in low density and low temperature regions. When the electric field am-
plitude becomes too large, non-linear effects, such as trapping in wave, can
take place. The onset of these effects will therefore depend upon density and
temperature - as well as the average power density carried by the wave. These

effects are considered in Section 3.5.3.

The calculations presented in this chapter are obtained for an infinite homoge-

neous plasma. Going from an infinite to a bounded plasma, such as in a torus, does

not change fundamentally the equations - we should consider discrete Fourier modes

rather than continuous ones -, and these equations remain valid in such continuous

form when the wavelength A is much smaller than the plasma size, which is a good

approximation.
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Scenario LBF Approach HBF Approach
EBW root Large Re [k1pre] 23 Small Re [k pre] < 0.5
Polarization Basically electrostatic | Strong electromagnetic effects
Normalized E-field | Very large ®;;] > 30 Small & <1

Table 2.1: Comparative table of EBW characteristics depending of damping scenario:
low-B field (LBF) approach versus high-B field (HBF) approach

However, these calculations do not strictly apply to an inhomogeneous plasma.
Still, in the regions of the plasma where the equilibrium inhomogeneity scale length
is much larger than the wavelength, it has been shown that the dispersion relation is
satisfied locally, which is known as the WKB approximation. Therefore, the calcula-
tions presented in this section can be used to understand the evolution of the wave
characteristics along the propagation through a plasma with a slowly varying inho-
mogeneous equilibrium. In the regions where the equilibrium inhomogeneity scale
length becomes comparable or shorter than the wavelength, notably in the MCR

where k; — 0 at cut-offs, this description fails.
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Chapter 3

Kinetic Description of Toroidal
Plasmas with Non-circular

Cross-sections

3.1 Introduction

In this chapter, a kinetic description of axisymmetric toroidal plasmas is given for the
general case of closed nested flux-surfaces with arbitrary geometry. After defining the
equilibrium magnetic field in appropriate coordinates systems, we describe in Section
3.2 the motion of a single electron in this magnetic field, which is characterized by
a constants of the motion, the energy - since magnetic forces do no work - and an
adiabatic invariant, the magnetic moment, which results from the fast gyromotion.
The inhomogeneity of the magnetic field is unavoidable in a torus, and results in the
trapping of a fraction of electrons in the low magnetic field regions. Another effect
of the magnetic field inhomogeneity is to generate particle drifts. The drift across
flux-surfaces, associated with temperature and density radial gradients in the plasma,
is responsible for the bootstrap current. However, the orbit deviation from a flux-
surface is very small compared to the size of the plasma and the poloidal orbit length,

and it is a good approximation, for electrons, to assume that the particle is exactly
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on the flux-surface when integrating along the particle orbit.

The drift-kinetic equation, which accounts for this drift, is derived in Section 3.3
from the Boltzmann equation with Fokker-Planck collisions. The effect of RF fields
- such as Electron Bernstein Waves - on the plasma is described by a quasilinear
operator that is added ad-hoc to the drift-kinetic equation. This 4-D equation (2-D
in axisymmetric configuration space, 2-D in gyroaveraged momentum space) is re-
duced to a set of two 3-D equations by applying the small drift approximation, which
accounts for the fact that the drift velocity is much smaller than the parallel veloc-
ity of electrons. This approximation effectively decouples the flux-surfaces. These
3-D equations are further reduced to a set of 2-D bounce-averaged equations (in mo-
mentum space) using the low-collisionality approximation, under which the motion
of a given electron is not altered much by collisions or quasilinear diffusion over the
course of one poloidal transit time (for passing electrons) or bounce time (for trapped
electrons). The differential operators in the kinetic equation are expressed in a conser-
vative form as the divergence of momentum-space fluxes with diffusive and convective
parts. The bounce-averaging of these operators is expressed analytically and for the
general case, using the symmetry properties of the distribution functions, and leads
to an expression for bounce-averaged diffusion tensor and convection vectors, which

must be specified for each operator (collisions and quasilinear diffusion).

The Fokker-Planck collisions operator is linearized and bounce-averaged in Section
3.4. The quasilinear operator is derived in Appendix B for a Gaussian beam in a
uniform plasma. Its application to a toroidal plasma is discussed and justified in
Section 3.5, where it is transformed to enter the bounce-averaged kinetic equation.
The validity of the quasilinear operator with respect to non-linear effects is also

discussed.

Finally, the calculation of moments of the distribution function is presented in
Section 3.6, after introducing the flux-surface averaging operation. It allows us to
evaluate the flux-surface averaged density, plasma current, and collisional or RF power
dissipated, from the bounce-averaged distribution function. The stream function,

which gives a useful mapping of steady-state fluxes, is also calculated.
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3.2 Electron Dynamics in an Axisymmetric Torus

In this section, we first introduce the axisymmetric toroidal magnetic equilibrium ap-
plicable to tokamaks and STs. The particle motion in this magnetic field is described
and the drift across magnetic flux surfaces is calculated. In addition, the bounce-
averaging operation is defined in the zero-banana width limit, when the drifts can
be neglected in first approximation. The results presented here are not derived from
first principles, although this has been done in previous works refered to in this sec-
tion. The properties of the equilibrium magnetic field are obtained from ideal MHD
equations [63] [64]. The motion of particles in a non-uniform magnetic field has been
derived by expanding the equation of motion to orders of py/Lg <« 1 where py is
the Larmor radius and Lp is the scale length of magnetic field variations [65] [66].

Equivalently, these equation have been derived using an Hamiltonian approach [67)].

3.2.1 Toroidal plasma field geometry and configuration space

coordinates systems

Figure 3-1: Cylindrical coordinate system (R, Z, ¢) for axisymmetric toroidal plasmas.
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A natural coordinates system for an axisymmetric toroidal plasma is the cylindri-
cal system (R, Z, ¢), defined in (A.46) and shown in Fig. 3-1, where R is the distance
from the torus axis of symmetry, Z is the (generally vertical) position along this axis,
and ¢ is the angle in the toroidal direction. The system (R, Z, @) is oriented such
that the toroidal magnetic field be positive B- V¢ > 0. In other words, if the toroidal
field is directed clockwise from a top view, then V Z is oriented towards the top of the
torus. Otherwise, it is oriented towards the bottom of the torus. The corresponding

local direct orthonormal vector basis is (ﬁ, Z, (3), defined in (A.49), with (A.51)

R=VR
Z=vVZ (3.1)
¢ = RV¢

Many useful geometrical and differential properties of this system are derived in Ap-
pendix A. Note that with our definitions, the angle ¢ is oriented in the opposite
direction from the one used generally in ideal MHD, where the direct orthonormal
vector basis is (f{, g/z;, 2) The present prescription allows us to use the same toroidal

coordinate ¢ throughout various coordinate systems defined below.

In a toroidal axisymmetric geometry, the equilibrium magnetic field can be ex-

pressed generally as [64]
B=I1()Ve¢+VopxVy (3.2)

where v is called the magnetic fluz function and I (1) is a free function related to the
toroidal magnetic field, and which accounts for the plasma dia- or paramagnetism.
In an axisymmetric system, 7 is independent of ¢ and therefore Vi - V¢ = 0 and we
get from (3.2) that B - Vi = 0. The magnetic field is therefore included in nested
surfaces of constant v, called flux surfaces.

A consequence of the axisymmetric magnetic equilibrium is the existence of a
magnetic axis in the toroidal direction, located at the fixed position (R,, Zp) ,which
corresponds to the innermost flux-surface. The magnetic axis is an extremum of the

magnetic flux function 1. The value of ¢ on axis can be arbitrarily chosen as i = 0.
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y = Cst.

Figure 3-2: Flux coordinates system (v, s, ¢) for axisymmetric toroidal plasmas with
closed nested flux-surfaces.

Using this axis as a reference, we define the coordinate system (v, s, ¢), shown in Fig.
3-2, where the distance s is the curvilinear length along the poloidal magnetic field
lines (A.72). In this study, we assume that the magnetic field amplitude has only
one maximum and one minimum on the flux-surface, which is generally the case for

tokamaks and STs

Bmax (770) = msaX {B (1/)7 8)} (3 3)

By (1) = min {B (1)}
and we choose the origin of s to be at the position of minimum B-field amplitude

within a flux-surface.

B (4,5 = 0) = Bo () (3.4)

Note that from now on, and all along this thesis, the subscript 0 refers to quantities
evaluated at the position of minimum B-field on a given flux-surface. The range of s
on a given flux-surface is limited by smi, (¥) and Spyax (¥) which are set at the position

of maximum magnetic field, such that

B (¥, = Smin < 0) = Brax (¥)

(3.5)
B (¢, 8 = Smax -~ 0) = Bnax (":b)
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The local direct orthogonal vector basis corresponding to the system (¢, s, @) is

(J,g, a), defined in (A.74), with (A.78)

= ot
Vel (3.6)
§=Vs=¢x9¢
The toroidal magnetic field is
Br =1 ($) Ve = By (3.7)

with B, = I (%) ||V¢||. With our prescription that B - V¢ > 0, we have that B, > 0
and I (¢) > 0, and therefore the (positive definite) toroidal component of the field is

By = By = B, = 1) (33)

If the plasma current is in the same direction as the magnetic field, I, > 0, the
poloidal field is directed counter-clockwise in the poloidal plane, as shown by § on
Fig. 3-2, and the flux function 9 increases in the radial direction. Then, the magnetic
axis is a minimum of ¢. If I < 0, 9 decreases in the radial direction and the magnetic

axis is a maximum of . The poloidal magnetic field is
Bp = V¢ x VY = Bs (3.9)

with By = ||[V9||||V||. Therefore, the (definite positive) poloidal component of the
field is
\Y
Bp=|Bp| =B, = IVl an (3.10)

The total magnetic field magnitude is simply

B=|B| =+/B2+B2 (3.11)

The magnetic flux function ¥ is related to the poloidal flux of B. Indeed, let’s
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dSply)

dSp(y)

Figure 3-3: Elementary toroidal surface dSr (¢) and poloidal surface dSp (¢) for the
calculation of flux of magnetic field B within a given flux-surface .

consider the flux of Bp across a toroidal surface St (¢) as shown on Fig. 3-3. Because
the magnetic flux is a conserved quantity, the surface St () can be taken at any
poloidal location. We choose arbitrarily the s = 0 surface. Using axisymmetry, (3.10):

and the expression (A.81) for elementary surfaces of constant 3, we find

o
= 271'[ MBP
0

= 2my) (3.12)

and we see that 1 is the poloidal flux per radian.

Because the range of s depends on % (3.5), it is often more convenient to work
with the coordinate system (v, 6, #), where @ is the poloidal angle measured from
the magnetic axis. The 6 range (—m,7) is now independent of v, which simplifies
numerical calculations. On the other hand, the contravariant vectors Vi and V@

(A.91) are not orthogonal. This coordinate system, also shown on Fig. 3-2, is a blend
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of (v,s,¢) and (r, 8, ), which is defined in (A.59) with the basis (A.64)

Vr
rvVe

(3.13)

) ")

The properties of this curvilinear system are detailed in Appendix A. We also define,
for geometrical purposes, a flux-function p (1) which coincides with the normalized
radius on the horizontal outboard mid-plane. Indeed, in an axisymmetric system,

using the functions R (¢, 6) and Z (¢, 6), we define p (1) as

RW,0) - Ry (3.14)

p(¥) = R._F,

where R, = R (0,0) is the location of magnetic axis and R, = R (%q, 0) is the value of
R on the separatrix (1 = 1,) as it crosses the horizontal mid-plane (8 = 0). We have
by construction 0 < p < 1 in the plasma. Here a, = R, — R,, is defined arbitrarily as
the plasma minor radius, since this definition merges a, for circular concentric flux-
surfaces. We also define the position g (1) corresponding to the (unique) location of

minimum B-field on the flux-surface

O (¥) = 0 By 0)=Bo() (3.15)

When the plasma is up-down symmetric, we have 8, = 0. The system (9, 8, ¢) will

be used from now on and through this thesis.

Safety Factor ¢ (%)

The safety factor ¢ () is a measure of the average number of toroidal rotations
completed while following a field line for one entire poloidal rotation. It is precisely

defined as

q(y) = %TD (3.16)

where 17 is the toroidal flux and 1p in the poloidal flux. The toroidal flux is the flux
of By through the poloidal surface Sp (1) as shown on Fig. 3-3. Using axisymmetry,
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(3.8) and the expression (A.94) for elementary surfaces with constant ¢, we find, using

(A.90),

g4 7r r
= / dy | dfr————DBr (3.17)
o e |1 10wl

We recall (3.12)
Yp (¥) = 2my (3.18)

so that, using (3.17) and (3.10), the safety factor (3.16) becomes

o) = [ gﬁﬁg (319

3.2.2 Particle motion in a magnetic field and momentum

space coordinates systems

Because of the fast gyromotion of particles in the magnetic field, we use momentum
space coordinates systems with rotational symmetry in order to reduce the dimen-
sionality of the problem. Two different momentum space coordinates system are

considered through this work:

e First, the cylindrical coordinate system (py,p1, ), where py is the component
of the momentum along the magnetic field, p; is the component perpendicular
to the field, and ¢ is the gyro-angle. This system is defined in (A.100). The
cylindrical momentum-space coordinate system has the natural symmetry of

wave-particle interaction.

e Second, the spherical coordinate system (p,&, ¢), defined in (A.113), where p
is the magnitude of the momentum, and £ is the cosine of the pitch-angle.
The spherical momentum-space coordinate system has the natural symmetry

of collisions. It is the primary system, used in the DKFE code, for an accurate
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description of collisions.

Figure 3-4: Momentum space coordinates systems (p”, DL, cp) and (p, &, ).

The momentum space and the two systems are shown on Fig. 3-4. In a relativistic

plasma, the velocity is related to the momentum by (2.54)

P
Ve (3.20)
where (2.55)
2 2
P tPL p?
v(llel) = \/1 t o = \/1 ey (3.21)

is the relativistic factor.

The motion of an electron in a uniform magnetic field is decomposed into a gyra-
tion in the plane perpendicular to the field line and a free streaming along the field
line [64]. The radius of the gyration, also called electron Larmor radius or gyroradius,
is

Pl
MeWee

PL = (3.22)
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where
_ eB

Mme

wce

(3.23)

is the rest mass gyrofrequency. When the magnetic field is non-uniform and when
its variations, both in amplitude and directions, occur on a scale length much larger
than the Larmor radius, then the modifications to the particle motion can be viewed
as a perturbation to the gyromotion, and consists of relatively slow particle drifts.
When averaged over the fast gyro-motion, the resulting velocity - called guiding center

velocity - is then the sum of the fast streaming along field lines and a slow drift
Vg = v“B +vp (3.24)

where b = B /B is the unit vector in the magnetic field direction.

In a constant equilibrium and the absence of equilibrium electric field, the drift
velocity vp is the sum of the VB drift, due to changes in the magnitude of B, and

the curvature drift, due to changes in the direction of B. It is given by [64]

1 12\ Bx VB
Vp = 56- (’Uﬁ -+ 7J_) _B‘?_ (325)
where €2, is the relativistic cyclotron frequency
B e
Q= L2 _ _Lee (3.26)

Y, Y

3.2.3 Constants of the motion and particle motion along the

field lines

Because magnetic fields cannot do any work on charged particles, the electron’s kinetic

energy &€ is a constant of the motion

d€
=0 (3.27)
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where & is expressed relativistically as
E=(y-1)mc (3.28)

In addition, the fast gyromotion results in the existence of an adiabatic invariant

[64],

dp
—~0 2
7 (3.29)
where u is the magnetic moment
2 2
o eV
= = 3.30
= 9m.B ~ 29, (3:30)

Because of the conservation of energy and magnetic moment, the parallel velocity of
the electron decreases as it moves towards regions of higher magnetic field amplitude.
This effective force in the parallel direction is called mirror force, as it is the principal
longitudinal confining effect in a mirror machine. In a toroidal plasma, the parallel
velocity of an electron moving towards higher field regions can sometimes vanish
before the electrons reaches the location of maximum magnetic field Byay (). In that
case, the electron bounces back towards lower field regions, and is called a trapped
electron, as it is confined in a region of low magnetic field. All electrons confined on
a given flux surface ¢ will pass by the point of lowest magnetic field By (¢) on that
flux-surface. In an axisymmetric plasma, it is therefore possible to identify electrons
by the value of their momentum components pjo and pio as they reach the point
where B (1,0) = By (v).

The turning points 7 in the bounce motion are then determined by the location
where v vanishes. The conservation of energy (3.28) leads to the conservation of

and therefore, using (3.21)

pio+ Pl =p} + 11 (3.31)
while the conservation of magnetic moment (3.30) gives

Pio _ Pi

By(v)  B(t,07)
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We define the ratio ¥ (3, 8), on a given flux surface, between the magnetic field and

its minimum value By (1) on that flux-surface.

T (,0) = % (3.33)

so that, at the turning point where p; = 0, (3.32) with (3.31) gives

p2
U (1,07) =1+ -2 (3.34)

Trapped electrons are such that there exists such poloidal location 61 and therefore

2
P
1+ 0 < U () (3.35)
Pio

where Yoy (1) = Bmax (¥) /Bo (¥). The two turning points are

2
07 min (p!|0>p_L07 ¢) = min {9 B(¢,0r) < (1 + f%l_?_) By (1//)}

(3.36)

2
07 max (pHOap.LO’ ";[)) = max {0 B ("p’ 0T) < (1 + g2“2) BO (’(/)) }

and we have 07 in = —0rmax in an up-down symmetric plasma.

In spherical momentum coordinates (p, £), the conservation of energy (3.28) gives

Po =P (3.37)

meaning that the magnitude of the particle momentum is conserved, while the con-

servation of magnetic moment (3.32) leads to

1—g  1-¢
Bolw) ~ B,0) (3.38)
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so that, at the turning point where £ = 0,

1
U (y,0r) = 3.39
Trapped electrons on a given flux-surface are therefore such that
& < &r (%) (3.40)

where we defined

or (9) = 4/1- m (3.41)

In spherical coordinates, electrons are therefore identified by their momentum p,
which is a constant of the motion, and by the value &, of their pitch-angle as they
cross the point of minimum B-field on the flux-surface. The turning points (3.36) of

an electron (p, &) can also be defined in (p, ) coordinates, using (3.39)

07 min (€0, %) = min {9 'B (0, 0p) < 2o ) }

1-¢&
(3.42)

aTmax (60, w) = max {0 ‘B (¢7 eT) < Do (¢2) }
1-§

The pitch-angle of an electron varies along the flux-surface according to (3.38)

£=0y/1-0(y,0)(1-£) (3.43)

where o =sign(£y). We can also derive the condition for an electron with pitch-angle

£ at the poloidal location € to be trapped. From (3.38) and (3.41) the condition is

_ [ vw
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We define the limits 0, and Gpax as

—m  for passing particles
emin (¢7 50) = 9 f N d . l
min for trapped particles
T pped p (3.45)

s for passing particles
amax ("»bu 50) =

Ormax for trapped particles

where 01 pmin and 61 . were defined in (3.42). The conditions for an electron (p, &)

to be able to reach a given poloidal location € is then

emin (¢a£0) S 0 < emax (¢a §0) (346)

which, using (3.34), can also be written as

1
1-¢

|€o| = V-3 (1,10,0) (3.48)

¥ (y,0) <

(3.47)

or equivalently

3.2.4 Particle drift in an axisymmetric toroidal plasma

In an axisymmetric toroidal plasma, the equilibrium magnetic field is given by (3.2),

which is rewritten in (¥, s, ¢) coordinates as

5 I@)

vyl
R

R

o+ | (3.49)
and is necessarily non-uniform. In that case, particles are subject to drifts both
within and across the flux-surfaces. We are particularly interested in drifts across
the flux-surfaces as they are essentially responsible for the existence of the bootstrap

current.
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Drift Velocity from the Expression of Single Particle Drift

The guiding-center drift velocity due to the magnetic field gradient and curvature is
given by (3.25) and its component perpendicular to the flux-surface can be written
as

2

1 1
vp -V = o (vﬁ + %) V¥ xB-VB (3.50)

Inserting the expression (3.49) of the magnetic field, we find

2 -
vo-vi=g (of+ D) B fiveia-1w3) vs Gy

Using axisymmetry and the expression (A.83) for the gradient in (1, s, ¢) coordinates,

the equation (3.51) becomes

vp - V¢ = —Qie (vﬁ + %i) “—V%@% (3.52)
With the definition (3.30) of the magnetic moment i, we rewrite
Vo Vi = —é—-——-’lvﬁz;(w) (vﬁ + “5}) %g (3.53)
Using the conservation of magnetic moment (3.29) along the particle motion
“;Ze %g - Qe% (‘;B> (3.54)
and using the conservation of energy (3.28) and the identity
vioB 8 (v} d (v
B9s b5 (‘z‘) -u55; (5) (3:55)
we get
—é (vﬁ + “—qQ—) %—? - —v”B% (%) (3.56)



and finally, the equation (3.53) becomes

Vp - V= %1 (%) ”VT“’”% (2) (3.57)

In addition, using (3.49) and axisymmetry,

_1Ivyll o
B.V =0 (3.58)
so that we can rewrite (3.57) as
oY o (U
v V=gl (§)B-V (B) (3.59)

Drift velocity from the conservation of canonical momentum

The drift velocity (3.59) was obtained based on the expression (3.25), which was not
derived from first principles. Note that we can also derive the drift velocity using the
conservation of canonical momentum, which is also a constant of the motion because

of axisymmetry. It is expressed as

Py = R[ymevy + geAy) (3.60)

where Ay is the toroidal component of the vector potential.

From the relation

B=VxA (3.61)
with the expression (A.85) of a curl in (¢, s, ¢) coordinates, we have

_19,. Ivle
B, = G5 49— "5 55 (RAY) (3.62)

Then, using axisymmetry and the expression (3.10) for the poloidal field, we get

RA; = —y (3.63)
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where we chose arbitrarily A, (1) = 0) = 0.

Because the toroidal canonical momentum is a constant of the motion, we have
Vg - VP =0 (3.64)

which becomes, using (3.24), (3.63) and the conservation of energy so that vg.- Vv = 0,

M.

vp - Vi = —v,. - V (Ruy) (3.65)

€

Assuming a priori that I”III > |vpl|, a condition that is well verified consistent with

the conservation of magnetic moment, this equation reduces to

YMe
q.B

—;;lB -V (Ruy) (3.66)

Vp- V’l,b = ’U”B -V (R’U¢) =

The toroidal velocity is related to the parallel velocity by

_ By _I(y)

)| (3.67)

Since I () is a flux function, it can be taken out of the gradient, so that

Vo - Vi = %I ¥)B-V (%) (3.68)

an expression which is the same as (3.59).

Deviation of particle orbits from the flux-surface

Because of the drift across flux-surfaces, particles are not strictly confined to a given
flux-surface. Considering that the gradient of magnetic field amplitude is globally in
the inward direction (VB =~ -RB /R), the drift velocity in the poloidal plane (3.25)

is arroximately

1 v2\ Br ~
vpp = — - (ﬁ,’ + %) R_1T3Z (3.69)

104



VB

passing e

flux surface

trapped e-

(banana orbit)

Figure 3-5: Poloidal projection of particle orbits in a toroidal plasma.

and is therefore directed in the vertical direction. Because ions and electrons drift in
opposite direction, this drift could generate a vertical electric field that would lead to
a loss of confinement due to resulting E x B drift in the outboard direction. However,
along the poloidal motion of particles, this drift is directed alternatively towards the
core and toward the edge of the plasma, such that it cancels exactly over the course
of one transit or bounce period. This explains why a poloidal field is necessary to
confine a ST or tokamak plasma. Although the cumulative drift vanishes over one
poloidal motion, particles drift across the flux-surfaces along their orbit, as illustrated
on figure 3-5, which results of the characteristic shape for trapped electrons, called
banana orbits. The maximum deviation off the flux-surface can be estimated by
calculating the accumulated drift over half a bounce or transit time 7,. From (3.69),

we get
premq  for passing electrons
;
Arp ~ ’UDP—IZ ~ (3.70)

PTeLq for trapped electrons
§or
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where we used the estimation (3.103) for the bounce time and where we used g =~
gBr/B. We see that the particle deviation from the flux-surface is not more than a
few Larmor radii, and that it is larger for trapped electrons, because their parallel

velocity is smaller.

3.2.5 Bounce time and bounce averaging operation

Transit or Bounce Time

Because the orbit deviation from a flux-surface is very small compared to the size of
the plasma and the poloidal orbit length, it is a good approximation, for electrons,
to assume that the particle is exactly on the flux-surface when integrating along the
particle orbit. In this limit of zero-banana width, the forward and backward motion
of trapped electrons follow the same trajectory. In that case, we can define the bounce
time as the time for a trapped electron to complete half a bounce period. The poloidal
transit time for a passing electron is defined as the time to complete a full orbit in

the poloidal plane. We define then, for any electron
Smax (g Smax s B
- =/ _:/ & 5 3.71)
’ ) Smin Iv‘gl Smin IU” l BP (

where v, is the guiding center velocity along the poloidal field lines, and v is its
velocity parallel to the magnetic field. The limits smin and smax are defined in (3.5)
for passing electrons, and are the positions, along the field lines, of turning points for

trapped electrons.

The differential arc length ds along the poloidal field line is generally expressed

in curvilinear coordinates (u!,u?, u®) as (A.11)

ds = +/gijdutdu’ (3.72)

where the g;; are the metric coefficients, defined in (A.10). In the (¢, 8, ¢) coordinates
system, the variations d and d¢ are essentially zero along the poloidal field line. As
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a consequence, (3.72) reduces to

ds = \/gzdf (3.73)

where the metric factor /g represent the poloidal distance per radian along the

field lines. The bounce time (3.71) becomes

6,
_ max 922 B
7 (Y) = /0 d()——"lvnl B (3.74)

min

where the limits f,;, and .y are defined in (3.45).

In spherical momentum coordinates, we have (A.113)

A_Ph_, (3.75)
v op
so that ,
_2m mex @) & B
™) = vkl Jo,. 27 922 ¢ Bp (376)

The bounce time can then be normalized as

R
w60 = ot () (3.77)
where
A(¢§)=L/0mxﬁ‘/g_25@£ (3.78)
Y G(®) Jop 27 Ry € Bp '
and
= [V B
)= [ e (3.79)

The bounce time is in fact normalized to the transit time of particles with parallel
momentum only, since A (¢, &1) = 1. The factor g (1) represents the length of field
lines within one poloidal rotation, normalized by 27 R,,.

The covariant metric element gos is given by (A.8)-(A.10), which in the (¥, 8, ¢)
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system becomes (A.89)

oo = (3.80)

Consequently, the normalized bounce time takes the form

1 (=g 1 r BE&
A = = e e e .
with \
"dd 1 r B
q = — —_—— 3.82

Bounce Averaging

Anticipating that the kinetic equation will be reduced based on the fast streaming
motion along the field lines, we define an average over the poloidal motion, which
accounts for changes in the particle velocity, including trapping, and effectively anni-
hilates any term of the type v, - 3/0s in the zero banana-width limit. This is called
the bounce-averaging operation

1
b

W=y

1 [1 <]
a3y

Smax d
|
s |vs|

min

smex ds B
/S B (3.83)

min

T

T

where the sum over o =sign(v)) applies to trapped particles only. This is an average
over a poloidal rotation for passing electrons, and over both the forward and backward

motion for trapped electrons. It can be rewritten in (¢, 8, ¢) coordinates using (3.73)

omax B
/ Y92~ 4 (3.84)
loy| Bp

o Omin

w-iis
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and in terms of the normalized bounce time A using expression (3.78)

omax dg 922 B 60
/6 ’2_7FVR,, Bt (3.85)

111
{A} = p¥i [‘2‘ Z}

min

or, inserting the expression (3.80) for |/g22

111
el

i - (3.86)

We anticipate that bounce averaging the momentum-space operators in the kinetic
equations leads to a set of coefficients that all have a similar structure, denoted A,

and Ag;m, which are define as

{(W, 0, &»)kwl .9) ( Ro(¥) )’"} _ Mt (,60) (387)

&o R(v,0) A (2, &)
and
£ (4,0,&)\" Ro() \™ | _ Meam (¥, &0)
{(—s“) "9 (#5:77) }=m>_ 659
where

Ro (¥) = R (¢, 6o) (3.89)

Note that by definition, Aggo = A. In addition,

— Akim for passing particles
Abim = (3.90)
0 for trapped particles

3.3 Drift-Kinetic Equation

In this work, we do not undertake the derivation of a consistent drift-kinetic for-
mulation in the presence of RF fields. Rather, we derive the drift-kinetic equation
independently from the presence of RF fields, and assume that the cumulative effect
of the wave particle interaction on a slow time scale (of the order of the collision

time) is approximately described by the quasilinear operator derived by Kennel &
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Engelmann [41] and Lerche [42] for a uniform plasma.

This approach, first followed by S. Schultz [32], is justified by assuming that the
inhomogeneity in the plasma - which is responsible for the mirror force and the drifts
of the flux-surface - does not significantly affect wave-particle interaction. For this
assumption to be valid, it is required that (1) the extent of particle orbits off the flux-
surface is small as compared to the variation of RF wave characteristics, and (2) the
changes in the particle velocity due to the equilibrium inhomogeneities do not affect
the particle resonance. The condition (1) is easily satisfied for electrons, because
the radial shift of their orbits is small (of the order of a few Larmor radii), which
is consistent with the zero-banana width limit in the bounce-averaging operation.
However, the condition (2) is more restrictive, and imposes limits on the spatial

extent of RF beams, which we will investigate in section 3.5.2.

We point out that the derivation of a quasilinear operator consistent with toroidal
geometry has been undertaken in previous works, either by direct averaging techniques
[44] or from a Hamiltonian approach [68]. However, this operators have been derived
for mirror machines and space plasmas, respectively, and consider only the motion
of trapped electrons. They do not directly apply to the tokamak plasma where both
passing and trapped electrons must be considered. It can be readily shown, however,
that the operator derived in [44] reduces to the operators from [41] and [42] in first

approximation for equilibria with large inhomogeneity space scale.

3.3.1 Boltzmann equation

In kinetic theory, electrons are described statistically by a distribution function f (r, p, t),
which represent the phase-space density of particles with momentum p at the position
r and time ¢. The evolution of the distribution function is governed by the Boltzmann
equation

af

SV Ve +F(5,,8) Vof =C(f) (3.91)
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where v is the velocity the particles (2.54)

p
me?y

Vv =

(3.92)
and F (r, p, t) is the electromagnetic force acting on electrons, called Lorentz force
F(r,p,t) = ¢ [E(r,?) + v x B(r,?)] (3.93)

where E (r,t) and B (r,t) are the electric and magnetic field, respectively. The oper-
ator C (f) describes the effect of collisions with both like and unlike particles.

In the derivation of the drift-kinetic equation, we consider only the equilibrium
field B (r), and ignore the perturbation field (typically generated by RF sources).

The Boltzmann equation (3.91) can then be rewritten as

o L y.y,j-%BOS

ot My Op

=C(f) (3.94)

where we used the following identity, based on (3.92), (A.102) and the expression:

(A.110) for the gradient in cylindrical momentum coordinates

_ _4Bof
gvxB(r) Vpf = - (3.95)
where B = ||B||. With the definition (3.26) for the gyrofrequency, we get
of of _
Livvr-awgl-co (3.96)

3.3.2 Drift-Kinetic Equation

In tokamaks, the gyro-frequency is typically much larger than the collision frequency
and the bounce frequency, such that, to leading order, the equation (3.96) reduces

to 0f /0p = 0 and f is gyro-independent. Gyro-averaging equation (3.96) gives then
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the drift-kinetic equation (DKE) [69]

0
’5‘];‘ + Vge Vif=C (f) (397)

where v, is the guiding center velocity, obtained after gyro-averaging the particle
velocity, and f = f (r,p,&,t). At this stage, we introduce the quasilinear operator,
which describes the diffusive effects of RF fields on the macroscopic, gyro-independent
distribution function. We obtain the DKE with RF diffusion

of

The guiding center velocity is decomposed into the fast motion along the field lines,

and a drift velocity. It is expressed as (3.24)
Vge = UIIE-’(— Vp (3.99)

The drifts within the flux-surface are neglected compared to the fast parallel stream-
ing, and we retain only the drift across flux-surfaces, which is responsible for the

existence of the bootstrap current and is given by (3.59)

Vi) = L v (Y
vo V=l @)B- (B) (3.100)
Using the expression for the gradient in (¢, s, ¢) corrdinates (A.83), we rewrite

the DKE (3.98) in steady-state form as

Mi(ﬂ)ﬁ_

)
v+ 2L1(¥) R 0s\B) oy

et c(h)+el) (3.101)

3.3.3 Time scales in the DKE

The DKE (3.101) is a linear partial integro-differential equation for the steady-state
distribution f = f (¥, s,p, £) in axisymmetric plasmas. However, it is possible to re-

duce this equation to a set of 2D momentum-space equations by ordering the different
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time scales in this equation. This reduction is important not only with respect to
the challenge of multidimensional numerical calculations, but also in order to extract
the relevant physics of particle motion and wave-particle interaction. The physical
interpretation and corresponding time scales of the terms in equation (3.101) are

respectively

1. Parallel motion along magnetic field lines

Bounce Averaging Coefficient A
1 .8 ‘ T l

Figure 3-6: Normalized bounce time A (¢, &) as a function of the pitch angle coordi-
nate & for & ~ 0.6.

The characteristic time scale of the parallel streaming along field lines is 73, the

bounce or transit time for trapped or passing electrons respectively. It is given

by (3.77)

s (0, €0) = %—@A (6, €0) (3.102)

A detailed study of A (¢,&), plotted in Fig. 3-6, shows that for passing elec-
trons we have typically A (¢, &)/ |€o] =~ 1, while for trapped electrons we have
A (¥, &) / |€0| = 1/&r. Therefore, the typical bounce or transit time of electrons
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is of the order of

2nR,q
Top = il for passing electrons
UTe
(3.103)
2rR,q
Tor = rd for trapped electrons
07 VUTe

2. Drift across flux-surfaces
The drift time scale is defined as the time for an electron to drift on a cumulative

distance of the order of the plasma radial size a,, and can be derived from (3.101)

2nRya, B
Tg o~ ————— —— 3.104
¢ VrepPre BT ( )

where we define the thermal Larmor radius

_VUre
Pre =
Wee

(3.105)

3. Collisions

Collisions are described by a Fokker-Planck operator (Section 3.4), which ac-
counts for the cumulative effect of many small-angle collisions. The collision
time 7. represents the time-scale for a diffusive deflection of the order of 7 /2
and is given by [56]

2,.2,3
_1 Amegmivy,
Te = Vc — e——

s (3.106)

where In A is the well known Coulomb logarithm, a slowly varying function
of the plasma temperature and density. A characteristic collisional time scale
for trapped electrons is the detrapping time, defined as the typical time for
a trapped electron to be detrapped due to collisional pitch-angle scattering.
The typical detrapping deflection for trapped electrons is smaller than 7/2 by
a factor {or. Because pitch-angle scattering is a diffusive process, the average
deflection increases like the square root of time, A{ ~ v/At. Therefore, the

detrapping time is shorter than the /2 collisional time by a factor £2, and we
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have

Tar = Ere (3.107)

4. Quasilinear diffusion

In quasilinear theory, the cumulative effect of RF fields on the macroscopic
distribution function is a momentum space diffusion characterized by a diffusion
coefficient Dgqy,, which will be determined in Section 3.5. The corresponding

diffusive time scale can be expressed as

2

oL = gzi (3.108)

3.3.4 Small drift expansion

In tokamaks and STs, the drift time scale, as defined in (3.104), is typically much
longer than the bounce, collisional and quasilinear time scales, and we define the

small drift parameter as being the ratio

qB
DP o PTedT ., PTe (3.109)
T4 ap B ap

)

where we used g ~ ¢Br/B based on (3.19) and (3.82). The small parameter ¢ can
also be viewed as the ratio of the banana radial deviation from the flux-surface Arp
(3.70) to the plasma size a,.
In a typical NSTX plasma (¢~ 3, a, ~ 0.9 m, T, = 1.3 keV, B = 0.3 T), we find
§ ~ 1073 , which indicates that the small drift approximation is well validated.
Ordering equation (3.101) in powers of § < 1 after expanding f = fo+ fi+---,

we get

e At zero order

w32 —c () + 2 (3.110)

which is the usual Fokker-Planck equation, obtained when the effects of radial

drifts is neglected.

115



e At first order

ofi 9 (N 0fe
v el By (3) 3o =CUu+e) (B

which we will refer to as the drift-kinetic equation, since the effects of radial

drifts are included.

3.3.5 Low collisionality ordering

In the low collisionality, so-called banana regime, the collisional detrapping time 74
is much longer than the bounce time of trapped particles 7,p, meaning that trapped
electrons typically bounce back and forth many times before their orbit is affected by
collisions. The collisionality is measured by the parameter

* ToP 27.‘-1?1721v

V¥ = — o~ 3.112
Tar  Tevrelr ( )

In a typical NSTX plasma, the collisionality parameter is very small, except very
near the magnetic axis, where the trapped particle fraction vanishes, and near the
edge, where typically 7.7, — 0. The profile of v* is shown on Fig. 3-7 for a typical
NSTX plasma with the profiles of Fig. 1-8. Note that near the magnetic axis, the
fraction of trapped particles vanishes and therefore v* becomes irrelevant. Then, the
collisionality parameter for passing particles v = /74, which typically remains very
small, should be considered instead.

In the case where v* < 1, the collisionless approach to particle motion done in
section 3.2 is essentially valid. If in addition we assume that the effect of RF fields is
small in the course of one bounce-period, meaning 7q1, > nr/v*, we can (sub)order
the equations (3.110) and (3.111) with respect to v*, in the so-called banana regime
d < v* < 1, which gives at leading order:

e For the Fokker-Planck equation (3.110)

9fo

5o =0 (3.113)
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Figure 3-7: Collisionality parameter v* for a typical NSTX plasma.

which means that fo is constant along the field lines, and therefore symmetric

in € in the trapped region.

For the Drift-kinetic equation (3.111)

ofi  1()Bpd (v 0fs
Vs T TR, o (B) a9 (3.114)
which integrates as
h=Ff+g (3.115)

where, using v, = vy Bp/B and the fact that f; is constant along field lines,

J;z_/“’f(w)BQ(ﬂ) 9fo

Q. 0s\B/ oy
_ 1)y dfo
=——a B (3.116)

and g is an integration function of (p, ) but constant in s, and therefore is
also symmetric in the trapped region. We determined in Section 3.2.1 that with
our expression (3.2) for the magnetic field, the flux function 9 increases in the

radial direction if the plasma current is in the same direction as the magnetic
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field (I, > 0). In that case, dfo/0% < 0 and with Q. < 0 we see that f~is of
the opposite sign to v). Because electrons carry a negative current, we find that
the drifts generate a current in the direction of the magnetic field, and therefore

the bootstrap current is in the same direction as the plasma current.

3.3.6 Bounce averaging and steady-state equations

e The evolution equation for f; can now be obtained by bounce-averaging the
equation (3.110), which annihilates the motion along the fields lines, since using

(3.83), vs = 0 |vs| and the fact that fy is constant along field lines.
0fa]l 1|1 omax
{vsg} o {2 ;LU olupiy =0 (3.117)

We obtain the steady-state bounced-averaged Fokker-Planck equation

{C(f)}+{Q(f)} =0 (3.118)

e The evolution equation for f; is obtained by bounce-averaging the equation
(3.111). Because g is constant along field lines, {v;0g/9s} = 0 using (3.117).
We also have that

af 1 1 ~7 Smax
—_— o= e— -_— = 0 .1].
{’Us 68 } Tb |:2 Z:l 7 [f] Smin (3 9)
o Jr
since Smin and Smax coincide for passing electrons, and f(smin) = f(smax) =0
for trapped electrons since v vanishes at these points (3.116). In addition, we
have

Y 0 Yy 3f0 _ BI (%0)% _1_
{ﬁ'gl(w) Brs (E) a¢} T Qe O [zz

o

o [%] "' =0 (3.120)
. min

since Smin and Smax coincide for passing electrons, and v vanishes at the turning
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points. We obtain the steady-state bounced-averaged DKE

{cir+{e(fu}t=o0 (3.121)

and therefore, for linearized collision and RF diffusion operators,

{Cl@r+{Q9}= —{C (f)} - {Q(f)} (3.122)

Note that f, is a solution of the homogeneous part of the linear equation (3.122),

and therefore any solution of the type
g =g+cgfo (3.123)

is also solution of (3.122). We choose to solve (3.122) for the solution g that is
identically zero in the trapped region, and then solve (3.123) for ¢, by using the

conservation of the flux-surface averaged density.

3.3.7 Conservative formulation of the kinetic equation
Operator expressed as the divergence of a flux

As we will show in Section 3.4 and 3.5, the quasilinear diffusion operator and the
differential part of the collision operator can be expressed in a conservative form as

the divergence of a flux. Therefore, we write formally

C(f)=-Vp -8°+I(f)

(3.124)
Q(f) = "Vp - §RF

where 7 (f) is an integral contribution to the collision operator, which ensures mo-

mentum conservation. The kinetic equations (3.118) and (3.122) can therefore be

119



rewritten respectively as

S (fo) = Z(fo) (a)
(3.125)

S(9)+Vp-8(7) =T(@+Z(f) ®)

where S = S 4 SRF is the total momentum-space flux. For these gyro-averaged

kinetic equations, the divergence is (p, &) coordinates is given by (A.124)

Vo S()= 5 WS- 2 [VITES ()] (3a2)

1
p?

with the definitions

Sp(f)=S(f)-p (3.127)

Bounce-averaged divergence operator

The bounce averaging of the divergence operator (3.126) gives

Vo8t ={Zo s) - {15 (Vi—es) ) (3.128)

1|1 fmsx dg 1 r B &
{A}=/\_q~[izo:} / _A—AIEB_P%A (3.129)

and £ is given along the trajectory by (3.43)

£(®,0,6) = o\/1- T (4,6) (1 - €2) (3.130)
with (3.33) s
¥ (i, 0) = Bf)‘ﬁ;/))) (3.131)
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From (3.130) we derive the identities

§dE = WEodEo

(3.132)
1-8)=0(1-£)

Then, using (3.132) and keeping in mind that |£| = &y is independent of o, we can

transform as follows,

{paé (\/1—_5255) }

O 9
- 5% [% ;_ . %ﬁi%%a‘s (Vi-es)

1 0 11 bmxd) 1 r Bo ——
— — == e e e e — 1_ 2
Ap 8ok q |2 U]T/,,_n 7.7 Ry Bp ¥ 5%

1 0 111
=,\_p?9733 1—5(2)05,[22} - 2“|¢ '-RpBP\/_—

1 0
- sy~ 8 { ) .

Consequently, we can rewrite the bounce-averaged divergence operator (3.128) as

10 1 6
{V, -8} = 5, (P (P*S) - e ( 1- §§AS§2)> (3.134)
where we defined
57 = {5} (3.135)
SO — 0{ % s } '
o VP& ¢

We must check the conservative nature of the equation (3.134). The integral of
{Vp - S} over the (p,£) momentum space (Jacobian (A.119) J, = p?) and over the
incremental volume of a flux-surface (Jacobian (A.92) J. = Rr/ [|[V¢|| I{D\ . ?I) is given
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dK: 27 o'} 1
— = 4r* / doJ, / dp / déJp {Vp - S}
dyp 0 0 -1
27 1
— 42 2 o(0)]P=2°
=47 /0 déJ, /_1d§ [p Sp ]p=0

~ 0o 1
_ 47r2——2“R£q %) / pdp [ 1- gg)\sgg)}
0 0 -1

-0 (3.136)

and therefore the operator (3.134) conserves particles on a given flux-surface.

3.3.8 Decomposition of bounce-averaged fluxes

As we will determine is Section 3.4 and 3.5, the total momentum-space flux has both a
convective part (collisional drag) and a diffusive part (collisional momentum diffusion

and pitch-angle scattering, RF diffusion), so that it can be decomposed as
Sp (f)= ~Dyp - Vpf +Fpf (3.137)

where D is the diffusion tensor and F is the convection vector. The gradient vector

Vp in (p,€) coordinates system in given by (A.123)

0

Op
Vp = (3.138)
_V1-€9

p 0

so that

VI—& 8
s,=-p, 4 3 Dp§—8§+pr
(3.139)
of J1—-&_ 8
Se = —D&,—f+—————p § Dgga—£+F§f
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In order to evaluate the bounce-averaged fluxes (3.135) as a function of the bounce-
averaged distribution functions, we must treat separately the cases of fo and g from

the case of f

Distribution functions f; and ¢

The distribution functions f; and g are independent of § and they are also symmet-
ric in the trapped region. We denote such function as f and evaluate the bounce-
averaging terms in the decomposition (3.139) from (3.135). We have f(p, &) =
F© (p, &) which is independent of § and also of o in the trapped region. Using
(3.132) and keeping in mind that || = o0& is independent of o, we get

) af©
—{Dpp‘gg} { pp} f

\/1—§2af \/1—530{ o€ - }8f<°>
p O€ ) Ve, ) 9

i {pr}z{Fp}f(O)

(3.140)
oS n, Byt o
V& Der p Vg, Tf op
. V1-€0f \/Tsof{ £ 5 }3f(°’
\/— Vo Pee p o€ P v & 0&o
0§
. F (0)
{\/—fo 5f°} {\/\1750 E}f
and we can rewrite
SO (f) = —DY - Vo /O + FP f© (3.141)
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where the bounce averaged flux is decomposed into

S(O) (f(O))
O =1 "
’ ( St (1)

with
(0) _ 2 (0)
(0) __p@df V1§ 00f 0 £(0
57 () = =D =g+ 2= Do g + 10
9f0 T of®
Ség) (f(o)) — —Dé?,) f + foD(O) f +Fé0)f(°)

op p ST

by defining the diffusion components

where the gradient vector in the reduced (p, &) momentum space is

9
op

V=B o

P 0o
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(3.143)

(3.144)

(3.145)

(3.146)



Distribution function f

The distribution function f (3.116)

1)y 0fo

e (3.147)

depends explicitly upon the parallel velocity and the magnetic field, and therefore
upon the poloidal angle 6. It can be rewritten as
F=Ljo (3.148)
W&o
where

~ (0)
f(O) _ I(d’) péo 8f0 (3_149)

eBoy (v) 0y

is independent of € and is antisymmetric in the trapped region, since féo) is symmetric

and & is antisymmetric. As a result, only af(o) can be taken out of the bounce
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averaging operator. Taking the bounce-average of each term in (3.139), we find

af af©
{—Dppa—]f)} = —0 {U‘I’fﬁonp} (J;p

{ VI-80f

p €

_ V1—§&

p

€2 af© -1
{w/zsgD“} & ¢ { "vg ”5} / (0)]

° {pr} =0 {a@%F }f~(°)

(3.150)
of _ 0f ¢ af©
’ {\/“gon”ap} {w3/2§3D5”}“a?
. VI-€9f
\/_ T Dee p O
V1-§& & of@  [e(¥ -1 1
= [0{\1725317&} | e D) (O)]
iy = { R o
\/— 23 ¢ /23 ¢
where the following relation was used
08 _,¥-1 (3.151)

0oty €&

We can therefore rewrite

SO () = B - Vye O+ FOFO
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where the bounce averaged flux is decomposed into

s (f) S(O) (f(0)> (3.152)

with
o) £ 0O T8 <00FO <o~
3O ( f(O)) poof” & 50977 | o fo)

P = p P &
(3.153)
(o) —¢2 0)
3(0) @7 V1-& 5o of | =07
S (f(O)) DEP Op + P §€ & + F§ f(o)
by defining the diffusion components
~( §
DI(7P) =0 {O%DPP}
2
~(0) §
D 23 W3/2¢2 Dy
o 2 (3.154)
Dﬁp - U3/2¢2 Dep
~o _ [ o8
Dgg =0 { T2E3
and the convection components
7 P& w2
(3.155)

ﬁéo)z{ £2 }+,/1—§gg{a§(\11—1)D&}

F,
w3/2g2 ¢ PES &2

where we use the fact that o0& may be taken out of the bounce averaged operator,

since & is an odd function of &.
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3.4 Linearized Fokker-Planck Collisions Operator

3.4.1 Linearized collision operator

The collision operator results from interactions between electrons with themselves

and with all ion species s

C(F)=C(f, )+ _C(f fus) (3.156)

where fys is the distribution function for ions of species s and is assumed to be a
Maxwellian with Temperature T, and density n;. The term C (f, f) is bilinear, but
can be linearized under the assumption that collisions dominate the bulk electrons,

such that the distribution function f may be expanded as

f = fue+6f (3.157)

where fase is the Maxwellian electron distribution function, and § f is the perturbation
due to RF-electron interaction, which is assumed to be globally small compared to
fume. The non-linear term C (6f,6f) is neglected, and C (fare, fare) = O since the
Maxwellian is the equilibrium distribution in the absence of perturbations. Therefore,

we approximate

C(f, ) =C(f, fue) +C (funte f) (3.158)

The operator C (f, fue) and the electron-ion collision operators C (f, fuss) are differ-

ential operators which can be put in the conservative form
C(f: fu) = =Vp - S5 (f) (3.159)
where the flux vector Sg is decomposed into a diffusive part and a convective part as

SS(f)=-DS-Vof +FSf (3.160)
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Because of the symmetry of the collisional process, the collisional diffusion tensor

components
Dy, = A(4,p)
DS =0
’(’f (3.161)
D¢, =0
D£C€ = Bt ("tb’p)
and the collisional convection vector components
FC = _F (4,
P (%) (3.162)
FE =

are only function of the magnitude p of the electron momentum. The coefficient
A (¢, p) corresponds to the momentum diffusion while B, (3, p) describes pitch-angle
scattering. The convection factor F (1,p) describes the collisional drag. The colli-
sion coefficients are independent of £ and the (numerically challenging) cross terms
D& and Dg, are identically zero, which makes the spherical coordinate system (p, )
the natural system to describe collisions, and the system chosen for the numerical

resolution of the kinetic equation.

The term C (far, f) in an integral term which describe the effect on the bulk due
to collisions with the perturbed distribution function. While taking into account the
exact form of this correction term C (far, f) is not necessary, it is important to use an
approximate form that conserves momentum, in order to obtain a correct calculation
of the current. This can be done by expanding the gyro-averaged distribution f as a

sum of Legendre harmonics according to the relation

F&r,p,8) =Y (m+1/2) fm (8,7,p) P (€) (3.163)

m=0

where P, (£) are the Legendre polynomials and the Legendre coefficients are

+1
fm (t,1,p) = . f (@t x,p, &) P (€) dE (3.164)
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The linear operator C (fay, f) becomes

oo

C(fars £) =Y (m+1/2)C(fur, fm (8,7, D) P (€)) (3.165)

m=0

The zero-order term is a isotropic distribution fo (t, r,p) ~ fas, which does not ex-
change parallel momentum with the Maxwellian; therefore, its effect of the Maxwellian

is neglected. Since Fy (€) =1,

C(fu, frm (6, X, p) Bo (€)) = C (fu, far) = 0,

The operator C (far, f) is then approximated to

C(fa, f)=C (fM, -;—ffl (t,r, p)) (3.166)

since Py (§) = &, where terms m > 2 are neglected. We use the notations in Ref. [54]

Cfu, ) = =5 faus 1 (57, p)] (3.167)

where 7 is an integral operator over p. Because C (fps, f) is a corrective term, it can
be treated explicitly in the numerical resolution of the kinetic equation. The total

collision operator (3.156) can be rewritten as

C(N) =3 C(f, fus) = 5L [fur, f (1,7, D) (3.168)

s=e,i

By construction, the linearized electron-electron collision operator conserves mo-
mentum, but not energy, so there is no need to introduce an energy loss term in
the kinetic equation (to compensate for the RF power deposition) in order to con-
verge to a steady-state. The coefficients A (¢, p), B; (¢, p), F (v, p) and the operator
T [fum, fr (t,r,p)] have been explicitly evaluated in Ref. [54], following the work done
in Ref. [37]. We refer to these papers for detailed expressions.
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3.4.2 Bounce-averaged differential collisional operator

According to the results of Section 3.3.8, the bounce averaging of an operator of the
form (3.159) requires to evaluate the bounce-averaged diffusion tensor DS’) and con-
vection vector F\ defined by (3.144), (3.145) for the contributions of the §-independent
functions fy and g, as well as the diffusion tensor ﬁg) ) and convection vector f‘g)) de-

fined by (3.154) and (3.155) for the #-dependent functions 1.

Flux coefficients for the distribution functions f; and g¢

Applying (3.144) and (3.145) to (3.161) and (3.162), and using (3.132), we find

Dy = A(¢,p)

C(O)
Dy’ =0

o) _

(3.169)

and

(3.170)

where we used

{ \Iig} = ’\"”;1"’ (3.171)

according to the definition (3.87).

Flux coefficients for the distribution function f

Applying (3.154) and (3.155) to (3.161) and (3.162), and using (3.132), we find

Dg0 = Mt 4y )

. )
C(0
Dye” =0 (3.172)
D9 =0
&p
~ Xs,
Dt = 2322 B. (4.p)
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and the convection components

RS0 = Nty )

FCO) _ (/\1,_1,0 ~Ai20) VI-8 (3.173)
¢ ) o D (¥, p)

where the following bounce-average coeflicients were determined in accordance with

the definition (3.88)
- 98l _ AM—1,0
23 A

og? X320
AR -
o af (V¥ )} _ A,-10 0 Ay-20
&0 DY A

3.4.3 Bounce-averaged integral collisional operator

The integral term (3.167) must also be bounce-averaged. Applying the bounce oper-
ation (3.86) gives

{Clhu N} = -0t {aéz [, m} (3.175)

Flux coefficients for the distribution functions f, and g

For the f-independent functions fy; and g, whichsatisfy f(p,€) = f© (p,&), the
integral (3.164) for m = 1 can be transformed according to (3.132) £€d§ = W&yd€, and
the condition (3.48) such that an electron &, reaches the poloidal location 8 if

€0l > (3.176)

SV (%,9)
We get

+1

H(pg =" déo Sof H (lfo[ -

_ _ 3 f®
ION) = U f! (3.177)

-1
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with f1(0) being a f-independent function

+1 1
o=/ e &of OH (lfol V15w

+1
_ / dto £ f© (3.178)

-1

where the symmetry of £ in the trapped region cancels the trapped particle contri-

bution. With the definition (3.88)

g€ _XI,I,O
a{ r }— ;) (3.179)

the integral collisional term (3.175) becomes, using (3.177)

_Xl,—l,O 3

{C(fm, )} = ——35%T [fM, 1(0)] (3.180)

Flux coefficients for the distribution function f

The distribution function f (3.116) can be rewritten as (3.148)

f— & 70
f ‘I,&)f (3.181)

where f(o)is independent of § and is antisymmetric in the trapped region. With the
integral (3.164) for m = 1, the integral collisional term (3.175) transforms according

to (3.132) &d€ = WEydEy and the condition (3.176) as

{e ()} = 36T |1, 7] (3182)

with the definition

70 =0lof [ dgefOR (16 - \f1- o (3.183)
! 50 -1 ‘11(7/1,9)
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since Z is a linear integral operator over p and therefore permutes with the bounce-

averaging operation. We can permute the integrals over 8 and &, using the equivalence

(3.46)-(3.48) and (3.86), and obtain

1 [t ~
FO=1 [ do F 00 (3.184)
-1

where we used the definition (3.88)

€1 _x
Ao {U—z} = /\2’0,0 (3185)

0

3.5 RF Quasilinear Diffusion

3.5.1 Quasilinear operator in a uniform plasma
Quasilinear operator in conservative form

The quasilinear operator describing the slow evolution of the macroscopic distribution
function f under the effect of the fields has been derived by Kennel & Engelmann
[41] and extended by Lerche [42] to relativistic plasmas. The conservative form of

this quasilinear operator was derived in Appendix B.2 for an electric field of the form

(B.26)
E(r,t) = ) Re [E, (r) e ] (3.186)

and gives an expression as the divergence of a flux (B.11-A.124)

0 10
Q) ==Yy -8 = — (PS7) + - (Vi= g2 (3.187)

where the flux is the sum over contributions from all RF frequencies present in the

plasma, which are assumed to constitute a discrete set of monochromatic waves (B.21)
SR = " SiF (wp, Ep) (3.188)
b
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The momentum-space flux associated with a wave (wp, Ep) is purely diffusive
SII}F (UJb, Eb) = _DII}F (wba Eb) . vpf (3189)

The RF diffusion tensor elements, given in (p, &) coordinates by (B.44), contain the
contribution of all harmonics. Because electrons have a negative charge g. = —e, it is
convenient to transform n — —n in order to work with positive harmonic numbers.

In that case, the diffusion tensor elements become

+o0

Dy = Z (1 —¢%) DEF (p,ws, Es)

77._—00

NWee\ ~rp
Dy = Z (1 —& - m) Dp* (p, ws, E)
ne=—co \/1_ (3.190)
- nw
Dy, = Z ( — & - c:) DT (p, ws, Ey)
n=—oo
pre =SS L) e ™ DRF( Es)
bEE = Zgj -¢ —%; n \P,Ws, Lip
n—=—oo
where we used
B
Wee = o= = —~Q (3.191)
Me

and where DR (p, w;, E;) is the diffusion coefficient associated with the wave (wp, Ep)
at the n’s harmonic cyclotron resonance (B.41). It is given here in (p, £) coordinates

and after the n — —n transformation

&’k n pé NWee
DEF(p’w"’Eb)z /// 3” Kbl .9( '(p,k, ekb)‘ 5(wb“k||,),me—_,y—>
(3.192)

where Ey , are the Fourier components of E; (B.3)

Exp (k) = / / / d*r By (r) e T (3.193)
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and eyxp = |Exp| / ||Expl| is the corresponding polarization vector. @f(") is the polar-

ization term (B.25) and is given here after the n — —n transformation

n 1 —ia 1 1 p
@f( ) = —exp+€ “Ini1 (2) + ——ek,b,“e‘* YIn-1(2) + ]_?—[Ll—ek'b’“Jn (2) (3.194)

V2 V2

where we used J_,(2) = (=1)"J_,(2) and J,(—2) = (=1)" J,(2), and with the

_ kipy1-¢€ (3.195)
w

ce me

definition

Diffusion coefficient for a Gaussian beam

The diffusion coefficient (3.192) was evaluated in Appendix B.3 for the case of a lo-
calized wave with Gaussian transverse amplitude profile in a uniform plasma. The
Gaussian beam is initially characterized by the frequency wj, the central parallel
wave vector kp, the beam size dy, and the total power B, in the beam. The cen-
tral perpendicular wave number is then determined from the dispersion relation
D (wb, ko), ko _j_) = 0 (2.16). The energy is propagating in the direction of the group
velocity vy, = Owy/0ky (2.17). The polarization e, is defined by e, = |Ey|/ || Ell
where E; is determined from (2.14) for the mode (kp,ws), and the normalized power
flow ®, is obtained from (2.39). The beam size d, is defined such that the beam
intensity is down by a factor e from the maximum intensity at a distance d, from the
beam central line of propagation. It is assumed that the beam size is much larger than
the wavelength d, > X\, = 27/ks, such that diffraction can be neglected. A corollary
to this condition is that the spectral width (B.59) of the beam Ak, = 1/d,, is much
smaller than the wave vector ky, which justifies to solve the dispersion relation only
for the central k. Then, the diffusion coefficient (3.192) becomes (B.93)

()
b

. PbLb 8271' m,
DRF =1 :
n (p) Vl—I»lgo Vv EoC '(I)bl b Igl

NN AR?

k res k 2
1w {_( I )
bl

} (3.196)
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where L; is the beam path length in the plasma volume V, and where we defined

e = e (p, ks, e),
m

Kjres = — (Ywp — nw 3.197
I p: (ywn ce) (3.197)
and
o
Aky LIS (3.198)
®,

where ®;, is the component of ®, perpendicular to the magnetic field.

3.5.2 Application to toroidal plasmas

Approximations and validity of the operator (3.187) in toroidal plasmas

In a torus, the plasma is bounded and non-uniform. In order for the operator (3.187)

to apply to a toroidal plasma, several approximations must be made and justified.

e First, in a bounded plasma, the Fourier space is discrete rather than continuous

as in (3.192). The continuous description is a good approximation if A <« L,
where A = 27/k is the wavelength and L is the size of the plasma. This condition
is well satisfied for EBWs in typical tokamaks and STs; for example, in NSTX
with L ~ 1 m, w/27 ~ 14 GHz, and N > 4, we have A/L < 0.005.

The motion of electrons is in first approximation confined to a flux-surface, and
equilibrium properties such as the density and the temperature are uniform
within this flux-surface. Because the equilibrium non-uniformity across flux-
surfaces occurs on a scale L much larger than the typical lengths involved in
wave propagation and wave-particle interaction (X, pr.), the wave properties kg,
P, e, and ¥, can be considered to be slowly varying functions of space, and
the derivations of Appendix B are a good approximation, such that we can use
the operator (3.192) for wave-particle interaction, with the volume V being the

incremental volume of the flux-surface under consideration.

However, the magnetic field amplitude B - and therefore the gyrofrequency §2 -

are not uniform within a flux-surface. In addition, this non-uniformity leads to
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changes in the parallel and perpendicular velocities of electrons. The changes in
2 and v) along the propagation within the wavepacket may lead to dephasing
in the wave-particle interaction. Indeed, resonant interaction between electrons
and the wave occurs when the phase v = (wb -k — nQ) t is constant across
the wavepacket [44]. The time for an electron to cross the wavepacket is dy / |vy |,
where dp is the projection of the wavepacket on the field line within the flux-
surface. Assuming that the condition wy, — kjvy — nf) = 0 is satified in the
center of the wavepacket, the dephasing dv accumulated during the electron

transit across the wavepacket is bounded by

d
Sv = (8ky vy| + [Koy| S0y + 10Q) (3.199)

I
o]
In order for the wave-particle resonance to be maintained across the wavepacket,
it is required that dv < 27. We assume that the wavepacket crosses the flux-

surface under consideration around the poloidal location 6.

— The changes in the kj spectrum are essentially dky = Aky), where Aky is
the width in & spectrum and Aky) = 1/dp). Therefore, the dephasing due
to dk is typically of order Akjdy = 1 and is independent of the beam size.
It simply derives from the spectral properties of wavepackets and reflects

the uncertainty principle.

— The changes in the cyclotron frequency are typically of order

dR dyy . , Bp
since R is the scalelength of B-field variations and the projection dR of
the field line element dy) on the direction of inhomogeneity is of the order

of dR ~ Bpsin#8,/B. The condition év < 27 therefore imposes a limit on

the beam size
o _4mvr.R B

—_—— .201
bl < nf{lsinf, Bp (3.201)

where we used that v > 2vr, for typical electron-EBW interaction. In a
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typical ST such as NSTX, we typically have nQ}/27 ~ w/27 ~ 14 GHz,
Bp ~ B, R ~ 1 m, vpe ~ 0.05c, which leads to dy; < 0.05/4/sinf, m.
This condition is well satisfied near the outboard or inboard horizontal

midplane where 6, — 0,7, but becomes restrictive near 6, = £90°.

— The changes in the parallel velocity are related to the changes in the mag-
netic field according to the conservation of energy (3.28) and magnetic

moment (3.29), which give dv)/ |vy| ~ 62/2€ so that, using (3.200)

MM sin 6 Bp

5 5 sinfy— (3.202)

5’0” ~

and the condition dv < 27 imposes a second limit on the beam size

2 4t R B

db[[ < |k_”|"—_Sin ebE (3203)

In a typical ST such as NSTX, this condition leads to dy) < 0.2/4/ IN I | sin 6,

m, which is less restrictive than the condition (3.201) for relevant |V, |-

In conclusion, applying the operator (3.187) for a spatially localized beam in a
toroidal plasma is valid as long as the condition (3.201), which is a measure of the
dephasing that results from magnetic field variations, is satisfied. Otherwise, it is
required to use different methods to calculate the diffusion coeflicient, for example by
studying the motion of electrons through a wavepacket, as in Ref. [70], but in a non-
uniform magnetic field, which would likely require numerical calculations. Another
option is to develop and use an orbit code which numerically integrates the wave-
particle interaction over the particle orbit [71]. It can be expected, however, that
the non-uniformity of B and therefore vy would lead to a reduction of the diffusion
coefficient along with a broadening of the resonance region in momentum space. The
conditions of applicability of the operator (3.187) with the diffusion coefficient (3.192)
will be assumed to be satisfied from now on. Consequently, the inhomogeneity across
the region of wave-particle interaction is neglected within a given flux-surface, such

that any #-dependent quantity - such as the magnetic field B and the parallel velocity
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v) - is evaluated at § = 6, in the quasilinear operator (3.187) and diffusion coefficient
(3.192). This operation can be mathematically imposed by transforming the diffusion

coefficient (3.192) according to
Di¥ (p) — D (p) 26 (6 — 65) (3.204)

which will be integrated with the bounce-averaging operation.

Diffusion Coefficient for a Gaussian beam in toroidal plasmas

Within the approximations of Subsection 3.5.2, we derive the diffusion coefficient for
a Gaussian beam in toroidal plasma. The beam is characterized by the frequency
wp, the central parallel wave vector k), the beam size dp, and the total power P, in
the beam. Considering a given flux surface ¥ crossed by the beam at the poloidal

location 6, we rewrite (3.196) with the transformation (3.204) as

2 1 Nres - N :

DEF (py) = 276 (0 — 6,) DRF L g

1%l

JTANy, AN,

where we make use of the condition 8 = 6, to define @l()") = @1((") (ps, ks, ),

MeC TWWee,b
Njresp = - — 3.206
Irest = "pey (7 Wh ) ( )
and
P
ANy =5 = ¢ [Bu] (3.207)

wbdb“ - wbdb q)b
with py (p, &) being the momentum of a given electron (p, &) at the poloidal location

6, where the gyrofrequency is wee . The constant factor DRF in the diffusion coefficient

(3.205) is calculated for the infinitesimal volume dV () of the flux-surface .

dLy (v,6y) Poe’n
dV (¢)  eows | D]

DR = (3.208)

where dL; (1, 6;) is the beam infinitesimal path length within the flux-surface.
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The beam trajectory ry and the evolution of wave vector k; require propagation
calculations, such as ray-tracing techniques. In this work, these calculations are not
undertaken, and therefore we do not intend to solve the full current-drive problem,
from excitation to propagation and damping of EBWs. Rather, we consider only the
vicinity of the damping region, near a cyclotron resonance, and this region is assumed
to be sufficiently narrow such that the parallel wave number Ny is approximately con-
stant across the damping region. In this work, we assume in addition that the beam
propagates near the horizontal mid-plane (f = 0, 7) in a up-down symmetric plasma,
and that the beam poloidal extent be small, meaning d <« 27r. This assumptions
allow us to study EBWCD without solving the beam propagation problem, and is

motivated by the following considerations:

e Near the horizontal midplane, and for sufficiently narrow beams (d <« 27r), the
tokamak geometry is close to a slab geometry. In that case, the components of

the wave vector perpendicular to the direction of inhomogeneity are conserved.

e Consequently, and as shown in works on EBW ray-tracing [8], the evolution
of Ny is much slower near the horizontal midplane than above or below that
midplane. Therefore, our approach that N, be considered constant in the
vicinity of the damping region is more valid near the mid-plane. Note that we
do not require that the beam propagates strictly on the midplane, so that Ny
may have experienced some cumulative upshift or downshift before reaching the
damping region. This gives us all latitude to consider a wide range of values for

Nb".

e In the slab geometry, the component of the wave vector that is perpendicular
to both the direction of inhomogeneity and the direction of the magnetic field
is also conserved. In the meanwhile, &k, experiences a significant upshift, from
0 at the L cut-off in the MCR, to very large values for EBW in the WKB
region. Consequently, the perpendicular wave vector is mostly in the direction
of inhomogeneity, k; l]]{b\ Because the power flow ®; - which is in the direction

of the ray propagation - lies in the (k, B) plane, its perpendicular component
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must also be in the direction of inhomogeneity. Therefore, the path length in the
flux-surface is dLy (v, 0,) = dl (v, 6,) @b/ |Dp1| where dl (1), 8,) is the width of
the flux-surface at the poloidal location . The constant factor in the diffusion

coefficient (3.208) can then be rewritten as

dl (’(ﬁ, Hb) Pb6271'

DY =
Vv (¢) eows | Pp

(3.209)

In the quasi-slab geometry near the horizontal midplane, and for sufficiently
narrow beams, the magnetic field B is approximately uniform in magnitude
and direction within a flux-surface, and therefore the parallel velocity v of a
given electron is approximately constant. In that case, the condition (3.201) is

well satisfied (sinf, — 0) and our quasi-linear operator is more valid.

We can expect that trapped particle will play an important role in off-axis
EBWCD, because the trapped particle fraction is significant in small aspect
ratio STs, and because the EBW-induced diffusion is mostly perpendicular in
momentum space. As a consequence, by calculating EBWCD near horizontal
mid-plane (6 = 0,n), where the trapped particle fraction is respectively max-
imum (outboard side) and minimum (inboard side), we expect to encompass

most of the important physics of EBWCD.

To summarize, restricting our study to the horizontal midplane allows us to work

in a quasi-slab geometry, in which electrons see a locally quasi-uniform plasma and

our quasilinear operator (3.187) is valid. In addition, with the symmetry of the slab

geometry, it is sufficient to calculate the local dispersion relation and corresponding

wave characteristics to provide all necessary information for the RF diffusion coeffi-

cient. This is not true is general toroidal geometry, in which the direction of the power

flow, for example, in not determined with respect to the flux-surfaces by solving the

dispersion relation only.

For an infinitesimal surface, the width of the flux-surface at the poloidal location
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Gy is given by (A.93)

di (1, 05) 1 1

W vyl g7 B BpR|) -

and the infinitesimal volume of the flux-surface is (A.95)

dV () 2m 2m Rr
) e Ml

which can be rewritten for an axisymmetric plasma as

4V () _ 4n? Ry (¥)
dy By (¥)

where we defined the pseudo safety factor q as

The diffusion factor (3.209) becomes

2
b

" eowp | Do | 4727 (¥, 6) R,

where we introduce the factor

’I'Bo

Fy(,6) = ————
GRBp i 1|

F, (v,65)

(3.210)

(3.211)

(3.212)

(3.213)

(3.214)

(3.215)

which accounts for the geometry of the flux surfaces. Note that for circular concentric

flux-surfaces, ﬁg (,6,) = 1.

3.5.3 Estimate of non-linear electron trapping effects

It has been shown [72] [59] that electrons resonating with finite-amplitude electrostatic

waves propagating obliquely with respect to the magnetic field - such as EBWs - have
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finite-amplitude oscillations in the wave frame, characterized by a bounce frequency

1/2
e%kﬁ ky vy
wr = [ p— Jn< Q ) (3.216)

where V}, is the electrostatic potential and n is the harmonic number of the resonance,

characterized by wp = kyjv) + n€2. The amplitude of the oscillation in py is given by

Apr = (3.217)

The importance of these non-linear effects can be measured by the ratio of the
trapping time 7r = 27 /wr to the transit time - or autocorrelation time - 7Tpr =
dy) /vy of an electron through the RF beam, which is characterized by a width dy
along the magnetic field. Indeed, if 7+ > 7xp, trapping is not able to affect the
wave particle resonance during the interaction time. On the other limit, when 7 <
Trr, the electron has bounced many times in the wave frame during the interaction
period, which basically cancels any energy of momentum transfer from the wave to
the particle. In other words, we can take the condition 7o > 7rr as a limit of validity
for the quasilinear approach. In addition, note that the ratio of the trapping width
Apyr to the spectral width of the wave (in momentum space) Apy = pyAky;/ ke gives

approximately the ratio 7gr/7r

Apir  2mwr Ky o TBF
Apy ke POk Tr

(3.218)

which means that requiring that the trapping time be longer than the interaction
time is equivalent to requiring that the trapping width be small compared to the

interaction width in momentum space.

For k1 >> ky), the electrostatic potential is related to the electric field amplitude
through
Ey=[|[VVy| = ko1 Vi (3.219)
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and the power density in the beam is related to the electric field by (B.71)
P, = 7rdb—-2—<I>bE§ (3.220)

Approximating the power density in the beam to be uniform within an area of radius

dy corresponding to the beam size, we have

2 B \Y?

and the bounce frequency in the wave (3.216) becomes

1/2
ekz?u 2 B\ kpivy
wr = [mekbl (socq)b wdﬁ) Jn (T) (3-222)
so that the ratio of the transit time to the bounce time is
1/2
TRE _ Oy ek} 2 R\ J kpivy (3.223)
e 2mv) | meksy \ €0c®y wdE " Q '

which gives numerically

/2 j1/2 pl/d

TRF Nif b[/GHz]db[/m]P b[{\/IW] 1/2 ( kvrLvL

= K— T JL? 2 (3.224)
Tr lsin By| (vy/vre) BreNyy @14 L

where |sin By = dp/dp) = |Psr|/Ps is a measure of the incidence of the power flow

with respect to the magnetic field line. The numerical coeflicient is

61/2106

K= ~0.13 (3.225)

 ol/ag3/act/am /2l

Taking typical NSTX EBWCD parameters Ny ~ 1, f ~ 14 GHz, d ©~ 0.1 m, P ~ 2
MW, vy = 3.5v7¢, Jn (k1v1/Q) = 1, Bre = 0.05, |sin 5| ~ 0.5, we get, for typical
LBF cases (N, ~ 50,® ~ 0.05), and also typical HBF cases (N, ~ 5,® ~ 5) that
Trr/Tr = 0.5. This means that for EBWCD in typical STs such as NSTX, trapping

effects are expected to play a role and need to be investigated in more detail; they
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may lead to some decrease in the energy and momentum transfer between EBWs and
electrons. A systematic study of interaction between particles and a wavepacket, such
as the one done in Ref. [70], should be done for the case of a plasma in a magnetic
field in order to quantify the effect of particle trapping when 71 < 7gp. This is beyond

the scope of this work, where we restrict ourselves to cases where 7 > Txp.

3.5.4 Bounce-averaging of the quasilinear operator

According to the results of Section 3.3.8, the bounce averaging of an operator of
the form (3.187) requires to evaluate the bounce-averaged diffusion tensors ]D)g)) and
convection vector Fp 9 defined by (3.144) and (3.145) for the contributions of the 8-
independent functions fy; and g, as well as the diffusion tensors ]D) and convection

vector FY) defined by (3.154) and (3.155) for the 6-dependent functions f.

Flux coefficients for the distribution functions f, and ¢

Since RF fluxes are purely diffusive, we have FRF(O)

(3.190) and using (3.132) as well as wee = Pwee o with

0 (3.145). Applying (3.144) to

Wenp = £ (3.226)
we find
+o0
D = Z (1) D" (p, &)
RF(O) V1-& 1 - 50 ( nwceo> DRFO
:;oo —& -2 ) D" (0, &o) -
v/ 1 - 5 NWee '
Dy = Z = ( -~ - b°) DY (p, &)
DREO) _ = 1 1 MWee,0 2 DRFO
bEE = Z a 3 o n (D, €o)
where we defined
DEFO (p, &) = {UDFF (p, &)} (3.228)
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We note that the bounce-averaging operation (3.144) on the diffusion tensor (3.190)
gives a diffusion tensor (3.227) that is function of a bounce-averaged diffusion coeffi-
cient DEF® common to all tensor elements. Applying the bounce-averaging operation

to (3.205) gives

Dy - |1 H[z&,'- - s
T ?

28

1 (Njrest = Noy)”
DRFO) YTe. @‘") exp | — 3.229
TR ARG IVC v P v 7 (8.229)
where we defined
2
RF(O) _ _ €T By Wy, 50
-D EoWp lq)bi_l A2y (w’ )R1,F (w ab) F (%b, 06) (3230)
and introduced the factor
~ B
Fy(¥,0)= ~—T",:‘j (3.231)
GRyBp |1 - 7|

Note that for circular concentric flux-surfaces, f’g (¥,6) = 1. The equivalence (3.46-
3.48) gives the Heaviside function in (3.229), which ensures that only trapped elec-

trons that reach the poloidal location 6, do interact with the wave.
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Flux coefficients for the distribution function f

Applying (3.154) and (3.155) to (3.190) and using (3.132) as well as w,. = Ywee o with
(3.226), we find

D0 = Z (1 - €2) DEFOP (p,¢5)

Nn=—00

+o0o
RO 1—5 MWee 0 \ =RF(0)D
R S e (R R P
n=—oo
= (3.232)
HREO) _ V1-& 1 - fo ( nwce,o) ~RF(0)D
g2 o) 5 ,
Dhgp’ = 2, - &§-—=2 ) D" (v, &)
DRFO) _ § 1 ( _eo NWee, 0)2 DRFOD (p, &)
e e & ® yw " ’
and
~rro) _ VI & VI—& NWee o =
Ao VB VB (g ) g
-
n=—c0 (3.233)
FREO) _ V1- 3 Z (1 _e2_ NWee, O>2DRF(0)F(p &)
5 pgo e 0052 0 ey ’
where

B, 6) = o { o027 s)}

DRf O (p, gy =0 {0 (T - 1) %D,‘}F (p, 5)}

Again, the bounce-averaging operations (3.154) and (3.155) on the diffusion tensor
(3.190) give a diffusion tensor (3.232) and a convection vector (3.233) which elements
are function of common bounce-averaged diffusion coefficients, respectively DRF(O)D
and DEFOF We also note that the bounce-averaging of the RF quasilinear operator

for the drift distribution function f also generates a convective term. Applying the
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bounce-averaging operations to (3.205) gives

~RF(0)D _ l - - _1—
Dn (p, &0) =0 [22}710'1:] l:|€0| 1 \I,(w,ab)

(24

~ 2 1 (Njrest = Nyy)’
DRF(O)D YMle e(n) exp | —
- 1 '
DSF(O)F =0 |= ocH [ _—
Z l&) ‘IJ (wa gb)
Nijress — Nyy)”
s BREOF M |0 exp | - (Niress — Ny
P&l ﬁAan AN
where we defined
_ 2 B, 1
prror - 27 E, (1,6 ,6) <
b gows | Py | 472 (¢, 6y) R, (4, 6) Fy (4, 60) A (3.235)
D, F (¥, 9b) g (¥, 0p) ——=

~ cows | Py | A2 (@D, 0y) Ry * A

and used the equivalence (3.46-3.48).

3.6 Moments of the Distribution Function

Once the steady-state distribution function is calculated from solving the drift-kinetic
equation, it is possible to take moments of the distribution function. Because of the
fast parallel motion of particles, only the moments that are averaged over a flux
surface are of physical relevance. These moments can be expressed as a function
of the #-independent distribution functions féo), f(o) and ¢@. In this section, we
introduce the flux-surface averaging of both flux and volumic quantities, and apply
this operation to the density, the toroidal current density, and the power density
associated with a given momentum-space flux, such as quasilinear RF-induced fluxes

or collisional fluxes.
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3.6.1 Flux-surface averaging
Toroidal flux quantities

We consider the flux-surface averaging of a flux quantity through a poloidal surface,
generally noted I' (¢, 0). An example of such flow is the toroidal plasma current. We

calculate the averaged flux of I" through the infinitesimal poloidal surface dSp (v)

fdsp(zp) dS¢ - (zb, 0)

Lis W) = fdsp(w) dSy

(3.236)

In the (¢, 0, ¢) system, the differential poloidal surface element is given by (A.94)

dS, = ———dydfd (3.237)
v |73

so that the infinitesimal poloidal surface element dS, (1) of radial extent di is

o 27 (1))
ds = ds, = d o r = d 3.238

where we used (3.10) and defined the pseudo safety factor § as

_ _[*™d0 1 r By(¥)
1w = [ =R B (3.239)

The flux-surface averaged flux in the toroidal direction becomes

(T), () = (5‘%) B /0 %dQHV—zblﬁﬁ [$ T (b, e)] (3.240)
which gives, using (3.238)
O, =05 [ $1A B Grwe] e
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Volumic quantities

We consider the flux-surface averaging of a volumic quantity, such as the density or a
dissipated power density, generally noted ® (,8). It is defined as the average value
of ® within the infinitesimal volume dV (v)

S @ ®,0)dV

T fde) % (3.242)

(®)y (¥)

In the (¢, 0, ¢) system, the differential volume elements is given by (A.95)

Rr

v = ————
IV [ -

dipdfde (3.243)

and the infinitesimal volume element dV (¢) of a flux-surface was previously calcu-

lated (3.212)

_4n*R,q(v)
dV = B0 dyp (3.244)

so that the flux-surface averaged quantity in the toroidal direction becomes

<®MW=A1£WM L BolW)g (y,0) (3.245)

W) Jo 55| B Br
3.6.2 Plasma density

Definition

The electron density n. (1, 8) is given by the relation
+1 o0
n(.0)=2n [ de [ "o £ 9,0, (3.246)
-1 0
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Flux-surface averaging

Using the general expression (3.245) of the flux-surface averaging of a volumic quan-

tity, we transform

by ) =2 [ gﬁﬁag—;n (5.6
=78 2dp/2“ i Jl?é—% jdffw,e,p,f)
SR

1 T BO +1 1
T 7 EE/_I [5 Z}Tdff(w,f),p,f)

- r o==1

q

(3.247)

where the sum over o for trapped electrons can be introduced because of the integral
over £. Using (3.132) £d€ = W&pdE, with the condition (3.48) such that an electron

&o reaches the poloidal location €

ol > - W')- (3.248)
we get
+1 11 +1 ] 1
/—1 [igjfzf—l l'ic,:zﬂ]q, (¢ 9) (‘5"' TTw,0 )
(3.249)

where H is the usual Heaviside function which is defined as H (z) =1 for z > 0 and

H (z) = 0 otherwise.

Note that the condition (3.248) is equivalent to (3.46)

gmin ("pagO) < 0 < Hmax (dJ, gO) (3250)
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so that, after permuting the integrals over § and &, we get
27r oo +1
(ne)y () = 7/ pzdp/ d€o ¥
0 -1

1 /"mx d 1 r Bé&
[2 Uéljlq’ g

o1~ 1D D 3 01 ) 3.251
" 2W|¢?‘R¢BP§f(¢ pgo) ( )
where the bounce-averaging of the distribution (3.86) appears naturally. Therefore,

the expression (3.251) can be rewritten in the simple form

~  poO +1
(ne)y (¥) = 2%% /0 p*dp [_ 1 déo M{f (¥,0,p,%)} (3.252)
where f = fo + f—l— g.

Distribution functions f; and g

The distribution functions f, and ¢ are constant along a field line, and for such 6-
independent distribution function f, we have f (1,0,p,&) = O (¥, p, &) such that

we obtain

O — ord [Z 2 [T ©)
(ne)y (4,40) = 201 /o v [ Y, (3.253)

Distribution function f

The distribution function f (3.116) depends explicitly upon the poloidal angle 8, but
can be rewritten as (3.148) f = £/ (V&) F© where f(o) is independent of # but is
antisymmetric in the trapped region.

Therefore, the flux-surface averaged density contribution of fbecomes

- g [ +1 _ _
(Me)y (¢’ f(o)) = 2”:/ p*dp d€o Ar,-1,0f© (3.254)
qJo -1
where
3 _ £
Al—10=0 {a———————ql(w, 9)50} A (3.255)

is defined according to (3.88).
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Total distribution function

The total flux-surface averaged density for the total distribution function f = fo+f+g

becomes

(re)y (¥) = (ne)y (d’, féO)) + (ne)y (w,g“’)) + (Te) v (Qp, ]?(0)) (3.256)

3.6.3 Current Density
Definition

The density of current carried by electrons is given by

) =a. [ / [ Evviwp) (3.257)

so that the parallel current density is

Jy (r) = ¢ /// d3p v f(r,p) (3.258)

which becomes in (¢, 8, p, ) phase space

00 1
Jj (¢,8) = 27rqe/0 p2dpf_l d¢ ;fbef(w,&p,f) (3.259)

Flux-Surface Averaged toroidal current

The flux-surface averaged current density in the toroidal direction is given by (3.241)

1 2 df 1 r BO

(s @) = 5/0 2 EEJJ” (,0) [3.3]

<)
)

_lf%ﬁ.l T BrJy (4,6)
T gJo 27

7 R Br ¥ (4,9) (3.260)

)
")
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where we used (3.39). Using (3.132) and (3.4%), and inserting (3.259), we find

27rqe

(i), (@) = / —dp / dfoaﬁoq)\{-é—%—Bz f(v,b,@,p,&)} (3.261)

Distribution functions fy, and ¢

The distribution functions fy and g are constant along a field line and symmetric
in the trapped region, and for such #-independent distribution function f, we have

f(,0,p,€) = fO (4, p, &) such that we can define

27r e
)y (0,5 = 222 [y [ty bl - sm)es® (3260
1
since [5 Y ooe il} o = 0 for trapped electrons and, according to (3.19)
T

~ §R¢BT} /2”d0 1 r By
MNeEr a3 (=] soT=Tpr. " 3.263
q {f()R B A 27‘(’},{5_?']%313 Q(¢) ( )

Distribution function f

The distribution function f (3 116) depends explicitly upon the poloidal angle 6, but
can be rewritten as (3.148) f = &/ (&) f© where f© is independent of 6 but is
antisymmetric in the trapped region, such that only o f f© can be taken out from the

bounce averaging.

Therefore, the flux-surface averaged toroidal current density contribution of f

becomes

<J||> ( f(o)) = 2;—?%%?% —dP/ déo a,-2260f (3.264)

since

2
_.__._%’;BT BToRP §° 1 Ry Br BToRp
)\{ R } Bo Ry {53\112 R BTO} ~ B, ROAz ~2,2 (3.265)
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where we used RBr = I (¢v) = RoBro and where

Ag 93 = { (g)z T2 (%)2} A (3.266)

is defined according to (3.87).

Total distribution function

The total flux-surface averaged toroidal current density for the total distribution

function f = fo + f + g becomes
(g @) = (), (9. 857) + () (0.0@) + (T1) (v.7)  (3267)

3.6.4 Power Density Associated with a Flux
Definition

The kinetic energy associated with a relativistic electron of momentum p is
E, = m.c*(y — 1) (3.268)
Then, the local energy density of electrons is

e(r) = / &*p mec?(y — 1)1 (x, p) (3.260)

The density of power absorbed through the process @, P2, is

abs?

_ &
ot

Pew = 5| = [rme -y LER) (3270

o

When the operator is described in conservative form, as the divergence of a flux

af| o_ 10 5.0 10 5 QO
B, = Ve S5 =gy P°S) + 5 (Vi=eisy) (3.271)
then the power density becomes
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Py = —2mmec? /Ooop2dp (v 1)/_ d5 [‘12'5@‘( ) - o (V -85 )]

(3.272)

The integration of the Sg) term gives no contribution, since the particle energy is

function of p only
= —£2589) = —£289 =

/_1 ¥ (Vi—ese) = [vi-esg| =o (3.273)

and the equation (3.272) reduces to
+1 oo o
PY. = —27rm802/ d§/ (v—1) = (p*S9) dp (3.274)
-1 0 op P
Integrating by parts, we get

+1 © 4
0% V. 200
PS. = 27rm602/ d¢ ([(fy — 1) p°S; ]0 —/0 a;pzsp dp) (3.275)

-1
Assuming that lim,_, p?S = 0, and using

dy _ p

iy (3.276)

the equation (3.275) reduces to

0 +1 o0 p3 o
lf’bs(zp,a)=27r/_1 d&/o i L5

Flux-Surface Averaging

(3.277)

Starting from the general expression of the flux-surface averaging of a volume quantity

(3.245), the flux-surface averaged power density (P3,),, (¢

CAROEEY R {wl ] 5ePS (4.0 (3.278)
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which becomes

o 51 (7d8 1 r By [ 1
P2, (¢) = 27r/ dp —?—;/ ——;————-——/ de | = S© (3.279
< b>v( ) 0 YmMe q Jo 271'1¢,;.\|]1po -1 ZUZ;;T P ( )
where the sum over o for trapped electrons can be added in the integral over £. Using

£d€ = WEyd€y with the condition (3.48) on & we permute the integrals over 6 and &,
and find

(Pae)y, () = 27@ / " dp P / " déoA {57} (3.280)

qJo YMe J_1

Using the definition (3.135), we observe that the flux-surface averaged power den-
sity is calculated using the momentum flux component of the bounce-averaged kinetic

equation:

(P2, @) =2rL [~ dp 2 " s 00 (3.281)
abs/v ~ P ~ 0N p .

qJo me J_1

where SI(,O)O was evaluated for each operator in the kinetic equation.

3.6.5 Stream Function for Momentum Space fluxes

When the integral term in the collision operator is neglected, the Fokker-Planck
equation (3.125) reduces to
Ve -Sp(fo)=0 (3.282)

where fo = fo (p, £, v¥). Because S;, is a divergence-free field vector, it can be expressed

as the curl of a stream function

Sp =V x T, (3.283)
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The expression of a curl in momentum space (p, €, ¢) is given by relation (A.125) in

Appendix A

19 1 AT

5= 57 ( 1"§2T‘°)+p\/1—§207

T,
Se = 7 (pT,) — e 2 (3.284)
10 V1= £20T
Sy =22 (o) - -0
pdp p 0

19 (3.285)
Se = —— (pT,
£ p Bp (p <P)
and we can rewrite
Sp =V xT,p (3.286)

In order to give a physical meaning to T, (p, £, ), we define formally

T, (¥,p, &) = K (¥,p,€) A(¢,p, ) (3.287)

where the function A (p, £) is such that the flux of electrons between two contours A,
and A; is equal to n. () (A2 — A;). Lets consider a path ;2 between the contours
A; and As. The total flux of electrons through this path, which is in fact a surface,

given the rotational symmetry in ¢, is given by

Ty =/ dS S, -7
Sz

=// dS -V x T,3
S12

- ]{ T, dl-p (3.288)
Ci2
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By rotational symmetry in ¢, and using (A.120), we get

F12 = 27I'p2\/ 11— §§T¢2 — 27Tp1 1 - §%T‘p1 (3289)
If we define
ne ()
K(y,p, €)= ———— 3.290
(¥, p,€) P (3.290)
we obtain
Flg = T (’l,[)) (A2 - Al) (3291)

and therefore the total flux between the contours A; and A, is equal to n.(¢)
(Az — A;). We call A (¢, p,€) the stream function, and we get finally

_ . () 0A
So = Gt 5 (3.292)
ne(y) 04 (3.293)

S = LW o4
¢ onpy/1-€2 0p

Since there are no fluxes across the internal boundaries in the momentum space,
this boundary coincide with a contour A, and therefore we can arbitrarily set this
value to 0:

A(0,8)=A(p,+1)=0 (3.294)

Then A can be calculated by any of the integrals

2 3 2rn? £
A(w,p,§)=%’l(% a5, - 28 [Lae's, (3.295)
or
I /1 — €2 [P
A(df,p,f)—“-ﬂn—tw)g— /0 p'dp’ Se (3.296)

However, A (¢, p, £) remains a function of £, which depends upon 6. Starting from

the bounce-averaged fluxes, it is interesting to compute a function A©® (s, p, &), such
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that

A9 (0,6) =A(p,£1) =0
P 27rp 9
GO _ _Me () 8AO

£ omp/1- Op

(3.297)

We first need to demonstrate the existence of such a function. Starting from S,(,O),

22 o ,
A0 (,p,&0) = =0 [ (S0)
_ 2 /f"dg,:z /“’m@e_}_LﬁéS
ne () Joo 0 A (247 Joma 2w'$.;|R¢BP§' 7

o 1 [1 | [>do 1 1 BgoA
AR /2”4_"1_1 r B
N (24| Jo 2%’1’[,;.\‘1?1,Bp
o £ 0A
d&yH —y/1-=] o2
/_1 50 (|§0| ) 5/351

_ ot '/2"9!9 1_L_B_£/ )
37 |22+ Uy 2#'17;, R,Bp ¥ ag'

1 /2" d 1 r By
= — |= — -————oA
Aq -2 . 0 27T ‘w . }?17 BP
oL |15 (oa) (3:298)
A7 |24 . v '
where we used
1
Omin <0 < Opax & B< By 4/1 7 < |&| (3.299)
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Now, starting from Séo) , we have

A©) (4, p, &) = 2”'1 50 "y 0{ o Sg}
—_— omax
2W'1 §0/ p'dp’ v [-Zjl / @ 1 r B o Se
T 6
[T L B o VTG
[}
_ o liy [ s [y
N |25 Jon, 21| 7| RyBr ¥ P oy
JT min 271- '{/J\'? R’PBP
_, |l
=% [2 Z} ) (cA), (3.300)

min 2”(1/; IRpBP\/_
P Lt
-] % [22} v 20 [i-7] B Be VI T= €200
o [1<] [=ds 1 + B,
=x5_§¥/9 w5 AR B

and we find the same function A(®). The existence of a function A©® verifying (3.297)
is therefore demonstrated. We need now to demonstrate that A© verifying (3.297)
leads to the bounce-averaged Fokker-Planck equation (3.134):

iﬁ 2 (0) 19 23 q(0)
{VP ’ Sp} - p® dp ( ) )\p 0&o 1 50)‘560
_ _}_ﬁ ( 27 (V) aA(O)> _ _]-_i 1— €2) ne (V) 0A©
P2 op \P 2mp? 0% Ap 9o *“onp/1— & Op
_ 1 & () A9 1 P [Ine(y) A©
A\ Opo 27 Ap? 6€yOp o
=0 (3.301)
In conclusion, a stream function verifying
A9 (0,6) =A(p,+1) =0 (3.302)

has been found which leads to the bounce-averaged Fokker-Planck equation and which
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can be calculated from the bounce-averaged fluxes by either

27rp2 o 271']92 &o
A© = / dey SO = ——_ [ qdg) SO0 :
('I/j,p,&)) T (1[}) ) §0 p T (w) . 50 D (3 303)
or
om\/1 — &2 [P
A (4, p, &) = —;Lew—)fo /0 pdp’ 5O (3.304)
relations.
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Chapter 4

Numerical Solver for the Drift

Kinetic Equation

In the presence of RF fields, the bounce-averaged drift kinetic equation cannot be
solved analytically. Therefore, in collaboration with Yves Peysson from CEA-Cadarache,
France, I have developped a numerical code that solves the steady-state DKE and cal-
culates moments of the resulting distribution function such as the current density and
the density of power absorbed. It should be pointed out that the code DKE presented
in this section includes a novel, fast and consistent treatment of conservative radial
dynamics, which is important for integrated current drive calculations because of the
role of anomalous radial transport on current deposition and current drive efficiency,
and also for studying any consistent coupling between radial and momentum-space
dynamics, for example wave-induced transport or collisional transport. Such inves-
tigations are outside the scope of the present study, and therefore radial dynamics
is ignored in the present work, meaning that any consistent, classical or neoclassical
coupling between radial transport and momentum space dynamics, is neglected. For
more details on the DKFE code, including a description of the conservative formalism

for 3D dynamics (radial and momentum-space), the reader is referred to Ref. [73].
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4.1 Conservative Formalism in Momentum Space

4.1.1 Bounce-averaged kinetic equation

The appropriate kinetic equation for RFCD calculations was derived in Section 3.3.7.
The small drift and low collisionality approximations led to a set of two 2-D bounce-
averaged kinetic equations (3.125) for the distribution functions féO) (p, &) and g©@ (p, &).
Since these equations are bounce-averaged, they are solved as a function of (p, &),
where the pitch-angle coordinate &, represents the value of £ as the electron passes
through the point of minimum B-field on a given flux-surface. For the sake of
readability, we will omit the superscripts (¥ and subscripts , refering to
bounce-averaged quantities in the entire chapter, keeping in mind that
all operators are assuméd to apply to the (p,&) space and all fields are
bounce-averaged. More explicitly, one can refer to the following equivalence in the

notations

g
() f
Foe= g (4.1)
Sg)) — 5
Dg)) — Dy
Fg)) «— Fp
Bo(y) «— B(1)
The equations (3.125) are thus rewritten as
Vp - Sp (fo, Dp, Fp) = I (fo) (a)
(4.2)
VoS5 (9,05, Fp) + Vy Sy (£ By, Fp) =Z(9) +Z (F) (b)
and the total distribution function is
fr=fo+f+g (4.3)
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with (3.149) .
~= D _0
=B %

In addition, we must ensure that fy is symmetric in the trapped region and g is

(4.4)

identically zero in the trapped region. The bounce-averaged integral terms 7 and
7 describe the effect of collisions on the bulk of electrons due to collisions with the
perturbed distribution. They are given by (3.180) and (3.182) respectively. The

divergence operator acting on the fluxes (3.134) is expressed as

Vrsbe2@2ﬂ—% (Vi—ens) (45)

p? Op

and the momentum-space fluxes (3.143) and (3.153) decompose as

/1 2
Sp (f, Dvap) = Dppap § p& o¢ + pr
(4.6)

/ 2
Se (f, Dy, Fp) = _Dfpap g Des B¢ + Fef

The momentum-space diffusion tensors Dy, Dy, and convection vectors Fy, Fy, describe

the effect of collisions and RF quasilinear diffusion. We have thus

D, = DS + DFF
M. = MC L MRF
Dy =Dy + Dy @
Fp =F§ +FFF
F, = FC 4 FRF

where the respective coefficients are given by (3.169-3.170) and (3.172-3.173) for col-
lisions, and (3.227) and (3.232-3.233) for RF quasilinear diffusion.

It must be pointed out that in this formalism, all momentum space fluxes are taken
into account consistently at the same level, such that the collision and the quasilinear
operator - for all RF waves - will be discretized in a uniform, consistent manner. This

procedure is different from many other kinetic codes in which the divergence form
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of operators is not used and each operator is discretized separately. In addition, the
divergence form of the operator leads to the development of a discretization scheme
that intrinsically conserve particles, such that unlike many other codes, there is no
need for a numerical source of particle in DKE, which is an intrinsically conservative

code.

4.1.2 Resolution of the drift kinetic equation

Using the structure of the system of equations (4.2-4.4), the process of solving the

kinetic equation for f*°* is divided into three steps:

e Solve the steady-state distribution function f; from (4.2-a)

e Calculate the distribution fby taking the radial derivative of fy according to
(4.4)

e Solve the steady-state distribution function g from (4.2-b) where the operators

acting on f are considered as a source term.

The equations (4.2) are both of the form
vp’sp (f,]D)p,Fp)=I(f)+S (4-8)
where f represents fy or g, and the source term is

0 in the equation for fy

TS 5 (750 8) 13(7) e

(4.9)

It is worth noting that the differential and integral parts of the equations (4.2) for fj
and g are identical, which greatly simplifies the calculation and saves computational
time. Note, however, that we must ensure that fy is symmetric in the trapped region
while g is identically zero in the trapped region. This symmetrization can be enforced
implicitly in the equation (4.8) and results in specific boundary conditions (BC) at
the trapped/passing boundary. These BC will be discussed in Section 4.3.
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The algorithm to solve equation (4.8) will be described in Section 4.4. The steady-
state distribution function results from a time-like relaxation of (4.8) starting from
some initial distribution function (generally, but not necessarily, a Maxwellian). We

rewrite equation (4.8) as

Y o Vp 8y (1D Fy) = (1) +6 (4.10)

where t is a time-like parameter. In order to avoid singularities in the divergence
operator (A.124) when solving this equation numerically, it is multiplied by the Jaco-
bian of momentum space (A.119) J, = p?. The actual form of equation (4.8) solved

in the code is thus

0
9t (pzf) + p2vp -Sp (f, Dy, Fp) = p2I (f) +p28 (4.11)

4.1.3 Normalizations

In order to ensure a good numerical precision in the resolution of the kinetic equation,
this equation must be normalized. The distribution function must be evaluated at
several radial positions, so that the radial derivative (4.4) can be evaluated. We define
a reference temperature T and a reference density n!, which are arbitrarily defined,
but are typically chosen as the maximum values for T, (¢) and n, (¢). We can then

define the local normalized temperatures

= T. (¥)
T.(¥)=

o 7(’;) (4.12)
Tie () = enf

Because collisions are the dominant process in most of the momentum space,
the equation is normalized to the momentum and time scales associated with col-
lisions. The time is naturally normalized to the collision time 7! given by (3.106)
Tl = (47regmgv}i> / (gin}In At) where v, = \/Td/m, is the thermal velocity and
InAt = 25.2 — 0.5 x log (n}) +log (T7) is the usual Coulomb logarithm. The momen-
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tum is normalized to the thermal momentum p}e = mev}e. The flux-function v was

chosen to be zero on the magnetic axis. It is normalized according to its value at the

edge 1,. We define the normalized variables

and the normalized fields

P= 3 (4.13)

Dp = 5= (4.14)

/ (Tc pTe)

so that the equation (4.11) remains structurally identical with the normalized fields

and variables. The same is true for the flux divergence expression (4.5), the flux

decomposition (4.6), and the source term (4.9). The equation (4.4) becomes

fo

f= C"ﬁaw

(4.15)
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where we define the following normalized variable

T = ! (w) P;"e

eB (0) % (4.16)

From here on, all variables and fields are assumed to be normalized, and the bars

above the symbols is omitted for simplicity.

4.2 Discretization of the kinetic equation

4.2.1 Grid definitions

The kinetic equations (4.11-4.15) are discretized according to the finite difference
scheme with non-uniform grids. The normalized variables in these equations and

corresponding spaces are

0<p<o
-1 <1
st (4.17)
0< 00
<y <1
We define the grids

pi t=0,1,--N, po=0 PN, = Pmax >0

. '2071,...N :—1 =1

§ J e o &N (4.18)

th k=01,--N, to=0 tn, =tmax >0
wl l=—70)+ OS¢—<'¢O<¢+S1

In momentum space, the existence of internal boundary conditions (p = 0, £ = +1)
requires that the flux of momentum vanishes at the corresponding boundaries. It will
be demonstrated in Section 4.3 that these boundary conditions are naturally satisfied
if the momentum space grid is defined with respect to the flux discretization. The

grid (4.18) will be referred to as the flux grid, or full grid.

In other words, the grid (4.18), which includes boundaries, defines cells that accupy
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all of the momentum space (up to p = Pmax). Naturally, the flux in momentum space
must be defined on the cell boundaries. Hence, for a proper discretization of the
differential operators, the distribution functions must be discretized on a intermediate
grid, or half-grid. This grid is defined according to the median positions of the full

grid, or center of the cells:

. Pit1 T Pi
Pivz 1=0,1,---Ny—1 piy19= e o

. & +& (4.19)
fj+1/2 j=01,--- N& -1 §j+1/2 = "—2——

The momentum space grid is shown in Fig. 4-1 where a particular cell is considered.
The flux components S, and S¢ are defined on the respective cell boundaries and the

distribution function is defined at the center of the cell.

E-‘Oj+1

Figure 4-1: Momentum space full grid cell.

The choice of using non-uniform grids is motivated by several considerations:

e The radial and pitch-angle grids are linked through the trapped/passing bound-
ary, which is defined by (3.41)

Er(Y)= 4|1 = =———— (4.20)



and the fluxes across this boundary S; must be defined at this location &7 () in
order to ensure the proper symmetrization (for fo) or specification (for g) of the
distribution function in the trapped region. The trapped/passing boundary is
in fact another internal boundary. Therefore, all the points &r; = &7 (1) must
correspond to one ; grid point, since the fluxes are defined on the entire grid.

This condition can be systematically satisfied only with a non-uniform &; grid.

e A better accuracy in the numerical solution of the kinetic equation can be
achieved if a finer grid is used in the vicinity of internal boundaries (p = 0,
& = +1, £ = & (¥)). With non-uniform grids, a finer grid can prescribed in
these vicinities while keeping a coarser grid elsewhere, such that the computing

cost of improving accuracy is limited.

e Under some circumstances (for example, in LBF EBWCD), the region of mo-
mentum space where the wave-particle resonance is significant is very limited
in one or both dimensions of momentum space. In that case, it is again possible
to use finer grids in that region only, greatly improving accuracy while limiting

the increase in computing costs.

The grid intervals associated with the half grid points are defined naturally as the
full grid cell widths

APi+1/2 =Pi+1 — P

A& =& — &

The grid intervals associated with the full grid are defined with respect to the half

(4.21)

grid positions, such that

Apiy1/2 + Api_y/2
Apz'=Pz'+1/2 —Di-1/2 = el B iy

(4.22)

Abjpae + A&
A§j=€j+1/2 “53‘—1/2 = J+1/2 5 i-1/2

173



4.2.2 Numerical differentiation in momentum space

Divergence operator: In the kinetic equation (4.11), the divergence operator p?V,-S,,
is defined on the same momentum grid as the distribution function, that is (i+1/2, j+
1/2). On a given flux-surface ¢, at time ¢, (the field dependence upon ! and &k will

be kept implicit in this section) this operator is expressed as (4.5)

_ 9 (p°Sp) _ DPit1/2 9 ( vi- S2/\5’5)

i+1/2,j41/2 op

2
p°Vp - Spl
i j Aj+1/2 613
i+1/2,5+1/2 j+1/ L2412

(4.23)
where the discretized differential terms naturally call for fluxes to be expressed on

the full grid

ﬁ (p2S,,) _ Pi1Spi+1g+1/2 — PiSpigt1/
D =
op i+1/2,j+1/2 Apiyi/2
2 2
0 (\/—— V1~ &dinSgiryzin — /1 = §ASeiv1/2;
—_— 1-— 52/\5'&) —
73 i+1/2,541/2 A53’4»1/2
(4.24)

Momentum space fluzes: They are decomposed according to (4.6). With S, de-
fined on the full p; grid and S, defined on the full &; grid according to (4.24), we find
that the flux S, (f, Dy, F},) is discretized as

1—¢2
af j+1/2 af
Spig+1/2 = —Dppijrise % / + T Dreini e B + Fpij+1/2fijr1/2
1,j+1/2 1,541
2
of V31=6& of
Sei+1/25 = —Depiv1/e 7= + ————Deciv1/25 75 + Feiv1/25fiv1/2,5
Wlivrja; P12 9 |iy1/2;
(4.25)

Gradients: Keeping in mind that the distribution function is defined on the half

grid, the gradient terms associated with Dy, and D, are discretized in a straightfor-
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ward manner

of _ fapgnye = fiszgeye
i j41/2 Ap;
(4.26)
Qf_ - fivizg+1/2 — fiv1/a-172
O |is1/2.4 Ag;
. .. af of . ' .
However, the discretization of —— and — , associated respectively with
O |; 54172 Op\iy1/2;

the cross terms D, and Dy, is not straightforward and has been the subject of many

debates. There are at least three possible procedure.

e The first approach modifies the operator discretization (4.24) for the cross terms,

by analytically differentiating the flux term, which gives

a af 17, of
o (P - §2D”f’a—) = 5 (V1=EDx) o€
P 3 i+1/2,j+1/2 paz i+1/2,j+1/2 3 i+1/2,j+1/2
f
+piv1/24/1 — €21 o Dpeit1/2,+1/2 iz
i j+1/2 J apag /25412
0| +/1—£&2AD of 2
Epap B 3(\/1—5 /\Dfp) af
o€ - 1913 op |, )
_ | /2412 i+1/2,j+1/2
i+1/2,j+1/2
j+1/27%+1/28€p,i+1/2,j+1/2 OpoE /212
(4.27)
The advantage of this discretization scheme is that the cross-derivative terms
2
of are all identical and defined at the center of the cell, and are
opdg i+1/2,j+1/2

thus evaluated in a completely symmetrical manner with respect to the neigh-
boring points. The downside, however, is that the internal boundary conditions

are no longer naturally satisfied for the cross terms and must be enforced.

. . 0
e The second approach consists of discretizing the terms —f—

3¢ and -‘E

ij+1/2 op

i+1/2,5
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according to
of _ Juin = fij
23 i,j+1/2 ANSTRY?
(4.28)
Q_Jf _ Jirrj = fig
dp i+1/2,5 Api-H/2

which has the advantage of exactly satisfying boundary conditions. However,
the distribution functions are now defined at the cell corners f;;, and the in-
terpolation to the neighboring half grid points is complicated and not very

accurate.

There is a third approach, which satisfies the internal boundary conditions and
avoids the grid points at the cell corners. In this approach, the cross terms are

discretized according to

g]ﬁ — fij+srz — fij—1/2
9 |, 54172 A1 + AE;

(4.29)
of _ Jivaag — ficapag

Op i+1/2, Api + Ap;

With this scheme, which is chosen from now on in this work, the discretization
of the operator (4.23) requires to calculate the following diffusion and convection

tensors at all grid points

Dypij+1/2
Do F. ..
lD)p : ﬁ 6, J+1/2 Fp : Pt +1/2 (4.30)
Depivis2,j Feivis2,
| Deciviya;

and involves the distribution function at the half grid points and also at the
following full grid points

fij+1/2 (4.31)
fir1/2,5
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4.2.3 Interpolations of the distribution function

Regardless of which scheme is used for the discretization of the operator (4.23), the
distribution function must be interpolated from the full grid points (7,5 + 1/2) and
(i +1/2,7) to the neighboring half-grid points. An interpolation scheme for (4.31) is

very generally defined in the form

figre = (1= 8pi0172) firrjagnrse + Spigrrafiziznise
(4.32)

fi+1/2,j = (1 - 5{,i+1/2,j) fi+1/2,j+1/2 + 5£,i+1/2,jfi+l/2,j—1/2

where the interpolation coefficients d,; ;11/2 and & ;41/2; are such that 0 < § < 1 and

must be specified.

Pitch-angle interpolations

The variations in the distribution as a function of the pitch-angle coordinate £ are
usually relatively slow (they is no variation at all for a Maxwellian distribution)
and they are locally well approximated by a linear dependence, such that the linear

interpolation works well. It gives

A&jr1/2
AEi_1/2 + A&jg1)2

56’1’_}_1/2’]' = (4 33)

which reduces to ¢ ;y1/2,; = 1/2 for uniform £ grids.

Momentum interpolations

In kinetic calculations, the usual linear interpolation works very poorly in the momen-
tum p direction, because of the rapid, highly non-linear variations of the distribution
function as a function of p (typically close to a Maxwellian dependence exp [—p?/2]).
The interpolation coefficients are indeed calculated such that the Maxwellian distri-
bution function - which results from the effect of collisions - be the exact numerical

solution in the absence of RF waves [74].
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In steady-state, the operator (4.23) must vanish. In the absence of RF waves,
only collisions come into play, and the solution of the equation must be isotropic by
symmetry since collisions have spherical symmetry. In other words, the collisional
diffusion Dg and convection Fg coefficients are independent of £. For an isotropic
distribution function, the operator (4.23) reduces to ng (p?S,) = 0 which integrates
to p2S, = 0. As it is intuitively expected for an isotropic distribution, there must be

no steady state fluxes. In other words, the effects of collisional momentum drag Fg

must compensate the effects of momentum diffusion DS , which gives (4.6)

_ C

oy Ff (4.34)
Analytical solution: Is easy to show that the solution of this equation is indeed a
Maxwellian distribution. The collisional coefficients Dz?p and Ff are easily related

through [37]

FC
DS = -+ (4.35)
so that, with p = yv, (4.34) becomes
of p
= £ 4.36
L2 (4.36)
which integrates to
/4
f=7(0)exp [— / de] (4.37)
o 7
. ) .. Pp (v—1)
with v = /1 + p2(%, so that the integral becomes explicitly / :;dp = ———= 50
0 Te
that
-1
o) = £ @) exp |- T2 (4.38)
Te
and, multiplying by (v + 1) both the numerator and denominator
p?
= f(0 — 4.39
o) = @) exp |~ L] (4.39)

which is the relativistic Maxwellian distribution.
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Numerical solution: In the following calculations, there is no dependence upon €
because the collision coefficients and the distribution function are isotropic. There-
fore, the j + 1/2 index is kept implicit. Inserting the expressions (4.25) for the

discretized fluxes and given that there is no cross term D, for collisions, (4.34) be-

comes
DS g—i = ESfi (4.40)

which reduces to
Vi %If; i =pifi (4.41)

when the relation (4.35) is used.

With the expression (4.26) for the momentum gradient and the expression (4.32)

for the interpolation, this equation gives

Y fiv12 = fic1y2 _
Di Ap;

(1 = 6p;) fivry2 + 8pifi-1/2 (4.42)
which is rewritten as

5 ;= Yi . 1
P piAps (ficiye/ fivre — 1)

Because the Maxwellian f = fy is the exact solution of this equation, we can relate

(4.43)

fi+1/2 = fm (pi+1/2) to fi—1/2 = fum (pi—1/2) using (4-38) as

Yi-1/2 — Vi
fir12 = fic1/2€xp [ Lk 7] H/Q} (4.44)
IBTe
The relations (4.19) and (4.21) are combined so that
Ap;
Di+1/2 = DPi + ;1/2
(4.45)
AZ’z‘—1/2
Di—1/2 =Pi — —*2—-
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and a Taylor expansion around p = p; of the gamma factors gives

2
PiAp; ﬁ2e Ap;iy1/2 526 3
Yirr2 =% |1+ /2 Te 4 (Bpisis2) Br +0 [(Api-H/Z) ﬁ%’e]

22 8}
(4.46)
) -
( Pz‘Api—l/zﬁ%e (Api—1/2) 5%8 3
Yi-2 =% |1 — 22 + 83 + 0O [(Api——lﬂ) @}e]
and we obtain
piAp;  Api
fiv172 = fi-1/2€xp [——;—z T 3 (Apiy1/2 — Api- 1/2)] (4.47)
Hence, the interpolation coefficient becomes
Vi 1
Opi = — (4.48)
T pAp piAp; | Ap;
exp{ " + - o (AP1+1/2 — Ap;_ 1/2)] -1
{Ap; Ap;
= (p oy 3 (Apit1/2 — Api 1/2)) (4.49)

1
where we define the generalized Chang & Cooper interpolation function g (z,y) = ——
x

1 . PiAD; Ap;
with the interpolation factors =277 and A ~ Ap,_
xp @ty -1 e interpo actors are x - andy = ™ 3 - (Apiy1/2 — Aps 1/2)-

As expected, if the intervals go to zero (Ap; — 0) or near the origin (pl — 0) where

1
Ofm/0p — 0, we find 6,; — 3 The Chang & Cooper function g (z,0) is plotted

on Fig. 4-2, where we see that the interpolation can differ significantly from the
1
value ¢ (0,0) = 3 For example, with a typical uniform momentum grid defined

by (Pmax = 20,1, = 201), we find Ap; = 0.1 and therefore the maximum value for
_ PiBps
Vi

IS Tax = 2 is the non-relativistic limit, and g (gax, 0) = 0.34.

4.2.4 Discretized differential operator

With the differentiation and interpolation schemes developed in this section, the
divergence operator p*V, - S, calculated at the half-grid point (¢ + 1/2,j + 1/2) by

(4.23), can be expressed as a function of fi11/41/2 and the eight neighboring points,
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Figure 4-2: Chang & Cooper function g ().

such that we can define

=i+l j =j+1

p2Vp~Sp|i+1/2’j+1/2= Z Z My a2 12 4172504172 (4.50)

i=i—1j'=j—1

The coefficients M;11/2,.41/2 are given in Appendix C.

Note that near the boundaries of momentum space, this differentiation scheme
calls for the value of the distribution function that are outside the boundaries, for
example at the point (—1/2, 5). Fortunately, the value of f at these points is known
by symmetry, which in fact leads to boundary conditions on the momentum flux such
that the value of f outside boundaries will not be used. More details are given in

Section 4.3.

4.2.5 Radial differentiation

In order to calculate the distribution function fon the flux surface g, the distribution
function fy is calculated at the position 9, as well as on two neighboring flux-surfaces

¥_ and ¥, with ¥_ < 1y < 94, such that f can be obtained from performing a
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numerical radial derivative according to (4.4)

7o\ _ L (%) p§ Ofo
f (o) = B W) % o (4.51)

A parabolic interpolation of the form y = ay? + b + ¢ is used to calculate the radial
.. d . .
derivative 9 _ 2a1 + b. The coefficients a, b and ¢ are determined from the values

di
Y-, Yo and y; at the respective radial grid points 9_, 1y and 1, which is written in

matrix form as

Y- c
o | =V-| b (4.52)
Y+ a

where V is a Van der Monde matrix of order 3

1 ¢y 2
V=11 9y o2 (4.53)
1 gy g2
which can be inverted to
. Aoty —Athotp_1y Avp_thorp_
T Ewy | AYs Wot ) Ao +s) —AY-(ot+uo) | (454)
A, —Ao A
where we defined
A"/)+ =1y — o
A =P — 9 (4.55)
A=ty —¢_ = A¢+ — Ay
Using ;Z—Z s = 2a1)9 + b, one finds
d 1
0 o = Tor (W) AR+ A (B = Ao+ Al)  (450)
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with the determinant

det (V) = Ayp_AghAdh, (4.57)

This differentiation scheme is thus applied to (4.51) with

Oh|  ___Av (At — AY) At

O lyeye  Av6AP- fo(W-) + =xypg folho) + Ton—fo(¥s)  (4.58)

For a uniform radial grid, Ay, = Ay_ and this expression reduces to ?9_{; =
=10

Jo (W) — fo (¥-)
Y=Y

4.2.6 Numerical integration in momentum space

Numerical integration in momentum space is required in the calculation of:

e the discretized diffusion tensor and convection vector elements listed in (4.30),

which enter the coefficients M/, 12 j711/2,
e the operators Z (f) and (f) in (4.8-4.9),

e the moments of the distribution function such as the current and the density of

power absorbed.

The calculation of these terms only involves algebraic expressions and numerical
integrations. The corresponding discretized expressions are not reported in this the-
sis, but can be found in the extensive report [73] on the DKE code. However, the
numerical integration in momentum space is described here for the general case.

For a given discretized momentum space variable z; - which represents either p;
or §; - the integration domain can be bounded by full grid positions (Zmin, Zxmax)
- this includes integration over the entire spaces (¢, z,,) and integration up to the
trapped/passing boundary, which is a full grid position in pitch—angle - or by half
grid positions (wk min +1/2> Tk max +1 /2), or by a compination of the two. The integrals
are evaluated numerically using the trapezoidal method, according to the following

schemes:
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e If F' is discretized on the half-grid Fyy1/ = F (Zrt1/2)

kmax —1

Tk max
/ F(z) doz = Z Fri1/2A%5, 19

Zk min k=k min

Tr+1/2 A
/ F (z) dz = I’;+1/2Fk+1/2 (4.59)

x

”j)k A
/ F(z) doe = mkz_l/sz—l/z

Tr—1/2

e If F is discretized on the full grid Fy = F (z})

k max

Tk max +1/2
/ F(z) do = Z FyAzy

Tk min —1/2 k=k min

Tr41/2 A
/ F(z) de = —?7,;+—1/'2Fk (4.60)

x

%k A
/ F(z) doe = x;;_l/sz

Tr—1/2

Note that when the expression for F' (z) is only an explicit function of z, the grid
Tk does not have to be any of the grids defined for the flux and distribution function
in (4.18) and (4.19) respectively. Instead, a much finer grid can be used to calculate
the integrals more accurately. This is the case for the collision integrals defined in
(3.169-3.170). However, when F'(z) depends upon the distribution function - like in
the moment integrals or the operators 7 (f) and z (f) - the grid (4.18) must be used.

4.3 Initial and Boundary Conditions

4.3.1 Initial conditions

The initial value for the zero-order distribution function fy is chosen to be the rela-
tivistic Maxwellian, which is the exact solution of the Fokker-Planck equation (4.2-a)
in the absence of RF field. Using the expression (B.118), derived in Appendix B,

and using the normalization procedure of Section 4.1.3, the relativistic Maxwellian is
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expressed as

_ Te (Ip) 12 x _ p2
Fao ) = o R (LR e || e
with
(3
Br. = meC? (4.62)

v(p) = \/1+p*6L

and where R(z) is given by (B.119) with the approximate form (B.120) R(z) =

15z 105 22
|:1+_8_+-1—% + O (z ):l

The initial value for the first-order distribution function g can be chosen to be
identically zero, since there is a driving source term in the drift-kinetic equation (4.2-
b). However, the convergence to a steady-state can be greatly increased with using
the approximate analytical solution obtained in the absence of RF waves and in the
Lorentz limit Z; >> 1 where pitch-angle scattering with ions is the dominant collisional

process. This solution is developed in Ref. [73].

4.3.2 Internal boundary conditions

The internal boundaries - apart from the trapped/passing boundary, which is treated
separately in the next section - correspond to the axes or planes of symmetry of
the system. In the gyro-averaged momentum space, the direction of the magnetic
field is an axis of symmetry. In spherical coordinates, this axis is defined by the
following position of momentum space (4.17): p =0, £ = —1 and & = 1. Therefore,
by cylindrical symmetry of momentum space, there is no flux of momentum through
this axis. This condition is intrinsically verified in the expression divergence (4.5) of

the divergence operator

Vp-Sp =

g_ (p%S,) — (\/1__§5>\S€) (4.63)
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since p?S, and \/1_—?)\55 naturally vanish at p = 0 and |[£| = 1 respectively. In
order to ensure that the internal boundary conditions are numerically satisfied, it was
chosen to discretize the flux on the full grid - which includes these boundaries. Indeed,
the discretization of the divergence operator (4.23) using (4.24) at the internal limits
of momentum space i =0, j =0, j = n¢ - correspondingtop =0, =—-land £ =1

- respectively involves the following flux contributions on the internal boundaries

P3Spo+1/2 =0

V1 =8 M0Seiv1/20 =0 (4.64)

/1~ & AneSeit1/zmne = 0

which vanish because po = 0, §& = —1 and §,, = 1. The internal boundary condi-
tions are thus intrinsically satisfied with this discretization scheme. Consequently,
in the discretization (4.50) of the differential operator at the limits ¢ = 0, j = 0,
J = ng, it is not necessary to evaluate the distribution function at the neighboring
points outside the boundaries, because the identities (4.64) cancel their contribu-
tion. It is easy to verify from the expressions developed in Appendix C that the el-
ements (M_y/2;-1/2, M_yj254172: Mo1jagraga), (Micyz,-1/2, Migaye 172, Migage,-172),
and (Mi_l /2.me+1/25 My [2me+1/25 My /2me+1 /2) are identically zero.

Note that in other schemes used in kinetic theory, where the distribution function
is specified on the full grid rather than the fluxes, extra points must be added outside

the boundaries to numerically satisfied the boundary conditions.

4.3.3 Trapped/passing boundary
Distribution function f,

In the low collisionality regime, which is assumed through this work, the bounce
time of trapped electrons is much shorter than the collisions and RF diffusion times.
Therefore, a trapped electron with momentum (p, £) (with |¢| < &7) - as it crosses the
outboard horizontal midplane - bounces back before undergoing any significant change

of momentum due to collisions or RF diffusion, such that after one bounce time, it
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crosses the same midplane with momentum (p, —£). As a consequence, trapped elec-
trons with (p, £) and (p, —€) are completely equivalent, and the distribution function

fo is symmetric in the trapped region, which is also obtained from equation (3.113).

When solving the bounce-averaged Fokker-Planck equation (4.2-a), it must be
ensured that f, is symmetric in the trapped region. This condition can in fact be sys-
tematically satisfied implicitly in the differential operator, following the prescription
by [48]. Because trapped electrons with (p, ) and (p, —§) are completely equivalent,
the equation (4.2-a) is solved only for one half of the trapped region 0 < { < & while
the other half is removed from the numerical momentum space. After the distribu-
tion function is calculated on the reduced momentum space, it is extended to the full
space by symmetry.

The reduced momentum space for the calculation of f; is illustrated in Fig. 4-3

where the following points are considered

(i+1/2,j3 — 1/2) | last point in the right half trapped region

(i +1/2,5F +1/ 2) | first point in the co-passing region

(i +1/2,j7 +1/2) | first point in the left half trapped region (4.65)

(i +1/2,j7 — 1/2) | last point in the counter-passing region

CU | o WO | DD | =

(¢4 1/2,j0+ 1/2) | first point in the right half trapped region

where the indices jf, j7 and jo are defined such that §j; = &7, «Sj; =—¢rand §;, =0
Note that the (non-uniform) pitch-angle grid was symmetric and defined such that

&r and —£7 correspond to full grid points.

This scheme requires to consider the fluxes through the trapped/passing boundary
carefully. In fact, by reducing momentum space, it is necessary to account implicitly
for links between points 4 and 3 by linking 4 to 1. The differential expression (4.50)

is modified at the points 1—5 to account for this procedure:

e Point 5. By symmetry in the trapped region, the fluxes through the £ = 0 axis

must vanish, since fii1/2jo+1/2 = fitr1/2,jo-1/2- The point 5 is linked to itself on
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Figure 4-3: Reduced momentum space for the calculation of f;.

the left

P’V - SP'
i'=i+1
= Z Mil+1/2,jo+3/2fi’+1/2,j0+3/2 + (Mi’+1/2,jo»1/2 + Mi’+1/2,jo+1/2) fi’+1/2,jo+1/2

i'=i—1

i+1/2,50+1/2

(4.66)

e Point 4: Since points 1 and 3 are equivalent, we can replace the link between

points 4 and 3 by linking 4 to 1 on the right

p2vp . Spl
=il
= Z Mi'+1/2,j;—3/2fi'+1/2,j;—3/2 + Mi'+1/2,j;-1/2fi'+1/2,j;—1/2 + Mi'+1/2,j;+1/2fi/+1/2,j;—1/2

tf=i—1

i+1/2,45-1/2

(4.67)

where the last term is the link to point 1 f; /5 ;1 _1/0-

e Point 1: Since points 1 and 3 are equivalent, we can replace the link between
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points 3 and 4 by linking 1 to 4 on the right.

p2Vp . Spl
i =i+4+1
Z 412,55 -3/2 v 1258372 T Musajagt 1o firayegz-1y2 (4.68)

i'=i-1

z’+1/2,] +1/2
+ Z — (fz’+1/2] +1172 + fitaye, ]T—1/2) (4.69)

i'=i—1

i+1/2,54-1/2

where the last term is the link to point 4 fy /5 ;-_;/5- Note that only half of
the flux from the right is accounted for - since the rest implicitly goes to the

equivalent point 3.

e Point 2: The discretization at point 2 remains unchanged.

Distribution function g

The distribution function g is defined as being identically zero in the trapped region.
In that case, the equation (4.2-b) is solved only in the passing region|¢] > &ér. After
the distribution function is calculated on the reduced momentum space, it is extended

to the full space by setting g (—&r < £ <&7) = 0.

‘go‘_gor Eo=Cor

4

Figure 4-4: Reduced momentum space for the calculation of g.

The reduced momentum space for the calculation of fj is illustrated in Fig. 4-4. In
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that case, there is simply no momentum flux through the trapped passing boundary.
The differential expression (4.50) is modified at the points 2 and 4 to account for this

procedure:

e Point 4: We have f, J2gmil)e = 0 because this correcponds to points 3, which
is in the trapped region. We have then only
i =141
2 -
PVp- Sp|i+1/2,j;~1/z = Mysappiz-spfenipiz-spt Mooz apfinpsg -1

i'=i—1
(4.70)

* Point 2: We have f; ., ;+_,/, = 0 because this correcponds to points 1, which
is in the trapped region. We have then only
=i+l
Vp - Sy = Y My tassoforijstrsatM; N S
P Ve Opliti/2F 4172 #4+1/2,5F+3/20 ¢ +1/2,5F 43727 Vi v1/2,5F +1/20 v +1/2,5F +1/2

t=i—1
(4.71)

4.3.4 External boundary conditions

The upper limit pnax in momentum space is a numerical approximation because the
physical space goes to p — oo0. The limit pg,., must be chosen such that the relevant

physics be fully included. The condition ppa > 1 is necessary in order to account

2
for the quasi-totality of the particles for a Maxwellian distribution o exp [ _f 1] . In
Y
order to conserve particles in the numerical scheme, the fluxes through the external
boundary must be set to zero, by artificially setting f,,41/2+1/2 = fn,~1/24+1/2- This
leads to the discretization scheme
J'=j+1

2
p*Vp - Splnp+1/2,j+1/2 = Z Moy—1/2,5+1/2fnp=1/2,57 4172
i'=j-1

+ (Mn,,+1/2,j'+1/2 + an+3/2,j’+1/2) Jrp+1/2,5141/2 (4.72)
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4.4 Algorithm

4.4.1 Relaxation to a steady-state
In order let the equation (169)

Yy 8y (f\Dy Fp) =T() +6 (473)

relax to a steady-state, an implicit time scheme is used. In that case, the time

derivative is discretized as -
+ k+1 k
of" _ M~ f

Er Y, (4.74)

An implicit method is used because in that case there is no fundamental limitation on
the time step At for this scheme to be stable, as opposed to explicit schemes (where
0

—f is evaluated at the time step k) for which the maximum stable time step is related

at

to the momentum grid size.

The integral term Z (f), however, must be treated explicitly. In that case, the
stability of the scheme can no longer be ensured, and a limitation exist on the maxi-
mum time step At that can be used. Fortunately, the term Z (f) is a small correction
to the distribution function, such that in practice, a large step At > 1 can be used

and the equation (4.10) converges whithin a few iteractions.

Note that it is possible to make full use of the implicit time scheme - and large time
step At - only if the symmetrization of the trapped region is ensured implicitly, as it
is done in this code. In other codes where the symmetrization is explicit, a time step
At < 1 must be used and the equation converges only after hundreds or thousands
of iterations. The present implicit scheme thus reduces computational time by orders

of magnitude.

The discretized form of equation (4.10) becomes

FhL .y
it1/2541/2 ~ Tinpane oo k1
At + Vb Opliti1/2,+1/2
= I( i,fi-l/Z,j-{-l/Q) + Siv1/2,5+1/2 (4.75)
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where the (i, ) indices refer to the reduced momentum space (with n, momentum

and n; pitch-angle grid steps), according to the procedure detailed in Section 4.3.3.

4.4.2 Matrix representation of the kinetic equation

As explained in Section 4.1.2, this equation is multiplied by p? to avoid singulari-
ties in p = 0. Using the discretized differentiation scheme developed in Section 4.2
and modified for the reduced momentum space in Section 4.3.3, we can rewrite the

divergence operator in vector form as

k+1

P’Vy-Sp| =M. (4.76)

where f**! is a vector of n, x nj elements made of the discretized values of the

distribution f:fllﬂ i+1/20 and organized as follows

( ff;;fm \

k+1
fl/-; ]+1/2
k+1
fl/_; n’—1/2
k+1 fk/gll/Z
fetl — (4.77)
k+1
fz+1/2,3+1/2

\ ~1/2n ~1/2 /

and M is a matrix made of the elements M 12 4172 in (4.50). These elements
are arranged in diagonals in M. For example, M 1/ +1/2 is the main diagonal,

My 1)2,5-172 is the first lower diagonal, M;_1/z ;412 is the n'th lower disgonal, etc.
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Hence, the nine-point scheme presented in Section 4.2 leads a nine diagonals in the
matrix M. In addition, the implicit symmetrization of the trapped region requires to
connect additional points, according to the procedure detailed in Section 4.3.3. The
fluxes at the trapped/passing boundary thus results in an additional six diagonals,

such that the differentiation matrix M finally contains 15 diagonals.

In vector form, the equation (4.75) (multiplied by p?) can be expressed as

P k+1 P-f* k
E+M f :_At_.+lp-1(f)+lp.s (4.78)

where P is the diagonal matrix corresponding to the discretization of p?.

4.4.3 Inversion of the linear equation

The equation (4.78) can be rewritten in a compact form as
A ff+l = BF (4.79)

P
which is a linear equation and must be inverted. Here, A = A7 +M and B* =
£k
ED-A—i;— +PI (fk) + P-S. In order to potimize the numerical accuracy of the inversion
process, the equation (4.79) is pre-conditioned such that all the coefficients of the
main diagonal of A are 1. This is done by multiplying Eq. (4.79) by C=! where C
is the diagonal matrix made of the main diagonal of A. Defining A’ = C~! . A and

B¥ = C~!. B¥, we finally obtain the equation
A fE+l = B (4.80)

The matrix A’ is a mostly sparse matrix with only zeros except on the main diagonal,
where elements are identically one, and on 14 off axis diagonals that made of elements

with an absolute value between zero and one.
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This equation is inverted by LU factorization, such that
A=L-U (4.81)

where L is a lower triangular matrix and U is a higher triangular matrix. The equation

then reduces to the two systems

Vk+1 =1L"1. Bk/

(4.82)
£+l — U-t. Vi

which are solved in order.

Although the matrix A’ is made of only 15 non-zero diagonals, the factorization
matrices L. and U have far more non-zero elements, and require a large amount of
computer memory. In order to limit the use of computer resources - or alternatively
to extend the limits of anageable grid size - an approximate factorization procedure,
called incomplete LU factorization, is used. In that case, all elements of the L and
U matrices that are below some threshold 4,y are discarded. Hence, only an ap-
proximate form of the equation (4.80) is solved. The procedure is iterated until the
approximate solution f**! satisfies (4.80) within some predefined tolerance. This
method allows a very significant gain in memory requirements, with only a slight

increase in computation time.

4.5 Numerical Calculation of Bounce Integrals

The numerical calculation of bounce-averaging coefficients such as the normalized
bounce time (3.81) and the generalized coefficients (3.87-3.88) requires an integration

over the poloidal angle # which can be expressed symbolically as

Fmax d0
I (%, &) = / S F (4,6, Br, Bz, By, R, 2) (4.83)

amin
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where Bg, Bz, By, R, Z are functions of (¢, 8). They are given on a uniform grid of

N points in 8
2mj
No—1

0; = j=0,1,--,Ny—1 (4.84)

4.5.1 Domain of Integration

For trapped electrons, it is important to account for the entire bounce path of the
particle, including in particular the tip of banana orbits near 0y i, and 01 max. The
contribution of these banana tips is often larger than the df = 2n/(Ny — 1) grid
accuracy level, because F' (f) can become very large near the turning points. This is
true for example in the calculation of A, since F'(8) ~ 1/¢ and & — 0 at the turning
points. It is therefore necessary to perform the integration up to 07 min and Ormax.

However, these turning points are defined by (3.42)

Bo ()

B (¢,0r) = B, (¢,&) = 1-¢2

(4.85)

which in general do not coincide with any grid points in 8. In order to calculate 6r,
the equation (4.85) is solved by imposing that the fields Bgr, Bz, B4, R, Z, which are
given on the (1, #) grid, be evaluated in 81 by linear interpolation, while the value of

B (1, 6r) is obtained from (3.11)

B=|B| = \/B,z + B% + B2 (4.86)

It is assumed that the magnetic field By (1,&) at the turning point Ormi, is
located between the two (consecutive) values B; (v, 0;) and B, (1, 6:) on the (v, 0)
grid. These values are determined from the data Bg, Bz, B, (typically calculated by
the equilibrium code) by (4.86)

By (,61) = |/ B} (1, 6,) + B (4,61) + B3 (4,61)

(4.87)
By (1, 62) = 1/ BR (4,62) + B3 (4,62) + B3 (1, 62)

We chose to define the values of Bg, Bz and B, at the location 67 by linear interpo-
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lation

(07 ~ 61)
(02 — 61)

where ¢ = R, Z,¢. Then, the location 67 of the turning point can be calculated

B; (¢,0r) = B + (Biz — Bi1) (4.88)

according to the relation (4.85) which implies, using (4.86)

B, (v,6r) + By (,07) + B} (v, 0r) = B (¥, &) (4.89)

such that the equation for 6 is

_ 2
Z |:Bi1 + %‘*_‘g—ll)) (Biz — Ba)| — Bf (4,6) =0 (4.90)
i=R,Z,¢
Defining
(6r — 61)
6= 0) (4.91)

one obtains

l: Z (Bi» — Ba)®

i=R,Z,¢

a+ Y Bi-Bl(,&)=0

i=R,Z,¢

(12+2|: Z Bz‘l(Bi —Bﬂ)

i=R,Z,¢

(4.92)

which solves as

" i\/ﬁi Bi (Bi2a — Ba)l* — [ (Bia — Bu)?] [ B4 — B] = ¥, Bur (Bia — Bu)

> (B2 — Ba)®

(4.93)

The square root transforms as

2
Y Ba(Ba—Bun)| —|>.(Ba—Ba)||> BA- B, Eo)]
= /(v - B2 - (B - BY) (B} - BY) (4.94)
with the definition

Y = BRlBR2 + leBzz + B¢1B¢2 (495)
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so that

w0 -BY - (B - BY (B -BY + B} - w00
b B+ BZ-2Y '

and finally

B2 —Y /(Y - B)® - (B — BY) (B} - BY)

0T=91+(92_91) B2+B§—2Y
1

(4.97)

The (unique) solution that gives 0 < ap < 1 must be chosen. Note that if the

magnetic fields in points 1 and 2 are equal, we have Y = B} = B = BZ.

4.5.2 Numerical Integration

The two turning points are added to the 6 grid, now noted §j, 73=0,1,2,--- Ng + 1,
and we define the half grid

(§k+1 + gk)
B = ~—5—> k=10,1,2,--- Ny (4.98)
and calculate the discrete function
Fy = F (v, 0k, &; By, Bzk, Bgk, Ri, Zk) (4.99)

where Bry, Bz, Bgk, R, Z; have been calculated on the grid 0: by linear interpola-

tion. The integral (4.83) becomes
1 &
I(,&) = gdewk (4.100)

where the step dfy are defined by

A0 =01 — 0, k=0,1,2,--- Np (4.101)
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Chapter 5

Current Drive by Electron

Bernstein Waves

In this chapter, I calculate and describe current drive by EBWs in toroidal plasmas.
First, the components of the quasilinear diffusion coeflicient (3.192) are analyzed in
Section 5.1 for the case of a single EBW Fourier component (w, k). The interaction
between electrons and EBWs is described by studying the resonance condition, and
the effect of Re [kipre] and the polarization, which are very different for the HBF
and LBF scenarios. The direction of RF diffusion is calculated. The EBW absorp-
tion coefficient and power deposition profile are evaluated in the weakly relativistic
linear limit in a slab geometry. This analysis will help the interpretation of EBWCD
calculations from Sections 5.3 and 5.4, which consider the LBF and HBF EBWCD

scenarios respectively. The framework of these calculation is presented in Section 5.2.

5.1 Resonant interaction between electrons and EBWs

In quasilinear theory, the resonant interaction between electrons and EBWs leads to
momentum-space diffusion of electrons, with momentum and energy transfer from

the wave to the electrons. In this section, the local interaction between electrons and
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a single EBW Fourier component (w, k) is studied in a slab plasma. After recalling
the expression of the quasilinear operator, I will focus on the wave-particle resonance
condition, the direction of particle diffusion due to RF fields, the linear damping of

EBWs, the power deposition profile, and the resonance overlapping problem.

5.1.1 RF quasilinear diffusion operator
The quasilinear operator defined in Section 3.5 is expressed here in spherical coordi-
nates and for a single EBW Fourier component.

In a uniform plasma

We consider the RF quasilinear operator (3.187) for a given frequency w, given here

in (pL,p)) coordinates (A.111)

1 &
Q(f) =~V 8% = N (pLST)

0

~ o (Si* (5.1)

where the RF induced momentum-space flux SR is purely diffusive (3.189) and given

by (A.110)

o o\ [ of/op.

A RF  RF
Dif Dy of /opy

(5.2)

and the quasilinear diffusion tensor elements are given by (B.23) which for electrons

becomes (3.190) (B.43)

“+o0 2
nwce
DAY (——-) DR (p)

n=—00 i
=2 nw, nw,
DRF — PL Mee (1 - _Cc;) DFF (p)
o Yw
X pLnw nw (5:3)
DRF — Bl 7%ee (1 — X2} pRF
o L Py ~w n (P)
+00 p2 nw 2
Dff = 3 B (1-2=) o )
n=—co | g
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where D2F (p) is the quasilinear diffusion coefficient corresponding to resonance at

harmonic n. It is given by (3.192) and reduces to

me? n 2 P NWee
DTI}F (p) = T “Ek”2 C—)S( ) (p, k, ek)‘ ) (w — k” ’)”nl’lle —_ T) (54)

for a single Fourier component (w,k) with electric field amplitude Ey, and ey, =

|Ex|/ |Ex|| is the corresponding polarization vector. @f(") is the polarization term

(3.194)

n —ia 1 i
@1(( ) = —=ex e “Jnp1(2) + —=en ey (2) + ﬂ‘31<,IIJn (2) (5.5)

\/Q pL

with (3.195)

z= FiLpL (5.6)

wce me

Extension to a slab plasma

As seen in Appendix B.4, the diffusion coefficient (5.4), derived in a uniform plasma,
can be extended to a slab geometry where the direction of inhomogeneity is perpen-
dicular to the magnetic field. It requires that the inhomogeneity scale length L is
much larger than the wavelength A = 27/k, such that the WKB approximation is
valid, and also much larger than the thermal electron Larmor radius pre = vre/Wee,

such that wave particle interaction remains unaffected.

The plasma electron temperature T, (z) and density n. (z) as well as the magnetic
field (or gyrofrequency we, (x)) are all slowly varying functions of z. In that case, wave
amplitude E (r), and the related polarization and energy flow, also contains a slow

dependence upon z. However, the parallel wave vector k| is conserved by symmetry.
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5.1.2 Description of the resonant electrons

Resonance curves in momentum space

Considering a given Fourier component (w, k), we study the condition

NWee (X)
Y

w =)k + (5.7)

for wave-particle resonance in the diffusion coefficient (5.4), which identifies the elec-

trons - characterized by their momentum (p,,p;) - that resonate at harmonic n with

the wave (w, k), given the local cyclotron frequency we. (z). These electrons are typ-

ically located (in momentum space) on a curve that depends upon two dimentionless

parameters: the parallel wave number N = kjc/w and the frequency ratio (2.108)
_ NWwee (1)

Yn (T) = w (5.8)

which describes the position with respect to the n*® harmonic resonance. The reso-

nance condition (5.7) can be rewritten as

by
MeC

Y= Nj—y=0 (5.9)

Then, the equation for the resonance curve is obtained from (5.9) using (3.21)

(pl)z-p(l—an)(ﬂ_ Nyyn )2—- Yn -1 forN"2<1

me me 1-— N”2 11— N”2
2
. (B—) — 20yl 41—y =0 for Nf =1 (5.10)
me me !
| Nyyn P12 y2
N2 —_ 1) el L —_— — (——) = 1 2 1
¢ ( I (mc+N[f—1) mc Nl‘l?-—l +1 for Ny >

where o) =sign () . The equation (5.10) shows that the resonance curve is an ellipse

for N”2 < 1, a parabola for N”2 = 1, and a hyperbola for N”2 > 1. When N“2 < 1, this
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Figure 5-1: Resonance curves in (p 1, p“) momentum space corresponding to the wave
numbers N = 0.5 (solid lines), N = 1 (dashed lines), and N = 1.5 (dashed-dotted
lines) and the ratios y, = 0.9 (red lines), y, = 1 (blue lines), and y, = 1.1 (green
lines). Graph (b) is a x10 zoom of graph (a).

equation has a solution only when

otherwise there simply are no resonant electrons.

On Fig. 5-1 are shown the resonance curves corresponding to the wave numbers
Ny = 0.5 (solid lines), Ny = 1 (dashed lines), and Ny = 1.5 (dashed-dotted lines) and
the ratios y, = 0.9 (red lines), y, = 1 (blue lines), and y, = 1.1 (green lines). We

observe that:

e For y, = 1, the resonance curve always passes through the origin (plapll) =

(0,0). This property can be readily verified from equation (5.10).

e It can be shown that the point with minimum momentum p on the reso-
nance curve is always on the p; = 0 axis, and can therefore be identified as
Pjmin (N, yn). For positive Ny, we find that pjmin < 0 for yn, > 1, which corre-
sponds to a high B-field (HBF) approach since nwe. > w. Also, pjmin > 0 for

yn < 1, which corresponds to a low B-field (LBF) approach since nw, < w. In
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(a) (b)

Figure 5-2: The point pjmix characterizes the location with minimum momentum p
on the resonance curve, in both LBF (a) and HBF (b) cases.

addition, the point p|min (N”,yn) "moves in” closer to the bulk as the the wave

approaches the resonance (y, — 1) from either (HBF or LBF) side.

e For a given y,, pmin is closer to zero for larger INHI, which generally means
larger damping. This effect is called Doppler shift of resonance. In addition, the
resonance curves "move” less rapidly as a function of y,, for larger ‘NHI’ which
generally leads to wider spatial power deposition profiles. This effect is called

Doppler broadening.

e The equation (5.10) is invariant by the transformation (N”, p“) — (—N”, —p”).
Therefore, changing the sign of N requires simply to invert Fig. 5-1 with
respect to pj.

Expression for pjmin

For given wave parameters (N}, ¥»), the value of pjmin (N, ¥n), Which is the point
with minimum p on the resonance curve and is on the p, = 0 axis, has a particular
importance because it strongly affects damping, as we will demonstrate in Section
5.1.6, and also the current drive efficiency. This can be understood by the fact that

the momentum-space density of electrons is highest on the resonance curve at this
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point. Therefore, if this point is closer to the bulk, it usually means that the damping

is higher, since there are more resonant electrons.

Therefore, it is important to calculate the value of pj min With respect to pr.. From

(5.10), we get, setting p, =0,

( Nyyn — o)1 /y2 — 1+ Nf
° for N”2 <1
IBTe 1- N“2>
D|| min (1 - y12z) 2
_ _ 5.12
ojy/¥ — 1+ N} — Nyyn
. - for Nj? > 1
\ re (Nf 1)
with (2.103) Bre = pre/mec. We define the parameter (2.126)
1 -y, ()
o () = ——— 5.13
@)= G (513)

which measures the distance from resonance (y, = 1, nwe = w) in terms of magnetic

field variation, and accounts for the Doppler shift effect through the term Sr.Ny. The

equation (5.12) for pjmi» becomes

( N, 2BrePn
® | N (1 - ﬂTeNllpn - \/1 - Prep + ﬁ%ep,%) for N”2 <1
Bre (1 - N”?) Ny
min 2— eln
Pllmin _ ) Dn (2 = oyfrepn) for Nf =1
PTe 2 (1 — 0 Brepn)
N, 207ePn
* — I 1- ;6]7\‘[17 + ,B%ep,,% - 14 ﬂTeN”pn) for N"2 >1
| Bre (N”2 _ 1) I

(5.14)

In the limit where fSre [pn| < ]N”l < 1, which we will call weakly relativistic approxi-

mation, and gives with (5.13)

11—y (2)] < N}
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which is satisfied close enough to resonance, (5.14) becomes for any N,

p ﬁvfnin /BTepn (IBTepn ) 2
—— =pp | 1+ + 0 5.16
Pre ( ZNj [ Ny (510

where the subscript ”wr” refers to quantities evaluated in the weakly relativistic limit.

Note that in the non-relativistic limit (Sre — 0) we have

nr
P} min

Dre P ( )

where the subscript "nr” refers to quantities evaluated in the non relativistic limit.
Therefore p, (5.13) is the parallel momentum of a resonant electron on the (p, = 0)
axis in the non-relativistic limit, and the Doppler effect is well described by (5.13).
In addition, we see from (5.16) that relativistic effects bring the resonance closer to
the bulk in HBF approach (y, > 1, p, and Nj are of opposite signs) but further from
the bulk in LBF approach (y, < 1, p, and N} are of the same sign).

Therefore, the properties of EBWCD, in particular the damping and the efficiency,
strongly depend upon p, = pjimin/Pre Which determines the position of the resonant
curve. The relative variations of p, depend mostly on the parameter y, because p,
varies like 1 — y, and we consider the vicinity of y, ~ 1. As a consequence, near
the cyclotron harmonic resonance, the characteristics of EBWCD will vary primarily

according to the changes in y,, i.e. in the magnetic field.

5.1.3 Polarization term for EBWs

Because EBW waves have a mostly electrostatic polarization, as we saw in Section

2.2, we can make the following approximations (2.82)

1
€k, + =€k~ = —=
V2 (5.18)

€x,| =2 N_li with lek,”' <1

206



so that, using the following identity for Bessel functions

T (2) 4 Ty (2) = %’EJH (2) (5.19)

the polarization term (5.5) becomes

Nip
o ~ |0 AL 5
24 g2 1)
In (2) pre [ P }
~ n + Ny Bre 5.20
N_LﬁTe y2an Y ”ﬂT DPre ( )
where we used (5.6)
2= kiprelt (5.21)
Pre
and the definitions (5.8) and (2.103)
= NWee
Bre (5.22)
Bre =
meC
0.5
— p=-10
04 — P =0
03b D ""'" p]l =10
o -
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o1tdl \
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p_L/pTe

Figure 5-3: Polarization term (5.5) for EBWs as a function of p,; for several values
of py and with Br. = 0.05 and Ny = 1. Graph (a) corresponds to a n = 1 LBF case
(y» = 0.83) and graph (b) corresponds to a n = 2 HBF case (y, = 1.19).

We observe that the polarization term varies mostly like nJ, (z) /z, and therefore

has a band structure in p, . The polarization term I@f(") (5.5) is shown in Fig. 5-3 as
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a function of p, for several values of p| and with Br. = 0.05 and N = 1. Graph (a)
corresponds to a n = 1 LBF case (y, = 0.83) and graph (b) corresponds to a n = 2
HBF case (yn, = 1.19).

e In the n = 1 LBF case, the polarization term peaks at p, = 0, in accordance
with the behavior of J; (z) /2 for z — 0. In addition, the zeros and peaks of
l@f‘l)‘ are quite close together in p,, which is due to the large values of k& pr.

in (5.21) for LBF approach, as seen in Section 2.3.

e In the n = 2 HBF case (note that there cannot be a n = 1 HBF approach
with EBWSs), the polarization term peaks at p; ~ 3pr. , in accordance with the
behavior of J; (2) /z which peaks at z = 2.3. In addition, the zeros and peaks
of ’@1((2)‘ are much further apart in p; than in the LBF case, which is due to

the smaller values of k, pre in (5.21) for HBF approach.

e We also note that the shape of l@fcn)

follows closely J, (z)/z and that the
parallel polarization correction is merely a scaling of this term, which confirms

the approximate form (5.20).

The correction due to the parallel polarization is of order NyBr.p)/pre and is
therefore expected to play a role for electrons with a large p;. Note that this corrective

effect is proportional to the Doppler-shift factor NyGre.

5.1.4 Direction of diffusion for EBW-electron interaction

EBWs interact with electrons at harmonics n > 0 of the cyclotron frequency. We
consider the vicinity of a given harmonic n and assume that harmonic overlapping
can be neglected. For an electron with momentum (p I p”) resonating with an EBW
characterized by (w, k), the direction of diffusion, characterized by an angle x with
respect to the perpendicular direction in momentum space, is investigated by consid-

ering (5.3) and the ratio

tanx — DYy, _ Dii _pL w (1 3 nwce> _pL ( woo 1) (5.23)
Dﬁi" Dﬁlfn D e yw P TWce )
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The resonance condition (5.9) gives

Py
meC

Y= ——Ni =% =0 (5.24)

with the ratio

NWee
y = — 5.9
Y - (5.25)

so that combining equations (5.23) and (5.24) we find

= pL NyBre

t (5.26)
Pre YUn
In the non-relativistic limit, we take ¢ — oo and get simply
tany =0 (5.27)

meaning that the diffusion is purely perpendicular (}y = 0°).

When relativistic effects are included, the diffusion is no longer purely perpendic-
ular. Using y, >~ 1, we get

tan x ~ f—‘—"—NHﬂTe (5.28)
Dre

where typically Ny Bre < 1. Expanding tan x, we get
x =~ 2L Ny B (5.29)
Pre

which gives, for typical NSTX parameters with 87, ~ 0.05 and p, =~ 3pr., a devi-
ation x &~ Ny x 10°. Even for large parallel wave numbers, the diffusion remains
mostly perpendicular. However, the small parallel component of the diffusion can
have important effect on current drive, because some parallel momentum can be
transferred directly to electrons, which is more efficient than creating an asymmetric
resistivity [36]. The effects can be even more important when trapped electrons ef-
fects are present. The diffusion in the parallel direction increases with both Ny and

Bre x /I, and is of the same sign as N. Because pjmin is of the same sign as N
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in LBF approach, the parallel diffusion is in the same direction as pjj ;. However, in
HBF approach, pjmindV) < 0 and the parallel diffusion is in the opposite direction to

P min-

5.1.5 Linear damping of EBWs

The density of power absorbed from RF waves at the n't harmonic is related to the

quasilinear operator for EBW (5.1), and is given by (3.277)

o0 +1
PRE —on /0 dp / deSTE (£) (5.30)

3
TMe J 1
where S7'7 is the RF-induced flux (5.2) for the n'® harmonic, projected in the p
direction. This expression can be evaluated analytically in the linear electrostatic
limit when the distribution function f is a Maxwellian, using the weakly relativistic
approximation (5.15). The derivation is detailed in Appendix B.4, and gives an

expression for the absorption coefficient near the n't harmonic, defined as (2.50)

PRE
RF abs,n
o) = 5.31
" lIso| (5:31)

where ||so|] is the energy flow density (2.36). We find, in the weakly relativistic limit
(B.162)

o - Lo 1 LD [‘:}z‘ (7 [”MM >3

V2r ¢ WL B [Nj[®@ A 2N,

which becomes in the non-relativistic limit (B.160)

RF,Mnr 1 wr wz%e 1 T [Ae] exp[ Pi]

o, = —— —_——

" Vor ¢ WL Br |Nj[® Al 2

(5.33)

where @ is the normalized energy flow density (2.36) and p, is given by (5.13). Com-

paring with expressions (5.16) and (5.17), we can rewrite respectively in the weakly
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relativistic limit

2
1 wrwl 1 Ta[A] (pii’fnm)
RF,Mwr pe n [e
o, = = exp | ———="— 5.34
\/27r c wge 6Te IN|||q) )‘e zp’.%"e ( )
and in the non-relativistic limit (B.160)
nr 2
alFMar L ﬂw—’ze ! Lo [Ac] exp ———-—(p” mzm) (5.35)
v 2r ¢ Wee /BTe ‘N” I o )‘e 2pTe

Therefore, the absorption coefficient of EBWs depends primarily upon pjmin/Pre, as
we anticipated in Section 5.1.2.

We note that the linear non-relativistic electrostatic absorption coefficient (2.120)
calculated from the kinetic susceptibility tensor is retrieved in (5.33), which was
expected since the two derivations are based on the same assumptions. This is a

good check for the validity of our derivation of the quasilinear operator.

10* : —— ESNR
. --- ESWR
102 ] R2D2 NR
= ; = DKEFR
E 100 .................................. [ETTT ............
g N
a3 " n=1
10_4 ............ ,,,,,,,,,,, ............ \ .,.. N
1 1.1 12 13 14 15
20 /o
ce
(a) (b)

Figure 5-4: Absorption coefficient as a function of y, in the LBF case (a) and in
the HBF case (b), for w/2r = 14 GHz, Ny = 1, Br. = 0.05 and w3, = 12w?. The
results from non-relativistic (NR) and weakly relativistic (WR) analytical results are
compared with results from R2D2 and DKFE codes.

In order to verify our calculation of the absorption coefficient and determine if

the electrostatic, weakly relativistic limit is a good approximation to the exact, fully
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relativistic and electromagnetic absorption coefficient, we calculate the product ®aRF
as a function of y, for a typical NSTX EBWCD scenario, with w/27 = 14 GHz,
Ny =1, fre = 0.05 and w?, = 12w®. The results are shown on Fig. 5-4 for both
a LBF approach at first harmonic (a) and a HBF approach at second harmonic
(b), where the product ®afF is calculated using the non-relativistic expression (5.33)
(blue solid line), the weakly relativistic expression (5.32) (green dashed line), the fully
electromagnetic, non-relativistic result from R2D2 [13] (dot-dashed red line) and the

fully electromagnetic, fully relativistic code DKE (purple crosses). We observe that:

e In LBF approach, all calculations converge near resonance, meaning that the

electrostatic approximation is very good.

e In HBF approach, the electromagnetic calculations (DKE, R2D2) differ slightly
from the corresponding electrostatic calculations (WR,NR) close to the res-
onance. This is in accordance with the results of Section 2.3 where it was
shown that electromagnetic effects were important near the resonance in HBF

approach, in particular for the polarization.

e Apart from the electromagnetic effects in HBF approach, the analytic non-
relativistic calculation (NR) agrees perfectly with the results from R2D2, which
validates our derivation (and R2D2).

e Apart from the electromagnetic effects in HBF approach, the weakly relativistic
calculation (WR) is in very good agreement with the fully relativistic calculation

from R2D2, except in the LBF approach for y, < 0.8.

e The relativistic effects lead to a reduction of the absorption in the LBF approach

and an increase in the HBF approach, as found in Section 5.1.2.

e Resonance overlapping occurs around |1 — y,| ~ 0.3 in the two cases presented

here. The importance of this overlapping will be asserted in Section 5.1.7.
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5.1.6 EBW power deposition

The calculation of aRF is not sufficient to predict the effect of plasma and wave pa-
rameters on the damping of EBW and the driven current. In fact, it is the integration
of ofF along the propagation that gives the deposition profile and characterizes EBW

damping.

The damping region is assumed to be sufficiently narrow as compared to plasma
non-uniformity scalelength L, so that the temperature and density can be considered
as being uniform across that damping region. In addition, we assume that wave prop-
agation characteristics such as the perpendicular wave vector k, and the power flow ®
are also constant across the damping region. This assumption may seem questionable
with regard to the rapid changes in these wave characteristics near cyclotron reso-
nances, as a function of y, = nwg/w, as demonstrated in Section 2.3 from solving the
local dispersion relation. However, it will turn out that the power deposition profile is
rather insensitive to the typical variations of the wave parameters across the damping

region.

Indeed, the variations in the absorption coefficient aRF are dominated by the expo-
nential term in (5.33) and (5.32), which is expressed as (B.133) pp, = (1 — y») /BreNo|-
The relative variations of p, are mostly sensitive to the variations of the magnetic
field, because p, depends upon the difference (1 — y,,) in the vicinity of y, ~ 1. It is
therefore justified to take all parameters constant in the damping region except y,,
that is, account for variations in the magnetic field only. In addition, the magnetic

field amplitude - and thus y, - are assumed to vary linearly in space.

The equation for the location of the peak in the power deposition profile has been
solved in Appendix B.4. We found that the peak position as a function of p, is
given by (B.183) in the weakly relativistic limit and by (B.178) in the non relativistic

limit. In either case, given that the weakly relativistic corrections matter only in the
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exponential factor, one obtains

2

__‘pfﬁ“m e— ————Ipﬁl’“i" (5.36)
pTe O’n 2p’%"e .
where py,, is a dimentionless parameter given by (B.179)
1 wrwl Lp ThlA]
nE —mm—— 5.37
Pon = T e R T A (530

and where we keep in mind that pﬁ“min is of the same sign as 0N where 0 = +1 for
low B-field approach (LBF) and ¢ = —1 for high B-field approach (HBF). Note that
the parameter py, is simply related to the optical half-depth 7, (2.129) as

2
Pon = \/:Tk,n (538)
T

2 7
[
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Figure 5-5: Peak of deposition profile 'ph"min! as a function of 7, on linear (a)
and logarithmic (b) scales. On graph (a), the dashed line represent the linear limit

2
Ip ﬁlmin

— —Tk.n-
T

The equation (5.36) for P min> which corresponds to the resonant value of p; for

p1 = 0 at the peak of deposition, is plotted on Fig. 5-5 as a function of the optical half-
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depth 7 n. On graph (a), the dashed line represents the linear limit 'pﬁ“min

- pO,n-

As a first observation, we see that 'pﬁ’mm increases as a function of 7y ,, which
means that for larger pg, - or equivalently a larger optical depth - the power will be

absorbed farther in the tail in momentum space. As expected from equation (5.36),

and showed on graph (a), ] P{min| 18 linear with po, for po, < 1, while 'pﬁ‘min varies
very slowly with po, for po, > 10; indeed, for large values of pg , or for l ph“min > 1,

\pfl“min varies like 1/Inpg,, which is an extremely slow variation.
We point out that the validity of equation (5.36) extends to wave damping prob-

lems in general - with different expressions for py depending on the type of wave.

e For example, in lower-hybrid current drive (LHCD) problems where wave-
particle resonance occurs through Landau damping at n = 0, we have that

is often set at a fixed value, typically between 3 and 4, and this is done

lp |I|nmin

rather independently of local wave or plasma equilibrium properties. This is

because in LHCD, pgg is very large (larger than 1000) and therefore ‘pﬁ‘mm
varies very slowly with poo. It is equivalent to say that spectrum components
such that Ny 2 1/(38r.) are strongly absorbed. We note also that in LHCD,
the strongly absorbed Njs are then such that Br./Ny < 362, < 1 and weakly

relativistic effects in (5.16) can be neglected.

e In electron-cyclotron current drive, however, absorption occurs much closer to

the bulk, where |,

~ 1, and therefore the power deposition profile - and con-
sequently the CD efficiency - depends strongly on plasma and wave parameters.
In other words, the LH absorption is dominated by the Gaussian dependence of
the distribution function, while the EC absorption is dominated by the plasma

and wave parameters.

e For EBW, it is necessary to calculate pg, in order to specify which regime the

m
{| min

evolution of ’p belongs to. We recall (Section 2.3) that typical values of

Ae = (kLpTe)2 for EBWs are A, ~ 0.2 for n = 2 HBF approach, and A, =~ 10 for

n = 1 LBF approach. We consider the asymptotic forms of ', [Ae] /Ae:
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— Large arguments. From [75] we get the asymptotic expansion

Lo [Ae] N 1
Ae - 2V 27TA2/2

for Ae > 1 (5.39)

so that for large values of A, ~ 10 typically found in LBF approach, we
have approximately I'; [Ae] /Ae =~ 1072 .

— Small arguments. From [75] we get the power series

Tn[A] A2
X 27

for \. 1 (5.40)

and we see that for small values of A\, ~ 0.2 typically found in second
harmonic HBF approach, we have approximately I's [A.] /Ae = 1072, which

turns out to be of the same order as for LBF approach.

o We can rewrite

1 wrwl Lg 1
T pe for LBF approach
V2 ¢ Wi @1 27 (kLpre)® oP (5.41)

1 wrwp L (kipre) ™"
E—C_;cz: 3, Sl for HBF approach

Pon =

For a NSTX-type plasma with wge = 10w?, Bre = 0.05, w/2r = 14 GHz, we
have typically L%PF ~ R, ~ 1 m, while for a HBF approach near the bottom
of the magnetic field well on the outboard side, LEB¥ depends strongly on
the propagation path and can be much larger than R,. Taking for example

LEBY = 10 m and fg = 1, po,, scales approximately as

1000 for n = 1 LBF approach
pO,TL ~ (5.42)
200 for n = 2 HBF approach

As a consequence of the large values for pg, for EBWs, the value of ’pﬁ’min is

very insensitive to variations in pg,, which justifies a posteriori our assumption to

consider wave and plasma parameters constant in the damping region, except for the
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magnetic field. Considering the typical values for po, for EBWs (5.42), we observe
that the location of the peak of deposition is a rather fixed quantity, and is located
at 3 < p» < 3.5. The explanation is that EBW is deposited in the tail of the
distribution function, which varies so strongly as a function of pjmin /pre that the
location of deposition is a function of these variations rather than anything else.
This is an important result in the study of EBWCD, because it means that the
normalized CD results will not depend much upon the parameters that typically
affect greatly ECCD results, such as the density and the magnetic field scale length.
Rather, we should approach EBWCD more like LHCD where the location of damping
in momentum space is a fixed quantity. Another important observation is that EBWs
are deposited on electrons in the tail of the distribution function, which are less
collisional than bulk electrons, and therefore better current drive efficiencies than in

ECCD can be anticipated.

5.1.7 Harmonic overlapping with EBWs

In this section, we have always assumed that harmonics could be considered sepa-
rately, meaning the the wave damping was strongly dominated by the contribution
of only one harmonic. As we saw on Fig. 5-4, there is a position (measured by y,)
between two harmonics where the contributions from the two harmonics are compa-
rable. We will call this position the overlapping point. With (2.108) wee = wy,/n, we
find that the overlapping point is characterized by

Yn Yn+1
an _ 5.43
n n+1l ( )

This condition can be expressed as a function of p, according to (5.13), which gives

1- ﬁTe]VHpn - 1-— ﬂTeN||pn+l (5 44)
n n+1 '

The question of the overlapping problem can then be expressed as such: under

which conditions does the Doppler effects increase sufficiently such that the over-
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lapping point is in the strong damping region? In that case, we will say the two
harmonics overlap, and it is not possible for the wave to propagate between the two
harmonics, and the corresponding region in the plasma is inaccessible, because the

wave power would be absorbed before reaching this region.

The overlapping point necessarily separates a LBF approach region (near harmonic
n) from a HBF approach region (near harmonic n + 1). Because relativistic effects
reduce the damping in one case (LBF) and increase the damping in the other case
(HBF) with comparable shift in amplitude, the overall effect of relativistic corrections
on the overlapping problem is mainly to move the overlapping point closer to the
LBF resonance (harmonic n). These effects are neglected in the determination of the

overlapping condition.

The strong damping region can be defined as including the locations between the
resonance and the position |[pi*| of the peak in the deposition profile when only one
harmonic is considered at a time. Using (5.44) and the fact that p™ is of the same
sign as oo, where 0 = +1 for LBF approach and o = —1 for HBF approach and o

is the sign of NV}, the overlapping point coincides with the position of peak deposition

for
m,HBF
1—,3Te|Nn| Ip,T’LBF| _ 1+/6T61Nlll rpn—{-l l (5.45)
n n+1 )
which gives an equation for Br. |N ||‘
1
Bre |Ni| = 5 (5.46)

n|ppi®| + (e + 1)

m,LBF
Dn l

According to results in Section 5.1.6, the location of the peaks of deposition be-

m,LBF

. . . HBF
tween first and second harmonics is given by ’pl I ~ \p

Pri1 | ~ 3.5. For typical

Bre = 0.05, the overlapping condition becomes |N”] 2, 2. Note that our definition of
harmonic overlapping is a rather conservative one, since we impose that the peaks of
one-harmonic deposition profiles must coincide. However, the profiles themselves will

visibly overlap at even lower Br. |N}|, as we will show in Sections 5.3 and 5.4.

We also observe that the overlapping condition becomes quickly restrictive at
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m HBF . . .
Ppri | decreases as higher harmonic according

pggBF} — 0, we find that for Br, =

higher harmonic. Even if the value of

to (5.41), and we take the high-harmonic limit

0.05 and INHI =~ 1, harmonics completely overlap above the fourth harmonic.
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5.2 Framework of EBWCD Calculations

5.2.1 Introduction

The EBW is approximated to a beam of frequency w with Gaussian transverse am-
plitude profile of characteristic width d. We assume that the beam size d is much
larger than the wavelength A. Then, the beam diffraction can be neglected and the
Fourier spectrum of the beam is very localized around a central wave vector k, since
Ak/k = )/ (2rd) < 1. In addition, we assume that the plasma inhomogeneity scale
length L is also much larger than the wavelength A, so that the WKB description of
the wave is valid. With these assumptions, the local behaviour of the EBW beam
can be understood by studying the uniform plasma characteristics of the linear mode
(w, k) corresponding to the central wave vector of the beam. Such study was done in
Section 2.3 where properties of EBWs relevant to EBWCD were described by solving
the local dispersion relation.

In this thesis, we restrict our calculations of EBWCD to the horizontal midplane
(Z = 0). According to the discussion in Section 3.5.2, our quasilinear description
of EBWCD is more valid near the horizontal midplane, where we can consider ap-
proximately a slab geometry, and where electrons see a quasi-uniform plasma across
the EBW beam. These approximations require however that the size of the beam,
projected on the poloidal field line within the flux-surface (djp), be small compared

to the length of the poloidal field lines: dyjp < 277

The beam size must therfore satisfy the condition

ALd < 2nr, L (5.47)

In a typical NSTX plasma, we have A < 0.005 m and 277, L > 1 m. The experimental
beam size (which is half the beam diameter in our definitions) is typically of the order
of d = 0.05 m [12]. Therefore, the condition (5.47) is well satisfied.

With the slab symmetry, the parallel wave number N can be taken to be ap-

proximately constant in the damping region, and the direction of the power flow
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with respect to the flux-surfaces can be evaluated from solving the local dispersion
relation. Thus, the propagation aspects of the EBWCD problem, such as the power
deposition profile and the total driven current, can be calculated without solving the

EBW propagation problem (which would otherwise require ray-tracing techniques).

In addition, the EBW electric field amplitude is assumed to be sufficiently small

such that non-linear wave-particle interaction effects (trapping) can be neglected.

The calculations of EBWCD are presented in two steps: local calculations, which
have a great generality, and integrated calculations, which are applied to a particular

plasma and illustrate the local calculations.

5.2.2 Local calculations and parametric dependence
Definition

In order to describe the CD mechanism and study parametric dependence of the CD
damping and efficiency, we first consider ”local” calculations, which are independent
of any particular plasma magnetic geometry or plasma profiles, and thus could apply
a priort to any axisymmetric toroidal device - ST, tokamak or RFP - where EBWCD
is considered. However, the nominal parameters of these calculations are chosen
to be typical of a high-3 NSTX plasma at the location of the minimum B-field Xy
(R=131m, Z =0, p=0.63) on the outboard side. The nominal plasma parameters

relevant for EBWCD calculations are

electron temperature T, ~ 1.3 keV (Bre = 0.05)

electron density ne~3.0x10° m™3| (a?=12)

effective charge Zegg =2 (5.48)
trapped particle fraction ft =66 %

B-field variations length Lg=1m
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and the nominal wave parameters are

frequency w/2n =14 GHz
parallel wave number Ny = (5.49)
spectral width AN = 0.1

Parametric study

The EBW approach to resonance is simulated by changing the magnetic field am-
plitude B, keeping all other plasma parameters constant. This explains the term
"local” to describe these calculations. This approximation is justified from the re-
sults of Section 5.1, where it was demonstrated that both the CD mechanism - which
depends mostly on the localization of resonant electrons in momentum space - and
the power deposition profile were dominated by variations of the magnetic field am-
plitude through the parameter y, = nwe/w. This approximation is advantageous
because it allows to isolate the effects of various parameters and thus conduct an de-
tailed, independent and rigorous parametric study. Indeed, in the local calculations,
a ”scan” of y, is done to simulate EBWCD with given plasma and wave parameters,

and these are modified between scans to study their effect on EBWCD.

Organization

We first consider the linear limit where the RF diffusion coefficient is much smaller
than collisional diffusion, by considering an input wave power P, that is appropriately
small (such that the CD efficiency is independent of P,). In that case, the local
normalized CD efficiency is expected to be independent of the diffusion coefficient
factor DIYF (3.214), and therefore also independent of the incident normalized power
flow @, and the plasma equilibrium magnetic geometry. However, it should depend
upon the position of the resonance condition in momentum space, and thus, for a given
Yn = NMWee/w, upon N and the normalized temperature Sr.. We will also investigate
the effects of the fraction of trapped particle f; and the effective charge Z.g, which

strongly affect the dynamics of collisional pitch-angle scattering. Quasilinear effects
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will then be investigated by varying the incident power density on the flux-surface.
The plasma electron density affects the current drive efficiency through the collision
frequency, but does not play a significant role in the EBW characteristics (Section 2.3),
in the CD mechanism or in the power deposition (Section 5.1). It will be normalized

out in our calculations.

5.2.3 Integrated calculations

The integrated effect of varying plasma parameters will be included in the ”global”
calculations at the end of the section, which are applied to a realistic NSTX geometry
and used to validate our approximate local approach. Although the plasma param-
eters vary along the propagation, the parallel wave number is considered constant
across the damping region, in accordance with our slab approximation. The inter-
action between EBWCD and the bootstrap current is also calculated for a realistic

NSTX CD scenario.

5.2.4 Normalization and interpretation of CD results

In order to determine the intrinsic efficiency of EBWCD mechanisms independently
of the plasma parameters, and thus conduct an independent parametric study of
EBWCD, it is necessary to work with normalized units. In addition, normalized
units - along with local calculations as defined in Section 5.2.2 - offer the possibility
to extrapolate the CD results to different plasma conditions, rather than being tighted
to a given scenario. In this section, all quantities are considered to be flux-surfaces
averaged.

The natural normalized units follow the normalization used in the DKE code.

The current and the density of power absorbed are normalized to

. J
] prcend
QeNeVTe
(5.50)
o Pa
abs NeMeVeUs,
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where J is measured in A/m? and P is measured in W/m?. Note that the normal-
ized current is in the direction of the electron flow, which is the opposite direction to

the actual driven current.

Local figures of merit

The normalized CD efficiency 7 is a local quantity (in ), which is given by the ratio

J
= 5.51
7 Dabs ( )
and is related to the dimensional figure of merit, defined as
nip = J/Pabs (552)
and expressed in A-m/W, by
nip = e ] (5.53)
MeleVUTe
Inserting the expression (3.106) for the collision frequency, we find
4me? kT,
= 5.54
nip ZnA n, n ( )

However, the definition (5.52) for the efficiency is seldom used. More common defini-
tions of the efficiency relate to quantities that can be directly measured experimen-
tally, such as the current and power deposition profiles dI/dy and dP/dy. With the
infinitesimal volume dV/diy and poloidal surface dSp/dy elements of a flux-surface,

given by (3.212) and (3.238) respectively

dV _ 4n’R,q
& Bo
(5.55)
dSp _ 271’6
dp By
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we find

dpP p av 47? Ryq Pabs
d ,(/} — labs d ¢ - BO
(5.56)
dl d_S'p: _ 2nqJ
dp " dp B
With the following definition of the efficiency
dl
me =5 (5.57)
expressed in A/W, we obtain
_ g P
me = 5 R (5.58)
This expression can be rewritten as
dl _q 2} kT,

where we note that §/gq accounts for the poloidal variations in the radial thickness
of the incremental flux-surface, and that § = ¢ for circular concentric flux-surfaces.
Therefore, the measurable current drive efficiency dI/dP increases with temperature,

and decreases with density and the plasma size.

Global figures of merit

The total driven current in the plasma is the integral over dI

Ya dI Ya dP
I= /O = /0 e (5.60)

When the deposition profile is narrow enough so that the efficiency is approximately
constant across the damping region, where all the beam power is assumed to be

absorbed, this integral approximately reduces to

I~ nlppeakpo (561)

225



where 77 ppeak is the value of n;p at the peak in the deposition profile and where P is
the power deposited by the EBW beam. With the expression (5.59) for the efficiency

nrp, We obtain
I 7 23 kT,

P, éqg In A R,n, "Ipeale

(5.62)

which is an approximate global efficiency in the narrow deposition profile limit. Note

that this expression can be rewritten as

Npeak = g qg;:%A 21;7’20 (5.63)
and also as R
Tpeak = %%601) (5.64)
with
§cp = 32.7%;% (5.65)

where {cp is the current drive efficiency defined in [76], neeq is the density divided
by 10% and Tepev) is the temperature in keV. The efficiency &cp is therefore very

similar to n7 in the narrow deposition profile limit.

The total current (5.60) can also be rewritten as

dP

I= S iy, :
[ ey (5.66)

where the integral is over the damping region in the vicinity of the n*® harmonic

resonance, where y, = 1. This expression can be rewritten as (5.59)

g 22 T, dP

= = —dy, 5.67
/ T@ A Ry, gy (5.67)

For ”local” EBWCD calculation, as prescribed in Section 5.2.2, all parameters are
assumed to be constant across the damping region except the magnetic field - or

equivalently y, - whose variations strongly affects both the damping and the CD
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efficiency. Hence, we can write

(5.68)

where we define the integrated efficiency

1 dP / ( 1 dP)
n= —— | dy, = ——]d 5.69
The global efficiency I/F, is therefore proportional to 7, which is the efficiency 7

1 dP
weighted by the deposition profile Fogp_ In local EBWCD calculations, the nor-

1 dP
malized CD efficiency 1 will be plotted on the same graph as Fodpy with the inter-
0 n

1 dP
pretation that the integral of the product n (——-—) over the damping region gives

P 0 dpn
the total current. Note that we can also rewrite

Eop = -Z;ln 7 (5.70)

which is consistent with 7] = 7peax in the narrow deposition profile limit, where 7,eax

is taken at the peak in the deposition profile.

5.3 LBF (nwe. < w) approach

We first consider a LBF scenario for EBWCD. We have seen in Section 1.3 that LBF
wave-particle interaction typically takes place in the inboard side of the plasma in a
high- plasma (see Fig. 1-9). In that case, trapped electron effects are expected to
play a lesser role and therefore Fisch-Boozer effect should dominate current genera-
tion. The calculations are restricted to the horizontal inboard midplane (6 = 180°),
which is relevant since trapped electron effects are minimized at this location.

In our study of LBFCD, we consider only the n = 1 resonance, because LBFCD

accessibility is very limited for harmonics n > 2, as we saw in Section 1.3.

Considering local calculations, as defined in Section 5.2.2, an example of LBF
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approach to EBWCD is considered first. The CD results are explained according to
the CD mechanism. By calculating the power deposition profile and comparing with
the CD efficiency profile, it is possible to identify an optimization scheme for LBF-
EBWCD. The parametric dependence of EBWCD on the parallel wave number, the
temperature, the effective charge, and the fraction of trapped particles is calculated.
Quasilinear effects on EBWCD are also investigated. Then an integrated calculation
of EBWCD is presented and illustrates the LBF-EBWCD mechanism in realistic
ST geometry. Finally, the effects of the interaction with the bootstrap current are

described.

5.3.1 EBWCD calculation in LBF approach

By varying the frequency ratio y, keeping all other parameters constant, it is possible
to simulate the EBW approaching the resonance and calculate analytically the power
deposition - as a function of y, - by integrating over the absorption coefficient, as
done in Appendix B.4. Knowledge of the power deposition profile is important in

order to estimate the driven current density and optimize EBWCD.
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Figure 5-6: Relative evolution of (a) the current (dashed red line) and absorbed power
(solid blue line) densities, and (b) the normalized efficiency n (dashed red line) and
the power deposition profile d P,/ Pydy, (solid blue line) as a function of w./w.

We consider the plasma and wave parameters given in the tables (5.48) and (5.49)
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respectively. For various values of y, < 1, and a given input power F,, we solve
the Fokker-Planck equation (3.118) and calculate the resulting normalized driven
current density 7 and absorbed power density pans. The results are shown on Fig.
5-6, graph (a), where the blue solid line is pas/ P, and the dashed red line is j/ B,
normalized to the input power density. As expected from the results of Section
5.1.5, the absorbed power density increases as ¥, increases towards y, = 1 and the
wave approaches resonance. The current density picks up further from the resonance
and then saturates. Consequently, the normalized current drive efficiency, defined as
n = j/pabs and shown on graph (b) as a red dashed line, decreases steadily towards

resonarnce.

5.3.2 Current drive mechanism

10

p_l_"pTe
w

Figure 5-7: Resonance condition term & (Njyes (p) — Ny, AN)) (a), and polarization
term |©!| (b) contributing to the diffusion coefficient in momentum space, for y, =
0.83.

The current drive mechanism can be understood by considering the various com-

ponents of the RF diffusion coefficient (3.205), namely the resonance term

8 (Njres — N, AN) = M] (5.71)

1
VAN, P !‘ AN?
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and the polarization term|©| (3.194), plotted in momentum space as contour plots
in Fig. 5-7 on graphs (a) and (b) respectively. Calculations are done for ¥, = 0.83.
As expected, the resonance condition leads to a diffusion confined around the central
resonance curve, characterized by (yn, N||) (5.10) and shown as a red dashed line,
with a characteristic width in py: Apy ~ pyAN;/N;. Because we took Nj = 1,
the resonance curve is a parabola in momentum space. In the limit of electrostatic
polarization, the term l@(l) (p)| can be rewritten approximately as (5.20), where
Ji(z) /2 peaks at the origin and has a first zero for z ~ 3.8. Because of the large
value of k;pre ~ 2.1 in LBF approach, as seen in Section 2.3, z = ki prepy /Dre
(5.21) corresponds to a relatively small value of p, = 1.8py., and therefore most
of the interaction is confined to p; < 1.8pr., that is, electrons with mostly parallel
momentum. We also note that the effect of the parallel component of the polarization,
which explains the strong p; asymmetry in l@(l) ], is quite important because the small
amplitude of e is compensated by the factor py/p, which can be very large since the
polarization term contribution is confined to a narrow band near the p, = 0 axis.
Because e ~ N} /N, larger N are expected to have a positive effect of this term and

increase the diffusion coefficient.

The resulting diffusion coefficient is shown on Fig. 5-8, graph (b), where its mag-
nitude is represented by a contour plot and the dashed red and blue lines represent
the central N resonance curve and the first zero of |®(1)| (3.194), respectively. The
RF diffusion is therefore mostly confined around the resonance curve and under the
first zero line, with a much weaker secondary peak above the line. The black arrows
indicate the direction of RF diffusion, where the angle of diffusion is given by (5.26)
and the direction of diffusion is given by —3f/dp, which is the direction of rising
p’s for a Maxwellian. We observe that the diffusion is mostly in the perpendicular
direction, as expected for cyclotron harmonic resonance. Because wave-particle in-
teraction occurs on the inboard midplane (6, = 180°), there are no resonant trapped
electrons and the current is generated by Fisch-Boozer effect [28]. As a consequence of
Fisch-Boozer CD, electron flow (opposite to the driven current since electrons carry

a negative charge) is driven in the same direction as the resonant P|min- In LBF
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approach, the resonant pjmi is also of the same sign as V. We note that in LBF
EBWCD, the diffusion coefficient is located near and along the p, = 0 axis, which is
favorable for Fisch-Boozer CD because the resonant electrons are located far from the
trapped region and have a large parallel velocity, which generates a large anisotropy

in the distribution function.

5.3.3 Power deposition and CD optimization

In order to estimate the actual driven current density in such scenario, it is necessary
to calculate the power deposition profile, calculated by DKE for a density n, =~
3.0 x 10 m™3 (a? = 12) and Lg = 1 m and shown on Fig. 5-6, graph (b) as a solid
blue line. The deposition profile results from the balance between increasing damping,
as y, increases, and reduction in the power density carried by the wave, as the wave
is being damped. This calculation of the power deposition profile is compared with
the weakly relativistic calculation (green dash-dotted line), based on the expression
(5.32) for the absorption coefficient. We see that the two calculations agree fairly
well, which is in accordance with the results shown on Fig. 5-4.

Because of the monotonically decreasing efficiency, an increasing damping rate
- which shifts the power deposition to lower y, and thus further in the tail of the
distribution function - would increase the normalized driven current. According to
the results of Section 5.1.6, the location of the peak of deposition - with respect to p,
- is a rather fixed quantity at the value p, ~ 3.5. However, it is sentitive to relativistic

effects, which we will investigate further in this section.

5.3.4 Interpretation of CD results

In order to explain the variations of j, pa,s and n with y,, we calculate the diffusion
coefficient (3.205) and show its magnitude in momentum space on Fig. 5-8, for three
values of y, = 0.73 (a), y, = 0.83 (b) and y, = 0.93 (c). We see that the main cffect
of increasing ¥, is to move the resonance curves in momentum space closer to the

bulk, in accordance with Fig. 5-1. Therefore, as the wave moves closer to resonance,
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Figure 5-8: Contour plot of the RF diffusion coefficient in momentum space for N =1
and (a) y» = 0.73, (b)yn, = 0.83, and (c) ¥, = 0.93. Black arrows give the direction
of diffusion.

increasing v, leads to increasing damping, since the number of resonant electrons

increases, but also decreasing efficiency, because resonant electrons have a decreasing

parallel momentum p and an increasing collisionality.

5.3.5 Role of N” in LBF EBWCD

(=]

bldynJ'P

12

Figure 5-9: Normalized efficiency n and power deposition profile dP,/Pydy, as a
function of y, = w/w (a) and as a function of p, (b), for three different values of

the parallel wave number: Ny = 0.5, Ny =1 and N = 1.5.

On Fig. 5-9, graph (a), we show the normalized efficiency n and power deposition

profile d P, /dy, Py as a function of y,, = nwe/w < 1 (LBF), for the same parameters as
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in Section 5.3.1, but for three different values of the parallel wave number, Ny = 0.5,

Nj=1and N = 1.5. We observe that:

e The CD calculation for Ny = 0.5 is limited to y, 2 0.86 because of the condition

(5.11) for the existence of resonant electrons.

e For a given y,, we saw in Fig. 5-1 that the resonance curves are closer to
the bulk for larger N, which is the Doppler shift effect. This explains why
the profiles of power deposition dP, and of efficiency 7 are shifting away from

resonance (y, = 1) as Ny increases.

e The slower variations of dF, and 7 for larger N are due to the Doppler broad-

ening effect (see Section 5.1.2).

e For a large Ny = 1.5, the n = 1 and n = 2 resonance overlap, meaning that
the deposition profiles corresponding to each harmonic cannot be separated. In
other words (see Section 5.1.7), the wave cannot propagate undamped between

these two harmonics for N” = 1.5.

Because the Doppler shift and broadening effects dominate the variations of both
d P, and 7, we normalize the position y, with respect to N} as (B.133) p, = (1 — y») /N Bre
and plot the profiles of dPy/dp, P, and 7 as a function of p,. This choice of normal-
ization is motivated by the results of Section 5.1.2 where we saw that p,, corresponds
approximately to the value of pjyin, Which is the position on the resonance curve
closest to the bulk. As expected, with the Doppler effects accounted for, the profiles
are now much closer and it is possible to compare the results in more detail. We

observe that:

e The deposition profiles are shifting away from the resonance (p, = 0) as N
increases, in particular between N = 0.5 and Ny = 1. This result can be
understood as a relativistic effect on power absorption. Indeed, we saw in
Section 5.1.6 that relativistic effects bring the deposition closer to resonance for

LBF approach, and that the relativistic shift varies as (5.36) Sr./ IN” |, meaning
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Figure 5-10: Contour plot of the RF diffusion coefficient in momentum space for (a)
N = 0.5 and y, = 0.92, (b) Ny = 1.0 and y, = 0.83, and (c) Ny = 1.5 and y,, = 0.74.
Black arrows give the direction of diffusion.

it decreases with increasing IN” l, which is consistent with our observations on

Fig. 5-9, graph (b).

e At constant p,, the CD efficiency n increases with |N||l. This result can be
explained by the contribution of the parallel component in the RF diffusion.
We showed in Section 5.1.4 that there is a small parallel component in the RF
diffusion due the relativistic effects, such that the angle of diffusion with respect

L Ny Bre (5.26). This angle increases with N, and

Dre
this effect is enhanced by the fact that resonant p, /pre also increase with N.

to perpendicular is y =~

Indeed, Doppler effect shifts the power deposition further from resonance, where
k. pre is lower, and resonant p, /pre verify p, /pre < z1/ (kLpre), Where 2 is

the first zero of J (z) /z (5.20).

The effect of parallel diffusion can be seen of Fig. 5-10, where we calculate the
diffusion coefficient (3.205) and show its magnitude in momentum space at the peak
location of deposition profile for (a) Ny = 0.5 (y, = 0.92), (b) N = 1.0 (y, = 0.83),
and (¢) Ny = 1.5 (y, = 0.74). The black arrows indicate the direction of RF diffusion.
The increase of the angle x with N and the increase in resonant p, /pre are clearly
visible. An increased parallel diffusion leads to a consequent increase in efficiency,
because direct parallel momentum is transfered to electrons. By extension, a fully

parallel diffusion would lead to normalized efficiencies comparable to LHCD, 7 2 15.
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Nf J05[1.0]15
Toeak | 2.9 | 3.7 | 4.2

Table 5.1: CD efficiency n measured at the peak of deposition profile for various
values of V).

An estimation of the total driven current efficiency is npeax (5.62), the efficiency
measured at the peak of deposition profile yp, peak OT Dnpeax- The results are shown
in Table 5.1. The combined effect of a shift of the deposition profile (in p,) and an
increase of the CD efficiency (at fixed p,) result in a significant increase in the peak
current drive efficiency with V. The conclusion is that a higher N} is better as long

as the harmonics do not overlap.

5.3.6 Role of the temperature in LBF EBWCD
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Figure 5-11: Normalized efficiency 1 and power deposition profile dP,/Pydy, as a
function of ¥, = we/w (a) and as a function of p, (b), for three different values of
the normalized temperature, Or. = 0.025, Br. = 0.05 and Br. = 0.075.

On Fig. 5-11, graph (a), we show the normalized efficiency 7 and power deposition
profile dP,/dy, P, as a function of y, = nwe/w < 1 (LBF), for the same parameters
as in Section 5.3.1, with N = 1, but for three different values of the normalized

temperature Br. = \/Te/ (mec?): Bre = 0.025, Bre = 0.05 and fBre = 0.075, which
correspond to T, = 0.3 keV, T, = 1.3 keV, and T, = 2.9 keV respectively. We observe
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that:

e For given y, and NNy, the position of the resonance curves (5.10) is not a function
of temperature in the momentum space (p 1/mec,py/ mec), but it is clearly a
function of temperature in the space (p 1/DTe, Dy / PTe), which is relative to the
distribution function, as a result of the change of coordinates. The Doppler

shift effect is therefore proportional to pr./m.c = Bre, as seen on garph (a).

e The slower variations of dF, and n for larger V| are due to the Doppler broad-

ening effect (see Section 5.1.2).

e For a large (1. = 0.075, the n = 1 and n = 2 resonance overlap, meaning that
the deposition profiles corresponding to each harmonic cannot be separated. In
this way, Bre and Ny have similar effects since the overlapping condition (5.46)

is a condition on fBr, |N”|.

In order to isolate the Doppler shift and broadening effects, we normalize again
the position y, as (B.133) p, = (1 — y,) /N Bre and plot the profiles of dP,/dp,Fo
and n as a function of p,. With the Doppler effects accounted for, the profiles are
now much closer and it is possible to compare the results in more details. We observe

that:

e Unlike the case of increasing N), the deposition profiles are shifting towards the
resonance (p, = 0) as fr, increases, which is again a relativistic effect on power
absorption. Indeed, we saw in Section 5.1.6 that relativistic effects bring the
deposition closer to resonance for LBF approach, and that the relativistic shift
varies as (5.36) Ore/ INHI, meaning it increases with Gr., which is consistent

with our observations on Fig. 5-11, graph (b).

e At constant p,, the CD efficiency 7 increases with Br.. This result can again
be explained by the contribution of the parallel component in the RF diffusion.
We showed in Section 5.1.4 that the angle of diffusion with respect to perpen-

;:l N Bre (5.26). This angle increases with Sre, and this effect is
Te

dicular is x =~

236



Bre ] 0.025]0.050 | 0.075
Noeak | 3.8 | 3.7 | 3.7

Table 5.2: CD efficiency n measured at the peak of deposition profile for various
values of (re.

enhanced by the fact that resonant p; /pr. also increase with Sre, since Doppler
effect shifts the power deposition further from resonance, where &k, pr. is lower,

and resonant p, /pre verify p) /pre < 21/ (kiLpre), Where z; is the first zero of

J1(z) /z (5.20).

An estimation of the total driven current efficiency is npeak, the efficiency measured
at the peak of deposition profile Y, peak OT Pnpeak- The results are shown in Table
5.2. The negative effect of an increasing shift of the deposition profile (in p,) and
the positive effect of an increase of the CD efficiency (at fixed p,), as Br. increases,
almost cancel so that the total effect of Gre on the normalized efficiency is negligeable,
as the harmonics do not overlap. However, we should keep in mind that for a fixed
n, the absolute current drive efficiency 7;p (5.54) increases linearly as a function of
Bre, when the normalization is taken into account. This increase results from the

reduction of collisionality at higher temperature.

5.3.7 Collisional response: role of Z.g and electron trapping

In the linear limit, Z.s and electron trapping do not affect the power deposition
profile. However, they affect the collisional response of the plasma, and thus the
current drive efficiency.

On Fig. 5-12, we show the normalized efficiency n and power deposition profile
dP,/dy, P, as a function of y, = nwe/w < 1 (LBF), for the same parameters as in
Section 5.3.1, but either (a) for three different values of the effective charge Zeg = 1,
Zeg = 2 and Z.g = 3, or (b) for three different values of the trapped electron fraction,
fe=47%, f; =66 % and f; = 81 %. As expected, the linear power deposition profile
is independent of Z.g and f;.

Considering the effect of Z.g, we see that the current drive efficiency decreases ste-
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Figure 5-12: Normalized efficiency n and power deposition profile dP,/Pydy, as a
function of we. /w for (a) three different values of the effective charge Z.g = 1, Zeg = 2
and Zeg = 3, and for (b) three different values of the trapped electron fraction, f; = 47
%, fr =66 % and f; = 81 %.

dily with Z.g (graph a), which is a general characteristic of any current drive scenario.
Indeed, the collisional pitch-angle scattering of electrons on ions, which increases pro-
portionally to Z.g, tends to isotropize the distribution function and therefore reduces

the parallel current.

Despite the fact that there are no trapped electrons at the location of wave-
particle resonance (6 = 180°), trapped electrons affect the current drive efficiency 7,
which decreases when the trapped fraction f; increases (graph b). Indeed, resonant
electrons rapidly move back and forth from inboard to outboard sides, because of
fast motion along the field lines. When they are on the outboard side, they exchange
momentum with trapped particles through collisions. Because of the fast bounce
motion of trapped electrons, this momentum can almost immediately be transferred
to counter-passing electrons. In other words, the trapped region acts as a short-circuit
in collisional pitch-angle scattering, thus increasing the collisional isotropization of the

distribution function.

An estimation of the total driven current efficiency is npeax, the efficiency measured
at the peak of deposition profile Y, peak OF P peak- The results are shown in Table 5.3

as a function of Zes (a) and f; (b).
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Zeff 1 2 3 (a) fi 147% |66 % {81 % (b)
npeak 48 3.7 3.0 Tlpeak 4.6 3.7 2.8

Table 5.3: CD efficiency  measured at the peak of deposition profile for various
values of (a) Zeg and (b) f;.

5.3.8 Quasilinear effects on EBWCD

The calculations so far were done in the linear limit. The quasilinear effects on

EBWCD can be investigated by increasing the incident power in the EBW beam.

_—<§>= 10
40 - <Sb>= 1000 20

115

110 &

Figure 5-13: Normalized efficiency 1 and power deposition profile dP,/Pydy, as a
function of wee/w, for three different values of the incident energy flow: si,c = 0.01
kW /m?, sine = 1 kW/m? and s = 100 kW/m?.

On Fig. 5-13, graph (a), we show the normalized efficiency n and power deposition
profile dP,/dy, P, as a function of y,, = nw,./w < 1 (LBF), for the same parameters as
in Section 5.3.1, but for three different values of the incident energy flow density sip. =
0.01 kW/m?, sipc = 1 kW/m? and sy, = 100 kW/m?. This last value corresponds to
experimental power levels (about one Megawatt in NSTX) and approaches the limit
of validity of our quasilinear operator with respect to non-linear effects, according to
results from Section 3.5.3.

The difference between sy, = 0.01 kW/m?, s, = 1 kW/m? does not affect the
CD results significantly, which means that the linear regime still prevails. However,
for sipe = 100 kW/m?2, we observe a significant shift of the power deposition profile

towards the resonance, combined with a strong increase in the efficiency 7 at fixed y,,.
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These effects can be understood by the flattening of the distribution function due to
quasilinear diffusion. The modifications of the distribution function due to quasilinear
diffusion can be observed on Fig. 5-14, where the steady-state distribution function

was calculated for 3, = 0.83 and si,. = 100 kW /m?.

2D Distribution function f0

,A ///-’"‘“*\

/’Z:

PP

(b)

Figure 5-14: (a) Contour plot of the distribution function f, in LBF-EBWCD. The
thin blue lines represent the Maxwellian distribution, and the green contours represent
the magnitude of the diffusion coefficient. (b) Fy: same distribution integrated over
the perpendicular momentum.

On graph (a), the steady-state distribution function f; is shown as a contour
plot in momentum space, while on graph (b) it is integrated over the perpendicular

momentum as
Fo (py) =2r fo pidpy fo (P, pL) (5.72)
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Sine (kW/m?)]0.01 | 1 [ 100
Npeak 3.7 [41]5.2

Table 5.4: CD efficiency n measured at the peak of deposition profile for various
values of sie.

On graph (a), the thin blue lines represents the circular contours of a Maxwellian
distribution, while the thick red lines are contours of the distribution function with
strong RF diffusion. The dashed green contours reprensent the magnitude of the
diffusion coefficient. In the region of strong diffusion, the quasilinear distortion of the
distribution function is clearly visible. This flattening is in the direction of diffusion,
and leads to a decrease in the density of absorbed power (normalized to the incident
power) relative to the linear case, where the distribution remains Maxwellian. This
reduction in the relative density of absorbed power p,,s leads to a higher peak CD
efficiency 7, since 7 = j/paps, but also a shift of the power deposition profile towards
resonance. The overall effect is positive, however, as we can see from the results of

Table 5.4.

5.3.9 Integrated calculation of LBF EBWCD for actual ST

scenario

In order to validate the parametric study presented in this section, an actual LBF
EBWCD scenario in a NSTX plasma is considered. A EBW beam of frequency
w/2n = 12 GHz is assumed to propagate along the horizontal midplane, with a
constant Ny = 0.5, as shown of Fig. 5-15 graph (a). For such parameters, the inboard
side of the plasma is accessible, as shown on graph (b) where the frequency profile on
the horizontal midplane shows the cyclotron harmonics including the Doppler shift
w = NWee £ 3.5vrck). The wave characteristics, power deposition and driven current
are calculated along the beam path, for an initial power P = 1 MW in the beam.
The power and current density deposition profiles are shown on graph (c). The power
deposition profile peaks at the radial location p ~ 0.50. The current is driven by Fisch-
Boozer effect and peaks sightly before, meaning that the CD efficiency is decreasing
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Figure 5-15: (a) Same as Fig. 1-9 for f = 12 GHz and Ny = 0.5. (b) Frequency
profile of the cyclotron harmonics - including the Doppler shift w = nw. £ 3vrek) -
on the horizontal midplane. (c) Density of current and power deposited at a function
of radius.

as expceted as the wave moves towards resonance. The normalized efficiency at the
peak of power absorption is n >~ 3.7, and the total driven current is I = 99 kA, so that
the CD efficiency is approximately I/P = 0.1 A/W. In terms of normalized global
efficiency as defined in (5.65), we find {cp = 0.67, which is significantly higher than
typical ECCD efficiencies. The power deposition profile is very narrow: Ap = 0.04,
because of a small Doppler effect (Vy = 0.5) and the small value of the magnetic field

variations scale length on the inboard side of the plasma.
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5.3.10 Interaction between LBF EBWCD and the bootstrap

current

Because the LBF interaction between EBWs and electrons occurs on the inboard
side of the plasma, where there are no trapped electrons, the interaction between the
bootstrap current and EBWCD is expected to be small. To illustrate this, we consider
the location of the peak in the power deposition profile calculated for the integrated
LBFCD calculation in NSTX presented in Section 5.3.9. The radial location is p =
0.50. The distribution function f;, which accounts for the effects of the drifts, is
calculated in the absence of EBWCD - when f, is Maxwellian - which gives the
bootstrap current. At this location, the bootstrap current density is JB¢ = 0.13
MA/m2. When the effect of EBWs is included, the current calculated from f, gives
the EBWCD density, J®F = 1.03 MA/m?, and the current calculated from f, give
the bootstrap current with synergistic effects, J; = 0.15 MA/m?2. Substracting JEBC
from this value, we obtain the synergistic current J%* = 0.02 MA/m?2. This current

represents about 2% of the EBW driven current and is not significant.

5.4 HBF (nw. > w) approach

We now consider a HBF scenario for EBWCD. We have seen in Section 1.3 that HBF
wave-particle interaction typically takes place in the outboard side of the plasma
where the dip in the magnetic field is located in a high-# plasma. (see Fig. 1-9).
This dip is located far off-axis near the midplane, such that trapped electron effects
are expected to play an important role and Ohkawa effect should dominate current
generation. Since trapped electron effects are maximized near the inboard horizontal
midplane, restricting our calculations to 8 = 0° is relevant for HBFCD.

Because the EBW frequency is necessary higher than the electron cyclotron fre-
quency, a HBF approach (nwe, > w) can only be considered for n > 2. In our
study of HBFCD, we consider only the n = 2 resonance, but many results and their

interpretation can be extrapolated to higher harmonics.
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Considering local calculations, as defined in Section 5.2.2, an example of HBF
approach to EBWCD is considered first. The CD results are explained according to
the CD mechanism. By calculating the power deposition profile and comparing with
the CD efficiency profile, it is possible to identify an optimization scheme for HBF-
EBWCD. The parametric dependence of EBWCD is calculated upon the parallel wave
number, the temperature, the effective charge and the fraction of trapped particles.
Quasilinear effects on EBWCD are also investigated. Then an integrated calculation
of EBWCD is presented and illustrates the HBF-EBWCD mechanism in realistic
ST geometry. Finally, the effects of the interaction with the bootstrap current are

described.

5.4.1 EBWCD calculation in HBF approach

By varying the frequency ratio y, keeping all other parameters constant, it is possible
to simulate the EBW approaching the resonance and calculate analytically the power
deposition - as a function of y, - by integrating over the absorption coefficient, as
done in Appendix B.4. Knowledge of the power deposition profile is important in

order to estimate the driven current density and optimize EBWCD.

~ 0.6

Figure 5-16: Relative evolution of (a) the current (dashed red line) and absorbed
power (solid blue line) densities, and (b) the normalized efficiency 1 (dashed red
line) and the power deposition profile dPy/Pydy, (solid blue line) as a function of
Yo = 2Wee/w.
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We consider the plasma and wave parameters given in the tables (5.48) and (5.49)
respectively. These parameters correspond approximately to the plasma conditions
near the bottom of the dip in the magnetic field profile on NSTX, and the wave
frequency w/2m = 14 GHz is chosen to match the second harmonic at that point.
For various values of ¢, > 1, and a given input power F,, we solve the Fokker-Planck
equation (3.118) and calculate the resulting normalized driven current density j and
absorbed power density pans. The results are shown on Fig. 5-16, graph (a), where
the blue solid line is paps/P, and the dashed red line is j/P,, normalized to the
input power density. As expected from the results of Section 5.1.5, the absorbed
power density increases as ys decreases towards 1 - or the wave approaches resonance.
However, the current density increases and then decreases after some peak location.
The normalized current drive efficiency 7 = j/paps is shown on graph (b) as a red
dashed line. It slowly increases as y, decreases towards 1 until some maximum value,

beyond which the efficiency rapidly decreases to 0.

5.4.2 Current drive mechanism

Figure 5-17: Resonance condition term & (Njyes (p) — N, ANj) (a), and polarization
term |©?| (b) contributing to the diffusion coefficient in momentum space for y, =
1-19.

The current drive mechanism can be understood by considering the various com-
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ponents of the RF diffusion coeflicient (3.205), namely the resonance condition

2

8 (Njres — Ny, ANy) = 7—%]7” exp [—%ﬁvﬂ} (5.73)

and the polarization term]@(2)| (3.194), plotted in momentum space as contour plots
in Fig. 5-17 on graphs (a) and (b) respectively. Calculations are done for y, = 1.19,
which corresponds to the peak in the efficiency profile. As expected, the resonance
condition leads to a diffusion confined around the central resonance curve, character-
ized by (yn, N “) (5.10) and shown as a red dashed line, with a characteristic width in
py: Apy ~ pyAN)/Nj. Because we took Ny = 1, the resonance curve is a parabola in
momentum space. In the limit of electrostatic polarization, the term l@(z) (p)l can be
rewritten approximately as (5.20), where J; (z) /z peaks at z ~ 2.3 between the two
first zeros at 2 = 0 and z ~ 5.1. Because of the smaller value of k) pre ~ 0.7 in HBF
approach, as seen in Section 2.3, z = k, prepy /pre corresponds to large peak value
at p1 = 3.3pre, Which is higher than typical resonant p, /pr. in LBF approach. The
interaction occurs over a wide range of 0 < p; < 7.3 p, /pre, and resonant electrons
have a significant perpendicular momentum component. We also note that the effect
of the parallel component of the polarization, which explains the strong p; asymmetry
in l@(z)l, is quite important because e is larger than for LBFCD (since ey ~ Nj/N
and N is smaller) despite the fact that the factor p;/p. is smaller in this case. The
asymmetry reduces |©(?| on the resonant side and therefore larger N} are expected
to have a negative effect of this term and decrease the magnitude of the diffusion

coefficient.

The resulting diffusion coefficient is shown on Fig. 5-18, graph (b), where its mag-
nitude is represented by a contour plot and the dashed red and blue lines represent
the central NV resonance curve and the peak of |@(2) |, respectively. The RF diffusion
is therefore mostly confined around the resonance curve and peaks near where this
curve crosses the blue line, with a much weaker secondary peak well above. The
black arrows indicate the direction of RF diffusion, where the angle of diffusion is

given by (5.26) and the direction of diffusion is given by —3f/8p, which is the direc-
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tion of rising p’s for a Maxwellian. We observe that the diffusion is again mostly in
the perpendicular direction, as expected for cyclotron harmonic resonance. Because
wave-particle interaction occurs on the outboard midplane (6, = 0°) and the trapped
particle fraction is large (about 2/3), perpendicular diffusion leads to significant elec-
tron trapping and therefore Ohkawa current is generated [29]. As a consequence of
Ohkawa CD, electron flow (opposite to the driven current since electrons carry a neg-
ative charge) is driven in the opposite direction to the resonant pjmi,. However, in
a HBF approach, resonant pjmin are of opposite sign to N, and therefore current is
generated in the same direction as for LBF FBCD. We see that in HBF EBWCD,
the diffusion coefficient is located at rather high values of p,, which is favorable for
Ohkawa CD because the resonant electrons are located close to the trapped region

and significant wave-induced trapping can be expected.

5.4.3 Interpretation of CD results

10

Yo = 0o 5 10
PfPre PfPre P/Pre

(a) (b) (c)

Figure 5-18: Contour plot of the RF diffusion coefficient in momentum space for
N =1and (a) yo = 1.29, (b)y, = 1.19, and (c) y, = 1.09. Black arrows give the
direction of diffusion.

In order to explain the variations of 7, paps and n with y,, we calculate the diffusion
coefficient (3.205) and show its magnitude in momentum space on Fig. 5-18, for three
values of y, = 1.29 (a), v, = 1.19 (b) and y, = 1.09 (c). We see that the main effect
of increasing v, is to move the resonance curves in momentum space closer to the
bulk (Ip" minl decreases), in accordance with Fig. B.149. Therefore, as the wave moves

closer to resonance, decreasing ¥, leads to increasing damping, since the number of
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resonant electrons increases, which explains the evolution of p,ps on Fig. 5-16.

e Concerning the current density j, it first increases as the wave moves closer to

resonance and y, decreases (a — b), mainly because the number of resonant

electrons increases.

However, even closer to the resonance (c), most of the wave power couples to
trapped electrons, which do not carry any current. This explained the decreas-
ing current density for y,, < 1.13. This current reduction leads to a correspond-
ing decrease in the efficiency, which is further enhanced by the fact that the few
remaining resonant electrons of the passing region have a decreasing parallel

momentum pj and an increasing collisionality (c).

Note however that the heating of trapped electrons may result in changes in the

bootstrap current, which will be investigated in Section 5.4.10.

The small decrease in the efficiency as the resonance curves move away from the
bulk for increasing ¥, (b — a) beyond the peak value y,, = 1.19 is the result of
the balance between having less collisional resonant electrons with larger pj - a
positive effect - and the Fisch-Boozer effect of creating an asymmetric resistivity,
which increases as the resonance moves further from the trapped region, and

drives a current in the opposite direction.

It is not surprising that the peak efficiency is obtained when the diffusion co-
efficient peaks just below the trapped/passing boundary (b) and perpendicular

diffusion leads to maximum wave-induced trapping.

5.4.4 Power deposition and CD optimization

In order to estimate the actual driven current density in such scenario, it is necessary

to calculate the power deposition profile, calculated by DKE for a density n, ~
3.0 x 10" m™3 (a? = 12) and Lg = 1 m and shown on Fig. 5-16, graph (b) as a

solid blue line. The deposition profile results from the balance between increasing
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damping, as y, increases, and reduction in the power density carried by the wave,
as the wave is being damped. This calculation of the power deposition profile is
compared with the weakly relativistic calculation (green dash-dotted line), based on
the expression (5.32) for the absorption coefficient. We see that the two calculations
agree fairly well, but not as well as for the LBFCD case. This is due to the fact that
the electrostatic approximation, used in the calculation of (5.32), fails down near the
resonance in HBF appraoch, in particular regarding the polarization (See Fig. 2-5),
which is in accordance with the results shown on Fig. 5-4.

Because of the peaked efficiency profile, CD is be optimized if the peaks in the
deposition profile and the efficiency coincide. According to the results of Section 5.1.6,
the location of the peak of power deposition is always about p, ~ 3.5. Therefore,
the optimization of HBF EBWCD requires to adjust the location of the peak in the
efficiency profile accordingly, by controling the location of deposition and Ny, which

will be adressed in the coming sections.

5.4.5 Role of Nj in HBF EBWCD

Figure 5-19: Normalized efficiency n and power deposition profile dP,/Pydy, as a
function of y» = 2w, /w (a) and as a function of p, (b), for three different values of
the parallel wave number: Ny = 0.5, Ny =1 and Ny = 1.5.

On Fig. 5-19, graph (a), we show the normalized efficiency n and power deposition

249



profile d P, /dy, Py as a function of y, = nw./w > 1 (HBF), for the same parameters as
in Section 5.4.1, but for three different values of the parallel wave number, Ny = 0.5,

N" = ] and N” =1.5.

e For a given y,, we saw on Fig. 5-1 that the resonance curves are closer to
the bulk for larger Ny, which corresponds to the resonance Doppler shift effect.
This explains why the profiles of power deposition dP, and of efficiency 7 are

shifting away from resonance (y, = 1) as N} increases.

e The slower variations of dP, and 7 for larger IV are due to the Doppler broad-

ening effect (see Section 5.1.2).

e The peak value for 7 increases as N| increases, and the Doppler shifts of the
peaks for 7 and dF; are different, such that these two peaks coincide for Ny =1,
while power deposition occurs too far away from resonance for Ny = 1.5 and

too close to the resonance for Ny =0.5.

e For a large Ny = 1.5, the n = 1 and n = 2 resonance overlap, meaning that
the deposition profiles corresponding to each harmonic cannot be separated. In
other words (see Section 5.1.7), the wave cannot propagate undamped between

these two harmonics for N = 1.5.

Because the Doppler shift and broadening effects dominate the variations of both
dFP, and 7, we normalize the position y, with respect to Ny as (B.133) p, = (1 — y») /N Bre
and plot the profiles of dP,/dp, P, and 7 as a function of p,. This choice of normal-
ization is motivated by the results of Section 5.1.2 where we saw that p, corresponds
approximately to the value of pjmin, Which is the position on the resonance curve
closest to the bulk. As expected, with the Doppler effects accounted for, the profiles
are now much closer and it is possible to compare the results in more details. We

observe that:

e The deposition profiles moving closer to the resonance (p, = 0) as N} increases,

in particular between Ny = 0.5 and Ny = 1. This result can be understood as
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Figure 5-20: Contour plot of the RF diffusion coefficient in momentum space for (a)
Nj = 0.5 and y, = 1.13, (b) N} = 1.0 and y, = 1.19, and (c) Nj = 1.5 and y, = 1.26.
Black arrows give the direction of diffusion.

a relativistic effect on power absorption. Indeed, we saw in Section 5.1.6 that
relativistic effects move the power deposition away from resonance for HBF
approach, and that the relativistic shift varies as (5.36) Bre/|N}|, meaning it
decreases with |N|| |, which is consistent with our observations on Fig. 5-9, graph

(b). In other words, the positive relativistic effects are larger for small |N|| |

e The peak value of 1 increases with Nj. This result can be explained by the
contribution of the parallel component in the RF diffusion. We showed in
Section 5.1.4 that there is a small parallel component in the RF diffusion due the
relativistic effects, such that the angle of diffusion with respect to perpendicular
Bye= %N”ﬁ’pe (5.26). This angle therefore increases with Nj. Unlike the
LBF CD case, the variation of resonant p, /pre as Nj changes should not be
important in this case because resonant p; /pTe are spread over a large range,
a consequence of small (kypr.) (5.20). The effect of parallel diffusion can be
seen of Fig. 5-20, where we calculate the diffusion coefficient (3.205) and show
its magnitude in momentum space at the peak location of deposition profile
for (a) Ny = 0.5 (y, = 1.13), (b) Nj = 1.0 (y» = 1.19), and (c) Ny = 1.5
(yn = 1.26). The black arrows indicate the direction of RF diffusion. The
increase of the angle x with N} is clearly visible. Unlike the LFBCD case, the
parallel diffusion now faces towards lower |p1|| and so toward the bulk. Because

the CD mechanism is the Ohkawa effect, this parallel component has a positive
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N, [05]1.0[15
Tpeak | 1.8 | 2.4 | 2.6

Table 5.5: CD efficiency n measured at the peak of deposition profile for various
values of Nj.

effect as it reduces the incidence angle between the direction of diffusion and
the normal to the trapped/passing boundary. The RF diffusion is directed more
toward the trapped/passing boundary. Therefore, the peak value of 7 increases

Wlth N” .

e On Fig. 5-20, we see that for each V|, the largest current drive efficiency is
obtained when the diffusion region peaks right beneath the trapped/passing

boundary, so that wave-induced trapping is maximum.

e The profiles for the CD efficiency 7 move closer to the resonance (with respect
to pn) as lNu| increases. A possible explanation for this result is the effect of
curvature in the resonance curve, which decreases as INHI increases. Therefore,
in order to have the diffusion region peaking near the trapped passing boundary,
the value of Ip” min| =~ |p,| must be smaller for large Ny. Another explanation is
the variation of the peak in resonant p; /pr. (blue dashed lines on Fig. 5-20),
which moves down as |N||l increases, such that the value of Ip” minl ~ |pp| must

be smaller for large N.

We note that, as ]N“| increases, the shifts of the power deposition and efficiency
profiles with respect to p, are in the same direction, which means that the range of
INIII over which the two profiles coincide - and HBF Ohkawa CD is optimized - is
quite large.

An estimation of the total driven current efficiency is #peax (5.62), the efficiency
measured at the peak of deposition profile y, peak O Pnpeax. The results are shown
in Table 5.5. At N = 1, the two profiles coincide, and the peak efficiency is higher
than for Ny = 0.5, which explains the large difference on 7peax. Between N =1 and
N| = 1.5, the increase in the peak efficiency with N dominates the fact that the two

profiles do not coincide for N = 1.5, and 7pcax increases slightly.
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5.4.6 Role of the temperature in HBF EBWCD
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Figure 5-21: Normalized efficiency 1 and power deposition profile dP,/FPody, as a
function of y» = 2w, /w (a) and as a function of p, (b), for three different values of
the normalized temperature, fr. = 0.025, Bre = 0.05 and SBr. = 0.075.

On Fig. 5-21, graph (a), we show the normalized efficiency n and power deposition
profile dP,/dy, P as a function of y, = nwe/w > 1 (HBF), for the same parameters
as in Section 5.4.1, with Ny = 1, but for three different values of the normalized
temperature (B, = W: Bre = 0.025, Br. = 0.05 and Br. = 0.075, which
correspond to T, = 0.3 keV, T, = 1.3 keV, and T, = 2.9 keV respectively. We observe
that:

e For given y, and N, the position of the resonance curves (5.10) is not a function
of temperature in the momentum space (p L/ mec, py /mec), but it is clearly a
function of temperature in the space (p 1/PTe, D) /pTe), which is relative to the
distribution function, as a result of the change of coordinates. The Doppler

shift effect is therefore proportional to pre/me.c = Pre, as seen on graph (a).

e The slower variations of dP, and 7 for larger N, are due to the Doppler broad-

ening effect (see Section 5.1.2).

In order to isolate the Doppler shift and broadening effects, we normalize again

the position y, as (B.133) p, = (1 — ya) /NyBre and plot the profiles of dP;/dp,Fy
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Bre | 0.025710.050 | 0.075
Mpeak 1.9 2.4 2.9

Table 5.6: CD efficiency n measured at the peak of deposition profile for various
values of Bre.

and 7 as a function of p,. With the Doppler effects accounted for, the profiles are
now much closer and it is possible to compare the results in more details. We observe

that:

e Unlike the case of increasing N}, the deposition profiles are shifting away from
the resonance (p, = 0) as fr. increases, which is again a relativistic effect on
power absorption. Indeed, we saw in Section 5.1.6 that relativistic effects move
the deposition profile away from resonance for HBF approach, and that the
relativistic shift varies as (5.36) fre/ IN“ ], meaning it increases with Gr., which

is consistent with our observations on Fig. 5-21, graph (b).

e At constant p,, the CD efficiency 7 increases with SBz.. This result can again be
explained by the contribution of the parallel component in the RF diffusion. We
showed in Section 5.1.4 that the angle of diffusion with respect to perpendicular
is X >~ NyBrepy/pre (5.26). This angle increases with Br.. The effect of By, on

the efficiency is therefore very similar to the effect of V.

e There is a shift of the n profile away from resonance as B7. increases. Like in
the case of varying N}, the power deposition and efficiency profiles shift in the
same direction as fr. increases, which means that the range of 8z, over which

the two profiles coincide - and HBF Ohkawa CD is optimized - is quite large.

An estimation of the total driven current efficiency is fpeax, the efficiency measured
at the peak of deposition profile ¢, peax OF Pn peak- The results are shown in Table 5.6.
Because the power deposition and efficiency profiles coincide quite well for all these
values of fBr., the increase in the peak efficiency results from the increase in the

maximum efficiency with Grp.
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5.4.7 Collisional response and Ohkawa effect: role of Z.g and

electron trapping

In the linear limit, Z.g and electron trapping are not assumed to affect the power
deposition profile. However, they affect the collisional response of the plasma, and
thus the current drive efficiency. In addition, the Ohkawa CD mechanism is very
dependent on the location of the trapped/passing boundary in momentum space,

and therefore on the fraction of trapped electrons.
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Figure 5-22: Normalized efficiency 1 and power deposition profile dP,/Pydy, as a
function of y2 = 2w /w for (a) three different values of the effective charge Zgs = 1,
Zog = 2 and Zg = 3, and for (b) three different values of the trapped electron
fraction, f; =47 %, f; =66 % and f; = 81 %.

On Fig. 5-22, we show the normalized efficiency 7 and power deposition profile
dP;/dy, Py as a function of y, = nwe/w > 1 (HBF), for the same parameters as in
Section 5.4.1, but either (a) for three different values of the effective charge Z.g = 1,
Zeg = 2 and Zeg = 3, or (b) for three different values of the trapped electron fraction,
fi =47 %, f; = 66 % and f; = 81 %. As expected, the linear power deposition profile
is independent of Z.g and f;.

Counsidering the effect of Z.4, we see that the current drive efficiency decreases ste-
dily with Z.g (graph a), which is a general characteristic of any current drive scenario.

Indeed, the collisional pitch-angle scattering of electrons on ions, which increases pro-
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Zw | L 121 3 (a) f. 147% 166 % 81%(b)
Toeak | 34 | 2.4 | 1.9 Toeak | —1.1 | 2.4 | 3.0

Table 5.7: CD efficiency n measured at the peak of deposition profile for various
values of (a) Zeg and (b) f;.

portionally to Z.g, tends to isotropize the distribution function and therefore reduces

the parallel current.

The CD efficiency profile depends dramatically upon the fraction of trapped elec-

trons.

o When the trapped fraction is small (case with f; = 47 %) and the trapped
region in momentum space is narrow, the peak in the profile of CD efficiency
is close to the bulk. Further from the resonance, the driven current becomes
actually negative, which means that the Fisch Boozer effect dominates. For the
present power deposition profile, shown on Fig. 5-22, the total driven current

would definitely be negative Fisch-Boozer current

e With a very large trapped fraction (case with f; = 81 %, which would corre-
spond to NSTX locations very close to the edge), the efficiency increases stedily
away from the resonance. This means that the Fisch-Boozer current effects are
negligeable, and the increase in efficiency results from the fact that the resonant

electrons are further in the bulk and thus less collisional.

e Because of the strong variations in the efficiency profile when the trapped frac-
tion is changed, the region of the plasma where Ohkawa CD is possible is limited

to the far off-axis locations of the plasma.

An estimation of the total driven current efficiency is 7peax, the efficiency measured
at the peak of deposition profile ¥y peak OF Pnpeak- The results are shown in Table 5.7

as a function of Zsg (a) and f; (b).
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5.4.8 Quasilinear effects on EBWCD

The calculations so far were done in the linear limit. The quasilinear effects on

EBWCD can be investigated by increasing the incident power in the EBW beam.
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Figure 5-23: Normalized efficiency n and power deposition profile dP,/Pody, as a
function of ys = 2w, /w, for three different values of the incident energy flow: sj,c =
0.01 kW/m?2, sjpe = 1 kW/m? and sjpc = 100 kW/m?.

On Fig. 5-23, graph (a), we show the normalized efficiency 7 and power deposition
profile dP,/dy, Py as a function of y, = nwe/w > 1 (HBF), for the same parameters as
in Section 5.4.1, but for three different values of the incident energy flow density sipc =
0.01 kW/m?, sy = 1 kW/m? and sjpe = 100 kW/m?. This last value corresponds
to experimental power levels and approaches the limit of validity of our quasilinear
operator with respect to non-linear effects, according to results from Section 3.5.3.

The difference between sy, = 0.01 kW/m?, sipe = 1 kW/m? does not affect the
CD results significantly, which means that the linear regime still prevails. However,
for sine = 100 kW/m?, we observe a shift of the power deposition profile towards the
resonance, combined with a strong increase in the peak efficiency n and a large shift
of the efficiency profile away from the resonance.

These effects can be understood by the flattening of the distribution function
due to quasilinear diffusion. The modifications of the distribution function due to
quasilinear diffusion can be observed on Fig. 5-24, where the steady-state distribution

function was calculated for y, = 1.19 and si;. = 100 kW /m?.
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Figure 5-24: (a) Contour plot of the distribution function fy in HBF-EBWCD. The
thin blue lines represent the Maxwellian distribution, and the green contours represent
the magnitude of the diffusion coefficient. (b) Fy: same distribution integrated over
the perpendicular momentum.

On graph (a), the steady-state distribution function fy is shown as a contour
plot in momentum space, while on graph (b) it is integrated over the perpendicular

momentum as

Fo(py) = 2m fo " pudpy o (p1op0) (5.74)

On graph (a), the thin blue lines represents the circular contours of a Maxwellian
distribution, while the thick red lines are contours of the distribution function with
strong RF diffusion. The dashed green contours reprensent the magnitude of the

diffusion coefficient. In the region of strong diffusion, the quasilinear distortion of the
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Sine (kW/m?) [ 0.01 | 1 | 100
Tlpeak 24 12514

Table 5.8: CD efficiency n measured at the peak of deposition profile for various
values of sj,c.

distribution function is clearly visible. This flattening is in the direction of diffusion,
and leads to a decrease in the density of absorbed power (normalized to the incident
power) relative to the linear case, where the distribution remains Maxwellian. This
reduction in the relative density of absorbed power p leads to a higher peak CD
efficiency 7, since 7 = j/p, but also a shift of the power deposition profile towards
resonance. In addition, a large shift of the efficiency profile occurs. This shift is also
a consequence of the flattening of the distribution function, for which a given contour
of the distribution ”reaches” the trapped/passing boundary further away from the
resonance.

Because the peaks in the profiles for the power deposition and the driven current
do not coincide for the large energy flow density case, the overall effect can be negative,

as we can see from the results of Table 5.8.

5.4.9 Integrated calculation of HBF EBWCD for actual ST

scenario

In order to validate the parametric study presented in this section, an actual HBF
EBWCD scenario in a NSTX plasma is considered. A EBW beam of frequency
w/2n = 12 GHz is assumed to propagate along the horizontal midplane, with a
constant Ny = 1.0, as shown of Fig. 5-25 graph (a). For such parameters, the
beam reaches a Doppler-shifted harmonic on the outboard side near the botton of the
magnetic well, as shown on graph (b) where the frequency profile on the horizontal
midplane shows the cyclotron harmonics including the Doppler shift w = nw. £
3.5vrek). The wave characteristics, power deposition and driven current are calculated
along the beam path, for an initial power P = 1 MW in the beam. The power and

current density deposition profiles are shown on graph (¢). The power deposition
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Figure 5-25: (a) Same as Fig. 1-9 for f = 12 GHz and Ny = 1.0. (b) Frequency
profile of the cyclotron harmonics - including the Doppler shift w = nwe, £ 3.5vrk -
on the horizontal midplane. (c) Density of current and power deposited at a function
of radius.

profile peaks at the radial location p ~ 0.68. The current is driven by Ohkawa effect
and peaks at the same location as the power deposited. The normalized efficiency at
the peak of power absorption is n ~ 1.6, and the total driven current is I = 41 kA,
so that the CD efliciency is approximately I/P = 0.04 A/W. In terms of normalized
global efficiency as defined in (5.65), we find £cp = 0.37, which is significantly higher
than typical off-axis ECCD efficiencies. The power deposition profile is rather broad:
Ap = 0.12, because of the large Doppler effect (V) = 1.0) and the large value of the

magnetic field variations scale length near the bottom of the magnetic well.
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5.4.10 Interaction between HBF EBWCD and the bootstrap

current

Because the HBF interaction between EBWs and electrons occurs on the outboard
side of the plasma, where the fraction of trapped electrons is maximum, the interaction
between the bootstrap current and EBWCD is expected to be significant. To illustrate
this, we consider the location of the peak in the power deposition profile calculated
for the integrated HBFCD calculation in NSTX presented in Section 5.4.9. The radial
location is p = 0.68. The distribution function f;, which accounts for the effects of
the drifts, is calculated in the absence of EBWCD, when f, is Maxwellian, which gives
the bootstrap current. At this location, the bootstrap current density is JB¢ = 120
kA/m?. When the effect of EBWs is included, the current calculated from f; gives
the EBWCD density, JRF = 133 kA/m?, and the current calculated from f; give
the bootstrap current with synergistic effects, J; = 146 kA/m?. Substracting JBC
from this value, we obtain the synergistic current J® = 26 kA/m2. This current
represents about 20% of the EBW driven current. Note that the EBW driven current
density in that case in much lower than the LBF case because the deposition profile
is much broader.

The strong synergism between HBF EBWCD and the bootstrap current can be
understood from the plot of the distribution function f; on Fig. 5-26. The thin lines
represent the bootstrap current distribution, while thick lines are the contours of f; in
the presence of EBWCD. The distribution is negative on the side p| < 0 and positive
on the p; > 0 side. The green contours represent the magnitude of the diffusion
coeflicient. The deformation of the bootstrap distribution function due to interaction
with EBWs in clearly visible. On graph (b), the same distribution is integrated over

the perpendicular momentum, as

F(p) =2 /000 pidp: fi (Pu,p_l_) (5.75)

which shows that the synergistic current is driven in the tail of the bootstrap distri-

bution function, which drives significant current.
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Figure 5-26: (a) Contour plot of the distribution function f, in HBF-EBWCD. The
thin lines represent the bootstrap current distribution, while thick lines are the con-
tours of f; in the presence of EBWCD. The green contours represent the magnitude of
the diffusion coefficient. (b) F}: same distribution integrated over the perpendicular
momentuimn.
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Chapter 6

Summary and Conclusions

6.1 Electron Bernstein wave current drive model-
ing

Electrons Bernstein waves (EBW) are kinetic waves, for which the wavelength can be
of the order of the electron Larmor radius or even smaller. They do not exist in a cold
plasma wave description. The fundamentals of the kinetic theory of plasma waves
have been reviewed. An analytical description of EBWs characteristics has been
undertaken in the electrostatic limit for a non-relativistic plasma, and expressions
for the wave energy flow density and absorption coefficient have been derived for the
first time. This analytical work has been used for the guidance and interpretation of
EBWCD calculations. This model has been validated by comparison with the exact
calculations using the numerical code R2D2 [13], which includes full electromagnetic
effects. The characteristics of EBWs have been systematically described, as a function
of the wave and plasma parameters.

The description of the resonant interaction between electrons and EBWs also
involves kinetic theory, in the form of a RF quasilinear diffusion operator for electrons
in momentum space, which calculates the transfer of momentum from radio-frequency
(RF) waves to the resonant electrons. Based on earlier works on quasilinear theory

[41], a new fully-relativistic quasi-linear operator describing the interaction between
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electrons and a Gaussian EBW beam has been derived for a slab plasma.

The calculation of current drive (CD) by EBWs in toroidal plasmas involves the
solution of the fully-relativistic electron drift-kinetic equation with Fokker-Planck
collisions and RF quasilinear diffusion. This equation, which accounts for particle
orbit effects such as magnetic trapping and radial drifts, has been derived in a general
formalism that is valid for an arbitrary axisymmetric magnetic geometry, and thus is

adapted to the strongly shaped plasmas of spherical tokamaks.

In typical fusion plasmas, the radial drift velocity of electron is much smaller than
their parallel velocity, and thus the radial extent of trapped particule (banana) orbits
is small. In addition, the collisionality is low, meaning that particles can complete
many poloidal orbits before strong collisional effects occurs, and as a results the
particle orbits are well defined. In that case the 4D drift-kinetic equation (2D in
axisymmetric configuration space, 2D in gyro-averaged momentum space) is reduced

to a set of two bounce-averaged 2D equations in momentum space.

Solving these two partial integral-differential equations requires numerical tech-
niques, and a new code named DKFE [73] has been developed for this purpose. It
uses a completely implicit technique to solve the differential part of the equations, in
the sense that the symmetrization of the distribution function in the trapped region,
which results from the fast parallel motion, is ensured implicitly, with an appropriate
treatments of the fluxes at the trapped/passing boundary in momentum space. This
fully implicit scheme makes calculations several order of magnitude faster than the
commonly used half-implicit schemes. Because radial drifts are properly accounted
for in the kinetic equations, the DKFE code also calculates the bootstrap current cor-
rectly. In addition, it consistently includes the calculation of CD by any kind of RF
wave interacting with electrons, provided that this interaction can be described by
quasilinear theory. Therefore, the range of applications for the present formalism and
the DKE code reaches far beyond the scope of this thesis, and the code has been
successfully used for many CD calculations, including the first accurate calculation
of Ohkawa CD with electron cyclotron (EC) waves [31] and several investigations of

the kinetic interaction between the bootstrap current and RF waves [77] [30] [33] [34]
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[35] [78].

The description of EBWs and the EBWCD calculations both derive from kinetic
theory. The consistency between the two models has been verified by demonstrating
that the EBW absorption coefficient, calculated using the analytical linear model for
EBWs, is retrieved both analytically and numerically from the quasilinear operator in
the non-relativistic electrostatic limit. Along with this calculation, a new expression
for the linear absorption coefficient has been derived within the weakly-relativistic
approximation. The resulting relativistic effects on the power deposition are found

to be important.

6.2 Electron Bernstein waves characteristics

The systematic study of EBW characteristics has led to the following observations,

relevant for EBWCD calculations:

e In high-B plasmas, EBWs are generated at the edge of the plasma, in the
mode-conversion region near the upper-hybrid resonance, which is character-
ized mainly by density variations. Once EBWs propagate inside the plamas,
however, their behaviour is dominated by magnetic field variations. Indeed,
EBWs can propagate between two harmonics of the cyclotron resonance, but

are completely damped at the Doppler-shifted resonance of any harmonic.

o The absorption of EBWs is independent of the plasma density, a property of
waves for which the energy density flow is mostly due to the coherent motion

of particles.

e The ratio of the gyroradius to the wavelength is measured by the expression
Re [k1 pre], which is obtained from solving the dispersion relation. It is found
that Re [k} pre] does not vary significantly as a function of parallel wave number

Nj, the temperature, or the density (away from the mode-conversion region).

e The properties of EBWs vary primarily with variations in the magnetic field,
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and can be characterized with respect to the location of cyclotron harmonic

resonances. For this purpose, we have defined the parameter y, = nwe/w.

e In particular, if the wave approaches the n'" harmonic resonance from a lower B-
field region (LBF) (nwe < w), the wave is characterized by a large perpendicular
wave vector, a completely electrostatic polarization, and a large electric field

amplitude for a given energy flow density.

e However, if the wave approaches the n'" harmonic resonance from a higher
B-field region (HBF) (nw. > w), the wave is characterized by a smaller per-
pendicular wave vector, strong electromagnetic effects in the polarization, and

a smaller electric field amplitude for the same energy flow density.

6.3 Damping of EBWs and power deposition pro-
file

e As EBWs approach a cyclotron harmonic resonance, they are absorbed in the
tail of the distribution function, for typical values of the parallel momentum
such that 3 < py/pre. < 3.5, where pre = y/m.T, is the thermal momentum.
As a consequence, the location of power deposition in momentum space, along
the resonance curve, is determined by the rapid Gaussian variations of the
distribution function at large p|. As a result, parameters such as the geometry
of the flux-surfaces (plasma shaping) and the scale length of magnetic field
variations, which for example strongly affect the ECCD deposition profile and
thus the CD efficiency, have little effect on EBWCD.

e In the vicinity of a resonance (y, =~ 1), the position of resonance curves in
momentum space changes mostly as a function of the distance from the magnetic
field, or (1 — yy,). Therefore, the damping of EBWs is dominated by changes in
the magnitude of the magnetic field.

e There is an important shift and broadening of the power deposition profile in
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configuration space, due to the Doppler effect, which scales like Nyfr., where
T/ (mec?). This effect is accounted for by measuring the distance to
the resonance using the parameter p, = (1 — y,) / (N ,BTe), which accounts for

the variation is the magnetic field as well as the Doppler shift.

In addition, the power deposition profile is subject to significant relativistic
effects, which are found to scale like Br./N| withing the weakly relativistic
approximation. Relativistic effects shift the deposition towards the resonance

in LBF approach, and away from the resonance in HBF approach

For large values of the Doppler shift, two consecutive harmonics can overlap
and thus the wave cannot propagate between these harmonics any longer. In a
1 keV plasma, significant overlapping occurs between first and second harmonic
for Ny 2 1.5. In a 10 keV plasma, the overlapping threshold drops to Ny 2 0.5.
In addition, overlapping increases with the harmonic number. For example,
between the third and the fourth harmonic, significant overlapping occurs for

N 2 0.5 in a 1 keV plasma.

The diffusion of electrons due to interaction with EBWSs is mostly in the per-
pendicular direction in momentum space. However, there is a small component
of the diffusion in the parallel direction, which scale like NyBr. and is in the

direction of the parallel wave vector k.

Spherical tokamaks and framework of EB-
WCD calculations

Spherical tokamaks are high-3 plasma devices with a very small aspect ratio and

thus a tight toroidal geometry. Consequently, RF waves must be launched from

the outboard side of the plasma. A particularity of high-3 toroidal plasmas is the

existence of a dip in the magnetic field profile, located off-axis on the outboard side

of the plasma. Therefore, in a high-3 plasma, it is possible to approch a harmonic
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resonance from either the LBF or the HBF region, with launching from the outboard
side. In that case, LBF CD is located on the inboard side while HBF CD is located
on the outboard side.

The EBWCD calculations presented in this thesis apply to the vicinity of the
horizontal midplane, where the plasma is locally in a slab geometry so that the
quasilinear operator is valid. This approximation requires that the EBW beam size
be much larger than the wavelength, so that the wave is well defined in Fourier
spectrum, but also much smaller than the length of poloidal field lines, so that the
slab approximation applies. In that case, EBW damping and current drive can be
calculated without ray-tracing techniques.

Because the EBW characteristics are very different depending whether the reso-
nance is approached from a HBF or a LBF region, and because the corresponding
locations in the plasma are different, these two scenarios are considered separately.
Even though the calculations are limited to the horizontal midplane, the relevant
physics of EBW CD mechanisms is included in our models, since we consider both
the location with maximum trapped electron effects (HBF at 6 = 0°) and the location

with minimum trapped electron effects (LBF at 6 = 0°).

6.5 Low B-field (nw. < w) current drive

e Since LBFCD occurs on the inboard side of the plasma, the LBFCD mechanism
is the Fisch-Boozer effect, which results from the plasma collisional response to
an asymmetric resistivity (in py) created by asymmetric perpendicular heating

of the distribution function.

e The CD efficiency decreases as the wave moves closer to the cyclotron harmonic
resonance and the resonance curves move correspondingly closer to the bulk in
momentum space, where resonant electrons are more collisional and carry less

parallel momentum.

e The large value of Re [k} pre] in LBFCD results in confining the interaction to
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the vicinity of the p; = 0 axis, which is favorable for Fisch-Boozer current drive

because the resonance region is far from the trapped/passing boundary.

e The parallel component of the quasilinear diffusion - a relativistic effect - is
directed towards the tail of the distribution in LBFCD, which is favorable for
Fisch-Boozer current drive because more efficient direct parallel momentum is

transmitted to the electrons.

e In LBFCD, the shift of power deposition due to relativisic effects is directed
toward the resonance, which has a negative effect on CD since the CD efficiency

is decreasing monotonically towards the resonance.

e As a consequence of these two relativistic effects, the normalized LBF driven

current increases with Ny and remains rather independent of temperature.

e The effect of electron trapping is to reduce the CD efficiency, because the effect

of collisional pitch-angle scattering is enhanced by trapped electrons.
e Quasilinear effects typically increase the LBF Fisch-Boozer CD efficiency.

e In HBFCD, the overlapping of harmonics is always deleterious because the
mechanism for n = 2 HBFCD is dominated by the Fisch-Boozer effect on the
inboard side of the plasma, where there are no trapped electrons. This effect can
be observed in Fig. (5-9). Because the HBF approach to the n = 2 resonance
is on the opposite side in p; (see Fig. 5-14-a), current is driven in the opposite

direction.

6.6 High B-field (nw, < w) current drive

e Since HBFCD occurs on the outboard side of the plasma and far off-axis, the
HBFCD mechanism is the Ohkawa effect, which results from the asymmetric
trapping (in py) induced by the wave when barely-passing electrons are heated

perpendicularly.
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The CD efficiency peaks at some distance from the resonance that corresponds
to a situation where the diffusion coefficient in momentum space is located in
the vicinity of the trapped-passing boundary, and thus wave-induced magnetic
trapping is at its maximum. Farther from the resonance, the Fisch-Boozer effect
counteracts the Ohkawa effect and the CD efficiency is reduced. Closer to the
resonance, most of the power is coupled to the trapped electrons, which drive

no current.

Because of the smaller value of Re [k, pre] in HFBCD, the interaction is located
at larger p,, which is favorable for Ohkawa current drive because the reso-
nance region is close to the trapped/passing boundary, and large wave-induced

trapping can occur.

The parallel component of the quasilinear diffusion is directed towards the bulk
of the distribution in HBFCD, which is favorable for Ohkawa current drive

because wave-induced trapping is increased.

In HBFCD, the shift of power deposition due to relativisic effects is directed
away from the resonance. Its effect on CD depends on the relative positions of

the CD efficiency and power deposition profiles.

As a consequence of these two relativistic effects, the normalized HBF driven

current increases with both &, and the temperature.

Optimizing OKCD requires a much larger fraction of trapped electrons than
for ECCD, in order for the diffusion coefficient to be located close to the
trapped/passing boundary in momentum space. Fortunately, STs typically have

very large fractions of trapped particles, because of their small aspect ratio.

In order to optimize OKCD, the fraction of trapped electrons - and thus the
location of deposition - must be adjusted with quasilinear effects such that the

peaks in the CD efficiency and power deposition profiles coincide.
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CD direction

opposite to kj

LBF-EBWCD HBF-EBWCD
Definition (vs. n'® harmonic) NWee < W NWee > W
Localization in high-3 plasma inboard side outboard side
CD mechanism Fisch-Boozer Ohkawa

opposite to k;

Accessibility
Accessible harmonics

Radial locations (in NSTX)
Deposition profile

restricted on midplane
only n=1
0<Sp<06
Very narrow

very good on midplane
any n > 2
06<Sp=<1
narrow to broad

Increasing N
Increasing electron trapping
Increasing temperature

increases 7
reduces 7
little effect on n

increases 7
increases n
increases n

= effect of increased p n decreases 7 increases
Typical norm. CD efficiency &op ~ 0.67 &op ~ 0.37
Typical CD efficiency in NSTX I/P~01A/W I/P~0.04 A/W

Table 6.1: Comparison between the HBF and LBF EBWCD schemes.

e In HBFCD, the overlapping of harmonics is not necessarily deleterious because

the mechanism for n = 1 LBFCD, far from the resonance, is dominated by the

Fisch-Boozer effect, even on the outboard side of the plasma. This effect can

be observed in Fig. (5-19). Because the LBF approach to the n = 1 resonance

is on the opposite side in p; (see Fig. 5-24-a), current is driven in the same

direction.

6.7 Comparison and conclusions

A comparison between LBF and HBF approaches is presented in Table 6.1.
For a given N}, LBF Fisch-Boozer CD and HBF Ohkawa CD are in the same

direction, because the resonance curves in momentum space are located on opposite

sides of the pj = 0 axis. This could be an important (and favorable) factor if part of

the RF power happens to be absorbed in LBF approach on the inboard side and part

of it in HBF approach on the outboard side.

The typical EBWCD efficiencies are significantly higher than ECCD efficiencies

because the power - and the current - are deposited in the tail of the distribution func-

tion. For comparison, typical normalized ECCD efficiencies measured in comparable
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D3D plasmas are {cp ~ 0.3 in the core and op ~ 0 for p > 0.4. However, efficiencies
are lower than for lower-hybrid current drive, because the diffusion is mostly in the
perpendicular direction.

In general, a higher NV, leads to higher CD efficiencies for both Fisch-Boozer
LBFCD and Ohkawa HBFCD. However, if N becomes too large, two harmonics can
overlap. As for any current drive mechanism, an increased effective charge reduces
both Fisch-Boozer LBFCD and Ohkawa HBFCD, because it tends to isotropize the
distribution function.

Because of the particular magnetic geometry of high-3 ST plasmas, LBFCD occurs
on the inboard side and is possible only between first and second harmonic, and at
radial locations 0 < p < 0.6. Its efficiency generally decreases with p because of the
larger fraction of trapped particles.

On the other side, the high-8 ST plasma geometry limits HBFCD to the outboard
side at locations 0.6 < p < 1, where the mechanism is Ohkawa current drive. The
variations of the CD efficiency with p depend upon many parameters, in particular
the fraction of trapped electrons.

The radial width of the power deposition profile increases with the magnetic field
variations scale length Lg and the Doppler broadening effect, proportional to NyBre.
In HBFCD, it is possible to obtain very wide deposition profiles by driving current
near the bottom of the dip in the magnetic field profile, where Lg becomes very large.

In conclusion, current can be efficiently driven by electron Bernstein waves in most
radial locations in the plasma, provided the wave is launched near the midplane.
The current drive mechanism is the Fisch-Boozer effect when the EC resonance is
approached from a lower B-field region in the center of the plasma, and it is the
Ohkawa effect when it is approached from a higher B-field region far off-axis on the

outboard side.
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Appendix A

Properties of Curvilinear Systems

The particular geometries and symmetries of toroidal magnetic equilibrium (in config-
uration space) and gyromotion (in momentum space) require to use several curvilin-
ear coordinate systems. The geometrical properties of these systems (metric factors,
elementary distances, surfaces and volumes) and differential operators are used ex-
tensively in this work. Some general properties and identities of curvilinear systems
are first presented; then, they are applied to the particular coordinate systems used

through this work.

A.1 General Case (u!l,u? u3)

We note X = zX + y¥ + 2Z the vector position in the space under consideration,
where (z,y, ) is the initial, cartesian coordinate system. We consider the curvilinear
1

coordinate system (u!,u?, u?).

A.1.1 Covariant (tangent) basis

The covariant, or tangent vector basis (e, ez, e3) is defined as

_0X
T out

€;

where the e; are tangent to the curvilinear lines.
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A.1.2 Contravariant (reciprocal) basis

The gradient V f of a function f being defined by the differential

df =Vf.dX (A.2)
we apply to u' which gives
du’ = Vu' - dX (A.3)
By chain rule, we have
dX —a—X—duj = e;du’ (A.4)
Tow o T '
so that
du' = Vu' - e;du’ (A.5)
which implies
Vi -e; =6 (A.6)

thus defining two reciprocal basis (Vu', ;) of vectors. The reciprocal basis vectors

are also called contravariant, and noted
e = Vi (A.7)

These vectors are perpendicular to the surfaces of constant u'.

From the properties of reciprocal basis, we can calculate a vector from the three

vectors of the reciprocal basis, such that

(A.8)

(A.9)
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A.1.3 Metric coefficients

They are defined as

gij = €; - € (A.10)

gi=ei.el

With the differential vector given in (A.4), we see that the differential arc length

along a curve is

dl = |dX|=vVdX-dX = +/g;jduidw’ (A.11)

In addition, we have the relations

€e; = g,-jef (Alz)
ei = gijej
We also see that
l9:7] = [¢7] (A.13)
[97] = [g:5] " (A.14)
so that, defining
we find
97" = det [g7] (A.16)
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A.1.4 Jacobian

We define the Jacobian

Oz /Ou' Oz/Ou? Ox/Ou®
=det | dy/ou' dy/ou? Oy oud (A.17)
0z/du! 0z/ou? Oz/0ud

oz, y,2)

J= A(ul, u?, ud)

which gives
_0X o0X 00X

J oul  ou? % oud

=e;-€e X ey (A18)

and the reciprocal Jacobian

oul/0z Oul/By Ou'/Oz

A(ul,u?,ud)

J = 3(:c,y, ) = det Buz/ax 0u2/6y 3u2/3z (A.19)
oud/0x Out/dy /I
which gives
J =Vul -Vu? x Vu® =e! . e? x &® (A.20)

We can show that

J=J" (A.21)
and the relations (A.8-A.9) become
;1
e=- (e x ex) (A.22)
e; = J (& x ) (A.23)
Also,
g=J° (A.24)



A.1.5 Vector identities

With

A= (A e)e = A€

A=(A-é&)e = Al
we find

A-B= gUAZB] = gl]AzBJ
so that
A= |A| = g5 AIAT = \/giT A A,
We also find

AxB= AiBjei X e = AiBjei X e’

which gives
giik
7 A;B;

(A X B)k = EiijAiBj =
Note that from (A.12),
A= gijAj
Al = giA,
A.1.6 Differential elements

differential length along '

dl () = |dX (i)| = hidu® = \/gadu

Equivalently,
dl(i)=J |Vuj X Vuk| du’
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(A.27)

(A.28)

(A.29)

(A.30)

(A.31)
(A.32)
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(A.34)



Differential area in surface of constant '

Using
dS (i) = [dX (j) x dX (k)| = |e; x ey| du’du* (A.35)

which becomes
dS (i) = 1/ 939k — gpdv’ du* (A.36)

Equivalently
dS (i) = J |Vu'| dufdu® (A.37)

so that
dS (i) = £Jdw! duF V' (A.38)
Differential volume element

BX =dX (1) - dX (2) x dX (3) = Jdu'du?du® (A.39)

A.1.7 Operator V

The operator V can be decomposed in the curvilinear coordinates as

i 9 _ ;0
V=Vu il (A.40)
We then find the following differential operations:
Gradient
It follows simply that
_ . 0f _of
Vf=Vu i~ 5 (A.41)
so that
(V)= (Vs e)= oL (A42)
i Y Qui )
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Divergence

It can be shown that the divergence is expressed as

Y%Azéixbﬁ (A.43)
Curl
It becomes, a compact notations,
UxA=ind4, (A.44)
J out

or is extended as

(A.45)

A.2 Configuration space

A.2.1 System (R, Z,9)

The coordinates (R, Z, ¢) are defined on the space 0 < R < oo, —00 < Z < o9,

0 < ¢ < 2w, and they are related to (z,y, z) by

R=\FTT

L=z (A.46)
¢ = arctan (y/z) + nH (—z) [2n]

which is inverted to

x = Rcos¢
y = Rsin¢ (A.47)
z2==Z
The position vector is
X =RR + ZZ (A.48)
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where we define a local orthonormal basis (ﬁ, 2, a) as

=cos¢X+singy
-Z (A.49)

) N )
Il

RxZ=—-singX+cosgy

The covariant vector basis is defined in (A.1), which gives in the (R, Z, ¢) coordinates

system

_(0X 08X X\ (g 5 o2
(er,ez,€) = (ﬁ,ﬁ,a—qs) - (R.Z, R9) (A.50)

The Contravariant vector basis is defined in (A.7), which gives

(ef,e?,e?) = (VR,VZ,V¢) = (ﬁ,i, %) (A.51)

We note that the normalized reciprocal basis is colinear with the normalized tangent
basis, which was expected since both bases are orthogonal. The Jacobian of the

transformation 1is

J=R (A.52)

The differential elements associated with this system are:

e the infinitesimal distance element along each coordinate

dl(R) = dR
dl(Z) = dZ (A.53)
dl(¢) = Rd¢

e the infinitesimal surface element of constant coordinate

dS (R) = RdZd¢ R
dS (Z) = RdRd¢ Z (A.54)
dS (¢) = dRdZ ¢
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o the infinitesimal volume element

d*X = RARdZd¢ (A.55)

Finally, the differential operators are

e (Gradient

Vf = g—};ﬁ + g—éi + %%a (A.56)

e Divergence

V-Az%%(RA-ﬁ%a%(A.Z)h—l%%(A-a) (A.57)
e Curl R 9 . -
(V x A) R=a—Z(A-¢ —EBE(A z)
(mm)-i:%(% A-ﬁ)—}é%(RA-a) (A.58)
(V x A) 5—_—5% A-Z)—a%(A ﬁ)

A.2.2 System (7,60, ¢)

The coordinates (7, 6, ¢) are defined from an origin (R,, Z,) on the space 0 < r < oo,
0 < 6 < 27, and they are related to (R, Z, ¢) by

r=\/(R=R,) + (2 - 2,)°

(A.59)
0 = arctan ((Z — Z,) /(R— Rp)) +7H (R, — R) [2n]
which is inverted to
R=R,+rcosf
B (A.60)
Z = Zy,+rsind
The position vector is
X = RR + Z,Z +1% (A.61)
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where we define a local orthonormal basis (?, 5, 5) as

oseﬁ-f—sine 2

T=c
SR R R (A.62)
0=¢xT=—sin@R+cosb Z
The covariant vector basis (A.1) is
_(0X 90X 0X S S
(er, €g, e¢) = (W’ Fe—, %-) = (r, 7'9, R¢) (A63)

The Contravariant vector basis (A.7) is

9
"

=] RS

(e”, €% e?) =(Vr, Vo, V¢) = (?

) (A.64)

and again, the normalized reciprocal basis is colinear with the normalized tangent

basis. The Jacobian of the transformation is

J=rR (A.65)

The differential elements associated with this system are:

e the infinitesimal distance element along each coordinate

dl(r)=dr
dl(8) = rdf (A.66)
dl (¢) = Rde

e the infinitesimal surface element of constant coordinate

dS (r) = rRdfd¢ T
dS () = Rdrd¢ 6 (A.67)
dS (¢) = rdrdd ¢
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o the infinitesimal volume element

d*X = rRdrdfd¢ (A.68)

Finally, the differential operators are

e Gradient
of.. 10f~ 1%"

e Divergence

19 ~, 10 N, 10 3
VA= S RAD+ o (RAD) 45 (49) (AT
e Curl 1 9 1 9
(¥ x A) = R (RA-¢)1—a§5$ A-5)
=== (AT)— =— " ATl
(VxA)-§ {2g¢(A F) Rﬁg(RA ?) (AT1)
(VxA) =15 (rA-0) = 55 (A

A.2.3 System (¢,s,¢)

The coordinates (1, s, ¢) are used to parametrize non-circular closed flux-surfaces,
are defined from the origin (R,, Z,), on the space min (1o, %,) < ¥ < max (¥o, %),
Smin (¥) € 8 < Smax (¥), and they are related to (r, 8, ¢) by a general

v=90) a2
s=s(r0)

which is inverted to
r=r(y,s) (A73)
0 =26(,s)

Note that 9 (r, §) must be a monotonic function of r from v at the center (R,, Z,)

to ¢, at the edge. It is the case for nested flux-surfaces. We define a local orthonormal
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basis ({b\, s, éﬁ\) with
5=
vl (A.74)
S=¢X¢=WV¢XV¢

The transformation from (?, 5) to ({p\, §) is a rotation of angle « (1, s) such that

(lb) _ (cosa —sinoz) . ('i) (AT5)
6

sino cosa

The position vector remains
(A.76)

X = RR+ Z,Z + 1T

The covariant vector basis (A.1) is

(XX X\ [ ¥ .~
conened) = (5550 55) - (nvwn’s’ R¢) AT

The Contravariant vector basis (A.7) is

(e¥,¢%,¢%) = (V, V5, V) = (nwn 3.3, %) (A78)

and again, the normalized reciprocal basis is colinear with the normalized tangent

basis. The Jacobian of the transformation is

R
J=——
VY

(A.79)

The differential elements associated with this system are:
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¢ the infinitesimal distance element along each coordinate

_dy
dhw) = ||v¢n
di (s) = (A.80)
dl(9) = Rdo

¢ the infinitesimal surface element of constant coordinate

ds (v) = Rdsdq& "

ds (s ———dipd¢s ]
(s) = ||V1¢|| (A.81)
ds (¢ ——dids 45
@)= 1%
e the infinitesimal volume element
X = ——diydsde AR2
o (A.82)
Finally, the differential operators are
e Gradient
B 15) f Jd f 5 19 f ~

e Divergence

V.A = VY] 8 (RA w) “VWIB( R A-§>+ E(Aa) (A84)

"R 0y R 9s \||[Vy] R3¢
e Cul
(VxA)-§= E;(RA@)—%%(A 3)
(V xA)-§= é Bad) (A $) - nv_f;png_ (R -9) (A.85)
(V% A)-3 = V9]l 3 (4-9) = [Vl 5 ,f‘w'ﬂ)
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A.2.4 System (v,0,¢)

The coordinates (v, 8, ¢) are an alternative to (¢, 6, ¢) and is defined from the origin

(Rp, Z,) and is related to (r,0, ¢) by

Y =1 (r,0) (A.86)
which is inverted to
r=r(1y,0) (A.87)
The position vector then becomes
(A.88)

X = RR+ Z,Z+7(4,0)F

The covariant vector basis (A.1) is

_ (X 8X 0X\ iy s
(e, €0, €4) = (5{5’50_’ 55) - <||V¢|| cosa’ cosa’R¢> (A-89)

where ()
cosa = ‘1?1\?' (A.90)
The Contravariant vector basis (A.7) is
b of of) = 509
(e ,e,e ) = (Vt/z, VH, ng) = ||Vw|| ’tﬂ,;,ﬁ (Agl)

o~

Note that the two based are not colinear in this case, because ({p\, 67, (,b) is not orthog-

onal. The Jacobian of the transformation is
fir (A.92)

J= V|| cosa

The differential elements associated with this system are:
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e the infinitesimal distance element along each coordinate

_ &
M= gl cosa
dl (6) = O—da (A.93)
dl (¢) = Rdg

e the infinitesimal surface element of constant coordinate

a8 (§) = = T 0
ds (0) = WCMW s (A.94)
T o~

e the infinitesimal volume element

X = —R-———dzdequ (A.95)

V|| co '

Finally, the differential operators are
¢ Gradient

_ of ~ 18 f 1 af

e Divergence

_ |[V¥llcosa 8 ( Rr ~
VA= ~ Rr O (coscuA . ¢) (A.97)
IV cosa O R ~ 10 ~
TR 09 (nwn cosat 0) + R (a-9)
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e Curl
10

~ cosa O ~ .
(VxA) 9= 7 55 (RA-lgé)zpl— E%;A-s)

~ R cos ~
s (' ntec ( A

~ cos & rA-8 cos @ T
(VxA)-¢= r 51—/;(005@)_ T _6—9(|Vw|cosa)
' (A.98)

A.3 Momentum Space
).

We consider a cartesian momentum space in coordinates (p;, p,, p.) along axes (X,¥,Z

The vector position is momentum space is written

P=pX+p,y+p.2 (A.99)

We consider the two following curvilinear systems:

A.3.1 System (p||,pJ., SO)
The coordinates (py,p1,y) are defined on the space —oo < py < 00, 0 < p; < oo,

0 < ¢ < 27 and is related to (pg, py, Pz) by

by =D
(A.100)

PL= \/pz+py

@ = arctan (py/ps) + 7H (—p.) [27]

which is inverted to

Pz =PpP1LCOSY
Py =pLsing (A.101)
D: =D
The position vector in momentum space then becomes
(A.102)

P=p.1+pl
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where we define a local orthonormal basis (T, _T_, @) as
=%
1 = cos PX+singy (A.103)
@:Tx IT=-singX+cospy
The covariant vector basis (A.1) is
oP oP JP ~
= =—,—,=— ) ={|,L,p.P A.104
(enened) = (G 5o 52 ) = (1219 (A100)
The Contravariant vector basis (A.7) is
(el e*,e%) = (Vppy, Vpp1, Vpp) = (I 1, ;%) (A.105)
The Jacobian is
J= PL (A].OG)
The differential elements associated with this system are:
e the infinitesimal distance element along each coordinate
di(p) = dp,
di(pL) =dp, (A.107)
dl(p) =prdy

e the infinitesimal surface element of constant coordinate

dS (p)) = prdp.dy ||
dS (pL) = prdpyde L (A.108)
dS (p) = dpydp. @

e the infinitesimal volume element

d*X = pdpjdp, dy (A.109)
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Finally, the differential operators are

¢ QGradient

—— A.110
Op,. pL Op ( )

e Divergence

1 9 ~ 19
Vp-A=—(A-|[]+ —5—(pA- L)+ ———(A-§ A111
A= g (A T) o5 (A D)+ -5n (a9 (A

e Curl R 5 1 8 ~
(Vp x A) |=3?((9P¢A-f)—§%a—(p(—’\ 1)
(Vox A) I =o (A1) - 5-(4-9) (A112)
(Vp x A) a.—_aip”(A-l)—%(A D)

A.3.2 System (p,&, )

The coordinates (p, £, ¢) are defined on the space 0 < p < 00, —1 < €< 1,0< ¢ < 27
and is related to (p,pL,¥) by

p=./pj+P

fo_ P (A.113)
\/Ph+ P
which is inverted to
p -
I =rt (A.114)
pL=pV1-&
The position vector in momentum space then becomes
P =pp (A.115)



where we define a local orthonormal basis (ﬁ, 5, fﬁ) as
P=+y1-L+¢]
{=pxp=E¢L-1-8]
The covariant vector basis (A.1) is

P Ve @) — ap) ag’a(’o

_lg___P ¢ 25
(p, \/1—_—5—25,10 1 E@)

The Contravariant vector basis (A.7) is

. JI-ée. _
(e, €%, e¥) = (Vpp, Vpé, Vpp) = (p,— 3 . )

The Jacobian is

J=0p

The differential elements associated with this system are:

e the infinitesimal distance element along each coordinate

dl(p) =dp

dl(€) = —P—d
(O = —Lge

dl (p) = p/1 —&2dyp

e the infinitesimal surface element of constant coordinate

dS (p) =p*déde D
dS (€) = —p/1 — E2dpdy €
dS (¢) = —=sdpd §

=
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(A.117)

(A.118)

(A.119)

(A.120)

(A.121)



e the infinitesimal volume element

d®*X = pldpdedy (A.122)

Finally, the differential operators are

e Gradient '
Vof = 8£A \/Ip__éafA p\/il__ggf (A.123)
e Divergence
Vo A= (PAB) - (VITEAE) + \/1__?3 (A-9)
(A.124)
e Curl
(V5 A)B= 5 (VITPA-9) 4 —e i (4-9)
(VxA)E= 22 (oA-P) - p———l_—§% (A-B) (A.125)
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Appendix B

Quasilinear Operator in an Infinite

Uniform Plasma

B.1 Introduction

We consider an infinite uniform collisionless plasma in a constant, uniform mag-
netic field of magnitude B associated with the electron gyrofrequency we = eB/me.
Steady-state radio-frequency (RF') fields are applied to this plasma. The RF electric
field is assumed to be decomposed into a discrete set of monochromatic waves with

frequency wy

r,t) =Y E(r)e (B.1)
b

with each monochromatic wave being decomposed into Fourier components, such that

0= ] Lo

where each Fourier component is given by

Ek,b (k) = // d37' Eb (I') e_““' (B3)

The quasilinear operator describing the slow evolution of the macroscopic distribu-

tion function f under the effect of the fields has been derived by Kennel & Engelmann
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[41] and extended by Lerche [42] to relativistic plasmas. In order to apply this oper-
ator to our study of EBWCD, we proceed in three steps: first, the operator derived
by Lerche is transformed in order to be expressed in a conservative form, as the di-
vergence of a RF-driven flux, which is essential for a proper use in a kinetic code
in which particles conservation must be ensured. The second step consist of trans-
forming the quasilinear operator using the reality of the electric field. Third, this
operator is applied to the case of a quasi-Gaussian RF beam, which is a generally a
good approximation for experimental EBWs. The use of this operator - derived for
an infinite uniform plasma - in a bounded, non-uniform tokamak plasma is discussed
and justified in Section 3.5.2. In the fourth section, we extend our operator to a slab

geometry and use the energy equation to calculate the power deposition profile for

EBWs.

B.2 Quasilinear operator in a conservative form

The quasilinear operator derived by Lerche for a relativistic infinite uniform plasma
assumed a field with a single monochromatic frequency w. The generalization for a
discrete set of frequencies is immediate and will be done at the end of the section.

The operator derived by Lerche [42] is expressed as
e? 1 «— 3
Q(f)z‘W‘}%vn;w// d°k (B.4)

L (k) )] )
PrE: J, + P*——(————l E*
[( I Ex. { L=\ L

i
[nQ + Ky — w] (B Jn Py + B, L P1) f]

with the momentum-space differential operators

P 0 n) (v 0 v 0 )
t= 5_ - lé— - ||a—
D| wWvuyL P PL
0 k” 0 (B'5)

P=———+———(v——v—
T opL | w \ oy op,
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and

1 . _
EkJ_ = 7_—2- (Ek,_e""JnH + Ek,+€_zaJn~1) (B6)

where a Fourier component Ey (B.3) of the electric field is projected on the rotating

field frame

1
Ek,:i: _ = (Ek,:l: Z*: 'I:Ek’ )
V2 ! (B.7)

Ex) = Ex,.

The wave vector is expressed in cylindrical coordinates as

kry =k, cosa
ky =k} sina

ke =k

and the argument of the Bessel functions is &, v; /€2 where the relativistic cyclotron

frequency is

o= 28 _ Yo (B.8)
YMe Y
The differential operators (B.5) can be rewritten in divergence form as
0 Q 1 0 Q
e[ 2414 022
61(39” L w 5 pLOpy ' w pL . (B.9)
1 1 ’
Pam St g L0 by L ()
op w p1Opy w L\ w
where we used the identity
Oy __m__ POy
21 = =t B.10
dpy ymic®  piOp. (B.10)
Consequently, (B.4) can be rewritten in a conservative form as
1 0 0
Q(f)=-Vp - S¥ = ——— (p.ST) — =— (S} B.11

where we see from the expression (B.4) and (B.5) that the fluxes are purely diffusive,
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such that we can write

DRF DRF of/o
SRF:_DRF_fo;—__( :; ;'}L) f/0ps (B.12)
Dyt Dy of [opy

with the following diffusion tensor elements

+oo
nQp ka_ *
on-- £ o im b fff] (20 -2 )

’i nfl 1.)|| k”U_L:I )
LB J,+ |1 — E
[nQ+ k"’l)n — ] ( w v L + { w kL
+oo
nlpy ., ki) .
DR — Vlggo‘—////d'& [( B g+ [1- 22 By,
z' ns) kv )
1— —| By, + E
[nQ + k“’U" - w] <[ ] bl koL }
+00
D =-%" lim — | [ [ &3k 1—— E* J. + i lE
L Rt 277) vﬂoov k| kL
7 nl v kv
i ] o orBdat 1= iJ £us)
”’U“ w] w vy w
DRF — _ m lim — [ [ [ &k 1-— EX J. + k”“E
mn = Vlj}gov k| k, L

n——oo

i k'U_L
1—— Ex . J. E
[nQ+ kn’U“ —w] (‘: w ] Lo + kl)jl

(B.13)
In the limit of a resonant diffusion,
1
— im0 (w — kyvy — nd B.14
T oy — o] (w = Koy — nQ) (B.14)
and, using the resonance condition
k‘"’U” = w — nfd (B.15)

the frequency w must be real and the RF diffusion tensor elements may be expressed
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in a simple form

+o0 nQ 2
- Y () o e

n=—00 w
+00
Q
DL[[ — &@ I_Z_L_ Drl}F (p)
n=—co Pl ¢ “ (B.16)
Dm_fl&@ 1_29_ DFF (p) .
L = p_” w o n \P
+00 9 2
_ yan nsl RF
Djif = > p_ﬁ<1“7) D™ (p)

where the diffusion coefficient, common to all tensor elements, is

d3k
D3 (p) = lim ///( By + —-—Ek N K (w =k —n2)  (B.17)
which can be rewritten as
RF d*k (n)|?
D," (p) = llm = 7 B’ I@ 8 (w = kyyy — nQ) (B.18)

where we refer to @f(") as the polarization term associated with a particular Fourier

component Ey = |Ey|ex. It is expressed as

n 1 . k 1 k k
o = —ep ey, (L—m) + —=ek et (-ﬁgﬁ) + %ek,an ("S_L)
i

V2 0 V2 0
(B.19)
where the polarization vector ey = |[Ey|/||Ex| is decomposed as
e = lEk a:l +1 IEkyI
7+ -
m Vit
k| — | Lk
€y, = \/_”Ek” Y (B20)
er |Ek2|
Y

and where the phase ¢y diseappeared because only the module of @f(") is used.
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B.2.1 Discrete set of monochromatic waves

The extension of the quasilinear operator to a discrete set of monochromatic waves
is immediate provided that wave-wave coupling phenomena are neglected. With the
electric field given by (B.1), the RF flux (B.12) is the sum over the contributions from

each frequency

S*F = " S (wy, Ep) (B.21)
b

with
SEF (wp, Ep) = —DF (wp, Ep) - Vp f (B.22)

where the diffusion tensor elements (B.16) for a given (wy, E;) are

F0 N 2
Dyf, = Z (_) DF (p, ws, Ep)

Wy
n=—oo
pLnfd n§)
Dyl = —— (1 - —) DRF (p, we, Ey)
ne—oo Pl @b Wh
Dll}lll?l: Z_l"’" 1— — ) DEF (p,ws, Ey)
’ e Pl Wb Wp
pifi= Y B (1-5) o ey

The diffusion coefficient (B.18) associated with a particular harmonic n and the wave

parameters (wp, Ep) is given by

8 (wp — kyvy — nQ2)
(B.24)

. me? d3k n 2

where @l(‘n), which accounts for the polarization and the intensity of the RF wave, is

given by (B.19)

n 1 i kiv 1 i kv
@](( ) (k, ek,b) = Eekb#e Jn—l (_J'Q_'L_) —+ 7§€k’b‘_€+ Jn+1 ( BJ’) (B25)

ol kivy
— J
+pl6k,b,u n( Q )
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and Ey; (k) is obtained from the Fourier transform (B.3) with exp = |Ey;| / [|Exs]-

B.2.2 Reality of the electric field

Because the electric field is a real quantity, it must be of the form

B(r,t) = % 3 (B (x) 0t 4 B (x) €] (B.26)

where E (r,t) = E* (r, t) is immediately verified. As a consequence, the total RF flux

can be rewritten as

SRF =) "sfF (w,,, %) + SRF (—w,,, ]’; ) (B.27)

b

Considering the expression (B.23) for the diffusion tensor elements, we can use

the transformation n — —n and the sum over all n’s to obtain the identity

E; X /0?2 E;
DI, (—wb, 5)- > (22 D5z (b, - 2)
) E o) o - 5)
n__.oopn Wh Wp 2
+0co
Q *
)-S5
n__oopu Wh Wh 2

2
2 *
—Wp, Eb) pl (1 - @> DRF (P, —W, 'Fi)
WP we 2

E;
which is identical to (B.23) with the transformation DRF (p, wy, E;) — DRF (p, —ws, 2" )

The Fourier component of E; associated with the wavevector k is given by

(B} ) ( / / / dr E} (r) e T = [Ey, (—k)]* (B.29)
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so that || (B), (9| = IBs (-1 and

l(EZ)k,b (k)' _ |Exp (=K)|
[©)s )] e (R

= ek,b (—-k) (B30)

Consequently, we get the following expression from (B.24)

D% (v ) = g, 5 55w s (30 ®31)

‘9(—7;) k, ekb ]' —Wp — k“’U“ + nQ)

and can use the transform k — —k and the symmetry of the delta function to get

RF * d3k 2
D—n (p’ —Ws, Eb) hm 37 ( 3 “ k b ” (B32)
X ‘91(:") [—k, €k (k)]l ) (wb — I{I”’U” — nQ) (B.33)
with
(-n) 1 —i{a+n) kJ_'UJ_
@k [—-k, €x.b (k)] = Eek,b,+e J_n_1 ?) (B.34)

1 +i(a+m) k_j_'UJ_ p“ k_L'UJ_
ey et g Al J_ [
+ ﬁek,b, € J +1 Q + DL €k,b|| D)

where we used the fact that k — —k leads to « - a+ 7 and k; — k. With the

property of the Bessel functions J, (z) = (—=1)" J_, (z), and using e~ = —1, we get

-n —ia k v
O™ [ s (0] = (=1)" | Tsernve s (2452 (®.35)
1 tia kivl) Py kivy
+\/§€k,b,-€ Jn—l( ) >+plekb|]J )
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In addition, we see from (B.20) that

exp+ = (€xp,—)
eip— = (Exp+) (B.36)

e = (erp)”

so that we get the identity
0™ [—k, e, (K)] = (—1)" [6™ (k " B
K —k e (k)] = (-1) K (K exp) (B.37)
Inserting back into (B.32), and comparing with (B.24), we find

E; E 1
Dﬁg (p7 —Wp, 71)) = DEF (p,CUb, _2—b> = ZD'rl}F (p7wba Eb) (B38)

so that finally, for a real field expressed as (B.26)
E(r,t) =) Re[E(r)e ] (B.39)
b
the RF fluxes can be expressed again as (B.21)

S*F =3 " SFF (wp, Ey) (B.40)
b

where SEF is given by (B.22) and DEF is given by (B.23), and where we redefine
(B.24) for real fields as

RF . me? d3k 2 | A(n) 2
Dn (p,wb, Eb) = Vh_xgo W (27{)3 “Ek,b” ‘Qk (k,ek‘b)’ (5 (wb b k”U” - TLQ)
(B.41)

B.2.3 Expression in spherical momentum coordinates

While cylindrical momentum coordinates (p“, p L) are the natural set of coordinates

for describing wave-particle interaction, the kinetic equation is rather solved in the
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spherical (p, £) system, which has the natural symmetry of collisions. To obtain the

expression for the coefficient in spherical coordinates, we use the coordinate transfor-

p=./pj +p}

p| (B.42)
\/Pi+ P

which is associated with the following diffusion tensor coordinates transformation

Dy, (1-8%) &J/1-8 §&/1-¢ % D,
Dpe £/1-8 —-(1-8% £ —&y/1 - &2 D,

mation

_ : (B.43)
D, £/ 1—¢2 ¢ —(1-8%) —&y/1-¢2 Dy
Degg & —E/1-8 —&/1-¢ (1-¢&%) Dy
and, using (B.23), leads to the following RF diffusion tensor elements
+o00
Dy, = Z (1 - &) D" (p, wp, Ey)
Dll):,t]I:E = Z ( 52 ) DRF (pa Wp, Eb)
" (B.44)
\/1 - n{l
D, =Y - ( & - b) DF (p, ws, Ey)

n=—oo

+00

1 nsl

D= 2 (1"52 Zb“) DXF (p,wy, Ep)
n=—oo

B.3 Diffusion coefficient for a Gaussian beam

B.3.1 Electric field with Gaussian transverse amplitude pro-

file

We propose to calculate the diffusion coefficient for a beam of limited transverse
extend with Gaussian profile. Note that it is somewhat incorrect to name such wave
a Gaussian beam, since this denomination has a precise meaning in optics and refers

to modes that include diffraction and are exact solutions of the wave equation.
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In the present case, we neglect the effects of diffraction and simply assume a field

of the form

2
E (r,t) = E (ro) cos [ko - ¥ — wot + o) exp (_Iigd+0|> (B.45)

where Eg (rg) is a real field, r is the position vector
r=zI + yy + 22 (B.46)

and ry is the corresponding "ray location”, which is the projection of r on the central

line of wavepacket energy propagation, which is along the group velocity v, so that
r-v,)v

I ——( g) g (B47)

2
Ug

The frequency wo and the parallel wave vector kg, are arbitrarily chosen. Then
the perpendicular wave vector kg is obtained from solving the dispersion relation

D (wo, oy, ko l), so that the wave vector k¢ is known. The group velocity v, is also
80(}0

determined from the dispersion relation, as vy, = T .
0 | D(wo,koy koL )=0
We stress the point that the expression (B.45) is in fact an approximation because
diffraction is neglected. In order to fully satisfy the wave equation, this beam cannot
strictly speaking have a constant width. This approximation is more valid if the beam

width is large compared to the wavelength
kod > 1 (B.48)

This is the limit where the beam is not well focused and is apparented to a plane
wave near the axis of propagation rg. A corollary is that the spectral width Ak of the
beam is small compared to ko, since Ak ~ 1/d. Within this approximation Ak < kg,
it is also valid to require that the dispersion relation D (wo, oy, ko J_) = 0 be satisfied

for the central value k; only.

303



The real field (B.45) can be expressed in the form (B.26) as

E(r,¢) = [173 (r) e~ 4 B* (r) eiwot] (B.49)

N =

with the complex field

o~

ikoT+i v = rof”
E(r) =Eq(ro) e exp | — 5 (B.50)

To simplify the Fourier transform operation, we define a fixed coordinate system
P
(2,9, 2') such that z’ be in the direction of energy propagation v, and the wave

vector kg lies within the (Z7,2") plane, which gives

g = IE’&?’ (B51)
ko = Kb, 3 + Kb 3 (B.52)

Within this system, the electric field (B.50) is expressed as

~ N N A 2
E (r) = Eo (z') eo==+ko:7"+i00 o3y [ ” 2_;22 )] (B.53)

B.3.2 TFourier transform of the electric field

The Fourier transform of the field is

_ / / / &r e *E (1) (B.54)

With k- r = k2’ + kjy' + k2’ we find

2 2
. a by snS il + z )
k) =E d3 —ik-r ikg x'+iky, 2" Hipo (y
k (k) = 0/// re e exp R

2
= 2nEe 6 (K, — k) /exp [—z’k; - gdz} dy' (B.55)

z/2
X /exp [—z’ (k. — ky,) 2’ 2d2] dz'
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The integrals are separated and can be solved analytically

/ exp [—ik; -3 d2] dy = V2w dexp[ (B.56)

o1 N2 g2
/exp [——i (k, — ky,) 2’ — %] dz' = V2ndexp [—(—kz—%z)i} (B.57)

klz d2 jl

and (B.55) becomes

(271')2 i ’ ’ kl2 + (k; - ké)z)2
k) = Eq e*?°8 (k! — — ;
where we defined

A%=$ (B.59)

Note that we can re-express the Fourier field independently of the coordinate system:

using the conditions kj, = +kg, in (B.58) and kg, = 0, we can rewrite

k — 2
_ m:é’” ] (B:60)

(2m)?
Ak?

Ey (k) = Eoe™8 (k! — kj,_) exp

and given that k, = k-®o and ko, = ko-®o, where ®¢ = v,/v, is the unit vector in

the direction of the energy density flow (2.43), the expression (B.58) becomes

(271')

0

Ex (k) =

0905 [(k — ko) -fISo] exp [— ﬂkz_T}:é)‘lL} (B.61)

B.3.3 Power carried by the beam

The time-averaged energy density flow related to a Fourier component of the field is

normalized according to (2.36) as
Eoc
sic (k) = — [| B (K)||* @i (k) (B.62)

where the normalized power flow ®y (k) is a smooth function of k, and since we

assumed Aky < kg, we can take ®y (k) ~ ®y (ko) = ®o. The total energy flow in
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the beam is the sum over all Fourier contributions, and is therefore given by

S— / / / d3k3 i (K) (B.63)

€oC d3k b kP4 (K, - k)’
= oo, Bk [ 256 - i e |- (864

goc . (2m)%7
= —P
2 AR

dk’
™ |[Eo|? / Do 52 (k. — k5,) (B.65)

where we used Parseval’s theorem

/ P | R R = / dz' |F (o) (B.66)
with Fy (k) = 6 (k, — k{,) such that

A D1
F) = / TR (K, ~ Kp,) = e (B.67)

We get

EoC

S = 7Td2L’ (D() ”Eo” (B68)

where L’ is the plasma size in z’ direction in which the beam propagates. We also

get an integrated formulation of (2.43) for the Gaussian beam
S =Wy, (B.69)

where

W = nd?L. 2 ||EoI| Sk (B.70)

is the total energy in the beam of effective volume wd?L/,.

The power carried by the beam is the total energy flow per unit length along the
beam propagation path, and is therefore given by P = ||S|| /L., so that

EoC
P = md® == || Bol| | Eol|” (B.71)
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B.3.4 Diffusion coefficient

For a Gaussian beam characterized by a single frequency wp, and the parameters kg,

Ey and Ak, the diffusion coefficient for harmonic n is (B.41)

2 3
RF _ tias TE d’k 2 | (™) 2 _ —
DX (p) = Jim 7 [[[ oy Il O G e0)| 8 (o — by = n0)  (B72)
with (B.19)

1 . k 1 ; k k
o = Loy e, (_gi.) + g T, ( _L'U_L) n gleo,njn ( uu)
1
7

V2 Q V2 Q
where, using (B.61), we defined the polarization vector

o = |E(®)] _ [Eq
CTIE® E

(B.74)

Because the polarization term 6" (B.73) is a smooth function of k and since we
assumed Aky < ko, we can make the approximation G)E(") (k, ep) =~ @f(n) (ko, €9) = @(()n)

using the Gaussian term. In addition, we can be rewrite the resonance condition as
1
é (wo — k”’U” — nQ) = F)—”—I(S (k” - kllres) (B.75)

where

Kjjres = et ; iy (B.76)
[

Then, using (B.61), the diffusion coefficient (B.41) can then be rewritten as

me |Eo|® 27

2
DX (p) = lim O] 17 (b, wo ko) (B7T)

where we need to evaluate the integral

I (p, wo, ko) = ///d3k 6 (k) = kires) 8 | (k = ko) -®] exp [—“k—&?ﬁ] (B.78)
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Using the expression (B.71) for the power carried by the beam, we can rewrite (B.77)

as

P 2me? 2
(p) = VﬁivmﬂéwhﬂA” ’

I™ (p,wo, ko) (B.79)

Evaluation of the integral 7(™

We define the coordinate system (z,¥, z) such that the magnetic field is along the z
axis, and the group velocity v, - and the unit vector ® - lie within the (Z,2) plane.
Because of the cylindrical symmetry of the plasma around the Z axis, the power flow

must be within the (ko, Zz) plane (see Section 2.1.1), and we define then

ko = kojz + koi T (B.80)
along with
® = cos §7 + sin B (B.81)
which gives
Doy
cosff =
|!D‘I’o|| (B.82)
sin 8 =
&N
so that
(k — kO) P = COS,B (kI" - ko”) + Sinﬁ (km — kO_L) (B 83)
Ik — kol|* = (ky — ko) + (ke — kor)” + k2
Integrating (B.78) over k) then gives
) _ (Fpes = kop)” 2
' (p,wo, ko) = exp Ak2 d°k (B.84)
ky — kou]® + K2
x 82 [cos,B (k“res - k’g“) + sin B (ky — kO_L)] exp [_ ([ Aozl y)
0

In the two-dimensional space k,, for any integrable function Fy (k, ), Parseval’s the-

/ / LT / / i |F(ro)) (B.85)
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where r, is the corresponding real space and F'(r,) is given by

// Th bor B i) (B.86)

In order to apply Parseval’s theorem to (B.84) where

([ks — koa]* + K7)
NN

Fx (k1) = 6 [cos B (Kijres — koy) + sin B (k, — koo )] exp [“

(B.87)

we first do the Fourier inverse transform (B.86)

F(r,)= / / @ ’” et #*uY§ [cos B (Kjres — ko) + sin B (kx — ko1)] (B.88)

([k,; — kor)? + k2)
SAK?

X exXp l:—

Integrating over k,, we obtain

1 cot? B (kjes — Koy)°
(271’)2 F (r_‘_) = gl.I—l—B exp [-—- (2Akg “) +1 (k()J_ —cot 3 [kl[res - k()”]) x
(B.89)
k‘2
X / dk, exp [ 5 Ak2 + zkyy]
and now, integrating over k,,
1 C0t2)6 k Tes kO 2 .
(27r)2 F (r_L) = gm exp {_ (2210(2) ”) +1 (ko_l_ — cot ﬂ [k”res b k'o”}) T
(B.90)

2 A 1.2
x V2w Akgexp {_y A;ko]
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Inserting (B.90) into (B.85), we find

[[@raihcenr = @ [[ér Fap

— koy)”

_ A%k, x _COt2 8 (kllres
"~ 2msin?f Ak2

X //d%"l exp [——yzAkg]

NZ3
//dzrl exp [—yzAkg] = LEA_kO—

and integrate

(B.91)

(B.92)

where L, is the space extent in the z direction. The integral (B.84) therefore becomes

2m sin? 3

sin? BAkZ

k res k 2
I(n) (p7w0ako) = Mex {:_LO—”)}

Diffusion coeflicient

The diffusion coefficient (B.79) now becomes

2

PL., ¢
DIF (p) = lim 2"

(n)
Voo V EQC(I)() I'U||| I@()

1
— €X
\/7_T-Ak0|] P [

where &y = ||®y|| and where we defined

and used (B.81)

L, = L |sin |
Using (B.82), we can rewrite
¢
Ako“ = | OllAko
Dy
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Ak2

of|

|

(B.93)

(B.94)

(B.95)

(B.96)



Limit of a plane wave

The limit of a plane wave can be retrieved from the expression (B.93) by taking the

limit Akoy — 0 for which we have the following asymptotic expression

1 (Kires = Kop)®
Jalke P [_ ARZ — 6 (Kijres — Koy (B.97)
0
PL.  &oc
o = P ||Eo (B.98)

where we used (B.71) and let the volume 7d>L!, <= V go to infinity as Aky — O.
This gives

e’r 12
D,P}F (p) - ‘7 HEOH2 1@(() ) o (wo - ko“’l)” - nQ) (B.99)

which is the same expression as found in Refs. [58] and [59].

B.4 Diffusion coeflicient in a slab geometry

B.4.1 Diffusion coeflicient for a Gaussian beam

The diffusion coeflicient for a Gaussian beam in a uniform plasma (B.93) can be
extended to a slab geometry where the inhomogeneity scale length L is much larger
than the wavelength Ag = 27/kq , such that the WKB approximation is valid, and
also much larger than the thermal electron Larmor radius pre = vre/wee, such that
wave particle interaction remains unaffected. With the magnetic field still is in the
z direction, we assume that the inhomogeneity is in the X” direction, and define
y" = 2" x X". The parallel component of the wave vector ko and the component
perpendicular to both the field direction and the inhomogeneity, kg,, are conserved.
Because kg, is conserved while ko, undergoes a large upshift in the mode conversion
region, we have typically k5, < kor. Therefore, the perpendicular wave vector is
directed in the direction of inhomogeneity, and we have kj, = ko = kor. The

inhomogeneity is therefore in the X direction.

Because the normalized power flow ® is in the (X,z) plane by symmetry in the
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dispersion relation (B.81), we have (B.82)

(DOQ: = q)O_L

(B.100)
Dy, = By

In a slab geometry, it is therefore possible to determine the direction of ®, with respect
to the direction of inhomogeneity X simply from solving the dispersion relation, which

gives @y, and Pg.

The plasma electron temperature T, () and density n. (z) as well as the magnetic
field (or gyrofrequency we. (z)) are all slowly varying functions of z. In that case,
the beam power P (z), perpendicular wave vector koj (x), power flow ¥, (z) and
polarization e (z) are also slowly varying functions of z. Across an infinitesimal

flux-surface of width Az (x), the beam path L/ becomes

(I’o (J?)

L, (z) = Az (z) ———I(I)M @]

(B.101)

and the diffusion coefficient for a Gaussian beam (B.93) becomes in a slab plasma

VTe W n 2
DI (p,z) = DX (2) =2 | (x)

L ool (jres () = koy)”
ﬁAkOH (iI}) Akg” (.’L’)

o] e
(B.102)
with the constant factor
. P(x) e’mw
DRY (£) = lim B.103
n,0 ( ) Voo A EoWo |q)0L ($)| VUTe ( )
where we defined
Az (z)
NIOR A (B.104)

with A being the area of the flux-surface (¥,2).
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B.4.2 Limit of a plane wave

In order to simplify the calculation of the absorption coefficient and power deposition
profile, we take the limit of a plane wave, based on the condition (B.48) which gives
Ako < ky. Applying the limit Aky — 0 in (B.102) we get the asymptotic expression
(B.97)

1 (k”res - kO]])2 NWce
—exp | =DM T O s (s — Koy) = |og| 6 (wo — vk —
Tk P [ A |7 (Ktees = hion) = [on] 6 { wo — wykoy — =

(B.105)
and f}im _Pjg_:c) = Sinc (z), where sipc (z) is the incident energy density flow on the
flux-surface (¥,%). The diffusion coefficient (B.102) becomes

RF _ PRF () YTe |on) |2 _ ko) nwee (x)
DI (p,2) = DI () 2% oY (o) (1 - 222 — e (B.106)
with (B.103)
2.
DRb (z) = —— e (@) (B.107)

 eowo [PoL ()| vre

B.4.3 Density of power absorbed in the linear limit

We propose to calculate the density of power absorbed using the quasilinear operator

in the linear limit.

General expression

The expression for the density of power absorbed from RF waves is given by (3.277)

prE _on [T g0 P +1d GRF B
abs = 2T ; p 1 ¢S, (f) (B.108)

UL

where SK' (f) is the RF induced flux (B.12) in the momentum direction p, with the

expression (A.123) for the gradient in spherical momentum coordinates

of | V1=8 gpd
Sy¥(f) = —D;},,Fb% o ; D;F-a% (B.109)
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The corresponding quasilinear diffusion tensor elements are (B.44), expressed here

with the transformation n — —n for electrons (see Section 3.5)

DEF = Z (1 -¢2) DR¥(p) (B.110)
2 \/1 - NWee
= H_Z:OO [ — &~ %] Dy¥(p)

with the RF quasilinear diffusion coefficient (B.106)

Drfz‘F( ) DRF?)TE @(”)

5 ( L —”“’“) (B.111)

Wo TYWo

For electrons, the polarization term (B.73) can be written as (3.194) with a = 0 since

koL = kog, which gives

o1 1 p
oy = %60,+Jn+1 (z) + ﬁeo,—Jn—l (2) + ;‘l“eo,ll‘]n (2) (B.112)
with (3.195)
LT (B.113)
wCC me

Polarization term for electrostatic EBWs

Assuming that EBWs have an electrostatic polarization, the polarization term can

be approximated to (5.20)

JIn(2) pre l Pn]
@(n) n + N, B.114
NoiBre 1 v OHIBTePTe ( )
with the definitions (2.108) and (2.103)
NWee
Yn = w_
p?re (B.115)
ﬂTe =
MeC
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Relativistic Maxwellian distribution

When the evolution of the electrons is dominated by collisions, we tend to the linear

limit where the electron distribution function is a Maxwellian, given by

Ne 1 ymec?
_ _ B.1
Tu () 4rm2cT, (mecz) exP [ T, J (B.116)
Ky| —
T,
where ~y is the relativistic factor (3.21)
p?
=4/1 B.1
vy + mic (B.117)

In order to make the non- and weakly-relativistic limits more apparent for further

approximations, we rewrite (B.116) as

Ne Te p2
fur = (27rmeTe)3/2R (mec2> P [_ (v+1) meTJ (B.118)

where R (z) is a normalization factor defined as

R(z) = \/gxl/z;g%—lj exp [-—ﬂ (B.119)

which has the following Taylor expansion

(132 1050 o
R(z) = [1+ e T 15g% +0(z )} (B.120)

The derivative of fp; with respect to p is

Ofw _ &yOfm _ __ P
8p dp 8’)’ '7meTe

fu (p) (B.121)

while the derivative of fj; with respect to £ is zero since the Maxwellian distribution
is isotropic.

Therefore, in the linear limit with a relativistic Maxwellian distribution, the den-
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sity of power absorbed (B.108) reduces to

[ers] 4 +1 +o0
p
Pg:’M = 2”/0 dp ~2m2T, /_1 dg Z (1 _52) DSF(P)fM (p) (B.122)

n=—o

where we inserted (B.109) and (B.110). The density of power absorbed can be de-

composed into the contribution of each harmonic

+00
PRt =>" Pt (B.123)
with
RF,M __ ® p* i 2\ HRF
Posn =21 | dp —— d¢ (1 - €%) D" (p) fum (p) (B.124)
0 Y meTe -1

which we will consider separately from now on.

Expression in cylindrical coordinates

From here on, it is easier to work in cylindrical coordinates (p”, p J_), with the trans-

formation (A.114)

py =p (B.125)
pL=py1-¢2
and (B.124) becomes
RE.M 0 +o0 pz
Pisn =27 / pidpy / dp) ——5=DrF (p)fu (p) (B.126)
0 —00 FY meTe

Normalization

The momentum coordinates are normalized to the thermal momentum according to

D|| = PreP| (B 127)

D1 — PreP1
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so that (B.126) becomes

+o00
Pl = W— / pidp; / dpy ZLDRF( P)fu (P)

-0

with the normalized Maxwellian distribution (B.118)

-fM : (ﬂTe) exp [ —————(pﬁ +pi)j|

(2m)" (y+1)
The diffusion coefficient (B.111) becomes

Dy* (p) = DrPre 65"

2
5 (1 _Plg Ny - y_>
Y Y

with (B.114), (5.21), (B.117)

JIn (2)
NO_L/BTe
z = NO_L_p.L,BTe
w,

Ce

7=\/1+(pﬁ+pi)ﬁ%e

@(n) [yn + NOIlBTepH]

Expression with EBW polarization

We can transform

) [y —1]
g (1 = 7 Preloi = ) lNouI Bre <p“ T /BTeNOH)

with the definition (5.13)

Do = (1 —yn)
" ;BTeNOH
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(B.128)

(B.129)

(B.130)

(B.131)

(B.132)

(B.133)



so that, inserting (B.130) and (B.131), (B.128) becomes

PREM _ gp_ TeDno
abs,n meNZ 52, | Noj|
00 “+o0 1 2 ['7 _ 1] i
d d —J2 n N 6 - -
X \/(; prdpy [oo p" 5 n (Z) [y + OIIIBTepH] (p" Dn ﬁTeN()”) fM

(B.134)

The integration cannot be performed exactly because dependence upon (p”,p L) in
the relativistic factor v. However, it is possible to obtain approximate analytical

expressions in the non- and weakly relativistic limits.

Non-relativistic limit

To obtain an expression for the density of power absorbed in the non-relativistic limit,

we simply need to take the limit ¥ — 1 in the expression (B.134), which gives

pREMur _ o "eDro dp p /+°od J2 (2) [yn + NoyBrep]” 8 (py —7a) T
REA meNgJ_,B%elNo”l A L PL . D|/n Yn 0| PTeP) Py — Pn) J mor
(B.135)

where the non-relativistic Maxwellian is derived from (B.129)

(pﬁ + pi)

- (B.136)

- 1
anr = Wexp

The integration in py is straightforward, using the resonance condition

2 2

1 n DRF ]
RF,Mnr _ ©nd ___exp [—%’l} / dpy piJ; (2)exp [—%] (B.137)
0

abs,n - N 21 meNon_ﬂ%e INOII |

where we used

Yn + N0]|,8Tepn =1 (B138)
The integration in p, is performed using the identity [[59]]
0 ) 0 1 CL2 a2
d “bw?] = —exp |- 1, (E '
/0 w wJ? (aw) exp [—bw?] 55 ¢XP [ Zb} I, (Zb) (B.139)
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which gives

= 2 Wo vl
/ dpy p1J; | NorBre—>p1 ) exp | —=5=| = exp[=Ae] In [Ac] (B.140)
0 Wee 2
with
Wo 2
Ae = (]"'O_LPTG:)2 = (NO_L,BTe ) (B141)
ce
We get an analytical expression for the density of power absorbed in the non-relativistic
limit p
1 neD p2
PRFMuor 0 T[] ex [— —ﬂ] B.142
abs,n \/’2‘7‘; meN&ﬂ%e INOH I [ ] p 2 ( )
where
Ly [Ae] = exp [—Ae] In [Ae] (B.143)
We recall (B.107)
2 .
DRE — _ ¢ T0imc B.144
07 gqwo |Po | vre ( )
so that
1 1 w2, wor 8 p2
PREMur —pe 20 ¢ T [A] ex [——"] B.145
abs,n /_271' Nozj_ﬂ%e INOHI Wg c |(I)0J.| [ E] P 2 ( )

where the electron plasma frequency is (2.60)

e2n,
= B.146
Wpe g ( )

Weakly relativistic limit

In the weakly limit, we do a Taylor expansion of the gamma relativistic factor for

small Bre

7= \/1 + (n}+2) B2,
=143 (o} +92) B2+ O (B%) (B.147)
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When considering the expression for the power absorbed (B.134) with the Maxwellian
distribution (B.129), we see that relativistic corrections (B.147) will come to the order
(2, everywhere, except in the resonance condition, where the relativistic corrections
are of order fBre/Npj. Therefore, we only keep relativistic effects in the resonance

condition in (B.134), which becomes

PREMwr _ o neDfm{B
absim meN§, 57, INOH'
* e 2 2 -1+
X p1dpy dpy J2 (2) [yn + NoyBrepy] 8 |p) — Pn — F vnr
0 —00 ,BTe]V”

(B.148)

where the non-relativistic maxwellian in given by (B.136). This correction of order
Bre/Noj can be significant, and corresponds to a relativistic shift of the resonance
curve pj = pp+(7y — 1) /Bre Ny in momentum space, towards higher py when Noy > 0,
and towards lower py when Ny, < 0. The consequence of this shift is therefore a
relativistic increase of the damping for HBF approach, and a relativistic reduction of

the damping for LBF approach.

Case with |N0||| < Pre

When Ny < Bre, it is not possible to use a perturbative approach in calculating pj
from the resonance condition. In fact, the existence of resonant electrons imposes a

condition on p,. From the resonance condition

p|=pn+ (B.149)

we obtain the same expression as in (5.10) and get a minimal (p; = 0) condition for

the existence of resonant electrons (5.11)
Yn > /1 — Ngll (B.150)

which affects the LBF approach (v, < 1).
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Case with INOIIl > Bre

< 0.1

"~

This inequality is generally valid in EBWCD, where typically |N0”| ~ 1 and Bre
In that case, to which we restrict ourselves in the remaining of this section, we can

calculate p; perturbatively from the resonance condition, which gives

P =DPn+ 2[;[ (p: + ) + O (B3/ IN()”l (B.151)

Resonance in |p||| > py limit

In order to obtain an analytical expression for the density of power absorbed in the
weakly relativistic limit, we have to neglect the relativistic corrections involving p |,
meaning that we assume that resonant electrons satisfy lplll > p,. This approxima-
tion is very good in the LBF approach, as we saw in section 5.3, but not in the HBF
approach where we have typically ] pul ~ p,. Dropping p, terms in the relativistic

correction means that we neglect the curvature of the resonance line.

Then, in the limit |p||| > p, the approximate resonance condition in the weakly

relativistic limit (B.151) gives simply

5Tepn> [1 - yn]
~o, 1+ =p. |1+ B.152
=P ( 2Ny 2Ng, ( )

where we observe that the weakly relativistic correction are independent of Sr..

Using the resonance condition, the integration in py gives

PRF.Muwr _ 1 neDrg (4 + Noyrep ]2
abs,n \/Q—WmeNg_Lﬂ%e |NO|] l n 0fjMTefn

2
X exp —%(n[u(lzNzyn)D /0 pidpy J2(2)exp [—%} (B.153)

ol

where the weakly relativistic correction (B.152) was not kept in the y, + NoyfBrep

term because NojBrepy is itself a corrective term. The integral over p, is done in
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(B.140), giving

2

1 neDRE 1 (1—1yy,)
PRFMwr _ n,0 TnXe]exp |—= | pn |1+ —=22 B.154
b V21 meN§, Bz, | Noj | 2 2N B

where we used (B.138). We recall (B.107)

2

)i — B.155
™0 gowp |Po| vre ( )
so that the weakly relativistic density of power absorbed becomes
2
PREMwr _ 1 1 f’éﬂ Sinc 1 [\ exp 1 oo |1+ (1—wn)
abs,n V2T N(?.Lﬂ’?’e |N0“| w? ¢ I(Doll ne 2 " 2N02”
(B.156)

B.4.4 Absorption coefficient

The absorption coefficient defined in (2.50) is expressed here as a function of power
absorbed related to the RF quasilinear operator, which for the n*®* harmonic contri-
bution gives

PRF

ol = e B.157
" Tl (150

where ||so|| is the energy density flow, which is directed along ®¢ (2.36) such that

Sinc __ |(I)0_L|
Tsoll ~ @ (B-158)
and we find -
PRF 14
ot = —==n [Dou] q;’:' (B.159)

In the linear limit where the distribution function is a Maxwellian, we find, using

(B.145) and (B.156):
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e In the non-relativistic limit

1 wor 1 p2
QREMnr e [ [Ae] exp [——"} B.160
vV 2r C O)g N(?J_ﬂ%e lN()” | (bo [ ] 2 ( )

1 wor wf,e 1 Fn [Ae] I: pz]
= — exp |—=2 B.161
2r ¢ wze ﬂTe INOHI (I)O /\e P 2 ( )
e and in the weakly relativistic limit
1 worw? 1 1 (1—yn) ’
RF,Mwr 0 pe — Un
)’ = —= CoPelexp |—={ pn |1 + ——=—
V21 ¢ wi N2 B3, |No| ®o da 2 ( " [ 2N3; D
(B.162)
9 2
1 n [\e — Yn
_ 1 wml’_u_l% F[)\]exp _}_ . 1+(1 32/)
V2r C We IBTE |N0||| ‘I)O )‘e 2 2N0”
(B.163)
where we recall (2.108) (B.115)
NWee
UYn = “o
o= (1 - y,) (B.164)
" BreNy|

B.4.5 Power deposition profile
Evolution of the incident power density

In our slab geometry, we consider the case of a EBW propagating towards the n'®
cyclotron harmonic resonance where it is completely damped. The magnetic field
variations are assumed to be monotonic and increasing in the positive X direction,
and the n'® cyclotron harmonic resonance is located at x = 0.

Assuming that harmonics do not overlap, so that we can consider separately the
damping near harmonic n, the energy equation (2.21) gives, in steady-state and in

slab geometry

dSO:c
= —oPyr (B.165)
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where sg; = Sinc and ¢ = +1 for low B-field approach (LBF) where z < 0 and is
increasing towards resonance, and 0 = —1 for high B-field approach (HBF) where
x > 0 and is decreasing towards resonance. Introducing the absorption coefficient
(B.159), we get

dSine Py grr

=—0 0, Sinc B.166
dx l(I)()J_l ( )

We assume that the wave propagates towards the n'" harmonic resonance from a
position zy (negative for LBF approach, positive for HBF approach) where the initial

incident power density is Sinco- The evolution of the incident power density is then

z _Po _RrF
f“00|‘1’0J_|a" dx

Sine () = Sinc0€ (B.167)

Narrow damping region approximation

The damping region is assumed to be sufficiently narrow as compared to plasma non- .
uniformity scalelength L, such that the plasma properties such that temperature and
density can be considered as being uniform across that damping region. In addition,
we assume that wave propagation characteristics such as the perpendicular wave
vector kg, the polarization vector ey, and the power flow ®, are also constant across
the damping region. This assumption may seem questionable with regards to the
rapid changes in these wave characteristics near cyclotron resonances, as a function of
Yn = NWee/w, as demonstrated in Section 2.3 from solving the local dispersion relation.
However, it will turn out that the power deposition profile is rather insensitive to the

typical variations of the wave parameters across the damping region.

Indeed, the variations in the absorption coefficient ¥ are dominated by the expo-
nential term in (B.160) and (B.162), which is expressed as (B.133) p, = (1 — yn) /BreNgj|-
The relative variations of p, are mostly sensitive to the variations of the magnetic
field, because p, depends upon the difference (1 — y,) in the vicinity of y, ~ 1. It is

therefore justified to take all parameters constant in the damping region except y,.
We can define the magnetic field amplitude variations scalelength Lg > 0 such
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that

idB B
FEll e (B.168)

Near the damping region, the variations of B are assumed to be apprximately linear

so that Lg is a constant. We can rewrite the power deposition profile (B.166) as

Qo gr
= G, n) Sinc \Yn B.169
= oo () sn (1) (B.169)

where we used y, = enB/(mewo) =~ 1. With the following identity, obtained from

(B.133)

dyn
dp, = — B.170
P Bre Ny ( )
we can rewrite (B.169) as
d'sinc (PO RF
=olL eN n ) Pinc \In B.171
o = o Lo Nuyrg <08 (4n) sme (1) (B.171)

The peak pi? in the profile is then given by

d2 inc
d‘92 =0 (B.172)
P lp,=pm
which leads to
doBF dSipe
~ SinC(pgl):_an(g)_
dpn Pn=py' dpn Pn=pR
o))
= _ULBIBTBNOHI(I)_O(_)L—I [afllF (prr?)] ’ Sinc (p:) (B173)

such that the location p* of the peak in power deposition profile is given by

daTI}F @0 RF\2
[ dpn +0LB/6T€NO“I—'I)_0_—L—| (an ) }pn=pw =0 (8174)

325



Linear non-relativistic limit

In the linear limit without relativistic effects, the absorption coefficient is given by

(B.160)

2
QBFMrr (Y =, exp [——I—;ﬂ] (B.175)

where we define the coefficient

1 wom wge 1 Ty [Ae]
Qon = _pe B.176
T Ve w2, Bre | Noj| @0 e ( )
which is assumed to be constant across the resonance region. We find
daTI}F,Mnr
—.dpn — _a’,}}F,Mnl‘pn (B.177)

which is inserted in (B.174), so that we get an equation for p™™™ in the non-

relativistic limit

m,Muar 2
|| = pon exp [—pLz——LJ (B.178)

where we keep in mind that p™M™ is of the same sign as oN) for either HBF or LBF

approach, and where we defined the dimensionless parameter

®
Po;n = LpPre 'Nonl ﬁao,n

. 1 wom w]%e Ly T, [)\e]
ver ¢ wi |®or]l A

(B.179)

Linear weakly relativistic limit

In the linear limit with weakly relativistic effects, the absorption coefficient is given

by (B.160)

1 :BT Dn 2
RF,Mwr — _ = e
o, (pn) Qo n €XP { 2 ( n [1 + 2]\[“ :l) (B].SO)
so that
dag® M RF,Mwr
dpn = —q, Dn (B181)
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where the weakly relativistic correction is dropped in the terms outside the expo-
nential, consistently with our narrow damping region approximation. Inserting in

(B.174), we get an equation for p™M"¥* in the weakly relativistic limit

I M | 1 M /BT pm,er ?
PR | = ponexp | -5 (pﬁ’ v [1 + —e—"——D (B.182)
2 2Ny

where we keep in mind that p™M™ is of the same sign as o N for either HBF or LBF

approach, so that we get

2
1+ MD (B.183)

Mwr | _ _l m, Mwr
R I (R e
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Appendix C

Differential Operator in the DKFE

code

In the DKF code, the differential operators in the kinetic equations (3.118-3.122) are
bounce-averaged and solved as a function of (p, &), where the pitch-angle coordinate
&o represents the value of £ as the electron passes through the point of minimum B-
field on a given flux-surface ¢. For the sake of readability, we will omit the superscripts
(9 and subscripts ¢ refering to bounce-averaged quantities in this chapter, keeping in
mind that all operators are assumed to apply to the (p, &) space and all fields are
bounce-averaged. More explicitly, one can refer to the notation equivalence prescribed

in (4.1):

(C.1)

~
e
0~ «

k)

DY

=
o

Fy

]

P

We need to calculate the momentum space differential operators (4.2) corresponding

to the fluxes Sy (fo,Dp,Fp), Sp(9,Dp,Fp) and S, (f, ﬁp,i‘p). On a given flux-
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surface 1, at time ¢, (the field dependence upon [ and k will be kept implicit in
this chapter), the operator associated with the diffusion tensor D, and the convector
vector F, and acting on the distribution function f is discretized according to this

operator is expressed as (4.23)

i=i+1 j'=j+1

szp'sp|z+1/2y+1/2 Z Z My sry2,50 4172 fv 417254172 (C.2)

'=i~-1j'=5-1

Using the operator differentiation scheme (4.23) with (4.24), the flux decomposition
(4.25), the gradient differentiation schemes (4.26) and (4.29) and the interpolation

scheme (4.32), the elements M;y1/2j741/2 are given by

1- §2
Di+1 j+1/2
M it = D 1 -6
i +3/2,5'+3/2 Apisis Db T A p€,it1,j+1/2 ( p,1+1,]+3/2)

Aj+1 Piv2 V 1-¢&n

Ajg1/2 Apip1 + Ap; A&j1a/0

+ Depivijzger (1= Oivsszim) (C3)

)‘j+1 (1 .7+1)
Ajr1/2 A§J+1/2A€y+1

Pi+1 V J"'l/z

i )
t Bpisys Abas  AG, DreitLi+l/20piela2

V ]+1/2

i 1-6,,
A1"z+1/2 A1 + Ag; D1z ( pyir+3/2)

1+1 Pz+1/2\/ J+1

i 1 —d¢; C4
)\]+1/2 A§]+1/2 5 i+1/2,5+1 ( £, +1/2,J+1) ( )

M2 5432 = — Deeitvi/2,5+1

\/ ]+1/2

M'/__ 4 5
i—1/2,7+3/2 = Apz+1/2 A§J+1 +A§J péu+1/2 p.i,j+3/2

f1 _ ¢2
_ Ajt1 Dit1/2 1 j+1

Aj+1/2 Apiv1 + Ap; Ajy1/0

Depiv1/z41 (1= O¢i-1/25+1)  (C.5)
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 Apit12Ap;
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