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ABSTRACT
We discuss the temporal-difference learning algorithm, as applied to approximating the

cost-to-go function of an infinite-horizon discounted Markov chain, using a function approx-
imator involving linear combinations of fixed basis functions. The algorithm we analyze
performs on-line updating of a parameter vector during a single endless trajectory of an
ergodic Markov chain with a finite or infinite state space. We present a proof of conver-
gence (with probability 1), a characterization of the limit of convergence, and a bound on
the resulting approximation error. In addition to proving new and stronger results than
those previously available, our analysis is based on a new line of reasoning that provides
new intuition about the dynamics of temporal-difference learning. Finally, we prove that
on-line updates, based on entire trajectories of the Markov chain, are in a certain sense
necessary for convergence. This fact reconciles positive and negative results that have been
discussed in the literature, regarding the soundness of temporal-difference learning.



i Introduction

The problem of predicting the expected long-term future cost (or reward) of a stochastic
dynamic system manifests itself in both time-series prediction and control. An example
in time-series prediction is that of estimating the net present value of a corporation, as
a discounted sum of its future cash flows, based on the current state of its operations.
In control, the ability to predict long-term future cost as a function of state enables the
ranking of alternative states in order to guide decision-making. Indeed, such predictions
constitute the cost-to-go function that is central to dynamic programming and optimal
control (Bertsekas, 1995).

Temporal-difference learning, originally proposed by Sutton (1988), is a method for ap-
proximating long-term future cost as a function of current state. The algorithm is recursive,
efficient, and simple to implement. Linear combinations of fixed basis functions are used to
approximate the mapping from state to future cost.2 The weights of the linear combina-
tion are updated upon each observation of a state transition and the associated cost. The
objective is to improve approximations of long-term future cost as more and more state
transitions are observed. The trajectory of states and costs can be generated either by a
physical system or a simulated model. In either case, we view the system as a Markov chain.
Adopting terminology from dynamic programming, we will refer to the function mapping
states of the Markov chain to expected long-term cost as the cost-to-go function.

Though temporal-difference learning is simple and elegant, a rigorous analysis of its
behavior requires significant sophistication. Several previous papers have presented positive
results about the algorithm. These include (Sutton, 1988), (Watkins and Dayan, 1992),
(Tsitsiklis, 1994), (Jaakola et al., 1994), (Dayan and Sejnowski, 1994), and (Gurvits et al.,
1995), all of which only deal with cases where the number of tunable parameters is the
same as the cardinality of the state space. Such cases are not practical when state spaces
are large or infinite. The more general case, involving the use of function approximation, is
addressed by results in (Dayan, 1992), (Tsitsiklis and Van Roy, 1994), and (Gordon, 1995).
Tsitsiklis and Van Roy (1994) and Gordon (1995) establish convergence with probability
1. However, their results only apply to a very limited class of function approximators
and involve variants of a constrained version of temporal difference learning, known as
TD(O). Dayan (1992) establishes convergence in the mean for the general class of function
approximators involving linear combinations of fixed basis functions. However, this form
of convergence is rather weak, and the analysis used in the paper does not directly lead to
approximation error bounds or interpretable characterizations of the limit of convergence.

In addition to the positive results, counter-examples to variants of the algorithm have
been offered in several papers. These include (Boyan and Moore, 1995), (Tsitsiklis and Van
Roy, 1994), and (Gordon, 1995). The key feature that distinguishes these negative results
from their positive counterparts is that the variants of temporal-difference learning used do
not employ on-line state sampling. In particular, sampling is done by a mechanism that
samples states with frequencies independent from the dynamics of the underlying system.
Our results shed light on these counter-examples by showing that, for the general class
of linearly-parameterized function approximators, convergence is guaranteed if and only
if states are sampled according to the steady-state probabilities of the Markov chain of

2 Actually, nonlinearly parameterized functions such as neural networks can also be used, though we do
not address this case in the paper.
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interest. Given that the steady-state probabilities are usually unknown, the only viable
approach to generating the required samples is to perform on-line sampling. By this we
mean that the samples should consist of an actual sequence of visited states obtained either
through simulation of a Markov chain or observation of a physical system.

In this paper, we focus on the application of temporal-difference learning to infinite-
horizon discounted Markov chains with finite or infinite state spaces. Though finite state
absorbing Markov chains have been the dominant setting for past analyses, we find the
infinite-horizon framework to be the most natural and elegant setting for temporal difference
learning. Furthermore, the ideas used in our analysis can easily be applied to prove similar
results in the context of absorbing Markov chains. Though this extension is omitted from
this paper, it can be found in (Bertsekas and Tsitsiklis, 1996).

The contributions in this paper are as follows:

1. Convergence (with probability 1) is established for the case where approximations
are generated by linear combinations of (possibly unbounded) basis functions over
a (possibly infinite) state space. This is the first such result that handles the case
of "compact representations" of the cost-to-go function, in which there are fewer
parameters than states. (In fact, convergence of on-line algorithms in the absence
of an absorbing state, had not been established even for the case of a lookup table
representation.)

2. The limit of convergence is characterized as the solution to a set of interpretable linear
equations, and a bound is placed on the resulting approximation error.

3. We reconcile positive and negative results concerning temporal-difference learning by
proving a theorem that identifies the importance of on-line sampling.

4. Our methodology leads to an interpretation of the limit of convergence and hence new
intuition on temporal-difference learning and the dynamics of weight updating.

This paper is organized as follows. In Section 2, we provide a precise definition of the
algorithm that we will be studying. In Section 3, we recast temporal-difference learning in
a way that sheds light into its mathematical structure. Section 4 contains our main conver-
gence result together with our assumptions. We develop some mathematical machinery in
Section 5, which captures the fundamental ideas involved in the analysis. Section 6 presents
a proof of the convergence result, which consists primarily of the technicalities required to
integrate the machinery supplied by section 5. Our analysis is valid for general state spaces,
subject to certain technical assumptions. In Section 7, we show that these technical assump-
tions are automatically valid whenever the state space is finite. In Section 8, we argue that
the class of infinite state Markov chains that satisfy our assumptions is broad enough to be
of practical interest. Section 9 contains our converse convergence result, which establishes
the importance of on-line sampling. Finally, Section 10 contains some concluding remarks.

2 Definition of Temporal-Difference Learning

In this section, we define precisely the nature of temporal-difference learning, as applied to
approximation of the cost-to-go function for an infinite-horizon discounted Markov chain.
While the method as well as our subsequent results are applicable to Markov chains with
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a fairly general state space, we restrict our attention to the case where the state space is
countable. This allows us to work with relatively simple notation; for example, the Markov
chain can be defined in terms of an (infinite) transition probability matrix as opposed to a
transition probability kernel. The extension to the case of general state spaces requires the
translation of the matrix notation into operator notation, but is otherwise straightforward.

We consider an ergodic Markov chain whose states lie in a finite or countably infinite
subset of RN. By indexing the states with positive integers, we can view the state space
as the set S = {1,..., n}, where n is possibly infinite. We denote the vector of coordinates
at which a state i C S is located by a(i) C RN. Note that we could alternatively index
states using the set {a(i) I i C S}. However, this would somewhat complicate notation in our
analysis. The sequence of states visited by the Markov chain is denoted by {it I t = 0, 1,. . .}.

The Markov chain is described by a (finite or infinite) transition probability matrix P whose
(i,j)th entry, denoted by pij, is the probability that it+l = j given that it = i. For any
pair (i, j), we are given a scalar g(i, j) that represents the cost of a transition from i to j.
(Extensions to the case where the one-stage costs are random is discussed in our conclusions
section.) Finally, we let Oc E (0, 1) be a discount factor.

The cost-to-go function J* : S -+ 3R associated with this Markov chain is defined by

J*(i) E [ a g(itit+) io = i]
t=O

assuming that this expectation is well-defined. It is convenient to view J* as a vector instead
of a function (its dimension is infinite if S is infinite).

We consider approximations of J* using a function of the form

K

J(i,r) = Er(k)Ok(i)
k=1

Here, r = (r(1), . . . ,r(K)) is a parameter vector and each Ok is a fixed scalar function
defined on the state space S. The functions Ok can be viewed as basis functions (or as
vectors of dimension ISI), while each r(k) can be viewed as the associated weight. To
approximate the cost-to-go function, one usually tries to choose the parameter vector r so
as to minimize some error metric between the functions J(., r) and J* ().

It is convenient to define a vector-valued function : S - RK, by letting 0(i)
( (i),..., XK(i)). With this notation, the approximation can also be written in the form

J(i,r) = r'(i),

or

where q5 is viewed as a K x ISl matrix whose ith column is equal to 0(i); that is,

Note- thatI

Note that
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where the gradient is the vector of partial derivatives with respect to the components of r,
and we have

VJ(r) =

where VJ(r) is the Jacobian matrix whose ith column is equal to VJ(i, r).
Suppose that we observe a sequence of states it generated according to the transition

probability matrix P and that at time t the parameter vector r has been set to some value
rt. We define the temporal difference dt corresponding to the transition from it to it+l by

dt = g(it, it+l) + oJ(it+l: rt) - J(it, rt).

Then, for t = 0, 1,..., the temporal-difference learning method updates rt according to the
formula

t

rt+1 = rt+ ytdt (aX) t VJ(ik, rt)
k=O

t

= rt + ytdt C (aA)tk(ik),
k=O

where ro is initialized to some arbitrary vector, 'Yt is a sequence of scalar step sizes, and
A is a parameter in [0, 1]. Since temporal-difference learning is actually a continuum of
algorithms, parameterized by A, it is often referred to as TD(A).

A more convenient representation of TD(A) is obtained if we define a sequence of eligi-
bility vectors zt (of dimension K) by

t

Zt = E (aA) t-ko(ik)
k=O

With this new notation, the TD(A) updates are given by

rt+l = rt + ytdtzt,

and the eligibility vectors can be updated according to

zt+l = aAzt + O(it+l),

initialized with z_1 = 0.

3 Understanding Temporal-Difference Learning

Temporal-difference learning originated in the field of reinforcement learning. A view com-
monly adopted in the original setting is that the algorithm involves "looking back in time
and correcting previous predictions." In this context, the eligibility vector keeps track of
how the parameter vector should be adjusted in order to appropriately modify prior predic-
tions when a temporal-difference is observed. In this paper, we take a different view which
involves examining the "steady-state" behavior of the algorithm and arguing that this char-
acterizes the long-term evolution of the parameter vector. In the remainder of this section,
we introduce this view of TD(A) and provide an overview of the analysis that it leads to.
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Our goal in this section is to convey some intuition about how the algorithm works, and in
this spirit, we maintain the discussion at an informal level, omitting technical assumptions
and other details required to formally prove the statements we make. These technicalities
will be addressed in subsequent sections, where formal proofs are presented.

We begin by introducing some notation that will make our discussion here, as well
as the analysis later in the paper, more concise. Let 7r(1),... .,r(n) denote the steady-
state probabilities for the process it. We assume that ir(i) > 0 for all i C S. We define
an n x n diagonal matrix D with diagonal entries ir(1),..., r(n). It is easy to see that

(x, Y)D = x'Dy satisfies the requirements for an inner product on Rn. We denote the norm
on this inner product space by IIID = )D, and the set of vectors {J CE n I IIJIID < )°}
by L 2(S,D). As we will later prove, J* lies in L 2(S,D), and it is in this inner product
space that the approximations J(rt) = Vrt evolve. Regarding notation, we will also keep
using 11 11, without a subscript, to denote the Euclidean norm on finite-dimensional vectors
or the Euclidean-induced norm on finite matrices. (That is, for any matrix A, we have

IIAIl = maxilzll=l IlAxll.)
We define a "projection matrix" (more precisely, projection operator) II that projects

onto the subspace {V'r I r E sRK}, with respect to the inner product (, )o.D Assuming
that the basis functions Ok, k = 1,..., K, are linearly independent, the projection matrix
is given by

I = ~'(¢D2')-i D. (1)

(Note that 4DD' is a K x K matrix.) By definition of a projection matrix, we have for any
vector J C L2 (S, D),

IIJ = min IIJf- 'rllD.

Note that HIJ* is a natural approximation to J*, given the fixed set of basis functions. In
fact, IIJ* is the solution to the weighted linear least-squares problem of minimizing

E r(i)(J*(i)-J(r, i))2

icS

with respect to r. Note that the error associated with each state is weighed by the frequency
with which the state is visited. (If the state space was continuous instead of countable, this
sum would be replaced by an integral.)

We define an operator T() : Rn -+ sRn , indexed by a parameter A E [0, 1) by

(T( ;)J)(i) = (1 - A) Am E atg(it, it+l) + acm+lJ(im+l) io = i.

m=0 t=O

For A = 1 we define

(T( 1 )J)(i) = E t g(iitl) io = J*(i),
t=O

so that limxtl(T(A)J)(i) = (T(1 )J)(i) (under some technical conditions). To interpret this
operator in a meaningful manner, note that, for each m, the term

E [ ctg(it,it+l) + om+lJ(im+l) io = i
t=O
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is the expected cost to be incurred over m transitions plus an approximation to the remaining
cost to be incurred, based on J. This sum is sometimes called the "m-stage truncated
cost-to-go." Intuitively, if J is an approximation to the cost-to-go function, the m-stage
truncated cost-to-go can be viewed as an improved approximation. Since T(A) J is a weighted
average over the m-stage truncated cost-to-go values, T(A)J can also be viewed as an
improved approximation to J*. In fact, we will prove later that T(A) is a contraction
on L 2(S, D), whose fixed point is J*. Hence, T(A)J is always closer to J* than J is, in the
sense of the norm j l11 ID

To clarify the fundamental structure of TD(A), we construct a process Xt = (it, it+l, Zt).
It is easy to see that Xt is a Markov process. In particular, zt+l and it+l are deterministic
functions of Xt and the distribution of it+2 only depends on it+,. Note that at each time t,
the random vector Xt, together with the current parameter vector rt, provides all necessary
information for computing rt+l. By defining a function s with

s(r, X) = (g(i, j) + CoJ(j, r) - J(i, r))z,

where X = (i, j, z), we can rewrite the TD(A) algorithm as

rt+l = rt + yts(rt, Xt).

As we will show later, for any r, s(r, Xt) has a well defined "steady-state" expectation,
which we denote by Eo[s(r,Xt)]. Intuitively, once Xt reaches steady-state, the TD(A)
algorithm, in an "average" sense, behaves like the following deterministic algorithm:

rT+lI = fT + YTE0O[S(rT, Xt)].

Under some technical assumptions, the convergence of this deterministic algorithm implies
convergence of TD(A) and both algorithms share the same limit of convergence. Our study
centers on an analysis of this deterministic algorithm.

It turns out that

Eo[s(r, Xt) 1D (T(A) (r) - )

and thus, the deterministic algorithm takes on the form

ft+l = ft + yt- D A- (x(r(t)A )rt).

As a side note, observe that the execution of this deterministic algorithm would require
knowledge of transition probabilities and the transition costs between all pairs of states, and,
when the state space is large or infinite, this is not an implementable algorithm. Indeed,
stochastic approximation algorithms like TD(A) are motivated by the need to alleviate such
stringent information and computational requirements. We introduce the deterministic
algorithm solely for conceptual purposes, and not as a feasible alternative for practical use.

To gain some additional insight about the evolution of rt, we rewrite the deterministic
algorithm in the following form

t+1 = t + -tVJ(rt)D (T(A) (DTt)- _j) (2)

Note that in the case of A = 1, this becomes

jYt -_
rt+l = t - 2 VIIJ - itllD,
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which is the iteration for a steepest descent method that minimizes

Z (i) (J(i)- i))2
ieS

with respect to r. It is easy to show that, if the step sizes are appropriately chosen, 1'rIt
will converge to IIJ*.

In the case of A < 1, we can think of each iteration of the deterministic algorithm as
that of a steepest descent method for minimizing

I7(i) ((T(~)(or ))(i)-J(r i)) 2

icS

with respect to r, given a fixed rt. Note, however, that the error function changes from one
time step to the next, and therefore, it is not a true steepest descent method, which would
involve a fixed error function. Nevertheless, if we think of T(A) ('irt) as an approximation to
J*, the algorithm makes some intuitive sense. However, some subtleties are involved here.

To illustrate this, consider a probability distribution q(.) over the state space S, that is
different from the steady-state distribution ir(.). Define a diagonal matrix Q with diagonal
entries q(1),..., q(n). If we replace the matrix D in the deterministic variant of TD(1) with
the matrix Q, we obtain

7t V t 11 
ft+1 = ft - 2tl * - Q7 %

which is a steepest descent method that minimizes

aq(i) ( J (i) - J(r, i))
iES

with respect to r. If step sizes are appropriately chosen, (I'rt will converge to IIQJ*, where
IIQ is the projection matrix with respect to the inner product (., .)Q. On the other hand, if
we replace D with Q in the TD(A) algorithm for A < 1, the algorithm might not converge
at all! We will formally illustrate this phenomenon in Section 9.

To get a better grasp on the fundamental issues involved here, let us consider a more
general algorithm that takes on the form

t+l = t + -tVJ Q(r-t)Q(F(-Vt)- rt), (3)

where F is a contraction with respect to 11 IID. Note that by letting F = T(A), we recover
the deterministic variant of TD(A). Like TD(A), each iteration given by Equation (3) can
be thought of as a steepest descent iteration on an error function given by

q (i) ((F(rt))(i) -J(r, i))
iES

(The variable being optimized is r, while rt remains fixed.) Note that the minimum of this
(time-varying) error function at time t is given by IIQF(V'ft). Hence, letting Jt = VI)ft, we
might think of HQF(Jt) as a "target vector," given a current vector Jt. We can define an
algorithm of the form

Jt+1 = HQF(Jt), (4)
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which moves directly to the target, given a current vector Jt.
Intuitively, the iteration of Equation (3) can be thought of as an incremental form of

Equation (4). Hence, one might expect the two algorithms to have similar convergence
properties. In fact, they do. Concerning convergence of the algorithm given by Equation
(4), note that if F is a contraction of the norm 11. IIQ, then the composition HQF(.) is also
a contraction of the norm 11 IIQ, since the projection HIQ is a nonexpansion of that norm.
However, there is no reason to believe that the projection II Q will be a nonexpansion of the
norm 11 IID if D : Q. In this case, IHQF(.) may not be a contraction, and might even be
an expansion. Hence, convergence can be guaranteed by the algorithms of Equations (4)
and (3) if and only if the contraction and projection are with respect to the same norm.
This idea captures exactly the issue that arises with variants of TD(A) that sample states
with frequencies independent of the dynamics of the Markov process. In particular, the
state sampling frequencies are reflected in the matrix Q, while the dynamics of the Markov
process make T(A) a contraction with respect to 11i lID. When states are sampled on-line,
we have Q = D, while there is no such promise when states are sampled by an independent
mechanism.

For another perspective on TD(A), note that the deterministic variant, as given by
Equation (2), can be rewritten in the form

rt+l = rt + yt(Art + b),

for some matrix A and vector b. As we will show later, the contraction property of T(A)
and the fact that HI is a projection with respect to the same norm imply that the matrix
A is negative definite. From this fact, it is easy to see that the iteration converges, given
appropriate step size constraints. However, it is difficult to draw an intuitive understanding
from the matrix A, as we did for the operators T(A) and H. Nevertheless, for simplicity
of proof, we use the representation in terms of A and b when we establish that TD(A) has
the properties required for application of the available machinery from stochastic approxi-
mation. This machinery is what allows us to deduce convergence of the actual (stochastic)
algorithm from that of the deterministic counterpart.

4 Convergence Result

In this section we present the main result of this paper, which establishes convergence and
characterizes the limit of convergence of temporal-difference learning. We begin by stating
the required assumptions.

The first assumption places constraints on the underlying infinite-horizon discounted
Markov chain. Essentially, we assume that the Markov chain is ergodic, the steady-state
variance of transition costs is finite, and that the cost-to-go from any state is well defined
and finite. The formal statement follows:

Assumption 1 (a) The Markov chain it has a unique invariant distribution 7r that satisfies

7r'p = F r,

with ir(i) > 0 for all i; here, 7T is a finite or infinite vector, depending on the cardinality of
S. Let Eo[ ] stand for expectation with respect to this distribution.
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(b) The transition costs g(it, it+l) satisfy

Eo[g2 (it,it+l)] < oo.

(c) For every i, the expectation in the definition of the cost-to-go J*(i) is well-defined and
finite.

In fact, we will show in Lemma 2 that Assumption 1(c) is a consequence of parts (a) and
(b), and is therefore unnecessary.

Our second assumption ensures that the basis functions used for approximation are
linearly independent and do not grow too fast.

Assumption 2 (a) The matrix ( has full row rank; that is, the basis functions ({k I k
1,..., K} are linearly independent.
(b) For every k, the basis function Ok satisfies

Eo[2(i)] < .

The next assumption essentially requires that the Markov chain has a certain "degree

of stability" and that the functions b(-) and g(., .) do not grow too fast. As will be shown
in Section 6, this assumption is always satisfied when the state space S is finite. It is

also satisfied in many situations of practical interest when the set S is infinite. Further

discussion is given in Section 7.

Assumption 3 (a) For any q > 1, there exists a constant 1q such that for all i, t,

E[ll[(it)lqlio] _< q(1 + llcr(io)[[q).

(b) There exist positive constants Cl, ql such that

II0(i)II < C(1 + 11Cr(i) Iql),

and
Ig(i, j) I < C1 (1 + l(o(i)llq + Il(j) ljq )

(c) There exist positive constants C2, q2 such that, for all io and m > 0,

o00

Z |E['(iT)c'(iT+m)]io] - EO[~(it)q'(it+m)]| • C2(1 + jlo(io)l 2),
T=0

and

oo

Z E[q(iT)g(iT+m,iT+m+ l) i0]- Eo[0(it)g(iT+m,iT+m+l)] < C2(1 + Il(i 0 )llq2).

T=0

Part of the above assumption is that the expectations in part (c) are all well-defined
and finite. However, it will be seen later that this is actually a consequence of our earlier
assumptions.

Our final assumption places the usual constraints on the sequence of step sizes.
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Assumption 4 The step sizes yt are nonnegative, nonincreasing, and predetermined (cho-
sen prior to execution of the algorithm). Furthermore, they satisfy

00

E Yt = 00,
t=O

and
00

t=O

The main result of this paper follows.

Theorem 1 Under Assumptions 1, 2, 3, and 4, the following hold:
(a) The cost-to-go function J* is in L 2 (S, D).
(b) For any A c [0, 1], the TD(A) algorithm, as defined in Section 2, converges with proba-
bility 1.
(c) The limit of convergence r* is the unique solution of the equation

HT(A)(I)'r*) = cr*.

(d) Furthermore, r* satisfies

Ik1-r* - J*j - J*-1 - a(1 - A)/(I - AaX)'

In order to place Theorem 1 in perspective, let us discuss its relation with respect to
available results. If one lets q(i) be the ith unit vector for each i, and if we assume that S is
finite, we are dealing with a lookup table representation of the cost-to-go function. In that
case, we recover a result similar to those in (Jaakola et al., 1994) (actually, that paper dealt
with the on-line TD(A) algorithm only for Markov chains involving a termination state).
We note that with a lookup table representation, the operator T(A) is easily shown to be
a maximum norm contraction, and general results on stochastic approximation methods
based on contraction mappings (Jaakola et al., 1994; Tsitsiklis, 1994) become applicable.
However, this contraction property is lost once function approximation is introduced and
this approach does not extend.

Closer to our results is the work of Dayan (1992) who considered TD(A) for the case of
linearly parameterized compact representations and established convergence in the mean.
However, convergence in the mean is a much weaker convergence property than the one
we establish here. Finally, the work of Dayan and Sejnowski (1992) contains a sketch of
a proof of convergence with probability 1. However, it is restricted to the case where the
vectors q(i) are linearly independent, which is essentially equivalent to having a lookup
table representation. (A more formal proof, for this restricted case has been developed in
(Gurvits et al., 1994).) Some of the ideas in our method of proof originate in the work of
Sutton (1988) and Dayan (1992). Our analysis also leads to an interpretation of the limit of
convergence. In particular, Theorem 1 offers an illuminating fixed-point equation, as well
as a graceful bound on the approximation error. Previous works lack interpretable results
of this kind.
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5 Preliminaries

In this section we present a series of lemmas that contain all of the essential ideas behind
Theorem 1. We also state a theorem concerning stochastic approximation that will be used
to establish convergence.

We begin with a lemma that deals with a general property of ergodic Markov chains.
This lemma is central to our analysis and will be often used in the sequel.

Lemma 1 Under Assumption 1(a), for any J C L 2 (S, D), we have IIPJ ID < [[JH D.

Proof: The proof involves Jensen's inequality, the property 7r'P = r', and some simple
algebra:

DIIJ J'P'DPJ

i=1 j=ln nirl j=l
= E *(i)pijJ

2 (j)

j=l i=l
n

7= E7(j)J 2 (j)
j=1

= II Jl .

q.e.d.

Lemma 1 is useful in showing that J* is in L 2 (S, D). In particular, we have the fol-
lowing result, where we use the notation g to denote the vector of dimension ISI whose ith
component is equal to E[g(it,it+l)lit = i]

Lemma 2 Under Assumptions 1(a)-(b), J*(i) is well-defined and finite for every i C S.
Furthermore, J* is in L 2(S, D), and

o00

P = (P)t
t=O

Proof: If the Markov chain starts in steady state, it remains in steady-state, and therefore,

E0 [ tg2(it it+l) = E[g2 (iil)] < o-,

where we are using the monotone convergence theorem to interchange the expectation and
the summation, as well as Assumption l(b). Since lg(it,it+l)l < i +g 2 (it,it+l), it follows
that

t ·(i)E 1~5E · gT(it [, I)=i ] = Eo [ a· t · (it itll) ]
IES t=O t=O

Since 7r(i) > 0 for all i, the expectation defining J*(i) is well-defined and finite.
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Using Fubini's Theorem to switch the order of expectation and summation in the defi-

nition of J*, we obtain

J*(i) a E[oEa'g(iiti+l)lio = i]
t=O

00oo

= c tE[g(it, it+llio = i]
t=O
00

= atE[(it) lio = i],
t=O

and it follows that
00

J* _ -(oP/)t.
t=O

To show that J* is in L 2(S, D), we have

00

IIJ*11D < E II(-P)t9|ID
t=O
oo

< E etIMIlD
t=O

where the second inequality follows from Lemma 1. Note that we have

il112 = Z i(i) ( 2 pi (i, i))

< _(i) E Pijg2(i,j)iES jes
iCS jES

Eo [g92 (it, it+)]

<00,

by Assumption l(b). It follows that J* is in L 2 (S, D). q.e.d.

The next lemma states that that the operator T(A) maps L 2(S, D) into itself and provides

a formula for evaluating T(X) J.

Lemma 3 Under Assumption 1, for any J C L 2 (S,D), T(A)(J) is in L 2 (S,D), and for

A C [0, 1), we have

T() J = (1 - A) A A
m ( (OP)tj + (OP)m+lJ)

m=O t=-O

Proof:
m

(T(:)J)(i) = (1 - A) ) Am E ECtg(it, iit+l)+ am+lJ(i+l) io i
m=O t=O

= (1- A) E A)m E tE[g(it) I io = i] + m+lE[J(im+) io = i] 
m=O t=O
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and the formula in the statement of the lemma follows.
We have shown in Lemma 2 that jIgflD < oo. Thus, for A < 1, we can use Lemma 1 to

obtain

A) E An L(°p) 9||D < (1 - A) E a1m < 00-

m=O t=O m=O t=O

Similarly,

|(1 - A) E Am(oP)m+lJlID < (1- A) E ,Amm+lIIJIID
m=0 m=O

< allJllD,

for any J E L 2 (S, D), by Lemma 1. This completes the proof. q.e.d.

Lemma 1 can also be used to show that T(A) is a contraction on L 2 (S, D). This fact,
which is captured by the next lemma, will be useful for establishing error bounds.

Lemma 4 Under Assumption 1(a), for any J, J C L 2 (S, D), we have

IIT(A)J - T(A) JlID < o:(1- A)J -d < jD l- JJIID.
- -cA

Proof: The case of A = 1 is trivial. For A < 1, the result follows from Lemmas 3 and 1. In
particular, we have

=00
m-O

< (1 - A) , na'm+11 J - JIlD
m=O

-c(i- )
= ~-7A) Ili- JIIDl1 - acA

q.e.d.

The next lemma characterizes the fixed point of the composition HT(A). This fixed point
must lie in the range of HI, which is the space {1'rlr C RK} (note that this is a subspace of
L 2 (S, D), because of Assumption 2(b)). The lemma establishes existence and uniqueness
of this fixed point, which we will denote by r*. We will show in the next section that this
r* is also the limit of convergence of rt.

Lemma 5 Under Assumptions 1 and 2, HT(A)(-) is a contraction and has a unique fixed
point which is of the form 4I'r* for a unique choice of r*. Furthermore, r* satisfies the
following bound:

*- J < IInJ* - J*IID
1 - a(l - A)/(i - aA)

Proof: Lemma 4 ensures that T(A) is a contraction from L 2 (S, D) into itself, and it is easily
seen that J* is a fixed point. Since projections are nonexpansive, the composition IIT(X) (.)
is also a contraction. It follows that I7T(A) (-) has a unique fixed point of the form )'r*, for
some r*. Because the functions Mk(') are assumed linearly independent, it follows that the
choice of r* is unique.

14



Using the fact that J* is in L 2(S, D) (Lemma 2), we establish the desired bound. We
have

I|'r* -J* |D < ' Vr* - nIIJ*D + IInJ* -J*IID
= IIHT(X)(D'r*) - IJ* ±D + IIIJ* - JIID

< 1aA (1 - J*IID + IIJ* - J*IID,1 - +-

and it follows that
)r' IlnJ* - JI < II - ID

1 - D(1 - A)/(1 - A)'

q.e.d.

We next set out to characterize the expected behavior of the steps taken by the TD(A)
algorithm in "steady-state." In particular, we will get a handle on Eo[s(r, Xt)] for any given
r. While this expression can be viewed as a limit of E[s(r, Xt)lXo] as t goes to infinity, it
is simpler to view it as an expectation referring to a process that is already in steady-state.
We therefore make a short digression to construct a stationary process Xt.

We proceed as follows. Let {it} be a Markov chain that evolves according to the
transition probability matrix P and which is already in steady-state, in the sense that
Pr(it = i) = r(i) for all i and all t. Given any sample path of this Markov chain, we define

Zt E (aX)t-
T

(
iT)

) (5)
T=-00

Note that zt is constructed by taking the stationary process 0(it), whose variance is finite
(Assumption 2), and passing it through an exponentially stable linear time invariant system.
It is then well known that the output zt of this filter is finite with probability 1, and has
also finite variance. With zt so constructed, we let Xt = (it,it+l,zt) and note that this
is a Markov process with the same transition probabilities as the Markov process Xt that
was constructed in the middle of Section 3 (the evolution equation is the same). The only
difference is that the process Xt of Section 3 was initialized with z-1 = 0, whereas here we
have a stationary process Xt whose statistics are time invariant. We can now identify Eo[ ]
with the expectation with respect to this invariant distribution.

Prior to studying Eo[s(r, Xt)], let us establish a few preliminary relations in the next
lemma.

Lemma 6 Under Assumptions 1, 2, and 3, the following relations hold:

(a) Eo[O(it)O'(it+m)] = (DpmQV,
(b) There exists a finite constant G such that IIEo[¢(it)¢'(it+m)] I < G, for all m.

(c) Eo[zt¢'(it)] = Zm=0(aA)m@DPm4 ' ,

(d) Eo[ztOl(it+l)] -= Fm__o(aX)a~mDPm+1>t,

(e) Eo[ztg(it, it+1)] = m=0O(aC) nDDP m.

Furthermore, each of the above expressions is well defined and finite.

Proof: We first observe that for any J, J C L 2(S, D), we have

Eo[J(it)J(it+m)] = 7r(i) Pr(it+m = j I it = i)J(i)J(j)
iEs jES
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= (rJ(i)J(i)[pm ](i)
its

= J'DP m J.

(Note that Pm J E L 2(S,D), by Lemma 1, and using the Cauchy-Schwartz inequality,
J 'DPmJ is finite.) By specializing to the case where we are dealing with vectors of the
form J = 4'r and J = V'r (these vectors are in L 2(S, D) as a consequence of Assumption
2), we obtain

Eo[r'O(it)O'(it+m)fr] = r'"IDPm 'rf.

Since the vectors r and r are arbitrary, it follows that

Eo[O(it)Of'(it+m)] = DDpmqV.

We place a bound on the Euclidean induced matrix norm IIDDPm 4'll as follows. We
have

IIQDPm V'll < K 2 max l OkDPm¢'I

= K2 max lAkD 2 D 2p
k,

< K 2 m a x |ll 0 IID IIP m .IID
k,j

-< K2 max l1ikl 2
D

K 2 max Eo [(i)],
k

which is a finite constant G, by Assumption 2(b). We have used here the notation qk to
indicate the kth row of the matrix 1, with entries qk(1), ... , Ok(n); note that this is a row
vector.

We have so far verified parts (a) and (b) of the lemma. We now begin with the analysis
for part (c). Note that Eo[ztq'(it)] is the same for all t and it suffices to prove the result
for the case t = 0. We have

0

Eo[zo'(io)] = Eo E _ (aA>) -T(i-) '(io)
L=-00

0

= S (c)l) rEo[0(ir) '(io)]
T=-00

where the interchange of summation and expectation is justified by the dominated conver-
gence theorem. The desired result follows by using the result of part (a).

The results of parts (d) and (e) are proved by entirely similar arguments, which we omit.
q.e.d.

With the previous technical lemma at hand, we are ready to characterize Eo[s(r, Xt)].
This is done in the following lemma.

Lemma 7 Under Assumptions i and 2, we have

Eo[s(r, Xt)]= -D(T() (ir) -

which is well defined and finite for any finite r.
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Proof: By applying Lemma 6, we have

Eo[s(r, Xt)] = Eo[ztg(it,it+l) + ozt¢'(itt+)r - zt¢'(it)r]
oo

= DD E (aAP)m (j + oPIŽ'r - 'r)
mn=O

= D( I (aAP)-m + S (cAP) m (oaP - I)'r)
m=O m=O

It follows that, for A = 1,
Eo[s(r,Xt)] = ID(J* - 'r),

and for A < 1, after a little bit of algebra,

/ (P. ((-)Ao) m o\
Eo[s(r, Xt)] = D (I - A) E Am E(P)t* + ( m( - A) ZE A(P) m + l I) ')

m=O t=O m=O

= D (T(\)(,lr) - r)I

by Lemma 3. Each expression is finite and well defined by Lemma 6. q.e.d.

The next lemma shows that the steps taken by TD(A) tend to move rt towards r*.

Lemma 8 Under Assumptions 1 and 2, we have

(r- r*)'E0[s(r, Xt)] < 0, Vr : r*.

Proof: We have

(r - r*)'D (T(A) (Ir) - r) = (r - r*)'D ((I - H)T(A) (r) + HT()(Vr) - 'r)

(1'r - V'r*)'DI(HT(A) (Vr)-I r) I

where the last equality follows because )DII = -D (see Eq. 1). As shown in the beginning
of the proof of Lemma 5, IIT(A) is a contraction with fixed point I')r*, and the contraction
factor is no larger than oa. Hence,

1IrIT(A) (Vr) - 4 'r*H1D < o|ll'r - VIr* 11D,
and using the Cauchy-Schwartz inequality, we obtain

(r - r*)ŽD (T(A) ('r) - ir) = ('r - Tr*)ID(HT(A)(Iy) - V'r* + (Vr* -Vr)

< j1'r - 'r*lIwD * IIHT(X)(4'Žr) - <I'r*llD - jII'r - V'r*l|D

< (a - 1)14'r - 'r*l2U.

Since ao < 1, the result follows. q.e.d.

We now state without proof a general result concerning stochastic approximation, which
will be used in the proof of Theorem 1. This result is a special case of a very general result on
stochastic approximation algorithms (Theorem 17, in page 239 of (Benveniste et al., 1987)).
It is straightforward to check that all of the assumptions in the result of (Benveniste et al.,
1987) follow from the assumptions imposed in the result below. We do not show here the
assumptions of (Benveniste et al., 1987) because the list is long and would require a lot in
terms of new notation.
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Theorem 2 Consider an iterative algorithm of the form

rt+l = rt + y/t(A(Xt)rt + b(Xt)),

where:
(a) The (predetermined) stepsize sequence %yt is nonnegative, nonincreasing, and satisfies
Zt-o yt = oo and EZ 4o y < o.
(b) Xt is a Markov process with a unique invariant distribution and f is a bijective mapping
from the states of the Markov process to a subset of XRL. Let Eo['] stand for expectation
with respect to this invariant distribution.
(c) A(.) and b(.) are matrix and vector valued functions, respectively. Furthermore, A
Eo[A(Xt)] and b = Eo[b(Xt)] are well defined and finite.
(d) The matrix A is negative definite.
(e) For any q > 1 there exists a constant Pq such that for all X, t,

E[llf (xt)llqlX = X] < ,tq(1 + lf(X)llq).

(f) There exist positive constants C 1, ql such that for all X,

IIA(X) II < C 1(1 + Ilf(x)ll q),

and
Ilb(X)lI < C(l + llf(X)liql).

(g) There exist positive constants C 2, q2 such that for all X,

0o

ZE |E[A(Xt) I Xo= X]- A < C2(1 + Ilf(X)l q2),
t=O

and
0o

E ||E[b(Xt) I X -X]-b < C2(1 + lf(X)llq2 ).
t=O

Then, rt converges to r*, with probability 1, where r* is the unique vector that satisfies
Ar* + b = 0.

6 Proof of Theorem 1

The step s(rt, Xt) involved in the update of rt is

s(rt,Xt) = dtzt

= ztg(it,it+l) + zt(ozOC(it+l) - '(it))rt.

Hence s(rt, Xt) takes on the form

s(rt, Xt) = A(Xt)rt + b(Xt),

where
A(Xt) = zt(a'CO(it+l) - q'(it)),
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and
b(Xt) = ztg(it, it+l).

By Lemma 6, A Eo[A(Xt)] and b A Eo[b(Xt)] are both well defined and finite.
By Lemma 5, we have IIT()(VI'r*) = b'r*. From Equation (1), we also have DII =

DD. Hence, ciDT(A)(VI'r*) = (DD'r*. We now compare with the formula for Eo[s(r*, Xt)],
as given by Lemma 7, and conclude that Eo[s(r*, Xt)] = 0. Hence,

A(r-r*) = Eo[s(r,Xt)] -Eo[s(r*,Xt)]

= Eo[s(r, Xt)].

It follows from Lemma 8 that

(r - r*)'A(r - r*) < 0,

for any r / r*, and thus A is negative definite.
We will use Theorem 2 to show that rt converges. Our analysis thus far ensures satis-

faction of all required conditions, except for three technical ones - conditions (e), (f), and
(g), in particular. We now show that Assumption 3 is sufficient to ensure satisfaction of
these three conditions.

Without loss of generality, we assume the exponent ql satisfying Assumption 3(b) to
be greater than 1. We define a function f mapping states Xt = (it,it+l, zt) to vectors
f(Xt) E R2N+K by

lljc(it)11jq, - ·*(it)

f(Xt) = Ilj(it+l)ll ql -1 -l (it+l )

_L Zt

We start by addressing condition (e). Note that,

If (Xt)ll I< jlztl + l7(it)lql + -lIcr(it+l) ll
t

• IIz0o1 + __ (cAX) t-Tll(i) )l + 11((it)llq + IU(it+1)11q
:=0

• C( Z(oXA) t- (1 o(i T)II'))+ (i l (it)llq) + + lI(it+)l q + iz0oll,
T=0

for some positive constant C, where the final inequality follows from Assumption 3(b). It
follows that, for any q > 0, there exists a constant C such that

Ilf(Xt)11q < C 1 + ( (cA)t-T (i)ql)+ (it)ll + jU(it 1 )jq + l

-'=0

For q > 1, Jensen's inequality and the convexity of (.)q give us

( oZA hT 1 ( _ A()q E1

for any function h over the nonnegative integers. By specializing to the case of

h(T) = Il(it--T)I q1,
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we obtain
t 1 t

(Z..(aS) 11(it-T)II) -< (1 - Aa)q-1 Y(al ) 1a(it-T)1

It follows that, for any q > 1, there exists a constant C such that

Ilf(xt)llq < C 1 + E ( o))t-T|-( i)|| ql q + ||(ji t)) q
)

q
j + |7(it+1)

q zo q
, lvlt.

Taking expectations and applying Assumption 3(a), we have that for any q, there exists a
constant C such that

E[llf(Xt)jlq I X0 ] < C(1 + j1(i 0o)lqlq + Ilo(i1 )l1lq q + llz11Oq), Vt.

Satisfaction of condition (e) now follows from the fact that

1 (Io(i0o)IiqI + ljj(il)l/qj + izool1 )If (X0)11 _> 2: + K

As for condition (f), with X = (i, j, z), we have

IIA(X) = I z(oq'(j) - '(i))11

• lzll( llo¢'(J) H + !1¢'(i)11),

and the condition easily follows from Assumption 3(b). Similarly for b(X) we have

Ilb(X)1I = zg(i,j)

< Z11-I s(i, j)l,

and once again the condition easily follows from Assumption 3(b).
Finally, we show that condition (g) is satisfied. Recall that

A(X,) = zt(ao'(it+l) + 0'(it))

Let us concentrate on the term ztI'(it). Using the formula for Zt, we have

t 00
E[ztO'(it)lio]- E0[ztO'(it)] E (ceA) mE[O(it-.m)O'(it)lio]- E (aA) mE[O(itm)'(it)].

m=O m=0

To condense notation, let us define At-m,t as follows:

At-m,t = E[O(i_.t-m)¢(it)li0 ] - EO [(it_-)Om(it)] |.

Using the triangle inequality, we have

0o t 0x oo

EI [E[zt¢'(it)lio]-Eo[zt¢'(it)]|| < E E (TaX)mAt-m,t+ E (c>))mllEo[O(i*-m)¢'(it)33 (aA)mAt-m t+Z S (caA)-IEo[Od(itm)O'(it)1I.
t=0 t=O m=0 t=O m=t+l

We will individually bound the magnitude of each of the two summations in the right-hand-
side expression above.
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We can place a bound on the first summation as follows:

oo t oo o

E E ((l)-At-,,t < E (ax)m E t-m t
t=O m=O m=O t=m

< C2(1 + Ia(io)jjq2)

1 - aoA '

where the final inequality follows from Assumption 3(c).
As for the second summation, we note that Eo[O(it_m)O'(it)] < G, for some absolute

constant G (Lemma 6) and

E: E (o(A) mjjEo[q(it-m)OV(it)]j < G>E E (aA)m
t=O m=t+l t=O m=t+l

- G °° (A)t+l
t=O

< 00.

It follows that there exists a positive constant C such that

E IE[ztO'(it) io]- Eo[zt'(it)] _ < C(1 + lIo-(iO)lq2 ) < C(1 + 1lf(XO)lq 2)-
t=O

An identical argument can be carried out for the terms oxztqO'(it+l), and ztg(it, it+l), which
we omit to avoid repetition. Satisfaction of condition (g) follows.

We now have all the conditions needed to apply Theorem 2. It follows that rt converges
to r*, which solves

DD(T(")(P'Tr*)- VIr*) = 0.

By Lemma 5 along with the fact that 'DD has full row rank (by virtue of Assumption 2(a)),
r* uniquely satisfies this equation and is the unique fixed point of 1IT(A). Lemma 5 also
provides the desired error bound. This completes the proof to Theorem 1.

7 The Case of a Finite State Space

In this section, we show that Assumptions l(b)-(c), 2(b), and 3 are automatically true
whenever we are dealing with an ergodic Markov chain with a finite state space. This
tremendously simplifies the conditions required to apply Theorem 1, reducing them to two:
that the Markov chain be ergodic (Assumption 1(a)) and the basis functions be linearly
independent (Assumption 2(a)). Actually, even these two assumptions can be relaxed if
Theorem 1 is stated in a more general way. These two assumptions were adopted for the
sake of simplicity in the proof.

Let us now assume that it is an aperiodic finite-state Markov chain, with a single ergodic
class, and no transient states. Assumptions l(b)-(c), 2(b), 3(a), and 3(b), are trivially
satisfied when the state space is finite. We therefore only need to prove that Assumption
3(c) is satisfied.

It is well known that for any finite state ergodic Markov chain, there exist scalars p < 1
and C such that

IPr(it = ilio) - 7r(i) < Cp t , Vio E S.
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Let us fix io. We define a sequence of K x K diagonal matrices Dt with the ith diagonal
element equal to Pr(it = ilio). Note that

lIDt - Dll < Cp t .

It is then easy to show that

E[()(it)'(it+m)li]o] = (DDtpm ' ,

the proof being essentially the same as in Lemma 6(a). We then have

E[O(it)O/(it+m)lio] - Eo[¢(it)q'(it+m)] = 1(Dt - D)Pm 1 t.

Note that all entries of pm are bounded by 1 and therefore there exists a constant G such
that IIPm"I < G for all m. We then have

E Ij(Dt - D)Pm j'11 < E K 2 max Ik(Dt - D)Pm 'l
k,jt=O t=O t0

< K2 max ll0' llG max 110 j' E - DIt 

< GK2 max 11I|12 Ck Ik 1 -p

The first part of Assumption 3(c) follows. The second part is obtained using an analogous
argument, which we omit.

8 Infinite State Spaces

The purpose of this section is to shed some light on the nature of our assumptions and
to suggest that our results apply to infinite-state Markov chains of practical interest. For
concreteness, let us assume that the state space is a subset of RN. In terms of our notation,
we have u(i) E 'N. (Strictly speaking, our results only apply if we have a countable subset
of QRN, but the extension is immediate and we will be commenting on it.)

Let us first assume that the state space is a bounded subset of R N and that the mappings
defined by (a(i), a(j)) ~-+ g(i, j) and a(i) ~-4 qk(i) are continuous functions on 3 N . Then,
Assumptions l(b)-(c) and 2(b) are automatically valid, because continuous functions are
bounded on bounded sets. The same is true regarding Assumptions 3(a)-(b). Assumption
3(c) basically refers to the speed with which the Markov chain reaches steady-state. Let
Dt(io) be a diagonal matrix whose ith entry is Pr(it = ilio). Then Assumption 3(c) is
satisfied if we impose a condition of the form

oo

Z IDt(io) - Dj < C, Vi0 ,
t=O

for some finite constant C. In other words, we want the t-step transition probabilities to
converge fast enough to the steady-state probabilities (for example, IIDt - Dll could drop at
the rate of 1/t2 ). In addition, we need this convergence to be uniform in the initial state.
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As a special case, suppose that the Markov chain has a distinguished state, say state 0,
and that for some 6,

Pr(it+l = Oit = i) > Vi.

Then, Dt(io) converges to D exponentially fast, and uniformly in io0, and Assumption 3 is
satisfied.

Let us now consider the case where the state space is an unbounded subset of RN. For
many stochastic processes of practical interest (e.g., those that satisfy a large deviations
principle), the tails of the probability distribution 7(.) exhibit exponential decay; let us
assume that this is the case. Then, as long as g(., ) and qk(.) grow only polynomially (this
is the content of Assumption 3(b)), Assumptions l(b) and 2(b) are satisfied.

Assumption 3(a) is essentially a stability condition; it states that lIj(it) l q is not expected
to grow too rapidly, and is satisfied by most stable Markov chains of practical interest. Note
that by taking the steady-state limit we obtain Eo[lla(it)lIq] < 0o for all q, which in essence
says that the tails of the steady-state distribution 7r(.) decay faster than any polynomial
(e.g., exponentially).

Assumption 3(c) is again the most complex one. Recall that it deals with the speed
of convergence of certain functions of the Markov chain to steady-state. Whether it is
satisfied has to do with the interplay between the speed of convergence of Dt(io) to D and
the growth rate of the functions Ok(.) and g(-, .). Note that the assumption allows the rate
of convergence to get worse as o(io) increases; this is captured by the term Il (io) Iq2 in the
right-hand side.

We close with a concrete illustration, related to queueing theory. Let it be a Markov
chain that takes values in the nonnegative integers, and let its dynamics be

it+1 = max {0, it+ wt - 1},

where the wt are independent identically distributed nonnegative integer random variables
with a "nice" distribution; e.g., assume that the tail of the distribution of wt asymptotically
decays at an exponential rate. (This Markov chain corresponds to an M/G/1 queue which is
observed at service completion times, with wt being the number of new arrivals while serving
a customer.) Assuming that E[wt] < 1, this chain has a "downward drift," is "stable," and
has a unique invariant distribution (Walrand, 1988). Furthermore, there exists some 6 > 0
such that 7r(i) < e- i t, for i sufficiently large. Let g(i,j) = i, so that the cost function
basically counts the number of customers in queue. Let us introduce the basis functions
Ok(i) = ik, k = 0,1, 2,3. Then, Assumptions 1-2 are satisfied. Assumption 3(a) can be
shown to be true by exploiting the downward drift property.

Let us now discuss Assumption 3(c). The key is again the speed of convergence of
Dt(io) to D. Starting from state io, with io large, the Markov chain has a negative drift,
and requires O(io) steps to enter (with high probability) the vicinity of state 0 (Stamoulis
and Tsitsiklis, 1990; Konstantopoulos and Baccelli, 1990). Once the vicinity of state 0
is reached, it quickly reaches steady-state. Thus, if we concentrate on 03(i) = i3, the
difference E[0(iT)0I(iT,+m)iol]- Eo[q(i-) '(iT+m)] is of the order of i 6 for 0(io) time steps
and afterwards decays at a fast rate. This suggests that Assumption 3(c) is also satisfied,
with q2 = 7.

Our discussion in the preceding example was far from rigorous. Our objective was not
so much to prove that our assumptions are satisfied by specific examples, but rather to
demonstrate that their content is plausible. Furthermore, while the M/G/1 queue is too
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simple an example, we expect that stable queueing networks that have a downward drifting
Lyapunov function, should also generically satisfy our assumptions.

9 The Importance of On-Line Sampling

In the introduction, we claimed that on-line sampling plays an instrumental role in ensuring
convergence of TD(A). In particular, when working with a simulation model, it is possible
to define variants of TD(A) that do not sample states with the frequencies natural to the
Markov chain, and as a result, do not generally converge. Many papers, including (Boyan
and Moore, 1995), (Tsitsiklis and Van Roy, 1994), and (Gordon, 1995), present such exam-
ples as counter-examples to TD(A). In this section, we provide some insight into this issue
through exploring the behavior of a variant of TD(O). More, generally, variants of TD(A)
can be defined in a similar manner, and the same issues arise in that context. We limit our
discussion to TD(O) for ease of exposition.

We consider a variant of TD(O) where a states it are sampled independently from a
distribution q(.) over S, and successor states jt are generated by sampling according to
Pr[jt = jlit] = Pij. Each iteration of the algorithm takes on the form

rt+l = rt + 7ytf(it)(g(it, jt) + o'(jit)rt - q'(it)rt).

Let us refer to this algorithm as q-sampled TD(0). Note that this algorithm is closely related
to the original TD(A) algorithm as defined in Section 2. In particular, if it is generated by
the Markov chain and it = it+l, we are back to the original algorithm. It is easy to show,
using a subset of the arguments required to prove Theorem 1, that this algorithm converges
when q(i) = 7r(i) for all i, and Assumptions 1, 2, and 4, are satisfied. However, results can
be very different when q(-) is arbitrary. This is captured by the following Theorem.

Theorem 3 Let q(.) be a probability distribution over S, where ISI = n is at least 2 (and
at most countably infinite). Let the discount factor a be constrained to the open interval
(5, 1). Let the sequence aYt satisfy Assumption 4. Then, there exists a stochastic matrix P, a
transition cost function g(., .), and a matrix (I, such that Assumptions i and 2 are satisfied
and execution of the q-sampled TD(O) algorithm leads to

lim IIE[rtlro] 0 = o°, Vro # r*,
t--oo

for some unique vector r*.

Proof: Without loss of generality, we will assume throughout this proof that q(1) > 0 and
q(1) > q(2).

We define a probability distribution p(.) satisfying 1 > p(2) > 65 and p(i) > 0 for all
i. The fact that a > 6 ensures that such a probability distribution exists. We define the
transition probability matrix P with each row equal to p(-). In other words, we have

p(l) ... p(n) 

Finally, we define the transition cost function to be g(i, j) = 0, for all i and j. Assumption
1 is trivially satisfied by our choice of P and g(-, ), and the invariant distribution of the
Markov chain is p(.). Note that J* = 0, since no transition incurs any cost.
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Let P be a 1 x n matrix, defined by a single scalar function 5(.) with

1, if i = 1,
+~(i): = 2, if i= 2,

0, otherwise.

Note that, implicit from our definition of d>, rt is scalar, and Assumption 2 is trivially
satisfied. We let r* = 0, so that J* = D'r*.

In general, we can express E[rtlro] in terms of a recurrence of the form

E[rt+llro] = E[rtlro] + tE[C(it)(g(it,j,it) + o'(jt+)rt - '(it)rt)lro0]

= E[rtlro] + ytmQ(g + c P±D' - )')E[rtlro],

where Q is the diagonal matrix with diagonal elements q(1),... q(n).
Specializing to our choice of parameters, the recurrence becomes

F p(l) +2p(2) 1 2 Fg1E~rtilro]= E[rtIroj -1t[q(1) 2q(2)j (c [ p(l) + 2p(2) [2) [2 J) E[tl
= E[rtlro] + -yt((a(p(1) + 2p(2)) - 1)q(1) + 2 (ao(p(l) + 2p(2)) - 2)q(2))E[rt ro].

For shorthand notation, let At be defined by

At = (op(l) + 2cp(2) - 1)q(1) + 2(cap(1) + 2oap(2) - 2)q(2).

Since aop(l) + 2 ap(2) < 2 and q(1) > q(2), we have

At > (cvp(l) + 2 acp( 2 ) - 1)q(1) + 2(cp(1) + 2 cap(2 ) - 2)q(1)

= (3ap(l) + 6ozp( 2) - 5)q(1)

> (6acp(2) - 5)q(1),

and since p(2) > 65, there exists some e > 0 such that

At > (5 + e-5)q(1)

= eq(l).

It follows that
IIE[rt+ lro]I11 (1 + ytEq(l))llE[rtlro]ff,

and since Z'o =0t = oo, we have

lim IIE[rt+l ro] 11 = o,
t--+oo

if ro 4 r*. q.e.d.
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10 Conclusions

We have established the convergence of on-line temporal difference learning with linearly
parameterized function approximators, when applied to infinite-horizon discounted Markov
chains. We note that this result is new even for the case of lookup table representations
(i.e., when there is no function approximation), but its scope is much greater. Furthermore,
in addition to covering the case where the underlying Markov chain is finite, the result also
applies to Markov chains over a general (infinite) state space, as long as certain technical
conditions are satisfied.

The key to our development was the introduction of the norm 11 I 'ID and the property
IIPIHD < 1. Furthermore, our development indicates that the progress of the algorithm
can be monitored in two different ways: (a) we can keep track of the magnitude of the
approximation error r* - J*; the natural norm for doing so is precisely the norm 11 lID;
or, (b) we can keep track of the parameter error r - r*; the natural norm here is the
Euclidean norm, as made clear by our convergence proof.

To reinforce the central ideas in the proof, let us revisit the TD(O) method, for the case
where the costs per stage are identically zero. In this case, T(°)J is simply cPJ - J. The
deterministic counterpart of the algorithm, as introduced in Section 3 takes the form

rt+l = ft + /yt4D(cPa 'r -('r)
= rt + %?t4D(aoP - I)V'r

For any vector J, we have

J'DPJ < lJIID - IlPJllD < IIlJ11 = J'DJ.

This shows that the matrix D(oP - I) is negative definite, hence ,D(aP - I)D' is also
negative definite, and convergence of this deterministic iteration follows.

Besides convergence, we have also provided bounds on the distance of the limiting
function Y'r* from the true cost-to-go function J*. These bounds involve the expression
I I J* -J* ID, which is natural because no approximation could have error smaller than this
expression (when the error is measured in terms of 11 · lID). What is interesting is the term

c- (l - A)
1 - oaA

in the denominator. This term is 1 when A 1. For every A < 1, the denominator term
is smaller than 1, and the bound actually deteriorates as A decreases. The worst bound,
namely JIIIJ* - J*IID/(1 - a) is obtained when A = 0. Although this is only a bound, it
strongly suggests that higher values of A are likely to produce more accurate approximations
of J*. This is consistent with the examples that have been constructed by Bertsekas (1994).

The sensitivity of the error bound to A raises the question of whether or not it ever
makes sense to set A to values less than 1. Experimental results (Sutton, 1988; Singh
and Sutton, 1994, Sutton, 1995) suggest that setting A to values less than one can often
lead to significant gains in the rate of convergence. Such acceleration may be critical when
computation time and/or data (in the event that the trajectories are generated by a physical
system) are limited. A full understanding of how A influences the rate of convergence is
yet to be found. Furthermore, it might be desirable to tune A as the algorithm progresses,
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possibly initially starting with A = 0 and approaching A = 1 (although the opposite has
also been advocated). These are interesting directions for future research.

In many applications of temporal difference methods, one deals with a controlled Markov
chain and at each stage a decision is "greedily" chosen, by minimizing the right-hand side
of Bellman's equation, and using the available approximation J in place of J*. Our analysis
does not apply to such cases involving changing policies. Of course, if the policy eventually
settles into a limiting policy, we are back to the case studied in this paper and convergence is
obtained. However, there exist examples for which the policy does not converge (Bertsekas
and Tsitsiklis, 1996). It remains an open problem to analyze the limiting behavior of the
parameters r and the resulting approximations V'r for the case where the policy does not
converge.

On the technical side, we mention a few straightforward extensions of our results. First,
the linear independence of the basis functions Ok is not essential. In the linearly dependent
case, some components of zt and rt become linear combinations of the other components
and can be simply eliminated, which takes us back to the linearly independent case. A
second extension is to allow the cost per stage g(it, it+l) to be noisy, as opposed to being a
deterministic function of it and it+l. As long as the distribution of the noise only depends
on the current state, and its moments are bounded by a constant independent of the state,
there is no difficulty. (It is also possible to let the moments of the noise depend on the
current state, as long as they do not grow too fast.)

Finally, our results in Section 9 have elucidated the importance of sampling states ac-
cording to the steady-state distribution of the Markov chain under consideration. In partic-
ular, variants of TD(A) that samples states otherwise can lead to divergence when function
approximators are employed. As a parting note, we point out that a related issue arises
when one "plays" with the evolution equation for the eligibility vector Zt. (For example
Singh and Sutton (1994) have suggested an alternative evolution equation for Zt known as
the "replace trace.") A very general class of such mechanisms can be shown to lead to
convergent algorithms for the case of lookup table representations (Bertsekas and Tsitsiklis,
1996). However, different mechanisms for adjusting the coefficients zt lead to a change in the
steady-state average value of Ztb'(it) and affect the matrix A, and the negative definiteness
property can be easily lost.
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