Genome Scanning: An AFM-based DNA sequencing technique

by

Ahmed Elmouelhi

Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003

© Ahmed Elmouelhi, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part.

Author

/Department of Mechanical Engineering
February, 2003

Certified by

/ Kamal Youcef-Toumi
Professor of Mechanical Engineering
Thesis Supervisor

Accepted by

Ain A. Sonin
Chairman, Department Committee on Graduate Students
Abstract

Genome Scanning is a powerful new technique for DNA sequencing. The method presented in this thesis uses an atomic force microscope with a functionalized cantilever tip to sequence single stranded DNA immobilized to a mica surface. The functionalized cantilever tip hybridizes with only one base type (A, C, T, or G) and results in distinct peaks in the AFM-produced image. Genome Scanning has been successful at identifying 40 base strands of synthesized DNA and has been shown to detect a particular base type on 48 kilobase strands of lambda DNA. Currently, Genome Scanning is only accurate to 3-26 bases at a time, however, it can achieve a sequencing speed of 6000 bases/sec. In other words, Genome Scanning can be used to sequence the 3 billion bases of the human genome in 5.78 days.

Thesis Supervisor: Kamal Youcef-Toumi
Title: Professor of Mechanical Engineering
Acknowledgments

I would like to first express my thanks to God, who-through his mercy-gave me the tools and the understanding to carry out this piece of work and to my parents who raised me to dream bigger and to reach further in life. I would also like to acknowledge Prof. Kamal Youcef-Toumi for his continual advice and support over the past year and a half, and my colleagues at the Mechatronics Research Laboratory for their help and insights into this thesis, especially Osama Elrifaii and Khalid Elrifaii. I am also grateful to Laurel Ng, Kristin Brodie, and Minhaj Siddiqui for sharing their expertise in the biochemistry and biology of this project. I am also indebted to Bernardo Aumond and the other members of Surface Logix, Inc. for their generous contributions to this thesis. Finally, I would like to thank my good friends at Chicago Pizza for their tireless delivery trips and their constant company.
Contents

1 Introduction ... 21
 1.1 Problem Statement: Sequencing 21
 1.2 Importance of Personal Genome Scanning 21
 1.3 Prior Sequencing Work ... 23
 1.4 Remaining Technical Challenges 24
 1.5 Genome Scanning ... 25
 1.5.1 Immobilized ssDNA ... 25
 1.5.2 Modified Sensor Tip: .. 27
 1.5.3 Data Analysis: .. 27
 1.6 Thesis Outline .. 28

2 Background ... 31
 2.1 Introduction .. 31
 2.2 DNA .. 31
 2.2.1 DNA Structure ... 32
 2.2.2 Bases .. 32
 2.2.3 Helix dimensions ... 32
 2.2.4 Denaturization .. 35
 2.2.5 Function of DNA .. 36
 2.3 Fundamentals of Sequencing 36
 2.3.1 Southern Blotting .. 36
 2.3.2 Sanger Method .. 40
 2.4 Atomic Force Microscopy 43
7.2.1 Genome Scanning Accuracy 142
7.2.2 Genome Scanning Speed 142
7.2.3 Multiple Base Scanning 143

A Protocols ... 145
A.1 Lambda DNA Dilution Protocol 145
A.2 Lambda DNA Denaturation Protocol 145
A.3 40x T Synthesized DNA Dilution Protocol 146
A.4 40x A Synthesized DNA Dilution Protocol 146
A.5 APES Dilution Protocol 147
A.6 APES Application Protocol 147
A.7 MgCl₂ Dilution Protocol 147
A.8 DNA Immobilization on Mica Protocol (Mg²⁺ Linker) 148
A.9 DNA Immobilization on Mica Protocol (APES Linker) 148
A.10 1.0mM Base Solution in Ethanol Protocol 149

B DNA theoretical Models 151
B.1 DNA Profile Predictions:Matlab Code 151

C List of Vendors ... 153
C.1 Chemical Supplies 153
C.2 Biological Supplies 154
C.3 Atomic Force Microscope and Supplies 154
C.4 Thin Film Coating 155
List of Figures

1-1 Genome Scanning uses an atomic force microscope (AFM) to scan immobilized DNA. The cantilever deflects in response to base matching events. A photodiode monitors the movements of the laser beam reflected off the cantilever. .. 26

2-1 DNA is made of two anti-parallel chains. The chains contain complementary sequences. Nucleotides, the repeat unit of DNA, are composed of a phosphate group, a deoxyribose sugar, and a base. (http://medlib.med.utah.edu/block2/biochem/Formosa/Figures/Lecture1/dsDNA.JPG) .. 33

2-2 Hydrogen bonds hold complementary bases together. A forms 2 hydrogen bonds with T, while C forms 3 hydrogen bonds with G. (http://www.labbies.com/DNA.htm) ... 34

2-3 DNA naturally forms beta helices when paired into double strands. The helix undergoes a complete rotation every 10.1 - 10.6 bases. (http://www.cbs.dtu.dk/staff/dave/Research_i.html) 35

2-4 Southern blotting can be extremely tedious and time consuming. Southern blotting starts with gel electrophoresis. The sorted fragments are then blotted onto a sheet and fluorescent probes are added to the fragments. Information on the base length of the DNA fragments can then be extracted from the sheet (modified from http://www.accessexcellence.org/AB/GG/southBlotg.html). 39
ddNTPs are added to dNTPs so newly-formed DNA chains will terminate at a known base. In the figure, ddATPs are added to the DNA strands. The first strand terminates in a ddATP and is 8 bases long. The second strand hybridizes with dATP at the 8th base position, then hybridizes with a ddATP at the 11th base position, resulting in an overall length of 11 bases. Other iterations are also shown. (http://www.blc.arizona.edu/INTERACTIVE/recombinant3.dna/Sequencing.html).

DNA sequence can be read directly from a gel after running the Sanger method. The sequence corresponding to the bands shown is spelled out to the right of the gel. This sequence is the complement of the DNA strand sequence (shown above the gel). (http://www.blc.arizona.edu/INTERACTIVE/recombinant3.dna/Sequencing.html).

An AFM uses a microscopic cantilever to scan the surface of a sample. A HeNe laser is reflected off the back of the cantilever at a split photodiode. Deflection of the cantilever results in movement of the laser beam on the photodiode, which is correlated to height information.

Rectangular cantilevers (left) are mostly used for IC scanning, while triangular cantilevers (right) have more stiffness for contact mode scanning. (Courtesy Digital Instruments. http://www.di.com).

The position of the laser on the photodiode can be monitored and optimized through this user interface.

In intermittent contact mode, the cantilever is excited at frequencies ranging from 32 dHz to 41 dHz. At 37 kHz the cantilever is seen to resonate. This frequency will be used to oscillate the cantilever in resonance as it scans the sample surface.

Contact mode imaging of a periodic rectangular grating. The AFM produces accurate height information of the relatively large features of the grating.
2-12 IC height mode image of a pyramidal grating. More detail of the grating surface is apparent in IC mode imaging than in contact mode imaging.

2-13 IC phase mode imaging of a standard grating. Phase shifts occur when the topography of the sample changes rapidly. IC phase mode imaging is good at identifying abrupt changes in the surface, but does not produce reliable information on flat, constant surfaces, such as the valleys of the grating.

2-14 Wells in an agarose gel are injected with DNA fragments. A bias voltage is applied causing the fragments to travel towards the (positive) anode. Due to the resistance of the agarose molecules, smaller DNA fragments travel farther along the gel than larger ones.

2-15 Bright bands in the gel (as a results of gel electrophoresis) mark the location of DNA fragments. The direction of electrophoresis in the vertical direction from the top to the bottom, resulting in 9 separate lanes of DNA fragments. The right most lane, lane 9, shows the location of markers with known base lengths, which are written next to the lane. (http://www.cdc.gov/ncidod/eid/vol8no5/01-0373-G.htm)

2-16 In capillary electrophoresis, an electric field is created causing highly negative ions to travel faster along the capillary than other particles. The passage of ions over time is recorded using a laser and an opposing photoreceptor.

2-17 Membrane filters are used to separate particles greater than a threshold value from particles smaller than that value. Two screen filters are shown, and particles are shown trapped on the filter surface on the left. (http://www.millipore.com/)

2-18 Cross-section of a depth filter with varying pore size. Pores increase in diameter as one looks further from the center of rotation. (Courtesy Millipore, Inc. www.millipore.com.)
2-19 The source of a mass spectrometer converts a sample into a state of gaseous ions. The analyzer sorts these ions by mass to charge ratio and the detector determines the quantity present of each ion.

2-20 Mass Spectrometry results in the identification of the desired molecule and fragments thereof. The mass spectrum shown is of carbon dioxide. Since the CO$_2$ particles are fragmented, one can see a spike at O$^+$ (16 Da), C$^+$ (12 Da), and CO$^+$ (28 Da) weights. [4]

3-1 Resources at WICGR are plentiful. This photograph shows the custom built sequencing machines used by WICGR to sequence human DNA for the Human Genome Project (http:// www.wi.mit.edu/ Genome/gcphotos.html).

3-2 Sanger method as employed by the Whitehead Institute/MIT Center for Genome Research. The Sanger method uses chemically tagged bases to sequence DNA. After electrophoresis, one can read the DNA sequence directly from the gel. (Courtesy WICGR http:// www-genome.wi.mit.edu/)

3-3 Schematic representation of custom-build sequencers employed by WICGR. This glass plate contains 384 wells that are used in parallel to perform gel electrophoresis in micro-machined capillaries.

3-4 Structure of funnel posts employed by US Genomics to untangle strands of DNA. As DNA traverses the funnel, the physical contact with posts forces it to untangle and unwind. At the end of the funnel, DNA is in a straight linear form. Digital Image (top) [25] and US Patent 6,263,286 (bottom) [13].

3-5 A set of lasers and detectors reads the fluorescent bases as DNA passes by. The first laser reads positional information from the backbone of the DNA molecule, while the second laser reads the sequence from the strand of DNA [25].
4-1 This schematic of Genome Scanning shows how the AFM tip is modified and how the ssDNA is immobilized to mica. The gold (AU) coating is 100 Å thick and the linker used in the experiments are either APES or Mg²⁺.

4-2 Water molecules use hydrogen bonds to hold their structure. A hydrogen atom from one molecule is covalently bonded to an oxygen atom giving the hydrogen a slightly positive charge, while the oxygen from another atom is covalently bonded to a hydrogen giving the oxygen a slightly positive charge. These two molecules will form a hydrogen bond as shown in the figure.

4-3 Two hydrogen bonds form between adenine and thymine while three hydrogen bonds form between cytosine and guanine. This configuration of hydrogen bonds makes it nearly impossible for bases to bond to anything but their complementary base. (modified from http://wine1.sb.fsu.edu/ bch5425/ lect02/ IMG00008.GIF)

4-4 Linkers use ionic bonding to anchor DNA to the mica sheet. The linker is composed of two positive terminals and bonds to the negatively charged mica on one side and to the negatively charged phosphate group of DNA on the other side.

4-5 Base adsorption to a thick gold layer

4-6 Calculating the expected DNA width depends on the thickness of the DNA strand (modelled as a cylinder) and the radius of curvature of the cantilever tip (modelled as a hemisphere).

4-7 The top figure shows a scan of dsDNA using a fresh 10 nm radius of curvature cantilever tip. The bottom figure shows the measured height profile over a section of DNA. The measured width of DNA is 12.72 nm, indicating a close correlation to the theoretical model (12.65 nm). Height measurements were taken relative to the global height, shown in the bottom figure as a horizontal white line.

4-8 The profile of DNA scanned can also be estimated using this diagram.
4-9 Simulated profile of ssDNA as scanned by a bare tip, a lightly coated tip, and a heavily coated tip, with radii of curvature of $10 \, nm$, $24 \, nm$, and $30 \, nm$ accordingly.

5-1 The layer-like structure of muscovite mica allows it to be cleaved into flat sheets. (Courtesy D M Sherman, University of Bristol http://mineral.gly.bris.ac.uk/ Mineralogy/ micas.pdf)

5-2 Sheering mica along its sheer plane results in atomically flat surfaces.

5-3 AFM image of glass surface pictured (top) shows large variations in the height of this background substrate. By comparison, muscovite mica only varies by $1/100$ the height over the same area (bottom).

5-4 APES contains 4 functionalized ends: $3 \, C_2H_5$ ends and $1 \, NH_2$ end.

5-5 Divalent cations, such as Magnesium ions, are composed of two positive terminals. Magnesium ions can be obtained by dissolving Magnesium Chloride in solution.

5-6 DNA overlaps as it forms a loop along the strand as pointed out by the white arrow (left). Looping makes bases on the bottom strand inaccessible to the cantilever tip because of the overlapping top strand. A schematic of the DNA overlap is shown for clarity (right).

5-7 Adding a probing strand to the cantilever tip would enable Genome Scanning. Here a probing DNA strand with an A-A final base pair is attached to an AFM cantilever tip and used to scan immobilized DNA strands.

5-8 Bases adsorbed directly to the cantilever tip would also serve the purpose of Genome Scanning. Here adenine bases are adsorbed to the cantilever tip and used to scan the immobilized DNA below.

5-9 Sequence detail of synthesized DNA. The top sequence contains 40 thymine bases and is called 40x T. The bottom sequence contains 40 adenine bases and is called 40x A.
Using a piece of commercially available scotch tape, one can cleave a small layer of mica. The cleaved mica is shown on the left and the piece of scotch tape used to cleave is shown on the right.

1 \(\mu g/mL \) DNA immobilized with 2% APES results in a rough surface with indistinguishable features and some clustering (top). 20 \(\mu g/mL \) DNA immobilized with 2% APES resulted in major clustering of the DNA as well (bottom left). 0.01% APES immobilizing 1 \(\mu g/mL \) gave very distinguishable DNA images, especially in phase mode (bottom right).

Olympus Cantilever AC240TS SEM image of cantilever (top left), SEM images of cantilever tip (top right), and additional dimensional information (bottom). All units are in \(\mu m \). (http://www.asylumresearch.com/olympus/Olympusmain.asp)

Gold is evaporated from the high-current cradle below to cover the AFM tips overhead. Photo courtesy SurfaceLogix, Inc.

Adenine readily adsorbs onto the cantilever as it is soaked in an adenine solution. The AFM cantilever is placed on a magnetic strip as adenine adsorbs from solution onto the cantilever tip.

No heights were detected in 5 different scans of mica using a Au-coated tip.

No height are visible on 40x T DNA immobilized to mica using a Au-coated tip.

Using an adenine soaked gold tip, images of 40x T strands of DNA become visible. These strands were not visible using an as-is cantilever tip.

Two 40x T DNA strands are visible using an adenine soaked Au-coated cantilever tip.
6-5 Single stranded DNA scanned using an as-is AC240TS cantilever. Single stranded DNA heights were recorded at the locations indicated with white numbers. Coiled DNA height information was recorded at the locations indicated with black numbers.

6-6 Lambda DNA scanned using an annealed adenine coated cantilever tip gave large spikes of height.

6-7 DNA heights appear much greater when using an adenine tip than when using an as-is tip.
List of Tables

4.1 Different bond strengths in kilo-Joules per mole. It is important to note that given similar charge, covalent bonds are the strongest followed by ionic, metallic, hydrogen, and finally Van der Waals bonds. 81

4.2 Model predictions for single stranded and double stranded DNA using tips with various radii of curvature. All units are in nm. 89

6.1 Model width prediction for single stranded and double stranded DNA using as-is cantilevers and adenine-coated cantilever tips. All units are in nm. .. 122

6.2 Three strands of 40x T imaged using Adenine soaked tips from Fig. 6-3 and Fig. 6-4. All units are in nm. 126

6.3 Top: Experimental single stranded DNA heights as scanned by an as-is cantilever tip. Bottom: Experimental coiled DNA heights as scanned by an as-is cantilever tip. Measurements in these tables conform to the model predictions of height given width with some degree of certainty. All units are in nm. .. 132

6.4 Experimental single stranded DNA heights as scanned by an adenine coated AC240TS cantilever tip. The top 10 points represent locations where the tip hybridized with the DNA. The bottom 10 points represent points where no hybridization occurred. It is clear from these tables that hybridization events produce unusually large deflections of the cantilever when compared with non-hybridization events. All units are in nm. ... 136
Chapter 1

Introduction

1.1 Problem Statement: Sequencing

In recent years there has been much interest in genomics and the sciences surrounding DNA sequencing. Sequencing is the process of determining the exact order of the chemical building blocks (called bases and abbreviated A, T, C, and G), which make up DNA. Scientists and researchers have spent much effort characterizing the nature of DNA, its structure, and its interaction with the outside environment [17]. They have also found ways to view these nanoscopic molecules using atomic force microscopy and scanning tunnelling microscopy [24]. And they have found ways of detecting known strands of DNA molecules using immobilized probes and fluorescence microscopy [28]. They have even begun to test DNA molecules for electrical conductivity in an attempt to use them as nanowires [11].

1.2 Importance of Personal Genome Scanning

The information contained on these strands of DNA is the key to understanding life, its limits, and its possibilities. DNA was identified as the template for life in 1953 by Watson and Crick, and since there have been multiple attempts to develop an efficient and effective means of sequencing the information contained in the strands of DNA. Most of these methods are either extremely slow or unrealistic for implementation
in the near future. The goal of this thesis is to explore the possibility of sequencing DNA using an atomic force microscopy based technique coined Genome Scanning.

To date, there have been several smaller genomes have been completed. For instance, the genomes of bakers' yeast (Saccharomyces cerevisiae), the roundworm (Caenorhabditis elegans), and the fruit fly (Drosophila melanogaster) have been entirely sequenced. However these genomes are orders of magnitude smaller than the human genome and require a minute amount of time to sequence in comparison. To get an idea of how long current sequencing methods take, let us examine the major attempt thus far to sequence an entire human genome.

The Human Genome Project (HGP), a project funded by the Department of Energy and the National Institute of Health, is the main attempt to sequence the 3 billion bases that make up human DNA [3]. HGP started officially in 1990 and has produced a draft of the human genome in 2001. This draft cannot be considered a finished sequence because of the many inaccuracies inherent in current sequencing techniques. While the current draft has been scanned 4 to 5 times, HGP standards require 8 to 9 scans for a finished sequence (also known as "depth of coverage"). Currently, HGP is estimated to conclude in 2003-translating to a project length of 13 years!

A reference sequence, such as the one generated by the HGP, is useful to the general public since all humans share the same basic set of genes and genomic regulatory regions that control the development and maintenance of their biological structures and processes. However, it is believed that the small variations in the genomes of every individual underlie the person’s susceptibility to disease and his/her drug responsiveness. If there was a way to sequence the genome of each individual, disease susceptibilities could be identified early and perhaps treated. Medication could be tailored to the drug responsiveness of the individual, and health care could become much more effective as a result.

This vision has received much attention and there are many working on finding a workable solution. It is clear that the current methods and techniques are unfit for personal genome sequencing. They simply lack the speed necessary to transform the
vision into a reality. For this reason, we present the concept of Genome Scanning.

The main advantage of Genome Scanning is its ability to sequence DNA at a very rapid pace. While there have been several attempts at sequencing DNA in a timely fashion, none of them compete with the speed of Genome Scanning. This speed problem stands in the way of personalized genome sequencing for the masses and presents a real hurdle to the progress of biotechnology.

Therefore, we have decided to focus this thesis on the feasibility of our novel method of sequencing DNA: Genome Scanning. The thesis can be considered a proof of concept with recommendations of further work and research.

1.3 Prior Sequencing Work

There have been many attempts to improve sequencing, either by improving current methods or by inventing new models of sequencing. To improve current methods, lab facilities have devised ways to run multiple sequencers in parallel and have devised optimized running conditions for their equipment. The Whitehead Institute/MIT Center for Genomics is a great example of this and will be discussed in more detail in Chapter 3.

Others have also automated the process to eliminate human error and inefficiencies caused by manual operation. The Stanford Genome Technology Center is expending much effort devising a scheme for a "1 Mbase a Day" system that will scan 1,000,000 bases every day at a cost of 1 cent per base [1]. Three of the five main instruments involved in this system have been developed and are supposedly in use.

Yet others have invented new ways of reading the sequence of DNA. One notable attempt is nanopore sequencing. Nanopore sequencing employs a small electric potential to draw single strands of DNA through a pore of diameter 1.5nm in a lipid bilayer membrane. Passage of each molecule of DNA is detected by a decrease in ionic strength whose time duration is proportional to the length of the molecule (the pore is only wide enough to fit a single strand of DNA)[16]. This technique shows much promise for DNA sequencing; however, it remains unrealistic for the near future.
A second novel approach was tried by scientists at the University of Washington, Seattle and the Massachusetts Institute of Technology [9]. These scientists used atomic force microscopy (AFM) to measure the interaction force of complementary bases of DNA. By coating an AFM tip with one base and allowing it to hybridize with complementary bases immobilized to a slide they were able to determine the bond strength between bases. Such a concept has vast potential and can be expanded to the realm of DNA sequencing.

The reader should now have a general impression of the work being conducted to improve the process of DNA sequencing. The specific methodologies employed in DNA sequencing will be discussed in more detail in Chapters 2 and 3.

1.4 Remaining Technical Challenges

Research thus far has focused on optimizing current techniques and on inventing new ways of sequencing DNA. A method of sequencing using atomic force microscopy (AFM) has been hinted at, however, no real data on the feasibility of such a method has been presented. To turn such an AFM-based techniques into a working product, several technical challenges must be addressed. These challenges are:

- **Accuracy and repeatability**: Gel and capillary electrophoresis are still the main methods of sequencing (see Chapter 2 for more information). Both these methods suffer from low accuracies due to inconsistencies in gel composition and other factors. Further, we discussed that the HGP requires a depth of coverage of 9 scans to compensate for the inaccuracies in the sequencing method. Clearly, accuracy and repeatability need to be addressed.

- **Speed**: As we have pointed out, current speeds are not conducive to personal genome sequencing. An improvement of a factor of 2 or 3 is needed to enable individual genome sequencing. Much has been done to bring current technologies up to speed, however it is our belief that the current methodologies are inherently slow and need to be reconsidered.
• **Cost:** The cost of scanning all 3 billion bases which constitute a human genome can become overwhelming. Even methods such as the "1 Mbase a Day"—with a cost of 1 cent per base—would amount to millions of dollars per genome. Such costs are a major hurdle for personalized DNA sequencing to overcome.

This thesis will focus on the challenge of improving sequencing speed. Suggestions and recommendations will be made at the end of the thesis on how to tackle the other remaining technical challenges. This new sequencing method will be called "Genome Scanning" throughout the thesis.

1.5 Genome Scanning

The concerns raised in the previous section point to the need for a speedier method of DNA sequencing. Genome Scanning is an exemplary means of achieving such speed in a specialized, nano-scale fashion. This chapter will give the reader a brief glimpse into the main components of Genome Scanning.

Genome Scanning employs an atomic force microscope to scan the base sequence contained on a strand of DNA as shown in Fig 1-1. Briefly, an atomic force microscope (AFM) scans the surface using a cantilever mounted to a piezo stack in the z-axis. As the cantilever scans the sample surface, it bends and follows the surface topography. A laser light is reflected off the cantilever and monitored on a split photodiode to monitor movements of the cantilever. In such a fashion the AFM acts as a nanoscopic "microscope" and will be used to literally scan over immobilized single-stranded DNA to reveal the location of each type of base.

Genome Scanning consists of three main components: Immobilized single stranded DNA, modified sensor tips, and data analysis.

1.5.1 Immobilized ssDNA

The AFM requires a stationary sample that can be probed over and over using a small contact force. To utilize the AFM for Genome Scanning, single stranded DNA
Figure 1-1: Genome Scanning uses an atomic force microscope (AFM) to scan immobilized DNA. The cantilever deflects in response to base matching events. A photodiode monitors the movements of the laser beam reflected off the cantilever.
(ssDNA) was immobilized on an atomically flat mica surface using APES or divalent cations as binding agents. In this configuration the single stranded DNA was immobilized with the phosphate backbone on the mica surface and the bases exposed to the AFM cantilever tip.

1.5.2 Modified Sensor Tip:

To detect a specific base, the cantilever tip was coated with its complimentary base, which is naturally occurring in DNA. To coat the tips properly, several properties of the cantilever had to be considered. First, a cantilever with enough sensitivity and with a small enough radius of curvature of the tip had to be chosen. Secondly, the tip was coated with a thin layer of titanium and gold, and finally, the cantilever was coated with the desired base.

1.5.3 Data Analysis:

With a modified sensor tip and properly immobilized ssDNA, Genome Scanning should be as easy as point and click. Current atomic force microscopes already take care of much of the data analysis necessary to convert piezo stack displacement and laser position changes on the photo diode to corresponding topography of the sample. Further filtering and data analysis will be necessary to make binding events evident to the user.

At this point, it may be useful to mention how Genome Scanning will take place.

The AFM with modified sensor tip is used to scan the ssDNA immobilized on the mica surface. The AFM is operated in intermittent contact mode and the bases on the tip of the cantilever are allowed to come in contact with the ssDNA in brief spurts. If the bases come in contact with a non-complementary base on the ssDNA, the resonance amplitude remains undisturbed. However, if the base comes in contact with a complementary base on the ssDNA, then the two hybridize and a large force is required to separate them. This creates a large drop in the amplitude of the resonance and is detectable in the output image.
Once the output image is obtained, the magnitude of the damping can be examined and correlated to the force required to denature the tip bases from the bases on the ssDNA sample.

1.6 Thesis Outline

As we move forward with this thesis, we’d like to inform the reader of the sequence of chapters to come.

Thus far we have identified the problem being solved and it’s importance. We then proceeded to introduce the fundamental concept of Genome Scanning. Now, we will look at some background material on the basics of the DNA molecule, the fundamentals of sequencing, and the specifics of atomic force microscopy. We will then briefly examine current sequencing techniques and their implications, including gel electrophoresis, capillary electrophoresis, membrane filtration, centrifugal filtration, and mass spectrometry.

In the coming chapters we will analyze two examples from the current state of the art. We will look at the techniques utilized by the Whitehead Institute—a major contributor to the Human Genome Project—as well as the techniques being developed by U.S. Genomics, Inc.—a company attempting to create personalized DNA sequencers.

We will follow this with an in-depth explanation of the fundamentals of Genome Scanning. Specifically, we will explain its AFM basis, the DNA interaction forces that make Genome Scanning possible, the physics and mechanics behind Genome Scanning, the main advantages of this method, and the predicted results of the Genome Scanning proof of concept experiments.

With this understanding of Genome Scanning we will then discuss the experimental setup of the thesis. We will examine the goals of the experiment, the way of examining those goals, as well as some justification for the experimental procedures. These will include:

- How atomically flat surfaces for imaging were obtained.
• How ssDNA is immobilized with the bases exposed to the cantilever tip.

• How the cantilever tip was modified with the relevant bases.

• Setup of the proof of concept experiment.

The next section will present results of the outlined experiments. This section will examine the images obtained using regular cantilever tips and base-modified cantilever tips. We will also analyze the results in terms of speed and accuracy.

The final section of this thesis will bring forward conclusions and recommendations of future work to be conducted on this topic. A short Appendix and Bibliography will follow.
Chapter 2

Background

2.1 Introduction

In this section, we will present the reader with the background information necessary to understand and appreciate Genome Scanning. We will begin with an in depth look at DNA, its structure, composition, and function. We will then proceed to examine the two fundamental methods of sequencing DNA: Southern blotting and the Sanger method. We will also look at the basics of atomic force microscopy and how it applies to Genome Scanning, and finally we will enumerate the current state of the art in terms of DNA sequencing.

2.2 DNA

In 1953, J. D. Watson and F. H. C. Crick introduced the world to the replication mechanism of nature [31]. They proposed a structural model for deoxyribose nucleic acid (DNA), the template from which all life is perpetuated. This discovery marked the beginning of human understanding of replication and opened the doors to improving life as we know it. Today, scientists and researchers are working hard to unlock the secrets of DNA and to make these available to the public as a means of improving the quality of life. Hence, it is important to present a brief introduction of the basics of this molecule as it relates to Genome Scanning.
2.2.1 DNA Structure

DNA in nature is composed of a right-handed double helix with anti-parallel chains as shown in Fig.2-1. This means that one chain runs from the 5'-end to the 3'-end while the other chain runs from the 3'-end to the 5'-end. DNA can be thought of as a polymer with monomer units known as nucleotides. Each nucleotide consists of a 5-carbon sugar (deoxyribose), a base attached to the sugar, and a phosphate group. In its natural form, the phosphate backbone is on the outside of the helix and the base sequence on the inside.

2.2.2 Bases

Strands of DNA pair up according to complementary bases. There are four different types of nucleotides found in DNA: Adenine (A), tyrosine (T), guanine (G), and cytosine (C). Adenine and guanine are purine bases, while thymine and cytosine are pyrimidine bases. A forms 2 hydrogen bonds with T on the opposite stand and G forms 3 hydrogen bonds with C on the opposite strand. In such a manner, each helix of DNA contains two complementary copies of the genetic sequence. Each copy can be used independently to replicate the other half of the helix.

2.2.3 Helix dimensions

Double stranded DNA helices come in three dominant flavors: alpha, beta, and gamma helices. Alpha and gamma helices are not typically formed by DNA under normal pressure and temperature conditions and will not be discussed here. Instead we will focus on the beta helix of DNA, as it is most likely to form in the experiments of this thesis.

The beta helix formed by DNA has a characteristic diameter of 2 nm around the helical axis. Its bases are spaced 0.34 nm apart along the height of the helical axis as can be seen in Fig.2-3. Typically, the helix undergoes a complete rotation (360°).

1The notation of 5' and 3' refers to the binding location (also shown in Fig. 2-1) on the sugar molecule that binds to the next nucleotide.
Figure 2-1: DNA is made of two anti-parallel chains. The chains contain complementary sequences. Nucleotides, the repeat unit of DNA, are composed of a phosphate group, a deoxyribose sugar, and a base. (http://medlib.med.utah.edu/block2/biochem/Formosa/Figures/Lecture1/dsDNA.JPG)
Figure 2-2: Hydrogen bonds hold complementary bases together. A forms 2 hydrogen bonds with T, while C forms 3 hydrogen bonds with G. (http://www.labbies.com/DNA.htm)
Figure 2-3: DNA naturally forms beta helices when paired into double strands. The helix undergoes a complete rotation every 10.1 - 10.6 bases. (http://www.cbs.dtu.dk/staff/dave/Research_i.html)

2.2.4 Denaturization

By breaking the hydrogen bonds between complementary bases, one can obtain single-stranded DNA (ssDNA) from double-stranded DNA (dsDNA). Those in the field call this process denaturization. Most commonly, denaturization is achieved by heating DNA past its melting temperature for a duration of approximately 10 minutes.

The melting temperature of DNA depends upon the base composition of the strands. Since G-C bonds have one more hydrogen bond than A-T bonds, strands with high G-C/A-T ratios require a higher melting temperature to denature. E. Coli,
which is about 50% G-C and 50% A-T, melts at 72°C. On the other hand, Pseudomomas Aeruginosa (another bacteria), which is about 66% G-C, melts at 79°C [19]. Most recommend a dissociation temperature of 85 to 95°C to accommodate a reasonable safety margin. Once heat is removed from the sample, the DNA strands will try to rejoin, also known as rehybridization. To avoid rehybridization, the strands of DNA should be cooled rapidly after the heat source is removed.

2.2.5 Function of DNA

The sequence of these bases determines which amino acid is transcribed and hence which protein is produced. In this fashion DNA determines the makeup of the body and its development. Because of its vital function, it is of utmost importance to be able to "read" the sequence of bases of DNA. This will allow physicians to provide personalized health care to patients based on their genetic predispositions. Genome Scanning has immense potential to provide this service to individuals in a timely and sequence information in a timely and reliable fashion.

2.3 Fundamentals of Sequencing

Sequencing is not a novel process, but rather an improving development over the past 50 years. The two main methods used today can be summarized as Southern Blotting and the Sanger Method.

2.3.1 Southern Blotting

Southern Blotting is one of the most basic techniques in DNA sequencing. The protocol for DNA blotting progresses according to the following 7 steps which are also shown in Fig. 2-4:

1. **Extraction:** DNA is extracted from parts of the nucleus in a cell. Extraction is performed either chemically, by using a detergent to "wash" the excess material
from the desired DNA, or mechanically, by applying large pressures to the cell in order to "squeeze out" the desired DNA.

2. Restriction: The DNA strand is cleaved at specific sites using restriction enzymes. Restriction enzymes cleave by mating with the DNA at a known sites (for example GCCCT) and cleave the strand directly after that site. This results in fragments of DNA with differing base lengths, each fragment ending in the known site (GCCCT for example).

3. Gel Electrophoresis: The fragments are placed in a gel and gel electrophoresis is performed on the fragments. For short fragments of DNA, scientists use polyacryamide gels and for longer fragments of DNA agarose gels are typically employed [22]. As we will describe in section 2.5.1, electrophoresis is the process by which DNA fragments are sorted according to their base pair length. This step is used to separate DNA according to length along the direction of applied voltage. Gel electrophoresis usually runs for a duration of 45 minutes to 1 hour.

4. Denaturization: DNA is denatured (dsDNA converted to ssDNA) while it is still in the agarose gel by adding 0.5M NaOH or similar solutions.

5. Transfer: ssDNA must now be transferred to solid surface without losing positional information. This is done by placing a nitrocellulose sheet (or any positively charged surface) on top of the gel. The negatively charged backbones of the DNA fragments are attracted to this surface and transfer out of the gel and onto the nitrocellulose sheet. This step is called "blotting" the DNA. Blotting works by capillary action, which is somewhat of a detriment as it requires several hours to complete.

6. Hybridization: Up to this point, the DNA is still invisible to the naked eye. In order to visualize the bands, a fluorescent marker must be added to each strand. These markers hybridize to the DNA and allow the scientists to locate the bands using ultraviolet light.
7. **UV Irradiation**: The Nitrocellulose sheet can now be placed under a UV source and the location of the fluorescent probes along the sheet can be analyzed.

The method of Southern Blotting works according to these 7 steps. A similar procedure, called Northern Blotting, is used to sequence messenger mRNA.

These seven steps do not, however, result in a blueprint of the base pair sequence contained in the DNA. They only give relative location information about the specific binding site of the restriction enzyme. To identify the sequence on the DNA, numerous southern blots must be performed using different restriction enzymes and the results must be overlaid much like a puzzle is put together. Clearly, this task is quite time consuming and can be drastically improved using Genome Scanning.

There have also been several noteworthy improvements to the process of Southern Blotting.

Scientists have searched for better ways to "blot" DNA to a sheet for analysis. Most of the scientific community has moved away from nitrocellulose sheets in favor of nylon. The binding capacity of nitrocellulose is 100 $\mu g/cm^2$, while nylon has a binding capacity of 500 $\mu g/cm^2$ [23]. This means that more DNA material can be "blotted" using nylon.

Further, scientists have found ways to eliminate the step of transferring DNA from the gel to nitrocellulose/nylon sheets. Many now resort to fluorescent stains/dyes that can be applied to the DNA before it is run through the gel. The entire gel is then irradiated with an ultraviolet light and the results recorded using digital photography. Common staining materials include Ethidium Bromide and SYBR Green.

Finally, our laboratory has been working on eliminating the need for the toxic dyes, which are added to DNA for visualization purposes. We have been successful at detecting trace amounts of unmarked DNA down to picogram levels with the use of a CCD camera and a novel data analysis algorithm [15].
Figure 2-4: Southern blotting can be extremely tedious and time consuming. Southern blotting starts with gel electrophoresis. The sorted fragments are then blotted onto a sheet and fluorescent probes are added to the fragments. Information on the base length of the DNA fragments can then be extracted from the sheet (modified from http://www.accessexcellence.org/AB/GG/southBlotg.html).
2.3.2 Sanger Method

The Sanger method has proven to be the most effective and time-efficient method of sequencing currently available. It involves the synthesis of a DNA strand using radioactively labelled primers and dideoxynucleotides. Dideoxynucleotides (ddNTP) differ from deoxynucleotides (dNTP) in that they terminate with an $-H$ instead of an $-OH$ group on the 3’ end. This means they cannot bind to the next nucleotide along the chain and so the DNA chain terminates at dideoxynucleotides.

The Sanger method follows these 8 steps:

1. **Denaturization**: dsDNA is denatured to produce ssDNA. As described previously, this can be done accomplished using heat. Alternately, NaOH can be added to the solution to denature.

2. **Primer**: A primer is added to the ssDNA. A primer is a molecule with a known sequence that readily hybridizes with the ssDNA. Primers are typically comprised of 5 to 30 bases. The primer chosen in this case is labelled with a fluorescent marker. This is crucial visualization of the bases as we will see.

3. **Dideoxynucleotides**: Four separate solutions of ssDNA with labelled primers are prepared. Each solution is allowed to hybridize with 3 (functional) deoxynucleotides and 1 (dysfunctional) dideoxynucleotide. In other words, dATP, dGTP, dCTP, and dTTP are added to the first beaker and so is ddATP. The second beaker is mixed with dATP, dGTP, dCTP, and dTTP and ddGTP. This means that each beaker has a different terminating dideoxynucleotide that will terminate the DNA chains at a specific base (A, G, T, or C). This results in DNA chains of different lengths depending on where along the chain the terminating dideoxynucleotide hybridized.

4. **Denaturization**: After hybridization, the strands are in dsDNA form and must be converted to ssDNA. This is done again by applying heat or alternately by adding NaOH.
Figure 2-5: ddNTPs are added to dNTPs so newly-formed DNA chains will terminate at a known base. In the figure, ddATPs are added to the DNA strands. The first strand terminates in a ddATP and is 8 bases long. The second strand hybridizes with dATP at the 8th base position, then hybridizes with a ddATP at the 11th base position, resulting in an overall length of 11 bases. Other iterations are also shown. (http://www.blc.arizona.edu/INTERACTIVE/recombinant3.dna/Sequencing.html)
Figure 2-6: DNA sequence can be read directly from a gel after running the Sanger method. The sequence corresponding to the bands shown is spelled out to the right of the gel. This sequence is the complement of the DNA strand sequence (shown above the gel). (http://www.blc.arizona.edu/INTERACTIVE/recombinant3.dna/Sequencing.html)

5. **Gel Electrophoresis**: The ssDNA strands are subjected to gel electrophoresis similar to the case of southern blotting. In the Sanger method however, 4 lanes are created, one per beaker, with each beaker containing one kind of ddNTP. As will be explained later, gel electrophoresis is the process by which DNA fragments are sorted according to length. This process can take up to 2 hours.

6. **Irradiation**: After the gel has run for some time, it is subjected to ultraviolet radiation, which illuminates the location of the bands of DNA along the length of the gel as shown in Fig.2-6. By simply following the location of the bands, one can literally "read" the sequence of DNA as spelled out on the gel.
2.4 Atomic Force Microscopy

Atomic Force Microscopy has enabled scientists and researchers to visualize cells, molecules, even atoms. The atomic force microscope uses physical contact to produce an image of a sample with atomic resolution. Several manufacturers, such as Quesant Instruments, Inc. and Digital Instruments, Inc. have emerged as leaders in the production of precision atomic force microscopes (AFMs). The instrument used in this thesis is the Quesant Q-Scope Version 3.20. The following descriptions will pertain mainly to this AFM model.

A schematic of an atomic force microscope is shown in Fig. 2-7. An AFM monitors the deflection of a micron-scale cantilever as this cantilever scans the surface of a sample. The contact point occurs between the sharpened tip at the end of the cantilever and the sample surface. A HeNe laser is reflected off the top surface of the cantilever and captured on a split photo detector.

The movement of the cantilever as it scans the surface of the sample is determined

2 All Vendors are listed in Appendix C.
by recording the intensity and the location of the reflected laser beam on the photo detector. In such a manner the photo diode acts as a sensor of the cantilever’s vertical deflection.

The fixed end of the cantilever is anchored to a piezo stack, which adjusts the height of the cantilever according to feedback obtained from the control system. The piezo’s function is to compensate for any deflection of the cantilever due to height features on the sample. The piezo attempts to maintain the cantilever at a constant deflection, which, in this case, equates to a constant force on the sample.

It is important to note that the cantilever is stationary in the horizontal plane as the sample, which is placed on a mobile carriage, is translated in both horizontal directions.

In this fashion, one can obtain an image of the sample surface with an accuracy of less than 1Å in the vertical direction.

2.4.1 Cantilever and Tip

Depending on the application, cantilevers and tips come in many varieties. The cantilever extends about 150μm and determines to a large extent the sensitivity of the probe. The longer the cantilever, the less stiff it is and the more sensitive to fluctuations of the sample surface. The stiffness (k) depends on the length of the cantilever (l), elasticity of the material (E), and the rectangular moment of inertia (I) [8]. The stiffness relates deflection of the cantilever (d) to the load exerted on the cantilever (w) according to the relation

$$w = kd$$

where

$$k = \frac{\ell^3}{3EI}. \tag{2.2}$$

Commercially available tips have k constants between 0.06N/m and 50N/m. Contact mode imaging requires more sensitive tips than those typically used for intermittent contact mode. Modes of scanning will be discussed in more detail shortly. Also,
cantilevers come in two main forms: triangular and rectangular cantilevers (see Fig. 2-8). Rectangular cantilevers are used for more sensitive applications and typically have small k values. Triangular tips on the other hand are more rigid and can be helpful in preventing the cantilever from twisting in contact mode.

The tip usually extends between 5 and 25 μm and will oftentimes be "sharpened" along the last 100 or 200 nm. The tip has a typical radius of curvature between 5 and 40 nm. The sharpness of the tip determines to a large extent the resolution with which one can image. For instance, a dull tip with radius of curvature greater than 40 nm will not image correctly valleys of width 40 nm or below and may show sloped surfaces where there are step changes in height.

2.4.2 User Controls

AFM is a very versatile tool. It allows the user much control over the scanning parameters. Most importantly, the user can determine the PID control law used to adjust the height of the cantilever as well as the amount of force maintained between
the cantilever tip and the sample. The PID control law determines how the piezo stack reacts to height information gathered by the split photodiode. At the same time, the setpoint offset determines how much force is maintained between the cantilever tip and the sample.

The parameters one can alter are

- **Scan Size**: size of image to produce (up to 43μm)
- **Scan rate**: speed of scan in lines/second.
- **Setpoint offset**: contact force between the cantilever and the sample being imaged.
- **Scan direction**: scan angle in the horizontal plane.
- **PID gains**: gains used to control piezo position in response to photo diode output.
- **Scan resolution**: samples per line to be recorded.
- **Image mode**: contact, non-contact and other modes (to be discussed shortly).
- **Z Range**: sensitivity of the piezo stack in the horizontal direction.

The user is also able to monitor the location of maximum laser intensity on the photo diode. This is important in calibrating the AFM and can be optimally positioned using the interface shown in Fig. 2-9.

In intermittent contact mode, the user can also control the cantilever’s oscillation frequency (Fig. 2-10) and the damping percentage of that oscillation by adjusting the setpoint offset.

2.4.3 Contact Mode

Height Imaging

In contact mode, a piezo stack maintains a constant deflection on the cantilever as the AFM head scans the sample surface. Constant deflection of the cantilever correlates...
Figure 2-9: The position of the laser on the photo diode can be monitored and optimized through this user interface.
WaveMode Signal

Figure 2-10: In intermittent contact mode, the cantilever is excited at frequencies ranging from 32 dHz to 41 dHz. At 37 kHz the cantilever is seen to resonate. This frequency will be used to oscillate the cantilever in resonance as it scans the sample surface.

here to a constant-force scan. Typically, as the cantilever deflects due to a height change along the surface, the piezo stack contracts to compensate for the change in deflection of the cantilever. The piezo stack continues to contract until the cantilever deflection is restored to its original value. This contraction occurs according to a PID control law defined by the user. Height information is extracted by monitoring the voltage delivered to the piezo stack. A contact mode image of a calibration grating is shown below. The sample was a step grating (TGZ01) with period 3 μm and peak height 26 nm.

Lateral Force Mode

The AFM can also be operated in lateral force mode while in contact. Lateral force mode records the twist of the cantilever torsionally as it scans the sample. Lateral force information can be very useful in identifying contaminants and sharp features in the sample. The basic operation of the AFM is the same as in contact mode, but
Figure 2-11: Contact mode imaging of a periodic rectangular grating. The AFM produces accurate height information of the relatively large features of the grating.
the information recorded is the side-to-side movement of the laser beam on the photo detector [20].

2.4.4 Intermittent Contact Mode

Contact mode is a valuable tool for detecting surface topography of solid samples, but it can be harmful to soft biological samples, which may rupture or deform under load. To reduce wear and tear on biological samples, most researchers use the AFM in intermittent-contact mode (IC).

IC Height Mode

We have seen that in contact mode, the cantilever maintains a constant deflection against the sample surface. IC mode is somewhat different as the cantilever is vibrated near its resonant frequency. This resonant frequency ranges from 10-400 kHz. As the vibrating cantilever nears the sample surface, weak Van der Waals forces and other surface forces dampen the amplitude of the cantilever's resonance. The resonance amplitude can be monitored using the photo detector and the piezo stack again compensates for the change in damping. In such a fashion, an image of the surface -based on resonant amplitude damping - is generated and displayed. As in contact mode, the dynamics of the piezo stack compensation are regulated through a user-defined PID controller. Fig. 2-12 shows one example of a pyramidal grating imaged using IC height mode.

IC height imaging only imposes gentle contact on the surface sample and does not expose the sample to large lateral forces due to "dragging" of the tip over the surface. This makes IC height mode a strong candidate for the imaging of soft biological samples.

It is also claimed in the literature that IC mode produces better imaging results with fewer distortions.
Figure 2-12: IC height mode image of a pyramidal grating. More detail of the grating surface is apparent in IC mode imaging than in contact mode imaging.
IC Phase Imaging

An alternate to IC height imaging is IC phase imaging. This mode of imaging also uses a vibrating cantilever, but monitors phase shifts of the resonant peak as opposed to amplitude damping. As the phase of the cantilever changes, the piezo stack adjusts to compensate for the shift in phase. Phase shift has been particularly useful in identifying contaminants along the surface. Fig. 2-13 shows a standard grating imaged using IC phase mode.

As mentioned IC phase imaging is excellent for detecting contaminants on a surface and so one sees major changes in the gaps between the grating heights. The scale generated by the AFM is in "AU" or artificial units which have no physical backing. Phase information depends highly on the type of tip and the type of material being scanned. For this reason, height scaling is unreliable in phase mode.

2.5 Current State of the Art

Current techniques of DNA sequencing include gel electrophoresis, capillary electrophoresis, membrane filtration, centrifugal filtration, and mass spectrometry. Of these techniques, the most widely used is simple gel electrophoresis. Newer techniques, such as capillary electrophoresis, are slowly finding their way into common practice but gel electrophoresis remains at the forefront.

2.5.1 Gel Electrophoresis

Gel Electrophoresis is a technique used to separate fragments of DNA by physical size. Several methodologies exist, but all involve the fragmentation of DNA along known sequences. In one protocol, restriction enzymes are injected into a solution of DNA and are allowed to cleave the strand of DNA at specific sites with known sequences. In another, terminating bases are used to restrict the length of DNA fragments. The fragments from either technique are placed in a gel, typically embodied in a slab of agarose, and a biasing voltage is applied along the length of the gel (as in Fig. 2-14.
Figure 2-13: IC phase mode imaging of a standard grating. Phase shifts occur when the topography of the sample changes rapidly. IC phase mode imaging is good at identifying abrupt changes in the surface, but does not produce reliable information on flat, constant surfaces, such as the valleys of the grating.
The negatively charged phosphate groups that make up the backbone of DNA cause the fragments to move towards the (positive) anode. As the DNA moves towards the anode, it meets with resistance from the porous agarose gel. Longer fragments have a tougher time making their way through the gel, while shorter fragments slip by the small pores in the gel.

In this way, shorter fragments are separated from longer fragments and the end result is a gel with distinct bands of fragments, as shown in Fig. 2-15. Comparing the position of these bands to the position of bands from known DNA fragments (called "markers"), one can determine the base length of the individual bands of DNA.

Unfortunately, one problem remains. Since the DNA is invisible to the naked eye, it is necessary to dye the DNA fragments with fluorescent markers that will appear...
Figure 2-15: Bright bands in the gel (as a result of gel electrophoresis) mark the location of DNA fragments. The direction of electrophoresis is in the vertical direction from the top to the bottom, resulting in 9 separate lanes of DNA fragments. The rightmost lane, lane 9, shows the location of markers with known base lengths, which are written next to the lane. (http://www.cdc.gov/ncidod/eid/vol8no5/01-0373-G.htm)
when exposed to ultraviolet light. This adds another time-consuming step to the sequencing process and puts the scientist at a disadvantage, as these markers are often toxic.

2.5.2 Capillary Electrophoresis

Capillary electrophoresis is a common method for separating particles based on charge or polarity. A solution with particles of different charge and/or polarity is placed in a thin, long capillary. As shown in Fig. 2-16, two buffers are used at either end of the capillary to produce an electric field on the particles in the solution. As a result, particles with a higher negative charge move faster towards the positive anode than particles with low negative charges or particles with positive charges. A light source and an opposing photoreceptor are placed along the capillary to record the amount of material that passes by the photoreceptor over time. Since the travel time along the capillary is directly related to the charge of the particle, one can estimate the quantity of particles with any given charge.

This technique is quite impressive as it gives quality as well as quantity information. However, capillary electrophoresis is not entirely accurate and, being a non-autonomous system, can result at times in misleading information.

2.5.3 Membrane Filtration

This method, shown in Fig. 2-17, uses a physical membrane with pores of known diameter (in terms of mean and standard deviation) to separate particles of different sizes. As solution flows through the filter, particles smaller than the pore size make it past the filter, while larger particles are trapped behind the membrane. Membrane filters fall into two categories: screen filters and depth filters. A screen filter retains particles on its surface while depth filters retain particles throughout the depth of the filter. Screen filters are composed either of porous materials with controlled pore sizes or of a composite of fibers that intersect in a pattern with a controlled interstitial gap size. The former are called closed cellular filters, while the latter are called open
Figure 2-16: In capillary electrophoresis, an electric field is created causing highly negative ions to travel faster along the capillary than other particles. The passage of ions over time is recorded using a laser and an opposing photoreceptor.
Figure 2-17: Membrane filters are used to separate particles greater than a threshold value from particles smaller than that value. Two screen filters are shown, and particles are shown trapped on the filter surface on the left. (http://www.millipore.com/)

cellular filters [2].

This process is further improved by providing a biasing pressure across the membrane. Typical pressures are on the order of 10 psi and dramatically increase the flow rate of particles through the filter.

This is a simple and effective concept in particle separation. Its main advantage lies in the fact that large flow rates of approximately 150 \(mL/min \) are achievable with such filters. Actual filtration can reach maximums of nearly 0.15 \(ml \) flow/min for every \(cm^3 \) of filter material [2].

The reason membrane filters are not used to separate fragments of DNA lies in the fact that pore cannot be manufactured reliable with radii less than 25 to 50 \(nm \). Clearly, such pore sizes would not allow for direct filtration of DNA fragments smaller than 125 bp and so fragments smaller than 125 bases could not be identified. Another disadvantage to this method as applied to the separation of DNA fragments is the fact that each membrane can only distinguish between two particles sizes; one larger than the pore size and one smaller. This does not lend itself well to the differentiation between fragments of all sizes. Instead, one would be required to place many filters
in series to trap particles with different fragment sizes.

2.5.4 Centrifugal Methods

Centrifugal methods use centrifugal forces of up to 12000 g to move particles in a solution away from the center of rotation [5]. The particles have to travel through a depth filter as they move away from the center of rotation. Larger particles have more difficulty travelling to the perimeter, while smaller particles slip past the filter with no trouble. Filters currently in use have a minimal pore size of 100 nm (see Fig.2-18). In this fashion one can obtain a continuum of particles along the radius of the centrifuge with decreasing particle size. This method is quite effective in separating particles according to size. Amicon Bioseperations, Inc. claims its filters can separate particles to a resolution of 10 bp of nucleic material.

However the difficulty with such a method lies in the extraction of information from the depth filter. Since DNA fragments are trapped throughout the filter, it
becomes very difficult to locate the DNA fragments and even more difficult to quantify the amount retained.

2.5.5 Mass Spectrometry

Mass Spectrometry is a process used to measure the mass of particles that have been converted into ions (ie have been electrically charged). A mass spectrometer does not measure the mass of the particles directly, rather it measures the mass to charge ratio of the ions. As the particles being examined are of micrometer size, the mass spectrometer analyzes them in units of Daltons per fundamental units of charge [4]. Daltons (Da) are defined as $1/12^{\text{th}}$ the weight of a Carbon-12 atom and fundamental units of charge are defined as the charge of an electron. The components of a mass spectrometer are outlined in Fig. 2-19.

The sample is introduced at the inlet in the form of a solution embedded in a solid, in its liquid form, or in a gaseous form. The source charges the sample and transforms it into an ionized gas. This ionized gas enters the analyzer, where it is sorted according to charge and charge to mass ratio. The sorted ions are then detected in the ion detector and the data is analyzed using a complex data system.

There are many techniques used at the "source" to generate gaseous ions. These include fast-ion-bombardment, second-ion MS, plasma desorption, laser desorption/ionization, field desorption, and electrospray ionization [4].

The exact methodology of mass analysis is beyond the scope of this thesis. It suffices for the reader to understand that such devices exist and can be used for the sorting of nucleotides.

The data output of a mass spectrometer comes in the form of relative intensity (in percentages) versus mass to charge ratio. Frequently, the charge of the particles is held at unity, and so the mass to charge ratio can be thought of as the mass in Da. The ions that form in mass spectrometry consist of either the entire molecule or fragments thereof. Hence, one expects to see a large intensity of particles with the total mass of the molecule and smaller spikes of intensity at fragments of the molecule. For instance, Fig.2-20 shows the mass spectrograph of carbon dioxide CO$_2$.
Figure 2-19: The source of a mass spectrometer converts a sample into a state of gaseous ions. The analyzer sorts these ions by mass to charge ratio and the detector determines the quantity present of each ion.
Figure 2-20: Mass Spectrometry results in the identification of the desired molecule and fragments thereof. The mass spectrum shown is of carbon dioxide. Since the CO$_2$ particles are fragmented, one can see a spike at O$^+$ (16 Da), C$^+$ (12 Da), and CO$^+$ (28 Da) weights. [4]

as given in the literature. One can easily reconstruct the composition of this molecule from the graph knowing that carbon has a mass of 12 Da and that oxygen has a mass of 16 Da.

Mass spectrometry is wonderful for analyzing solutions at the molecular level. However, this technique encounters certain difficulty when used to analyze DNA fragments. As has been mentioned, mass spectrometry requires a sample in gas form. To obtain this gaseous state, particles are burst apart until they achieve the required size. In the process, DNA fragments would be unintentionally fragmented into smaller and smaller molecules. As a result, it would prove difficult, if not impossible, to distinguish between fragment sizes (masses) due to intended restriction of DNA and fragment sizes due to unintentional evaporation fragmentation. Genome Scanning does not encounter such difficulty.
2.6 Summary

We have presented the reader with much of the background information needed to understand the process of Genome Scanning. We have looked closely at the structure, composition, and function of DNA and we have examined the two fundamental methods of DNA sequencing: Southern blotting and the Sanger method. We have also looked at the basics of atomic force microscopy and how it applies to Genome Scanning. And lastly we have examined the many techniques currently used for DNA sequencing, including gel and capillary electrophoresis, membrane and centrifugal filtration, and mass spectrometry. In the coming section we will examine two institutions which make use of these and other techniques.
Chapter 3

Competing Concepts

3.1 Introduction

Before we examine Genome Scanning in detail, it would be helpful to gain an understanding of the current models being pursued by industry. We will examine here 2 models, which seem to hold a position at the forefront of the field. The first model is the Whitehead Institute/MIT Center for Genome Research, which has been instrumental in moving the HGP towards completion. We will also look at U.S.Genomics, which has been designing and developing personal genome sequencers and hopes to be the first to produce such a product. The processes employed by these two facilities are worth understanding to gain a better idea of the potential of Genome Scanning.

3.2 Whitehead Institute/ MIT Center for Genome Research

The Whitehead's Institute Center for Genome Research (WICGR) is the world's largest public sequencing facility and has contributed over 1/3 the content of the human genome. WICGR uses a simple algorithm for sequencing of the human genome.

The first step of sequencing is a time-intensive process of purifying human DNA from E.Coli cells used to make multiple copies of the nucleic material. After purifi-
cation, DNA undergoes the Sanger method described in Section 2.3.2 above.

The Sanger method, which uses a fluorescently labelled primer to replicate strands of DNA, is outline in Fig. 3-2. During replication, some of the bases are altered so they become terminator bases. This produces fragments of DNA that terminate in a known base (A, C, T, or G). The fragments are injected into an agarose gel and exposed to a bias voltage where they sort according to fragment length. The DNA sequence is then read directly from the agarose gel by exciting the fluorescently labelled primers.

The interesting part of the WICGR's process is the sequencers they have designed in house. These sequencers consist of a large glass plate with micro-machined channels for gel electrophoresis (see Fig.3-3).

Each glass plate is roughly 3' x 6' large with a thickness of 1". Each glass sheet houses 384 wells that are used for electrophoresis. Each well is nearly 4' long, optimized to accommodate sequencing of the maximum number of bases without losing accuracy. The wells are loaded with agarose gel material, then DNA is injected at one end into the gel and allowed to migrate towards the other end. Each well is
Figure 3-2: Sanger method as employed by the Whitehead Institute/MIT Center for Genome Research. The Sanger method uses chemically tagged bases to sequence DNA. After electrophoresis, one can read the DNA sequence directly from the gel. (Courtesy WICGR http://www-genome.wi.mit.edu/)
Figure 3-3: Schematic representation of custom-build sequencers employed by WICGR. This glass plate contains 384 wells that are used in parallel to perform gel electrophoresis in micro-machined capillaries.

roughly 150 μm wide and is machined in the form of a hemisphere with its flat edge facing downwards.

The gels are run for approximately 40 to 60 minutes at a voltage differential of 7.5 kV. After the DNA fragments separate according to size along the length of the wells. After each run, a fluorescence detector scans the glass surface and outputs a graph of the sequence of bases.

Each well results in the identification of approximately 800 bases per run. The entire process has a margin of error of roughly 2 %. This translates to a maximum speed of 16 bases/minute for each lane. The fact that 384 wells are running at the same time does not influence our comparisons since other devices can be run in parallel as well. Genome Scanning has the potential to far outperform this device.
3.3 U.S. Genomics

U.S. Genomics, Inc. was founded by Eugene Chen with the long-term goal of sequencing an entire human genome in 45 minutes for less than $1000 [25]. The current project, called Gene Engine, is supposedly 4 to 5 years away from nearing reality and has drawn much attention from the experts. The sequencing technique used by U.S. Genomics is very similar to capillary electrophoresis and can be explained as follows:

1. Isolation: DNA is isolated from a blood sample. This is perhaps the longest step taking 1-2 days to complete.

2. Labelling: Using common fluorescent dyes, each base is labelled with a certain color tag to distinguish them in the final analysis. It takes 5-30 minutes to add the labelled nucleotides, allow them to incubate, then rinse off excess unbound nucleotides.

3. Processing: The sample undergoes several other processing stages which can take from 1 to 5 hours.

4. Deposition: The drop of the sample is deposited onto a silicon chip with microfabricated wells. The strands of DNA wick into the wells by mere capillary action.

5. Uncoiling: The first stage along each well is shaped like a funnel with posts throughout. The posts, each 100 nm in diameter, act as a grid which DNA must untangle to traverse (see Fig.3-4). The strand of DNA leaves the funnel in the form of a linear chain.

6. Imaging: The second stage of the 600 nm wide wells is where the information is extracted. Two laser beams shine on the well, and directly below a detector reads the fluorescence emitted by the tagged DNA. A set of mirrors focuses the beams onto the wells.

7. DNA translation: Once the lasers are locked on the wells, fluid pressure pushes the DNA through the chip. The first laser is used to read a special set of tags on
Figure 3-4: Structure of funnel posts employed by US Genomics to untangle strands of DNA. As DNA traverses the funnel, the physical contact with posts forces it to untangle and unwind. At the end of the funnel, DNA is in a straight linear form. Digital Image (top) [25] and US Patent 6,263,286 (bottom) [13].
Figure 3-5: A set of lasers and detectors reads the fluorescent bases as DNA passes by. The first laser reads positional information from the backbone of the DNA molecule, while the second laser reads the sequence from the strand of DNA [25].
the backbone of the DNA. This gives the GeneEngine information on the length of fragment being sequenced. The second laser reads the individual probe tags and gives information on the specific sequence.

U.S. Genomics claims that each DNA molecule moves past the two laser beams in a couple of milliseconds. That translates to 10 million bases of DNA length per second. However, U.S. Genomics is unable to read the sequence at this speed. As previously mentioned, the company is working towards sequencing an entire genome in 45 minutes or less, but has not produced evidence of any such accomplishments to date.

Several problems exist with this method of DNA sequencing. First, there is much post-processing necessary to decipher the information gathered by the device. This requires intense computational power and could easily become the limiting factor in the success of the GeneEngine. Secondly, the process requires fluorescent tags. As we have mentioned, the addition of these tags and the removal of excess tags increase the sequencing time dramatically. Most fluorescent tags are also hazardous to the operator.

3.4 Summary

In this chapter we have examined the sequencing methods employed by the Whitehead Institute for Genome Research and by U.S. Genomics Inc. We have explained the drawbacks, especially in speed, of the Sanger method as used by WIGR and the drawbacks, especially in postprocessing and tagging, of fluorescence imaging as used by U.S. Genomics Inc. We believe that Genome Scanning, in its final form, has the potential to outperform both of these models.
Chapter 4

Genome Scanning

4.1 Introduction

Genome Scanning is a powerful technique that will help bring personal genome sequencing to life. This section will focus on the advantages of Genome Scanning and the conditions necessary for the implementation of Genome Scanning. We will then formulate predictions concerning the AFM images produced when scanning immobilized DNA.

4.2 Advantages of Genome Scanning

Genome Scanning presents four main advantages over other methods. These advantages can be summarized as follows:

- **Preparation time decreased**: As previously mentioned in Section 2.5.1, current methods require DNA extraction from the cell, DNA purification, introduction of DNase restriction enzymes, incubation, removal of said enzymes, and preparation of the sample. Some techniques even require the addition of fluorescent tags, incubation of the tags with DNA, and the removal of excess tags. Genome Scanning only requires the extraction of DNA form the cells and its purification, thereby reducing the process time significantly.
• **Base recognition time dramatically decreased:** The proposed method can ideally analyze an area of 375 nm x 375 nm populated with a density of 1 μg/ml of DNA in 2 minutes (equivalent to a scan rate of 5 Hz at 600 samples per line). At this rate, Genome Scanning can sequence 180,000 bases per scan, or 90,000 bases per minute. Current methods require approximately 45 min/gel where one gel will yield at most 800 meaningful points of information, each point representing a particular base of DNA.

• **Accuracy improved:** Genome Scanning uses complementary base hybridization to detect for bases along a strand of DNA. Since A will only hybridize with T, and C only with G, base hybridization is an inherently specific process and leads to extremely accurate results. Because of this, Genome Scanning has the potential to provide flawless data on DNA sequences.

• **Fluorescence tagging eliminated:** Genome Scanning eliminates the costly, cumbersome process of adding and removing fluorescent tags to DNA strands before and after scanning. This is also an advantage since most fluorescent tags are toxic and hazardous to the operator.

In this thesis we will focus mainly on the speed and feasibility of Genome Scanning. The results will demonstrate to the reader the power of Genome Scanning and its clear-cut advantage over the current state-of-the-art.

4.3 Genome Scanning Requirements

Let us now examine the mechanical components of a Genome Scanner. As shown in Fig. 4-1, Genome Scanning requires the use of an atomic force microscope with a functionalized tip. The AFM scans DNA deposited and immobilized on an atomically flat sheet of cleaved mica. Simply put, an atomic force microscope is used to detect for base interactions between the bases adsorbed to the cantilever tip and the bases present on the strand of DNA. The first section of this chapter will examine the forces exerted on the cantilever tip due to this interaction.
Figure 4-1: This schematic of Genome Scanning shows how the AFM tip is modified and how the ssDNA is immobilized to mica. The gold (AU) coating is 100 Å thick and the linker used in the experiments are either APES or Mg$^{2+}$.
Also, it is important to know apriori that the system is robust enough to overcome base hybridization forces. We can determine this by looking at the interfaces present in the system tool path and the system workpiece path. These paths can be thought of as:

- Tool Path: Base - AFM- Cantilever - Adsorbed Base
- Workpiece Path: Base - Mica - Linked DNA
- Tool - Workpiece Interface: Adsorbed Base - Linked DNA

The interfaces between system path elements are strong except for two questionable interfaces: the Mica-Linked DNA interface and the Cantilever-Adsorbed Base interface. In order for this methodology to function, we must examine these two interfaces and show that they will not interfere with the operations of Genome Scanning.

In summary, the three conditions that must be met for Genome Scanning to operate correctly are:

- Base interaction force must be detectable
- DNA must be firmly anchored to mica
- Adsorbed bases must be firmly anchored to AFM tip

Let us now examine these three conditions in detail.

4.3.1 Base Interaction Forces

DNA bases hybridize naturally and hold their structures well in nature. There have been many attempts at quantifying this interaction and its degree of specificity. As previously stated, hydrogen bonding is at the basis of DNA hybridization. Hence we will begin our analysis with a presentation of hydrogen bonding.

Hydrogen bonding is one of many forms of atomic interaction. Because of the unique composition of the hydrogen atom it is able to form strong bonds with certain
atoms. A hydrogen atom consists of a single proton and an orbiting electron. Hydrogen atoms do not have electron levels or layers, instead the lone electron orbits the proton much like the moon orbits the earth. By contrast, all other elements in the periodic table have layers of electrons, which cushion the nucleus from the surrounding environment. The proton in a hydrogen atom does not have such a cushion and as a result it can come in very close proximity to negatively charged particles.

To understand when hydrogen bonding will occur, we need to understand the concept of electronegativity.

Electronegativity refers to how strongly an atom will pull shared electrons towards it. A strongly electronegative atom will dominate shared electrons and will develop an incrementally negative charge. The most electronegative atoms are nitrogen, oxygen, fluorine, and chlorine with electronegativities of 3.04, 3.44, 3.98, and 3.16 accordingly [10]. Of these, nitrogen, oxygen, and fluorine have a small enough atomic radius to interact with hydrogen.

Because of its strong electronegativity, an oxygen atom will draw hydrogen’s lone electron close to it (see Fig.4-2), giving the oxygen atom a slight positive charge and leaving the hydrogen atom with a slight negative charge. A hydrogen bond would form between two such molecules.

Hydrogen bonding will occur between a hydrogen atom, which is covalently bonded to oxygen, nitrogen, or fluorine, and a nitrogen, hydrogen, or fluorine atom, which in turn is covalently bonded to hydrogen. Water molecules (H₂O), for instance, form hydrogen bonds in the liquid state.

As shown in Fig. 4-3, 3 such bonds form between cytosine and guanine, while only 2 such bonds form between adenine and thymine. These bonds make it highly unlikely that a base will bond to anything other than its complement. It is nature’s way of ensuring the accuracy of the genetic code. Fig. 4-3 shows the orientation of hydrogen bonds between A and T, and C and G and the respective bond spacing.

According to sources in the literature [12] the A-T bond has an energy of 6 kJ/mole and the C-G bond has an energy of 12 kJ/mole. One paper [9] suggests a bonding force between one A-T base pair of 54 pN based upon the interaction of a
Figure 4-2: Water molecules use hydrogen bonds to hold their structure. A hydrogen atom from one molecule is covalently bonded to an oxygen atom giving the hydrogen a slightly positive charge, while the oxygen from another atom is covalently bonded to a hydrogen giving the oxygen a slightly positive charge. These two molecules will form a hydrogen bond as shown in the figure.

T-coated surface with an A-coated cantilever tip. Another paper suggests a bonding force of $71.5\, pN$ based on the rupture force of strands of 20, 16, and 12 bases [18].

For the purposes of our calculation, we will use the average rupture force of $62.75\, pN$ for a single A-T base pair.

Even though we are ultimately interested in a single base pair bond, the technique of Genome Scanning can use software averaging methods to pinpoint the location of bases if multiple bases bond. In other words, we can tolerate more than one base pair hybridizing at each location. Taking into account that the cantilever tip has a diameter of $20\, nm$ and that DNA bases are $0.5\, nm$ apart, we can assume a total of 3-40 bases will hybridize. Let us assume for this analysis that realistically 10 bases will hybridize.

We need to ensure that the force generated by the interaction of these 10 bases with the cantilever tip will be detectable using the AFM. Knowing that the cantilever deflection is linear with a known spring constant ($k_{cantilever}$), we can calculate the deflection of the cantilever due to this force ($F_{A-T\, bond}$). The equivalent deflection ($x_{displacement}$) can be calculated using the equation
Figure 4-3: Two hydrogen bonds form between adenine and thymine while three hydrogen bonds form between cytosine and guanine. This configuration of hydrogen bonds makes it nearly impossible for bases to bond to anything but their complementary base. (modified from http://wine1.sb.fsu.edu/bch5425/lect02/IMG00008.GIF)
\[F_{A-T_{bond}} = k_{\text{cantilever}} \cdot x_{\text{displacement}}. \] (4.1)

Substituting the force generated by 10 A-T bonds and the spring constant of the cantilever used in the experiments, we obtain

\[10 \cdot 0.06275mN = 2.00Nm^{-1} \cdot x_{\text{displacement}}. \] (4.2)

Rearranging the equations, we find that

\[x_{\text{displacement}} = 0.3138nm. \] (4.3)

The AFM is capable of sub-Angstrom precision in the z-direction and so a deflection of 0.3138 nm is certainly detectable.

4.3.2 DNA Linkage to Mica

In order for this method to function properly, it is important that the ssDNA remain firmly grounded to the mica sheet. This depends strongly on the type of linker-mica bond and the type of linker-DNA bond. Using APES or divalent cations (as we will see in a later section) results in the formation of ionic linker-mica bonds as well as ionic linker-DNA bonds. To review, an ionic bond implies that the molecules remain separate yet attracted by their large opposing charges. Fig. 4-4 shows how an ionic bond is formed between negatively charged mica and positively charged linkers. The same is true for the negatively charged phosphate group of DNA and the positively charged linker.

Such ionic bonds will be robust enough for Genome Scanning if they require more energy to break than the hydrogen bonds of the bases. So the question remains: are ionic bonds stronger than hydrogen bonds?

To answer to this, we take a look at the literature and find bond energies of these interactions. One reliable source gives the following energies for different bond types [12].
Figure 4-4: Linkers use ionic bonding to anchor DNA to the mica sheet. The linker is composed of two positive terminals and bonds to the negatively charged mica on one side and to the negatively charged phosphate group of DNA on the other side.

<table>
<thead>
<tr>
<th>Bonding</th>
<th>Bond Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenine - Thymine</td>
<td>6 kJ/mol</td>
</tr>
<tr>
<td>Cytosine - Guanine</td>
<td>12 kJ/mol</td>
</tr>
<tr>
<td>Ionic Bond</td>
<td>200-1000 kJ/mol</td>
</tr>
<tr>
<td>Covalent Bond</td>
<td>300-800 kJ/mol</td>
</tr>
<tr>
<td>Van der Waals</td>
<td>0.05-40 kJ/mol</td>
</tr>
</tbody>
</table>

Table 4.1: Different bond strengths in kilo-Joules per mole. It is important to note that given similar charge, covalent bonds are the strongest followed by ionic, metallic, hydrogen, and finally Van der Waals bonds.
While there are such large ranges of specific energies for ionic, covalent, and Van der Waals bonds, one thing is certain in the literature. For similar charge, the bond strengths are, in order of decreasing strength: covalent > ionic > metallic > hydrogen > Van der Waals [21].

As one can see, the linker-DNA and linker-mica ionic bonds are strong enough that they will not dissociate as the bases are being dehybridized. Hence, it is safe to assume the linkers will adequately anchor DNA to the mica surface.

4.3.3 Tip Adsorption

The last piece of the puzzle is to guarantee that the bases used to scan the surface will not detach from the cantilever tip. For the sake of obtaining preliminary experimental results, the experiments in this thesis will employ standard AFM probes coated with a layer of gold. Bases will then be adsorbed onto the gold surface in a simple procedure described in Chapter 5.

There are many assumptions being made about the strength of various components of the AFM. For instance, we know that the adhesive used to fix the cantilever chip to the steel cross is orders of magnitude stronger than the interactions we are measuring. The same can be said of the magnetic connection between steel cross and AFM magnetic holder. Also, as shown in Fig.4-5, the gold evaporated onto the cantilever tip is much more rigidly fixed than the base chemical bonds. In other words, the only interface we need to check for robustness is the interface between evaporated gold and the adsorbed bases.

This question reaches far beyond the scope of mechanical engineering and will not be answered here analytically. However, we can make use of the observations and explanations of those versed in the field.

Tao, DeRose, and Lindsay [27] have demonstrated that adenine, guanine, thymine, and cytosine all readily adsorb onto gold surfaces. Adenine, guanine, and cytosine adsorb spontaneously onto gold coated members while thymine adsorbs only after a bias voltage of +0.04 Volts is applied to the gold member. By simply exposing the bases to a gold surface, they almost immediately adsorb and form a surface layer. Tao
Figure 4-5: Base adsorption to a thick gold layer
observed that the bases tend to adsorb along the direction of the crystalline structure of the gold atoms. In other words, the bases form "worms" that extended along the crystalline structure of the gold.

The experiments conducted by Tao et al yielded "worms" of Adenine that were packed tightly together in a periodic structure with period 3.4 Å± 0.2 Å. The spacing between consecutive "worms" was 7 ± 0.5 Å and the height of the "worms" was 2 Å as compared to the height of the unmodified gold, which was 0.1 Å.

In the case of Guanine, the "worms" appeared with less contrast, but were repeatable when observed. The periodicity and spacing were similar to that of adenine.

Cytosine, however, did not produce "worms" along the crystalline structure when adsorbed to gold. Instead, cytosine formed large areas of a highly ordered oblique lattice.

As mentioned previously, thymine does not spontaneously adsorb to gold. When a biasing voltage greater than +0.04 Volts is applied, thymine forms semi-observable lattices on the gold surface. It is, however, not entirely certain that this process is as successful as with guanine, adenine, and cytosine.

Base adsorption to gold is extremely useful for Genome Scanning because it provides us with a means of linking the bases directly to the tip in an inelastic manner. This translates to a more accurate scan with bases strongly fixed to the cantilever tip. After a layer of gold is deposited on the AFM cantilever, one can readily adsorb a particular base to it and scan the mica surface using this functionalized tip. The simplicity of this process also makes it appealing for large-scale implementation of Genome Scanning.

The process of adsorption is inherently robust and, as explained above, can be trusted to overcome the decoupling force of A-T bonds and of C-G bonds.

Hence all three conditions necessary for Genome Scanning have all been satisfied. To remind the reader, these three conditions are:

- Base interaction force must be detectable
- DNA must be firmly anchored to mica
• Adsorbed bases must be firmly anchored to AFM tip

4.4 Predicted Results of Genome Sequencing

It is important to know what one is searching for before looking for the answer in the experimental results. In particular, it is important to understand what images to expect from the AFM. These images depend greatly on the radius of curvature of the tip, the size of fragment being scanned and the sampling rate of the AFM. This section will give our expectations in terms of DNA width and DNA profile relative to the variables expressed above.

4.4.1 DNA Width

Estimating the size of DNA fragments as scanned by the AFM depends on the radius of curvature of the cantilever tip and on the type of DNA being scanned (ss or ds). Since the AFM vibrates the cantilever at a rate of 30-400 kHz in intermittent contact mode while scanning at a rate of 3 kHz, it is safe to assume that features will not be overlooked during the scan. Throughout the experiments, a sampling rate of 600 points per scan line will be employed.

Let us now take a look at the geometry of the cantilever tip and the DNA (Fig. 4-6). The tip can be estimated as a hemisphere with radius of curvature as rated by the manufacturer with additional radial thickness due to the coatings of Ti and Au. The strands of DNA can be modelled as a cylinder with known radius immobilized to the surface.

Fig.4-6 shows the instant when the cantilever tip begins to deflect upwards as it registers the presence of DNA. The horizontal distance between the centers can be understood as half the width of the DNA molecule as it will appear in the AFM image ($w/2$). The distance depends on the radius of DNA (r) and the cantilever radius of curvature (R). Equation (4.4) gives a simple way to calculate the expected width of DNA.
Figure 4-6: Calculating the expected DNA width depends on the thickness of the DNA strand (modelled as a cylinder) and the radius of curvature of the cantilever tip (modelled as a hemisphere).

\[
(0.5w)^2 + (R - r)^2 = (R + r)^2 \quad (4.4)
\]

\[
(0.5w)^2 = (R^2 + 2Rr + r^2) - (R^2 - 2Rr + r^2) \quad (4.5)
\]

Rearranging terms, we obtain

\[
w = 4\sqrt{Rr}. \quad (4.6)
\]

This result is echoed in the literature by several scientists. One paper gives the same result and shows its applicability [6]. Furthermore, we have taken experimental measurements to verify the validity of this theoretical result. An AFM image of dsDNA was scanned using a fresh tip with 10 nm radius of curvature. Using the predictions we obtain

\[
w = 4\sqrt{10nm \cdot 1nm} \quad (4.7)
\]

\[
w = 12.65nm. \quad (4.8)
\]
The data collected is shown in Fig. 4-7. It is clear that the calculations match our expectations with a fair degree of certainty. The DNA width measured was 12.72 nm and average width over 5 samples was 13.20 nm. Compared with the theoretical value of 12.65 nm, we arrive at a 4.3% error in the model predictions, which is reasonable.

4.4.2 DNA Profile

We can take this analysis one step further and actually predict the profile of DNA we expect to see in our scans. The geometry needed for this prediction is shown in Fig. 4-8.

A profile of DNA height versus distance can be easily plotted. Distance \(x \) is the distance between the centers of the cantilever tip (modelled as a hemisphere or radius \(R \)) and the DNA (modelled as a cylinder of radius \(r \)). The imaged height \(h \) of the DNA strand can be calculated as follows:

\[
h = d_1 + d_2 - R \tag{4.9}
\]

\[
d_1^2 + x^2 = R^2 \tag{4.10}
\]

\[
\Rightarrow h = \sqrt{(R + r)^2 - x^2} + r - R \tag{4.11}
\]

Simulated in Matlab for dsDNA and a cantilever probe with radius of curvature of 10nm, the profile in Fig. 4-9 was returned. The profile can be compared with the actual profile of dsDNA measured experimentally and shown in Fig. 4-7 above. It is worth noting here that Eq. (4.9) does not account for instances when the cantilever is in contact with the substrate. The code, however, has been formatted to account for such instances. Appendix B shows the details of this profile estimation code.

Again, the expected width is 12.65 nm and as is clear, the theoretical profile matches that observed in the experiment fairly closely. Furthermore, simulation widths for commonly used tips and DNA types are compiled in Table 4.4.2 for reference.
Figure 4-7: The top figure shows a scan of dsDNA using a fresh 10 nm radius of curvature cantilever tip. The bottom figure shows the measured height profile over a section of DNA. The measured width of DNA is 12.72 nm, indicating a close correlation to the theoretical model (12.65 nm). Height measurements were taken relative to the global height, shown in the bottom figure as a horizontal white line.
Figure 4-8: The profile of DNA scanned can also be estimated using this diagram.

<table>
<thead>
<tr>
<th>Cantilever Tip (radius of curvature)</th>
<th>Predicted DNA Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single stranded</td>
</tr>
<tr>
<td>10 nm</td>
<td>8.94</td>
</tr>
<tr>
<td>15 nm</td>
<td>10.95</td>
</tr>
<tr>
<td>20 nm</td>
<td>12.65</td>
</tr>
<tr>
<td>25 nm</td>
<td>14.14</td>
</tr>
</tbody>
</table>

Table 4.2: Model predictions for single stranded and double stranded DNA using tips with various radii of curvature. All units are in nm.
Figure 4-9: Simulated profile of ssDNA as scanned by a bare tip, a lightly coated tip, and a heavily coated tip, with radii of curvature of 10 \(\text{nm} \), 24 \(\text{nm} \), and 30 \(\text{nm} \) accordingly.
4.5 Summary

In this chapter we have defined the advantages and restrictions of Genome Scanning. We have seen that Genome Scanning reduces preparation and sequencing time, while increasing accuracy and eliminating the need for fluorescent dyes. We have also examined the three conditions necessary to implement Genome Sequencing: detectable hybridization forces, firm immobilization of DNA to mica, and firm adsorption of bases to the cantilever tip. Finally, we have presented a model predicting DNA width and profile as scanned by the AFM. With this knowledge in hand, we can now examine the experiments conducted.
Chapter 5

Experimental Setup

5.1 Introduction

This chapter will focus on the materials needed to conduct Genome Scanning. We will discuss appropriate background surfaces, DNA linkers, and methods of functionalizing the cantilever tip. We will also discuss the setup of the experiments conducted in terms of background surface preparation, DNA immobilization, and base adsorption to the cantilever tip. The results of these experiments will then be given in Chapter 6.

5.2 Purpose

The purpose of these experiments is to demonstrate in very basic terms the workability of Genome Scanning and the speed associated with this process. This thesis can be considered a proof of concept. Further development will take place in future publications. For instance, detailed accuracy and repeatability measurements will be disclosed elsewhere. The experiments conducted for this thesis focus on the interaction of the probe and sample as it relates to genome sequencing. We’d like to show:

- Comparison of DNA imaging using as-is cantilever and functionalized cantilevers.
• Demonstration of the specificity of the base interaction of Genome Scanning.

5.3 Setup

5.3.1 Atomically Flat Background

Scientists have successfully imaged DNA using atomic force microscopy as early as 1991. Mostly, scientists have been imaging double-stranded DNA, and enzymes/proteins as they interact with ds- or ss-DNA [26].

The diameter of a beta-helix of DNA is nearly 20 Å, and as such we can expect the diameter of ss-DNA to be around 10 Å (1 nm). To image ssDNA with such a small height difference, one must make use of a background material that is nearly atomically flat. If the background surface is rougher than 10 Å, the scanned DNA will fade into the background noise and may be missed altogether.

The materials commonly used to image with the AFM are glass and mica. Glass is known to be much rougher than mica. As we will see in the following pages, this is primarily due to the crystalline structure of mica.

Mica

Mica is the name given to a mineral group with the structure KAl$_2$(AlSi$_3$)O$_{10}$(OH)$_2$. The mica used in labs across the world for nano-imaging is the muscovite form of mica. Other mica types are Biotite, Fuchsite, Lepidolite, and Zinnwaldite. Muscovite mica is a semi translucent mineral with a gray-brownish tint.

Crystalline Structure

The reason mica has become so popular as a background substrate in atomic force microscopy is due to its ability to form atomically flat surfaces. The crystal structure of Mica is arranged such that it forms perfect sheets in one direction of sheer. This can be understood better by looking at the crystalline structure of mica.

Figure 5-1 shows how mica is composed of two basic layers. The first layer is a tetrahedral layer composed of $(Si_6Al_2O_{20})^{10-}$. The second layer is a dioctahedral
Figure 5-1: The layer-like structure of muscovite mica allows it to be cleaved into flat sheets. (Courtesy D M Sherman, University of Bristol http://mineral.gly.bris.ac.uk/Mineralogy/micas.pdf)

The alignment of mica crystals means that any pressure applied to the sheet will cleave the mica along that direction and leave two atomically flat surfaces of mica. Being an atomic layer, these surfaces have little to no roughness and make good background surfaces for atomic force microscopy. Fig. 5-2 shows how mica forms atomically flat sheet when sheered.

Negative Charge

As mentioned previously, the structure of mica is $\text{KA}_2(\text{AlSi}_3)\text{O}_{10}(\text{OH})_2$. This
Sheering mica along its sheer plane results in atomically flat surfaces. This means that the oxygen atoms are always exposed when the crystal structure is cleaved. The oxygen atoms however, are lacking a covalent bond and so the charge on each oxygen atom is -1. This gives muscovite mica a distinctive negative charge in its cleaved form.

Glass

Because of the process used to make glass slides, they tend to have warped surfaces. Glass is formed by the heating of a mixture of sand, sodium carbonate, and calcium carbonate at high temperature followed by cooling. The glass is poured into a mold or blown, spun, or otherwise formed to obtain a desired shape. Such a process inherently yields rougher surfaces than the atomic cleaving of mica.

Fig. 5-3 shows two $1 \mu m \times 1 \mu m$ images taken using the Quesant AFM. The images were taken in intermittent contact mode at a scan rate of $5 \ Hz$ with Olympus AC240TS cantilevers ($2 \ N/m$). The two figures clearly demonstrate the superiority of mica as a background surface for nano-imaging. The image of mica produced by the AFM has a variable height ranging $6 \ nm$, while the height of the AFM image of the glass surface ranges up to $600 \ nm$. For this simple reason, muscovite mica will be used as a background surface throughout the experiments.
Figure 5-3: AFM image of glass surface pictured (top) shows large variations in the height of this background substrate. By comparison, muscovite mica only varies by 1/100 the height over the same area (bottom).
5.3.2 Linking DNA to Mica

Several techniques exist to immobilize DNA to mica. As we have discussed above, mica forms a negatively charged surface when cleaved along its cleavage line. We have also shown the structure of DNA in chapter 2 and have explained about its negatively charged backbone. This makes for a difficult connection. Had the phosphate group on DNA been positively charged, then DNA could have been deposited directly onto mica and the electrostatic forces between them would prove sufficient to immobilize the DNA strands on the mica sheet. However, the backbone of DNA is negatively charged, leaving us with the need for linkers between it and mica. These linkers come in several forms, two of which will be discussed here: APES and divalent cations.

3-Aminopropyltriethoxysilane

The main function of a linker is to provide an electrostatic connection between two positively or negatively charged molecules. In our case we are interested in linking the negatively charged DNA to the negatively charged mica. 3-Aminopropyltriethoxysilane (APES) consists of 2 functionalized ends both of which react with negatively charged particles.

There are several ways in which APES can attach to the surface of mica and to
Figure 5-5: Divalent cations, such as Magnesium ions, are composed of two positive terminals. Magnesium ions can be obtained by dissolving Magnesium Chloride in solution.

Divalent Cations

Another popular method of immobilizing DNA on mica surfaces is through the use of divalent cations. A divalent cation is a doubly positively charged molecule with two opposing positive charges. Examples of divalent cations are Mg$^{+2}$ and Ni$^{+2}$. Such cations can be used to bind a phosphate group from the backbone of DNA to an O$^-$ atom on the surface of mica using the two available binding sites on the magnesium (Fig. 5-5).

There is only one conceivable configuration of DNA and mica linked through divalent cations. The magnesium atom is the only separation between the strand of DNA and the substrate. Hence, it is clear to see that Mg$^{+2}$ is a much more rigid linker than APES. Biologists interested in observing biological specimen in their
natural states prefer APES since it allows the specimen more freedom to return to its natural conformation. Divalent cations do not allow this flexibility and are used when the sample must be rigidly bound the surface. Having DNA rigidly bound to the surface can be useful when exerting a force on the DNA molecule as is the case in atomic force microscopy.

5.3.3 DNA Alignment

The purpose of this thesis is to allow for the direct bonding of bases on the AFM cantilever to the bases along immobilized strands of DNA. For this to occur, DNA strands must be immobilized with all bases accessible to the probing cantilever. Another important issue to consider is the straightness of the DNA molecule along the direction of travel of the AFM. Let us now examine both of these issues.

Base Accessibility

Using either APES or divalent cations as linkers ensures that the single stranded DNA fragments will be immobilized with the phosphate backbone facing downwards towards the mica sheet and the bases facing the overhead cantilever. However, there still exists the possibility of the DNA forming loops overlapping bases and thus making certain lengths of DNA inaccessible to the cantilever tip. An example of this is shown in the AFM image (Fig. 5-6) taken in intermittent contact mode.

Another possible problem is the coiling of DNA. Fortunately, DNA does not form coils unless it is in a double-stranded state. Since we will first denature the strands of DNA to obtain ssDNA, this does not present a problem in the way of Genome Scanning.

In the case that linearly stretched DNA is still necessary, several methods have been successful at obtaining "straight" DNA. For further information on this process, please refer to the bibliography.
Figure 5-6: DNA overlaps as it forms a loop along the strand as pointed out by the white arrow (left). Looping makes bases on the bottom strand inaccessible to the cantilever tip because of the overlapping top strand. A schematic of the DNA overlap is shown for clarity (right).

Scanning Direction

One major question is whether or not the scan direction must be aligned with the DNA. The simple answer is that this is not an important consideration. As the AFM scans its regular path it will encounter the strands of DNA and compensate accordingly. There is no reason to expect the scanning direction to be along the strand of DNA as this will not interfere with the intended function in any sense.

5.3.4 Cantilever Tip Functionalization

The cantilever tip needs to be functionalized with an appropriate base for Genome Scanning. In order to scan for adenine the tip needs to be functionalized with thymine, to scan for cytosine the tip needs to be functionalized with guanine, to scan for thymine the tip needs to be functionalized with adenine, and to scan for guanine the tip needs to be functionalized with cytosine. There are two methods of functionalizing cantilever tips that can be employed: Base functionalization and Strand functionalization.
Strand Functionalization

One method of functionalization is to mate a molecule of double-stranded DNA to the cantilever tip. The desired end result is to link a base to the end of the cantilever tip. This can be accomplished by linking a strand of DNA to the cantilever tip and using the final exposed base as a sensor. It is important for this process that only the final base interact with the ssDNA immobilized on mica. One way of accomplishing this is by designing the sequence along this strand so that it mates exactly except in the final base pair. In this way the interior bases will be prevented from interacting with the ssDNA immobilized on mica and the final base pair will be the only point of contact. This final base pair must be designed as a pair of the same bases. In other words, the final base pair should be an A-A, T-T, C-C, or G-G pair to ensure that they will not hybridize and will sense only one type of base, namely it’s compliment. Fig. 5-7 shows a schematic representation of how a probing DNA strand attached to the AFM cantilever tip can be used to approach and scan immobilized DNA for a particular base type.

The cantilever can also be negatively charged to avoid any coiling of the probing strand around the cantilever tip. In such a fashion a dsDNA probe can be created to scan the sequence of immobilized DNA. One must account for the added elasticity of the probing strand when calculating force deflection curves of the cantilever tip.

Base Functionalization

Another method of adding sensing bases to the cantilever tip is by directly adsorbing the bases onto the cantilever. In this way, bases are aligned directly along the surface of the cantilever tip and are accessible to the DNA bases on the mica surface.

As we have described in Chapter 4, bases readily adsorb to gold surfaces except for thymine, which requires a small bias voltage to catalyze the reaction. In this sense it is the clear winner as far as tip functionalization is concerned. Fig. 5-8 shows a base-functionalized tip coming in contact with a strand of DNA.

Base functionalization does have drawbacks however.
Figure 5-7: Adding a probing strand to the cantilever tip would enable Genome Scanning. Here a probing DNA strand with an A-A final base pair is attached to an AFM cantilever tip and used to scan immobilized DNA strands.
Figure 5-8: Bases adsorbed directly to the cantilever tip would also serve the purpose of Genome Scanning. Here adenine bases are adsorbed to the cantilever tip and used to scan the immobilized DNA below.
The most striking drawback becomes apparent when trying to pinpoint the location of a particular base. Because of the large radius of curvature of the cantilever tip, it is likely that more than one of the adsorbed bases could hybridize with the DNA in succession. As the AFM moves laterally across the immobilized DNA strands, several of the adsorbed bases would hybridize one after the other resulting in a seemingly larger strand DNA. This would also make it difficult to pinpoint the location of specific bases along the immobilized DNA.

Several solutions to this problem can be explored. First, one can use computational techniques to locate the base in the 'haze' of activity. This approach has been implemented by members of this laboratory and is known as stereo profilometry. Briefly, this process takes the shape of the cantilever tip into consideration when outputting the AFM image. This method may increase scan times slightly, but provides much more accurate results. For more information, please refer to the PhD thesis by Bernardo Dantes Aumond [7].

Another solution is to scan using a carbon nanotube cantilever tip. Carbon nanotube can be made in diameters of down to 1 \text{ nm} and have very large aspect ratios. Carbon nanotubes have been used to obtain high-resolution AFM images of previously undetectable landscapes [30]. The main advantage of carbon nanotubes from the standpoint of Genome Scanning is it's nanoscopic diameter, which can be used to scan immobilized DNA instead of the cantilever tip. This is useful because a carbon nanotube would come in contact with only one or two bases of the immobilized DNA strand while current cantilever tips come in contact with about 20 or so bases. This would result in much more precise information on the location of DNA bases.

Also, the process of rigidly bonding adenine to the end of carbon nanotube tips is well-understood and easy to perform, making carbon nanotubes an attractive option for Genome Scanning.
5.4 Experimental Procedures

The purpose of the experiments is to determine if Genome Scanning can be used to sequence ssDNA. Ideally, one could examine every method described thus far, but for the sake of concept verification, we will only examine a specific case. Later experimentation will optimize the process and quantify many of the unknown parameters.

The experimental procedure consists of seven aspects:

- DNA preparation
- Cleaving of mica
- Linker application to mica
- DNA immobilization on mica
- Cantilever tip functionalization
- AFM imaging of sample
- Data interpretation

5.4.1 DNA Preparation

The DNA used in the experiment was both natural and synthetic. All DNA was purchased in its purified, extracted form and diluted to 1 \(\mu g/mL \) as explained shortly. This dilution is necessary to obtain a recognizable image of individual strands of DNA. At higher concentrations the strands of DNA tend to aggregate and form large clusters that are not distinguishable under atomic force microscopy. At lower concentrations it becomes difficult to "find" the DNA in a scanned image. The DNA is so scattered that one needs to take several images before finally "spotting" a strand of DNA.

Natural DNA

Lambda DNA in solution was ordered through Life Technologies, Inc. Lambda DNA is isolated from an E. Coli lysogen (dam+ dcm+ E. coli LE597 lysogen). The exact
genotype is cIind1ts857Sam7. For our purposes what really matters is the length in
base pairs. The lambda DNA described above has a molecular weight of 32×10^6
Daltons, which equates to roughly 48,500 base pairs.

The DNA is stored in a storage buffer consisting of 10 mM Tris-HCl (pH 7.4), 5
mM NaCl, and 0.1 mM EDTA. This storage buffer ensures that the lambda DNA
will not deteriorate quickly and maintains it in its natural state. The concentration of
DNA as purchased was 0.25-0.6 $\mu g/\mu L$. Most of the DNA used was at a concentration
of 0.55 $\mu g/\mu L$.

Before purchase, the lambda DNA was screened using agarose gel analysis to
ensure purity, DNA structure, and the presence of selected restriction endonuclease
fragmentation patterns. In other words, gel electrophoresis was conducted on the
DNA obtained from E. Coli and DNA contained in a certain band range was harvested
for this experiment.

Lambda DNA purchased from Life Technologies, Inc. was diluted to a concentra-
tion of 1 $\mu g/mL$ in water. As stated above, this concentration is necessary for accurate
AFM imaging. Higher concentrations result in aggregation of the DNA strands while
lower concentrations make it difficult to locate the immobilized strands.

The protocol used to dilute the solution of Lambda DNA down to 1 $\mu g/mL$ is
given in Appendix A.1.

DNA in its natural state forms double stranded helices, which after annealing form
coils and coils of coils and coils of coils of coils. An image of coiled DNA will not be
recognizable as DNA and is not conducive to Genome Scanning. Hence, one must first
uncoil and denature the strands (form single strands of DNA from double-stranded
DNA.) This can be achieved in several ways, the simplest of which is heating.

According to the manufacturer, heating of the lambda DNA to 65°C for short
period of time will uncoil and the strands. To denature them, the sample must be
heated further to a temperature of 85°C. Quickly cooling the solution afterwards will
"freeze" the molecules in their denatured state, thereby ensuring that they do not
anneal once again.

To denature Lambda DNA, the protocol listed in Appendix A.2 was followed.
Synthetic DNA

Dry Synthetic DNA was purchased from IDT, Inc. Synthetic DNA is produced using a deviation of the Sanger method by which bases are added one at a time in bulk to synthesize DNA with a desired sequence. The strands of DNA ordered composed of 40x T and 40x A. Fig. 5-9 shows the sequence of DNA in exact detail.

Synthesized 40x T DNA was received in dry form in quantities of 20.95 moles, which equates to 0.25 mg. The molecular weight of 40x T was 12,105.9 g/mole and the melting temperature at which dsDNA denatures to ssDNA was 53.1°C.

Synthesized 40x A DNA was also received in dry form in quantities of 15.72 moles, or 0.20 mg. The molecular weight of 40x A was 12,466.6 g/mole and the melting temperature was also 53.1°C.

Several options exist to ensure the quality and purity of synthesized DNA [29]. The synthesized DNA used throughout the experiment are only desalted. Desalting implies that the synthesized oligonucleotides are processed through normal phase chromatography column. This process removes salts but not failure sequences (incom-

Figure 5-9: Sequence detail of synthesized DNA. The top sequence contains 40 thymine bases and is called 40x T. The bottom sequence contains 40 adenine bases and is called 40x A.
plete sequences). Other processes such as cartridge purification, High Performance Liquid Chromatography (HPLC), and PAGE sequencing are often used to purify successful sequences from failure sequences and salts.

As stated, a solution of concentration 1 μg/mL is needed for proper AFM imaging. To obtain such a concentration, synthesized DNA was diluted in DNase/RNase free water as described in Appendix A.3 for 40x T and in Appendix A.4 for 40x A.

Because the 40x T and 40x A solutions contain non-complementary bases, it is not necessary to denature the solution. The bases do not match up and so the ssDNA does not anneal and cannot coil. Hence there is no protocol necessary for denaturing synthetic DNA.

5.4.2 Cleaving Mica

As we have seen, muscovite mica forms atomically flat surfaces as it is sheered along its lattice shear line. Mica for this experiment was purchased from SPI Supplies, Inc. Muscovite mica was purchased in its V-1 grade. This is SPI’s top grade and guarantees 0.0% air content in the mica. Mica was obtained in sheets of 25mm x 25mm x 0.15mm.

To obtain atomically flat surfaces, the mica was cleaved using commercially available Scotch tape. SPI Supplies, Inc. recommends using specialty razor blades to split the mica along its thickness, however we have had little success with this method. Instead, most laboratories on campus and off campus use a small piece of commercially available Scotch tape to cleave the top layer from the mica sheet (See Fig. 5-10).

The bottom of a sheet of mica was fixed to a lab bench using double-sided Scotch sticky tape. A piece of Scotch adhesive tape was placed on the top surface and pressed firmly against the mica. With a quick tug, the top piece of Scotch adhesive tape was removed from the top surface of the mica. A thin layer of mica could be seen attached to the piece of Scotch adhesive tape. The mica was then carefully removed from the lab bench and placed in a closed container. This is what professional journals commonly refer to as freshly cleaved mica.

The mica was then divided into 3 sections using a lab marker. One section was
Figure 5-10: Using a piece of commercially available scotch tape, one can cleave a small layer of mica. The cleaved mica is shown on the left and the piece of scotch tape used to cleave is shown on the right.

labelled "M" and was left untouched to serve as a control. The second section, labelled "A", was coated with linker but not DNA. The second section also served as a control. The third section was labelled "D" and was coated with both linker and DNA strands. This section produced much of the results we will see in the following chapters.

5.4.3 Linker Application to Mica

Both linker types were used throughout the experiment to immobilize DNA to mica. Both are negatively charged, and so APES or divalent cations provided a doubly positive linker to fix them together.

APES

3-Aminopropyltriethoxysilane (APES) was purchased in 97 + % assay from Alfa Aesar, Inc. To obtain good adhesion between the mica and DNA strands, a concentration of 0.01% APES in water is needed. With a higher concentration APES clustering of the APES molecules was observed and the surface flatness deteriorated. A lower concentration would result in insufficient adhesion between the mica and DNA strands. Fig. 5-11 shows the effect of 2 % and 0.01 % APES on the adhesion
of DNA to mica. Both images are taken using AFM intermittent tapping mode at 5 Hz.

A solution of 0.01 % APES in water was prepared in two stages. The first stage prepared 0.05 % APES solution in water. The second used the 0.05 % solution to prepare 0.01 % solution in water. This was done since the smallest measurable quantity the automatic pipetter could handle was 2 µL. This multistage protocol also conserves the amount of DNase/RNase free water needed. The protocol is given in Appendix A.5.

This dilution of APES was then applied to the linker section, "A", and the DNA/linker section, "D", of the freshly cleaved mica using a 100 µL automatic pipetter. Droplets of small radius were carefully placed on the mica and the mica was stored in a closed, sterilized container for 40-50 minutes. Afterwards, the sections of mica labelled "A" and "D" were rinsed with 2 mL DNase/RNase free water to remove any contaminants or unbound molecules of APES. This process is summarized in the protocol of Appendix A.6.

The slides of mica with APES are now ready for the application of DNA.

Magnesium Chloride

Magnesium Chloride was used as a linker from the class of divalent cations. Magnesium Chloride was purchased in solution from Sigma Aldrich, Inc. The solution was divided into 1 mL quantities of 1.00 M MgCl₂ in water. The water in solution was 0.2 micron filtered and tested negative for DNase, RNase, and protease. In solution, the magnesium ions and the chloride ions dissociate and float as free radicals (for a wide range of pH).

Linking with magnesium chloride was less time intensive than APES. DNA can be directly added to a solution of MgCl₂ in water and the combined solution can be deposited onto a freshly cleaved mica surface.

Several papers published in the literature suggest that a reasonable concentration of Mg⁺² linker is roughly 1.00 mM Mg⁺² in water [14]. At a higher concentration, the surface may become too rough for nano imaging, while at lower concentrations
Figure 5-11: 1 µg/mL DNA immobilized with 2% APES results in a rough surface with indistinguishable features and some clustering (top). 20 µg/mL DNA immobilized with 2% APES resulted in major clustering of the DNA as well (bottom left). 0.01% APES immobilizing 1 µg/mL gave very distinguishable DNA images, especially in phase mode (bottom right).
there is insufficient binding of the DNA strands to the surface.

Diluting the MgCl₂ to an appropriate concentration was carried out as explained in Appendix A.7.

The 1 mM solution was then enriched with the desired DNA and deposited in the appropriate sections of the mica surface. This step is outlined in the coming section.

It is also worthwhile to note that DNA linked to mica using MgCl₂ produced images with DNA heights closer to the background surface than APES. This is consistent with the notion that Mg²⁺ is a shorter, stricter linker than APES.

5.4.4 DNA Immobilization on Mica Surface

With mica freshly cleaved, and linker applied to it (or added to the solution of DNA), all that remains is to deposit the desired DNA in the desired sections. In the case of Mg²⁺ linkers, the linkers are placed in the solution of DNA, while in the case of APES linkers, the linkers are deposited onto the freshly cleaved mica before DNA application. Both protocols for depositing DNA onto the mica surfaces are summarized in Appendix A.8 and A.9.

5.4.5 Cantilever Tip Functionalization

This step is concerned with the adsorption of bases to the cantilever tip. The process of functionalization can be split into 2 parts: gold coating of cantilever and Base Adsorption.

AC240TS Cantilever

Cantilevers were purchased from Asylum Research, Inc./Olympus Research, Inc., one of the leader manufacturers of AFM equipment and supplies. The cantilevers used in this experiment were intermittent contact mode rectangular cantilevers with a spring constant of 2 N/m, a resonant frequency near 70 kHz, and a cantilever length of 240 μm. The cantilever is made of Si and the tip is Al. The dimensions of the tip are shown in Fig. 5-12.
Figure 5-12: Olympus Cantilever AC240TS SEM image of cantilever (top left), SEM images of cantilever tip (top right), and additional dimensional information (bottom). All units are in μm. (http://www.asylumresearch.com/olympus/Olympusmain.asp)
The tip has a length of 14 \(\mu m \) and a radius of curvature less than 10 \(nm \). This is especially useful for imaging of nanoscopic features such as single stranded DNA.

The cantilevers protrude from a 3.3 \(mm \) x 1.6 \(mm \) x 0.3 \(mm \) chip and are adhered to a steel cross using commercially available nail polish as adhesive. The steel cross is finally mounted to the atomic force microscope by means of magnetic forces.

Gold Coating of Cantilever

Coating the cantilever tip with Gold (Au) is necessary to adsorb the desired bases to the tip as described in Chapter 4. This step of the process was carried out with the generous support of SurfaceLogix, Inc (Brighton, MA).

Before Gold was evaporated onto the cantilever tips, a layer of Ti was evaporated to provide good adhesion for the gold. Ti was evaporated onto the cantilevers using a BOC-Edwards Auto 306 vacuum coating system. Before evaporation, the system is pumped down to a very low pressures. By passing a current through a coil containing gold, small particles of gold are evaporated and rise to the tips placed overhead.

For deposition of Ti, a pump-down pressure of \(7.0 \times 10^{-6} \) Torr, and a current of 3.2 Amp was used to deposit Ti at a rate of 1 \(\AA/sec \). For deposition of Au, the same pump-down pressure was used, and a current of 2.5 Amp was used to deposit Au at a rate of 5-10 \(\AA/sec \). Fig. 5-13 shows the setup of the vacuum coating system.

A witness crystal is used to measure the thickness of deposited metal while the system is in operation. The witness crystal is exposed to the chamber and is coated at the same time as the samples overhead. During operation, the resonant frequency of the witness crystal is monitored to determine the amount of metal deposited onto the samples.

The tips used in this experiment were coated with a 40 \(\AA \) layer of Ti for adhesion followed by a 100 \(\AA \) layer of Au.

It is important to think about the implications of this coating process on the accuracy of the AFM tip. By adding extra layers of material, one is effectively increasing the radius of curvature of the tip. For this reason, we only added a small layer of Ti and Au, even though a thicker layer would guarantee a flatter surface.
Figure 5-13: Gold is evaporated from the high-current cradle below to cover the AFM tips overhead. Photo courtesy SurfaceLogix, Inc.
For the final product, it is important to reduce the radius of curvature to the limit in order to ensure single base hybridization.

The cantilevers were annealed after the process of evaporation to allow large gold crystals to form on the surface. This is important because it creates regular gold structures that adenine can readily adsorb to.

Annealing was carried out using an industrial hotplate. The cantilevers were placed on the hotplate once it reached a temperature of 300 °C. After annealing for 7 minutes, the cantilevers were removed from the hotplate and placed on an aluminum slab (room temperature) to cool.

5.4.6 Base Adsorption

Adsorbing the desired base to the gold coated tip was not a difficult task. As we have explained, bases in ethanol solution adsorb readily to gold coated surfaces. This process has two steps: Creating an ethanol solution of bases and creating an environment for base adsorption.

Obtaining 1 mM Ethanol Solution of Bases

To conserve the amount of ethanol used, this step was divided into two. First, a 0.222 M solution of bases in ethanol was created, then a sampling of the solution was diluted to the final concentration of 1 mM. The protocol for this process is given in Appendix A.10.

Base Adsorption Procedure

Before bases could be adsorbed to the tip, a small box had to be created for the interaction. This small plastic box was lined with a magnetic strip with double sided tape. The gold coated cantilevers were glued onto steel crosses as mentioned above and the steel crosses were placed on the magnetic strip. In such a fashion, the cantilevers were fixed in place inside the plastic container.

The container was then filled halfway with a solution of 1 mM adenine in ethanol.
Figure 5-14: Adenine readily adsorbs onto the cantilever as it is soaked in an adenine solution. The AFM cantilever is placed on a magnetic strip as adenine adsorbs from solution onto the cantilever tip.

The lid was shut and the bases were given 5 minutes to adsorb to the gold surface. The box with cantilever and adenine solution is shown in Fig. 5-14.

We also attempted to bring the cantilever down onto a drop of solution using the AFM. However, this method produced irregular and undesirable results. Immediately, and mostly because of strong surface tensions, the cantilever was deformed to its extreme. It is feared that such deformation may have damaged the cantilever. Also, the reflectance of the cantilever was significantly diminished. The laser beam reading from the photo diode was reduced to half its pre-soak value. It took nearly 20 minutes for the cantilever to return to a normal state. It is our belief that such behavior is due to the wetness of the cantilever. In the wet state, the reflectance of the cantilever
suffers and the resonance properties change also. For this reason, all cantilevers used in the experiments were soaked in solution using the small plastic box.

5.5 Summary

In this chapter, we have discussed appropriate background surfaces and have justified our use of mica. We have also examined APES and divalent cations as possible linkers between DNA and mica. Further we have explored base functionalization and strand functionalization as ways of functionalizing the cantilever tip and have decided to use base functionalization in the experiments. We have then examined in detail the procedures followed to ready the AFM and the strands of DNA for Genome Scanning. Now, the setup is complete and we can look at the experimental results.
Chapter 6

Experimental Results and Analysis

6.1 Introduction

In this chapter we will discuss the experimental results and further analyze our findings. We will begin with the results of the synthesized DNA experiments and then we will explore the results of the lambda DNA experiments. In particular we will be looking at DNA scans using as-is cantilever tips as compared to DNA scans using adenine-coated cantilever tips. We will then analyze the results in terms of accuracy and speed.

6.2 DNA Profile Data

In Chapter 4 we presented a model predicting the width and profile of DNA expected in the experiments. The model width of DNA given in Eq. (6.1) was

\[w = 4\sqrt{Rr} \]

(6.1)

while the model height of DNA was given in Eq. (4.9) as

\[h = \sqrt{(R + r)^2 - x^2 + r - R}. \]

(6.2)

These predictions give us a way to determine whether the DNA being scanned is
Table 6.1: Model width prediction for single stranded and double stranded DNA using as-is cantilevers and adenine-coated cantilever tips. All units are in nm.

<table>
<thead>
<tr>
<th>Cantilever Tip</th>
<th>Single stranded</th>
<th>Double stranded</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-is cantilever (10 nm)</td>
<td>8.94</td>
<td>12.65</td>
</tr>
<tr>
<td>Adenine tip cantilever (24 nm)</td>
<td>13.86</td>
<td>19.60</td>
</tr>
</tbody>
</table>

single stranded or double stranded. Typically this would be ascertained by looking at the heights of the strands (ssDNA has a theoretical height of 1 nm while dsDNA has a theoretical height of 2 nm). However, since the heights of the DNA strands are distorted due to the hybridization of adenine and thymine, we need to resort to our DNA width model to determine the number of strands in an image.

Using this model, we can find an expected width of DNA single- and double-strands using AC240TS cantilever tips. Table 6.2 summarizes the expected DNA widths of the strands of DNA.

The radius of curvature for adenine-coated cantilevers is estimated to be 24 nm, which breaks down into a 10 nm as-is radius of curvature, a 4 nm titanium layer for adhesion, and a 10 nm layer of Au.

6.3 Synthesized DNA Results

With this information in hand, we can analyze the resulting scans of synthesized DNA. A 40x T synthesized strand of DNA was scanned using an as-is AC240TS intermittent contact cantilever with a tip radius of 10 nm. The cantilever was then immersed in an adenine solution in ethanol as described in Section 5.4.6. The sample was scanned using the adenine coated tip and the results compared. Scans of freshly cleaved mica using both tip types were used as control.

Because of the extremely small base length of the synthesized DNA, it is extremely difficult to image it using as-is cantilevers. As the base length increases, it becomes easy to recognize a pattern of DNA along the scanned mica surface. The DNA we
are using however is only 40 bases long. These strands of DNA, when immobilized
to the surface, can either be coiled or stretched. In its coiled form, we can expect a
base pair separation along the helical axis of 3.4 Å, as described in Chapter 2. In its
linear state, we can easily calculate a base pair separation of 6.28 Å (given that the
helix radius is 1 nm and that there are 10 bases per revolution).

In other words, a 40 bp strand of DNA will be between 13.6 nm and 25.12 nm
long. This is extremely difficult to see in an AFM image using an as-is cantilever and
oftentimes blends into the background noise. However, as we will see, the DNA is
easily identified using an adenine-coated tip.

The experiment was designed to demonstrate the specificity of Genome Scanning.
We are trying to show that an a-tip will pick up information regarding thymine but
not regarding other bases. To demonstrate this, 3 different types of scans were taken:

- Au-coated tip on freshly cleaved mica.
- Au-coated tip on 40x T substrate.
- Adenine Au-coated tip on 40x T.

Fig. 6-1 through 6-4 show the three types of images. All images have been
flattened to adjust for tilted and warped surfaces. All images were taken in height
intermittent contact mode at a scan rate of 5 Hz with a PID control gain of 10, 20,
and 0 respectively. These gains were chosen to produce an image with crisp features
without sending the cantilever tip into an instability. The setpoint offset, which
determines the force with which the cantilever pushes against the surface, was set to
65%.

The Au-coated tip did not detect any heights on freshly cleaved mica. This is to
be expected as there were no DNA strands present on the substrate. Freshly cleaved
mica 1 μm x 1 μm was scanned 4 more times using the Au-coated tip and no heights
were detected (See Fig. 6-1).

Next, a freshly cleaved mica substrate with 40x T strands immobilized on the
surface was imaged using the Au-coated cantilever tip. The imaging parameters were
kept constant and equal to their values from the previous experiment.
Figure 6-1: No heights were detected in 5 different scans of mica using a Au-coated tip.
This image is shown in Fig. 6-2 and shows no sign of identifiable strands of DNA. To further examine the situation, 5 more scans of a 4 μm x 4 μm area were taken with no identifiable strands of DNA. It is understandable that the strands of DNA would not be visible since they have so few bases and in theory are only 1 nm high.

It is worth noting that marking an exact location on the mica surface was not feasible at this time. Instead, a 1 cm square was drawn on the back of the mica sheet and all scans were taken within the square. It is assumed throughout these experiments that the mica surfaces are uniformly coated with DNA and as such all scans in that area should display the same information. However, to prove our results conclusively, we need to place nanoscale markers on the mica surface and image the same area with and without an adenine coated tip. This problem is being explored beyond the current writing and will be reported elsewhere.

Finally, the Au-coated tip was soaked in a container of 1 mM adenine in ethanol. Adenine molecules had a chance to adsorb onto the gold surface for 5 minutes, before the cantilever was removed from the container and allowed to air dry inside a second container.

The adenine soaked cantilever tip did a wonderful job of imaging the 40x T DNA. What was invisible using a Au-coated tip was now observable. Fig. 6-3 shows a strand of 40x T DNA as imaged using adenine soaked tips.

Fig. 6-4 shows two more sites with identifiable 40xT DNA strands. The images show how distinct the interaction of the thymine bases on the immobilized single stranded DNA with the adenine adsorbed to the cantilever tip is.

To examine in more detail the appearance of 40x T DNA as imaged by an adenine soaked AFM tip, we need to look at the heights of strands as well as the width of the DNA imaged. This information is compiled in Table 6.3, where local height refers to the height relative to the local baseline and global height refers to the height relative to the global baseline.

The average local height of the DNA strands is 4.92 nm and the average global height is 6.39 nm. These values are far greater than the physical ssDNA height of 1 nm. If one factors in the added height due to hybridization of an estimated 10 thymine
Figure 6-2: No height are visible on 40x T DNA immobilized to mica using a Au-coated tip.

<table>
<thead>
<tr>
<th>Site</th>
<th>width (min)</th>
<th>width (max)</th>
<th>local height</th>
<th>global height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.48</td>
<td>14.62</td>
<td>6.02</td>
<td>6.82</td>
</tr>
<tr>
<td>2</td>
<td>16.05</td>
<td>20.83</td>
<td>5.73</td>
<td>6.53</td>
</tr>
<tr>
<td>3</td>
<td>12.27</td>
<td>15.47</td>
<td>3.01</td>
<td>5.82</td>
</tr>
</tbody>
</table>

Table 6.2: Three strands of 40x T imaged using Adenine soaked tips from Fig. 6-3 and Fig. 6-4. All units are in nm.
Figure 6-3: Using an adenine soaked gold tip, images of 40x T strands of DNA become visible. These strands were not visible using an as-is cantilever tip.
Figure 6-4: Two 40x T DNA strands are visible using an adenine soaked Au-coated cantilever tip.
bases with 10 adenine bases, one arrives at an expected image height of 1.3138 \textit{nm} (see Eq. 4.3). Even if one assumes that all 40 thymine bases on the strand of DNA are hybridizing with the adenine coated tip, we calculate an additional deflection of

\[40 \cdot 62.75pN = 2.00Nm^{-1} \cdot x_{\text{deflection}}, \]

which yields

\[x_{\text{deflection}} = 1.255nm. \]

Adding this deflection to the physical height of the ssDNA, we expect 2.255 \textit{nm} heights. Instead, we see in the experimental images heights that are twice this size. This addition in height is not fully understood at the moment, but is most welcome as a way of identifying thymine bases using adenine coated tips.

\section*{6.4 Lambda DNA Results}

\subsection*{6.4.1 As-is Cantilever}

The purpose of the Lambda DNA experiment is to detect a difference in the way as-is cantilevers and adenine coated cantilevers respond to thymine bases on the strand of DNA. Such a difference would demonstrate conclusively the power of Genome Scanning and its applicability.

To this end, 48 kbase strands of Lambda DNA were denatured and immobilized on a mica substrate using Mg2+ divalent cations. The specifics of these procedures are discussed in Chapter 5. These strands of DNA were scanned using both an as-is cantilever tip and an annealed adenine coated cantilever tip.

The scan was taken in height intermittent contact mode at a scan rate of 5 Hz, PID gains of 10, 20, and 0 respectively, and a resolution of 600 samples per line. As previously explained, the PID gains were chosen to yield crisp images without sending the cantilever into instability. The scan area was set to 600 \textit{nm} x 600 \textit{nm} and the setpoint offset, which determines how hard the cantilever presses against the surface,
was fixed at 65%.

Fig. 6-5 shows the image of Lambda DNA scanned with an as-is cantilever tip.

As one can see, the AFM was able to successfully image strands of DNA. However, not all the strands were in the denatured single-stranded form. Some of the strands existed in dsDNA form and some were coiled and super coiled. Single stranded DNA and coiled DNA could be distinguished by examining the width of the strands scanned by the AFM and comparing them to the model values in Table 6.2. For the purposes of forming an all-encompassing comparison, we have examined the heights of single stranded segments as well as wider coiled segments.

10 single stranded segments and 10 coiled segments were examined.

Single Stranded Lambda DNA

Single stranded data is given in the top half of Table 6.4.1. The width of DNA strand (both minimal and maximal) are given for each of the points examined. Further, 3 different kinds of heights were looked at. First, the estimated height from when the AFM starts to sense an upwards force until when the scan changes slope from positive to negative is recorded. This is labelled simply as the "Height". Next, the maximum change in height from the top of DNA peak to the depths of the surrounding pits is measured. This is called "Peak-Valley" in the analysis. Finally, the highest point along the imaged DNA is compared to the long-range average height. This value is the "Global Height".

The values of DNA width in Table 6.4.1 indicate that the strands are indeed single stranded at the measured locations. Since the tips had modest use at the time of the experiment, one expects to see ssDNA width of 9 nm as opposed to dsDNA width of 13 nm.

Further, one can tell that the average global height is 2.90 nm. This is higher than the expected height of ssDNA (1.0 nm), but is on the right order of magnitude. With atomic force microscopy, height information can oftentimes be misleading. For this reason scientists and researchers tend to look for relative height data. We will use this height data in comparison to scans which employ an adenine coated cantilever
Figure 6-5: Single stranded DNA scanned using an as-is AC240TS cantilever. Single stranded DNA heights were recorded at the locations indicated with white numbers. Coiled DNA height information was recorded at the locations indicated with black numbers.
<table>
<thead>
<tr>
<th>Site</th>
<th>Width (min)</th>
<th>Width (max)</th>
<th>Height</th>
<th>Peak-Valley</th>
<th>Global Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.71</td>
<td>11.55</td>
<td>2.67</td>
<td>3.83</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>9.93</td>
<td>11.87</td>
<td>2.83</td>
<td>3.83</td>
<td>3.53</td>
</tr>
<tr>
<td>3</td>
<td>7.56</td>
<td>10.21</td>
<td>2.41</td>
<td>3.47</td>
<td>4.08</td>
</tr>
<tr>
<td>4</td>
<td>8.26</td>
<td>9.01</td>
<td>2.53</td>
<td>4.28</td>
<td>1.22</td>
</tr>
<tr>
<td>5</td>
<td>9.04</td>
<td>9.27</td>
<td>2.55</td>
<td>6.98</td>
<td>2.36</td>
</tr>
<tr>
<td>6</td>
<td>8.56</td>
<td>10.42</td>
<td>3.7</td>
<td>5.19</td>
<td>2.75</td>
</tr>
<tr>
<td>7</td>
<td>8.2</td>
<td>9.43</td>
<td>2.01</td>
<td>4.08</td>
<td>2.91</td>
</tr>
<tr>
<td>8</td>
<td>9.19</td>
<td>11.54</td>
<td>3.85</td>
<td>6.57</td>
<td>2.14</td>
</tr>
<tr>
<td>9</td>
<td>7.56</td>
<td>10.85</td>
<td>3.41</td>
<td>5.07</td>
<td>2.62</td>
</tr>
<tr>
<td>10</td>
<td>8.01</td>
<td>9.43</td>
<td>4.18</td>
<td>5.64</td>
<td>4.43</td>
</tr>
</tbody>
</table>

Table 6.3: Top: Experimental single stranded DNA heights as scanned by an as-is cantilever tip. Bottom: Experimental coiled DNA heights as scanned by an as-is cantilever tip. Measurements in these tables conform to the model predictions of height given width with some degree of certainty. All units are in nm.
Coiled Lambda DNA

Now, to be on the safe side, we also recorded the maximum height peaks recorded using the AC240TS as-is cantilever tip. These heights are listed in the bottom half of Table 6.4.1.

It is clear from the data presented that the peak heights in the scanned image occur, as expected, at coiled instances of DNA. The average minimal width is 20.36 nm and the average maximum width is 25.72 nm. Rearranging Equation 6.1, we see that

\[r = R^{-1} \left(\frac{w}{4} \right)^2. \]

(6.5)

Given that the strands of DNA are modelled as a cylinder of radius \(r \), we expect the height \(h \) of the DNA strands to be equal to the diameter \(d \) of the strand. Mathematically speaking,

\[h = d = 2R^{-1} \left(\frac{w}{4} \right)^2. \]

(6.6)

In the case of the data presented in Table 6.4.1, we expect the height of DNA strands to be,

\[5.18 \text{nm} < h < 8.27 \text{nm}. \]

(6.7)

And indeed, the average height is 7.51 nm and the average global height is 8.53 nm, showing good agreement with the theory and indicating that the DNA strands are indeed double stranded and most likely coiled (or even super coiled).

6.4.2 Adenine Coated Cantilever

The same mica slide was scanned with an adenine coated cantilever tip. Adenine was adsorbed to the surface after evaporating 40 ÅTi and 100 ÅAu onto the cantilever
tip followed by an annealing process at a temperature of 300 °C. The exact process used is explained in Chapter 5.

The same scan conditions were used with adenine coated cantilever tips as with as-is cantilevers. The resulting image is shown in Fig. 6-6 with measured sites labelled in black numbers. These numbers represent the sites of maximum imaged heights.

Analyzing these heights one sees that they represent areas of single stranded DNA. Using Eq. (6.1) and a cantilever radius of curvature of 24 nm, we expect single stranded DNA widths of 13.86 nm. In comparison, double stranded DNA widths using the same cantilever would be 19.60 nm. Table 6.4.2 shows the experimentally measured widths of DNA strands and their corresponding heights. It also affirms that the sites measured are indeed single stranded.

As stated at the beginning of this chapter, the adenine coated tips have a 24 nm radius of curvature. Inserting this value into Eq. (6.6), we see that

\[h = d = 2 \cdot 24^{-1} \left(\frac{w}{4} \right)^2. \] \hspace{1cm} (6.8)

As we can see in Table 6.4.2, the average width is between 12.49 nm and 14.60 nm. Plugging these numbers into Eq. (6.8), we predict a DNA strand height of

\[0.813nm < h < 1.11nm. \] \hspace{1cm} (6.9)

However, the experimentally gathered data has an average height of 16.88 nm and an average global height of 17.49 nm! These figures are far greater than the expected heights given the recorded widths and thus indicate a special kind of interaction-one that is easily distinguishable.

This coupled with the fact that not the entire strand of DNA elicits such a reaction indicates that the adenine coated cantilever is greatly attracted to a certain type of base on the strand of DNA. Chemically speaking, this base can only be thymine, the complement of adenine. It makes sense that the adenine coated tip is deflecting the most when it scans an area of large thymine concentration. The adenine bases are hybridizing with thymine and causing the cantilever to deflect even more.
Figure 6-6: Lambda DNA scanned using an annealed adenine coated cantilever tip gave large spikes of height.
Table 6.4: Experimental single stranded DNA heights as scanned by an adenine coated AC240TS cantilever tip.

The top 10 points represent locations where the tip hybridized with the DNA. The bottom 10 points represent points where no hybridization occurred. It is clear from these tables that hybridization events produce unusually large deflections of the cantilever when compared with non-hybridization events. All units are in nm.

<table>
<thead>
<tr>
<th>Site</th>
<th>Width (min)</th>
<th>Width (max)</th>
<th>Height</th>
<th>Peak-Valley</th>
<th>Global Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.09</td>
<td>14.01</td>
<td>15.74</td>
<td>17.66</td>
<td>15.76</td>
</tr>
<tr>
<td>2</td>
<td>10.09</td>
<td>15.06</td>
<td>20.83</td>
<td>21.17</td>
<td>16.83</td>
</tr>
<tr>
<td>3</td>
<td>14.07</td>
<td>15.37</td>
<td>16.61</td>
<td>23.42</td>
<td>18.76</td>
</tr>
<tr>
<td>4</td>
<td>14.62</td>
<td>16.29</td>
<td>15.67</td>
<td>22.01</td>
<td>18.8</td>
</tr>
<tr>
<td>5</td>
<td>10.17</td>
<td>12.61</td>
<td>17.02</td>
<td>20.0</td>
<td>18.32</td>
</tr>
<tr>
<td>6</td>
<td>13.63</td>
<td>14.55</td>
<td>14.79</td>
<td>18.76</td>
<td>16.82</td>
</tr>
<tr>
<td>7</td>
<td>10.38</td>
<td>13.12</td>
<td>16.77</td>
<td>21.77</td>
<td>18.38</td>
</tr>
<tr>
<td>8</td>
<td>13.93</td>
<td>15.42</td>
<td>16.58</td>
<td>18.54</td>
<td>18.11</td>
</tr>
<tr>
<td>9</td>
<td>13.5</td>
<td>15.19</td>
<td>17.19</td>
<td>20.4</td>
<td>15.54</td>
</tr>
<tr>
<td>10</td>
<td>11.38</td>
<td>14.4</td>
<td>17.63</td>
<td>19.99</td>
<td>17.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>Width (min)</th>
<th>Width (max)</th>
<th>Height</th>
<th>Peak-Valley</th>
<th>Global Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10.58</td>
<td>14.73</td>
<td>2.15</td>
<td>3.39</td>
<td>2.36</td>
</tr>
<tr>
<td>2</td>
<td>11.65</td>
<td>14.38</td>
<td>2.57</td>
<td>3.71</td>
<td>3.25</td>
</tr>
<tr>
<td>3</td>
<td>11.02</td>
<td>13.78</td>
<td>2.78</td>
<td>4.46</td>
<td>2.82</td>
</tr>
<tr>
<td>4</td>
<td>12.65</td>
<td>14.11</td>
<td>1.97</td>
<td>4.13</td>
<td>2.16</td>
</tr>
<tr>
<td>5</td>
<td>13.03</td>
<td>14.44</td>
<td>2.48</td>
<td>3.23</td>
<td>2.49</td>
</tr>
<tr>
<td>6</td>
<td>12.70</td>
<td>14.55</td>
<td>2.63</td>
<td>3.40</td>
<td>2.92</td>
</tr>
<tr>
<td>7</td>
<td>13.26</td>
<td>14.23</td>
<td>1.49</td>
<td>2.88</td>
<td>2.13</td>
</tr>
<tr>
<td>8</td>
<td>13.67</td>
<td>16.36</td>
<td>1.69</td>
<td>4.06</td>
<td>3.34</td>
</tr>
<tr>
<td>9</td>
<td>14.35</td>
<td>15.24</td>
<td>1.76</td>
<td>1.91</td>
<td>2.92</td>
</tr>
<tr>
<td>10</td>
<td>13.63</td>
<td>16.48</td>
<td>2.83</td>
<td>3.82</td>
<td>1.82</td>
</tr>
</tbody>
</table>
A comparison of DNA heights recorded using an as-is tip and an adenine coated tip would be very useful here. Fig. 6-7 shows this comparison. It is clear from the figure that the single-stranded DNA heights using an as-is tip are clustered around a mean height of 3.01 nm with a standard deviation of 0.72 nm. Similarly, the non-hybridized single-stranded DNA scanned with an adenine coated tip centered around a mean height of 2.16 nm with a standard deviation of 0.44 nm. However, when the adenine coated tip hybridized with the bases of ssDNA, the observed heights had a mean of 16.88 nm with a standard deviation of 1.62 nm.

These results are truly astounding in confirming Genome Scanning as a viable process for DNA sequencing.

6.5 Accuracy Analysis

The experiments conducted were meant as a proof of concept and an indication of the great potential of Genome Scanning. They were not intended to yield pinpoint accuracy. What we have seen thus far is the ability of Genome Scanning to sequence
areas with large concentrations of a particular base, but we have not demonstrated
that Genome Scanning can distinguish a molecule of thymine in a sea of adenine (in
other words positional accuracy). That remains to be shown. So while we cannot
say that we are able to image single bases at this time, we can say that Genome Scanning
has enabled us to image small clusters of bases. The large heights shown in Fig. 6-6
correspond in length to clusters ranging from 3.5 nm to 13.1 nm. In other words, we
were able to sequence down to an accuracy of 6 to 26 bases. Further work is necessary
to improve the accuracy of Genome Scanning and we will make recommendations to
that effect in the following chapter.

6.6 Speed Analysis

One of the most important factors of a useful DNA sequencing technique is its speed
capabilities. As we have seen, current methods require years to sequence a single
human genome. The proposed method needs to sequence a genome in less than a
week. Ideally, a patient would walk into their doctor’s office, give a drop of blood,
then return shortly thereafter to discuss the implications of their sequenced DNA.

The experiments conducted show the power of Genome Scanning. Using this
data, we can identify a theoretical speed limitation using current technology. This
limitation is caused by the scan speed and the sample rate.

In the experiments conducted, we have used a scan speed of 5 Hz (lines per
second). This resulted in reasonably crisp images. At higher speeds the image became
somewhat blurry and it became difficult to distinguish features of the sample. At lower
speeds, the image remained intact. Hence, we continued imaging at a scan rate of 5
Hz. However, the absolute limit on scan rates possible imposed by the Quesant AFM
is 20 Hz, and this is the theoretical limit achievable with an improved technique.

The sample rate is also crucial in determining a theoretical speed limitation. The
limitation here is our ability to distinguish which bases belong to which strand. If
the entire surface were coated with DNA strands, then one would not be able to
sequence bases along one strand. At best, one can imagine creating parallel "lanes"
of DNA on the mica surface. Every other lane would be loaded with DNA while the interstitial lanes would be left empty, allowing the researcher to assign bases to a particular strand. This implies that one could only coat half the surface with mica. In other words, we can at best expect one point of information per every 2 samples.

In summary, we can expect:

- 20 lines per second
- 600 samples per line
- 1 base sequenced per 2 samples

Taking these parameters into consideration, we can estimate the theoretical speed of Genome Scanning to be

\[
\frac{20 \text{ lines}}{\text{sec}} \times \frac{600 \text{ samples}}{\text{line}} \times \frac{0.5 \text{ bases}}{\text{sample}} = 6000 \frac{\text{bases}}{\text{sec}}. \tag{6.10}
\]

A sequencing rate of 6000 bases per second translates to 5.78 days to sequence the entire human genome (3 billion bases). Compared to current technologies, this is absolutely astounding.

6.7 Summary

In this section we have looked at the experimental results from both synthesized DNA and lambda DNA. We have seen that Genome Scanning enhances the detection of complementary bases on synthesized DNA and we have seen that it also greatly magnifies the cantilever deflection due to complementary bases of lambda DNA. While the results do not demonstrate single base accuracy, they do hold to an accuracy of 3 to 26 bases. On the other hand, the speed analysis is phenomenal. Using Genome Scanning, we can expect a sequencing time of 5.78 days per human genome (3 billion bases).
Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Genome Scanning, the process of sequencing DNA immobilized to mica using an atomic force microscope, has proven its vast potential in the experiments of this thesis. Genome Scanning reduces the amount of pre-sequencing preparation time needed and eliminates the need for fluorescent dyes entirely. Genome Scanning also enables sequencing at a maximum rate of 360,000 bases per minute. In other words, the 3 billion bases that comprise a human genome can be sequenced in less than 6 days using this technique. With such incredible speeds, personal genome sequencing, with all the medical benefits it brings, can become a reality.

7.2 Recommendations

There are, however, several issues that need to be addressed to optimize Genome Scanning. We are recommending further work in the following areas:

- Genome Scanning Accuracy
- Genome Scanning Speed
- Multiple Base Scanning
7.2.1 Genome Scanning Accuracy

We have shown in the experiments, Genome Scanning can clearly detect a specific base type on natural lambda DNA. However, we have not worked on fine tuning the accuracy of this method. In order for Genome Scanning to be successful, one needs to take one of two approaches.

First, one could allow the tip to sequence several bases concurrently (as is currently the case) and focus efforts on developing software to pinpoint the location of the base type. This can be accomplished by using averaging and overlay techniques that would point the user to the "center" of activity (i.e., the base being imaged).

Alternatively, one could focus on making the tip smaller and more accurate, so that only one base is in contact with the tip at any given point in time. To accomplish this, we strongly recommend the use of carbon nanotube equipped cantilever tips. Carbon nanotubes have a small enough radius that one can achieve single base contact between cantilever tip and immobilized DNA. They are also made of organic material that lends itself well to bonding with the desired bases.

7.2.2 Genome Scanning Speed

Current achievable speeds are quite impressive. However, these speeds depend on our ability to utilize the high sampling rate of the AFM. To accomplish this, one needs to take one of two approaches: Either one must cover the mica surface effectively with DNA strands or one must program the AFM to only scan areas which contain immobilized DNA.

The first approach entails a high density of DNA per surface area and it entails that we eliminate looping of the DNA (as shown in Fig. 5-6). These issues have not been dealt with in this thesis and require further research. Two promising remedies to these problems are DNA combing and meniscus straightening. DNA combing uses a physical "comb" to align DNA strands in a linear orientation. Meniscus straightening uses a receding water line to force DNA into a linear orientation as well. Both methods could lead to improved speeds and faster sequencing.
The second approach requires an algorithm that will "lock on" to DNA strands and, using trajectory control, will instruct the AFM to only scan areas which contain immobilized DNA. Such an algorithm is within the grasps of current technologies and would aid in Genome Scanning greatly.

7.2.3 Multiple Base Scanning

Currently, we are using one AFM head with one cantilever tip to scan for one base type. If Genome Scanning is to become practical, one will require four cantilever tips, each coated with a specific base (A, C, T, or G) to scan for each of the four base types. (In theory, one only needs scan for three of the bases and assume that unexcited regions are composed of the fourth base type.) This requires the construction of a new AFM with multiple cantilever tips monitored by multiple laser beams or monitored using a single actuated laser beam shared between the cantilevers.
Appendix A

Protocols

A.1 Lambda DNA Dilution Protocol

1. A 2 mL test tube was filled with 1.647 mL DNase/RNase free water.
2. Using a 20 μL automatic pipetter, 3 μL of 0.55 μg/μL Lambda DNA were pipetted into the test tube.
3. The 1 μg/mL Lambda DNA solution was shaken gently for 30 seconds.

A.2 Lambda DNA Denaturation Protocol

1. A hotplate/stirrer was used to uniformly heat a 200 mL beaker of deionized water to 90°C.
2. The stirrer was used to circulate the contents of the beaker and ensure uniform heating.
3. A mercury thermometer was used to monitor the temperature of the deionized water bath.
4. A test tube containing 1 μg/mL solution of lambda DNA in water was suspended in the 90°C water bath for 15 minutes.
5. The test tube was then removed from the water bath and washed in a stream of cold water for 2 minutes.
A.3 40x T Synthesized DNA Dilution Protocol

1. A 15 mL test tube was filled with 12.5 mL DNase/RNase free water.

2. The contents of the synthesized DNA vial were emptied into the 15 mL test tube.

3. The current concentration is 20 µg/mL.

4. A second 15 mL test tube was filled with 4.75 mL DNase/RNase free water.

5. 250 µL were pipetted from the 20 µg/mL solution to the second 15 mL test tube.

6. The current concentration in the second test tube is 1 µg/mL.

7. The 1 µg/mL 40x T synthesized DNA solution was shaken gently for 30 seconds.

A.4 40x A Synthesized DNA Dilution Protocol

1. A 15 mL test tube was filled with 10.0 mL DNase/RNase free water.

2. The contents of the synthesized DNA vial were emptied into the 15 mL test tube.

3. The current concentration is 20 µg/mL.

4. A second 15 mL test tube was filled with 4.75 mL DNase/RNase free water.

5. 250 µL were pipetted from the 20 µg/mL solution to the second 15 mL test tube.

6. The current concentration in the second test tube is 1 µg/mL.

7. The 1 µg/mL 40x A synthesized DNA solution was shaken gently for 30 seconds.
A.5 APES Dilution Protocol

Stage I:
1. 10 mL DNase/RNase free water were placed in a 15 mL test tube.
2. 5 µL APES were pipetted using a 20 µL automatic pipetter into the test tube.
3. The solution is now 0.05% APES in water.

Stage II:
1. 12 mL DNase/RNase free water were placed in a second 15 mL test tube.
2. 3 mL of 0.05% APES in water were pipetted into the second test tube.
3. The solution is now 0.01% APES in water.

A.6 APES Application Protocol

1. 0.01% APES in water was applied to freshly cleaved mica.
2. Mica with APES was stored in a closed, sterilized container for 40-50 minutes.
3. Mica with APES was rinsed with 2 mL DNase/RNase free water.
4. One side of the mica was blocked off on sterile laboratory wipes.
5. Mica with APES was blow-dried using a gentle gust of compressed air.

A.7 MgCl₂ Dilution Protocol

1. A 15 mL test tube was filled with 5 mL DNase/RNase free water.
2. Using a 20 µL automatic pipetter, 5 µL of 1 M MgCl₂ were pipetted into the test tube.
3. The solution is now 1 mM MgCl₂.
4. The solution was shaken gently for 30 seconds.
A.8 DNA Immobilization on Mica Protocol (Mg\(^{2+}\) Linker)

1. A sheet of freshly cleaved mica was placed in a small Petri dish.

2. Using a 100 \(\mu L\) automatic pipetter, 50 \(mL\) of 1 \(\mu g/mL\) Lambda DNA dissolved in 1 mM Mg\(^{2+}\) was deposited onto the mica surface.

3. The Petri dish was covered and the solution was allowed to incubate for 15 minutes

4. The mica surface was rinsed gently with 2 \(mL\) DNase/RNase free water.

5. One side of the mica sheet was blocked off onto a laboratory wipe.

6. The mica was placed in the Petri dish and covered to dry for 10 minutes.

A.9 DNA Immobilization on Mica Protocol (APES Linker)

1. A sheet of freshly cleaved mica with APES linkers on the surface was placed in a small Petri dish.

2. Using a 100 \(\mu L\) automatic pipetter, 50 \(mL\) of 1 \(\mu g/mL\) Lambda DNA in water was deposited onto the mica surface.

3. The Petri dish was covered and the solution was allowed to incubate for 15-30 minutes.

4. The mica surface was rinsed gently with 2 \(mL\) DNase/RNase free water.

5. One side of the mica sheet was blocked off onto a laboratory wipe.

6. The mica was placed in the Petri dish and covered to dry for 10 minutes.
A.10 1.0mM Base Solution in Ethanol Protocol

Stage I:
1. 10 mL of ethanol were poured into a 15 mL test tube
2. Using an electronic scale, 0.3 g of Adenine were weighed on a piece of weighing paper
3. The Adenine was slowly placed in the ethanol test tube
4. The solution is now 0.222 M.
5. The solution was shaken vigorously as Adenine is not very soluble

Stage II:
1. 2.22 mL of ethanol was poured into a second 15 mL test tube
2. The solution of 0.222 M adenine in ethanol was shaken vigorously
3. 10 μL were pipetted from the 0.222 M adenine in ethanol solution and placed in the second test tube
4. The second test tube contains 1.0 mM adenine in ethanol
Appendix B

DNA theoretical Models

B.1 DNA Profile Predictions: Matlab Code

% Expected width of DNA using a tip with radius of curvature
% Ahmed El Mouelhi, MIT, Mechatronics Research Laboratory
% 1/10/2003
% units in nm

clear all x=(-20:.01:20);

R=10 % radius of curvature of tip % bare tip
r=0.5 % radius of DNA cylinder (0.5 for ss, 1.0 for ds)

R2=24 % radius of curvature of tip % 10 tip + 10 au + 4 ti Coating type 1
r2=0.5

R3=30 % radius of curvature of tip % 10 tip + 15 au + 5 ti Coating type 2
r3=0.5

% for R, r
for i=1:length(x),
 if x(1,i)>(R+r) % condition when there is a gap between DNA and tip
 h(1,i)=0;
 elseif x(1,i)==(R+r)
 h(1,i)=0;
 else
 h(1,i)=sqrt((R+r)^2-x(1,i)^2)+r-R; % tip in contact with DNA
 end
end
if h(1,i)<0 %condition when tip makes contact with substrate
 h(1,i)=0;
end
end

%for R2, r2
for i=1:length(x),
 if x(1,i)>(R2+r2) %condition when there is a gap between DNA and tip
 h2(1,i)=0;
 elseif x(1,i)==(R2+r2)
 h2(1,i)=0;
 else
 h2(1,i)=sqrt((R2+r2)^2-x(1,i)^2)+r2-R2; %tip in contact with DNA
 end
 if h2(1,i)<0 %condition when tip makes contact with substrate
 h2(1,i)=0;
 end
end

%for R3, r3
for i=1:length(x),
 if x(1,i)>(R3+r3) %condition when there is a gap between DNA and tip
 h3(1,i)=0;
 elseif x(1,i)==(R3+r3)
 h3(1,i)=0;
 else
 h3(1,i)=sqrt((R3+r3)^2-x(1,i)^2)+r3-R3; %tip in contact with DNA
 end
 if h3(1,i)<0 %condition when tip makes contact with substrate
 h3(1,i)=0;
 end
end

plot(x, h, 'b-', x, h2, 'r--', x, h3, 'g:') legend('as-is tip', 'lightly coated tip', 'heavily coated tip') xlabel('nm') ylabel('nm')

152
Appendix C

List of Vendors

C.1 Chemical Supplies

VWR International, Inc.
975 Overland Ct.
SanDimas, CA 91773
phone: 877-VWR-PSCS
fax: 888-890-9124
web: http://www.vwr.com

Laboratory equipment, pipetters

Sigma-Aldrich Corporation
Box 14508
St. Louis, Missouri 63178
phone: 800-325-3010
fax: 800-325-5052
web: http://sigma-aldrich.com

Bases in powder form, MgCl₂ in solution, APES, filtered water

153
C.2 Biological Supplies

Invitrogen Corporation (Life Technologies)
1600 Faraday Avenue PO Box 6482
Carlsbad, California 92008
phone: 760-603-7200
fax: 760-602-6500
web: http://www.invitrogen.com

Lambda DNA, Cat. No. 25250-028

Harvard Medical School Biopolymers Facility
Warren Alpert Building
200 Longwood Avenue
Boston, MA 02115
phone: 617-432-7481
web: http://genome.med.harvard.edu/

Synthesized DNA, 40x A, 40x T

C.3 Atomic Force Microscope and Supplies

Asylum Research, Inc.
341 Bollay Dr.
Santa Barbara, CA 93117-5550
phone: 805-685-7077
fax: 805-685-5007
web: http://www.asylumresearch.com/

AC240TS non-contact cantilevers
Molecular Imaging, Inc.
9830A S. 51st Street, Suite A124
Phoenix, AZ 85044
phone: 480-753-4311
fax: 480-753-4312
web: http://www.molec.com/

CONT contact cantilevers, NCH non-contact cantilevers

Quesant Instrument Corporation
17 Bridge Street
Great Barrington, MA 01230
phone: 413-528-8030
fax: 413-528-8069
web: http://www.quesant.com/

Quesant QScope atomic force microscope

Structure Probe, Inc.
P.O. Box 656
West Chester, PA 19381-0656
phone: 610-436-5400
fax: 610-436-5755
web: http://www.2spi.com/

Muscovite mica background substrate

C.4 Thin Film Coating

Surfacelogix, Inc.
50 Soldiers Field Place
Brighton MA 02135
Au evaporation, Ti evaporation
Bibliography

