Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2006-070 October 12,2006

Implementing Atomic Data through
Indirect Learning in Dynamic Network
K. Konwar, P.M. Musial, N.C. Nicolau, and A.A. Shvartsman.

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Implementing Atomic Data through Indirect Learning in Dynamic Netw orks

Anonymous

Abstract

Developing middleware services for dynamic distributesteans, e.g., ad-hoc networks, is a challenging task givatnstich
services must deal with communicating devices that mayajoihleave the system, and fail or experience arbitrary del&ygo-
rithms developed for static settings are often not usabldyimmic settings because they rely on (logical) all-toealhnectivity
or assume underlying routing protocols, which may be urifdéasn highly dynamic settings. This paper explores ithdirect
learningapproach to information dissemination within a dynamidrilisited data service. The indirect learning scheme is used
to improve the liveness of the atomic read/write objectiserin the settings with uncertain connectivity. The servicformally
proved to be correct, i.e., the atomicity of the objects iargnteed in all executions. Conditional analysis of thefpenance
of the new service is presented. This analysis has the pattefibeing generalized to other similar dynamic algorithntynder
the assumption that the network is connected, and assuraagpnable timing conditions, the bounds on the duratiorhef t
read/write operations of the new service are calculatedahy, the paper proposes a deployment strategy wheredotliearning
leads to an improvement in communication costs relativegmegious solution.

Keywords:Distributed algorithms, atomic objects, dynamic netwopesformance

1 Introduction

Distributed middleware services for dynamic systems meaat @iith communicating devices that may fail, join, or vanily
leave the system, and experience arbitrary delays in meskdiyery. A common design approach in such settings isve tee
participating network nodes periodically exchange thatal state information with the goal of approximating thebgll state of
the system and ensuring progress of local computationofeaince of a service implemented in this way depends on tiragr
update of the local state at each node, hence requiringclbgall-to-all communication, which can be quite expeasivihe
communication cost associated with all-to-all communératan be reduced by minimizing the number of bits in the mgs$2],
or by limiting the communication by assigning to each seag@oper subset of the nodes to communicate with [11]. Su¢hade
can lead to good results in static environments, howevéarukiéty is diminished in highly dynamic networks. A weaéss of all-
to-all gossip is its reliance on the existence of point-6iapconnectivity. This is an important limitation, sincedynamic systems
such as ad-hoc and mobile networks, maintenance of routfogmation is prohibitively expensive, where significantaunt of
power, memory, and communication are needed to keep thiegdables up to date [18, 9, 19, 20]. Furthermore, routirggqarols
provide a general solution and are oblivious to the data flofgpecific applications, which results in unnecessary camioation
burden. On the other hand, in the absence of a routing semgipeedictable progress can be ensured in algorithms demgead
all-to-all gossip.

In this paper we incorporate an indirect learning protocithiv a distributed algorithm implementing atomic objewaith the
purpose of enhance its effectiveness in dynamic networks.a@orithm is based on /B0 [15] and it ensures atomicity in all
executions while tolerating node departures, joins, fagyand message loss. Data objects are replicated to ensuneability.
To maintain consistency in the presence of small and trabsfenges, the algorithm usesnfigurationconsisting oguorumsof
locations. To accommodate larger and more permanent chatigealgorithm supporteconfiguration by which the configura-
tions are modified. All decisions regarding the locallyiatiéd operations on the replica are made by examining tte &tate.
In order to update the local state and ensure operationdsgrRRMBO relies on point-to-point connectivity and uses all-to-all
gossip to periodically exchange information about theestéditreplicas. Our goal is to enable progress of data accessitigns
(reads and writes) as long as there are quorums in activegomafions whose nodes are connected, either directly aeitt,

and without relying on routing protocols.

Contributions. We present an atomic service for read/write objects in dyoaamtworks that incorporates an indirect learning
mechanism designed to take advantage of the semanticsddithéow within the service to effectively disseminate abjeplica
information among participating nodes. We call the new algm ATILA (atomicity through indirect learning algorithm). The
dynamic settings considered include mobile ad-hoc netsv(MANETS), and we do not assume an underlying routing patoc
or all-to-all direct connectivity.

The algorithm implements indirect learning through loaaggjp and it achieves improvements in liveness in dynantigar&
settings at the expense of higher memory consumption. hmgi¢ing indirect gossip requires each node to maintain timate
of the state of every other participating node. This infdiiorais included in the state messages that are exchangecdret
direct neighbors only. We first present a general solutian ioblivious to the communication structure or existeoceuting
protocols. This solution trades service liveness for inifficy in memory and communication cost, however allowswpations
that improve its performance. In this presentation we disane example of one such optimization.

We formally prove that AiLA implements atomic objects. The performance of read andwperations of the service is
affected by the properties of the service deployment greyiere the edges are direct communication links betweensndtle
give probabilistic analysis estimating the duration oftveaite operations; we also analyze possible savings ihpgrsmessage
bit. Of independent interest, we believe that our analysgs@ach can be generalized to other algorithms that useimsor

For lack of space, the formal code specification using I'(puiput Automata notation [16] appears in [12].

Related work. Dynamic distributed systems with an unknown and possiblyounded number of participants that may join,
voluntarily leave, and fail, are becoming increasingly coom. Problems that often need to be solved in these settigsdie
leader election [17], consensus [13], and maintenancerdfistent memory [3].

Group communication servicd&CS) [1] are important building blocks in distributed st and can be used to implement
shared memory abstractions. However, communication reddor group maintenance limits the utility of common GCB8s i
dynamic environments such as MANETS. Here the mobility adesresults in frequent group membership changes and group
maintenance becomes an expensive task requiring high caioation overhead and energy consumption [10].

The GEOQUORUMS approach of [3] uses stationafgcal points implemented by mobile nodes, to provide atomic shared
read/write memory where consistency is maintained by ugir@yums of focal points. However this service relies on tvala
ability of geocasthat can deliver messages to specific geographic locatidmes earlier RMBO service [15] was developed for
dynamic overlay networks, where messages are routed atitatha The specification of RMBO trades mathematical simplicity
for practicality, and while the successive refinements [A,48] improved this service’s usability each still relies automatic
all-to-all connectivity.

Overlay networks provide the ability to transparently satessages atop diverse communication structures. Nodeswo
nicate using virtual point-to-point channels with the hefgrouting protocols. Many routing algorithms for ad-hoadanobile
networks have been proposed, e.g., DSDV [19], TORA [18], D§Rand AODV [20]. However, routing protocols have the fol-
lowing drawbacks: (i) Maintenance of overlay routes in syst where nodes join, migrate, depart, and fail, is experisiterms
of processing, memory consumption, and communicatiorifiaddlly, if the devices are mobile, then the topology o tietwork
may change frequently and the new virtual routes have to ¢eaalated often in order to maintain integrity of the oagrhet-
work. (ii) Routing protocols are oblivious to the semantfshe communication among the participating nodes. Hethesge may
be substantial redundancy in communication. In the netsvtirit are sensitive to throughput, increased communictioden
may have adverse effects on the performance of the routjagitims themselves and on the message-passing appiigatio

Document structure. In Section 2 we present the model and definitions. We desotibalgorithm in Section 3. The proof
of atomicity is given in Section 4 (for lack of space the pwafe not stated). Probabilistic performance analysisdéseuted
in Section 5 and the deterministic analysis in Section 6. Weckude in Section 7. For presentation reasons we presefiith
proofs and the complete code of the algorithm in the attacippéndix.

2 System Model and Definitions

We assume a message-passing model with asynchronous gmnecesth unique identifiers. We denote byhe set of node
identifiers { need not be finite). Processors may join, crash, and voliynkeave the system.

Processors communicate via point-to-point, direct, asgormous channels. A processor can send a message to anmoites-p
sor if a direct link between the processors exists. In sdfgtymicity) proofs we do not make any assumptions aboutehgth
of time it takes for a message to be delivered. To evaluat®meance of the algorithms, we assume that either messages a
delivered in bounded time or not delivered at all. The nod®bkthe point-to-point communication links form teervice deploy-
ment graph The deployment graph may change over time, as nodes jgiardeand fail during the computation. In performance
analysis we also assume that the graph is connected.

We denote by’ the set otconfiguration identifiersFor eachke € C we define: (iimemberge), a finite subset of node identifiers,
(ii) read-quorumg), a set of finite subsets ofiemberge), and (iii) write-quorumsgc), a set of finite subsets ofiemberg). We
require that for evenR € read-quorums(c), and everyW € write-quorums(c), RN W # (. No intersection requirement is

imposed on the sets of members or on the quorums from distimfigurations.

We defineC, = CU{Ll}andCy = C U {L, =} to be the partially ordered sets, such that< cand resp.L < ¢ < =,
for ¢ € C. We define the seEMap, the set of configuration maps, as the set of mapping: C+. In any sequence i@Map,
the symbol L represents an unknown configuration ahdepresents obsolete configuration that has been removediefivie
Usable to be the subset af'Map such thatem € Usable iff the pattern occurring iem consists of a prefix of finitely manys,
followed by an element of’, followed by an infinite sequence of elementgof in which all but finitely many elements are.
We defineTruncated to be the subset of Map such thatem € Truncated iff the pattern occurring irem consists of a prefix
of finitely many=s, followed by a finite number of elements frath followed by an infinite sequence df. We defingtruncate
to be a unary operation amn € CMap that removes all configuration identifiers that appear dfteffirst L in cm. Finally, we
defineupdateto be a binary operation anmn,cm’ € CMap that updates any element i with the corresponding element in
cm/ if that element is greater according to the partial odet

3 The Algorithm

We now present the algorithm implementing a dynamic atornjeai service using an indirect learning protocol. The athm
is based on RMBO [15] and its refinements in [7, 4], and we call the new algonitATiLA (atomicity through indirect learning
algortihm). The service is defined for a single object — gitleat atomicity is preserved under composition a completeesh
memory is implemented by composing multiple instances efsérvice. The pseudocode of the algorithm appears in Fdure
and 2.

read() or write(v) operation at nodé

e RW-Start: Nodes resets its local structures pertaining to the read/write operations, suep-asnfigs, op-Nums. Also, it notes that a
read or a write operation was initiated.

e RW-Phase-1a: Node increments its local phase number and updatepftiems set with the new information. A snapshot of the
information stored irconfigs andp Nums is recorded irop-configs andop-pNums. At this point node sets out to query configurations
found in op-configs for the most recentag andvalue information. Next, sends{RW 1a, tag, val, configs, world, pNums) message
to all known participants of the service, i.@orld.

e RW-Phase-1b:Upon receipt of a RW la, t, v, ¢, w, pn) message from, nodej compares its local knowledge (local state values) with
the information included in the message. For instance if its leeglis strictly smaller thart, then it updates itsag with ¢ and value
with v. Also, it updates itsonfigs, world, andpNums. Next, j replies toi with (RW1b, tag, val, configs, world, pNums).

e RW-Phase-1c: Upon receipt of an = (RW1b,t,v,c,w, pn) message from, node: updates its state based on comparison of the
values of its local state with the related information found in the message.cltontains configurations previously unknown:tdhen
the current phase is restarted.

e RW-Phase-2a:Nodei comparesn.pn and op-pNums to check if at least one read quorum of each configuration foung-inonfigs
has an adequately recent state informatiori ¢ife. has at least learned the phase number fodbm RW-Phase-13 If so then the
first phase is complete +is now in the position of the highest tag. At this point nadeets out to propagate to the members of
configurations found irvp-configs the most recentag and value information. Nodei increments its phase number and updates its
pNums with the new information, it also records current values®@ifigs andp Nums in op-configs andop-p Nums. Next,: broadcasts
(RW 2a, tag, val, configs, world, pNums) message wherkg andvalue depend on whether it isr@ad or awrite operation: in the case
of aread, they are just equal to the localg andwvalue; in the case of avrite, they are a newly chosen tag, andhe value to write.

e RW-Phase-2b: If node j receives & RW2a,t,v, c,w,pn) message from, it updates its state accordingly, and responds wath
(RW2b, tag, val, configs, world, pNums).

e RW-Phase-2c:Same aRW-Phase-1c

e RW-Done: If node: can determine that at least one write quorumalbfconfigurations inop-configs has an adequately recent state
information of: (i.e. has at least learned the phase numbeérfaim RW-Phase-23, then theread or write operation is complete and
the tag is marked confirmed. If it isr@ad operation, nodé returns its current value to client. Nodenarks that the operation is now
terminated. At this point new read/write operation may be initiate at node

Figure 1. Description of the phases of thead andwrite protocols.

In order to ensure fault tolerance, object data is replitateseveral nodes. The algorithm uggorum configurationgo
maintain consistency. Configurations can be modified orfiyharoughreconfiguration Main parts of the algorithm deal with
communication with replicas during read and write operatj@and the removal of the obsolete configurations usimdiguration
upgradeoperations. Network topology may change during the lifetohthe service, where links may be created and consequently
destroyed. However, if the service deployment graph miaisigs connectivity, then our algorithm is eventually atdgropagate
the replica information throughout the system and allowiret communication with the replicas during individualeoations.

Participant Information. Each participant maintains thalueand the associatadg of the object being replicated. Thags
are used to totally order write operations with respect thexrher and all read operations with respect to the writetisforms
the basis for the proof of atomicity (Section 4). Each nodeta@ns a set of node identifiensprld, representing the nodes that are
locally known to have joined the service, and the configaratnformation stored in variableonfigs of type CMap (Section 2).

Each node usegshase numberto logically timestamp the messages it sends to other nodisaiting the “freshness” of the
state conveyed in the messages. The phase number of a nogeciménted following an “important” event at a node, such as
the start of a new phase of a read or a write, or a configurafigmade operation. Most importantly, phase numbers are tased
implement indirect learning as discussed later in thisigectEach node maintains a matrix of phase numbep®yums where
rows and columns are indexed by node identifiers, henceziésisjworld| x |world|. The variablepNums|[i][j] represents the
most recent phase information knownit@bout another participating nogdeThis means thathas learned the replica information
known toj whenj's phase number was equal idums[i][j]. The variablepNums|[j][k], for somej, k € world andi # j,
represents the most recent phase number knowalout the phase of nodethat is known tgj. Each of these variables reflects
the latest information locally known at a node, but not neagly the most up-to-date global information.

Each node also maintains two records used to store information albeubhgoing operations. Recosd is used to keep track
of the phases of read and write operations. The followinddief op are initialized when a new phase of a read or write operation
is initiated: op-configs records the value ofonfigs, op-Nums records the value gf Nums, andop-ace, initially (§, records the
identifiers of the nodes that contain adequately currentimétion regarding's state. Similarly, recordpg is used to keep phase
information of the configuration upgrade operation, whbesfteldsupg-configs, upg- Nums andupg-acc are defined analogously
to the fields ofop record. In addition, theipg record contains fieldipg-target containing the index of the configuration being
upgraded. (The phases of read, write, and configuratioratipaes are discussed later in this section).

Information Propagation and Indirect Learning. Periodically, and following certain events, any non-fdifgrticipant of the
service sends state messages to all nodes found in itsdeeal. These messages include sender’s current valuesigfval,
configs, world, andpNums. Although a node attempts to send messages to all nodesunsits, only the messages addressed to
the nodes with a direct connection may be delivered, allrattessages may be lost. (In a practical implementation ofehace,

a node may use timeouts or other means of failure detectistofpsending messages to the nodes without a direct coonecti
This does not affect the safety.)

We now narrate the update process based on an example of agaesshange between two non-failed service participants,
sayi andj. Wheni receives message frojrit compares values of variables comprising its state aggiesnformation included
in the message. Assume that nadeceives message = (tag, val, configs, world, pNums) from j. If m.tag > tag then node
1 updates its tag withn.tag and the value withn.val. Next, node; includes in itsworld any new identifiers found im.world.
For each new node identifier, matfphNumsis extended with a new column and a new row, intitalized t@zeNode; also sets
its configs to update(configs, m.configs).

The last step updates the phase information, wheampares its phase matrix with the one in the sender’s messddis
update captures the indirect learning process. Fdr,dlke m.world, if m.pNums[k][¢] > pNums[k][¢], thenj knows that: has
learned about a higher phase numbef.oTherefore, wheneven.pNums([k][{] > pNums[k][{] theni assigngp Nums|k][¢] —
m.pNums|[k][{].

Observe that all bookkeeping information (except for valsenonotonically growing with each update, i.e., a tag idatpd
only when the arriving tag is larger, nodes are only addetéasbrid set, and the phase number information is updated if the
incoming phase number information is more recent than vvissaware of. Therefore, if some noflidearns that’s phase number
is p, thenk has learned of a tag (resp. value) of the replica that is at &sarecent as wheis phase number was Phase numbers
are updated either following a receipt of a message dirdaiiy & or indirectly from some other node. Thusiifs performing
some operation ang is its current phase number thenpiVums[k][i] > p, theni can deduce that learned the information
that is at least as recent as the information communicateddits world in phasep. (Finally, if the service deployment graph
is connected and the network is reasonably well-behaved, ¢lientually; will (indirectly) learn thatk (indirectly) learned the
information disseminated by)

Joining. Nodes join the service by sending a join request to the nod®esded by the user (“seeds”). Our well-formedness
assumption is that when the set of seed nodes is empty, tleeprodessing the join request is the “creator” of a new objéct
an active participant of the service receives a join requ@stl add sender’s identifier to its locatorld set and reply with a state
message. The joinee becomes operaticmetiie), when a response message to the join-request is received.

Read and Write Operations. The read and write operations are conducted in two phased-{gare 1): The first phase called
RW-Phase-1 or queryphase, is identical for both operations. In this phase tiiatior of the operation queries the replica owners
in order to obtain the most recetag and the associatedhlue The second phase is call&¥W-Phase-2 or propagationphase.

In case of a read, the initiator of this operatigmopagateshe information learned in thgueryphase. Since the aim of the write
operation is to change the value of the replica, ingtapagationphase the newagis created which is strictly larger than the one
discovered during thgqueryphase and the new value is associated with this tag. Thigimformation that is propagated to the
replica owners.

The termination point of each phase is determined only #ffiemode conducting this operation can certify that at least
quorum of replica owners from each active quorum set ha®orelga to (directly or indirectly) to its latest phase infation.

Reconfiguration and Configuration Upgrade. The reconfiguration is performed in two steps (see Figureh&raithese steps
are similar to ones performed by the write operation). Fastew configuration is chosen by the members of the mosttecen

cfg-upgrade(k) at nodei (similar to the phases of read/write operations):

e UPG-Phase-1aNodei chooses an indek, such thatk is a configuration identifier that ends the prefix of the sequence of cwafigns
known toi, where there are zero or more configurations up to sémmat have been marked as removed, and all configurations with
index? + 1 to k are active. Next; increments is phase number and updateg/Mams with the new information, it also records current
values ofconfigs andpNums in upg.configs andupg.pNums. A messageU PGla, tag, val, configs, world, pNums) is sent byi to
all nodes in itsworld.

e UPG-Phase-1bif nodej receives §U PG1la, t, v, ¢, w, pn) message from, it performs all necessary updates based on the information
contained the message, and replieswoth (U PG1b, tag, val, configs, world, pNums).

e UPG-Phase-2ailf nodei receivesn = (UPG1b, t,v, c, w, pn) message fronj, it updates its state accordingly. If based on the latest
m.pn it can determine that at least one read and one write quorum of eafigwation inupg.configs has an adequately recent state
information ofi (i.e. has at least learned the phase numbéfraim UPG-Phase-13 then the first phase is complete. Thémcrements
its phase number, updatgd/ums and records current values afnfigs andpNums in upg.configs andupg.pNums. Nodei: sends a
(UPG2a, tag, val, configs, world, pNums) message to all members of iisrid.

e UPG-Phase-2b: If node j receives a(U PG2a,t,v,c, w,pn) message from, it updates its state and replies tovith message
(UPG2b, tag, val, configs, world, pNums).

e UPG-Done:lIf nodes receives §U PG2b, t, v, ¢, w, pn) message and if from that messagmn determine that at least one write quorum
of configuratiornc(k) has an adequately recent state informatioh(o€. has at least learned the phase numbefroin UPG-Phase-23
then the upgrade operation is complete. Nodwarks all configurations with identifier smaller thamas removed.

Figure 2. Description of the phases of tieenfiguration upgradgrotocol.

configuration. This is handled by an external service, ddlecon as in [15]. Then obsolete configurations are removed using
the configuration upgrad®peration. This operation upgrades a configuration at a hgdemoving every configuration with a
smaller index from its:onfigs variable. Once a configuration has been upgraded, it is ns#fgle for maintaining the data. Note
that we assume that old configurations remain operatiortdithay are removed. In Section 5 we describe the timing dams

on configuration viability.

4 Proof of Atomic Consistency

In this section we formally show thattALA implements atomic objects by applying necessary refinesranthe safety proofs
of RAMBO [7]. The challenge here is to show that atomic access to tfexis ensured when indirect mechanism is used. In
the following discussion we present the lemmas that reduinedification and only a brief discussion of the remainingreas
leading up to the main theorem. The omitted details may bedau the optional appendix.

4.1 Definitions and notation.

In the rest of the presentation, we consider “good” exeagtiaf the algorithm: the assumptions are that the clientestguare
well-formed requests, i.e., clients follow the protocalsijbining and initiating reconfiguration; clients initeabnly one operation
at a time; clients wait for appropriate acknowledgmentsteeproceeding.

We denote byy an arbitrary, good execution of the algorithm. Wesetandr, be two read or write operations that occur at
nodesi andj respectively, wher@andj are participants of ALA service. Additionally, we assume that completes before
begins ina. When we do not refer to any ordering of operations wemutedenote an arbitrary read or a write operation. Also let
~ denote the configuration upgrade operation initiated byesaative participant of the service. Before proceeding tithsafety
claims we state additional definitions.

For everyr, thequery-fix (resp. prop-fix) event occurs immediately after tiqeery(resp.prop) phase ofr completes. There-
fore, query-fix point occurs at the point when noddetermines that at least one read quorum of each configaiatiep-configs
has a sufficiently recent state informationipfvhich happens in phas@w-Phase-2a(Figure 1). A similar relation exists be-
tweenprop-fix andRW-Done. For every configuration upgrade operatigrihecfg-upg-query-fix andcfg-upg-prop-fix events are
defined analogously.

Next we introduce history variables. First, thgery-cmap () is a mapping:N — C, initially undefined. It is set in the
query-fix step ofr, to the value ofop-configs in the pre-state. The history varialeop-cmap(7) is defined analogously for the
propagation phase of operatian The query-phase-start(7), initially undefined, is defined in thguery-fix step ofr, to be the
unigue earlier event at which the collection of query resulas started and not subsequently restarted (the lasbiimec set is
assigned). This is either irRW-Start step of a read or a write operation, olRiV-Phase-1cstep. The evengrop-phase-start(r)
is defined analogously, but with respect to the propagat@se.

For every read or write operationat nodei, we define the history variableg () to be the value ofag, when thequery-fix
event occurs forr at nodei. If 7 is a read operation thefag () is the largest tag that nodeencounters during the query phase.
If 7 is a write operationtag(m) is the new tag that is chosen byor performing the write. Similarly, for a configuration uggle
operationy at nodei, we definetag(+) to be the tag at nodé(i.e., tag;) when thecfg-upg-query-fix event occurs, that is, the

largest tag encountered at nadguring the query phase of

The history variableemoval-set(vy), is defined for the configuration upgrade operatjolit is a subset oR, initially undefined,
and records the configuration identifiers of configuratitvas &re marked for removal (whose identifiers are less lessthie value
of upg-target for 4.) The history variablén-transit, defined as a set of all messages that are sent by any pantiofthe service.

Finally for any operationr we define the history variabl&(r, k), for k € N, as a subset dof, initially undefined. It is set
in the query-fix step ofr, for eachk such thatquery-cmap(w)(k) € C, to an arbitraryR € read-quorums(c(k)) such that
R C op-acc in the pre-state, wher€k) € C. Similarly we defind¥ (, k), for k € N, to be a subset df, initially undefined and
set during therop-fix step ofr, for eachk such thaprop-cmap() (k) € C, to an arbitranV' € write-quorums(c(k)) such that
W C op-acc inthe pre-state. Similarly we defid®&(y, £), W1 (v, £), Wa() for any configuration upgrade operatignR(~, £) and
Wi (v, £) are set in thefg-upg-query-fix step ofy, for each? € removal-set(y), to an arbitraryR € read-quorums(c(¢£)) (resp.
W € write-quorums(c(£)), such thatR C upg-acc(resp.W C upg-acc) in the pre-stateWs () is set in thecfg-prop-query-fix
of to arbitraryW € write-quorums(c(k)) such that¥ C upg-acc in the pre-state, whergk) € C'is the target ofy.

Note that the only updates on tliMap in various places in the system are allowed via tpeateandtruncateoperations.
Hence, in any state of the executi@Mapthat is a part of a message that is in transityfigs;, op-configs;, query-cmap(r),
prop-cmap(m), andupg-configs;, for somei € I and any operatiom, always has th&Jsableproperty. Moreover, £Mapthat
appears asp-configs;, query-cmap(m) or prop-cmap(w), for somei € I and any operatiom that has initiated a read/write
operations which has not terminated yet, always hadihecated property. (These properties are easily described as amari
on the service, however such formal presentation is omitted this discussion.)

Phase guarantees. Lemmas presented in this section discuss the effects ofycqaret propagation phases of read/write and
configuration upgrade operations. In more detail, we deedhie information flow that must occur during these phasefide
operation completion. We show that if nodlénitiates a phase of a read/write or a configuration upgrameasion and if there
exists a specific sequence of message exchanges that sthesds at, then if that phase terminatesis in possession of the
most recent tag and its value cannot be smaller than ikéw at the start of the phase. Moreover, we show that corafigur
information and value of the tag at each node that partieghat the examined communication sequence has specificrtiespe
Our claims are based on the following observation: A nodel $Be most recent state information that includes its corditpn
information, value and tag, and phase information of aliserparticipants. By the specification of the algorithne teceiver

of this message can only increase fitg and increment the phase information in any cell of its phasaber matrix. Also,
the configuration information is updated only with a moreergcone. This means that nodes may learn about configuration
information, tag, and phase information of other partinigandirectly.

Note, the casg = i is treated uniformly with the case whefeZ i. This is because, in theTALA, communication from a loca-
tion to itself is treated uniformly with communication beten two different locations. First, we consider howtdginformation
is propagated in the query phase of the configuration upgrpdration. Since the flow of information in the propagatibage is
analogous to that in the query phase of the configuratiomagggoperation, we compress two lemmas into one.

Lemma 4.1 Suppose that afg-upg-query-fix(k); (resp. cfg-upg-prop-fix(k);) event for configuration upgrade operation
occurs in executiony and k' € removal-set(y). Supposej € R(v,k') U Wi(y, k') (reps. j € Wa(v)). Then there ex-
ists a sequence of identifiefs,, ...,.,) where for alll < h < n each., € I, and the corresponding message sequence

<mL17L2,...,m%7%+1,...,mL”fl’L”>, wheret; = ¢, = i and that there is; = j, for somel < h < n . Such that: (i) The
messagen,, ., is sent after thefg-upgrade(k); (resp.cfg-upg-query-fix(k);) event ofy. (ii) Each message:,, ,, ., is sent after
m,, _, ., 1S received. (iii) The message,, , ., is received before thefg-upg-query-fix(k); (resp.cfg-upg-prop-fix(k);) event of
7. (iv) In any state afteyj receivesmn,, .., configs(¢); # L forall £ < k. (v) tag(vy) > t, wheret is the value ofag, in any
state beforg sends message, .. -
bRl

Next, we consider how thiag information is propagated in the query phase of the read aitd aperation. Again, since the
flow of information in the propagation phase is analogou$#t in the query phase, we compress two lemmas into one.
Lemma 4.2 Suppose that guery-fix, (resp. prop-fix;) event for a read or write operatiom occurs in«. Legk, k' € N.
Supposequery-cmap(m)(k) € C andj € R(m, k) (resp. prop-cmap(n)(k) € C andj € W(n,k)). Then there ex-
ists a sequence of identifie(s,, ..., ¢,) where for all1 < h < n each., € I, and the corresponding message sequence
<mu~,m--~me,;,L,;H’-~-men—1,Ln>' wheret, = 1, = i and that there is; = 7, for somel < h < n. Such that: (i) The
messagen,, ,, is sent after thejuery-phase-start(m) (resp. prop-phase-start(7)) event. (ii) Each message,, ,, ., is sent after
m,, ., 1S received. (iii) The message,, , . is received before thguery-fix (resp. prop-fix) event ofr. (iv) If ¢ is the
value of thetag; in any state beforg sendsm,; ., . then: (a)tag(w) > t. (b) If = is a write operation thertag(m) > t.
(V) If configs(£); # L for all £ <k’ (resp. £ < k') in any state beforg sendm,, ,. , thenquery-cmap(r)(¢) € C (resp.
prop-cmap(m)(€) € C) for somel > k'.

Lh41

Atomicity. We show atomicity using the framework of Lemma 13.16 in [Rigcall thatx is an arbitrary, good execution of the
algorithm. We need to show that inif all the read and write operations that are invoked conapleten the read and the write

operations can be partially ordered by an orderingnd the following properties are satisfie@®1). < totally orders all write
operations inv. (P2): < orders every read operationdrwith respect to every write operationdn (P3): for each read operation,
if there is no preceding write operation-i then the initial value is returned by this read; else, tlael @peration returns the value
of the unique write operation immediately preceding iin(P4): if some operationg,, completes before another operatian,
begins inc, thenm, does not precede, in <. If such ordering< can be constructed far, then the algorithm guarantees atomic
consistency.

We define< in terms of the lexicographic order on tags of operation©bserve tha(P1) to (P3) are essentially immediate.
Lemmas 4.1 and 4.2 stated above and the additional lemmserpeel in [15, 7, 4], which describe the behavior of confitioina
upgrade operation and read and write operations in any #macare used to establish the monotonically increasidgmoon tags
with respect to non-concurrent read or write operationseBan the tags we define a partial order on operations arfg theat
property(P4) is enforced. Therefore, it follows immediately that thest@gduce a partial ordex that meets the necessary and
sufficient requirements for atomic consistency. Hencenihi result follows:

Theorem 4.3 ATILA implements atomic read/write objects.

5 Conditional Analysis of Operation Latency

In this section we examine the operation latency under amtiiining assumptions as in the analysis of operationsAm B0
presented in [15, 7, 4, 6]. The analysis is done in parts: €i)state the connectivity properties of the service deplayrgeaph
of ATILA, (ii) we present the new upper bound on the operation latearty (iii) we present the expected operation latency in
the case of restricted asynchrony under reasonable assaspf probabilistic behavior of the algorithm. The noyedf our
analysis as compared to the type of analysis done in [15,6],id that here we use a more realistic assumption on theidorat
message delivery. The previous analysis assumed that slages were delivered within a fixed time interval; insteadasume
a probability distribution on the delivery time of messagéth finite variance.

ATILA is specified as a nondeterministic algorithm for asynchusnenvironments with arbitrary message delays and node
crashes, departures, and new nodes joining. In such dyreami®nments it is hard to quantify the speed of informatioopa-
gation throughout the known universe of nodes. For the mapd analysis, we restrict asynchrony, resolve the noeratism
of the algorithm, and impose constraints sufficient to goimthat the universe is connected.

Assumptions. Assumex is an admissible timed execution antla finite prefix ofa. Let ¢time(a’) denote the time of the last
eventina/. Leta be atimed admissible executidhen we say that is ana’-normal execution if (i) no message sentarafter
o’ is lost, and (ii) if a message is sent at timi@ «, it is delivered within bounded time (unknown to the pagaits).

For the purpose of latency analysis, we restrict the sengattern of the service participants: we assume that eaaktssen
messages at the first possible time and at regular interfalstltereafter, as measured by the local clock, and each notle wil
immediately send messages to all of its immediate neightadieving: (i) receipt of a join request, (ii) new configuia is
discovered, and (iii) receipt of a message that indicataspghase information of any node has changed. Also, the aend-and
locally controlled events occur just once, and are assumbd instantaneous.

As with all quorum-based algorithms, operational liverdsgends on all the nodes in some quorums remaining activelsL e
denote byt(c) the time at the end of the installation of configuratiorObserve that we can always specify such a time by using
the well-known axioms of time passage actions [14]. Also,deaote by’ the next configuration that has been installed after
configurationc. We say that an executiam is (o/,e;r)-configuration-viabldf for every installed configuration, there exists a
read-quorump, and a write-quoruniy’, such that no process RU W fails or departs before time@ax{t(c') + 7, ftime(a’) +
e+ 7}, wherer is the time required to markas obsolete by the first configuration upgrade operatiorughgitades configuration
with index higher than that af. We say that execution satisfieq o/, 7)-recon-spacindf after o/, at least time- elapses between
the event that reports the new configuratioand any following event that proposes the new configuratiorin other words,
aftero’, when the system stabilizes, reconfigurations are not #mufnt. Execution is said to satisfyf{’, e)-join-connectivity
if after o/, for any two nodes that both have joined the system at tiswech that > (time(a’), they know about each other by
timet + e. Executiona satisfieg o/, 7)-recon-readines after o/, everyrecon(c) event proposing a new configuration includes
a node; in c only if 4 joined at least time ago. This, in conjunction witflo’, e)-join-connectivity ensures that all the nodes in
active configurations are aware of each other.

Operation liveness depends on the connectivity propertigeservice deployment graph, hence we require that tharpash
between any two nodes (consisting of nodes and edges). Wie dleéi connectivity property on the service deploymentlyrap
as a timing assumptiofx’)-connectivity This means that the nodes and the direct communication fimky fail, but in such a
way that the connectivity assumption is not violated.

Analysis. Now we provide analysis that estimates the duration of resgb(write) operation when reconfiguration is present.
To make this estimate more realistic we provide minimum rigniestrictions on spacing of certain events in the systeth an
delays on message delivery. One way of carrying out the tiondi analysis is to assume fixed bounds on the delivery tifiad!
messages as in [15, 7, 4, 6]. However, imposing rigid timiogrials on the asynchronous behavior of the assumed modsi¢phy
deployment) is too restrictive often far from reality. A nreaealistic approach is to assume certain probability itigtion on the
delivery time of the messages. Unfortunately, such prdipablistribution may be difficult to determine for a complalgorithm

as ATILA. Under expected conditions, i.e., where the rate at whicleagoin, leave, or fail and the reconfiguration of the system
is not very high, we may estimate the mean delay or the stdriiasiation on message delivery delay.

For the purpose of analysis we consider a non-faulty pagiti of the service, nodethat locally initiates a read (resp. write)
operation. As described in Section 3, read (resp. writejaimns consist of two phases. During each phase noagst be able
to deduce from examination of its state that all members t#ast one read-quorum (resp. write-quorum) of each corstgur
found in op-configs, has a good estimate @6 state, which is a condition to reach the fix point of the eatiphase.

In the analysis that follows, we consider a subgraph of theice deployment graphs that is induced by members of active
configurations. LetD represent the diameter of this graph. Now, consider soméfaitanl quorum member;, such that the
length of the communication path betweeand; is D. Note that new nodes may join the service at any time and aaetiye
participant. If a new node joined only gtand is included as a member of a configuration installed imthe reconfiguration,
then the diameteP will increase. Therefore, we are interested in estimatirggtime required to complete a single phase of the
read (resp. write) operation in a situation when new nodestle service and become members of new configuration dthig
following reconfiguration attempt.

Suppose that the mean time required for a message delivemgde any two nodes 54 with finite variances 42 and the
mean time of a new member being inducted into the quorukgiand with finite variance 2. Also, we assume thaty < \p.
Meaning that on an average it takes less time for a messagedselivered from its source to its destination than the tioreaf
new configuration to be proposed and installed (a reconfigurattempt), for examplé to 12 (a timing assumption used in the
analysis of _RmBO algorithms in [15, 7, 4]). Itis noteworthy that in a situatirhere the system is undergoing a rapid change or
behaving perversely then the above parameters may notilbreabst easily or reliably.

To simplify the analysis notationally we assume the follogvhotations. Let = pg,p1,--- ,pp = j be a sequence of non-
failed nodes and lett and B be two pointers, such tha#t initially points top, and B initially points topp. PointerA represents
the farthest node along the communication path fggro pp that has a good estimate #8 state. PointeB points to the quorum
member that is currently farthest from

The following argument is based on the position of thesetpasralong the path which help us model the performance afd re
(or write). Next, we estimate the duration of a read (or Wriiperation that is initiated byin the presence of reconfiguration,
according from the knowledge about the first two momentsaeif tfistributions. We assume that messages are exchantyegdme
adjacent nodes in the communication path within some ranalmount of time according to some probability distributibng
with the first two moments as mentioned above. Since the figemation is in progress, new nodes that join at the end of the
i = po,p1, -+ ,pp = j which would result in a longer path= po,p1,--- ,p;,Pj+1, - ,pp Wherepp (i.e. pointerB) is a
few steps further away from; (i.e.,p;+1,- - ,pp are the newly joined nodes). The new arrivals will join at the at the rate
governed by some other probability distribution, but witlke first two moments known to us. For the pointewe denote by
X, the random variable that represents the random amount effolowing the same unknown distribution, to jump from foin
pe—1 10 pe. We also assume that the random variatiges X, . . . are identically and independently distributed. Clearlg, vave
E(X,) = Ma andVar (X;) = 042 for £ € N. Similarly, we define a set of random variablgs Ys, . . . that are independently
and identically distributed according to some distribotsuch thatt (Y;) = Ag andVar (Y;) = o2 for ¢ = 1,2,..., wherey,
represents the random amount of time the poifteakes to jump from the poinb + ¢ — 1 to D + ¢. As mentioned before, we
assume thak 4 < Ap, i.e., on average the pointérjumps more frequently than pointé.

Definition 5.1 We say that pointen “catches up” with pointerB by timet if 3n,m € N, n,m > D, such thatp > m + D and
Zlgegn X < Zlgegm Y, <t

The following Lemma quantifies the time required to performead/write operation, with high probability, under cemtai
normalbehavior, which is explained in greater detail below. linely, the expected time of completion of a read/write @pien
is sharply concentrated under certain reasonable weblmehexecution of AILA.

Lemma 5.2 Suppose initially pointed points at pointpy and pointerB points at the poinpp then A catches up wittB by time
DAs_ with high probability.

AB—AA
Now in the case of AILA, we assume that the average time of delivering a point-intpoessage i& times smaller than the
average time of a new configuration being proposed and iedtalypically, the range of is somewhere between 1 to 12. where

the pointerA, at any timet, represents node that is aware of the initiation of the waidy operation (by nodé and closest to the
node pointed to byB which represents the quorum member that is currently fattihem<. Here the distance between two nodes
is measured in terms of the length of the shortest path (plgssiany) between the two nodes in the communication grapgrevh
each edge has unit weight. Therefore, the time of delivaaipgint-to-point message }sy = ATB where) g is the average time of
of a new being configured and installed. From Lemma 5.2 welstettie read/write operation takgg2s— = P2 — kL

to complete with high probability We say that an ev€rdccurs with high probability to mean that[] = 1 — O(n~ %) for some
constantx > 0. whereD is the diameter of the communication graph induced by theuqus.

The deterministic upper bound. Under assumptions stated above we consider the followingtwease scenario. Letbe the
node that initiates a read or a write operation, we denosgithe progress of the first pointer in the above analysishéstart

of the operation, lej be the node farthest from this distance is at most the diameter of the service deptoyrgraph at the
time wheni initiates its operation, this is referred to as the seconidtpp Soon aftef initiates its operation, new nodes join the
service. The first new node connectgitand each new node may join at the last node that joined the&eseia essence the nodes
that joined the service form a line. By theconspacing assumption a new node may become a member of theomdigfuzation
at leastl 2d time after it joined the service.

Theorem 5.3 Leta be ac’-normal execution of thATILA that satisfiega’, 7)-recon-spacinghen a read/write operation takes
O(N) time to complete since its invocation, whé¥es the number of nodes present at the time of invocation afpleeation and
T > eN, for some constard

Proof. This is clear by the existence of a sequence of identifigrs.., . 5) of the participating nodes inTALA , that respects the
conditions of Lemma 4.1. O

6 Analysis of communication cost inATILA

Now, we describe a scenario where the message bit cost cdtgpdé ATILA is less than the one of &1BO and yet the
necessary redundancy in the case of direct link failureasigded. Such a scenario can occur in a wide class of mobikersss
The message bit cost complexity is the total cost of sendiagridividual bits across the links, governed by some casttfan.

The RamBO algorithm involves point-to-point perpetual dissemioatof information which eventually helps to infer liveness
of the protocol. However, such approach is obviously wastehen nodes are separated by long geographical distaides.
assume that communication within the local area networltssis expensive than in wide area networks. A more reasonable
solution to the above problem is to reduce the communicati@n long distances, hence reducing the total messagedbit co

Consider the following grouping. Let the participants of gervice be divided into disjoint groups based on their ipniy
in terms of cost/reliability of communication among the asdFor each group we define a non-empty subset to which we refe
as therepresentative®f the group. Within a group nodes communicate using théoadil gossip protocol, however only the
nodes designated as representatives may communicatethéthrepresentatives in the different groups. In thisisgttiie indirect
learning protocol allows a reduction of message bit costplerity. (The set of representatives may be agreed upormg wsin
arbitrary consensus service, and handled in a similar flugfoArILA does the configuration reconfiguration.) Note that in this
setting the correctness issues are vacuously satisfied —alyénmpose a communication policy that restricts certaidemfrom
sending messages to certain other nodes.

Notation. We denote the set of all nodes that are participating in tndcgeby/ and letN = |U/|. Leti andj be any two
non-failed participants of the service, hericg¢ € Y. The cost function which represents the cost of sending aagesbetween
any pair of nodes i/ is defined as : U x U — R*. Hence,x (i, j) denotes the cost of sending a message from noalg. We
assume that(i,7) = 0 andx(¢,7) = x(j,4) and thaty(-, -) satisfies the triangle inequality. Th(i4, x) is a metric space with
the metricy.

We partition/ into groupsg,Gs, -+ ,Gm, such thatg, C U, U™,G, = U andG, NG, = Pforl <. # ¢/ < m. We
also require that'i,j € G,, x(i,j) < d and that for somé < . # / < m there is a pair of nodes € G, andj € G,/ such
that x(¢,4) > d, for an appropriately choseir Finally, for every groups, we define a subsef, C G,, which we call the
representativesf G, .

Analysis of message cost. Next, we compare the communication cost complexities ofRa@B0O and ATiLA and show that
the use of indirect gossip can lead to substantial cost gaviNote that the following analysis does not account forctist per
message bit contributed by the maintenance of the overlayonke on which RaMBO relies on for message routing. Also, observe
that proposed here partitioning is based on the commuaitatist involved between each pair of nodes and hence isajérenm
the point of view of the distance function. L&tbe partitioned inton groups, as previously described. To simplify the analysis
we assume that all groups are of equal sjgg, = g, and that the size of representative subgroups also hakszeal, | = ¢, for
alll << m.

The gossip messages imRBO have the form(tag, val, configs, world, pnum,, pnum ;). Clearly,|world|=|U|=N. There-
fore, the size of a messageds+ N x 4, whereA represent the constant size of the remaining message cemiscemnd is the
size of a node identifier. Hence, the size of each messa@ens.

Now we compute the message bit cost complexity OfLA . We begin by considering the following two cases: First, sages
exchanged between a non-representative nodes are of tne(fay, val, configs, world, pNums[i][i], pNums[i][j]). Second,
messages sent out by a representative node are of the(fagmal, configs, world, pNums). Observe that in the first case the
size of a a message@¥(N) and in the second case itG& N?).

The following equation compares the communication bit clexity per a single round of gossip intALA, left hand side, and
RAaMBO, right hand side.

G*m(A 4 SN) + £™IZD (A 4 §(N2 + N)) + £(g — O)ym(A + §(N? + N)) < N?(A + 6N) = O(N?)

On left hand side, the first term is the bit complexity of thessages exchanged inside all of thegroups, second term is the
bit complexity of the communication between all represtivea, and the third term is the bit complexity of messageharged

between the representatives and the rest of the group, ¢argraup.

Observe thay, m, and¢ have the following relationships: = N/g and thatl < ¢ < g¢. Clearly ATiLA benefits wher?
is small with respect tg. Therefore, under the assumption that the cost of commtimicaithin a group is cheaper, then if
¢ < log g andm < /N then the message bit cost complexity is minimized farLA, i.e. when the number of groups is not
very large and AILA can take advantage of reducing the number of bits sent ogendbensive links — between different groups.
Otherwise, RMBO has the lesser message complexity tharn.A. However, the liveness of theARBO depends on the fact that
links between the nodes do not fail and messages are notnritdfidelayed.

7 Conclusions

In this work we investigate an indirect learning mechanisithiw a consistent replicated object service for dynamiovoeks
that do not support automatic routing. We provide an algorithat implements atomic read/write objects where thagyaating
nodes communicate with their direct neighbors only, thusailmg the need for a global routing protocol. The indirkerning
approach, as presented in this work, has the potential ofngakore robust other algorithms that, for example, emplby a
to-all gossip as means for information exchange. The alywoit development presented here is formally proved toantaee
atomicity in all executions. The indirect learning protbaltows operations to progress as long as the underlyingarktremains
connected. We also presented a novel analysis of the opesibtatency under reasonable assumptions about the needsiagery
time. Lastly, we considered scenarios where our algoriteipshreduce messaging costs. A distributed implementatidhe
algorithm presented here is underway. Experiments withittpdementation will provide further insight into the bel@vof
algorithms using the indirect learning approach and theachpf our approach on communication costs in ad-hoc nevork

References

[1] Special issue on group communication servic@smmunications of the ACN9(4), 1996.

[2] J.-C.Bermond, L. Gargano, A. A. Rescigno, and U. Vacckest gossiping by short messagesAiriomata, Languages and Programming
pages 135-146, 1995.

[3] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geogms: Implementing atomic memory in ad hoc networksPrioc. of
17th International Symposium on Distributed Computipages 306—320, 2003.

[4] C. Georgiou, P. Musial, and A. Shvartsman. Long-lived RAMB®ading knowledge for communication. Froc. of 11th Collog. on
Structural Information and Communication Complexpggges 185-196, 2004.

[5] C. Georgiou, P. Musiat, and A. Shvartsman. Developing a considtemain-oriented distributed object service.Rroc. 4th IEEE Int-|
Symposium on Network Computing and Applicatigragies 149-158, July 2005.

[6] S. Gilbert. RAMBO II: Rapidly reconfigurable atomic memory for dynic networks. Master’s thesis, MIT, August 2003.

[7] S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO II: Rapidly refigarable atomic memory for dynamic networks.Rroc. of Interna-
tional Conference on Dependable Systems and Netwpakges 259—-268, 2003.

[8] V. Gramoli, P. Musiat, and A. Shvartsman. Operation liveness inrethic distributed atomic data service with efficient gossip manage-
ment. InProc. 18th International Conference on Parallel and Distributed Comgu8gstemsAugust 2005.

[9] D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hocleg®networks. Itkluwer Academic

[10] I. Keidar, J. B. Sussman, K. Marzullo, and D. Dolev. Moshe:r8up membership service for warsCM Trans. Comput. Sys20(3):191—
238, 2002.

[11] S. Khuller, Y. Kim, and Y. Wan. On generalized gossiping and #caating, 2003.

[12] K. Konwar, P. Musial, N. Nicolaou, and A. Shvartsman. Impletir@natomic data through indirect learning in dynamic networks, 2005.
http://www.cse.uconn.edu/ ~ piotr/pubs/TRs/KMNSO06.ps

[13] L. Lamport. The part-time parliamenACM Transactions on Computer Systet(2):133-169, 1998.
[14] N. Lynch. Distributed Algorithms Morgan Kaufmann Publishers, 1996.

[15] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomiamoey service for dynamic networks. Proc. of 16th International
Symposium on Distributed Computjqmges 173-190, 2002.

[16] N.Lynch and M. Tuttle. Hierarchical correctness proofs fotriisited algorithms. Technical report, 1987.

[17] N. Malpani, J. L. Welch, and N. Vaidya. Leader election algorithorsnfiobile ad hoc networks. IBIALM '00: Proceedings of the 4th
international workshop on Discrete algorithms and methods for mobile atingpand communicationpages 96—-103. ACM Press, 2000.

[18] V. D. Park and M. S. Corson. A highly adaptive distributed routilggpathm for mobile wireless networks. Iroc. of IEEE INFOCOM
April 1997.

[19] C. E. Perkins and P. Bhagwat. Highly dynamic destination-se@edistance-vector routing (dsdv) for mobile computersPioc. of
ACM SIGCOMM August 1994.

[20] C.E. Perkins and E. M. Royer. Ad hoc on-demand distance veatiing. InProc. of IEEE WMCSAFebruary 1999.

10

Appendix
7.1 A. Atomic Consistency ofATiLA

In this section we present the omitted details of proofs wirteas presented in Section 4.

Definitions. We introduce another operation that allowed on &ap. It is a binary function orC'y., for anyc,c¢ € Cy.,
defined byextend(c, ') = ¢ if ¢ = L andd’ € C, andextend(c, ¢’) = ¢ otherwise.

Configuration map invariants. Invariants are the properties of the algorithm that are itmevery state of any good execution.
Here we state two invariants. The first invariant describegpgtterns of’, 1, and+ values that may occur in configuration maps
in various places in the system in any state. The varialp)gsconfigs is defined similarly a®p-configs and is used to maintain
the list of configurations used during the configuration apgroperation.

Invariant 1 [Inv. 4.3.3 in [7]] Letem be aCMap that appears as one of the following: (i) The: component of some message
in in-transit. (ii) configs; for anyi € I. (i) op-configs; for somei € I that has initiated a read/write operations which has
not terminated yet. (ivjuery-cmap(w) or prop-cmap(w) for any operationr. (V) upg-configs, for somei € I that initiated
configuration upgrade operation which has not terminateid Yaencm € Usable.

Invariant 1 ensures that the configuration map in each ofistexdl places has thEsable property, which describes the patten
of configurations. The next invariant strengthens Invdriaand states additional properties of tbelaps that are used for read
and write operations.

Invariant 2 [Inv. 4.3.4 in [7]] Let cm be a CMap that appears asp-configs; for some: € I that has initiated a read/write
operations which has not terminated yet, or@gry-cmap(w) or prop-cmap () for any operationr. Thenem € Truncated.

Invariant 2 ensures that the configuration map used duriad) @aad write operations has no gaps in it, i.e. hasftheicated
property. Upon detection of a gap in the local configuraticepmthe operation is restarted as to take advantage of the new
configuration information.

Omitted proofs of referenced Lemmas.

Lemma 7.1 Suppose that afg-upg-query-fix(k); event for configuration upgrade operatiop occurs in « and k' €
removal-set(y). Supposg € R(~, k") U Wi(y, k).
Then there exists a sequence of identifigrs..., ,) where for alll < h < n each¢, € I, and the corresponding message

sequencs{rnbl,m, .. -~»mbn_1,bn>, wherer; = 1, = 7 and that there ig;, = j, for somel < h < n . Such that;

’TnLﬂ¢ﬁ+1"
1. The message,, ,, is sent after thefg-upgrade(k); event ofy.

2. Each message,, ., ., is sent aftem,,_, ., is received.

3. The message,, , ., is received before thefg-upg-query-fix(k), event ofy.
4. In any state aftey receivesn,, .., configs(£); # L forall ¢ < k.

5. tag(7y) > t, wheret is the value otag; in any state beforg sends message, .

g1t
Proof. The phase number discipline implies the existence of theimel& sequence of messages

Moy gy s Moo ey Mgy,)
For Part 4, individually consider ea¢hin the range2 < h < n. The precondition oéfg-upgrade(k) implies that, when the
cfg-upgrade(k); event ofy occurs,configs(¢); # L for all £ < k. Therefore, each node whose identifier is found in the sexpien

(t2,...,tn), which includes; = j, setsconfigs(¢); # L for all £ < k when it receives the messagg, , ,,. Monotonicity of
configsy, for eachl < h < nincludingj, ensures that this property persists forever.

For Part 5, consider eadhin the rangel < h < n — 1. Lett,, be the value otag,, in any state before, sends message
My, .- LEtE, be the value otag,, in the state just after, sendsm,,, ., .,. Thent,, < ¢, , by monotonicity. Hence,
t, <t, . Thetag component ofn,, . isequaltot; , by the code fosend. Sincei receives this message before the

cfg-upg-query-fix(k);, it follows thattag(y) is set byi to a value> t. O

Next, we consider the propagation phase of a configuratignaaie.

Lemma 7.2 Suppose that afg-upg-prop-fix(k); event for a configuration upgrade operatignoccurs ina. Suppose thaf €

Wa (7).
Then there exists a sequence of identifigss..., t,,) where for alll < h < n each:, € I, and the corresponding message
sequence{rnbwz, ce mz/;”e;ﬁlw-~>mm71,en>’ wherer; = 1, = 7 and that there ig; = j, for somel < h < n . Such that;

1. The message,, ,, is sent after thefg-upg-query-fix(k); event ofy.
2. Each message,,, ., ., is sent aftem,, , ., is received.
3. The message,, , .., is received before thefg-upg-prop-fix(k); event ofy.

11

4. In any state aftey receivesn,, .., tag; > tag(y).

Proof. The phase number discipline implies the existence of theimeld sequence of messages
<mL17L27 s Mg e Mg)

For Part 4, whery receivesm,, .., it setstag; to be> tag(v). Monotonicity oftag,; ensures that this property persists in
later states. O

Next, we consider the query phase of read/write operations.

Lemma 7.3 Suppose that auery-fix, event for a read or write operatiomr occurs in«. Leg k,k’ € N. Suppose
query-cmap () (k) € C andj € R(m, k).
Then there exists a sequence of identifigss..., t,) where for alll < h < n each:, € I, and the corresponding message

sequenc<mbhb2, e .,mbnfl,bn>, where.; =+, = 7 and that there ig; = j, for somel < h < n . Such that:

’ mLfL"’fH»l [
1. The message,, ,, is sent after thejuery-phase-start(7) event.
2. Each message,,, ., ., is sent aftem,, , ,, is received.
3. The message,, , ., is received before thguery-fix event ofr.
4. Iftis the value of theag; in any state beforg sendenﬁww, then:
(@) tag(m) >t.
(b) If 7 is a write operation thenag(7) > t.

5. If configs(£); # L for all £ <k’ in any state beforg sendm,; .; . thengquery-cmap(w)(¢) € C for somel > k'.
Proof. The phase number discipline implies the existence of theimeld sequence of messages
le,L27 AR 7mL}§,’LE+1’ ce 7an,1,Ln -

For Part 4, individually consider ea¢hin the rangel < h < n. Thetag component of message,, ,,+1 IS at least as great
as thetag component in the message, , ,,. Hence, in the message,, , ,,, and during the query phaseoihode: receives a
tag> t. Thereforetag(n) > t. Also, if 7 is a write, the effects of thguery-fix imply thattag(w) > t.

Finally, we show Part 5. In then component of message,; .; em(€) # L forall ¢ < k. Then by the code akcv code

eachh, whereh < h < n, sets itsconfigs(£), # L forall ¢ < k/, from the property ofonfigs;, , and the code ofend action.
Hence, we conclude that: component of message,,,_, ., hasem(¢) # L forall ¢ < k’. Thereforejruncate(cm)(¢) = cm(¥)
forall ¢ < k', sotruncate(cm) # L forall ¢ <k’

Let em’ be the configuration mapztend (op.configs,, truncate(cm)) computed by:i during the effects of theecv event
for m,, ... Sincei does not resetp.acc to () in this step, by definition of thguery-phase-start(n) event, it follows that
em/ € Truncated, andem’ is the value ofop. configs; just after therecv step.

Fix ¢,0 < ¢ < k’. We claim thatem/(¢) # L. We consider cases:

1. op.configs(f); # L just before theecv step. Then the definition afrtend implies thatem” # L, as needed.

2. op.configs(£); = L just before therecv step andtruncate(cm)(¢) € C. Then the definition ofextend implies that

em!(£) € C, which implies thatm/(¢) # L, as needed.

3. op.configs(¢); = L just before theecv step andiruncate(cm)(¢) ¢ C. Sincetruncate(em))(¢) # L, it follows that
truncate(ecm)(£) ¢ C. By the case assumptionp.configs(¢); = L just before therecv step. Since by Invariant 2,
op.configs;, € Truncated, it follows thatop.configs(¢') = L before therecv step. Then by definition ofztend, we have
thatem/(¢) = L while cm/(¢) € C. This implies thatm’ ¢ Truncated, which contradicts the fact, already shown,that
cm’ € Truncated. So this case cannot arise.

Since this argument holds for &) 0 < ¢ < £/, it follows thatem/(¢) # L for all ¢ < k’. Sinceem/(¢) # L forall ¢ < ¥/,
Invariant 1 implies thatm’ € Usable, which implies by definition ofUsable that cm/(¢) € C for somel > k’. That is,
op.configs;(¢) € C for somef > k' immediately after theecv step. This implies thajuery-cmap(w)(¢) € C for somel > £/,
as needed. O

And finally, we consider the propagation phase of read anttwperations.

Lemma 7.4 Suppose that arop-fix;, event for a read or a write operatiom occurs ina. Supposerop-cmap(r)(k) € C and
jeW(nk).
Then there exists a sequence of identifigss..., ¢,) where for alll < h < n eachy, € I, and the corresponding message

sequenc<mbw2, . .,mbn_wn>, wherer; = 1, = i and that there ig;, = j, for somel < h < n . Such that;

3mL’1,L}'L+17‘ *
1. The message,, ,, is sent after the-phase-start(w) event.
2. Each message,, . is sent aftem is received.

th+1 Lh—1,5th

12

3. The message,, , ., is received before thgrop-fix event ofr.
4. In any state aftey receivesn,, .., tag; > tag(m).

5. If configs(£);# L for all £< k" in any state beforg sendsn, , thenprop-cmap(m)(¢) € C for somel > k',

R4
Proof. The phase number discipline implies the existence of theimelé& sequence of messages

<mw2, s Mgy Mgy,)
For Part 4, individually consider ea¢hin the rangel < h < n. Lett;, be the value of aag at nodeh just beforeh receives
m,, .., andt) afterh receivedm,, ,,,. From the code ofecv we know thatt; > ¢,. Itis easy to see thaf, > ¢;, hence
tifl > t1. Letm,, ,,.tag be thetag field of messagen,, ,,. Sincem,, ,, is sent after th@rop-phase-start() event, which is not
earlier than theuery-fix;, it must be thatn,, ,,.tag > tag(r). Therefore, by the effects of thecv, just after;j receivesn, . -
tag; > my, .,.tag > tag(m). Then monotonicity ofag; implies thattag; > tag(r) in any state aftej receivesn,, ...

For Part 5, the proof is analogous to the proof of part 5 of Len3. In fact, it is identical except for the final conclusion
which now says thatrop-cmap(m)(¢) € C for somel > k’. O

l,L”IJ

Using the above lemmas in conjunction with those presemt§d 4] we arrive at the main result of this work.
Theorem 7.5 ATILA implements atomic read/write objects.

Proof.[(sketch)] Follows that of Theorem 5.4.3 of [6], where the above Lemihas7.2, 7.3, and 7.4 are used in place of Lemmas
4.4.1,4.4.2,4.4.3, and 4.4.4 in [6] respectively. O

13

7.2 B. Complete Specification oATILA

In this section we present the complete code listing ofLA algorithm, which includes the following published impreve
ments [7, 4, 5]. Recall that in [7] a new rapid reconfiguratsenvice is proposed that allows removal of multiple configions
during a single configuration upgrade operation. In [4] gitiwed version of the RMBO service is presented, where explicit
leave protocol and incremental gossip mechanism improxeneance of the service by substantially reducing the nemaind
size of state messages exchanged byRéader-Writerautomata. Finally, an efficient implementation of a multjemb RAMBO
service is presented in [5]. The user groups all of the rdlatgects into a domain, which is maintained by a single msaof the
RAMBO algorithm per participating node. Note that the same teghes used to extendARiBO to the domain-RMBO are used
to extend specification of ALA to the domain-AILA. Also, the methods used to show that domamR0O implements atomic
read/write objects can be used to show that the same is tidenadin-ArILA .

The 10A specification of AILA components is in the following order: (i) first we present doéer component, (iilReader-
Writer component follows, and (iii) we conclude with the specifimatof theReconcomponent.

Domains:
1, a set of processes
D, a set of domains
X4, a set of object identifiers from domaihwhered € D
Va,z, @ set of legal values of objegtfrom domaind, wherex € X, andd € D
C, a set of configurations, each consisting of members, read-qsoamd write-quorums

Input:
join(rambo, J)4;, J afinite subsetof — {i},i € I, such thatifi = io thenJ =0,d € D
read(z)q,, 1 € I,z € Xq,d € D
write(z,v)qq, vEV,i€l,x € Xq,d € D
recon(c, c')a,i, ¢,c’ € C,i € members(c),i € I,d € D
leaveq;, 1 € I,d € D
failgi, i € I,d € D

Output:
join-ack(rambo)gs,t € I,d € D
read-ack(z,v)q s, v €V i€ I,z € Xq,d € D
write-ack(z)a,i, i € I,z € Xq, d € D
recon-ack(b)a,i, b € {ok,nok}, i€ I, d€ D
report(c)qs,c € C,i€ I, de D

Figure 3. RAMBO,: External signature.

14

Signature:
Input:

join(rambo, J)a,;, J afinite subset of — {i},d € D
join-ack(r)q,s, € {recon,rw},d € D

leavey,;, d € D
faild,i, de D

State:

Output:
send(join)dyi,j,j cl— {Z}, de D
join(r)a,, r € {recon,rw}, d € D
join-ack(rambo)q;, d € D

status € {idle, joining, active}, initially idle
child-status € {recon,rw} — {idle, joining, active}, initially everywhereidle

hints C I, initially ()
failed, a Boolean, initiallyfalse

Transitions:
Input join(rambo, J)a,;
Effect:
if —failed then
if status = idle then
status < joining
hints «— J

Input join-ack(r)q,;
Effect:
if —failed then
if status = joining then
child-status(r) < active

Input leave, ;
Effect:
failed < true

Input fail,; ;
Effect:
failed «— true

Output join(r)a,:
Precondition:

—failed

status = joining

child-status(r) = idle
Effect:

child-status(r) < joining

Output join-ack(rambo)g,;
Precondition:

—failed

status = joining

Vr € {recon, rw} : child-status(r) = active
Effect:

status «— active

Output send(join)a,;,;
Precondition:

—failed

status = joining

j € hints
Effect:

none

Figure 4. Joiner, ;: Signature, state, and transitions

15

Signature:
Input:

read(z)q,;, ¢ € Xq,d € D
write(z,v)q,v € V,z € Xq,d € D
new-config(c, k)a;,c € C,k € N, d € D
recv(join)a,j,i,j € I —{i},d € D

recv(maz)ajim € M,j€l,x € Xq,d€ D

join(rw)g,, d € D
leaveq ;, d € D
fai|d7i, de D

Internal:
query-fix(x)a,:, * € Xq,d € D
prop-fix(x)a,:, v € X4,d € D
cfg-upgrade(k)a, k € NT,d € D
cfg-upg-query-fix(k)q:, k € N,d € D
cfg-upg-prop-fix(k)a,:;, k € N,d € D
cfg-upgrade-ack(k)q,:, k € N,d € D

State:

status € {idle, joining, active}, initially idle
world, a finite subset of , initially 0
leave-world, a finite subset of , initially ()
departed, a finite subset of , initially ()

value(x) € Vy, x € Xg, initially Vo € Xy : value(x) = (vo)q
tag € X — T, initially Vz € Xy : tag(xz) = (0, 7o)

Output:

configs € CMap, initially configs(0) = co, configs(k) = Lfork > 1

igpnum1 € N, initially 0
igpnum?2 € I x I — N, initially everywhere)

pnuml € Xq — N, initially Vz € Xgq : pnuml(z) =0

join-ack(rw)q,, d € D

read-ack(z,v)a,;, v € V, 2z € Xq,d € D
write-ack(z)q,i, ¢ € Xg4,d € D
send(mz)ai,j, me M,j€l, x € Xq,d € D

pnum2 € I x I x Xqg — N, initially Vo € X4,Vj, k € I, wherej £ i Ak #i: pnum2(j, k,z) =0

failed, a Boolean, initiallyfalse

op(x), an array of records (one for each object X) with fields:

type € {read, write}

phase € {idle, query, prop, done}, initially idle

pnum € N

configs € CMap

acc, afinite subset of
value € V,,

upg, a record with fields:
phase € {idle, query, prop}, initially idle
pnum(z) € N,Vz € Xq : pnum(z) =0
configs € CMap
acc(z), afinite subset of, Vo € X4
target € N

ig € IGMap, initially Vk € I:
ig(k).w-known = ()

ig(k).w-unack = (
ig(k).d-known = 0
ig(k)x.d-unack = ()
ig(k).p-ack =0

Figure 5. Reader-Writey ;: Signature and state

16

Input join(rw)a,; Input recv(join)q, ;s Output join-ack(rw)q,;
Effect: Effect: Precondition:
if =failed then if =failed then —failed
if status = idle then if status # idle then status = active

if ¢ =i then world «— world U {j} Effect:
status < active none
else Input fail ; ;
status < joining Effect:

world «— world U {i} failed — true

Figure 6. Reader-Writeg ;: Join-related and failure transitions

Output send({W, D, obj, v, t,cm, igns, ignr, pnc))q,i,;

Precondition:
—failed
status = active
T € X4
j € (world — departed)
W = world — ig(j) . w-known
D = departed — ig(j).d-known
<Obj7 v, t) =
(z, value(z), tag(z, /))
(em, igns, ignr, pnc) =
(configs, igpnum1 (z), igpnum2(z, j), pnum2)
Effect:
igpnuml «— igpnuml + 1

Input recv(leave)q,;
Effect:
if =failed N status = active then
departed < departed U {j}

Output send(leave) g ; ;
Precondition:
j € leave-world
Effect:
leave-world — leave-workd — {5}

Input recv((W, D, obj, v, t, cm, igns, ignr, pnc))q. ;i
Effect:
if =failed N status # idle then
status «— active
world «— world UW
departed «— departed U D
pnum?2 «— max(pnum?2, pnc)
19(7) .w-known — ig(j).w-known U W
1g9(j).w-unack «— ig(j).w-unack — W
19(7).d-known «— ig(j).d-known U D
19(j).d-unack «— ig(j).d-unack — D
if ignr > ig(j).p-ack then
1g9(j) - w-known —
19(5) .w-known U ig(j) . w-unack
19(j) .w-unack «— world — ig(j).w-known
19(j).d-known «—
19(j).d-known U ig(j).d-unack
19(j).d-unack < departed — ig(j).d-known
19(j).p-ack — igpnuml
if t > tag(obj) then
(value(obg), tag(obj)) — (v,1)
configs — update(configs,cm)
for k € world ANz € X4 do
pnum?2(i, k, x) — max(pnum?2(-, k, x))
if op(z).phase € {query, prop} then
if pnum2(k,i,z) > op(z).pnum then
op(z).configs «—
extend(op(z).configs, truncate(cm))
if op(z).configs € Truncated then
op(z).acc — op(x).accU{j}
else
pnuml (z) «— pnuml(z) + 1
op(z).acc — 0
op(z).configs — truncate(configs)
if upg.phase € {query, prop} then
if pnum?2(k,,x) > upg.pnum(z) then
upg.acc(oby) «— upg.acc(z) U{k}

Figure 7. Reader-Writey. Transitions of send and receive actions

17

Input leave, ;
Effect:
if # failed then
failed < true
departed «— departed — {i}
leave-world «— world — departed

Input new-config(c, k)q.;
Effect:
if —failed A status # idle then

configs(k) < update(configs(k), c)

Input read(z)q,;
Effect:
if =failed A status # idle then
pnuml(z) — pnuml(z) + 1
op(z).pnum «— pnuml (x)
op(z).type «— read
op(z).phase «— query
op(z).cmp — truncate(cmap)
op(z).acc — 0
Input write(z, v)q,;
Effect:
if —failed A status # idle then
pnuml(x) «— pnuml(x) + 1
op(z).pnum «— pnuml ()
op(z).type «— write
(z).phase < query
op(z).cmp «— truncate(cmap)
(z).acc — 0
(z).value — v

Internal restart(x)q,;

Precondition:
—failed
status = active
op(z).phase # idle

Effect:
pnuml(z) «— pnuml(z) + 1
op(z).pnum — pnuml (x)
op(z).configs — truncate(configs)
op(zx).acc — 0

Internal query-fix(x)q,;
Precondition:
—failed
status = active
op(z).type € {read, write}
op(z).phase = query
Vk € N,c € C: (op(z).configs(k) = c)
= (3R € read-quorums(c) : R C op(z).acc)
Effect:
if op(z).type = read then
op(z).value — value(x)
else
value(z) «— op(z).value
tag(z) «— (tag(z).seq + 1,1)
pnuml (z) « pnuml(z) + 1
op(z).pnum «— pnuml (x)
op(z).phase «— prop
op(z).configs «— truncate(configs)
op(z).acc — 0

Internal prop-fix(z)q,;
Precondition:

—failed

status = active

op(z).type € {read, write}

op(z).phase = prop

Vk € N,c € C : (op(z).configs(k) = c)

= (AW € write-quorums(c) : W C op(z).acc)

Effect:

op(z).phase = done

Output read-ack(z, v)q,;
Precondition:
—failed
status = active
op(z).type = read
op(z).phase = done
v = op(z).value
Effect:
op(z).phase = idle

Output write-ack(z)q,;
Precondition:
—failed
status = active
op(z).type = write
op(z).phase = done
Effect:
op(z).phase = idle

Figure 8. Reader-Write: Transitions pertaining to read/write operations and to le

notification actions

18

ave and new configuration

Internal cfg-upgrade(k)q,; Internal cfg-upg-query-fix(k)q,;

Precondition: Precondition:

—failed —failed

status = active status = active

upg.phase = idle upg.phase = query

configs(k) € C upg.target = k

Vi e N, I <k: configs(l) # L Vi e N,I < k : upg.configs(l) € C
Effect:

= 3R € read-quorums(upg.configs(l)) :

forall z € X, do IW € write-quorums(upg.configs(l)) :

pnuml (z) «— pnuml (z) + 1 RUW C upg.acc(z),Vo € Xq4

upg.pnum(zx) — pnuml (x) Effect:

upg.acc(z) «— 0 forallz € X, do
upg.phase «— query pnuml (z) < pnuml (z) + 1
upg.configs < configs upg.pnum(x) — pnuml (x)
upg.target — k upg.acc(z) — 0

upg.phase < prop
Internal cfg-upgrade-ack(k)aq,;

Precondition: Internal cfg-upg-prop-fix(k)q,s
—failed Precondition:
status = active —failed
upg.target = k status = active
vieN,l <k: configs(l) = £ upg.phase = prop
Effect: upg.target = k
upg.phase = idle IW € write-quorums(upg.configs(k + 1)) :
W C upg.acc,Vx € Xq
Effect:
forleN:l < kdo
configs(l) — +
Figure 9. Reader-Writeg;: Configuration-Management transitions
Input: Output:
init(v)dq,k,c,i, VEV, i € members(c),d € D decide(v)q,k,c,i, VEV, i € members(c), d € D

leaveq,;, i € members(c),d € D
failg,;, © € members(c), d € D

Figure 10. Congk, ¢, d): External signature

Input: Output:
join(recon)q;,i€1,deD join-ack(recon)q;, i € I,d € D
recon(c, c')a,i, ¢, €C, i € members(c), d€ D recon-ack(b)q,i, b € {ok,nok},i € I,d € D
leave;, i € I,d € D report(c)a,i,c € C,i € I,d € D
fail;,; e I,de D new-config(c, k)a,i, c€C, kENT,icI, deD

Figure 11. Recon ;: External signature

19

Signature:
Input:
join(recon)q ;,d € D
recon(c, ')q,i, ¢, ¢’ € C,i € members(c),d € D
decide(c)k 4,i,c € C,k €NT, d € D
recv({config, ¢, k))q,j,: ¢ € C, k € N,
i € members(c),j € I —{i},d € D
recv({init,c,c’,k))a,ji ¢, ¢ € C,k € NT,
i,7 € members(c),j #1i,d € D
leavey s, d € D
faily i, d € D

State:

status € {idle, active}, initially idle.

rec-cmap € CMap, initially rec-cmap(0) = co
andrec-cmap(k) = L forall k # 0.

did-new-config C Nt initially ()

reported C C, initially 0

Output:
join-ack(recon)q ;,d € D
new-config(c, k)q4,i,c € C;k € NT,d e D
init(c,c')q ki, ¢, ¢’ € C,k € NT,

i € members(c),d € D
recon-ack(b)q,;, b € {ok,nok},d € D
report(c)q,;,c € C,d € D
send({config, ¢, k))a,;,j,c € C, k € NT,

j € members(c) — {i},d € D
send((init, ¢, ¢, k))q,,j, ¢, ¢’ € C,k € NT,

i,j € members(c),j #i,d € D

op-status € {idle, active}, initially idle

op-outcome € {ok, nok, L}, initially L

cons-data € (NT — (C x C)), initially everywhereL
did-init C Nt initially ¢

failed, a Boolean, initiallyfalse

Figure 12. Recon ;: Signature and state

20

Input join(recon)q ;
Effect:
if —failed A status = idle then
status < active

Output join-ack(recon)g ;
Precondition:

—failed

status = active
Effect:

none

Output new-config(c, k)q.;
Precondition:
—failed
status = active
rec-cmap(k) = ¢
k ¢ did-new-config
Effect:
did-new-config «— did-new-config U {k}

Output send({config, ¢, k))q,q,;
Precondition:
—failed
status = active
rec-cmap(k) = ¢
Effect:
none

Input recv({config, c,k))q,;
Effect:
if =failed N status = active then
rec-cmap(k) < ¢

Output report(c)q,;
Precondition:
—failed
status = active
¢ = rec-cmap (k)
Ve >k : rec-cmap(€) = L
¢ & reported
Effect:
reported «— reported U {c}

Input recon(c, ¢’)q,;
Effect:
if —failed N status = active then
op-status < active
letk = max({¢ : rec-cmap(¢) € C})

if ¢ = rec-cmap(k) A cons-data(k 4+ 1) = L then

cons-data(k + 1) — (¢, ')
op-outcome «— L

else
op-outcome < nok

Output init(c’)d,k78,i
Precondition:
—failed
status = active
cons-data(k) = (c,c’)
if k > 1thenk — 1 € did-new-config
k & did-init
Effect:
did-init — did-init U {k}

Output send((init, ¢, ¢/, k))q,,;
Precondition:
—failed
status = active
cons-data(k) = (c,c’)
k € did-init
Effect:
none

Input recv({init, c,c’, k))q
Effect:
if =failed then
if status = active then
if rec-cmap(k — 1) = L then
rec-cmap(k — 1) «— ¢
if cons-data(k) = L then
cons-data(k) «— {(c,c’)

EVEKS

Input decide(c) g,k c,i
Effect:
if =failed then
if status = active then
rec-cmap (k) «— ¢’
if op-status = active then
if cons-data(k) = (c,c’) then
op-outcome «— ok
else
op-outcome «— nok

Output recon-ack(b)q,;
Precondition:
—failed
status = active
op-status = active
op-outcome = b
Effect:
op-status = idle

Input fail;
Effect:
failed < true

Figure 13. Recon ;: Transitions.

21

