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Abstract

The dynamics of space structures with discrete, non-hysteretic, nonlinear,

joints are analytically and experimentally investigated. The structures are

modeled as long thin beams with a single discontinuous joint at its center. The

joints are piecewise linear in nature and represent joints of asymmetric stiffness

and joints with dead-band. The nonlinear joint causes energy to be transferred

among structural modes. The apparent damping of the modes can therefore

change. The beam's damping due to modal coupling is calculated as a function

of the beam and joint parameters. An experiment is developed which measures

damping while jointed beams are lofted in vacuum to simulate weightlessness

and the vacuum of space. The experiments are designed to confirm the

analytical model.

An analytic model is developed to model space structures as continuous,

damped, engineering beams and a piecewise linear joint. The use of

continuous models eliminates the possibility of trapping energy in the lower

modes of a system due to finite degrees of freedom. Proportional strain rate

damping is assumed in the model and is shown to decouple the mode's

amplitudes and energy. Independent equations are used to model individual

modes and assign modal damping rates. The transfer and dissipation of energy

is calculated on a mode by mode basis. The effective damping rate of the

beams is calculated for a variety of joint configurations and beam internal

damping rates.

Experiments with structures similar to the jointed beams used in the

analysis were conducted to correlate with the analysis. The experiments were

performed in the MIT ASTROVAC where vacuum and weightlessness can be

simulated for up to 1.75 seconds. Each structure was lofted from the bottom of a

vacuum chamber, resulting in free-fall from the time it left the launcher to the
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time it landed. The accelerations the structure underwent during launch were

used to initially excite the motions of the structure. Strain gauge data from the

structure was retrieved via thin wires stretched between the structure and a

follower system, which acted to reduce the influence of the wires on the

structure. The correlation between the analysis and the experiments was

generally good.

The models used to examine damping due to modal coupling are

relatively simple but some inferences are established which may, with some

careful consideration of the limits of this analysis, be applied to more complex

structures. The inferences indicate that damping due to modal coupling is not

important unless the modal coupling is dominant and the damping rates in the

coupled modes are greater than the damping rate of the primary mode in

oscillation. It is also indicated that beating between modes is also a function of

the relative damping rates of the modes.

Thesis Supervisor: Professor Edward F. Crawley

Title: Associate Professor of Aeronautics and Astronautics
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b Complex shape factor, initial system.
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c Complex shape coefficient.
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constant for a beam section.
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AZM% Normalized difference in the internal damping rates of the
first and the upper sub-system modes.

E Modulous of elasticity, N m-2, assumed to be a real constant
for a beam section.

E Structural energy, a real function, J.

f(x,t) External forces applied to beam, a real function of x and t.

(D Complex mode shape function.

i Imaginary unit, fA.
I Moment of inertia, m4, assumed to be a real constant for a

beam section.

K System proportionality constant.

K1 Rotational spring stiffness of flexible spring, (KL), real, N m.

K2 Rotational spring stiffness of stiff spring, (KL + KN), real,
N m.

KL Rotational spring stiffness of linear spring, real, N m.
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N m.

Ks Rotational spring stiffness of spring S, real, N m.

Kw Linear spring stiffness, real, N m-1.

1 Beam length

Is Wire bracing moment arm (stand off) length, m.

m Mass per unit length, kg m- 1, assumed to be a real constant
for a beam section.

M Point mass mass, kg.

1.j*k Complex modal mass, a function of two modes, j and k,
complex conjugate notation.

Int=l Complex modal mass, a function of two complex modes m
and n.



Vnm Complex orthogonality coefficient, a function of two complex
mode frequencies and shapes n and m.

SSQ Sum of least squares residuals.

t Time, real.

'rm Transfer coefficient, a function of two complex mode
frequencies and shapes of two systems.

u Assumed complex beam solution.

v Complex displacement, initial structure.

V Beam displacement, initial system, m, a real function of x
and t.

w Complex displacement.

W Beam displacement, m, a real function of x and t.

WH Homogeneous portion of beam displacement solution, real.

Wp Particular portion of beam displacement solution, real.

)o Complex frequency, initial system.

co Complex portion of complex frequency n.

Q Complex frequency.

QNL The natural frequency of the first mode of the structure
including nonlinear effects.

x Position along x axis, real.

Y Complex time function.

NV Complex mode shape function, initial system.

Z Complex time function, initial system.

z % Normalized modal damping rate, equivalent to damping
ratio of mode if QNL = .

Modal critical damping ratio
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Sub-Super-Scripts

( )B

( )B

( )j

( )L

( )M

( )n

( )R

( )S

( )T

Operators

()

( )

( )

( )'

( )-
d
dt

2

d t

d
dx

Definitions

Subscript A, B, C, or D indicates the beam section, B is the
general beam section symbol.

Superscript A, B, C, or D indicates the beam section, B is
the general beam section symbol.

Subscript j or k indicates the complex mode number.

Subscript L or R indicates the left or right end of the beam
section.

Subscript M indicates the point mass or the beam section
where it is located.

Subscript n or m indicates the real mode number.

Subscript L or R indicates the left or right end of the beam
section.

Subscript S indicates the rotational spring or the beam
section where it is located.

Subscript T indicates the time of sub-system transfer.

Definitions

Superscript *, indicates complex conjugate.

Superscript dot, differentiation with respect to time, t.

Double superscript dot, twice differentiation with respect to
time, t.

Superscript prime, differentiation with respect to space, x.

Double superscript prime, twice differentiation with respect
to space, x.

Differentiation with respect to time, t.

Twice differentiation with respect to time, t.

Differentiation with respect to space, x.
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d 2

d x Twice differentiation with respect to space, x.

e() Natural exponent of ( ).

In ( ) Natural log of ( ).

L ( ) Indicates operator of ( ).

( )It Evaluated at time t.

{ } I,, Evaluated at position x.
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Chapter 1

Introduction

1.0 Summary

The design requirements of large structures in space are very different

from those of similar structures on earth. The space environment, the lack of
gravity, and the high cost of transporting the structure into space, changes the
importance of various design considerations. The differences can be

summarized by the three points:

* The dominant loads in large space structure will be oscillatory,

* The natural frequencies of a large space structure will be closely

packed and overlap the load frequencies,

* The damping mechanisms present in earth based structures will not be

present in space.

Earth based structures are commonly designed for applied oscillatory

loads but the gravity loads usually dominate the design. In space there is no

gravity so a large space structure is primarily designed for oscillatory loadings.

The size and nature of large space structures imply that the natural

frequencies of these structures will be low compared to current spacecraft.

Since space structures undergo mostly oscillatory loading it is postulated that

large space structures will be forced at or near their resonance frequencies.

The amplitude of the resultant motions will depend on the inherent damping in

the structure. If these motions and the induced loads within the structure

dominate the design of the structure then the level of inherent damping

becomes increasingly important.

Structures on earth can dissipate energy into their environment. The

atmosphere and the attachments to the earth contribute greatly to the damping

observed in earth based structures. These phenomena are not present in the

space based structure. Earth based experience with damping of large

structures becomes of limited usefulness. A new body of information relating to
the damping properties of large space structures is necessary.

Difficulties with simulating the space environment limits experimental

measurement of the damping of a large space structure on earth. An analytical

approach is necessary for the prediction and enhancement of damping of large
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space structure is envisioned.

Such a structure would commonly have a complex nonlinear joint. As an
illustrative example, consider the idealized, 2-D, jointed space structure shown

in figure 1.1.

Damped Beams

Idealized Jointed Space Structure

Figure 1.1

It consists of two long beam like sections connected together by a joint. In order
to concentrate on the joint of the structure, the beam sections are assumed to
have linear properties in both stiffness and damping. The beam damping will
be modeled as strain rate or strain velocity damping. It is possible that the joint
may have linear properties or nonlinear properties, and may be damped or
undamped. The jointed beam can, therefore, be separated into four categories:
linear undamped, linear damped, non-hysteretic nonlinear, and hysteretic
nonlinear, (see figure 1.2).

Joint Categories

Figure 1.2

If the joint of the structure is modeled as a linear undamped joint then the
dissipation of vibration energy from the structure can only occur in the beam
sections. If the joint of the structure is modeled as a linear damped joint then
the joint will dissipate energy as well. The modeling of the joint as linear along
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with the linear beam sections allows the structure to be modeled with classical

structural modes. Two types of modes of a structure are defined in this report. A

real mode of a structure occurs when there is no damping or proportional'

damping is present in the structure. A real mode is a mode which has a

constant mode shape throughout the cycle. It also has the property that the

energy of the structure can be divided into independent modal components. A

complex mode occurs when there is non-proportional damping in the structure.

A complex mode does not have a constant mode shape and the energy of the

structure can not be divided into modal energy components.

A joint which is nonlinear and is modeled as such can fall into two

categories, non-hysteretic and hysteretic. A non-hysteretic nonlinear joint is

one where the joint behaves in a nonlinear manner but does not dissipate

energy. An example of this is an asymmetrically stiff joint where the stiffness of

the joint changes at a given deflection. No energy is dissipated in the joint due

to the nonlinearity. A nonlinear joint, such as the asymmetrically stiff joint, will,

however, couple the modes of the structure. Energy is allowed to pass between

the modes due to the nonlinearity. If energy is passed from one mode to

another then the effective damping rate of the first mode will increase and the

effective damping rate of the second mode will decrease. Modal coupling can,
therefore, cause apparent changes in the modal damping rates of a structure

due to the energy transfer between the modes. A hysteretic nonlinear joint will
cause modal coupling and will also dissipate energy.

Energy dissipation can, therefore, occur in three different ways in the

jointed space structure shown in figure 1.1:

* Linear damping,

* Nonlinear hysteretic joint damping,

* Damping due to modal coupling.

Damping due to modal coupling caused by nonlinear non-hysteretic

joints is the focus of this study. The objective is to develop a method to

determine when damping due to modal coupling is important to a structural

analysis and how to use it to improve the damping characteristics of a large

space structure.

The method chosen to analyze damping due to modal coupling is to

create a model composed of proportionally damped, continuous beam sections

joined by piecewise linear joints. The joints are non-hysteretic but proportional
linear damping is included. An experiment is also performed in which
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structures, representative of those analyzed, are tested in vacuum and zero-g.

The experiment is used to verify the analytical model developed.

The results of the analysis show a correlation between the amount of

damping induced by the modal coupling and the relative internal decay rates of

the coupled modes. The increase in damping due to modal coupling is limited

by the amount of coupling the structure exhibits. A technique is developed to

estimate the maximum amount of damping due to modal coupling.

This chapter introduces the study by first discussing the motivation and

scope of the problem. Previous research and analytical approaches are then
presented. The analytical approach and the experimental procedure used in

this study follow.

1.1 Problem Motivation

The design requirements of space structures are different than those of

earth based structures 1,2. These differences are do to the absence of gravity, of

environmental damping, and of a ground attachment in space.

Gravity is a primary load in any large earth-based structure. As a result,

this constant load tends to dominate the design, and oscillatory loads are
usually small in comparison. Without gravity, oscillatory loads dominate the

load spectrum, to which a large space structure is exposed. For example,

oscillatory loads can be caused by attitude control jets, moment gyros,

gravitational variations, etc. Loads of these types dominate the design of large

space structures.

The size and nature of large space structures causes the structure to

have low frequency modes which place the modal frequencies of the structure

in the same range as the frequencies of the loads. This can cause the structure

to be forced at or near a resonance. The frequencies of modal vibration may be

within the control band-width of the attitude control system. This can cause

coupling between the structural vibration and the attitude control system. The

active control of structural vibration modes may become necessary if not
desirable to reduce the cost of the structure 3.

Design of manned vehicles, such as the space station, must also

consider the length of time oscillations persist since the vehicle may become

too uncomfortable for habitation. It would be undesirable to have any vibratory

motions noticeable to the station occupants for any great length of time, for
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example, after a shuttle docking, even though this motion may not be
detrimental to the structure.

The amplitude of the resultant motion to the dynamic loads will depend

on the level of damping in the structure. Damping is, therefore, a key parameter
in the design of a large space structure. The more common damping
mechanisms found on earth are not available to space structures. The absence

of an atmosphere in space eliminates the predominant environmental damping
mechanism present in earth-based structures.

When air is present, damping occurs by air acting against motions, or by

squeeze damping in joints. Squeeze damping occurs when air is trapped in

gaps within a joint. When the joint is worked, the air is squeezed out,

dissipating energy. A large body of work exists quantifying the damping

attributed to aerodynamic effects 4,5. Space structures will not have these forms
of damping; however, the atmosphere may be present when ground tests of a

space structure occur. This will cause the damping present in ground tested
structures to be greater than for the same structure in space.

The atmosphere also inhibits cold welding 6, allowing friction to continue

to occur in joints and fasteners. Friction in joints and fasteners causes energy

dissipation when surfaces of the joints slide against one another as the joint

flexes under load. An oxide layer on the surfaces prevent them from cold

welding. In the presence of air the oxide layer is continuously replenished,

preventing the welding. In space, the absence of the atmosphere will allow the

motion of the surfaces to wear away the oxide layer and cold welding of the

joints may occur.

The absence of a ground attachment eliminates another common source

of energy dissipation. Structures built into the ground transmit energy into it,

causing apparent damping 4,7,8. This type of dissipation will not be present on
spacecraft. This can add another source of error to the ground measurement of

the damping of a space structure. Attachments or suspension mechanisms can

cause the dissipation of energy in ground tested space structures which will not

be present in space.

Loss factors of earth-based structures 4 similar to large space structures

are typically of the order of 1 - 3%. The damping mechanisms include those

mentioned above. Material damping 4,9,10 typically accounts for only 0.1 - 0.3%.
The material damping of a structure may deteriorate at low frequencies, such as

those found in large space structures. An example of this is the drop in the
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damping ratio of a metal beam in flexural vibration predicted by the Zener

damping theory 9. The Zener damping theory describes the dissipation

mechanism in metal beams in flexure due to the differential heating induced

across the beam. For example a thin aluminum beam will have a peak critical

damping ratio of approximately 0.1 %(zeta) at a frequency defined by the beams

geometric and material properties. For frequencies below the peak damping
frequency, the damping decreases roughly proportionally as the frequency

decreases. It also decreases above the peak damping frequency, roughly
inversely proportional to the increasing frequency. It is apparent that if all but
material damping mechanisms were eliminated damping factors could drop an

order of magnitude as compared to earth-based structures. Prediction and

understanding of damping in a space structure becomes increasingly important.

1.2 Analytical Approach

Several analytical approaches are used to solve the problem of

estimating the structural damping of a space structure. The most common is to
ignore any joint nonlinearities since they are difficult to model and usually small.
Damping of the structure are then estimated by empirical rules or

experimentally determined. Interpolation of earth measured damping data may
not be practical. In order to build a linear structure, very tight or welded joints

can be used 5,11,12 . This may reduce the damping of the structure to that of

material damping. Since the structural design will be sensitive to the structural

damping, this may not be acceptable.

It may be possible to include highly dissipative materials in the structure

to increase the structural damping to acceptable levels. Much work has been

performed in this direction. Allowing joint nonlinearities may be an alternative

way to enhance damping in large space structures. Using a more complex

nonlinear model of a large space structure to represent and predict the

structural damping then becomes necessary 5,13

Nonlinear mechanisms within an otherwise linear structure, such as

friction and dead-band in joints, local buckling of the structure, and large

displacements and rotations, affect many of the dynamic properties of the

structure, only one of which is damping. In general, nonlinear mechanisms

completely couple the dynamics of a multi-degree of freedom system. The

damping caused by these nonlinear mechanisms does not occur in the classic
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form of linear damping even though it is often modeled as such. In the case of
small nonlinearities present in an otherwise linear structure the nonlinearities
can manifest themselves as apparent changes in damping. If the apparent
damping can be experimentally determined then a linear analysis may be
successfully used. Experimentally determining the damping of a large space
structure may be impractical, limiting the usefulness of this approach.

Joint nonlinearities can dissipate energy causing direct nonlinear
damping but it can also cause energy to transfer between modes of the
structure, commonly referred to as modal coupling. The effective damping rate
of a mode of a structure will reflect the damping due to the direct damping in the
joints and the energy transferred to other modes of the structure. A common
method of calculating the energy dissipation caused by nonlinear joints is to
measure or calculate the hysteresis curves of a joint undergoing a oscillatory
loading. The hysteresis curves can be used to determine the energy dissipation
in the joint. This can be used to estimate the damping of the structure by
modeling the joint dissipation as an amplitude dependent linear viscous
damping. This type of method does not account for the modal coupling caused
by the nonlinear joints.

The term modes as related to a nonlinear system is not a precisely
correct term. The concept of modes comes from a linear analysis. Nonlinear
systems may or may not exhibit modal behavior, however, since these systems
are modeled as linear systems, or perturbed linear systems, the concept of
modes is carried over 14. Modal coupling is a result of this concept in that linear
systems have orthogonal modes. Orthogonal modes do not allow excitation of
one mode by another mode. Nonlinear systems couple these modes allowing
inter-modal excitation.

It is postulated that modal coupling can cause a change in the apparent
modal damping of the system. This would occur because the internal damping
rate of different modes typically differs from one mode to the next in a structure.
If a vibration mode with a low internal damping rate excites a mode with a high
internal damping rate the energy of the system will be dissipated faster. The
apparent damping of the first mode will be higher than if there was no modal
coupling and the apparent damping of the other mode will be lower.

Energy dissipation of a vibrating structure with small nonlinearities can,
therefore, be grouped into three classifications: linear internal damping,
nonlinear hysteretic damping, and damping due to modal coupling. Material
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damping is typically assumed to be linear internal damping. Hysteretic

nonlinear damping is that portion of a nonlinear mechanism within a structure

that directly dissipates energy from the system, such as the heat generated by

friction. In the case of friction this energy dissipation can be measured via

hysteresis curves generated by applying pseudo-static loads. Damping due to

modal coupling is a result of energy transfer between the modes caused by the

nonlinear mechanisms of the system. When a vibration mode excites other

modes via modal coupling, energy is transferred to the other modes of the

system. The energy may be dissipated from that mode via linear damping,

hysteretic nonlinear damping, or by transferring energy to another mode,

including the original mode the energy came from. Noting that damping rates

for modes are typically different from one another, the effective damping rate of

a given oscillation may be higher or lower than that predicted using only linear

and hysteretic nonlinear damping.

1.3 Previous Research

Most of the work on nonlinear systems is limited to single-degree of

freedom systems. Numerous techniques are available for analyzing this type of

system 15,16. While these systems are useful in the research of the dynamics of

nonlinear systems they can not demonstrate modal coupling. In a single

degree of freedom system the hysteresis caused by the nonlinearity and any

linear damping assumed in the model are the only mechanisms for dissipating

energy. This type of analysis is commonly extended to multi-degree of freedom

systems by limiting the analysis to a single mode of oscillation 17,18. An analysis

which is limited to a single mode of oscillation is essentially reducing the multi-

degree of freedom system to a single degree of freedom system. If modal

coupling, caused by the nonlinearity, is ignored, the energy associated with

modal coupling may be trapped in this single mode.

Modal coupling is described in some work on multi-degree of freedom

nonlinear systems 19,20,21,22. These systems typically have dominant nonlinear

behavior and significant modal coupling 23,24,25,26. The energy associated with

modal coupling is discussed but is rarely associated directly with damping 27

Coupled nonlinear damping has been discussed briefly in regard to the

measurement of damping in beams, plates and trusses 28,29,30. When

measuring small parameters such as material damping, damping induced by
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nonlinearities becomes important and can easily dominate the measurement.

Studies investigating joint dominated structures have also noted damping due

to modal coupling. Chapman, Shaw, and Russell 31 describe a recent

investigation of how joint nonlinearities affect the dynamics of a space structure.

Modal coupling is evident and damping of the structure is apparently affected by

the modal coupling.

1.4 Research Approach

An investigation of damping due to modal coupling requires an

analytically modeled structure with the following properties:

* many degrees of freedom, preferably a continuous structure,

* linear or internal damping in all modes,

* some nonlinearity which causes modal coupling, preferably without

introducing hysteretic damping of its own.

There are very few exact solutions to nonlinear continuous structures,

especially with damping included. There are solutions to linear continuous

structures. Uniform, continuous, beams can be coupled with piecewise linear

joints to form a continuous nonlinear structure. The model chosen in this

analysis is that of long thin beams, modeled as damped engineering beams,
linked together by rotational spring-dampers acting as joints. The joints are

piecewise linear in time, which means that during an oscillation they can

assume only a few different linear configurations, each with a different stiffness.

A set of linear sub-systems representing all the different permutations of the

joints, is generated where each sub-system is only valid when it is in a

particular joint state defined by its joint properties. The structure can be

modeled by one sub-system at a time. The structure is nonlinear because as

the structure vibrates the joint state changes causing an abrupt transfer from the

current linear sub-system to another linear sub-system. This type of nonlinearity

can effectively model joint dead-band, asymmetrically stiff joint, and local

buckling of portions of the structure. Each of these nonlinearities is piecewise

linear in the sense that it is composed of a set of linear states which the

structure transfers among, subject to some structural parameter.

The joint's dynamics enter the model as boundary conditions applied to

the beam segments. The beams are modeled as damped engineering beams

so a system of equations, given a single joint configuration of the nonlinear
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joints, is derived 32. This results in a transcendental equation which is solved

iteratively for mode frequencies and shapes. Initial conditions are applied and

a time marching routine is used to monitor the nonlinear parameters and

iteratively determine when the nonlinear structure transfers from one linear sub-

system to another. The final state of the current linear sub-system is used as the

initial condition of the new linear sub-system. Orthogonality equations derived

from the engineering beam equations are used to solve the initial condition

problem of the sub-system transfer.

The damping of the engineering beam is accomplished by including a

strain velocity or strain rate damping term in the beam equations. The resulting

damping ratio for each mode is defined by the damping coefficient in the strain

rate damping term. The modal damping ratio increases linearly as the modal

frequency increases. As a result, the damping rate, the real portion of the

complex eigenvalue describing the beam's motion, increases rapidly with the

modal frequency. This analysis requires different damping ratios for the modes

in order to examine the relationship of the modal damping rates to the damping

due to modal coupling. To accomplish this the special case of proportionally

damped engineering beam equations is used. In a proportionally damped

system the mode shapes are equivalent to those of the undamped engineering

beam. The mode shapes and the orthogonality equations become independent

of the damping term and the energy of the proportional system de-couples into

modal form. This allows separate equations, the same beam equation with

different damping coefficients, to represent each individual mode and still

maintain orthogonality between the modes. The modal damping can then be

set to any desired ratio. The special case of proportional damping is limited,

however, since it requires that damping be proportionally distributed over the

beam.

This model has a number of advantages for examining nonlinear

coupled damping. The most useful is the preservation of modes. The structure

is made up of linear models for each linear sub-system, so linear modes can be

used. This allows the tracking of modal amplitudes as the structure transfers

from linear sub-system to linear sub-system. The model is also a continuous

structure, so an infinite number of modes are implicitly included and there is no

possibility of energy being trapped due to limited degrees of freedom. When a

mode shape is calculated, except for computational limits, the calculated shape

is exact and orthogonal to all other sub-system modes even though all modes
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may not be, calculated. Only a limited number of modes are calculated, but the

coupling to uncalculated modes is implicitly included in the model. This is an
improvement over a finite element model where unmodeled modes, due to a

finite number of degrees of freedom, can not contribute to the coupling, so the

energy is effectively trapped within the model.

Coupling of unmodeled modes is consistently accounted for. Energy
transferred to an unmodeled modes is assumed to be dissipated quickly. This

allows the estimation of the maximum amount of damping due to modal

coupling from the simulation of the structure by including only one mode in the
model. The nonlinear structure modeled in this paper only allows energy to exit

a mode by coupling to another mode and by linear internal modal damping.
The joints have little or no hysteretic damping of their own. By modeling only a

single mode the energy transferred to coupled modes is assumed to be lost and

will represent the maximum amount of energy dissipation possible via modal

coupling. This allows the investigation of the influence of coupled nonlinear

damping with a minimum of computation.

In any analysis it is always important to compare theory with experiment

to confirm that there are no significant unmodeled dynamics or inaccuracies in

the analysis. The requirements of an experiment examining damping due to

modal coupling are similar to those discussed for large space structures,
namely the lack of atmosphere, gravity, and support interaction must be

simulated. These requirements are met by testing in the ASTROVAC facility at
MIT. The ASTROVAC is a fourteen foot tall, ten foot diameter vacuum chamber
with a lofting system at its base. Specimens, such as the long thin beams

described above, are lofted, in vacuum, to the top of the chamber. During the
1.5 seconds it takes the specimen to travel from the bottom to the top and back

again, it is in free-fall and isolated from all external forces. Strain gauges

mounted on the specimen transmit their signal over very thin signal wires
connecting the specimen to a follower system. The follower system carries
shielded wires from the chamber wall to near the specimen as it follows its flight
path. The thin signal wires travel only the short distance between the specimen
and the follower, and remain slack throughout the flight, in order to impart little
or no influence on the specimen. At the end of its flight the specimen lands in a

net, most of the time surviving the impact. This system has been used to
measure material damping ratios in the past with great accuracy 9.
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1.5 Outline

Chapter 2 establishes the models and analytical method to be used. Chapter 3

derives the equations necessary in the analysis. Chapter 4 establishes the

computational techniques used in the analysis. Chapter 5 describes the

theoretical analysis and presents results of the computational model. Chapter 6

presents an experiment utilizing the ASTROVAC. Chapter 7 correlates the

theoretical model and the experimental data and investigates coupled

nonlinear damping and nonlinear dynamics of the experimental specimens.

Chapter 8 summarizes the results and conclusions of this work.
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Chapter 2

Analytical Method

2.0 Overview of Analysis

The focus of this report is to develop an understanding of the energy

dissipation due to modal coupling and the transfer of energy between modes.

To eliminate the possibility of artificially restricting the energy transfer between

modes due to the limited degrees of freedom of discrete models, the nonlinear

structures chosen for analysis are continuous engineering beams. The beam

sections include internal damping and are linked together by nonlinear joints.

The nonlinear joints are piecewise linear and non-hysteretic. Exact modal

solutions can be calculated during piecewise intervals of time. The objectives

of the analysis section is to present an analytical method for the examination of

energy dissipation in such nonlinear structures. More specifically this will

include the following:

* Chapter 2 describes the analytical models, piecewise linear engineering

beams linked by rotational springs, outlines the analytical approach used in the

analysis, and describes the derivations necessary for the analysis. The

advantages of the approach, its more general application, and its limitations are

also discussed.

* Chapter 3 derives and solves the equations of motion of the engineering

beams used in the analysis. The initial condition problem is solved with the use

of orthogonality equations derived from the equation of motion. A structural

energy equation is generated and conditions of modal de-coupling of the

energy are derived. Independent modelling of structural modes is described

and justified with the use of the energy equations.

* Chapter 4 describes the computational approach used in the analysis.

The structure and logic of the programs used are discussed. Limits of the

software and the hardware used are described and tests for errors and

accuracy are presented.

* Chapter 5 presents the results of the analysis. The procedure used for.

the analysis is described. Results and conclusions about how and where

energy is dissipated in the sample structures are presented.
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2.1 Problem Statement

The objective of the analysis is to model the dynamics of a structure

which has nonlinear, non-dissipative joints. The focus of the analysis is the

transfer of energy between modes, as well as where and how energy is

dissipated within the structure. This requires that the model chosen have

sufficient degrees of freedom that modal coupling can occur and that uncoupled

internal damping be present.

Real structures have unlimited degrees of freedom so that any coupling

of the modes that occurs can, in effect, couple an unlimited number of modes.

In principle energy can transfer between all of the modes. If a model of a real

system has limited degrees of freedom, energy transfer can only occur between

those modes modeled. To eliminate this potential problem, the modeled

structures are long, thin, uniform, continuous engineering beams joined at their

ends. The nonlinearities are incorporated into the structure by designing the

joints as piecewise linear rotational springs.

The piecewise linear nature of the joints and the uniformity of the beam

sections allows the model to be analyzed directly in a piecewise linear fashion.

The structure is divided into separate linear sub-systems which represent the

structure during a specified structural state. The modes of the linear sub-

systems of the structure are determined independently. When the structure

transfers from being represented by one sub-system to another sub-system the

energy transfer between the modes can be calculated. Obviously not all modes

are calculated. An estimate of the total energy transferred to uncalculated

modes can be calculated by subtracting the total energy of the modeled modes

of the second sub-system from the total energy of the first sub-system, assuming

that the first sub-system's uncalculated modes have zero amplitude. At the next

sub-system transfer the implicit assumption is that the uncalculated modes have

zero amplitude. The implicit assumption in this analysis is that the energy

transferred to uncalculated modes is dissipated in those modes.

The internal or material damping of real structures occurs in a complex

manner. Some assumptions of internal damping are made in this analysis.

Internal damping is assumed to be small, to cause exponential decay, to be

decoupled between the modes, and to vary as a function of frequency

according to some unknown but experimentally determinable function. A

damping term is added to the engineering beam equation which simulates
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strain rate or strain velocity damping within the beams. A damping term is also

added to the rotational springs at the joints. For the modes in this model to

decouple with respect to amplitude and energy the damping must be

proportional. A proportionally damped beam has the identical mode shapes as

the same beam with any other proportional damping value or no damping at all.

This property is used to separate the damped system equation into a set of

independent modal equations. Each mode is assigned its own damping factor.

2.2 Analytic Models

The models chosen for this analysis consist of long thin damped

engineering beams joined at their ends by piecewise linear rotational spring

dampers. The characteristics of the piecewise linear joints can be varied to

simulate an asymmetric stiffness, dead-band, or any combinations of on-off

springs. The on-off spring is the principal mechanism used in this analysis to

simulate a discrete nonlinearity. An idealized asymmetrically stiff joint is shown

in figure 2.1. To simplify the illustrations the dampers associated with the

rotational springs are not shown.

K
NL

K
L

Idealized Asymmetrically Stiff Joint

Figure 2.1

The linear rotational spring with the stiffness designated as KL, represents the

linear portion of the joint. The rotational spring with the stiffness designated as

KNL is an on-off spring representing the piecewise linear portion of the joint.

The on-off spring is only active when it is in compression. The asymmetrically

stiff joint can be separated into two linear sub-joints. The two sub-joint

configurations are shown in figures 2.2 and 2.3.
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K

K

Asymmetrically Stiff Joint

Stiff Sub-Joint Configuration

Joint Stiffness = KNL + KL

Figure 2.2

K
NL

K

Asymmetrically Stiff Joint

Flexible Sub-Joint Configuration

Joint Stiffness = KL

Figure 2.3

The point when the joint transfers between the two sub-joint
configurations is determined by the characteristics of the on-off spring. When
the moment provided by the on-off rotational spring reaches zero the spring
disengages. The spring does not re-engage until the joint rotates back to the
spring's rest position. If there is no damping included in the joint the point of
zero moment and the rest position of the spring are the same. When damping is
included the moment and position transfers occur at different points. The
moment-rotation plot of the on-off spring is shown in figure 2.4.
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Moment-Rotation Plot for On-Off Rotational Spring-Damper

Figure 2.4

The linear

obtain the

rotational spring moments are added to the on-off spring moments to
overall joint moments of the asymmetrically stiff joint, figure 2.5.

Moment-Rotation Plot of Asymmetrically Stiff Joint

Figure 2.5
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The sub-joint transfer points are determined from the the on-off spring moments

only. The rotation at which the on-off spring engages can be adjusted by

applying an offset to the on-off rotational spring. This is done by applying a
constant, balanced moment to the joint. No applied moments are necessary if

the transfer is located at zero rotation of the joint.

Three specific models are examined: a two section beam joined by a

piecewise linear, asymmetrically stiff, rotational spring; a long thin beam with a
piecewise linear, asymmetrically stiff, rotational spring, linking the one-third

points; and a two section beam joined by piecewise linear, rotational springs,
with a dead-band. These systems of beams and joints are assumed to be in an

unconstrained free-free state. The systems are set in motion via a given initial

condition and allowed to decay. No external forces are applied.

K

K

Two Beam Section System

with Asymmetrically Stiff Joint and Point Masses

Figure 2.6

The first system analyzed, shown in figure 2.6, consists of two beam

sections jointed in the middle by a asymmetrically stiff joint, figure 2.1. This is
intended to be a rough simulation of a structure with structural joints which are

stiffer in one direction than another. This system of beams and a joint is
separated into two different sub-systems, coinciding with all the possible joint

configurations the system can assume, figures 2.2 and 2.3. The two sub-
systems of the asymmetrically stiff jointed beam are illustrated in figures 2.7 and
2.8. The sub-system transfer points are obtained from figure 2.5.
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Asymmetrically Stiff Jointed Beam

Stiff Jointed Sub-System

Figure 2.7

Asymmetrically Stiff Jointed Beam

Flexible Jointed Sub-System

Figure 2.8

The second system, shown in figure 2.9, is a long thin beam made up of

three beam sections rigidly coupled together with a spring damper coupling the

rotation of the ends of the middle section together. It is schematically shown

with a linear spring connected to two lever arms located at the one third points

of the beam. The linear force of the spring is transmitted to the beam via the

lever arms and couples the rotational motion of these positions on the beam.

Damping is included in the linear spring but, for clarity, is not shown in the

figures. Extensional and compressive loads applied to the beam by the linear

spring are ignored. This type of system roughly simulates a wire braced

structure.

eNL

TMe mEC i M mEIC if M mEIC IM

Three Beam Section System with Asymmetrically Stiff Spring Coupling

the One-Third Positions and Point Masses

Figure 2.9

The wire braced structure is separated into two linear sub-systems. The transfer

between the sub-systems is determined by the difference in the rotations of the
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one third points of the beam. The sub-systems are illustrated in figures 2.10

and 2.11.

Three Beam Section System with Asymmetrically Stiff Spring Coupling
the One-Third Positions and Point Masses

Stiff Sub-System

Figure 2.10

Three Beam Section System with Asymmetrically Stiff Spring Coupling

the One-Third Positions and Point Masses

Flexible Sub-System

Figure 2.11

The rotational coupling of the one third points of the beam takes the form of a
more generalized asymmetrically stiff joint. The same formulations are used but
the rotations and moments of the joint are at different positions on the beam.

The third system is a two section beam joined in the middle by a joint
which has a dead-band section in it, figure 2.12. This is intended to be a rough
simulation of a structure with loose joints. A dead-band joint is assumed to be a
rotational spring damper where the spring has a small stiffness when it is
centered and a much higher stiffness when the joint is rotated to ether side of
the center position. Damping is included in the joint simulations but, for clarity,

is not included in the figures.
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MI mIC--ZmEIC M .b mEIC M

K

Two Beam Section System

with Dead-Band Joint and Point Masses

Center Sub-System

Figure 2.12

The dead-band jointed structure has two on-off rotational springs and is,

therefore, separated into three separate sub-systems. The center position sub-

system is illustrated in figure 2.12. The joint stiffness, when the joint is in the

centered sub-system, is designated KL. Both of the on-off rotational springs are

not engaged in this sub-system. The other two sub-systems are illustrated in

figures 2.13 and 2.14. A single on-off rotational spring engages when the joint

reaches a given rotation. The dead-band joint is assumed to be symmetric.

The two on-off springs have the same stiffness and engage at the same but

opposite rotations.

Two Beam Section System

with Dead-Band Joint and Point Masses

Second Sub-System

Figure 2.13
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Two Beam Section System

with Dead-Band Joint and Point Masses

Third Sub-System

Figure 2.14

The asymmetrically stiff joint, present in the first and second systems, are

designed so that no steady state forces are required to simulate it. The systems

are, therefore, amplitude independent, simplifying the analysis. The dead-

band joint requires steady state moments at the joint. The system is amplitude

dependent and requires a slightly different analysis.

2.3 Outline of Analytical Procedure

The analytical approach used to examine energy dissipation in structures

with non-hysteretic, piecewise linear, joints is to divide the resultant nonlinear

structure into a number of linear sub-systems. The sub-systems are structural

simulations which represent the entire structure with the piecewise linear joints

of the structure in a single sub-joint configuration. Each sub-system represents

the nonlinear structure only over an interval defined by a set of structural state

requirements on the system variables. The structural state requirements used

in this analysis are the angular rotations and rotation rates of the joints. There

are as many linear sub-systems as there are permutations of the sub-joints.

The nonlinear structure is set in motion in one of its linear sub-systems by

giving it an initial condition which causes the structure to be within desired

structural state limits. As the structure vibrates in its linear sub-system, the

structural state eventually exceeds the limits associated with that linear sub-

system. The time the structural state reaches its limits is determined and the

final structural state of the current sub-system is used as the initial condition for

the new sub-system. This process is repeated resulting in a string of sub-

systems each with initial times and modal amplitudes.
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The string of sub-system parameters is used to calculate the energy of
each mode as a function of time. The energy plots are used to examine the
transfer of energy between modes, and where and how energy is dissipated.
Simulated strain gauge data is generated and used to calculate a log
decrement damping ratio and to compare with experimental data directly. The
calculated damping ratio is, in general, different from the linear modal damping
ratios set in the original definition of the model because it includes damping
effects due to energy transfer between modes.

The justification for using these systems and this type of analysis centers
around their ability to be modeled as a continuous, damped system. This
characteristic eliminates the possibility of trapping energy in a system due to
limited degrees of freedom. The piecewise linear rotational spring-dampers
linking the ends of the beams are chosen because they allow a solution to a
continuous system with nonlinear joints which are non-hysteretic and therefore,
provides no damping themselves. The damping of the structure comes from the
uncoupled linear damping assumed in the model. The nonlinear joints couple
the modes of the structure allowing energy transfer between the modes. Since
the structure is separated into linear sub-systems, modes and modal
characteristics are preserved in the analysis. This way energy can be
calculated on a mode by mode basis. How the structural energy is distributed
among the modes and where it is actually dissipated is calculable with these
systems.

The analysis can be used to establish a technique which is also useful in
the estimation of the maximum energy dissipation due to modal coupling. This
is done by only including the primary modes in the analysis, allowing the
energy transfer to the uncalculated modes to be lost, assuming it to be
dissipated in the uncalculated modes. The techniques used in this analysis are
also useful in discrete systems if a sufficient number of degrees of freedom are
present.

2.4 Outline of Derivations

The first step in the analysis is defining the equations of motion of
damped engineering beams linked together by damped rotational springs. The
equations of motion are used to model the linear sub-systems of the piecewise
linear structure. The derivations and solutions of the linear sub-systems are
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based on a general, non-proportional system of equations. A special case of

proportionally damped systems is used to model individual modes of the sub-

systems by similar and independent equations. This allows the setting of

individual modal damping rates and the calculation of modal energy.

The second step in the analysis is solving each of the linear sub-systems

for their modal frequencies, shapes, and any forced displacements. A general

beam equation is solved, the solutions taking the form of complex exponentials

for the homogeneous case and polynomials for the particular case. Solutions

for modal frequencies and shapes are derived from the boundary conditions of

the sub-system. Typical boundary conditions of the structures analyzed are

listed.

The third step in the analysis is the calculation of the transfer between

sub-systems when the state limits are exceeded. This is accomplished by first

deriving a set of orthogonality equations which are in turn used to derive a

system transfer equation. The system transfer equation is based on transfer

coefficients calculated from an equation very similar to the orthogonality

equations.

The fourth step in the analysis is the calculation of the energy of the

structure and the simulated output of a strain gauge over the time of the

simulation. The energy equation is derived and the conditions of proportionality

are discussed. Modal energy and identical modes are established for similar

proportional systems and are used as a basis for separate, similar equations

modeling the individual modes of the sub-systems. The method of simulating

strain gauge data is also discussed.
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Chapter 3

Engineering Beam Derivations

3.0 Overview

The objective of chapter 3 is the development and derivation of all

mathematical tools necessary for the analysis of continuous, damped,

engineering beams with piecewise linear joints. The procedure is to start with

the equations of motion of a jointed, damped, engineering beam and develop

the general solution to its motion and the equations necessary to calculate its

modal amplitudes and energy properties from its initial conditions. The general

solution is then used, with the conditions of proportional damping, to establish

independent but similar equations for each mode of the system so that modal

damping can be set individually.

3.1 Damped Engineering Beam Equations

The sub-systems of the beam structure are made up of beam sections

which are modelled by the engineering beam equation with strain rate damping

included 33. Each beam section is assumed to be long and thin such that the

engineering beam assumptions apply. It is also assumed that the beam

sections are uniform over their entire length with respect to their mass/length

(m), moment of inertia (I), modulus of elasticity (E), and damping coefficient (C).

The local displacements are defined by W(x) and the external loads are defined

as f(x,t). The equation of motion for a single beam section takes the form

mW+(EIW+CIW ) = f(x,t) (3.1)

The dot superscripts signify differentiation with respect to time (t), the prime

superscripts signify differentiation with respect to space (x). All terms are real

and the solution for the displacements, W, must remain real. Each beam

section has its own equation with its own material properties. (Please turn to

appendix A for a more detailed explanation of the analysis.)
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The solution for displacements is divided into homogeneous and

particular parts.

W = WH + WP
(3.2)

While no external forces are allowed, f(x,t) may still be non-zero since internal

moments arising from joint offsets can exist. The homogeneous solution will be

examined first.

3.2 Homogeneous Solution

The homogeneous portion of equation (3.1) is:mW+(EIW+CIW ) =(3.3)
An assumed solution of the form

Q t+ax * t+ax *
W=Be + Be =u+u (34)

(3.4)

is applied. Here f2 is the complex frequency, a is the complex shape factor, and

B is a complex coefficient. The superscript * indicate the complex conjugate.

This solution has the complex conjugate form to insure that the displacements

W are always real quantities. Inputting equation (3.4) into equation (3.3) and

noting that the beam properties of a single beam section are assumed to be

constant, results in a characteristic equation of the form

2 4 * *2 *4 *u[mQ +a (EI+CI2)]+u [mQ2 +a (EI+CIQ )]=0

(3.5)
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Since the two exponential terms, u and u* are not zero the two terms in the

brackets must go to zero independently. A relationship between n and a is

derived.

mr +a4 (EI+CIQ)=O
(3.6)

or equivalently

-m22
a-

E I + C I Q
(3.7)

The equivalent complex conjugate equations are not shown. For each solution
Q, there are four corresponding values of a, ( ia, -ia, a, -a). Combining this with

their complex conjugates a total of eight terms are needed to describe each
possible solution of equation (3.3).

Qt+iax /t-iax Qt+ax 'Qt-ax
W=Ble +B2 e +B3 e + B4 e

* Q t+ia x * n t-ia x * K t+ax * nt-ax
+Be +B2 e +B3 e + B4 e

(3.8)

These terms can be separated into time (Y), and spatial (), components.

W= Y+ Y

where
ia x -ia x a x -a x

0 =c 1 e +c 2 e +C3 e +C4 e

Y =A e

(3.9)

(3.10)

(3.11)
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To this point no specific solution for Q or a has been found nor shown to

exist. It is possible, however, that multiple solutions exist so the subscript j is

used to distinguish between them. These are referred to as modes. The entire

solution to equation (3.3) takes the form

WH = W
j (3.12)

where there are an unspecified number of solutions or modes represented in

the sum. The modal displacements can be separated into their complex

conjugate parts or complex conjugate pair modes.

Wj =Wj +wj
- - - (3.13)

The complex modes, w and w*, insure that the solution remains real. The

complex modes behave in the analysis much like conventional real modes. It is

found later in the analysis to be computationally advantageous to consider the

complex conjugates separate modes. There are two types of notation used in

this analysis, complex conjugate notation and complex mode notation. The

indication of the notation type is by the subscript variables. Complex conjugate

notation uses j and k as subscript variables while complex mode notation uses

n and m as subscript variables. Complex conjugate notation is illustrated in

equation (3.13). The complex conjugate pair modes are given the same mode

number and the same subscript variable, j or k. The complex mode notation

designates the complex conjugate pair modes as even and odd and has

different subscripts, n or m, identifying the complex conjugate modes. There are

twice as many complex modes as there are real modes or solutions.

WH= j 2nJ 2 n n (3.14)
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The individual modes, including complex conjugate pairs, can be separated

into their spatial (mode shape), and time components.

wn, = OnYn (3.15)

The spatial components are written as

ianx -ianx anx -x
On= Cln e + C2ne + C3n e + C4n e(

(3.16)

and the time components are written as

Yn = An e (3.17)
(3.17)

In general the complex frequency () is fully complex. The imaginary

portion represents the sinusoidal motion of the system and the real portion

represents the decay rate of that motion. The amplitude of the motion is

represented by the coefficient (A). The real portion of the complex frequency is

related directly to the damping coefficient (C). In the special case of C=O

(assuming a single beam section) the complex frequency becomes only

imaginary. Noting that (a) is in units of 1/length (1), equation (3.7) reduces to the

familiar form of the frequency equation for a beam.

El

4 ml
(3.18)

The shape function () is also in general complex. The complex shape

coefficients (c) are usually normalized. The shape factor (a) is also, in general,

complex. In the special cases of C=O (assuming a single beam section) or if the
interactions with connected beam sections form a system with proportional

damping the shape factor becomes either purely real or purely imaginary. In
both cases the shape function () becomes a real function and represents the
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mode shape. If the shape function () is complex then the mode shape is

represented, but there are phase components present as well.

3.3 Boundary Conditions and the Transcendental Matrix Equation

Determination of the valid modal frequencies arises from the boundary

condition applied to the beam sections. Each equation describing a beam

section requires four boundary conditions in order to be solved. The boundary

conditions at the location where the beam sections are joined together are

defined by the joint properties. Five different types of boundary conditions are

used in this analysis: a free end, an attached mass, the direct coupling of two

beam sections, a hinged joint, and the rotational spring coupling of two beam

sections. The five different types of boundary conditions are illustrated below.

Free End:
W(x )

AL

( (m EIC
A A A A

Free End Boundary Condition

Figure 3.1

The free end boundary condition sets the moment loads and the shear forces at

the end of the beam section to zero.

EA IA WA(XAL) + CA IA WA(XAL) =0 (3.19)

[EA'IA WA(XAL) + CA IA WA(XAL)] 0 (3.20)
(3.20)



Attached Mass:
W(x )

AL

t

I

W (x )
AL

m E I C
A A A A

XAL

Attached Mass Boundary Condition

Figure 3.2

The attached mass boundary condition sets the shear force at the beam section
boundary equal to that of the inertial loading of the attached mass (M), which is
attached to the beam and undergoes any motion it does. In the example shown
in figure 3.2 the moment loads are the same as in the free end case, equation

(3. 19).

[EA IA WA(XAL) + CA IA WA(XAL)] = M WA(XAL)
(3.21)

Direct Coupling:
W(x )

AR

mEI C
A A A A

W(x )
AR

AR

= W(x )
BL

I
= W(x )

BL

_ x
BL

Direct Coupling Boundary
Figure 3.3

mEIC

m E I C
B B B B

Conditions
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The direct coupling of two beam sections is accomplished by setting the
displacements, rotations, shear forces, and moment loadings at the boundaries

of the two beams equal to one another.

WA(XAR) = WB (XBL) (3.22)

WA(XAR) = WB (XBL) (3.23)

EA IA WA(XAR) + CA IA WA(XAR) = EB IB WB(XBL) + CB IB WB(XBL)

(3.24)

[EA IA WA(XAR) + CA IA WA(XAR)] =[EB IB WB(XBL) + CB IB WB(XBI)I

(3.25)

Hinged Joint:

W(x

W(x ) = W(x )
AR/ BL,

x =AR XBL

Hinged Joint Boundary Conditions

Figure 3.4

The hinged joining of two beam sections is accomplished by setting the

displacements and the shear forces equal to one another and by setting the
moments at the boundaries equal to zero.

WA(XAR) = WB (XBL) (3.26)

[EA IA WA(XAR) + CA IA WA(XAR)] =[EB IsB WB(XBL) + CB IB WB(XBI)]

(3.27)

!(X )
BL
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Rotational Spring Damper:
W(x ) = W(x )

AR BL

s
W(x ) m W(x )

AR/ BL

m E I C mE I C
A A A A K B B B B

Rotational Spring Damper Boundary Condition

Figure 3.5

The rotational spring-damper coupling of two beam sections is done by setting

the moment loads at the boundaries equal to one another. The moment loads

at the boundaries are also equal to the moment load provided by the rotational

spring-damper. The rotational spring damper provides a moment as a function

of the difference between the angular and angular rate motions of the two
boundaries. The rotational spring constant (Ks) and the damping factor (Cs)

define the joint properties.

WA(XAR) = WB (XBL) (3.28)

EA IA WA(XAR) + CA IA WA(XAR) = EB IB WB(XBL) + CB IB WB(XBL)

(3.29)

[EA IA WA(XAR) + CA IA WA(XAR)] =[EB IB WB(XBL) + CB IB WB(XBI)]

(3.30)

Ks [WB(XBL) - WA(xAR)] + CS [WB(XBL) - WA(XAR)]

= EB IB WB(XBL) + CB IB WB(XBL) (3.31)

The boundary conditions are used alone and in combination with each other.

The systems used in this analysis provide two boundary conditions for each

beam section boundary and no unconstrained degrees of freedom, except for

rigid body displacements.
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The boundary conditions are used to solve for the complex modal

frequencies and shape coefficients. A single complex mode solution is inputted

into the boundary condition equations and the equations solved

simultaneously. The equations are written in matrix form. An example matrix

equation is shown in equation (3.32). This matrix equation represents the

modal solution of a uniform free-free beam.

A A A A

ICt

A e (EAI^+a2C IA)n nA

z-~ A A
A2 i a xt A2 -i A AL A2

A A2 -X
-an e -a e an e an e

A n A A n A
A3 ia xAL A3 -a xL A3 aAL A3 -aXAL

-ia e ia e a e -a e
A .A aA A

A2 i axAR A2 -i aAR A2 A-aAx
-an e -an e an e an e

A " .A,~ A A
A3 i axAR A3 -i a x AR A3 an XAR A3 -a XAR

-ian e ian e a e -a e_ n n n n

A
Cln

A
C2 n

A
C3 n

A
C4n

=0[o] (3.32)

The time (t) terms and the beam section shape coefficients (caAn) are brought

out of the matrix leaving terms with the complex frequency (n), complex shape

factors (aAn), and the boundary condition limits (xA(R or L)). The superscript A on

the beam section shape coefficients and the complex shape factor indicates

which beam section the shape coefficients apply. There is only one beam

section in this example but the jointed beams analyzed in this report include

multiple beam sections. The shape coefficients and shape factors of the beam

sections are, in general, not the same. The complex frequency and the complex

shape factors are related to each other through equation (3.6). In the example

of a uniform free-free beam the beam properties and the complex frequency can
also be separated from the matrix, (EA IA + Un CA IA ). This is not the case when

there are multiple beam sections in the model with different properties. The

solution of this matrix equation occurs when the determinant of the matrix goes

to zero. The matrix equation is, in general, transcendental and multiple solution

exist. Each solution to the transcendental matrix equation represents a complex

mode.

I
I



57

3.4 Particular Solution

The particular solution to the equation of motion involves the forcing

function f(x,t). In this analysis no external loads are allowed. However,

constant internal moments caused by offsets in the joints does create the need

for a particular solution. A joint offset allows the on-off spring to transfer

between sub-joints at a rotation other than zero. For the moments to be

balanced at the transfer rotation there must be a biasing moment present in the

joint. The only joint examined in this analysis which exhibits an offset is the

dead-band joint. The sub-system representing the joint when it is in-between

the discontinuous springs, figure 2.12, has no offset and no particular solution.

When the transfer to a sub-system which includes a discontinuous spring is

made, figures 2.13 or 2.14, the moment applied by the discontinuous spring is

zero when the joint has rotated away from the neutral position. A constant,

balanced moment is applied at the joint.

The particular solution is calculated in much the same way as the

homogeneous solution. The boundary conditions, which contain the moments

applied at the joints, are placed into matrix form and solved simultaneously.

There is no time dependence so the solution can be written in the form of a

cubic polynomial.

A 3 A 2 A A
Wp = C10 x + C2o x + C30 x + C40

(3.33)

The subscript P of the displacement Wp indicates the particular solution. The

superscript A indicates the beam section the solution represents. In this

analysis there is only one particular solution for each system. Since the

homogeneous solution has multiple solutions designated as modes starting at

one, the second subscript zero on the coefficients represents the particular

solution or the zero-th mode. The matrix determined by the boundary

conditions is degenerate since the model chosen is free-free and rigid body

modes are included. To remedy this it is noted that no external loads are

applied, only internal moments. The ends of the model can be pinned to restrict

translation without affecting the particular solution. The coefficients of the

particular solution for each of the beam sections can now be calculated using
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the same techniques as in the homogeneous solution but no row-column

reduction is necessary.

This solution will cause the center of gravity of the model to move and

rotate. The shape is correct, but the model has moved. To correct this the

particular solution is translated and rotated back to its original orientation

defined by its center of mass. This particular solution is stored as the zero-th

mode. It is kept separate from the homogeneous solutions because it has a

different form and therefore uses different formulations.

3.5 Orthogonality Equations

The orthogonality equations are derived from the homogeneous

equations of motion of the beam sections. The orthogonality equations are

useful in a number of operations because they can be used to define modal

quantities: an orthogonality relationship between two eigenvalue solutions will
produce a complex number if the two solutions are the same, and zero if not.

The operator defining the homogeneous equation of motion of a beam

section, equation (3.3), is

d d d2 d322uCI
L (u)= m (U) + EI 2(u)+CI ) =

dt dx dx dx 2 dt

(3.34)

The orthogonality equations are derived by placing a single complex

mode into the operator, L, multiplying by a different complex mode, and

integrating the entire equation. This yields equation (3.35).

X2

J WmL (w)dx= O

(3.35)
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A similar equation can be written by switching the modes:

x2

fWnL(Wm)dx=O
xI

(3.36)

Subtracting equation (3.36) from (3.35), an integral operator is defined by the

equation;

X2

f{WmL (wn) - wnL ( Wm) } dx = 

(3.37)

Each beam section contributes a similar equation to form an equation

representing the entire system of beam sections. The boundary conditions

describing the system joints and point masses are included, and after

integration and some manipulation, the first orthogonality equation is derived

(see Appendix A, section A.4.6).

all beams XR

Z { f {((m+Qn) BmOaBnmB + 4)aB nCBIB}dx }
B XL

all masses

+ E { t MM ( m+ Qn) (0(XM) n(XM)} }
M

all . rings

S S (XSR ()] [m (XsR)- (L)] } mn
S SRm SLmn SRn SU

(3.38)
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The orthogonality equation involves any two solutions or modes of the system

designated m and n. A subscript m or n of a variable indicates that the particular

variable originates from that complex mode. The subscript B indicates which

beam the variable originated from. The subscript of BL indicates the left end of

beam B. Similarly the subscript BR indicates the right end of beam B. The

subscript M indicates reference to the mass M, the subscript S indicates

reference to the rotational spring-damper S, the subscript SL indicates the left

end of the rotational spring-damper and subscript SR indicates the right end of

the rotational spring damper. The right hand side of equation (3.38) indicates

that the orthogonality equation is zero when the modes m and n are different,

and equal to the complex coefficient (v) when they are identical.

A second orthogonality equation can be generated by placing the first

orthogonality equation back into a modified form of the equation of motion (see

Appendix A, section A.4.7).

ll b Jlml PXBR1 it P m MB n )B m + EBIB 4 )Bfl4 )B m}
B XBL

alrmsses

+ I ( - OnfmMM (XM) '(xM) }
M

fKS [ (XSR) (XsL)][ (XsR>- (XsL)] }=- mnVmn

S SRmSSLmEA

(3.39)

These orthogonality equations are used in three ways. First, they are

used to normalize the complex mode shape coefficients. This is accomplished
by dividing each complex mode shape coefficient (can) by the complex

orthogonality coefficient (vn). The double subscript n indicates that the same

complex mode was used for both modes in the orthogonality equation. Placing

the normalized complex shape coefficients into the orthogonality equations the

new complex orthogonality coefficients become one (real) or zero. The second

use of the orthogonality equations is as a check on the solutions of the

eigenvalues. When a mode is placed into the orthogonality equation with itself,

the result should be a real one. When it is placed into the orthogonality
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equation with another mode, the result should be zero. If these conditions are

not met then mode orthogonality is not achieved. The third use is the

separation of modes in the solution of the initial condition problem and the

energy equation.

3.6 Initial Condition Problem and System Transfer

As the structure is allowed to vibrate the states of the piecewise linear

joints change and the system jumps from one linear system to another. The
final shape and velocity of the current linear sub-system are used as the initial

conditions for the new linear sub-system. Determining the amplitudes of the
individual modes as a function of some initial shape and motion derives from

the first orthogonality condition. The orthogonality equations play a significant
role by decoupling the equation and allowing the the individual calculation of
modal amplitudes. After some manipulation the general initial condition

equation for the engineering beam equations used in this analysis becomes

Qm all beams XBR

V Be XB E+BmWBCBIB}

all masses

+ { {MM(m W + MWM) } X
M 

all songs

+ L CS (XSR)- (X) W (XSR)-W (xsL) Am
s SRm SLn T IT

(3.40)

The subscript T on the displacements, W, and the time, t, indicates the time of

the initial condition or transfer. The complex amplitude of the complex mode is

represented by the variable A, see equation (3.17). The subscript m indicates

the mode which is being calculated.
Equation (3.40) allows the calculation of modal amplitudes given a

general initial shape and motion, which are in this analysis, the final state of the

previous sub-system at the time of transfer between the sub-systems. In this
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analysis, the dimensions and mass distributions of the sub-systems making up

the nonlinear beam system are assumed to be the same. The only parameters

allowed to change from sub-system to sub-system are the stiffness and

damping of the beam sections and joints. This allows considerable

simplification of the transfer equation.

Compatibility requires that at the time of transfer between two sub-

systems, the shape and velocity of the two sub-systems must be the same.

V(tr )=W(t (3.41)
(3.41)

V(t, )=W(t, (3.42)

The displacement of the previous sub-system is designated as V, the new sub-

system is W. Since the previous sub-system's motions are described in the

same modal form as the new sub-system, equations (3.41) and (3.42) can take

the form

VO+ Vm=Wo+ X Wn
m n (3.43)

Vm -= Wn
m n (3.44)

The subscript 0 on the displacements V and W indicates the particular solution

of the systems and the subscripts m and n indicate complex modes of the

respective systems. The solution is divided into two parts, the particular solution

and the homogeneous solution. The particular solution of the new system is

already determined and is subtracted from the particular solution of the previous

system. The particular solution in this analysis is not time dependent and

therefore does not appear in the rate equation.

(Vo -W) + Vm= Wn
m n (3.45)
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Each term of the left side of equations (3.43) and (3.44) will in principle

contribute to the amplitude of every term of the right side of the equations. The

amplitude of mode n will be, in general, the sum of the contributions from all of

the terms on the left side of both equations.

Particular Solution Transfer:

The particular portion of the left side of equation (3.45) is in the form of a

cubic polynomial and has the same dimension as the exponential functions on

the right side. It is placed into equation (3.40) and the initial condition equation

takes the form of a transfer equation

- Q. all beams BR

eV { j| { Qm"BmB B mB WB) CB I
mm B X

all masses

+E { MM QmtMm(VMX ) IM }
M 0 M

all springs

al+i s R (xSR ( SL)][ V (XSR) V (XL) -
S Q SLm 5 SL

SR (XSR) + WSL(XSL)] } } = AOoo
(3.46)

where the subscript m indicates the mode to which this complex amplitude

contributes. The subscript 0 on the amplitude A indicates that this contribution

originates from the particular solutions. If the particular solutions of the two

systems are identical then the contribution is zero. The term inside the

parentheses is designated as the particular transfer coefficient, r, where
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all beams BR

{" E { mBm(~VoWBo) mB + B VB W CB } }
XEL

all masses

+ t MM Qm m(VM XM
M B

all rings

L Cs '[(XSR )- 4 1(XsL)] [V (XSR) V (XSL)
S SR SLm SR SLO

WSR (XSR) + WSL(XSL)] 1 = mO

(3.47)

Homogeneous Solution Transfer:

The homogeneous terms on the left side of equations (3.43) and (3.44)

have the same exponential form and dimension as the right side. Placing them

into equation (3.40) results in an equation very similar to the orthogonality

equation

(c-h)Tall beams XBR

Bn ( m n .. MB Bmn I B
n mm X:

all masses

+ Y, {MM( Qm+ on) 1Mmn X M
M

S C S SR 4 (XSL)] [S (XSR)- (XSL) 1A
s SRm SLn SRn SLn }

(3.48)

The modal frequencies and shapes of the previous solution are designated as

o, 1y, and the subscript n indicates the mode. The beam parameters m, C, I, and

M are those of the new system and the mode frequencies and shapes of the

new system are designated Q and . The subscript m indicates the mode. The
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terms inside the parentheses are identical to the orthogonality equation,
equation (3.38), with the exception that the frequencies and modes are of
different systems. The modal transfer coefficient, , is defined as a more general

form of the orthogonality coefficient, v, and takes the form

all beas XBR

( m + (On ) O}BmlfBn mB + BmBnCB B dX
XaL

all masses

+ ( MM( 'm+ ()n ) OMmVnMn } XM 
M M

all rings

Cs (XSR) - V (XSR)-V (XsL) } =
S SRm SLm SRn SLn

(3.49)

The transfer coefficient, r, is, in general, not one or zero, as is the case with the
normalized orthogonality coefficient, v. Inputting equation (3.49) into equation

(3.48) and equation (3.47) into equation (3.46), the transfer equation takes the
form

i, f B ne -m} = Am
n=O Vmm

(3.50)

The second subscript, n, of the modal transfer coefficient, , indicates the mode

of the previous system contributing to the new systems mode, indicated by the
first subscript, m. The particular solution enters as the zero-th mode, the
frequency of the particular solution in this analysis is set as zero and the

amplitude of the particular solution is set as one. This is a very compact
equation and the principle reason why the complex conjugate pairs were
considered separate modes.

The ratio of the modal transfer coefficient to the orthogonality coefficient
of the new system is a constant and is the characteristic term which defines the
modal transfer. In this analysis the orthogonality coefficients of all modes in all
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systems are normalized to one, therefore, the modal transfer coefficient is the

characteristic transfer term. The exponential term in equation (3.50) takes

account of the differences in time scales and decay rates and also applies a

phase relationship to the transfer. The transfer coefficient is, in general,

complex. The amplitude of the new system will depend on the amplitudes of the

previous system and the time the transfer between systems takes place. For

example, if the two systems being transferred between are the same, the

transfer equation reduces to the orthogonality equation. In the case of identical

modes the modal transfer coefficient is one, indicating identical amplitudes in

those modes. Orthogonal modes produce a modal transfer coefficient of zero,

indicating no coupling of orthogonal modes. When the systems are not

orthogonal the transfer coefficients are generally complex and non-zero.

3.7 System Energy

The energy of the engineering beam structures used in this analysis is
defined as the sum of the potential energy (strain energy) and the kinetic

energy.

X21 2
2 2

E= .mW EIW dx

(3.51)

Inputting the beam section limits, boundary conditions, and defining the modal
mass, t, as

XBR
albeams XBR

mn [ Jt mB m,..Bn } d'
XBL

all n{ms]

+E { MMMm0M).M(X ) }]
~~~~~~~M ~(3.52)
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The energy equation reduces to

aEWE y3n) 2 Sv
m n (3.53)

Energy terms involving different modes are present. In general the energy

equation does not decouple into modal form. Transforming equation (3.53) into

complex conjugate notation and separating the like and unlike terms the energy

equation takes the form

E= [y Q ii - vjj ii

* *
+ Yj Yj aj aj~tjj + C.c.1

+ Yj Yk Qj nrk tj +

(3.54)

The first summation in equation (3.54) consists of complex energy terms

which involve a single mode only. These terms are referred to as the modal

energy terms. There are two types of modal energy terms present, oscillatory

terms and non-oscillatory terms. The square of the time function, y2, causes the

oscillatory terms to oscillate at twice the frequency, and decay at twice the rate,

of the relevant modal amplitudes. The non-oscillatory terms are always real

and decay at twice the rate at which the relevant modal amplitude decays.

The second summation in equation (3.54) consists of terms which are

dependent on two separate modes and represent modal coupling of the energy

equation. These terms are referred to as the coupled complex energy terms.

Generally the coupled energy terms are non-zero and are oscillatory with

frequencies and decay rates which are combinations of frequencies and decay

rates of pairs of modes. There are special cases where energy does decouple

into modal form, and the coupled complex energy terms become zero. The two



68

special cases examined in this analysis are the cases of undamped beams and

of proportionally damped beams. The proportionally damped beam is

examined first because equations for the undamped beam can all be derived

from the proportionally damped case.

3.8 Proportional Damping

The special case of proportional damping is used extensively in this

analysis. The proportionality constraint is defined here as

CB CS
.. =- - = Constant
DE Ks (3.55)

where C / E represents the proportionality factor of any beam and

C / K the proportionality factor of any spring. This is a very useful and

interesting case because the mode shapes of a single assemblage of beam

equations reduce exactly to those obtained when damping is not included. The

mode shapes are real because the imaginary components become zero and

therefore, the mode shapes do not change as a function of phase. These real

modes, obtained for undamped or proportionally damped systems, can be used

to separate the individual modes of the single assemblage of beam equations

into separate but similar assemblages of beam equations, each equation

representing a mode of the system. The damping rate for each modal equation

can be set, without changing either mode shape or orthogonality. This allows

the modal damping ratios of the system to be set to fit any requirements of the

analysis. For example, the damping ratio of a beam in vibration can be

assumed to be ruled by the Zener damping curve where damping is a function

of frequency. The modal damping ratios of a proportional system can be set to

match that of the Zener curve thus providing a model which simulates the

measured modal damping of higher modes.

3.9 Modal Energy of Proportional Systems

The first and second orthogonality equations, equations (3.38) and

(3.39), can be combined with the conditions of proportionality to show modal
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energy decoupling of a proportionally damped system. This is accomplished by
multiplying the second orthogonality equation, equation (3.39), by the
proportionality coefficient, (K), and subtracting it from the first orthogonality
equation, equation (3.38). After some manipulation the energy equation can be
reduced to a decoupled sum of modal energy terms.

EX[Yi, m [ QmVmm2mm)
m

* ·

+ Y Ym mQm m* + c. c.]
(3.56)

Equation (3.56) shows that the energy of a proportionally damped system is
decoupled. The energy of a known mode can therefore be calculated without
prior knowledge of other modes of the structure. The energy of an undamped

beam reduces equation (3.56) to a single term for each mode where the modal

energy term is always real, constant and uncoupled.

2

E = 2 j j;

(3.57)

Where is the imaginary portion of the complex frequency, Q.

3.10 Non-Proportional Models

A proportionally damped system does have its limitations. All of the
joints, beam sections, wires, etc. must have the same ratio of stiffness to
damping. In most structures, damping is small and any variations can be
ignored. However, if a component of the structure has a significant variation
from the proportionality condition, a single equation, non-proportional solution
may have to be used to model changes in the dynamics of the system due to the
non-proportional damping.

The non-proportional solution has the damping defined on a component
by component basis. The modal damping is therefore defined for all modes by
the strain rate damping assumption included in the model, a single damped
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engineering beam equation. Strain rate damping typically increases as mode

number increases. This is due to the higher strain rate from the mode shapes

and the higher frequency of the modes. As a result, non-proportional systems

typically have very highly damped upper modes.

The non-proportional solution also, in general, results in complex modes,

modes which change shape as a function of phase. These modes are different

from modes of the undamped system in shape and character. Modes of

undamped or proportional systems have a constant shape, only varying

amplitude as a function of time. Non-proportional systems can have complex

modes which have a phase component, a term which changes the mode shape

as a function of time. Mathematically there is no difference in how the mode is

handled, it is just more difficult to envision. For example, if the displacement of

a point on a proportional system vibrating in a single mode is monitored, the
resulting signal would be a damped sine wave. If a second point on the same

system were monitored the displacement would, in general, have a different

amplitude but the frequency, phase, and damping rates would be the same.

When the same exercise is performed on a non-proportional system the signals

will, in general, not have the same phase.

Insight into the complex behavior of the phase dependent modes of a

non-proportional system can be obtained by examining the energy equation of

a non-proportional system. In general the energy equation is coupled between

all of the modes. This indicates that the damping term in the non-proportionally

damped engineering beam is coupling the modes of the undamped beam. The

damping term in the damped beam equations is therefore a form of coupled

damping which causes the modes of the system to take on a phase dependent

behavior.

3.11 Summery

Chapter 3 has derived and established all of the solutions and equations

necessary for the analysis of damped engineering beam equations. This paper

uses the technique of separate proportionally damped beam equations to
model the beam structure's modes for three reasons. First, the damping

mechanism being modeled is that of internal or material damping which is

assumed to follow a frequency distribution different than that of strain rate

damping. Second, it is assumed that the material damping is small, uncoupled



71

and induces exponential decay. Third, it is required of the analysis that the

beam's energy be uncoupled and calculable.
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Chapter 4

Computational Techniques

Overview

The objective of chapter 4 is to develop the computational solution

techniques, computer programs using the equations developed in chapter 3,
which are used in the analysis of the nonlinear models described of this paper.

The programs developed for this analysis consist of programs for the following

tasks: computation of solutions of the sub-systems, calculation and storage of
the transfer coefficients, time stepping and iteration routine for determination of

sub-system state factors, calculation of modal energy, estimation of maximum

energy dissipation due to modal coupling, and simulation of strain gauges

affixed to the beam. The procedure used to solve for the motion of a piecewise
linear jointed beam is shown in figure 4.1.

Computational Procedure

Figure 4.1

The following chapter sections describe in detail each of the procedural steps
and the computational processes used.

4.0
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4.1 Establishment of Linear Systems and States of Validity

The non-linear structures used in this analysis are engineering beams

linked by piece-wise linear rotational springs. Linear sub-systems are obtained

by setting the joints to the configuration of a single linear sub-joint and setting

the boundaries of the of the joint states, rotation and rotation rate, to the

condition for which the sub-joint is valid. For example, a single joint consisting

of an asymmetrically stiff rotational spring is considered as two linear sub-joints,

a sub-joint where the rotational spring has one stiffness and a sub-joint where

rotational spring has another stiffness. The first sub-system is the structure with

a linear joint that has the first stiffness and the second sub-system is the same

structure with a joint that has the second stiffness (see chapter 2, section 2.2).

The limits set for joint states can be specific joint rotations; for example, to

one side of a given joint rotation (angle > 0) the first sub-system describes the

structure's dynamics, and to the other side of the joint rotation (angle <0) the

second sub-system describes the structure's dynamics. The rotational moments

of the on-off rotational spring in the joint must be zero at the transfer between

the systems. If the angle at which system transfers is not at zero then the sub-

systems are designed with a balanced static moment applied at the joint so that

at the transfer the on-off spring with the applied moment will be zero. When

damping is included in the model the point of transfer will not always occur at a

given rotation angle due to rotation rate moments in the joint. The rotational

moment of the on-off spring must still be zero at the transfer point (see figure

2.4). Joint transfer moments are also set and stored with the set joint rotation

angles and the beam parameters. The input of the sub-system parameters and

their conditions of validity take place in a program written for this analysis and

are stored in a separate data file for each sub-system.

4.2 Calculation of Homogeneous Solutions

The beam parameters of a structural sub-system are used to generate

the transcendental matrix equation. A different matrix equation is generated for

each mode of the sub-system by inputting the desired damping proportionality

factor. The determinant of this matrix is usually a transcendental equation

which allows for an infinite number of zeros or eigenvalues. The inputted

damping factor is valid for only one of the eigenvalues.
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The eigenvalue of the matrix is solved for by iteration using a steepest
rate of descent routine. This routine starts with a guess of the appropriate
complex eigenfrequency (Q), restricted to have a positive imaginary component.

A modal solution is assumed so the eigenfrequencies of all the beam sections
are assumed to be equal. The complex shape factor (a) for each beam section
is calculated via equation (3.7) using the assumed complex eigenfrequency.
The complex shape factors are in general not equal to one another. The
eigenfrequency and all the complex shape factors are inputted into the complex
matrix equation defined by the boundary conditions. The determinate is then
calculated using a Gaussian elimination routine.

Double precision complex variables are used in the fortran code which
calculates the determinant. The steepest rate of descent routine changes the
guessed complex eigen frequency slightly in the real direction and a new
determinant is calculated. The original guessed complex eigen frequency is
changed slightly in the imaginary direction and a new determinant value is
calculated. Using the three points calculated the slope of the complex
determinant surface is then defined and the vector corresponding to the
steepest descent is calculated. The magnitude of the vector is initially set at a
relatively large value. Using this, a new guess at the complex eigen frequency
is calculated. If the determinant of the new guess is larger than the previous
one then the magnitude of the vector of steepest descent is lowered and a new
guess obtained. This process proceeds until a minimum magnitude of the
descent vector is reached. The minimum value of the descent vector used in
this analysis solves for the complex eigen frequency to approximately the 12th
significant digit.

The general surface of the determinant, a surface over the real and
imaginary plane of complex frequencies is in the shape of a exponential to
roughly the power of the dimension of the matrix times the magnitude of the
complex frequency. The eigenvalues appear as steep depressions or holes in
this surface, lowering it to zero. Because of the shape of this surface the
minimization routine could skip over or go around a zero. If all zeros were
missed the minimization routine would end up at the origin, a zero representing
the rigid body modes. The initial guess of the complex frequency needs to be
fairly close to the desired eigen frequency in order for the minimization routine
to fall into it. This necessitated a fairly rigorous search of the complex space to
insure that all of the eigen frequencies of interest are found.
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The steepness of the determinant surface walls gave very high values of

the determinant when the complex frequency was of any size. The limit found

for the standard fortran double precision code and a three beam section

solution (matrix dimension of 12X12) was approximately the 10th mode. This

proved to be a sufficient number of modes for the analysis. When the

minimization routine found an eigen frequency and started down its determinant

surface the walls of the surface became very steep: the higher the eigen

frequency was the steeper the walls. This resulted in very high values of the

determinant even though the eigen frequency was accurate to the 12th

significant digit. The high determinant values did not affect later calculations.

The beam section shape coefficients are solved for by placing the

complex eigen frequency back into the matrix equation and solving for the

shape coefficients. The matrix is singular so one of the coefficients is set to one

and its row and a column are eliminated. The residual terms are transported to

the right hand side of the equation. Gaussian elimination is utilized to solve for

the coefficients. This technique is not infallible in that the choice of which rows

and columns are chosen affects the solution of the coefficients.

To insure that the best possible solution is found all possible

combinations of rows and columns are tested. The resulting coefficients are

placed back into the matrix equation before the row column reduction. The right

hand vector is then calculated and its magnitude determined. This vector

should be zero but round-off errors and matrix singularity problems will yield a

nonzero value. The solution which has the minimum error is chosen. The error

of the chosen solution was typically on the order of the round-off error of the

machine.

The complex shape coefficients are then normalized by the orthogonality

coefficient. The orthogonality coefficient (v) is defined by the orthogonality

equations, equations (3.38) and (3.39). This solution, including all coefficients,

frequencies, and factors, is designated the odd complex conjugate pair mode.

The complex conjugate mode is calculated by taking the complex conjugate of

the odd mode's coefficients, frequencies, and factors and designating it the

even mode. All modal solutions are stored in the same file as the sub-system's

beam parameters.
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4.3 Calculation of Particular Solution

The particular solution is calculated in a manner similar to the calculation

of the oscillatory modes. The beam parameters of the sub-system are input into

a program written for this analysis along with the balanced applied joint

moments. Since the moments are balanced so that no rigid body motions will

occur a matrix equation, which assumes pinned ends of the beam assembly, is

generated. These moments are not functions of time and the matrix has a real

determinant. The particular solution to the sub-system is solved for directly.

Due to the pinned ends the beam assembly may translate and rotate away from

its inertially correct position. The solution is translated and rotated back to a

position corresponding to a beam assembly with no constraints. The particular

solution is stored in the same file as the beam parameters and oscillatory

modes and is labeled the zero-th mode.

4.4 Calculation of Sub-System Transfer Matrix

The solutions of all sub-systems are input into a transfer program written

for this analysis. The transfer coefficients between the sub-systems are

calculated for every mode transfer in every sub-system to every other mode in

every other sub-system and stored in transfer files. This is done to keep from

recalculating the same coefficients over and over as the structure transfers back

and forth between the same sub-systems. The accuracy of the modal transfer

coefficients, using double precision complex variables, was on the order of the

5th significant digit. This is considered sufficient for this analysis since this

represents an error in the structures critical damping ratio of approximately

0.001% (zeta). The accuracy of the transfer coefficient is limited by the accuracy

of the mode shapes and in turn the accuracy of the eigen-frequencies which are

machine limited. More complex structures using this analysis will need higher

precision than complex*16.

4.5 Time Stepping Routine and System Transfer Logic

With the solutions of the individual sub-systems and the transfer

coefficients between them stored in files a time stepping routine designed for

this analysis was run. The time stepping routine, given an initial sub-system
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with initial conditions and a start time, marches through time looking for the next

transfer between sub-systems. The size of the initial time step is determined

from the frequency of the highest mode of the sub-system modeled. Twelve

time steps are necessary to pass through a complete cycle of the highest mode.

This insures that no transfer will be missed.

The time stepping routine steps through time calculating the state of the

stepwise linear joints as it proceeds. The state of the joints are determined by

calculating the difference in slope across a joint and the rotational spring

moment provided by the joint. In the case of an asymmetrically stiff joint, figure

2.6, the joint has two rotational springs and two possible joint configurations.

The transfer point between the sub-systems is determined by the moments and

rotations of the on-off spring used in the joint, figure 2.4. The strong jointed sub-

system involves the joint configuration where the joint has the spring engaged,

figure 2.7. The weak jointed sub-system involves the joint configuration where

the joint does not have the on-off spring engaged, figure 2.8. The moment-

rotation plot of the asymmetrically stiff joint is shown in figure 2.5.

If damping in the joint is zero, the moment provided by the on-off spring is

zero when the joint rotation passes through zero. The moment state is

redundant in the determination of the sub-system transfer point. However,

when the damping is not zero, the moment provided by the joint is rate

dependent and will go to zero before the joint rotation passes through zero.

The transfer occurs at this point and the strain energy left in the on-off spring is

assumed to be dissipated within the spring. This discontinuity causes some

nonlinear hysteretic damping in the joint but it is small compared to the linear

damping of the joint.

When the transfer from one sub-system to another is indicated the time

stepping routine iterates around the point where the joint condition changes to

find the exact time for the transfer. A minimum time-step of 1/10000 of the initial

time-step is used to signal that the transfer time has been found to a sufficient

accuracy.

The new sub-system is determined and the transfer from the current

sub-system to the new sub-system is performed. The transfer coefficients are

used to calculate the new sub-system's complex modal amplitudes from the old

sub-system's complex modal amplitudes. The new sub-system should be in the

new joint condition, but, since there are only a limited number of modes used

and the accuracy of the modes is limited, some error is expected. To alleviate
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this discrepancy the first time step in the new sub-system is taken before the
joint condition is tested. If the error is not large and the new sub-system has the
proper joint condition, the time stepping routine continues on to the next
transfer.

If the new sub-system does not have the correct joint condition then the
routine shrinks the time step and tries again. If the minimum time step is
reached and the sub-system has still not found the correct joint state then a
search is started with a pre-set time step and a limit of one half of one cycle of
the lowest mode. If the correct joint condition has still not been found then an
error message is sent and the routine halted. The experience with the models
analyzed was that the sub-system almost always found the correct joint
condition on the first transfer. The program ended when a time limit or a transfer
limit was reached. The transfer times, sub-system number, and the modal
amplitudes were stored in a file for later analysis.

4.6 Calculation of Modal Energy

Energy, in this analysis, is a modal quantity. The energy equations of the
linear sub-systems are uncoupled. The energy of each mode of each sub-
system is calculated in a program written for this analysis, by using the
amplitude information which resulted from the time-stepping routine. The modal
coupling present in the nonlinear structures allows energy to transfer between
modes of the system. At a sub-system transfer the difference in the total energy

of the first sub-system and the second sub-system indicates the energy lost to
modes not calculated in the model. Energy transferred to modes not calculated
in the model is implicitly assumed to be dissipated before the next sub-system
transfer.

Since this analysis solves for the modal frequencies and shapes
independently of the other modes of the sub-system, the transfer coefficient,

used to calculate the new modal amplitudes, takes into account all infinite
modes, to the accuracy of the calculation. This technique essentially assumes
that the modes not calculated and not used in the model have very high
damping ratios. It is this property of this analysis which makes it unique from a
finite degree of freedom model which does not allow energy transfer to any

mode not modeled. Essentially a finite degree of freedom system traps the
energy in the system. Any unmodeled modes can not contribute to the energy
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dissipation of the system. It may be possible to approximate the analysis with a

finite degree of freedom model if enough degrees of freedom are included.

It was found that the energy lost to uncalculated modes was negligible

when seven modes were calculated and included in the models. When less

modes were used the energy loss to uncalculated modes became significant.

4.7 Single Mode Technique

With the treatment of uncalculated modes used in this analysis, it is

possible to estimate the maximum energy dissipation due to modal coupling by

modeling just one mode. Any excitation of other modes is assumed to be

dissipated before the next sub-system transfer. The transfer equation reduces

to the contributions from the particular solution and the two complex conjugate

modes of the primary mode in oscillation.

, "n m) tT n}=Am

n=O V
(4.1)

This iteration scheme is used to determine the maximum dissipation due to

modal coupling. The single mode technique ignores any dynamics of the

coupled modes and assumes that the sub-system transfer is determined by the

single mode only.

4.8 Calculation of Simulated Strain Gauge Data

A strain gauge simulation program, written for this analysis, was used to

analyze the results. This program used the time stepping output and the

solutions of the systems equations to simulate a strain gauge mounted at a

given position on the beam. A digital output similar to the output provided by

experimental strain gauges was created and stored in standard data format.

The strain gauge set-up measures beam curvature at the point where the strain

gauges are affixed, the center of the beam sections. Beam curvature is

proportional to the modal amplitudes of the beam but different proportionality

constants exist for each mode. From simulated strain gauge data direct
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comparisons between theoretical models and experimental data were made.
The output of this program could be manipulated to show the contribution of
each mode of the system individually. The amplitudes of individual modes were
compared to illustrate the coupling between the modes and to show relative
changes in modal damping rates. The effective damping rates were calculated
using a log decrement estimation on the modal amplitude plots.

4.9 Summary

This modeling technique, although limited to very simple structures,
allows very accurate calculation of modes and mode shapes of a continuous
nonlinear system. The inclusion of three or four modes performs well, the
addition of higher modes not affecting the output very much. The first seven
modes of the system were calculated and used in the analysis. This technique
also allows the estimation of the maximum dissipation due to the coupling of
modes by calculating and using a single mode of the system.
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Chapter 5

Analysis of Damping Due to Modal Coupling

5.0 Overview

The objective of chapter 5 is to examine the effect of non-dissipative,

piecewise linear joints on the effective damping of structures. The effective

damping of a structure is defined in this paper as the apparent decay rate of a

structure when set in motion in a single mode. The piecewise linear nature of

the joints allows the structure to be divided into sub-systems where a sub-

system models the structure while the structure is within predetermined state

limits.

A transfer of energy from mode to mode occurs when the structure

transfers from one sub-system to another. A modal energy tree can be created

establishing how the energy moves between the modes within the structure.

The energy transfer between modes combined with the internal decay rates of

the individual modes is used to model the effective decay rate of a structure. A

structure is set in motion in a single mode and its decay rate calculated. The

decay of the mode represents a loss of energy which is due to internal damping

and the transfer of energy to other modes. The energy transferred to other

modes could be dissipated in those modes, transferred to more modes or

transferred back to the original mode.

Three example structures are examined, a beam with a asymmetrically

stiff joint, a beam which is wire braced at its one-third points, and a beam with a

dead-band joint. The effective damping of structures with different internal

damping rates and joint parameters are calculated. The results of the analysis

are used to draw conclusions about how damping due to modal coupling

occurs, how it can be estimated, and when it is most likely to be important in a

structure.

The section 5.1 describes the specific objectives of chapter 5. Section

5.2 discuses the nature of the nonlinear jointed beams and energy transfer

between modes. Section 5.3 discuses the effective decay rate of a structure

and how it is calculated. Section 5.4 describes the procedure for analyzing the

structures. Section 5.5 analyses the asymmetrically stiff jointed beam. Section

5.6 analysis the wire braced beam. Section 5.7 analysis the dead-band jointed
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beam. Section 5.8 summarizes the analysis of the three beams and the nature

of damping due to modal coupling.

5.1 Objective of Analysis

The focus of this analysis is the calculation of damping due to modal

coupling. The three structures analyzed have piecewise linear, non-dissipative

joints. The joints cause modal coupling within the structure without generating

damping of there own. The modal coupling causes the transfer of energy

between the modes of the structure. The transfer of energy can contribute to the

effective damping of the structure by transferring energy to modes were the

internal damping is more advantageous. The models and analytical techniques

developed in this paper are designed to track energy as it transfers between

modes and dissipates within the modes. The increase in damping due to modal

coupling can be calculated directly from the simulation.

By varying the internal damping parameters and the joint parameters of a

structure the relative magnitude of the contribution of modal coupling to the

structure's effective damping and its sensitivity to the structures parameters can

be determined. The relationship between the structure's parameters and the

damping due to modal coupling provides insight into how energy is dissipated

in real structures, when this phenomenon is important to the modeling of a

structure, and how damping can be enhanced if modal coupling is present. The

objective of chapter 5 is, therefore, to examine the contribution of non-

dissipative, piecewise linear joints to the effective damping and to determine its

sensitivity to the joint and beam parameters.

5.2 Energy Transfer

The nature of the nonlinear joints used in this analysis are that modal

coupling occurs only when the structure transfers from one linear sub-system to

another. In-between transfers the modes are orthogonal and the modal

oscillations decay at their own internal damping rates. At the transfer a

discontinuity occurs, the amplitudes of the modes change instantaneously.

The linear sub-systems may have very different modes and mode shapes

but in this analysis the first mode of a sub-system is associated with the first

mode of every other sub-system of a structure, the second mode with the
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second mode of every other sub-system, etc. The first mode of a structure is

therefore the first mode of all the sub-systems of the structure. This causes a

semi-sinusoidal oscillation of the individual modal contributions to the motion of

the structure. Discontinuities occur at the transfers between the sub-systems

especially in the higher modes. The discontinuities represent the excitation or

the de-excitation of modes due to the sudden discontinuity in the joint.

The discontinuity can also be described as the transfer of energy

between modes. Figure 5.1 illustrates how energy can be distributed

throughout the modes of a structure. The structure is set in motion with energy

in the first mode only. When the structure transfers from sub-system 1 to sub-

system 2 most of the energy transfers to the first mode of the new sub-system

but some energy is allowed to transfer to other modes of the sub-system. At the

next sub-system transfer the same transfer pattern occurs for all the modes of

the sub-system. Energy transferred to uncalculated modes of the sub-systems

are assumed to be completely dissipated before the next sub-system transfer.

SUB-SYSTEM 1 SUB-SYSTEM 2 SUB-SYSTEM

INTERNAL INTERNAL INTERNAL
DAMPING DAMPING DAMPING

Energy Transfer Between Structural Sub-Systems

Figure 5.1

Between sub-system transfers the amplitudes of vibration in sub-system modes

decay according to their own internal modal damping rate. If the damping rates
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of the coupled modes, modes 2-4 in figure 5.1, are higher than the primary

mode in vibration, mode 1 in figure 5.1, then the dissipation of energy will

increase due to energy transfer between the modes. Modal coupling will cause

an apparent increase in damping of the first mode.

Energy can also transfer back and forth between modes causing an

oscillation or beating of the modal amplitudes. Modal beating is observed in all

three beam models when the relative internal damping is not to high. The

energy transfer between modes can be shown by calculating the energy of the

individual modes as the simulation proceeds. Figure 5.2 shows the modal

energy of a asymmetrically stiff jointed beam during a simulation run. Energy is

primarily transferred between the first and third modes with the fifth mode

playing a small role. The structure is symmetric such that only the odd modes

will be coupled.

Beating of the modes is not persistent in the example shown in figure 5.2

because the relative modal damping rates of the upper modes are quite high

even though the damping ratios of the modes are similar. The dotted line

shows the envelope of the first mode's oscillation had no modal coupling been

present. It is apparent that the decay of the first mode is enhanced due to the

modal coupling of the system. Figure 5.3 shows an example where the upper

modal damping rates are zero. The beating of the first and third modes are

illustrated by showing the first and third modal components separately. A

portion of the energy of the first mode is transferred to the third mode then

transferred back to the first mode, over a period of approximately six cycles.

5.3 Effective Damping

There are two ways of describing the damping of a structure used in this

analysis. The more common method is the damping ratio, zeta, which is the

rate of decay of the structure normalized by the frequency of the structure. The

second is the damping rate, the real portion of the complex frequency which

relates directly to the time rate of decay of the structure's oscillations. The

difficulty in using the damping ratio is that there are many frequencies present in

this analysis. The different linear sub-systems describing the structure, in

general, have different frequencies, the different modes have different

frequencies, and the joint nonlinearities may cause the structural frequencies to

change. In this analysis it is undesirable to have the damping change due to
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.Total Energy

Sub-System Transfer

Mode 1 Energy

de 5 Energy

125.0
TIME 26-OCT-87 14:11:09

Seconds X 10**3

Structural Energy

Figure 5.2

Table 5.1

Simulation Beam Parameters

KN = .033, Ks = 26

Sub-System 1 Sub-System 2

Internal
Damping
Rate

Frequency
(rd/sec)

139

659

938

2195

Internal
Damping
Rate

0.5
2.2
6.9
24

2542 44

Frequency
(rd/sec)

213
659
1174
2195
2994

z
tUIu

x

0.0 62.5

Mode

Number

1

2

3

4

0.5

2.2

4.4
24

5 32
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frequency changes in the structure. To this end the damping rate is used

throughout the analysis. This way the damping of all modes and sub-systems

can be calculated directly on a time rate of decay basis.

The damping rate is labelled DR. In order to relate the results of this

analysis to more conventional damping data, the damping rate is also

normalized by the nonlinear systems fundamental frequency at the time of

calculation. Since the structure is nonlinear, as the amplitude of the structure's

modes change, so may the frequency. In most of the cases analyzed the

fundamental frequency does not change greatly with amplitude and could be

considered a constant, the dead-band joint being the exception. The damping

ratio in this analysis is defined by

DR
Z% = DR 100

QNL (5.1)

Where Z % is the damping ratio shown in percent. The frequency of the
fundamental mode of the nonlinear system, iNL, is in radians. The structures

damping rate and frequency is a weighted average of the component sub-

systems damping and frequencies and are calculated directly from the

simulation.

The damping rate of the individual sub-systems can be derived directly

from their solutions and in this analysis is set as a parameter of the structure.

The effective damping rate, the damping rate of a mode of the structure due to

internal damping as well as energy transfer must be calculated from the

structural simulations.

The structures modelled are nonlinear in nature and the internal

damping is assumed to be small, less than 1.0%. The modeling technique used

in this analysis divides the motion of the structure into a series of linear sub-

systems. The linear sub-systems can be very different from one another and the

resulting motion of the structure may be quite different from that of a linear

structure. In order to visualize the motion of the structure, simulated output of

strain gauges placed on the structure are generated. Figure 5.3 is an example

of the simulation output. Care was used to insure that all modes are observable

by the simulation. The simulated strain gauge output also allowed a direct

comparison with experimental data described in chapter 6.
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The calculation of the damping of the different modes proved to be

difficult using curve fitting routines. The curve fitting routines fit the simulated
strain gauge output to a decaying sine wave. The motion of the structures were
generally not close enough to a decaying sine wave to allow this type of
analysis. Filtering of the simulated strain gauge signal was considered since
this is the method used in identifying the modes of the experiments described in
chapter 6, but was not used because this caused modal information to be lost.
For example, the discontinuities in the coupled modes would be smoothed over
giving the impression that they are continuously excited when they are actually
excited only when a sub-system transfer occurs.

The method of log decrement was used since it was not sensitive to the
detailed motion of the structure, but instead depends only on the peak
amplitudes at the beginning and end of the data window. The log decrement
method uses the peak to peak amplitude of the simulated strain gauge output at
a point near the beginning of the simulation and another point near the end of
the simulation. These amplitudes and the time between them is input into

equation (5.2).

In ( Amp (t) -Amp (t2)

( t2- tl )
(5.2)

Equation (5.2) estimates the effective damping rate but is subject to some error.
The decay of nonlinear structures, such as those analyzed in this paper, do not
necessarily follow a simple exponential decay pattern which is the assumption
in the log decrement estimation. This tends to generate some scatter in the

damping rate calculations. The extent of the scatter depends on the nature of

the structure in question. The dotted line in figure 5.3 represents the fitted

decay envelope.

5.4 Analytic Procedures

Two analysis procedures were used to analyze the structures. The first
procedure models multiple modes of the structure and keeps track of the modal
energy as it moves from mode to mode. Each of the component linear sub-
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systems of the structures were solved for the first seven modes. The internal
damping rate of the first mode was set to be the same for all linear sub-systems

and was labelled DRmt. The internal damping rate of the other six modes of
each sub-system were set to the same value and labelled DR2 7. In this way,
the internal damping rate of the individual modes would not change due to
system transfer. The internal damping rate of the structure remains constant no
matter which sub-system the structure is in or how long it is in a particular sub-

system.

The method used to analyze modal coupling and its associated damping
is to set the system in motion in its first mode only. As the system vibrates the
higher modes are excited. The system is allowed to vibrate for approximately

50 cycles and a simulated strain gauge output and its modal components are
created. The decay rate of the first mode is calculated using the log decrement

method. This procedure is useful in measuring the effect of the modal damping
rates and the joint parameters on the damping of a single mode due to modal

coupling.

The second procedure was used to calculate the maximum damping
due to coupling for a given structure. The higher modes of the systems were
excluded from the model leaving only the first mode, figure 5.4.

SUB-SYSTEM 1 SUB-SYSTEM 2 SUB-SYSTEM

INTERNAL INTERNAL INTERNAL
DAMPING DAMPING DAMPING

Single Mode Calculation

Figure 5.4

This assumes that oscillations of the upper modes caused by modal coupling at
a sub-system transfer are dissipated completely before the next transfer can
occur. The system is allowed to vibrate for approximately 50 cycles and a
simulated strain gauge output is created. The decay rate of the structure is
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calculated using the log decrement method. The calculated damping rate of the
first mode represents the maximum effective damping of the structure's first
mode including damping due to modal coupling. This procedure is useful in the
investigation of the variation of the nonlinear joint parameters, showing the
maximum effect the nonlinearities have on the damping of the first modes,
without including the upper modes and their damping rates.

The relationship between the damping due to modal coupling and the
internal damping rates of the systems centers around the difference in damping
rates. This occurs not only in the difference between the internal damping rate
of the first mode and the effective damping rate including modal coupling but
also in the relationship between the internal damping rates of the first mode
compared to the internal damping rate of the upper modes. This is due to two
observations:

The maximum increase in damping due to modal coupling is a function of
the nonlinearity of the joints only, since it is the nonlinearity which allows the
transfer of energy between the modes. The internal modal damping rates may
be any value but the maximum added damping due to modal coupling will be a
constant. This indicates that the difference between the internal damping rate
and the effective damping rate is the appropriate measure of damping due to
modal coupling.

Differencing between the internal modal damping rate of the first mode
and the coupled modes comes from the observation that the increase in
damping due to modal coupling is the same for similar systems with different
internal damping rates as long as the difference between the internal modal
damping rates is the same. This is due to the direct dependence of the
structural energy dissipation on the internal modal damping rates. The
difference in the internal modal damping rates is labeled as ADRM.

ADRM = (DR2. 7) - (DRlint) (5.3)

The effective damping rate of the first mode is labeled DR1Eff. The difference
between the first modes effective damping rate and the first modes internal
damping rate is the damping due to modal coupling and is labeled ADR1.

ADR 1 = (DRlEff) - (DRlint) (5.4)
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The damping rates can be normalized by the frequency of the structures first
mode. The frequency of the first mode is determined from the simulation. It is a

weighted average of the first mode frequencies of the individual sub-systems.

The normalized damping rates take the form

AZM% = DR 100

(5.5)

AZ1% DR1 100
(5.6)

The structures described in chapter 2, were modeled with seven modes.

The beam model parameters, transfer coefficients, and data from the analysis

are listed in Appendix C. The upper modal damping rate of 1000 signifies a
simulation with only the first mode retained in the model.

5.5 Asymmetrically Stiff Jointed beam

The nonlinear joint characteristics are represented by the relative

stiffnesses of the on-off springs which make up the joint. The asymmetrically

stiff joint, figure 2.6, has two torsional springs and consists of two linear sub-

joints. The first linear sub-joint is where the stiffness of the joint is represented

by the linear spring stiffness

KL = K1 (5.7)

The second linear sub-joint defines the joint stiffness as the sum of two springs

KL + KNL = K2 (5.8)



92

The two parameters used to describe the nonlinearity of this joint are the ratio of

the stiffnesses, K1 and K2, and the relative stiffness of the joint to the beam's

rigidity, Ks

K, =KN and K2 K s
K2 (EL/i)

(5.9)

Where E, I and are the modulous of elasticity, the moment of inertia, and the

structures length respectively. The ratio of K1 and K2 indicates the degree of

nonlinearity in the joint. Assuming that K1 is always less than K2, as KN

approaches unity the joint approaches being linear. In the limit as K1 goes to

zero the joint approaches a pinned joint and the system becomes undefined,

having another rigid body mode. The joint stiffness ratio, Ks, indicates the

relative stiffness of the joint.

In the asymmetrically stiff jointed beam the joint parameters KN and Ks

are held constant at 0.033 and 26 respectively, these values represent

experimentally tested structures. Different values of damping rates are applied

to the first mode and the upper modes. The first mode damping rates vary from

0.1 to 100 and the upper mode damping rates vary from 0.01 to infinity (labeled

1000). The difference between the damping rates of the first and upper modes

are calculated and the difference between the internal damping rates of the first

mode and the effective damping rates are calculated (Appendix C). The results

are shown in figure 5.5. The extrapolated curve asymptotically approaches the

upper limit in damping calculated by the single mode test and shown as a

horizontal line. The damping rates are normalized by the frequency of the first

mode of the system and shown in figure 5.6.
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Three regions are identified in these figures, ADRM is greater than zero,

ADRM is near zero, and ADRM is less than zero. The slight scatter in the data is

primarily due to errors incurred by using the log decrement method of

calculating the damping rate. The largest contributor to the scatter was the

nonlinear behavior of the structure, especially when the upper modal damping

rates were lower than the damping rate of the first mode.

When ADRM is greater than zero, there is a dissipation advantage in the

upper modes and the effective damping of the first mode increases. As the

relative damping of the upper modes increases the effective damping of the first

mode increases. An asymptotic limit is reached which coincides with the single

mode simulation. Different values of the first mode damping rates, DRlint, are

assumed in the model but lie on the same line. The simulated strain gauge
data of a simulation with ADRM greater than zero is shown in figure 5.7. The

third mode is initially excited by the coupling of the first mode but very quickly

settles into a steady oscillation. The envelope representing the decay of the first

mode had no modal coupling been present is shown as a dotted line.
When ADRM is zero, the damping rates of all the modes of the system are

the same. In this case, when a higher mode is excited by the first mode, there is

not any relative increase in the first mode's effective damping rate since there is

no dissipation advantage in the upper modes. The simulated strain gauge data

of a simulation with ADRM equal to zero is shown in figure 5.8. The third mode

is initially exited by the coupling with the first mode and starts a beating

phenomenon where energy transfers back and forth between the first and the

third modes. Higher modes are involved but the third mode dominates the inter-

modal energy transfers. After a few beating cycles the beating starts to

transform to a steady state oscillation. The indications are that the point where

beating starts to play a significant role in the dynamics of the structure is when

the damping rates of the coupled modes are the same.
When ADRM is less than zero, the damping rates of the upper modes of

the system are less than the damping rate of the first mode. In this case the

beating of the first and third modes becomes persistent, lasting throughout the

simulation. Figures 5.3 and 5.9 show the simulated strain gauge data of a
system with ADRM less than zero. This indicates that the beating phenomenon

may be an instability in the dynamics of the structure. The increase in damping

due to modal coupling is unclear due to the scatter in the calculation. It is
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possible that the relatively high amplitudes of the third mode couple with higher
modes to dissipate energy but no clear pattern is noticeable. The scatter in the

damping data is possibly a result of the modal beating effecting the log
decrement calculation. This is especially true of systems with ADRM much less

than zero because it forces the damping rate of the first mode up, making

damping calculations more sensitive to modal beating.

Since the variation of the first modes modal damping reduces to the
same representative curve in ADRM and AZM% the variation of the nonlinear

joint parameters could be conducted with the single mode test to observe the

maximum damping including modal coupling. This greatly reduced the number

of computer simulations required. This test gives the limit of very high damping
in the upper modes, the asymptotic limit as ADRM goes to infinity. The results for

the asymmetrically stiff jointed beam for three values of Ks, 2.6, 13, 26, are

illustrated figure 5.10. The same data normalized by the frequency of the

systems first mode is shown in figure 5.11.
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The figures show that the nonlinearity must be fairly large before any

significant damping can occur. Figure 5.12 shows the simulated strain gauge

data of a jointed beam with a mildly nonlinear joint. The data trace is mostly

sinusoidal and little damping due to modal coupling is possible. Figure 5.13

shows the simulated strain gauge data of a jointed beam with a strongly

nonlinear joint. The data trace is not sinusoidal and exhibits strong nonlinear

behavior. The maximum possible damping caused by the nonlinearity is

determined by the nonlinearity alone and only contributes, in the examples

used in this analysis, less than 1.0% damping. The peak damping provided by

the modal coupling decreases as the joint stiffness, Ks, decreases but the

increase in damping starts at a earlier point in KN.

5.6 Wire Braced Beam

In the system simulating a wire braced beam by coupling the one third

points of the beam, figure 2.9, there is only the one joint parameter considered

since the beam properties are assumed to be constant.

n 0.3

I

l I
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(5.10)

As before, KN is a measure of the nonlinearity of the system.

An analysis similar to that of the asymmetrically stiff jointed beam

produces similar graphs. The structure where the one third points of the beam

are coupled by a piecewise linear spring is an extension of the above analysis.

The potential for nonlinear coupling is greater in this example and shows that

large nonlinearities may cause significant damping due to modal coupling. The

figure 5.14 shows the effect of damping rates on the damping due to modal

coupling for a particular value of KN. It is very similar to figure 5.6 but does not

approach the asymptotic limit as quickly.
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The single mode test is performed with different values of KN and shown in

figure 5.15. As can be seen the nonlinearities, again, must be fairly large in

order to cause significant damping due to modal coupling.
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5.7 Dead-Band Jointed Beam

The dead-band joint is assumed to have relatively rigid springs with a

relatively weak spring representing the dead-band, figure 2.12. In this analysis

the angle the joint must rotate to pass through the center weak spring, is held
constant and the amplitude of the first mode varied. The effect the dead-band
has on the structure changes as the amplitude decays. Since the dead-band is

assumed to be centered in the sense that when the structure is at rest the joint is
centered in the weak spring region, there is an amplitude of the first mode the
joint just starts to exit the center region and contact the outer springs. This
amplitude is labelled ADB, and is defined as the amplitude of the first mode
where the onset of dead-band nonlinearities occurs. The measure of the

amount of the nonlinearities is defined as the ratio of the amplitude of the first
mode and the amplitude of the first mode where dead-band onset occurs.

- -
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= DBR
ADB

(5.11)

When the normalized amplitude, DBR, is equal to or less than one then the

system is linear. When DBR is greater than one then nonlinear behavior occurs.
When DBR is much greater than one then the dead-band becomes small

compared to the dynamics of the structure and will approach a linear structure

in the limit as DBR goes to infinity.

The dead-band jointed beam is a slightly different case than the two

structures examined above. The amplitude dependence is examined by setting

the system in motion in its first mode and calculating the log decrement

damping for each cycle. The damping rate of the upper modes is set at 100
where the damping rate of the first mode is set at 0.5. The simulated strain

gauge data of a dead-band jointed beam is shown in figure 5.17. The single
mode test proved ineffective in this example because as the dead-band was

small compared to the motion of the beam, more than the first mode was
needed to model the transition. The amplitude of the system as it decays is

shown in figure 5.16. It is very close to a linear line.
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When the oscillations drop below the point where the dead-band is effective the

structure becomes linear and the curve in figure 5.16 flattens out. The damping

associated with modal coupling is illustrated in figure 5.18. At high amplitude

the damping due to modal coupling is near zero. As the amplitude ratio

approaches unity, the point where the structure becomes linear, the damping

contributed by the modal coupling increases to near 2% before it starts to fall

again. This is with a very high upper modal damping rate. Lower damping

rates reduce the damping in a similar manner as in the previous structures.
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To complete the analysis the structure coupled at its one third points was

set in motion with its third mode only. This is in an effort to determine if coupling

from higher modes to lower modes was significant. In this case very little

excitation of the of the first mode by the third was observed. This seams to be

because the nonlinear joint is causing the structure to transfer between sub-

systems at the rate of the third mode and this tends to not excite the first mode

significantly. However, the third mode excited the fifth mode in exactly the same

method as the first excited the third, exhibiting damping due to modal coupling

and beating between the modes. This indicates, at least for this structure and

E

I': _ _ _ i i _
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on-off nonlinearities, that the modes above the excited mode are the most

important. This is not surprising given the nature of the on-off springs since the

sudden jump in stiffness will mostly contribute higher frequency disturbances to

the structure.

5.8 Summary

The conclusion from this analysis is that damping due to modal coupling

will contribute significantly only if,

1 ) The internal damping ratio of the fundamental mode is small so as to not

overwhelm the the damping due to modal coupling which is limited by the

modal coupling caused by the discrete nonlinearities.

2) The nonlinearities are large, causing significant coupling, without

causing significant hysteretic damping to violate condition 1.

3) The damping rate of the coupled modes must be significantly higher than

the fundamental mode in order to increased its effective damping.

This analysis is limited to the three examples described but some

references of more complex structures may be made. Damping due to modal

coupling will be directly related to the degree of nonlinearity present in the

system. Structures with only small nonlinearities will most likely not have

significant damping due to modal coupling because the excitation of the

coupled modes will be small. This is especially true if the same nonlinearities

which couple the modes also causes hysteretic damping. Hysteretic damping

can dissipate energy which would dominate the damping of the structure.

In structures where the nonlinear joints or mechanisms are significant but

not hysteretic and the internal damping of the system is small, the damping due

to modal coupling may be significant. It is dependent on the relative damping

rates of the coupled modes. If the damping rates of the coupled modes are high

then an increase in damping is expected. However, if the damping rate of the

coupled modes are the same or lower than the fundamental mode then little or

no increase in damping is expected but a dynamic coupling of the modes will

occur where the amplitude of the modes beat out of phase with one another. In

a system with significant coupling between the modes, the stresses caused by

the modal excitation may be significant.
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The analytical methods used in this analysis can be used for more

complex structures but a continuous model will most likely not be

advantageous. A sufficient number of degrees of freedom must be included in

the model to insure that energy will not be trapped in the system.
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Chapter 6

Experimental Method and AppDaratus

6.0 Overview

The objective of chapter 6 is to describe the experimental method and

the facility used to perform the experiments. The experiment performed was

designed to verify and observe damping due to modal coupling of a simulated

space structure in a simulated space environment. The technique used was to

design the test structures, or specimens, to resemble the theoretical models

described in chapter 2 so comparisons could be made between experiment and

theory. Both linear and nonlinear specimens were tested in order to measure

material damping parameters and to make direct comparisons between. The

specimens were tested in free-fall and vacuum to isolate them from

environmental and support influences. The dynamics of the specimens were

monitored via strain gauges placed on the specimens.

6.1 Experimental Method

As was discussed in chapter one it is important to isolate the

experimental space structure from any phenomenon which could affect or mask

the intended measurement. The effects caused by the absence in space of an

atmosphere and gravity are the two most difficult to simulate. The procedure

chosen for this analysis places an experimental specimen in vacuum and free-

fall. The vacuum environment is provided by a large vacuum chamber which

the experiment is performed in, figure 6.1. The state of free-fall is accomplished

by lofting the specimen upwards in the chamber allowing it to free-fall to the top

of the chamber and back down. The time the specimen is in free-fall is brief,

less than two seconds. This limits the types of experiments using this technique

to those of relatively short duration. The initial lofting of the specimen is used to

excite the dynamics of the structure. The specimen vibrates as it free-falls

straight up and back down, landing in a net stretched across the bottom of the

chamber. Strain gauges mounted on the specimen transmit their signal via very

fine wires to a follower system. The follower system carries shielded data lines
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to close to the specimen, following it as it travels up and down. The strain
gauge data is then stored for later use.

This type of experiment causes the specimen to undergo an initial
impulse loading then to freely vibrate with no external forces acting on it until it
lands in the net. The free decay data received from the strain gauges can then

be analyzed for decay rates, modal coupling, and joint dynamics.

6.2 ASTROVAC Facility

MIT ASTROVAC Facility

Figure 6.1

The MIT ASTROVAC ( Apparatus for Structural Testing and Research on

On-orbit Vibration And Control ) facility was used to provide the necessary
isolation and space simulation necessary to perform these measurements. The

structure is lofted upward so that it free-falls up to the top of the chamber and

back down. The ASTROVAC chamber is 10 foot in diameter and 14 foot tall
with a 6 foot diameter door. This can accommodate up to 3 meter structures

placed into free-fall for approximately 1.75 seconds. The chamber has two

vacuum pumps connected to it. The primary or roughing pump is located on the
floor below and connected to the chamber via a 6 inch diameter pipe. The
second pump is a cryo-pump mounted on the back of the chamber. The two

stage 350 cfm roughing pump is designed to pump the chamber to

approximately 0.001 torr. where the cross-over to the cryo-pump occurs. The
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cryo-pump is a helium refrigerator which freezes the atmosphere remaining in

the chamber to its condenser coils. The facility is capable of pressures between

10-6 and 10-8 torr., however, the vacuum chamber was typically evacuated to

only 0.1 torr for these experiments, sufficient to eliminate any atmospheric

damping effects. The roughing pump could pump the chamber down to .1 torr

in approximately half of an hour. The turn-around time between loft tests was

roughly one hour. A pressurized room connected to the chamber provides a

clean environment for personnel to work in.

6.3 Launch Platform

The launching of specimens is done by a pneumatically powered device

called the TELM (Tunable Excitation Launch Mechanism), figure 6.2. The

launch, the sudden acceleration of the structure from rest to its takeoff speed,

places the structure under stress. By supporting the structure in certain ways an

initial excitation of the structure is also performed. This initial excitation is

adjusted by changing the launch platform, the support structure, or changing the

acceleration rate of the launch. A shaker system is used for long duration and

forced oscillation tests and was not used in these experiments.

TELM System

Figure 6.2
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The TELM consists of a pneumatic piston assembly, with a 5 inch
diameter and a 18 inch stroke, located under the vacuum chamber. The piston
assembly, figure 6.3, consists of upper and lower chambers in the cylinder
separated by the piston. The piston can be forced either up or down. The shaft
of the piston passes through a hole in a brass plate mounted on the chamber
floor. The hole and shaft are sealed with dual o-rings and grooves located in
the copper plate. This seal has proven effective even at very low pressures.
The piston assembly is supplied by a two inch diameter,100 psi air line which
passes through a series of valves before entering the piston assembly. A flow
regulation valve is located at the base of the piston assembly. This valve
regulates the flow of air into the lower chamber of the cylinder and controls the
launch platform accelerations during launch. A soft launch is obtained by
restricting the flow of air into the cylinder by partially closing the flow regulation
valve. If a faster launch or a heavy specimen is used then the flow regulation

valve is opened more.

TELM Piston Assembly

Figure 6.3

The launch valve is located just before the flow regulation valve and
controls the launch. The valve is a two position valve. When it is closed the

Return
Valve

Main Air Su

Vacuum/r Check
Supply Valve

Rickg2 Vvia
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lower chamber of the cylinder is connected to a check valve to atmosphere and

a vacuum valve to the second stage of the roughing pump. When the piston is
ready to be fired the launch valve is closed, the check valve is closed and the
vacuum valve is open pulling a vacuum on the lower chamber of the cylinder.

This vacuum is necessary to keep the piston from being pulled into the chamber

due to the difference in pressure across the piston shaft entering the chamber.
The pressure in the upper chamber of the cylinder is regulated through two
valves located at the top of the piston assembly. The pressure in the upper

chamber of the cylinder is used to regulate the altitude of the launched
specimen. It is desired to have the specimen launched to near the top of the

chamber. The flow valve is used to regulate how fast the specimen accelerates
and the air in the upper chamber of the cylinder is used to regulate the stroke

and therefore the altitude of the loft. A return valve connects the upper chamber

of the cylinder, through a check valve, to a 1 inch diameter, 100 psi air line to
force the piston back down after a launch has occurred.

Before a launch, the flow valve is set and vacuum supplied to the lower

chamber of the cylinder. The upper chamber of the cylinder pressure is then set
and the TELM is ready to be fired. When the computer signals for a launch, the
vacuum valve is closed, the valves at the top of the piston assembly are closed
and the launch valve is opened simultaneously. The 100 psi air passes through

the flow valve into the lower chamber of the cylinder forcing the piston to rise,

accelerating the specimen upward. The air in the upper chamber of the cylinder

is trapped due to the closed valves at the top of the piston assembly. As the
piston rises in cylinder, the air in the upper chamber of the cylinder compresses,

slowing and eventually stopping the piston. This action shortens the stroke and
prevents the piston from striking the top of the cylinder. The specimen leaves

the platform and continues to the top of the chamber. Approximately 0.3

seconds after launch has been initiated the computer signals for the launch

valve to close and the return valve to open. The vacuum valve has already

been closed and the air accumulated in the lower chamber of the cylinder

exhausts through the check valve to atmosphere. The return valve supplies
pressure to the upper chamber of the cylinder forcing the piston back down.
The check valve in the return line prevents the piston from being accidentally re-
launched until the system has been reset.
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Launch Platform

Figure 6.4

Two types of launch platforms were used in these experiments. The

structures were long slender beams from 2 foot to 3 foot long. The first launch

platform had two supports located at the ends of the beams. The beam was free

to bend between them as lofting occurred, figure 6.2. The induced stresses of
this system proved to be too high causing excessively high geometric

displacements and forces. The more successful launch platform was one

where foam was placed on a rigid platform, figure 6.4. End supports were

placed at the ends of the beam roughly level with the foam. During loft, the

beam, sitting on the foam, would compress the foam as it deformed. This

provided a smaller initial deflection. The deflection could also be adjusted by

changing the relative height of the end supports and the type of foam used.

6.4 Data Retrieval System

All experimental data was from strain gauges mounted no the specimens

and transmitted from the specimen via small gauge wires (50 ga.) connecting

the specimen to a follower mechanism. The follower mechanism is a track

riding device which roughly follows the path of the free-falling specimen. Its

purpose is to carry shielded wiring to close to the specimen and connect to the

specimen through very thin wires. The thin wires are very light and short and do

not effect the dynamics of the free-falling specimen. Experiments measuring the

material damping of metals has shown that the wires induce little or no
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influence on the specimens. Damping ratios (zeta) less than .03% have been

successfully measured with no discernable error caused by the wires.
However, the wires must remain slack. If the wires are pulled tight for any

reason during the test they will have a large influence on the specimen.

Heavier shielded wiring carries the data signals from the follower, see

figure 6.2, out of the chamber to a computerized data retrieval system. A motor,

located at the base of the follower track, drives a pulley system which causes
the follower to run up and down the track. The follower motor is contained inside

its own pressure vessel to isolate it from the vacuum and the data system from

the electrical noise it generates. The follower system is driven open loop by the

same computer that runs the TELM system. Approximately 0.1 seconds before

a launch the follower is commanded to accelerate upwards. This lead time is
necessary to allow the follower to get up to speed. When the launch occurs the
specimen very quickly catches up to the follower and passes it. The specimen

is, however, decelerating and the follower keeps pace with it to the top of the

chamber. Near the top of the follower's track the computer commands the

follower to reverse direction. The follower motor is not powerful enough to
decelerate at the rate the specimen is so rubber stops are placed at the top of

the track. The stops help turn the follower around and send it back down the

track. When the specimen lands in the net the follower is just behind. The

computer signals to the follower to stop and rubber stops at the bottom of the
track insure that it does. The follower track is roughly 2 foot from the specimen

and a 4 foot length wire between the specimen and the follower proved to be

sufficient. Most experiments used a 5 foot length wire and no discernible

differences where found.

A test takes place in less than 2 seconds and is completely computer

controlled. The strain gauges were connected to a 4 volt half bridge, amplified

(x 1000), and filtered through a Bessel filter with a corner frequency of

approximately 2500 Hz. The signal was digitized at a rate of 5000 samples per

second and stored on an IBM-PC. The noise levels were measured at

approximately 2 mv. p.t.p. where the signal was around 2 to 4 volts. A video

camera, looking through a port on the top of the chamber, records the actual
flight path. The launching force set on the TELM is determined through a

computer model of the TELM and by trial and error, mostly trial and error. If the

flight path was too low the data wires would be pulled tight. If the flight path was
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too high the specimen would hit the top of the chamber. A camera at the top of

the chamber was used to determine the success of the test flights.

At the end of the test, the specimen lands in a net stretched across the

bottom of the chamber. This prevents damage to the structure but some repairs

were necessary. Most damage would occur when the specimen would land on

the launch platform.

6.5 Experimental Specimens

Experiments were performed on five different types of structures. They all

are made up of long thin beams joined together by joints. The challenge of this

experiment was to design nonlinear joints which can be modelled as piecewise
linear. Three different nonlinear joints were devised.

The first structure, designated Beam 2, consisted of a 3 foot long 1 inch

wide by 1/8 inch thick aluminum 6061-T6 bar with 1/2 inch standoffs at the ends

and the one foot marks. The entire structure is machined out of a single piece of
metal to eliminate any joining effects, see figure 6.5.

'4 3'0" WI

Experimental Specimen Beam 2A

Figure 6.5

The specimen was tested, designated Beam 2A, in order to measure material

damping. A thin stainless steel plate, 0.001 inch thick, 1 foot long, and 1 inch

wide was then bolted and glued to two inner standoffs. As the structure flexes,

the thin plate would go tight then loose depending on the angles of the beam at

M i I "- -- 1'0"
t~~
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the standoffs. The thin plate was attached to the stand-off by punching three

holes in the stainless steel which matched three bolt assemblies on the top of

the stand-offs. The plate was glued and bolted to the top of the stand-off with a
metal bar between the bolt heads and the plate, figure 6.6. The plate was

attached in such a way as to be just tight when the specimen was at rest.

.001" Stainless Steel Plate

Sid,

Wire Braced Beam Assembly

Figure 6.6

Since the thin plate was only .001 inch thick, it had negligible

compressive strength and acted as a discontinuous spring linking the standoffs.

This specimen was designated Beam 2B. Strain gauges were placed at the

middle of each beam section and on each standoff to measure beam

deformation and plate loading. A second test, designated Beam 2C, attached

two plates to opposite sides of the same beam section. A third test, designated

Beam 2D, was made by attaching three plates to the three beam sections on

alternating sides of the beam. This test was intended to increase the

nonlinearity of the specimen. The configurations tested and their designation

symbol are shown in Appendix C. An example is shown in figure 6.7. The

specimen is designated Beam 2B. It has a single thin plate attached across the

middle section of the beam. The designation symbol illustrates this by including
a line between the two inner standoffs.
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Experimental Specimen Beam 2B

Figure 6.7

The second type of specimen tested incorporated flexible joints. Three

one foot long beam sections with standoffs at each end were made, figure 6.8.

Side
View

Top
View

1.000"

1.000"

Beam Section of Specimen Beam 3/4

Figure 6.8

A joint was made between the beam sections by bolting and gluing a thin

stainless steel plate between them, see figure 6.9. The thicknesses of the
joining plate was 0.02 inch. The length of the joint was approximately 1/8 inch
and provided for a flexible linear joint. The joint was made nonlinear by again

fastening 0.001 inch thick stainless steel plates between the ends of the
standoffs. The joint could be made to have an asymmetric stiffness by attaching

a thin plate on one side of the joint. When the deflection of the joint put the thin

plate in compression, the plate would buckle, the stiffness of the joint being only

that provided by the 0.02 inch thick joining plate. When the thin plate is in
tension it contributes to the stiffness of the joint. The thin plate was attached

such that it just went tight when the joint was in its unloaded position, figure 6.9.
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.001" Stainless

.125

View .02" Stainless
Steel Plate

Asymmetrically Stiff Joint Assembly

Figure 6.9

A dead-band joint was made by placing a thin plate on both sides of the joint.

The plates were given a measured amount of slack so that as the joint flexed it

would be stiff then flexible then stiff again, see figure 6.10.

.001" Stainless

.U Lalnless

Steel Plate

Dead-Band Joint Assembly

Figure 6.10

It was discovered that the thin stainless steel plate could deform in such a

way as to be able to support a small amount of compressive load, the shims

were only 1/2 inch long. By smoothing the plate with a narrow rod this could be

eliminated. This property proved useful because damping data of the stiffened

joint system could be obtained. Tests of specimens with two beam sections,

designated Beam 3, and with three beam sections, designated Beam 4, were

performed. Asymmetrically stiff, dead-band, and joints without a thin plates

were tested. Tests without thin plates were made in order to measure the
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internal damping of the jointed beam systems. The three beam section

specimens were intended to increase the nonlinearity of the specimens. The
configurations tested are shown in Appendix C. An example is shown in figure

6.11. The specimen designated Beam 4D is a three section beam joined by

dead band joints. The configuration symbol illustrates this by showing lines

between the inner standoffs representing the joints. The lines are on both sides

of the joint indicating a dead-band joint. An asymmetrically stiff joint has a line
on only one side. The lines represent the thin plates attached to the standoffs

and which side the line appears indicates which side the plate is attached to the

beam.

Strain Gauges Thin Stainless

I i I 1l I

Symbol

Experimental Specimen Beam 4D

Figure 6.11

6.6 Experimental Procedure

The procedure for testing a specimen started with setup of the launch

platform. The support placements and height over the foam were set

depending on the level of initial oscillation desired in the specimen. A dummy

specimen was then placed on the platform and launched in air to test the TELM

settings. Once the TELM was adjusted the experimental specimen was placed

on the platform and the wires coming from the strain gauges connected to the

follower. The ASTROVAC chamber was then sealed and pumped to

approximately 0.1 torr. The TELM system was then readied for launch and the

chamber valves closed. The video tape recorder was then started, the follower

power turned on, and the launch control safety interlocks switched off. The

computer was then given the signal to proceed and the launch would take
place. The data which was stored in the computer was transferred to diskette.

The tests conducted are listed in Appendix C along with comments on

the tests. The strain gauge data was stored in files labeled by the date of the
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test and identified the strain gauge being recorded. For example a data file is
identified with a eight digit code, for example, AP250101. The first four digits

indicate the month and date the test occurred in, in the example, April 25th. The
fifth and sixth digits indicate which test of the day, in the example, the first test of

the day. The last two digits identifies the strain gauge, in the example, strain

gauge 1. Video recordings of each launch were also examined and comments
from the recording are listed with each test. Some minor damage to the
specimens was suffered when a bad loft occurred or the structure had an

awkward landing. The thin stainless steel plate proved to be quite rugged and
only rarely broke. A simple of the data taken and how it is illustrated is shown in
figure 6.12.

April 25 Test 1 Nonlinear Medium Amplitude Gage 1
y (volts)

t (seconds)
10 pt intervals plotted

Test AP250101

Sample Strain Gauge Data

Figure 6.12

The data shown is the strain gauge signal from a strain gauge located at

the center of the first beam section of specimen Beam 2B, a long slender beam

with a single thin plate linking its one third points. The first oscillation of the data
is the specimen is being launched. The large oscillation at the end of the data

is caused by the landing of the specimen.
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Chapter 7

Analysis of Experimental Data

7.0 Overview

The objective of chapter 7 is to experimentally validate the theoretical
analysis by measuring the modal amplitudes and effective modal damping rates
of experimental specimens in free-free oscillation and compare them to analytic
models developed and simulated in chapters 2 through 5. Two types of
experimental specimens were tested, linear and nonlinear. The linear
specimens were tested to determine the internal material damping of the
specimens. The three analytic models used in the analytic chapters were
modeled after the three nonlinear specimens tested in the experiments. A wire
braced beam, an asymmetrically stiff jointed beam, and a dead-band jointed
beam, were tested. The nonlinear specimens had piecewise linear joints
described in chapter 6, section 6.5. The objective of these tests were to observe
the structural dynamics associated with this type of nonlinear joint, in particular,
modal coupling and damping due to modal coupling. A set of multiply jointed
beams were also tested to observe how more complex jointed structures effect
the structural response.

In order to generate the analytical simulations with which to compare to
the experimental specimen tests the internal or material damping rates of the
experimental specimens are required. It is possible to experimentally measure
the internal material damping of the specimens by testing the individual sub-
system structures. The nonlinear structures, both simulated and experimental,
can be divided into sub-systems where a sub-system consists of the entire
structure with the joint in one of two configurations, (see chapter 2, section 2.2).
The joint configurations, or sub-joints, consist of a stiff sub-joint and a flexible
sub-joint. The stiff sub-joint represents the joint when a stainless steel plate is
in tension and restricts joint rotation, (see chapter 6, section 6.5). The flexible
sub-joint represents the joint when the thin plate is under compression and
buckles. The plate is very thin, 0.001 inches, and buckles under very low load.
The linear sub-joints are created, for example, by removing the thin plate which
buckles under load. The resulting experimental sub-system is tested and its
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damping ratio determined. A technique can be found to test most but not all of

the sub-systems.

After the experimentally determined internal damping rates and initial

conditions are established they are input into the analytical model and the
simulation run. The simulations are then compared to the experimental tests of
the nonlinear structures. Several characteristics are looked for in the
comparisons. Modal frequencies and modal coupling, the excitation of modes
by other modes, are the most observable phenomena. In particular the beating
phenomenon, which occurs in the coupled modes under certain conditions, is
used as a critical comparison for the verification of the analytical model. Since
the internal modal damping rates are not adjustable and somewhat variable in
the experiments, the damping due to modal coupling is more difficult to observe.

The correlation of the damping data, particularly in the asymmetrically stiff
jointed beam and the dead-band jointed beam, are also used to justify the
analytical model but the damping measurement error does become significant.

Section 7.1 describes the analytical procedure used to reduce the
experimental data. Section 7.2 analyzes the wire braced structure. Section 7.3
analyzes the asymmetrically stiff jointed beam. Section 7.4 analyzes the dead-
band jointed beam. Section 7.5 summarizes the analysis of the experiments.

7.1 Analysis Procedure

The first step in the analysis is to experimentally determine the internal
damping rates of the experimental structures. As in the theoretical analysis the
nonlinear joints used in the experimental specimens are piecewise linear and
can be separated into their individual components. A physical structure can be
developed to represent the sub-system, the structure with a single component
or sub-joint of the original piecewise linear joint. For example the
asymmetrically stiff jointed beam has two sub-systems, one where the thin plate
in the joint has buckled and the other when it has pulled tight. A sub-system for
the buckled case can be developed by removing the thin plate. The sub-system
for the unbuckled case can be developed for special cases and is discused in
section 7.3.

The internal damping rate of each constituent sub-systems was
experimentally determined by lofting the specimen with single components of
the piecewise linear joints and measuring the damping rate of the different
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modes. The modes were identified by performing an FFT on the data and
observing the modal frequencies. The data retrieved from a sample linear
specimen is shown in figure 7.1. The portions of the data which correspond to
launch, landing, or any mishaps, such as a collision with the chamber roof, are
excluded from the FFT. The FFT of the test shown in figure 7.1 is shown in
figure 7.2. As can be seen the first few modes are excited. How the structure is
excited is primarily determined by the launch platform configuration. The
launch platform is described in chapter four and is designed to primarily excite
the first mode.

The individual modes were isolated by digitally filtering the strain gauge
data so that only one mode is retained in the data, (see figure 7.3). A ten pole
Butterworth sine band-pass filter with the center of the band-pass at the modal
frequency and a band-pass width of ten hertz was applied to each identified
mode. The Butterworth sine filter has the characteristic of preserving the
amplitude information well but loosing phase information. This filter was
considered the best choice of a variety of filters since the damping is
determined by the amplitude information, not the phase information. Curves
representing the response of the individual modes were generated and stored.

Figures 7.4 and 7.5 show the individual modal responses of the first and third

modes of the test shown in figure 7.1.

The modal damping rates were determined by performing a least
squares curve fit of the filtered data to a damped sinusoid. Information on how
the damping rate changed as the oscillation continued was desired so the curve
fitting routine was applied to a window of the data 0.2 seconds long or one
thousand data points, the data sampling rate being 5000 samples per second.
The curve was fit and the data window's fitted parameters; median time,
average amplitude (of beam curvature), frequency, damping rate, etc., were
stored. The window was then moved approximately 0.1 seconds down the
response curve and the fitting routine repeated. An overlap of 0.1 seconds is
maintained for all of the windows over the entire modal response. The fitted
parameters of all three strain gauges, (G1, G2, G3), are shown.

Each structure has a number of strain gauges mounted on it. The data
obtained from each is curve fit as described. The damping ratios of the first and
third modes of the above data are shown in figures 7.6 and 7.7 respectively.
Each data point represents the damping ratio of a fitted window. The fitted
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Experimental Data Reduction Procedure

Figure 7.3
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parameters of the two outer strain gauges (G1 and G3) are used since the
amplitude of the first mode is greatly reduced at these positions.

E G1 Zeta (%)
* G2 Zeta (%)
a G3 Zeta (%)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time (sec)

Continuous

Fitted Damping Ratio vs Median Time

Unjointed Beam, Beam 2A, First Mode of Test AP2401

Figure 7.6
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Figure 7.7

Test AP2401

In each of the graphs showing the damping data there are stray points. Points
such as these can occur any time a disturbance of the structure takes place; in
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this case, it occurs at the beginning, indicating that the specimen has not settled

down from the launch.

Disturbances typically occur when the specimen lands in the net or if the

specimen strikes anything, such as the chamber roof. These disturbances

cause the specimen to vibrate in a more complex manner and this causes the

residuals of the least squares fitting routine to increase. Figures 7.8 and 7.9

show the residuals of the fitting routine versus the fitted damping ratio. The

stray points identified above as possibly being influenced by the launch show a

significant increase in their residuals (SSQ). A relative increase in the residuals

does not guarantee that the measurement is incorrect but is used as an

indication of when the specimen effectively left the launcher and when it has hit

something. In the test above, it is surmised that the first window is still under the

influence of the launch and is therefore removed from the results.

A 

O.z

0.1
1 o

(0

N 0.0

-0.1

E G1 Zeta (%)
* G2 Zeta (%)
a G3 Zeta (%)

0 100 200 300 400 500 600
SSQ

Fitted Damping Ratio vs Least Squares Residuals

Continuous Unjointed Beam, Beam 2A, First Mode of Test AP2401

Figure 7.8

Note in figure 7.9, there are several points with high residuals but they

are not significantly different from points with low residuals. These points occur

when the specimen is near the top of the chamber. This could be caused by the

specimen slightly tapping the chamber roof but is more likely signal noise

caused by the follower bouncing off its stops at the top of its track. There are

connectors on the follower and the sudden impact of the follower jars these



133

connectors and changes the resistance across them very slightly. A fourth

strain gauge was included on the specimen, monitoring the strain in an upright

(see figure 6.6). The upright was not connected to a thin plate and only

experienced inertial loads. Its signal was recorded during the launch and is

shown in figure 7.10. A sudden, permanent shift occurs at 0.8 seconds, the time

the follower strikes the top of its track. The shift is on the order of one-hundredth

of the signal being generated by the strain gauges but this is enough to

increase the residuals of the curve fitting routine. The shift does not appreciably

affect the damping parameters primarily because the digital filtering used to

isolate the modes tends to minimize its effect.
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Fitted Damping Ratio vs Least Squares Residuals

Continuous Unjointed Beam, Beam 2A, Third Mode of Test AP2401

Figure 7.9

On launch, an individual mode may or may not be excited by the launch's

configuration. Typically only the first and third modes were excited to any great

extent. Estimates of the other modal damping rates were obtained when the loft

was too high and the specimen inadvertently tapped the top of the vacuum

chamber. The impact with the chamber excited all of the modes of the

specimen and damping data was obtained during the return to the ground. The

curve fitting routine did not perform well above the fourth mode, due primarily to

the increasing number of cycles included in the window being fit. The log

decrement technique was used to estimate the damping of these modes.
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Tests of nonlinear beams with asymmetrically stiff joints, asymmetrically

stiff linking of the one third points and dead-band joints were also conducted.

The modal amplitudes and modal damping rates were determined using the

same process as in the sub-system tests. The nonlinear nature of the structures

caused the FFT to not show the modes as distinctly as in the sub-system tests

but the first few modes could always be identified. The same digital filter was

applied to the data to isolate the modes. The curve fitting routine could usually

be used on the first mode only due to the beating phenomenon in the upper

modes. The residuals of the curve fitting process could still be used for error

analysis but the inherent nonlinear oscillations of the structures caused the

residuals to be much greater than in the sub-system tests.

Simulations of the experiments, using the experimentally established

internal damping parameters were also conducted. These simulations are

described in chapters two and three. The three different simulations conducted

relate directly to three of the specimens tested. Direct comparisons are made

between the experimental strain gauge data and the simulated strain gauge

data generated from the simulations. Three comparisons are made between

the experimental tests and the simulations: the modal frequencies; the increase

in damping of the first mode due to nonlinear effects; and the form of dynamic

coupling of the upper modes with the first mode.

7.2 Wire Braced Beam

Schematic Wire Braced Beam, Beam 2B
Figure 7.11

Linear Tests:

The wire braced beam, Beam 2B (figure 7.11), can be divided into two

sub-systems, one in which the thin plate is pulled tight, and one in which the

thin plate has buckled. A structure representing the sub-system where the thin

plate has buckled is created by removing the thin plate, Beam 2A (figure 7.12).
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No structure was possible for the sub-system where the thin plate is pulled tight

due to the length and flexibility of the thin plate.

G1 G4 G2

./

G3

I

Schematic Beam, No Wire Bracing, Beam 2A

Figure 7.12

For the specimens where no thin plate was present, Beam 2A, the modal

damping was found to coincide well with the experimentally determined data for

aluminum in reference 4. The difference between this experiment and the

previous experiments is that the damping data of the previous experiments was

all obtained from the first mode of different specimens. The modal frequency

was changed by altering the length and thickness of the specimens, which were

long thin beams. These experiments used a single beam and measured the

damping rates of all of its excited modes. The modal damping rates for the six

valid low amplitude tests of the linear continuous beam, Beam 2A, are shown in

figure 7.13 and table 7.1. The high amplitude tests caused large deflection

effects to occur in the beam so the analysis was limited to low amplitude tests.
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Figure 7.13
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Table 7.1

Fitted Damping Parameters

Continuous Unjointed Beam, Beam 2A, All Tests

Specimen Mode 1 Mode 2 Mode 3
Frq Ave St Dv Frq Ave St Dv Frq Ave St Dv

rls O O/ rl /' r/s % %
Beam 2A 109 .144 .021 294 .105 .039 602 .040 .0072

The mean is indicated in figures by a circle and the standard deviation is

indicated by a set of arrows. The maximum to minimum difference in data

points, the bars at the ends of the lines, is approximately 0.1% zeta. The scatter

in the data is primarily due to different tests of the same specimen showing

slightly different damping values. A single test would have a standard deviation

of approximately 0.01% zeta. The difference between the tests seems to
depend on how level the specimen remained during the test. Some test
specimens experienced a slow rotation which may have effected the damping
measurement. The amplitude of the vibration of the mode appears to have had

very little effect on the damping ratio. The mean amplitude of the fitted data is
plotted against the fitted damping ratio and no clear pattern of amplitude

dependence appears, figure 7.12.
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As was discussed above the linear constituent system representing the

second sub-system where the linking of the one third points is included could

not be directly experimentally tested for sub-system modal damping ratios.

Information on the damping ratios was inferred from a low amplitude test on the

asymmetrically stiff joint where the short thin plate failed to buckle, (see section

7.3). The inferred information indicates that the thin plates attached to the

uprights contribute less than 0.06% internal damping.

The modal damping information experimentally determined and shown

in figure 7.13 shows that the modal damping rates of the modes are all very

close to one another. This is due to the characteristic material damping,

partially described by the Zener theory. The specimen used in these

experiments, Beam 2A, had all of its modes to the right of the Zener curve and

they tended to follow the Zener curve although about a factor of 1.5 times

higher. This is described in more detail in reference 4. The right side of the

Zener curve predicts a damping ratio roughly proportional to the inverse of the

frequency. The damping rate of the modes are roughly the same but the modes

above the fifth mode seem to have an increasing damping rate.

The internal material damping rates of the two linear sub-systems used in

the analytic simulation are listed in table 7.2, (derived from the experiments with

linear joints). The damping rates are the only property determined from the

tests and used in the simulations. All other beam properties are determined

directly from the specimen material properties and geometry. The modal

frequencies from the simulations are, therefore, not exactly the same as in the

experiments due to model inaccuracies and limitations.

Table 7.2

Wire Braced Beam, Beam 2B

Simulation Modal Frequencies and Assumed Damping Parameters

Sub-System Mode 1 Mode 2 Mode 3 4-4

Frq r% DR Frq 5% DR Frq {% DR DR

r/s 1/s r/s 1/s r/s 1 /s 1/s

Flex Joint 109 .15 .16 292 .11 .32 607 .045 .27 .23

Stiff Joint 160 .18 .29 292 .11 .32 754 .036 .27 .23
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Nonlinear Tests:

The nonlinear specimen, a continuous beam with a thin plate linking its

one third points (figure 7.1 1), was tested and a typical trace of the strain gauge

data is shown in figure 7.16. Significant coupling and beating between the
modes of the structure is evident in the data and can be observed in the filtered

data showing the individual modes, figures 7.17 and 7.18. The curve fitting

routines were applied to the filtered data and the resulting damping data is

shown in figure 7.15.
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First Mode Fitted Damping Ratio vs Median Time

Wire Braced Beam, Beam 2B, Test AP2501

Figure 7.15

The scatter in the damping data is related to the modal beating seen in the data.

The strain gauge (G2) located at the center of the center beam section exhibited

a worse fit to the data than the outer strain gauges (G1 and G3). This was
observed from the least squares residuals of the curve fits. As can be seen in

figure 7.15, the resultant damping data was not effected but this indicates that

something else is occurring at the center beam section.

The modal amplitudes and the experimentally determined internal
damping rates, table 7.2, were used to generate a simulation of the structure

and a simulated strain gauge output, figure 7.19. The frequency and damping
rates of the experimental and simulated structures are listed in table 7.3.
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Table 7.3

Wire Braced Beam

Experimental and Simulated Damping Parameters and Frequencies

Mode Experiment Simulation
Frq Ave St Dv Frq r% DR

r/s r/s % r/s

Model 129 .455 .2 134 .165 .34

Mode 2 261 - - 292 -
Mode 3 647 - - 680 -
Mode 4 979 - - 905 -

The modal frequencies of the experimental beam were within five percent of

those of the simulated beam. A damping ratio was established for the first mode

only due to the beating nature of the other modes.

The damping rates of the upper modes of the wire braced structure are

approximately the same or lower than the first mode's damping rate. As was

established in chapter 5, when the damping rates of the coupled modes are the

same or less than that of the primary mode, the increase in damping due to

modal coupling was unclear since the simulations showed scattered results but

indications were that little or no increased damping occurred and modal beating

would be evident. The experimental tests show a marked increase in the first

mode's damping rate (see figure 7.15) and significant beating of the modes.

There is considerable scatter in the damping data because of the beating.

The experimental data, figures 7.16 to 7.18, show different coupling

characteristics than the simulation, primarily a longer beat frequency and a

more extensive coupling of all the symmetric modes. The beating frequency of

the experiment is 9 rad. / sec. compared to the simulations 21 rad. / sec.
Beating of the first mode is larger in the experiment than in the simulations,

causing a 10% rise and fall in the first modes amplitude. The extent of modal

coupling is also greater in the experiment than in the simulation. The

simulation, figure 7.19, shows a coupling primarily with the third mode while the

experiment indicates coupling with the upper modes to a much greater extent.

Two explanations for the difference in the coupling are postulated. They
both involve unmodeled effects associated with the center beam section and

the thin plate linking its ends. The strain gauge data from the strain gage
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located at the center of this beam section (G2) indicates that something different

is occurring at its position as compared to the outer strain gauges (G1 and G3).

One possible explanation is related to the compressive loads applied to the

center beam section of the specimen by the thin plate linking the uprights at the

ends of the center beam section. The center beam section is actually serving as

a beam column and the compressive loads may be causing the dynamics of the
specimen to differ from the simulation where the compressive loads are
ignored. The compressive loads on the center beam section have been

estimated to be from 1/100th to 1/10th of the center beam's pinned-pinned

column buckling load, depending on the amplitude of the particular test.

A second possibility comes from the observation that the thin plate linking

the uprights is 12 inches long and in air exhibits translational vibrations excited

by the structure's motion causing the plate to go slack then taught very quickly.
The mass of the thin plate is quite low, it is 0.001 inches thick, and has been

assumed to be negligible in the analysis as has its translational vibrations. It is

possible that this assumption is incorrect and these vibrations may become

large enough to influence the structures dynamics and cause modal coupling

and internal damping of its own.

The modal damping of the specimen is hard to estimate for the higher

modes but there are indications from the data that the damping rate does rise in

the higher modes, ie; the damping ratio, zeta, levels off at a finite value rather

than approaching zero as the Zener curve predicts. This is especially true of the

contribution to the damping by the thin plates attached to the uprights.

Assuming that the modal coupling is more extensive than expected and the

internal damping rate of the upper modes is increasing it is not unreasonable

that the first mode's damping ratio would rise 0.3% as it does in the

experiments.

The design of this specimen was to encourage as much modal coupling

as could be accomplished with a single continuous beam. This objective

seems to have been satisfied. The increased damping observed in the

specimen is most likely due to the modal coupling but some damping may be

due to internal damping provided by the attached plate since no direct
measurement of this was possible.
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7.3 Asymmetrically Stiff Jointed Beam

G1 G3

G2

Schematic Asymmetrically Stiff Jointed Beam, Beam 3B

Figure 7.20

A second beam structure, Beam 3, was made to experimentally test

jointed structures, the asymmetrically jointed beam and the dead-band jointed

beam. The sub-systems of the two joint assemblies are the same so the

experimentally determined internal damping rates are the same, (chapter 2). It
was possible to test all of the sub-systems since the thin plate used in the joint

could be made to not buckle at low amplitudes.

Linear Tests:

The asymmetrically stiff jointed beam is divided into two sub-systems, a

flexible jointed beam and a stiff jointed beam. The flexible jointed beam is

created by removing the thin plate attached to the uprights, figure 7.21, (see
figure 6.9).

G1 G3

Schematic Flexible Jointed Beam, Beam 3A
Figure 7.21

The internal damping rates were determined for the flexible sub-system,

Beam 3A, and are shown in figure 7.18 and table 7.4. The standard deviation of

the first mode is up to 0.09% zeta for all five tests but the standard deviation for

individual tests is still low, between 0.01% zeta and 0.06% zeta. The modal

damping ratio and the standard deviation of the first asymmetric mode, with a
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natural frequency near 600 radians per second, remains the same as in the

unjointed beams. This illustrates that the joint flexures, the 0.02 inch thick
plates glued and bolted to join the beam sections (see figure 6.9), contribute as

much as 0.6% damping in the first mode and 0.2% damping in the third mode.

Since the joint is located in the middle of the beam, asymmetric modes do not
flex the joint and therefore are not affected by the joint damping.
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Jointed Beam, Beam 3A, All Tests

Figure 7.22

The internal damping rates were measured for the flexible sub-system,
Beam 3A, and are shown in figure 7.22 and table 7.4. The standard deviation of
the first mode is up to 0.09% zeta for all five tests but the standard deviation for

individual tests is still low, between 0.01% zeta and 0.06% zeta. The modal

damping ratio and the standard deviation of the first asymmetric mode, with a

natural frequency near 600 radians per second, remains the same as in the

unjointed beams. This illustrates that the joint flexures, the 0.02 inch thick

plates glued and bolted to join the beam sections (see figure 6.9), contribute as

much as 0.6% damping in the first mode and 0.1% damping in the third mode.
Since the joint is located in the middle of the beam, asymmetric modes do not

flex the joint and therefore are not affected by the joint damping.
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As in the previous case, the amplitude of the vibration does not affect the

damping rate in any consistent manner. The large variance of the symmetric

modes is not caused by the specimen rotations because if it were the

asymmetric mode data would exhibit the same scatter, which it does not. It is

more likely that the joints themselves are changing their damping properties

from test to test. The tests were not conducted on the same days and the

specimens were disassembled and reassembled between some of the tests.

As can be seen in figure 7.23, there are distinct bands of damping data. The

specimen was assembled twice. The two bands of data correspond to the two

specimen assemblies. It is apparent that different assemblies of the same joint

can double the standard deviation of the structural damping data.

The individual assemblies of the joint can be associated with individual

experiments. The lower band of data represent the first assembly and set of

experiments performed on the specimen. The asymmetrically stiff jointed beam

was tested with only the first joint assembly. The dead-band jointed beam was

also tested primarily with the first assembly. Two tests of the dead-band jointed

structure were conducted with the second assembly but these tests were an

attempt to measure the internal damping of a sub-system of the structure by

assembling the thin plates pulled very tight so that they would not go slack

under low excitation. The results of these test were inconclusive partially due to

148
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the changes in the joint damping illustrated in figure 7.23. Only the lower band

of data is the pertinent internal damping data used in the analysis.

G1 G3

I J

Schematic Stiff Jointed Beam

Figure 7.24

The stiff jointed sub-system, figure 7.24, of the asymmetrically stiff jointed

and the dead-band jointed beam could be tested for modal damping ratios. In

the case of the asymmetrically stiff and dead-band joints the thin plate was only
1/2 inch long and even though it was 0.001 inch thick, in some cases, where the

loads were low, it could take the compressive loads applied to it. This

phenomenon was more an error than an intended experiment. When the thin

plate was bolted to the uprights, it would occasionally not be perfectly flat, slight

ripples would appear. In the first tests of the asymmetrically stiff joint, the strain

gauge at the joint indicated that the plate was not buckling as was expected. It

was found that simply smoothing the plate with a thin rod solved the problem

and the plate would buckle under very low compressive load. The data

gathered during the tests where the plate did not buckle became very useful

because they established the modal damping rates of the linear system

including the plate. The internal damping rates of the linear system including

the stiffened joint is shown in figure 7.25 and table 7.4.

The damping rates of the beam with the stiffened joint are not near as

great as those of the beam without the thin plates attached to the joints, but

approaches that of the unjointed beam, Beam 2A. Considering that the 0.02

inch thick plate joining the two beams together is still contributing to the

damping of the joint, the damping data indicates that the thin plates bolted to the

stand-offs contribute less than 0.06% internal damping to the system. The

added stiffness of the joint prevents the internal damping of the 0.02 inch thick

plate joining the beam sections from contributing more to the damping.

I



0.3-

0.2-
0

0

N 0.1

i ru]
U.U

0
I · I

200 400 600 800
Frq (rd/s)

000

1 000 1200

Fitted Damping Ratio vs Fitted Frequency

Stiffened Jointed Beam

Figure 7.25

The modal frequency and damping parameters determined from the
linear beam tests are listed in table 7.4.

Table 7.4

Fitted Damping Parameters

Jointed Beam, Beam 3A

Specimen

Beam 3A
all tests

Beam 3A
upper band

Beam 3A
lower band

Beam 3B
stiff joint

Mode 1

Frq Ave

r/s .%9

St Dv

Mode 2

Frq Ave

r/s C%

St Dv

-%

134 .607 .092 595 .054 .01

134

134

Mode 3
Frq Ave St Dv

rls % %

880 .208 .04

.642 .068

.474 .026 594 .053 .0036 879 .167

192 .178 .04 595 .065 .08 1080 .157

.029

.071

Nonlinear Tests:

The asymmetrically stiff jointed beam was tested and the resulting strain
gauge data filtered and curve fit to determine the modal frequencies and
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damping parameters. The results of the three consecutive tests are listed in
table 7.5.

Table 7.5

Asymmetrically Stiff Jointed Beam, Beam 3B
Experimental Fitted Frequency and Damping Parameters

Test
Ave

Fra r/s

Flexible

Stiff

Asymmetric

Test 1

Test 2

Test 3

134

193

166

Fitted Experimental Parameters
St Dv ;%
Fro r/s

.13

0.5

3.2

.456

.178

.572

St Dv
0A%

.057

.04

.22

Flexible Joint

0
X

140 160

Frq (rd/s)

Asymmetric Joint

Stiff Joint

180

Experiment 

Simulation c[

Sub-System
Average

200

Fitted Damping Ratio vs Fitted Frequency

Asymmetrically Stiff Jointed Beam Tests

Figure 7.26

The frequency and damping data are shown in figure 7.26. In test 1, the
off-set was so high that the joint remained linear throughout the test. This
established the lower end of the frequency region and the damping ratio of the
flexible sub-system. In test 2, as was discused earlier, the thin plate did not
buckle, establishing the upper end of the frequency region and the damping
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ratio of the stiff sub-system. Test 3, the asymmetrically stiff jointed beam,

showed that the damping is greater than that expected from the component sub-

system damping rates, indicating that damping due to modal coupling may be

present. The larger scatter in the data is due to the beating present in the data.

A comparison is also made between the experiment and a simulation of the

structure.

The asymmetrically stiff jointed beam, specimen Beam 3B, is simulated

by the asymmetrically stiff jointed simulation described in chapter 5 with the joint

parameters set at KN=.033 and Ks=26. The damping parameters and the

resulting modal frequencies used in the simulation are listed in table 7.6. The

simulated strain gauge data is shown in figure 7.27.

Table 7.6

Simulation Modal Frequencies and Assumed Damping Parameters
Asymmetrically Stiff Jointed Beam, Beam 3B

Sub-System Mode 1 Mode 2 Mode 3
Frq r% DR Frq r% DR Frq r% DR

r/s 1 /s r/s 1 /s r/s 1/s

Flex Joint 139 .47 .65 659 .05 .33 937 .17 1.59

Stiff Joint 213 .18 .38 659 .05 .33 1174 .16 1.90

The modal frequencies of the sub-systems compare well between experiment

and simulation. The modal damping rates of the linear sub-systems were

established from the experimental data shown in table 7.4. All other beam

properties used in the simulations were obtained from the beam material

properties and geometry. The internal damping of the joint is not proportional to

the rest of the system but a proportional system is assumed so that individual
modal damping rates could be assigned.

The simulation's frequency and damping data are listed with the

experimental data in table 7.7 and shown in figure 7.26.
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Table 7.7

Asymmetrically Stiff Jointed Beam, Beam 3B

Experimental and Simulated Frequency and Damping Parameters

Test Experimental and Simulated Parameters
Ave r% DR

Frq r/s 1/s

Simulation 176 .42 .74

Test 3 166 .57 .95

The modal frequencies of the simulation are similar but are consistently higher

than those of the experiment. This is most likely due to the joint assembly which

allows some flexibility due to its fasteners which is not modeled in the

simulation. The first mode damping of the experiment is generally higher than

the simulated damping value but within the standard deviation of the

measurement. The large standard deviation in the experimental damping data

indicates that the measurement is not accurate enough to precisely measure

the damping due to modal coupling but within the accuracy of the

measurements, do agree with the simulation.

Other characteristics of the oscillations can be identified correlating the

nature of the modal coupling of the structure. The simulated strain gauge output

is shown in figure 7.27. The experimental data is also shown in figure 7.27.

Besides the obvious similarities in the signal traces the individual modal

components of the first three modes are shown in figures 7.28 to 7.30. The

modal components of the experimental data were created by filtering the data.

The primary relationship between the two systems is in the third mode, in which

they both exhibit the same beating phenomenon. Similar beating is observable

in the first modes, a beating frequency of 5.9 rad. / sec. in the experiment and

4.0 rad./ sec. in the simulation.

The beating is not as sharp in the experiment as it is in the simulation.

This is probably due to the nonlinear joints in the experiments not acting as

perfectly discontinuous piecewise linear joints, as is assumed in the simulation.

The second mode is not effected by the joint and shows the same exponential

decay in both the experiment and the simulation. The correlation between the

experimental test and the simulation is not exact but it is clear that the same

modal coupling is occurring.
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7.4 Dead-Band Jointed Beam

G1 G3

I ....

Schematic Dead-Band Jointed Beam

Figure 7.31

A beam structure, Beam 3, was made to be a dead-band jointed beam by

adding another thin plate onto the other side of the joint and allowing a small

amount of free-play in the joint, figure 7.31 (see figure 6.10).

Linear Tests:

The linear jointed sub-systems of the dead-band jointed beam are the

same as the asymmetrically stiff jointed beam. The measured and assumed

damping ratios of the asymmetrically stiff jointed beam are also used in this

analysis, table 7.6.

Nonlinear Tests:

The dead band joint presented an amplitude dependent nonlinear joint.

Several tests were conducted to establish the damping ratio as a function of the

amplitude of the vibration. A typical strain gauge data trace is shown in figure

7.32. The amplitude of vibration of the structure was varied by adjusting the

launch platform configuration. The results of the fitted data of all of the pertinent

tests are presented in figure 7.33. As can be seen there is an increase in

damping as the vibration amplitude decreases. There are two reasons for this

behavior, the relative damping of the constituent sub-systems and the additional

damping due to modal coupling.

As the amplitude of the dead-band jointed beam's vibration grows very

large it is expected that the damping rate of the structure would approach that of

the stiff jointed beam, table 7.5. This is because the dead-band joint is pulling

the thin plate tight over more and more of the cycle as the vibration amplitude

increases, therefore, the stiff jointed sub-system dominates the damping of the
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system. As can be seen in figure 7.33, as the vibration amplitude of the tests
increase the fitted damping data does approach the stiff jointed beams damping

ratio. The opposite is also true, as the beam's vibration amplitude decreases,

its fitted damping ratio increases. At the limit where the vibration amplitude
drops to a point where the joint stays in its center linear region (see chapter 2),

the damping of the system approaches the damping ratio of the flexible sub-

system. Where the vibration amplitude is very low there are many tests

because it was difficult getting the vibration amplitude as low as was desired.
There was much scatter in the data in this amplitude region but it is evident that

the damping ratio of the dead-band jointed beam is exceeding that of the

flexible jointed sub-system.

1 .z

1.0

0.8
-

0.6

N 0.4

0.2

0.0
0 0.2 0.4 0.6 0.8 1.0

Amplitude / Curvature m

Fitted Damping Ratio vs Fitted Amplitude / Curvature

Dead-Band Jointed Beam, All Tests

Figure 7.33

The second cause of increasing damping at the lower vibration

amplitudes is due to modal coupling caused by the dead-band joint. As was

discussed in chapter 5, section 5.7, the dead-band beam simulation showed
that the effect of the dead-band joint was to cause an increasing contribution to
damping as the modal vibration amplitude decreased, (see figures 5.16 through

5.17). The simulation showed an almost linear decay rather than an
exponential decay. The simulation also predicted that the increase in damping
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due to modal coupling would quickly drop to zero as the vibration amplitude of

the first mode dropped below the dead-band gap dimension.

To observe the damping due to modal coupling the experimental

specimen was lofted with very low modal excitation. Several attempts at a low

enough vibration amplitude were made. Most of the test's vibration amplitudes

were too high to observe the drop in damping but one test did achieve an

especially low vibration amplitude. The damping information of this test is

shown in figure 7.34.

1.4 

1.2 -

1.0 -

0.8-

5 0.6-
N

0.4 

0.2 -

0.0 
0 0.01 0.02 0.03 0.04 0.05 0.06

Amplitude / Curvature m

Dead-Band Jointed Beam, Test MY270701

Fitted Damping Ratio vs Fitted Amplitude / Curvature

Figure 7.34

The damping does decrease at very low vibration amplitude as predicted by the

simulation. This test followed those of the asymmetrically stiff jointed beam and

the damping ratio of the flexible sub-system determined in that analysis agrees

well with the damping observed at low vibration amplitude, figure 7.34. The

drop is approximately 0.6% which correlates well with figure 5.18 considering

that the simulation assumes very high damping in the upper modes which is not

the case in the experiment.
Figure 7.33 shows the first mode damping data versus the modal

vibration amplitude for all of the tests conducted on the dead-band jointed

beam, Beam 3C. The curve shows a continuous rise in damping as the modal
vibration amplitude decreases over a wide range of amplitudes. The scatter in

I I I I I
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the data is high, especially at the low vibration amplitudes and may indicate that

the rapid rise and fall of the damping data in figure 7.34 is attributable to scatter
in the data. This is not believed to be the case, however, for three reasons.

First, the vibration amplitude data of the low amplitude test shows a linear decay

to a point where the rate of decay quickly changes to a lower value. This
matches the simulation's decay pattern very well, figures 5.17 and 7.35.
Second, the least squares residuals of the curve fitting routine, SSQ, are quite

low indicating that the curve fitting routine is working well, figure 7.36. Third,

the peak damping of the specimen is greater than would be expected with just
linear damping, experimentally determined in tests on specimen Beam 3A,
table 7.4 and 7.5.
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Figure 7.35

A set of experiments, derived from the specimens tested above, were

designed to increase the complexity and the modal coupling over the previously

tested specimens. This was done by increasing the number of joints or wires in

the structure and by varying the orientation and parameters of the joints. The
general results of these tests were that the new specimens performed in the
same general manner as the specimens described above. The modal coupling,

in general, was more extensive and the dynamics of the structures became
more complex. The effective damping generally increased as the modal

I

I
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coupling increased. No analytical analysis was performed due to the

complexity of the structures but it appears that the general rules developed in

this analysis hold for more complex structures.
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Figure 7.36

7.5 Summary

The experimental results and the correlation of the experiments and the
analytical simulations was presented in this chapter. Both correlation of modal

coupling dynamics and the damping due to the modal coupling is observed.

The experimental wire braced structure exhibited unmodeled dynamics and a

more extensive coupling of the modes than predicted and it also exhibited a

increase in effective damping. The asymmetrically stiff jointed beams and the

dead-band jointed beams showed good correlation with theory. In the case of

both the asymmetrically stiff jointed beam and the dead-band jointed beam the

internal damping and the experimental error in the calculation of the effective

modal damping obscured the measurement of damping due to modal coupling.

Both experimental beams did show damping due to modal coupling even with
relatively high scatter in the measurement.
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Chapter 8

Conclusions and Recommendations

8.0 Conclusions

A analytical model of continuous engineering beams linked by piecewise

linear rotational spring joints was developed. The beam equations included

strain rate or strain velocity damping and the joints included rotational rate

damping. The piecewise linear nature of the joints allowed the solution of the

equations with the use of linear sub-systems. A special condition of J

proportional damping was used to separate the individual modes of the sub-

systems into individual equations allowing the selection of independent modal
damping rates. The modal energy of the structure and the transfer functions

between sub-systems were also developed.

Three analytical models of piecewise linear systems were analyzed:

· A asymmetrically stiff jointed beam,

· A wire braced beam,

* A dead-band jointed beam.

The computational technique developed was useful in analyzing damping due

to modal coupling because of its implicit incorporation of an infinite number of
modes. Seven modes of the analytic models were explicitly calculated and

found to be sufficient. The relative increase in damping due to modal coupling

was found to be a function of the difference in the modal damping rates of the

primary mode in motion and the damping rates of the modes being coupled.

When the coupled modes have a higher damping rate than the primary mode

then the effective damping rate of the primary mode would increase

approaching an asymptotic limit. The asymptotic limit indicates that, given a set

of structural parameters, there is a maximum increase in damping due to modal

coupling. When the damping rate of the coupled modes was less than the

damping rate of the primary mode then the primary mode and the coupled

modes would start a beating phenomenon where energy is transferred back

and forth between the modes. Damping effects were unclear but the onset of
large continuous beating of the modes is evident.

It was also shown that the increase in damping due to modal coupling

was a function of the degree of nonlinearity of the joints. It was found that the
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joints must be significantly nonlinear before any damping due to modal

coupling was evident. The nature of the models used in the analysis allowed

the estimation of the maximum damping due to modal coupling by the

calculation of a single mode. This simplified the analysis by estimating the
maximum amount of damping due to modal coupling, the asymptotic limit of the

difference in the modal damping rates, by the inclusion of only a single mode in
the model.

The estimation of modal coupling and the associated damping can be

extended to finite element models of sufficient order where the nonlinearities

are modeled as piecewise linear. The technique of estimating the maximum

damping the coupling can provide will be useful in determining whether

damping due to modal coupling need be incorporated in the analysis or

advocated as a damping enhancement.

An experiment was performed on specimens resembling those in the

analysis. The specimens were launched in a vacuum chamber where zero-g

and the vacuum of space is simulated for approximately 1.75 seconds. Material

damping of the specimens was measured and compared well with other

theoretical and experimental analysis. Nonlinear joints were added to the

specimens and the changes in the dynamics and the effective damping were

observed. Coupling phenomenon and damping phenomenon similar to that
which occurred in the simulations was observed.

The experimental technique of lofting a structure in a vacuum has proven

to be successful in isolating the structure from all environmental and

gravitational effects. This is limited to short duration tests and fragile structures

can be tested only once, but it has provided damping data on a wide variety of

structures with damping ratios as low as 0.03%. Small, high frequency

structures are best suited for this type of testing. The MIT/ASTROVAC can

accommodate structures up to three meters long which can be lofted for up to
1.75 seconds of free-fall.

The models used in this investigation to examine damping due to modal

coupling are relatively simple compared to the space structures being

considered but some general rules of thumb can be established which may,
with some careful consideration of the limits of this analysis, be applied to more

complex structures.

1) Damping due to modal coupling is fairly small in structures even where

the nonlinearities dominate the dynamics of the structure. If the internal
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damping of the primary modes of the system is high then damping due to modal

coupling will most likely be small in comparison. The internal damping of the
primary modes of the system should be small for damping due to modal

coupling to be important.

2) The structural nonlinearities of the system must cause sufficient coupling

of the modes to induce damping. The structures examined in this analysis show

that little damping is induced until the nonlinear joint significantly affects the
structure. In order to not violate condition one, the structural nonlinearities are
required to induce little or no hysteretic damping of their own. The

nonlinearities should be significant and non-hysteretic for damping due to

modal coupling to be important.

3) The relative modal time rates of decay have proven to be important in
whether or not the damping due to modal coupling can occur. If the primary

mode of vibration has a comparable or higher time rate of decay than the
modes to which it couples, then indications are that no increase in damping will

occur. The modal coupling will cause beating of the coupled modes with similar

but opposite beating in the primary mode. When the primary mode has a lower

time rate of decay than the coupled modes then the damping due to modal
coupling becomes apparent and the modal beating caused by the coupling
becomes a steady state oscillation. The time rate of decay of the coupled

modes should be greater than that of the primary mode for damping due to
modal coupling to occur.

8.1 Recommendations

Recommendations for future research center around the expansion of the
analysis to forced response and more complex structures. The analysis in this

paper used free decay of the structure to measure its damping. The technique
can be extended to that of forced response. The type of analysis presented in

this paper should provide useful information on the coupling and effective
damping of forced nonlinear structures.

This paper has used continuous engineering beams in order to avoid the
possibility of trapping energy within modes due to limitations of other analytical

model's degrees of freedom. The technique of separating the structure into
piecewise linear sub-systems can be extended to more complex finite element
models if sufficient degrees of freedom are included. Complex structures such



167

as trusses afford the opportunity to couple, via nonlinear joints of the structure,

the global motions and the internal motions of the truss. For example, the

global motions of a truss typically involve the bending of the complete truss

where the individual beam members primarily undergo extension and

compression. Internal motions involve bending of the individual beams

members. It is more difficult to enhance the damping of individual beams

undergoing extension and compression than those undergoing bending. It may

be possible to enhance the damping of a truss structure by allowing the joints in

the structure to couple the global and internal modes and by constructing the

beams to have high bending damping. The energy of the global modes of the

truss structure will thus be transferred to the internal modes where it will be

dissipated.
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Appendix A

Engineering Beam Equations

A.O Derivation of Engineering Beam Equation

The structures analyzed in this paper consist of long thin beams linked by
piecewise linear joints. The linear systems making up the piecewise linear

structure are modeled as a set of proportionally damped engineering beam
equations where each equation represents a mode of the structure. Each
equation is concerned with a set of uniform beam sections linked by rotational

springs. The assumption of proportional damping allows each mode to be
modelled by separate but similar beam equations while maintaining mode and

modal energy orthogonality. Chapter two describes the computational

procedure used to solve the engineering beam equations and the piecewise

linear nature of the structures. Appendix A describes in detail the derivation of

the modelling technique used in this analysis.

A. 1 Damped Engineering Beam

The equation of motion used to model a mode of the long thin structures

used in this analysis is assumed to take the form, assuming constant mass,

mW+(EIW+CIW) = f(x,t) (A.1)

A superscript dot indicates differentiation with respect to time and a superscript

prime indicates differentiation with respect to space, (x). Equation A.1 is a

damped form of the engineering beam equation

mW + (EIW ')=f(x,t) (A.2)

where damping is provided by the term

(CIW ) (A.3)
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The damping term provides a moment force as a function of the rate of change

of the beam curvature which can also be described as a material strain velocity

or strain rate damping, consistent with the engineering beam assumptions.

The undamped beam equation, equation (A.2), is used to describe the

mode shapes of the structures used in this analysis and damping is applied on

a mode by mode basis. In effect each mode of the structure is modelled by a

separate equation of motion represented by equation (A.1) where each mode is
assigned its own damping coefficient. This technique is valid only when the set

of modal equations describing the structure are proportional. Equation
proportionality allows the energy of the structure to be calculated in terms of

modes. The modal characteristic of the vibrational energy is used as

justification of this technique of modeling a structural system with uncoupled

damping.

This appendix first solves for the general solution, the orthogonality

equations, the transfer equations and the energy equations of the damped

engineering beam equation, equation (A.1). Proportionality conditions and the

effects proportionality has on the solutions, orthogonality equations, and the

energy equations are discused. The relationship with the undamped beam

equation, equation (A.2), is discused and how damping can be assigned on a

mode by mode basis is described.

A.2 Beam Section Solution

The structural beam analyzed is not assumed to be uniform over its

length. In order to take advantage of the readily available solution of the

uniform beam, the beam is divided into uniform beam sections linked by

invoking their boundary conditions. Each beam section is assumed to have

uniform mass, stiffness, and damping, over its length, and constant with respect
to time.

m = E = I = C =Constant (A.4)

The solution of the complete beam is obtained by deriving the general solution

of each beam section and the boundary conditions used to link the beam

sections. The beam section solutions are placed into the boundary conditions

to form a set of equations describing the forces and motions at the boundaries
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as a function of the time and spatial coefficients of the beam sections. The

simultaneous solution of these equations results in a transcendental equation.

The eigen-values and eigen-vectors of the transcendental equation represent

the frequencies and modes of the damped engineering beam.

The solution to a individual beam section is divided into homogeneous

and particular parts.

w = w + Wp
(A.5)

The particular solution is ignored here to simplify the analysis but is described

in detail in chapter 3, section 3.4. The homogeneous equation takes the form

mW+(EIW+CIW) =0 (A.6)

which can also be expressed as the operator

L(u) =0 (A.7)

or

d2 d2 d2 3
L (u) =m-- 2 () + (EI d () + CI d (u))= 

dt dx dx d dt

(A.8)

A solution is assumed of the form

Q t+ax * *t+ax *
W= Be + Be = u + 

(A.9)

The complex solutions, u, and, u*, are complex conjugates of one another and

must have a non-zero real part if the displacement, W, is to be non-zero. The

complex conjugate form of equation (A.9) insures that the displacements ,W,

are always real, a requirement of a real system. Inputting equation (A.9) into
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(A.8) and noting equation (A.4) the characteristic equation of the operator L

becomes

2 4 * *2 *4 *u[mQ +a (EI+CI)]+u[mQ +a (EI+CIK )]=0

(A.10)

The equations inside the brackets are also complex conjugates of one another

and in general have a non-zero real part. In order for equation (A.10) to be

satisfied and the solution be non-trivial the two terms in the brackets must go to

zero. The characteristic equation is reduced to

m2 +a4(EI+CIQ)=O (A.11)

The second term of equation (A. 10) is the complex conjugate of the first and
also goes to zero. The complex frequency, , and the complex shape factor, a,

are functions of one another and can be written as a solution for either the

complex frequency or the complex shape factor.

-a CC I 4ma El
2m

(A.12)

2

a= 
\ EI+Clg I (A.13)

The equivalent complex conjugate equations are not shown here. For each
valid value of Q there are four valid values of a, ( ia, -ia, a, -a). Combining this

with their complex conjugates a total of eight terms are needed to describe the

solution of equation (A.9), (a single mode).
t + i ax et- iax et+ax et- ax

W=Bl e +B2 e +B3 e +B4e

* f t+ia x * f t-iax * Q t+a x * Q t-iax
+Ble +B2e +B3e +B4e

(A. 14)



177
These terms can be separated into time, (Y), and spatial, (), components.

W= ¢ Y+¢ Y W~~~ Y + Y ~~~~~~~(A.15)

where

lax -iax ax -ax
- =C 1 e +c 2 e +c 3 e + 4 e (A.16)

Y =A e
(A. 17)

In general there are multiple solutions to the homogeneous equation. The

subscripts j and k are used to distinguish between the different solutions. The

entire solution to equation (A.6) takes the form

WH=XWj
(A.18)

where there are an undefined number of solutions or modes represented in the

sum. The modal displacements can be separated into their complex conjugate

parts or complex conjugate pair modes.

Wj = wj +w
J ~~~~~~~~~~J J ~(A.19)

The complex conjugate pair modes (w+w*) insure that the system remains real.
They behave in the analysis much like modes in their own right. It is found in

the analysis to be computationally advantages to consider the complex
conjugates separate modes. The number of complex modes is double the real
modes or solutions. There are two types of notation used in this analysis,
complex conjugate notation and complex mode notation. The indication of the
notation type is by the subscript variables. Complex conjugate notation uses j
and k as subscript variables while complex mode notation uses n and m as
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subscript variables. Complex conjugate notation is illustrated in equation

(A.19). The complex conjugate pair modes are given the same mode number

and the same subscript variable, j or k. The complex mode notation designates

the complex conjugate pair modes as even and odd and have different

subscripts, n or m, identifying the complex conjugate modes. There are twice as

many complex modes as there are real modes or solutions.

WH= X(Wj+W;) = 
j 2n

The individual complex modes

shape), and time components.

(Wn+ Wn+1) I , Wn
n

can be separated into their spatial (mode

wn = On Yn

The spatial components are written as

i anx - i anX anx - anx
(n Cln e + Con e + c3n e + c4n e

(A.22)

and the time components are written as

Yn = A e
(A.23)

A.3 Boundary Conditions

Equation (A.14) is applied to a uniform beam section with constant m, E,

I, and C. The models used in this analysis link a number of uniform beams

together and place the entire system in a free-free environment. These linkages

are applied through the boundary conditions at the ends of the beam sections.
The boundary conditions used in this analysis are illustrated in the following

example.

(A.20)

(A.21)
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Ks

X - b e --[
mBEB IB CB mcEc I Cc

Cs

Section B Section C

Sample Beam Assembly

Figure A.1

A.3.1 Tip Mass

W(x2

W(x )
AL

4

XA
AL

Attached Mass Boundary

Figure A.2

Condition

A tip mass at a free end, (the far left end of the example), applies no moments

but does apply a inertial shear force, therefore the two boundary conditions are

EA IA WA(XAL) + CA IA WA(XAL) =0 (A.24)

[ EA IA WA(XAL) + CA IA WA(XAL)] = - M WA(XAL)
(A.25)

Had no tip mass been present the right side of equation (A.25) would have

been equal to zero.

Li

mA EA IA CA

Section A

mD FD ID CD

Section D

m E I C
A A A A

iml i _ l i _ m 

-

Kw
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A.3.2 Straight Link

W(x ) =W(x )

BL

X 
AR -

Direct Coupling Boundary

Figure A.3

Conditions

A straight link between two beam segments, (the first joint in from the left on the

example), has four boundary conditions. The displacements, the angles, the

moments, and the shear forces at the boundary between the beams must be the
same.

XAR = XBL rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr(A.26)

WA(XAR) = WB (XBL)
(A.27)

WA(XAR) = WB (xBL)
(A.28)

EA IA WA(XAR) + CA IA WA(XAR) = EB IB WB(XBL) + CB IB WB(XBL)

(A.29)

[EA IA WA(XAR) + CA IA WA(XAR)] = [EB IB WB(XBL) + CB IB WB(XBI)]

(A.30)
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A.3.3 Rotational Spring-Damper

W(xR = W(x 

m F. J 
B B B

I CS
W(XB (X

B K
S

Rotational Spring Damper Boundary

Figure A.4

C JC CC

Condition

A rotational spring-damper between two beam segments, (the second joint in

from the left on the example), also has four boundary conditions. The
displacements, the shear forces, and the moments at the boundary between the

beams must be the same. The fourth is a relationship between the angles (and
their rates) of the two beam segments at their boundary and the moment forces

between them.

XBR = XCL (A.31)

WB(XBR) = WC(XCL)
(A.32)

EB IB WB (XBR) + CB IB WB(XBR) = EC IC WC(XCL) + CC IC WC(XCL)

(A.33)

[EBIB WB (XBR) + CB IB WB (XBR)] = [EC ICWC(XCL)+ CC ICWC(XCL)]

(A.34)
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K WC(xCL) (XB + C .[WC(x.CL)- WB(xBR)
KS IWC(XCL) - WB(XBR) + CS WC(XCL) - WB(XBR) 

= Ec IC WC(XCL) + CC IC WC(XCL)
(A.35)

A.3.4 General Rotational Spring Coupling

Kw

W(i,) w
W (x D

mD D I DCD

General Rotational Spring Boundary Condition

Figure A.5

The rotational spring damper linking two beams together can be
generalized to link any two beam section boundaries together by a rotational
spring-damper. The general spring damper coupling is used to model wire
bracing of a beam. Wire bracing assumes that two standoffs are linked by a
linear spring-damper. The spring-damper linking the ends of the beam section,
(the far right beam section on the example), is modeled the same as the
rotational spring-damper with the exception that extensional forces are induced

by the linear spring and are ignored in the analysis. The equivalent spring
stiffness is a function of the length of the standoffs and the stiffness of the linear

spring.

Ks = Kw
(A.36)

The free-end conditions are included in the boundary conditions.

XCR = XDL

WC(XCR) = WD(XDL)

(A.37)

(A.38)
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WC(XCR) = WD(XDL) (A.39)

EC Ic WC(XCR) + CC IC WC(XCR) = ED IDWD(XDL)+CD IDWD(XDL)

[E IC WC (xCR) + CC IC WC(xcR)] = [ED ID WD(XDL) + CD IDWD(XDL)]

(A.40)

KS [WD(XDR) -WD(XDL)] + CS [WD(XDR) -WD(XDL)

= ED ID WD(XDR) + CD ID WD(XDR) (A.41)

[ED ID WD(XDR) + CD ID WD(XDR)] = 0
(A.42)

A.3.5 Transcendental Equation

For the entire system to have a single set of modes each segment must have
identical complex frequencies (). The complex shape factors (a) of each beam

section (indicated by the sub- or super-script A), in general, are different.
Inputting equations (A.13) and the solutions associated with equation (A.20)

into the boundary conditions and factoring out the time terms results in a set of
equations, when put into matrix form, is similar to equation (A.43). Equation
(A.43) is the transcendental matrix equation for a single free-free beam section.

The matrix equations for the beam simulations used in this analysis are not

shown due to their size and comlexity but follow directly from the boundary
condition equations shown.



An e (EAIA+ fQnCAIA)

aA- %A A
A2 iAL A2 -iaxAL A2n AL A2 -- anxAL-a e -a e a e a e

n A n A A n A
A3 iaAL A3 xA A -ia n L x A-i a e ia e a e -a e
n n n nA A A A

A 2 iaxAR A2 -iAR A2 a XAR A2 -a XAR
-a e -a e a e a e

A n A A A
A3 ia XAR A3 -i an x A A3 a x AR A3

-a nx
-ia e ia e a e -a en n n n

=[o]
(A.43)

Simultaneously solving all of the boundary conditions typically results in

a transcendental equation, giving a infinite number of mode solutions. The
general solution is then the sum of these modes. The transcendental nature of

the matrix equation requires a iterative solution technique. The computational

technique used to solve the matrix equation is described in detail in Chapter 4,
section 4.2.

A.4 Orthogonality Conditions

Orthogonality equations are used to distinguish between the modes. The
orthogonality equations allow the modes to be solved for separately and are

necessary in the solution of the initial condition problem. The orthogonality

equations are derived by placing a single complex mode into the operator
defined by the homogeneous equation of motion and multiplying it by another

complex mode, subtracting the same equation where the complex modes have

switched positions. Integrating by parts and substituting in the boundary
conditions an orthogonality relationship is derived which can be shown to
exhibit the properties of being non-zero for like modes and zero for unlike

modes.
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A.4.1 Integral Operator Equation

A single complex mode is inputted into the operator, L, the operator

multiplied by a different complex mode and the entire equation integrated

results in equation (A.44).

x2

wmL (wn)dx=O
xl

(A.44)

A similar equation can be written by switching the modes,

X2

wnL (Wm) dx=O

xl (A.45)

Subtracting equation (A.45) from (A.44) an integral operator is defined by the

equation

X2

JtWmL ( n) - nL (Wm) } dx = 
X1 (A.46)

Inputting equation (A.21) into equation (A.46) and separating the time and

spatial terms equation (A.47) results.



X2

2 . . . . '
YnYm { tfnm 4)n)m+ (EI n + QnC I n )

X 1

Qmm Em n - (E I m + Om C I m )

Integrating by parts

x 2

YnYm [J(2n -

x 1

2m) m n m+ (n- 2m)C I )n ")m dx+r , ,
+ {(EI O+n ) m - ( E I + ln C I ) n m

- (EI) m+ CIOm ) n + (E I + QmC I) m n }

The beam section limits and the boundary conditions described in equations

(A.24) to (A.42) are inputted into equation (A.48).

186

m

On dx=O
(A.47)

x2

xi
=0

(A.48)
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A.4.2 Tip Mass

Inputting the tip mass boundary conditions, equations (A.24) and (A.25),

assuming the tip mass is a constant, into the relevant portion of equation (A.48),

-Yn Ym { (AA)i+ c -An Am- ( EAIA+ nCAA) 4An Am

(E AI mCAIA ln) An "A mCAIA)AAn +...AAO mC'^d> + A1 } +
XAL

(A.49)

results in the terms at the tip mass boundary going to

..+ YnYm ( MMn- ) AnAm } XAL (A.50)

A.4.3 Straight link

Inputting the boundary conditions for the straight link, equations (A.26)-

(A.30), into equation (A.48), results in the terms at the straight link boundary to

go to zero. The relevant terms of equation (A.48) are

.. + YnYm { Am(EA IA An+/ 2 nCAIAAn) - Am(EA IA O+ 2nCAIA An)

- OAn ( EA IA OAm+ Qm CA IA OAm) +OAn(EA IA 4Am+ nmCA IA Am) }XAR
XAR

{ ( Bm(EB IB (Bn+QnCB IB 4Bn)- Bm( EB IB 4Bn+ 2nCB B Bn)

- Bn ( EB IB Bm+ Q2mCB IB 0Bm)+4bBn(EB IB 0Bm+Q mCB IB Bm) L +..

(A.51)

Rearranging and inputting equations (A.26)-(A.30) results in equation (A.51)

equaling zero.



188
A.4.4 Rotational Spring Damper

Inputting the boundary conditions for the rotational spring damper,

equations (A.31)-(A.35), into equation (A.48), results in some terms not going to
zero. The relevant terms of equation (A.48) are

· .+ YnYm { Bm(EB IB n+nCB IB bBn)' - m( EB IB OBn+ nCB IB (Bn)

- Bn(EB IB qBm+Q 2mCB IB Bm)+Bn(EB IB Bm+mCB IB Bm) }XBR

- Cm(EC IC *Cn+nCC IC cn) - ()cm( EC IC ({Cn+ fnC Ic CCn)

- Ocn ( Ec c cm+ 2m Cc I ¢Cm) +Cn(Ec Ic (>Cm+ m Cc Ic (c) } +..X

(A.51)

Inputting equations (A.31)-(A.35) into equation (A.48) and rearranging gives

.. + YnYm { (m.)CS ( )Cn n) ( )Cm- Bm) }XCL-
(A.52)

A.4.5 General Rotational Spring Coupling of Boundaries

Rotational spring dampers can couple different ends of a beam section

by using wires linking standoffs at the beam ends. Inputting the boundary
conditions for the spring-damper linking the beam sections, equations (A.36)-
(A.42), into equation (A.48), also results in some terms not going to zero. The

relevant terms of equation (A.48) are
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*..+ YnYm{ { CCm(EC Ic Cn+QnCCIc )Cn)'- Cm( Ec IC n+ nCC Ic PCn)

- cn ( Ec IC (Cm+ ,m Cc IC ()Cm)+)Cn(EC I)Cm + Q Cc IC Cm) } XCR

{ Dm(ED ID Dn+QnCDID ODn) - Dm( ED ID Dn+ nCD ID IDn)

- 4Dn ( ED ID ODm+ Om CD I +D(ED D Dm+ Q CD ID Dm) DL

+ { ¢Dm(ED ID +Dn+r CDD Dr m( ED ID 4D.+ ~nCD ID ePDn)

- Dn (ED ID ¢Dm+ m CD ID I)Dm)+4Dn(ED ID ¢Dm+ "mCD ID ¢Dm) } XDR 

(A.53)

After some manipulation, equation (A.53) reduces to equation (A.54).

·*"+ Yn Ym { ( Qn Qm) CS [ (n(XDR)- (n(XDL)][ )Dm(XDR) Dm(XDL)] I
(A.54)
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A.4.6 First Orthogonality Equation

Adding the component terms of equation (A.48) together

YnYm,( n- rQm)

XAR

I{(n+ m)mA An Am + CA IA AnAm } dx

XAL

XBR

+ (n+

XBL

XCR

+ X (nL +

XCL

Qm)mB Bn Bm + CB IB Bn Bm }

an)mc OCn km + Cc Ic Cn 'C m }

XDR

+ {(q n+ )mD )n 4~Dm + CDID ON Dml

XDL

dx

dx

dx

+ MM(n+ m ) 4An )Am I ;AL 

+ CS (Cn- Bn) (Cm- hm) IXCL

+ { C S [ Dn(XDR) - Dn(XD )] [ Dm(XDR) - Dm (XDDL ] = 

(A.55)

Equation (A.55) can be cast in more general terms by condensing the beam,

mass, and spring terms into summations.
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Yn Ym ( nR- m) [
XBR

all beam ~, ,,

J{(f'n+'2m)mB ~Bn Bm + CBIB &BnPBm } dx
B

XBL

a masses

+M { { MM (Qn+m) hn(XM) m(XM) } }

+ ,,{Cs [ Dn(XDR) - n(XD )] [ Dm(XDR)-ODm (XDL)] } ] =0
S

(A.56)

Since the frequency term at the left of equation (A.56) is zero when n = m the
equation can be put in terms of complex modal orthogonality.

XBR

Jt(0n+ m)mB Bn )Bm + CBIB n()Bm} dX
B

XBL

a masses

+ {{ MM ("2n+ Om ) (XM) Mm(XM) I} }
M

+ l I C [ Dn(XDR)- Dn(xDL)][ Dm(XDR)-)Dm(xDL)]I = nm Vnm

(A.57)

This is designated the first orthogonality equation. A second orthogonality
equation can be derived by inputting the first orthogonality equation into a
relationship derived from the homogeneous equation of motion and its solution.
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A.4.7 Second Orthogonality Equation

Inputting a single complex mode solution into the homogeneous

equation of motion, equation (A.1), equation (A.58) results.

Yn { fnmn+(EI n +QnCI') ' } =0
(A.58)

Multiplying by a second complex mode solution and integrating over the length

of the beam equation (A.59) results.

x 2

YY{n mOm+(EIx +nCIn )
x1

m } dx =O

(A.59)

Integrating by parts

x2

YnYm { nm nm+
x 1

(EI+2QnCI)) "m I}

+ (ElI "4n +QC I ) 4>m - (EI+ QnCI ) I)n4m
X2

=0
X1

(A.60)

Separating the beam sections and inputting the boundary conditions into

equation (A.60), equation (A.61) results.
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all bems XBR

B J { mB BnOBm+ (EB B + nCB IB) n Bm }
XBL

allmrass

+ { n, MM ( ) E(XM) ) .(XM) }
M

a S ( - ( L)][ _ (XsR) - (L)] I
s SRm SLm SRn SLn

+ SI RXSR) - (xSL)][ O (XSR) - 4 (XSL)] = o
s SRm SLm SRn SLn( )

Multiplying equation (A.57) by the complex frequency (tio) and subtracting it from
equation (A.61) gives the second orthogonality equation, equation (A.62).

all bem XBR

- aQm mB 4)Bn )Bm + E IB I Bn Bm }

XL

lmases

+ > {- anmMM Mn(XM) 4)Mm(XM) }
M

+ gs{K [ 4 (Xs R) - (L) (xsL)][ R)- (XsL)] }=- 
S SRm SLm SRn SLn

(A.62)

A.5 Initial Condition Problem

The initial condition is a known real displacement and rate distribution at
the initial time, indicated by the subscript T.

w WT=wr)WT = W(tr) WT =*(tr) (A.63)

The initial conditions establish the initial complex modal amplitudes of the
solution. The orthogonality equation is used to decouple the modes making it
possible to calculate each mode individually.
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A.5.1 Orthogonal Initial Condition Equation

Dividing equation (A.56) by the square of the time function Y, of the

complex mode m, integrating with respect to time and summing over all modes n

and m
t

if{ Yn (Q n-Qm)}d t [
n m T Ym

XBR
all beaus

{(n+ m)mB q)Bn Bm + CBIB n)Bm dx
B

XBL

all nvsses

+ { { MM ( Qn+Qm ) m } IXM)
M

PC [D(XDR) - 4b(XDL)] [ (XDR) 4Om (XDD] 1 =
S

(A.64)

results in an equation where the limits of integration can be put on different

sides of the equation. Equation (A.64) becomes

X } In [
n m {m T

XBR

{(Qn+ Qm)mB )Bn ()Bm + CB IB n ) dx
B

XBL

ll nsses

+ X { { MM ( Qn+ t m ) n } 1XMI

+ CS {C [Dn(XDR) <- f(XDL)] [ ODm(XDR)-) (XD] 1 



= m
n m

Y I

m t

XBR

n, (n+ m)mB )Bn )Bm +

XBL

all nsse;

+ f MM (n+ Qm ) 
M

+all { C [ (XDR) - 4 (XDL) ][
S

CB IB 13Bn Bm) dX

} I } 

I I)(X}4 )Dm(XDR) -OIm (XDO] 1]

(A.65)

The complex frequency terms evaluated at the initial time, T, can be
reassembled with the time and mode shape terms to form the initial conditions
and the terms evaluated at the final time, t, can be reduced by the orthogonality

condition, equation (A.57). The left side of equation (A.65) is reduced to a
single summation, equation (A.66) and the time functions are replaced by the

equation (A.23).

x tA e )t<-, tM.r~
all beams XBR

{ { m )Bm WBomB
XBL

+ Bm WBTmB +4BmW WB IB } x

all masses

+1 f{tMM(±nmfmWr+
M M

)MmWM) I
T

alli igs
+ {CS [4(X)-SR) SLm S)][W(xsR) WSL(x )] 

SRm SLm SR LL
T T
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(-a + n ) t ]
m n mn

(A.66)

The right hand side of equation (A.66) can be reduced to a single sum since it is

non-zero only when m equals n

[ Am e (-)r
Y_, 

all beam XBR

allams{ Bm
BXBL

WBOmB + Bm WBTmB + OBm WBTCB IB

IMM(g MWMT+ Mm

[CS [(xSR)
SRni

I I

(XSLL [W (x SR)
SLm SR

T

r 2 1
lAmVmm 

(A.67)

The general initial value equation can therefore be reduced to solving for each

mode independently.

OQm tr all beams

mm B

all masses

+ E
M

XBR

r QmBmWmB + BmWBmB + BmBTCB IB}dL
KBL

{ MM( Qm i WmT

alligs
+ { [ ( (XSR)

5 ~SRmi

+ MmWM) IXT XM }

-(xSL)[WSR)I-WxSL) AmSLM S R) - J=ASm

(A.68)

all masses+ x 
M

Idx 

WM }
M

all kings

S

=Z{
m

SLSL)
T

e

I I1

n
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A.5.2 System Transfer Equation

The technique used in this analysis models piece-wise linear structures.
As the structure oscillates different but similar structural models are used to
describe its motion. When a first or initial structural modal transfers to a second

or final structural modal the final state of the initial system, the position and

velocity, is used as the initial condition of the final structural model. The

structures are identical except the damping and stiffness coefficients are
allowed to vary. This allows the complex modal amplitudes of the final system
to be solved for in terms of the complex modal amplitudes of the initial system.
The computational technique is described in more detail in chapter 4. It must be
emphasized that the transfer from one system to another must be accomplished

with emphasis on the conservation of energy, momentum, and mass from one

system to another.

An initial structure is assumed to take the form of equation (A.69).

mV+(EIV+CIV )= 0
(A.69)

and the assumed solution is shown in equation (A.70).

o=t+bx * o't+ bxv=Be +B e
(A.70)

The characteristic equation is therefore

me +b4(EI+CI)= 0
(A.71)

and the time and spatial modal components are shown in equations (A.72) to

(A.76).

v_ Vn

(A.72)

Vn = vn + Vn A73
(A.73)
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vn = %I Zn (A.74)

i bnx -ibnx bx -bnx
fr= dne + d2 ne + d3ne + d4 ne (A.75)

Zn=B e t
(A.76)

In this analysis the assumption is made that the component beam dimensions

are the same for the initial system as the final system. The system transfer

equation can then be written as

e

vmm

all beam XBR

{alls J {m mB mVBMB + VBmMB + BmVBCBIB

XBL

all masses

+ { (MM(, V) 
M iM

}dx }

I
all _Ssg

+ SI SR) - sL)][V (XSR) - V (XsL)]
S SRm, S rf SRT SLT

I }=Am

(A.77)

Inputting equations associated with equation (A.72) into

equation (A.78).
equation (A.77) gives

(Cod Qm)tT
ec [vB

L n V
n mm

all masses

+x I {[MM(Qm+ n) Mm Mn
M

all beams XBR

{ { (Qm+ n) BmVBnmB + BmnC IB } dx
XBL

) IX }
all j ,is

+ {CS [ (XSR) -) (xsL)][ ' (XSR) - (XS,)] }
s SRm SLm SRn SLn

)A]-m
(A.78)
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The transfer coefficient () is defined in equation (A.79) as the portion of

equation (A.78) which is similar to the orthogonality equation, equation (A.57).

all beams XBR

XBL

all masses

+ I MM( m+ (n) Mm NfMn X}
M M

all f'gs

+ S SR),,S (X SL) I (RV (X n
S SRm SLm SRn SLnj

(A.79)

The transfer equation can therefore be written as

{B e (Cn-C)tr mn } =A
n V

" mm (A.80)

The individual contribution of each complex mode of the initial system to each

complex mode of the final system is written as equation (A.81).

(CO-P)tr n ABe =An mn
V
mm (A.81)

Equation (A.81) establishes a computationally direct correlation between the

complex modes of the initial system and the complex modes of the final system.
If the initial system is identical to the final system the transfer coefficient ()

reduces to the orthogonality coefficient (v). Equation (A.81) then reduces to the

statement of the complex modes of the initial system being equal to the complex

modes of the final system.
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A.6 Energy Equation

The energy of the engineering beam structures used in this analysis is

defined as the sum of the potential energy (strain energy) and the kinetic

energy.

X2 2 2

E= -mW +-EIW dx
-4 2 2

Xl
(A.82)

Placing the beam section limits and the boundary conditions, section A.3, into

equation (A.82), the energy equation becomes a sum of the constituent parts of
the beam.

xBR 2

E= 2 J mBWB + EB IBWB dX
B XBL

PR1m~s 1 .2

+ M MMWM(XM)
M

+,1 KS[WS(XS R)-WS(XSL)
S (A.83)

Inputting the complex mode solution, equation (A.20)-(A.23), the energy

equation can be separated into its time and spatial components.

E=- 2 B YmYn[
m n

XBR
allbeamXBR

XBL



all msses

+ E { Qm Qn MM OMrn(XM) Mn (XM)
M

I

all sqin1gs

+ [, { KS[ (Sm(XSR)- OSm(XSL) ] [ Sn(XSR) - 4Sn(XSL) ]
S

I]
(A.84)

Using the second orthogonality equation, equation (A.62), to remove the

stiffness terms, equation (A.84) becomes

E=Y I
m n

XBRall bem XBRs

XBL

1

YmYn [ 2n fsmn Vmn

Qm n mB Bm Bn dx

al man;s

+ { m Qn MM M(XM) Mn (XM)
M

Defining the modal mass, , as

(A.85)

all beams

mn= I
B 

XBR

f { mB Bm)Bn } dx
XBL

all masses

+ I MM Mm(XM) Mn(XM) }I]
M

(A.86)

The energy equation reduces to

E 1 n YmYn Vn mmn mnVmn]
n

(A.87)

201
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Energy terms involving different modes are present. In general the energy

equation does not decouple into modal form. Transferring equation (A.87) into

complex conjugate form, equation (A.20),

-= X [YJYk Ok { ; 9j k 2 SkVk 
j k

* * 1
+Yj Yk J k 9J*k + C. C.

(A.88)

where the * superscript of the mode subscript indicates the complex conjugate

mode is inputted into the modal mass function. Further separating equation

(A.88) into like and unlike terms the energy equation can be written as equation

(A.89).

J

* * 
+ Yj Y q .IJ + C. C.

+El [Yjk Qj Qk j k
j* *k

+ YjYkQj krLjk + C. C.
(A.89)

The first summation in equation (A.89) consists of complex energy terms

which are each related to a single mode. These terms are dubbed the modal

energy terms. There are two types of modal energy terms present, oscillatory

terms and non-oscillatory terms. The oscillatory terms oscillate at twice the

frequency and decay at twice the rate of the relevant modal amplitudes. The

non-oscillatory terms are always real and decay at twice the rate the relevant

modal amplitude decays.

The second summation in equation (A.89) consists of terms which are

dependent on two separate modes and represent modal coupling of the energy

equation. These terms are dubbed coupled complex energy terms. Generally
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the coupled energy terms are non-zero and are oscillatory with frequencies and

decay rates which are combinations of frequencies and decay rates of pairs of
modes. There are special cases where energy does decouple into modal form,
the coupled complex energy terms become zero. The two special cases

examined in this analysis are the cases of undamped beams and of
proportionally damped beams. The proportionally damped beam is examined

first since the undamped beam can be derived from the proportionally damped
beam.

A.6.1 Condition of Proportionality

The condition of proportionality is defined as

CB Cs

Fn KsD s K (A.90)

Equation (A.90) states that the ratio of the damping coefficient and the stiffness

coefficient is the same for all beam sections and boundary conditions.

The first observation is that a proportionally damped beam has identical
mode shapes as the same beam without damping. This can be shown most
readily by examining the boundary conditions, section A.3. By inputting into the
boundary conditions an assumed solution, equation(A.20)-(A.23), performing

the time differentiations, and applying the proportionality conditions, a factor of
( 1+ K ) can be factored out and cancelled, reducing the boundary condition

to the same boundary condition as the undamped beam. For example,
equation (A.35) becomes

( 1 + K K [ C(XCL) - B(XBR) ]

= ( 1 + K ) Ec Ic C(XCL) (A.90)

The single exception to this is the attached mass boundary condition,
equation (A.25). It can also be shown to reduce to the undamped system's
boundary condition by performing the same operation and using the
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characteristic equation to eliminate the complex frequency terms. Equation
(A.25) then reduces to the same boundary condition as in the undamped

system.

4

[EA IA (xAL) = A A A M A(XAL)
mA (A.91)

Since the boundary condition equations for the proportionally damped

and undamped beams are identical the matrix equation formed by the boundary

conditions is the same matrix equation for the proportionally damped beam as

for the undamped beam. The mode shapes (the complex shape factors, and
shape coefficients) of the proportionally damped system and the undamped

system are therefore identical. A result of this observation is that the complex

shape factor (a) is real for a proportionally damped beam. The characteristic

equation can therefore be used to define a relationship between the
proportionality coefficient (K) and the complex frequency ().

K= j

- ~"~J ~'~J (A.92)

This relationship is useful when calculating the energy of a proportionally

damped system.

A.6.2 Energy of Proportionally Damped System

The first and second orthogonality equations can be combined with the

conditions of proportionality to show modal energy decoupling of a

proportionally damped system. This is accomplished by multiplying the second
orthogonality equation, equation (A.62), by the proportionality coefficient, (K),
and subtracting it from the first orthogonality equation, equation (A.57). Since

the proportionality coefficient is identical for all beam sections and boundary
conditions the resultant equation takes the form



all beas XBR

XBL

( Qm + Qn + m n K )
( 1 +QnK) B m (B n mB I

( Qm+ Qn+ Qm2nK)

( 1 + QnK) )Mm(XM) l(Mn(XM) MM

Substituting for the modal mass, equation (A.86), equation (A.93) reduces to

equation (A.94).

( Om + n + mQn RnK )

( 1 + QnK) Ilmn = mn Vmn

(A.94)

Converting to complex conjugate notation, equation (A.94) becomes equations

(A.5) and (A.6).

( j + Qk+ j Qk K)

( 1 + QkK)

( j 2+ k+j IlkK)
(1 + kK)

Rjk = SjkVjk
(A.95)

lJ*k = 0

(A.96)

When equation (A.92) is substituted for the proportionality coefficient (K) in

equation (A.96), equation (A.96) becomes

( j Qk) Qj kQk *
· ( Qk + Qk)

Qk Qk
L* =0jk

(A.97)

all mases

B
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dx)

} 8mn Vmn

(A.93)

2
Qk

Qk Qk
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When j=k the numerator in equation (A.97) goes to zero. Equation (A.97) can

therefore be written as an orthogonality condition. Equations (A.95) and (A.96)

can be written as

L. =6 kjk
jk jk jk (A.98)

jL* =8* kjk jk jk (A.99)

where

(1 + QkK)

(Qj+ k + Ij Qk K)
Rjk jk

(A. 100)

but the mixed terms can only be written as

XBR

WjJk [ I XBL
XBL

mB Bj Bk dx

all rass

M
MM PMj (XM) Mk(XM) ]

(A.101)

Inputting equations (A.98) and (A.99) into the energy equation, equation (A.88)

becomes

E =: Y, Yk
j k

Qk { Qj jk jk
1

- f jkVjk I

+ k k jk + C. 
(A.1 02)

Equation (A.102) can be reduced to a single summation.

E m2m=E
m

+ Ym Ym Qmm m*m+ .c.]

1

(fm, Lmm - VmmI

(A. 103)
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Equation (A.103) shows that the energy of a proportionally damped system is

decoupled. The energy of a known mode can therefore be calculated without
prior knowledge of other modes of the structure.

A.6.3 Energy of Undamped System

The undamped beam equation, equation (A.2), is the case where the

damping coefficient, (C), is zero. This is equivalent to the case where the

proportionality coefficient, (K), is zero. The characteristic equation reduces to

2 4mQ + a EI =O
(A.1 04)

and the complex frequency becomes purely imaginary.

J (A. 105)

Where co is a real number. Equation (A.100) reduces to

1

(j+ k = Vjk
(A.1 06)

and inputting equation (A.100) into the energy equation, equation (A.103), the

energy equation reduces to,

]E= Yj j Q j jlj*j+ c.c.
j (A.1 07)

Noting that the terms in equation (A.107) are always real the energy of the

undamped beam is real, constant and uncoupled.
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E 2 oj j*j
~~~~~~~~~~~j ~~(A.1 08)

A.7 Modal Damping

To this point in the analysis a single equation of motion has been used to

describe the motion of the beam. The model, the engineering beam equation
with strain rate damping, is solved along with the initial condition equation,

system transfer equation, and the energy equation. The general solution

exhibits modal characteristics but will posses modal energy characteristics only
when the beam is proportionally damped. A proportionally damped beam

possesses the same mode shapes as the same beam with no damping,
provided the solution remains oscillatory. As can be surmised from the
orthogonality equations, the energy equations, and the modal mass equations
for the proportionally damped beam, the orthogonality equations and the

energy equations hold for any two modes of any two beams where the beams

are identical except for the damping coefficient. This property allows each

mode of a beam, both complex conjugate parts, to be modeled by a separate

equation without loosing modal or energy orthogonality.

The technique of a system of proportionally damped beam equations

modeling a structure provides a model which has orthogonal modes, modal

energy, and exponential decay of the modes which can be set. The allowable

equations are the proportionally damped equation where the proportionality

coefficient is variable. This technique is valuable because it allows the decay

rate of each mode to be set and the energy of each mode to be calculated. The

single drawbacks to this technique is its inability to model localized damping.

Localized damping is in general non-proportional and is not applicable to this
technique. Such localized damping can only be modelled by a single beam

equation and is limited, assuming strain rate damping, to the modal damping

distribution inherent in the model. The non-proportionally damped model is

also limited in that energy can not be calculated on a modal bases.

This paper uses the technique of separate proportionally damped beam

equations to model the beam structure's modes for three reasons. First, the

damping mechanism being modeled is that of material damping which follows a

frequency distribution different than that of strain rate damping. Second, it is
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assumed that the material damping is small, uncoupled and induces
exponential decay. Third, it is required of the analysis that the beam's energy is
uncoupled and calculable.
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Appendix B

List of Experiments

Beam 2, System A (Beam 2A): 3 Section, Continuous Unjointed Beam, Linear

G2

/

Feb. 13, Test 1 (FB1301): tapped ceiling

Feb. 13, Test 2 (FB1302): Not used

Feb. 25, Test 1 (FB2501): Rotation

Feb. 25, Test 2 (FB2502): Rotation?

July 2, Test 1 (JY0201): Signal Problems

July 2, Test 2 (JY0202): Tapped Ceiling

Apr. 24, Test 1 (AP2401): Good test
Apr. 24, Test 2 (AP2402): Good test

I
I

G3

El

high amp.

high amp.

high amp.

high amp.

low amp.

low amp.

low amp.

low amp.

Beam 2, System B (Beam 2B): 3 Section, Continuous Unjointed

Plate Across Middle Section

Beam, Thin

3, Test 1

3, Test 2

4, Test 1

4, Test 2

4, Test 3

4, Test 4

5, Test 1

5, Test 2

(MR0301):

(MR0302):
(MR0401):

(MR0402):

(MR0403):

(MR0404):

(MR0501):

(MR0502):

Not used

Not used

Short

Short

Short

Not used

Not used

Not used

March

March

March

March

March

March

March

March

high

high

high

high

high

high

high

high

amp.
amp.

amp.

amp.

amp.

amp.

amp.

amp.

I

G1 G4

1 1I



March 5, Test 3 (MR0503): Not used

April 22, Test 1 (AP2201): Hit ceiling

April 22, Test 2 (AP2202): Good test

April 23, Test 1 (AP2301): Spinning

April 24, Test 3 (AP2403): Good test

April 24, Test 4 (AP2404): Good test

April 25, Test 1 (AP2501): Good test

April 25, Test 2 (AP2502): Good test

high amp.

low amp.

low amp.

low amp.

low amp.

low amp.

low amp.

low amp.

Beam 2, System C (Beam 2 C): 3 Section, Continuous Unjointed Beam, Thin

Plate on Each Side of Center Section

July 14, Test 1 (JY1401): hit ceiling hard

July 14, Test 2 (JY1402): Good test

low amp.

low amp.

Beam 3, System A (Beam 3A): 2 Section, Linear Jointed Beam

G1 G3

G2

III--G4

May 26, Test 1 (MY2601): Good test

May 26, Test 2 (MY2602): Hit ceiling

May 26, Test 3 (MY2603): Good test

July 7, Test 1 (JY0701): Good test

July 7, Test 2 (JY0702): Good test

low amp.

low amp.

low amp.

very low amp.

very low amp.

211

)""
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Beam 3, System B (Beam 3B): 2 Section, Asymmetrically Stiff Jointed Beam

G1 G3

G2i

G2

I1

G4

1 (MY2701): Thin plate did not go tight
2 (MY2702): Thin plate did not buckle

3 (MY2703): Good test

4 (MY2704): Good test

low

low

low

low

amp.
amp.

amp.

amp.

Beam 3, System C (Beam 3C): 2 Section, Dead-Band Jointed Beam

G1 G3

G2

'I

G4

May 27, Test 5 (MY2705): low

May 27, Test 6 (MY2706): Good test

May 27, Test 7 (MY2707): Good test

May 28, Test 1 (MY2801): Good test
May 28, Test 2 (MY2802): Good test
May 28, Test 3 (MY2803): very low

May 28, Test 4 (MY2804): slow spin
July 7, Test 3 (JY0703): ceiling?

July 9, Test 1 (JY0901): low

low amp.

low amp.

low amp.

low amp.

low amp.

low amp.

low amp.

very low amp.

very low amp.

May

May

May

May

27,

27,

27,

27,

Test

Test

Test

Test



213
Beam 3, System D (Beam 3D): 2 Section, Bolted Beam

G1

1-

G2

G3

-I

G4G4

July 9, Test 2 (JY0902): Good test

July 12, Test 1 (JY1201): Good test

very low amp.

very low amp.

Beam 4, System A (Beam 4A): 3 Section, Linear Jointed Beam,

G1

May 30, Test 1 (MY3001): hit ceiling

May 30, Test 2 (MY3002): Good test

July 2, Test 3 (JY0203): Good test

July 2, Test 4 (JY0204): ceiling

July 6, Test 1 (JY0601): Good test

July 6, Test 2 (JY0602): low

low amp.

low amp.

low amp.

low amp.

very low amp.

very low amp.

Ic

Is_
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Beam 4, System B (Beam 4B): 3 Section, Asymmetrically Jointed Beam,

Asymmetry on Same Side of Beam

G1

July 17, Test 1 (JY1701): Short

July 17, Test 2 (JY1702): Good test

July 17, Test 3 (JY1 703): Good test

low amp.

low amp.

low amp.

Beam 4, System C (Beam 4C): 3 Section, Asymmetrically Jointed Beam,

Asymmetry on Opposite Sides of Beam

G1 G3

July 17, Test 4 (JY1704): hit ceiling shim

July 17, Test 5 (JY1705): Good test

low amp.

low amp.

Beam 4, System D (Beam 4D): 3 Section, Dead-Band Jointed Beam

G1

G2

May 29, Test 1 (MY2901): hit ceiling

May 29, Test 2 (MY2902): Good test

G3

-r
.II. El

G4G4

low amp.

low amp.

__



May 29, Test 3 (MY2903): hit ceiling lo

May 29, Test 4 (MY2904): Good test lo!

May 29, Test 5 (MY2905): Good test lo,

Beam 4, System E (Beam 4E): 3 Section, Bolted Beam

G1 G3

I J

July 12, Test 2 (JY1202): hit ceiling

July 12, Test 3 (JY1203): Good test

Top View

Side View

Bottom View

very low amp.

very low amp.

Bottom Gauge

Strain Gauge Set-up

Half Bridge

Figure B.1

215

w amp.

w amp.

w amp.



216

Appendix C

List of Simulations
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