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ABSTRACT

This thesis presents the results of ultrahigh resolution
measurements of the spectrum of light scattered from toluene
liquid at room temperature and atmospheric pressure. These
data were taken using a low power ( 50 mW) helium-neon laser
and an optical superheterodyne spectrometer.

Two features of the spectrum were investigated; the
first, the inelastic part corresponding to the interaction
of the incident light beam with the thermally excited sound
waves (phonons). At a fixed scattering angle this part con-
sists of a doublet, called the Brillouin doublet, split sym-
metrically about the exciting frequency; the magnitude of
the splitting gives the frequency of the phonons responsible
for the scattering. The Brillouin components in toluene were
detected at a scattering angle of = (0.547 + 0.002)0 where
the expected* splitting was Av = 30.00 Mc/sec. The experi-
mental determination of the splitting, made using a super-
heterodyne optical mixing spectrometer with a resolving power
(v/6v) of about 2 x 108, gave Av = (30.0 + 0.2) Mc/sec. This
result demonstrated for the first time the applicability of
high resolution optical beating techniques to small cross
section scattering processes. **

The second feature of the spectrum to be examined was
the so-called quasi-elastic component.§ At a given scatter-
ing angle this component consists of a single broadened line
centered at the exciting frequency. This light is scattered
as a result of the interaction of the incident light beam
and thermally generated isobaric fluctuations in entropy.
The spectral shape and characteristic width of this line
(sometimes called the Rayleigh line) were carefully studied
as a function of the scattering angle over the range
(0.3 ° < 0 2.80). In every case the spectrum was found to
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be quite accurately Lorentzian as predicted by theoryt with
a half-width at half-height varying from 75 cps to 7500 cps.
The resolving powers of the superheterodyne spectrometer
used in these measurements varied from 5 x 1011 to 5 1013.
The angular dependence of the half-width was found to be in
substantial agreement with available theories.t These
theories predict a linear dependence of half-width on the
square of the magnitude of the wave vector of the scatter-
ing entropy fluctuation.

Since optical mixing has only very recently been ap-
plied to the problems of spectroscopy, a detailed theoret-
ical analysis is given of the operation, resolution, and
sensitivity of the two main types of mixing spectrometers.
Equivalent results for resolution and sensitivity are also
presented for the Fabry-Perot etalon spectrometer. This
allows a direct comparison to be made between conventional
and optical mixing spectroscopy.

The theory of the light scattering by thermal fluctu-
ations in liquids is outlined and results presented on the
intensity, the spectrum, and the spatial coherence proper-
ties of the scattered field. These results are used to
calculate the theoretical signal-to-noise ratios to be ex-
pected for heterodyne detection of the Brillouin and Rayleigh
components of the spectrum. A comparison is made between
these values and the experimentally determined quantities
for scattering from toluene. This comparison verifies the
essential features of the theory.

L. Brillouin, Ann. Phys. (Paris) 17, 88 (1922).
**

J. B. Lastovka and G. B. Benedek, in Physics of Quantum
Electronics, edited by P. L. Kelly, B. Lax, and P. E.
Tannenwald (McGraw-Hill Book Company, Inc., New York,
1966), p. 231.

§J. B. Lastovka and G. B. Benedek, Phys. Rev. Letters
17, 1039 (1966).

R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966).

Thesis supervisor: George B. Benedek

Title: Professor of Physics
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Chapter 1

INTRODUCTION

The field of light scattering from thermal fluctuations

in transparent media has had a rich theoretical and experi-

mental development dating back to the last half of the nine-

teenth century. It was in 1871 that Lord Rayleighl presented

his now famous discussion of the "Light from the Sky, Its

Colour and Polarization." In this paper he considered the

problem of light scattering by a system of particles much

smaller than the wavelength of light and calculated the mag-

nitude and angular dependence of the scattered intensity, its

variation with the frequency of the incident light, and the

polarization characteristics of the scattered field. Using

these results he successfully explained the observed color

and polarization of the sunlight scattered in the atmosphere

and the earlier results obtained by Tyndall2 on light scat-

tering by laboratory suspensions of small particles.

In 1910 Einstein3 showed that one should expect light

to be scattered even from a continuous and nominally homo-

geneous medium. He proved that scattering could also result

from inhomogeneities in the optical properties of a medium

brought about by local fluctuations in its density. He

then calculated the expected magnitude of this effect by

evaluating the mean-square amplitude of the density fluc-

tuations from a statistical mechanics approach. This theory

immediately provided an explanation of the intense scatter-

ing or opalescence that occurs in a fluid near its liquid-gas
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critical point in terms of the large density fluctuations

that take place there.4 By a spatial Fourier decomposition

of these fluctuations, Einstein was also able to show that

the light scattered away from the direction of the incident

beam results essentially from a Bragg "reflection." This

reflection takes place from that particular Fourier com-

ponent of the fluctuations whose wavelength and orientation

(i.e. whose wave vector) are just right to form a three

dimensional diffraction grating that "reflects" the incident

light into the direction of observation. In particular, if

one allows monochromatic light of wave vector 0 to be inci-

dent on a transparent medium and observes the scattering in

a direction specified by s, the wave vector of the scat-

tered light, then the fluctuations responsible for this

scattering have a wave vector K given by

K o (1-1)

Both |2s_ and %o|! are measured in the scattering medium.

The exact nature of Einstein's density fluctuations

went unexplained until 1912 when Debye5 showed that the

thermal energy content of an elastic medium could be re-

garded as being contained in thermally excited sound waves

(phonons). In 1914 Brillouin6 pointed out that the spon-

taneous density fluctuations described by Einstein could

be interpreted as Debye's sound waves and he presented a

calculation of the scattered intensity based on Debye's

theory.

The first consideration of the spectrum of the light

scattered from a homogeneous medium was reported by

Brillouin7 in 1922. In this paper, by retaining the time

behavior of the thermal sound waves, Brillouin showed that,

in addition to producing a Bragg reflection of the incident
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beam, the sound wave would also impose its time dependence

on the scattered light in the form of a frequency shift.

The magnitude of this frequency shift is equal to the fre-

quency of the sound wave responsible-for the scattering,

i.e.

Aw = v sl kl (1-2)

where vs is the phase velocity of sound in the scattering

medium. In Russia, Mandel'shtam 8 had independently calcu-

lated the spectral properties of the light scattered by the

thermal phonons and had also obtained the frequency shift.

His calculations show that if monochromatic light of fre-

quency wo passes through a continuous elastic medium, then

the light scattered at an angle from the incident direc-

tion consists of two lines split symmetrically above and

below w0 by an amount

= vslK = 2w (Vs/cm ) sin (0/2) (1-3)

where

IKI = Is -s o = 21 ol sin (0/2) (1-4)

is the wave vector of the sound wave responsible for the

scattering into angle , and cm is the velocity of light in

the scattering medium.

Equation (1-3) may be interpreted physically as showing

that in addition to producing a Bragg reflection, the thermal

sound wave "diffraction grating" also causes a Doppler shift

because of its motion. Since this shift is of order
-5

(V /Cm ) = 10 5 rather high resolution is required to observe

the effect.

The first experimental observation of the Brillouin-
9,10 ,11,12,13

Mandel'shtam (B-M) components was made by Gross
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in 1930 at the Leningrad Optical Institute. Using the

X = 4358 line of a mercury arc discharge as a source and

a thirty step echelon grating, he was able to resolve the

doublet lines at 0 = 90° in seven liquids and show that

the results agreed with the predicted splittings of the

B-M theory. In a later paper 14 he also demonstrated that

the angular dependence of the splitting and its variation

with the frequency of the incident light were both in

agreement with Eq. (1-3).

Gross also found that, in addition to the doublet,

there was light scattered without a noticeable frequency

shift in all seven liquids. In each case this unshifted

or "central" component had an intensity comparable to that

of the Brillouin lines. In 1934 Landau and Pladzek 15 pro-

posed that this third component was due to scattering from

thermally excited fluctuations in temperature. Since each

Fourier spatial component of these fluctuations obeys a

diffusion equation, rather than a wave equation, the tem-

perature disturbances do not propagate and, therefore, no

Doppler shift occurs. Indeed, using the fact that temper-

ature fluctuations obey the heat flow equation, Mandel'shtam 8

and Leontovich 6 were able to show that the frequency spec-

trum of the spatial Fourier component of these fluctuations

having wave vector K was a Lorentzian centered at w = 0 and

having half-width at half-height of r rad/sec where

r = (A/pcp) Ih (1-5)

Here A is the thermal conductivity of the scattering medium,

p is its density, and cp the specific heat at constant pres-

sure per unit mass. It follows that the central component

observed at a scattering angle from an incident mono-

chromatic beam is not infinitely sharp but has a Lorentzian

spectrum centered at = with a half-width

t
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r = (A/pcp) [21kolsin (0/2)]2 (1-6)

Therefore, the expected broadening goes to zero in the

forward direction (0 = 0°) and has its maximum value,

Fmax , for backscattering (O = 180°). Evaluating Fmax for

a number of liquids using an incident light wavelength

Xair 6000 and room temperature values of A, p, and cp,

we find typically (r max/27) 10 Mc/sec. This corresponds

to a maximum fractional broadening of (max/o ) 2 x 10

Because the narrowest available conventional light sources

have fractional widths of (Aw/w) = 10 6 and fractional0 -6
instrumental widths are generally about 10 it has been

impossible to verify this prediction up until the present.

Another interesting feature of Gross' observations

was pointed out by Leontovich. 1 6 Assuming that thermal

sound waves obey the Navier-Stokes equation, they are

damped. Therefore, the B-M components must also be

broadened by an amount depending on the attenuation of

the scattering phonons. Leontovich's calculation showed

that the spectrum of each component of the doublet should

be a Lorentzian with a half-width at half-height

= vs rad/sec (1-7)

where a is the amplitude attenuation coefficient for sound

waves having the frequency Aw given by Eq. (1-3). Since

Aw for ninety degree scattering is typically a few thousand

megacycles per second, while conventional ultrasonic meas-

urements of extend only up to a few hundred megacycles

per second, the attenuation of the scattering sound wave

must be obtained by extrapolation from the low frequency

results. This extrapolation is based on the fact that a

is proportional to (A)2 for viscous type losses. On
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doing this Leontovich found that for several of the liquids

which Gross had studied the predicted width was greater

than the splitting and, therefore, no discrete doublet

spectrum should have been observed. The experiments and

the theory were only to be reconciled later in terms of

the relaxation theory of sound absorption. 17 Surprisingly,

none of the materials that were investigated ever had a

broadening sufficient to be detected above the natural

source and instrumental widths.

The experimental situation regarding the spectrum of

the Brillouin and central components remained essentially

stagnant until 1964. Although the problem of measuring

the doublet splitting was pursued vigorously in India,

the difficulties of low intensity, sometimes requiring

as long as 5 days of exposure, and the lack of intense

monochromatic light sources and sufficiently high resolu-

tion spectrometers made accurate results extremely diffi-

cult to achieve.18 As a result there are only a few

noteworthy papers in this period.1 9, 20 2 1, 22 ,23 ,24 ,25,2 6

In 1964, with the availability of pulsed ruby and

helium-neon lasers, interest in Brillouin scattering was

revived and a number of papers were published showing

that the laser was an ideal source for observing the

effect.27 ,28 ,'29 The laser provided a light source of

high power, extreme directivity, and exceptional mono-
-8

chromaticity. With fractional widths of (Aw/wo) 1 x 10
-6- 2 x 10 the laser source allowed accurate measurements'

to be made on the doublet splitting, thereby yielding im-

portant information on the velocity of hypersonic acoustic

waves.

The laser ultimately led to the first observation of

the natural width of the Brillouin-Mandel'shtam lines.

L
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Using a helium-neon gas laser operating at Xair = 6328 A,

Fabelinskii 30 and his co-workers measured the line width

for 90° scattering in benzene

2 = 4800 Mc/sec = 150 Mc/sec
r 2 rr

and CC14

= 3200 Mc/sec - 300 Mc/sec,

while Chiao and Fleury31 determined the natural broadening

in a series of liquids for 0 = 180 °.

Lasers coupled with ultrahigh resolution Fabry-Perot

etalon and grating spectrometers and sensitive photomulti-

pliers have brought about a very rapid renewal of interest

in the field. The Brillouin components have been studied

in liquids,32 ,33r3 413 5 solids, 3 6 3 7 and gases 38; and the

basic light scattering technique is now being applied to

observe the presence of other thermal excitations such as

magnons,39 polaritons,40 and plasmons. 41 ,42 4 344,

However, even the highest resolving power Fabry-Perot

etalons fall short of providing sufficient resolution to

obtain all of the useful information present in the spec-

trum. For typical sound velocities in liquids (vs

1.5 x 105 cm/sec) the maximum fractional Brillouin shift

is approximately (Aw/w ) 10 5; with a helium-neon laser

source (air = 6328 ) this corresponds to a splitting of

(Aw/2w) 7000 Mc/sec. The attenuation of such sound waves
-8 -6

may produce a line broadening of about (y/wo )8 10 - 10

However, extending the light scattering data down to the

upper limit of conventional ultrasonic experiments requires
-7

going to scattering angles where (Al,/wo ) 5 x 10 and
0



32

-11 -9(Y/w ) 10 - 10 . A study of such splittings and

line widths would demand the ability to resolve details
-12

as fine as 10 of the incident frequency. Furthermore,

a measurement of the broadening of the central component

even in the most favorable situation (O = 1800) requires
-8

a fractional resolution of (r/ o) 2 x 10 . A study

of the angular dependence of the line width and line shape

of this component would demand resolutions approaching
-14

(6w/ ) 10 . That is, out of an optical frequency of
0 14

approximately 5 x 10 cps, one must detect spectral fea-

tures on the scale of cycles per second. This is impos-

sible by conventional spectroscopic techniques.

To study such narrow lines it is necessary to employ

laser light sources combined with optical mixing spectrom-

eters. These devices are exact analogs for the optical

region of the spectrum of the ultrahigh resolution receivers

that are common in the radio frequency regime.4 7 In all

cases the objective is to translate the desired spectral

information from the "high" optical frequency w , where a

specified resolvable width 6w may be difficult to achieve,

down to a "lower" frequency w1 where the necessary width

may be attained easily. This frequency translation pro-

cess can be carried out using two alternate instruments.

In the first, referred to as the superheterodyne4 6 spec-

trometer, the light whose spectrum is to be analyzed is

mixed with an intense monochromatic beam called the local

oscillator on a non-linear element-a photoelectric surface.

By a proper choice of the frequency of the local oscillator,

the optical signal spectrum can be shifted down to any

desired frequency; the "mixer" output appears as an ac

component in the photocurrent with a spectrum centered

about the difference frequency between the local oscil-

lator and the optical signal.
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In the second type of instrument, referred to as a

low-level,4 6 square-law, or self-beat "9 spectrometer,

only the signal is allowed to fall on the photosurface.

However, because of the non-linear current versus optical

electric field characteristic of the photoelectric effect,

mixing takes place between the various spectral components

of the signal itself. The result is that the photocurrent

spectrum contains, in a somewhat modified form, the spec-

tral information that was originally present in the optical

signal. However, this information is now centered around

w = 0 rather than around the optical frequency w = w .

The resolving power capabilities of these two types

of optical mixing spectrometers have been well demonstrated

in light scattering experiments. Both have been applied to

the problem of obtaining the spectrum of the central com-

ponent from a pure fluid in the vicinity of its liquid-gas

critical point4 ,5, 5s1 and determining from these measure-

ments the temperature behavior of the thermal diffusivity

(A/pcp). The superheterodyne technique has also been used

to study the spectrum of concentration fluctuations in a

binary mixture near its critical solution temperature.5 2

Both methods have also been used successfully in detecting

the spectral width of the light scattered from dilute solu-

tions of large molecules. 5 3 54 5 5 In all these experiments
3 6the scattering cross section is from 10 to 10 times

greater than that expected for the Brillouin and central

components in the light scattered from pure liquids at

room temperature.

This thesis presents experimental results on the

application of ultrahigh resolution optical mixing spec-

troscopy to the problem of determining the spectrum of

the light scattered from toluene liquid at room tempera-

ture and atmospheric pressure. Both the Brillouin4 8 and
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central 56 components of the spectrum were studied using a

low power (50 mW) helium-neon laser source (Xair = 6328 A)

in conjunction with an optical superheterodyne spectrometer.

The Brillouin-Mandel'shtam doublet was observed at a

scattering angle of 0 = (0.547 ± 0.005)0 where the pre-

dicted splitting was (Aw/27) = 30.0 Mc/sec. The experi-

mentally determined value of (Aw/2r) = (30.0 ± 0.2) Mc/sec

was obtained with a resolving power of (w /6w) = 2 x 108.

Both the spectral shape and characteristic width of

the central component were studied as a function of the

scattering angle over the range (0.31° < 0 < 2.830).

For this range in 0 the spectrum was found to be accurately

Lorentzian, as predicted by the Landau-Placzek theory, with

a half-width at half-height (r/27) varying from 75 cps to

7500 cps. The fraction resolutions achieved in these meas-

urements varied from (6w/wo) 2 x 1012 to (6w/ o )
-14 02 x 10 . The angular dependence of the half-width was

found to be in good agreement with the K2 prediction of Eq.

(1-5). A fit between Eq. (1-5) and the data yielded the

thermal diffusivity as

-4 2
(1/2r) (A/pcp)experimental = (1.38 ± 0.05) x 10 cm /sec

The equivalent quantity calculated from the thermodynamically

measured values of A5 7 and cp5 8 is

-4 2
(1/27) (A/pcp)static = (1.52 + 0.09) x 10 cm /sec

which is in quantitative agreement with the present result.

Since optical mixing has only very recently been applied

to the problems of spectroscopy, a detailed analysis is given

of the operation, resolution, and sensitivity of the super-

heterodyne and self-beat spectrometers. Equivalent results

L
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are also presented for the Fabry-P'rot etalon spectrometer

allowing a direct comparison to be made between conventional

optical spectroscopy and optical mixing spectroscopy. In

connection-with this comparison, practical considerations

are presented on the state-of-the-art of the essential com-

ponents of mixing spectrometers. From these data, limits

are set on the resolutions and sensitivities which may be

achieved by an optical mixing receiver using present day

devices.

Chapter 2 of this thesis presents the theory of light

scattering by thermal fluctuations in liquids and gives

results on the intensity, the spectrum, and the spatial

coherence properties of the scattered field. In this

review special attention is given to those aspects that

bear directly on the applicability of optical mixing

spectroscopy. The results are used in Chapter 5 to cal-

culate the theoretical "signal-to-noise ratios" to be

expected for heterodyne detection of the Brillouin and

central components of the light scattered from toluene.

A comparison between these calculated quantities and the

experimentally observed values verifies the essential

features of the theory.

i ~ The significant contributions of this work may be

summarized as follows: (1) it clearly demonstrates the

applicability of ultrahigh resolution optical mixing

spectroscopy to small cross section scattering processes,

(2) the measurements on the Brillouin components show that

light scattering can yield data on sound velocity and

absorption well into the present ultrasonic regime,

(3) it presents the first measurements of the natural

line width of the central component of the spectrum in

the light scattered from a normal fluid, (4) this central

component data provides the first accurate quantitative
L xeietlyosre ausvrfe h seta
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test of the Landau-Placzek theory, (5) it clarifies the

theoretical understanding of the applicability of optical

mixing methods to spectroscopy, and (6) it delineates the

capabilities of these methods in terms of present day

technology.

.wa
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Chapter 2

THE THEORY OF LIGHT SCATTERING FROM

THERMAL FLUCTUATIONS IN LIQUIDS

A. Introduction

~ This chapter presents a brief analysis of the theory

of light scattering from thermal fluctuations in trans-

parent, homogeneous media. Specifically, we will consider

those scattering processes which can be described in terms

of a modulation in the index of refraction of the scatter-

ing medium produced by statistical fluctuations in its

thermodynamic coordinates. The objective is to determine

the following features of the scattered light: (1) its

absolute intensity and angular distribution, (2) its spec-

trum, and (3) the spatial coherence properties of the scat-

tered electric field.

iN The Geea harar of the Scattered ild

i. Consider a linearly polarized, monochromatic, colli-

mated light beam passing through a homogeneous, transparent

medium as illustrated in Fig. 2-1. We would like to calcu-

late the electric field scattered in the direction of the

point Q due to the interaction of this incoming wave with

_1 the material in the cylindrical volume V.
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We assume that, as far as its optical properties are

concerned, the scattering medium can be; (1) regarded as

a continuum, and (2) characterized completely by a scalar

electric susceptibility X(r,t) at the optical frequencies

of interest. In this case the effect of the incident field

EINC(r,t) is to induce an oscillating dipole moment1

p(rl,t) = OX(rl,t)EINC(rl,t)d3 rl (2-1)

in every volume element of V. This induced polarization

field can subsequently radiate in the direction of the

observer at Q . In fact, a calculation of the scattered

field Es(r,t) may be carried out directly by summing the

dipole fields reaching the point r in such a way as to

include the proper relative phase between waves originat-

ing from spatially separated points in V. 2

An alternate approach, which is outlined in Appendix

A, shows that Es(r,t) can also be obtained by demanding

that the sum of the incident plus reradiated fields satisfy

Maxwell's equations throughout all space. This method is

particularly useful in scattering problems since it auto-

matically eliminates from direct consideration the uninter-

esting portion of the dipolar sum associated with the time

average susceptibility. The effect of the time average

susceptibility is simply to alter the velocity of light

from its free space value c to its value in the scatter-

ing medium, cm = (co/n), where n is the index of refraction

of the sample.

For the scattering processes considered here we take

X (r,t) to be a function of (r,t) only because of its im-

plicit dependence on the local "thermodynamic" coordinates

Chapter 2, Section C.1.

IE
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of the scattering medium, for example, its density and

temperature. It follows that X(r,t) may be decomposed

into two parts.

The first contribution is a time average suscepti-

bility, <X>, related to the index of refraction by the
**

result

2
n = 1 + <X>

This average susceptibility is independent of r if the

scattering medium is in a state of equilibrium in which

the time average thermodynamic coordinates are independent

of position in V. The second contribution to X(r,t) is

a random function of both r and t and is associated with

statistical fluctuations in the "thermodynamic" variables 3

about their average values.t This part, which we desig-

nate Ax(r,t), is chosen such that

X(r,t) = <X> + AX(r,t) (2-2)

3. The General Solution for the Scattered Field in
Terms of the Fluctuating Part of the Optical Sus-
ceptibility

If E(r,t) is the total electric field acting at

a point r in the volume V then Appendix A gives the scat-

tered field as

Time averages will be denoted throughout by the symbol
< >which we define as

lim 1
T 2T -T

Appendix A.

§ Chapter 2, Section C.3 and Chapter 5, Section C.3.

Chapter 2, Section C.1. i
k.
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X o

S 4Tr r 1
ot 1 +r r <X>

!,.~ 0 V ~ ~ ~V t =-

. . .~~~~~~r

X(rltl)E(rltl)6(tl-t C )d3 1 dt1m

Ir - rlI

(2-3)

The coordinates r and r are as shown in Fig. 2-1. Note

that the observation point Q has been chosen to lie inside

the sample in order to avoid refractive effects at the

surface which may be accounted for at a later stage by

simple geometrical optics.

Physically, Eq. (2-3) is simply a sum of the elementary

dipole radiation fields produced by the effective dipole

moment distribution soAX(rlftl)E(rltl). Therefore, we

find that in the absence of fluctuations in the suscepti-

bility there is no light scattered out of the incident

beam. Because the summing integral, ...d3rl, attaches

* the proper relative phase to each of the fields reaching

r it is sometimes referred to as the "interference" inte-

gral.2

The rigorously correct result in Eq. (2-3) can be

simplified by the following considerations. If the point

Q is sufficiently far from the illuminated volume V, we

have in the usual far field approximation

Ir - rll I~I -rlr
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as illustrated in Fig. 2-2. The vector r is a unit vector

in the direction of r. The zero order approximation can

be made in the denominator of the integrand, taking

r - rll JrI r. As it stands, Eq. (2-3) is an inte-

gral equation for the scattered field since T(rl,tl)

represents the total field, incident plus scattered, act-

ing on the medium. In normal liquids, however, we find

that the total power scattered out of the incoming beam

by "thermal fluctuations" is approximately 10 of the

incident power; therefore, to first order, we may take

ET(rl,tl) as simply the incident field, INC(rl,t1). This

corresponds to the usual "first Born approximation" to the

scattering process.

With these modifications, and writing o (1 + <X>) =

where is the dielectric permittivity of the medium, we

have Es (r ,t) in the form

ES(()r rJ AX(rl,tl) IN (rt 1 )
V -o0

a 13

x6[tl-t+(l/c) (r-rl r)Jd r dtij (2-4)

This is the desired general solution for the scattered

field.
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a. Notation

Since it will be convenient to handle

EINC(rt), ES( r,t), and AX(r,t) in the form of complex

exponentials it is useful to adopt the following conven-

tions: complex quantities will be denoted by underlining

e.g. E(r,t), X(r,t). Complex quantities decomposed into

their real and imaginary components will be written as

AX = AX + iAX'. In this notation Eq. (2-4) remains un-

changed; ES, AX, and EINC in each case are the real parts

of their respective complex representations.

b. The Scattering from a Plane Wave Fluctuation

In order to illustrate the important fea-
4.

tures of the solution for ES (r,t) let us consider a spe-

cific example in which AX is a. simple sinusoidal traveling

wave of frequency Y traveling in a direction q with a phase

velocity v = (/q|l), viz.

AX(r,t) = AXo exp[i(q.r) - t] (2-5)

The amplitude AXo is a real number.

We assume that the incident field is a monochromatic

plane wave having a constant intensity over the cross

section of the scattering volume,

INC (r,t) = exp [i( *') - w t ] (2-6)

where E is real and (o/I|I) = Cm is the phase velocity -

of light in the medium.

In this case Eq. (2-4) becomes
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V t o

x6[tl-t+(l/c)( r)d dtl (2-7)

The product of the two sinusoidally oscillating factors,

one corresponding to the incident field and one to the

"fluctuations" in X, shows that AX impresses its time

dependence on EINC by modulating the amplitude of the

field scattered from every point in V. By decomposing

the cos(cos product and performing the time integration

we find tS(r,t) in its complex form as

x [tt+ () (r-r) )trx(trx ) (2-8)

x{ exp{i[ ° r - (awItm)t]} x J expi[So + 4. c _ 1} 
m 11m

exp{i[ cm-r - (w-)t]} x exp{i[ 0o 4 - a ° ]*r11drlj

As would be expected, the "modulation" phenomenon gives

I..dependence on EiNc by modulating the amplitude of the

the cos-cos product and performing the time integration

we find Er s( t) in i ts c om p lex form as

l !Shsewr ; Xa i, e XA ro E.(2-8)

of these waves; that is, we find from Eq. (2-8)



k = (2i/X+ ) = (w+/c ) = ( +r)/cs -m m (2-9)

and

ks = (2/X /) = (w /cm ) = (o-rI)/Cm (2-10)

+
In terms of k and k the scattered field observed at

r has the form

-S(r,t) = ( ) rx ( rXAXoo )

i(k+r - +t)
x e

1 i(k 5 r - w t)+ e

ei (oq-s+ ))r d3r
e d 1

V

i (ko-q-k s )r1 3-.r1e d3r 
VI

where the vectors s+ and ts are defined as s+ - (W/Cm)r

and ks+ - (/c )r. Both point in the direction of observa-

tion, r.

The integrals that determine the amplitude of the scat-

tered field

Ir() =r q(s)

V

io +q s ) -r1 3
d3re (2-12)

1

and

-T'
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0I (qs) rl 3+I[r,(-q)] = e d r1 (2-13)

V

describe the properly phased sum of the elementary dipole wavelets

as they interfere at r. If all the dimensions of V are large

compared to the wavelength of light, we find that these volume

integrals will in general be vanishingly small. In fact, com-

plete destructive interference occurs at r unless q satisfies

one of the two conditions

q+ =k k 0 (2-14)
s o

or

q -(Ix - i0) (2-15)

Equations (2-14) and (2-15) represent conditions on the wavelength

and the propagation direction of the "fluctuation" which insure

that the scattered wavelets sum constructively in the direction
++ + +-

r. The two wave vectors, q and q , are illustrated in Fig. 2-3;

both are drawn for the case ( << w ) where we have ks+ ks ko

The sets of parallel lines indicate the surfaces of constant phase

for the wave AX(r,t).

Equations (2-11), (2-14), and (2-15) also summarize the

essential features of the scattering process.

(1) In the absence of susceptibility fluctuations in

the medium there is no light scattered away from the direction of

the incident beam.

(2) If such fluctuations do exist, and if AX(r,t) is

decomposed into plane wave components of all possible wave vectors,

Chapter 2, Section E.4.e.
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then the light observed in a direction k = k r is

scattered by two of these components with very specific

wavelengths and propagation directions; namely those plane

wave components whose wave vectors satisfy the conditions

displayed in Eqs. (2-14) and (2-15).

(3) They show that the scattering fluctuation

imposes its time dependence on E(r,t) in the form of a

frequency shift. The magnitude of this frequency shift

is equal to the frequency of the scattering plane wave.

c. Two Physical Interpretations of the

Scattering Integral

4.
The mathematical conditions on q which are

displayed in Eqs. (2-14) and (2-15) can be given two physi-

cal interpretations. From a classical wave picture they

pick out plane wave fluctuations whose directions and wave-

lengths will bring about constructive interference between

the elementary dipole fields reaching some observation

point r. This situation is analagous to that encountered

in x-ray scattering from crystals;6 in fact, in the limit

<< o0 the constructive interference phenomenon can be

viewed as a simple Bragg reflection of the incoming beam

from the three dimensional periodic "lattice" formed by

AX(r,t) = AXo cos (q.r - t). This picture also provides

a physical interpretation of the frequency shift that accom-

panies the scattering process. It is a Doppler effect caused

by the motion of the wavefronts of the scattering plane wave.

A classical calculation of the Doppler shift to be expected

in the Bragg reflected wave if the scattering wavefronts

move at a phase velocity v = [/Iq] gives
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wDOPPLER = + f (2-16)

in agreement with Eqs. (2-8), (2-9), and (2-10).

The allowable scattering processes, i.e. those satis-

fying Eq. (2-14) or Eq. (2-15), can also be described

quantum mechanically2 as a collision between two particles;

the incident photon, which has an energy wo and a momentum

ho' and a wavelike disturbance describable as a quasi-

particle of energy Nh and quasi-momentum hq. In this case,

the energy, hw, and momentum, h s, of the scattered photon

are obtained by demanding that momentum and energy be con-

served in the collision process. From this viewpoint the

conditions in Eqs. (2-14) and (2-15) are to be interpreted
-+ T++ + + represents a col-

as follows. The situation q = k k represents a col-

lision in which a single quasi-particle is annihilated; the

scattered photon exits with its energy and momentum

s = fko + hq = hks

h = + = a+

The condition q = -( ) represents a collision in

which a single quasi-particle is created; the incident

photon gives up the required energy and momentum

5s = o 0 Hq = is

ow = w - a = w0
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2. The Solution for the Scattered Field in the

Limit of Small Frequency Shifts

Although Eq. (2-4) is useful in pointing out

the detailed features of a simple scattering process, such

as the example presented above, the intensity, spectrum,

and spatial coherence properties of the light scattered

from fluids are more easily calculated in the limit of

small frequency shifts, << w0. The latter condition is

well satisfied for the contributions to AX(r,t) which are

considered here, namely, statistical fluctuations in the

local entropy and pressure of the scattering medium. In

this limit Eqs. (2-4) and (2-6) combine to give

rt) r (2-17)

x| wx~rltt) e o 1) e d°[t~(l/Cm)(r~rlr (-1
i·t ~r) -- i 0[t-(1/Cm)(r-'l r)] 3+

x AX(rlt) e e d rl

V

with the time retardation kept only in the rapidly oscil-

lating incident field term. To this approximation the

magnitude of the wave vectors and, therefore, the wave-

lengths, of the incident and scattered fields are the same,

and we have

Chapter 2, Section C.1.
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i(k r - w t)

S E IT F r o

i (o s ) 'r
Ax (rl,t)e d3rl

V

(2-18)

where

ks = (/cm)r (2-19)

The double curl operation can be carried out explicitly to

give E (r ,t) as_S

-s (r,t) = S sxf) e

i(ksr - w t)

4 rr

+ 0 s~I·L) 't 0-r l)or
AX (rl,t) e 

V

c(o )

34.
d r (2-20)

This result shows that the scattered field is a spherically

spreading wave with a polarization determined by the ordi-

nary dipole radiation rules, 7 and with an amplitude and

time dependence which is a function of the direction of

observation through the integral

This result follows automatically from the assumption
that Irl is in the far field region of the scattering
volume V.
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J(r,t) AX(rt) e o s 1 d3 (2-21)

V

3. The Spatial Fourier Series Expansion of the

Susceptibility Fluctuations

Although the intensity of the scattered light

can be calculated directly from Eq. (2-20) in terms of

the total fluctuations AX(r,t), the spectrum is obtained
**

more readily by considering only specific wave vector

components in a plane wave expansion of AX. Such an ex-

pansion brings about a number of important simplifica-

tions in the physical description of the scattering

process.

(1) The example given in Section B.l.b illustrated

the point that a plane wave fluctuation can cause scattering

only in a single direction away from the incident beam.

This result is verified in Eq. (2-21) which shows that the

"interference" integral is simply the finite domain spatial

Fourier transform of the susceptibility fluctuations
-w4.

Ax(r,t). The field observed at the point r arises from the

plane wave components of AX having a wave vector K =+( t s )

where = ( /c)r.

(2) The plane wave components of the total entropy and

pressure fluctuations responsible§ for AX are homogeneous

solutions of their respective thermodynamic equations of

motion.t As a result, the time dependence of the scattered

Chapter 2, Section C.

Chapter 2, Section D.

Chapter 2, Section C.1.

Chapter 2, Sections D.4 and D.5.
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field reaching r may be obtained in a straightforward

manner from the time evolution of thermal fluctuations

having wave vector K = +(k -ks).

(3) The plane wave expansion of the adiabatic

pressure fluctuations gives a description of these dis-

turbances in terms of ordinary sound waves.

In order to take advantage of these simplifications,

we make a Fourier decomposition of AX(r,t) using a com-

plete set of orthonormal plane waves as the basis func-

tions. Since the evaluation of the interference integral

J(r,t) requires knowing AX(r,t) only in the finite volume

V, a particularly useful basis set are the plane wave

eigenfunctions or "normal modes" of the closed region

V. In this case we have AX in terms of a Fourier series

expansion as

iKr
AX(r,t) = K AXK(t) e (2-22)

K

where the allowed K values are found by applying the usual

cyclic boundary conditions 8 on the surface bounding V.

These conditions lead to an orthogonality relation between

waves of different K given by

i( d3: =VrKK3 (2-23)| e d r = V6K,23

V

where 6~A, is the Kronecker delta.

Chapter 2, Section E.4.e.
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The Fourier amplitudes AXK(t) can be expressed in

terms of AX(r,t) by inverting Eq. (2-22). With the help

of Eq. (2-23) we find easily

1 -r 3+
AXK(t) =V Ax( ,t) e d r

V

(2-24)

Before evaluating J(r,t) in terms of the AXK(t) we note

that the right hand side of Eq. (2-22) may be rewritten

to make it a sum of explicitly real terms. Since AX(r,t)

is real we have

X ) 1 + *t
AX(rt) = [(rt) + AX (,t)]

iK=r
=1 [ AXK(t)e

-iK r

+ XK (t) e
K

-.j

Grouping terms of the same K value gives

.+ +

AXrKtt iKrAx(=t) = [X(t) e

* -iK-r
+ XK (t) e ] (2-25)

which is the desired result.

With AX(r,t) expanded as in Eq. (2-25), Eq. (2-21)

becomes
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+-~ 1 -id( -it+ ) .ir
K d

V

+ IX * ( e d r 1 (2-26)
2K V

When all the dimensions of V are large compared to the

wavelength of the incident beam, X = (2w/ko), the inter-

ference integral

I(rK) = e r1 (2-27)

V

s= (Wo/cm)r

vanishes unless assumes the value t = (iO - S) §.

Therefore, the scattered light observed at r is contributed

by those plane wave components of AX(r,t) with wave vectorst

K = - (2-28)

and

K = -( -i S) (2-29)

Chapter 2, Section E.4.e.

Note that we allow K to be both positive and negative
but confine the frequency of the wave to be positive,

> 0. An alternate approach is to assign two possible
frequencies () to each wave vector; in this case, one
of the conditions in Eqs. (2-28) and (2-29) is super-
fluous.
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These conditions on K are simply restatements of Eqs. (2-14)

and (2-15) for the case of small frequency shifts, i.e.

k As s (/cmr.

If we assume that K takes on precisely the values

± (ts - 0o), we have the scattered field in the simple

form

i(ksr-wot) )
i (rt) = SX(tsXEo) 47r Ec)

s 0 0 oV2 [ h 2 (t) + h 2 (t)] (2-30)

This result together with Eq. (2-20) represent the basic

expressions for the scattered field which will be useful

in analyzing the intensity, spectrum, and spatial coherence

properties of the light scattered by entropy and pressure

fluctuations in liquids.

If we take Iol = , then the wave vector of the

susceptibility fluctuation responsible for the observed

scattering can be expressed in terms of the scattering

angle and the azimuthal angle illustrated in Fig. 2-4.

For isotropic scattering media like liquids, I = ts l

is independent of , and we find easily from Fig. 2-5

it1 = 2ko sin (/2) (2-31)

||1 - the wave vector of the susceptibility fluctua-

tion which causes scattering into an angle 0

away from the incident beam.

ko = n(2/X air) - the wave vector of the incident

light as measured in the scattering medium
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Figure 2-4 The scattering angles 0 and .

0

Figure 2-5 The wave vector conservation triangle in the
limit of small frequency shifts.
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C. The Intensity of the Scattered Light

1. Thermal Fluctuations

In order to calculate the intensity of the scat-

tered light we must now specify AX(r,t) in terms of the

known properties of the scattering medium. We consider

here only that time and position dependence of AX(r,t)

which arises from so-called "thermal" fluctuations. These

"thermal" disturbances are fluctuations in the "thermo-

dynamic" coordinates of the system about their respective

equilibrium values. More precisely, these disturbances

represent the statistical fluctuations in local density,

temperature, pressure, entropy, etc. which take place 3

in the medium viewed as a single member of a canonical

ensemble of identical thermodynamic systems.

Of course, in general, X(r,t) will depend not only

on all the "thermodynamic" variables of the medium but

also on the molecular orientation,9 the molecular vibra-

tional and electronic states, 0° and so on. Coupling be-

tween fluctuations in these quantities and the electro-

magnetic field (via AX) result in additional light

scattering phenomena, such as magnon scattering, ll polar-

iton scattering, 12 anisotropy scattering,9 and Raman

scattering,l° which are not of direct interest here.

As usual, the exact state of a pure thermodynamic

system can be specified completelyl 3 by giving any two

of the thermodynamic coordinates, (p,T), (P,T), (V,T),

and so on, together with the equation of state. However,

since the thermal sound waves responsible for the Brillouin-

Mandel'shtam components are adiabatic pressure disturbances,

we choose a description in terms of the entropy and pres-

sure. In this case, the fluctuations in the two indepen-

dent thermodynamic variables of the system contribute
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separately to distinct features in the spectrum of the

scattered light. For this choice of variables we have

AX(r,t) = (X/as)p[Ap(r,t) + (x/aP)s[APs(r,t)] (2-32)

Asp - the deviation in the entropy per unit volume

from its equilibrium value at constant pressure.

APs - the deviation in the pressure from its equi-

librium value at constant entropy.

2. The General Expression for the Scattered Intensity

The scattered intensity reaching the observation

point r can be calculated from Eq. (2-20) in the form

(r) = -o7o <s(r,' t).ES ( ,t

V= Co <s(r t)-s + (t)> (2-33)= 20S/,PO ES ( ' t )' E (r,t

from which we find

I(r) = o (4r) 2
(4-rrr)2 E

(2-34)

i ( o- S) (rl-r d3 l d3 )

where 10 = (1/2)s/o I 2 is the intensity of the

incident beam. On writing out the cross product in terms

Ax( ilt)x(,2t)e
VO V x:.~x
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of ks and , the angle between ks and Eo, and taking the

time average inside the volume integrals, we obtain

k 4 sin2 E 2
s( 2 ( )

(47r) E

(2-35)

I V <AX(rl' t)AX(r2 't)> e
V V

This result can be given in an alternate form by using the

spatial plane wave expansion for AX(r,t) which was intro-

duced in Section B.3, viz.

iKr
AX(r,t) = AX E(t) e

K
(2-22)

In this case we find

k 4 sin E 2

(4 2 (£)
(47Tr)

i (o -S +) ' ze
e

I ,XK <XK (t) XK,( O
K K

Equations (2-35) and (2-36) indicate two basic approaches

to the problem of determining the intensity of the scattered

light. The first, Eq. (2-35), proceeds via a calculation of

the mean-square amplitude of the total susceptibility fluc-

tuations AX(r,t) while the second, Eq. (2-36), relates the

i

I(r) = I0

() = 

x V
V V

(2-36)

i (0 s -('r1-r2)3- 3*
d r d 2

4
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intensity to the plane-wave-component amplitudes of these

fluctuations. The analysis given below follows the first

approach., although the scattered intensity is also obtained

in terms of AXK(t)AXK,(t)> as a by-product of the spectrum

calculations presented in Sections D.4 and D.5.

3. The Spatial Correlation Functions and Mean-Square

Amplitudes for Pressure and Entropy Fluctuations

The time average <AX(rl,t)Ax(r2 t)> required in

Eq. (2-35) can be expressed in terms of the entropy and

pressure fluctuations with the help of Eq. (2-32) as

t)X(2t = (x/s)p <As(rlt)Asp(r2(t)

+ (OX/ap)s(ax/S)p [Ps (rlt)ASp (r2 ,t)

+ S<Ap(rl,t) Ps (r2,t)>]

+ (ax/aP)s <APs(rlt)AP (r 2t)> (2-37)

From the theory of statistical fluctuations3 it is known

that Asp(r,t) and AP (r,t) are random functions of time;
therefore, it is impossible to display the time behavior

of either quantity in an explicit form. 14 However, since

the process of random molecular motion which gives rise

to Asp and APs satisfies the ergodic hypothesis,15 the
time averages appearing in the right hand side of Eq.

(2-37) may be replaced by statistical averages, namely,
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AX(r1 ,t)Ax( 2 ,t) = ( )AX~1 'P2 s

+ (x) (ax)
s P

[APs(rl,t) Asp(r2,t) + Asp(rl,t)AP s(r 2,t)]

+ '(P -APs(rl,t)APs (r2 t)

The bar indicates a statistical or thermodynamic average

over an ensemble of identical and similarly prepared systems.

Since the variables P and s are statistically independent,3

Eq. (2-38) immediately reduces to

2

AX(rl,t)AX(r2tt) = ()

2

s

For a liquid which is in uniform and isotropic equi-

librium it is physically plausible to assume that the

remaining statistical averages are independent of the

origins of the time and space coordinates and are func-

tions only of the separation Ir2 - rll. In face, comparing

Eq. (2-37) to Eq. (2-105) of Section E.2 shows that the

quantities

As (rlt)Asp(r2t) = ASp(rl-r2)Sp(0,0) i 

(2-40)

and

.

-As P(ri,t)as P(r 2t)

-As P(r't)AP(r 2' t

APs (ri t) AP s (r 2t)
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APs(rl t) AP(r 2,t) = AP(r 1-r20)APs(0,0) = ( 1 2

(2-41)

are spatial correlation functions for the total fluctua-

tions Asp and APs respectively. From a statistical

mechanical viewpoint, then, and g describe the degree

to which the thermal behavior of the medium at the position

r2 is influenced by its behavior at r.

Let us define the normalized spatial correlation

functions for entropy and pressure fluctuations as

Asp(p,O) Asp(010)
F(p) = (2-42)

Asp (0,0)

and

APs (p, )APs (0O)
G(p) = (2-43)

APs (0,0)

respectively.

The important qualitative features of F(p) and G(p)

can be given by direct analogy with the behavior of the

spatial correlation function for the scattered field which

is described in Section E.2. First, both F(p) and G(p)

are normalized to give F(p) = 1 or G(p) = 1 when perfect

correlation or linear dependence exists between the time

evolutions of the fluctuations appearing at the two points

r1 and r2 = r1 + p. Perfect correlation is approached in

the limit 1I +
4 0. Secondly, both functions will tend to

Chapter 2, Section E.2.
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zero when the separation p is such that the fluctuations

at r and rl+ p are statistically independent. Thirdly,

the separations for which F(p) and G(p) fall to some

predetermined level can be called the entropy and pressure

correlation ranges, s and p respectively. An attempt to

raise the entropy at a point r results in an entropy in-

crease throughout a volume v - A3 surrounding that point.

A similar interpretation follows for rp.

On the basis of a molecular model the distances tr

and p are determined by the range of the molecular pair-

correlation function. It followsl6 that, in general,

F(p) and G(p) will both decrease rapidly to zero as p in-

creases beyond the value ts, p = a, where a is the inter-

molecular distance. This behavior has been verified in

liquids on the basis of light and x-ray scattering experi-

ments which examine the angular dependence of the scattered

intensity.

The volume integrals in Eq. (2-35) can now be carried

out easily. Because s and p are both small compared to

the wavelength of the incident light, we may set

exp [i(o s) '(l-r2) ] = exp [i(o - )p] = 1

in the region of integration where F(p) and G(p) are non-

vanishing. In this case we have

k sin 2 E 2 22 *

o 0)- V(D~X ASp (0,0) F

(4'rrr) 

+ (a) AP2 (0,0) V (2-44)+Cat 5 Gs

Chapter 5, Section C.3.
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* *

where F and vG are the correlation volumes given by

F = 4 P F(p)dp G = 4I P G(p)dp (2-45)

0 0

These "effective volume" factors determine the extent of

the regions over which essentially uniform fluctuations in

Asp and APs take place.

The ensemble average mean-square amplitudes Asp (0,0)

and AP2 (0,0) are easily obtained by calculating the

thermodynamic free energy 3 required to generate an entropy

or pressure disturbance at a single point in the medium.

For example, an isobaric change in the entropy per unit

volume by an amount Asp at some arbitrary point in the

medium increases the free energy of the system by an

amount

T 2 3(A(Free Energy) = pC (asp) (r)d r
V

T 2 *
-c (Asp) F

Cp - the specific heat at constant pressure per

unit mass

p - the density

T - the absolute temperature

Similarly, an adiabatic pressure change APs produces a

free energy increase given by
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2 *
)2r APs uG

A(Free Energy) (AP) 2G(r)d A (2-47)

V S

B - the adiabatic bulk modulus
s

The required mean-square entropy and pressure fluctuations

follow immediately from the methods of Appendix D as

·2 kTB 2 kP
APs (0,0) = Ap (0,0) (2-48)

VG VF

where k is Boltzmann's constant.

4. The Total Scattering Cross Section-The Rayleigh

Ratio

Equations (2-44) and (2-48) combine to give the

scattered intensity as

4 2k sin 2 2

l(r) = I ( 2 + ( p) kTB ] (2-49)

This result shows that 1 () is independent of the direction

of observation except for the dipole radiation factor

sin2 ~. However, the form of Eq. (2-49) follows directly

from the assumption that both As and p are small compared

to the wavelength of the incident light. In general, the

double volume integral in Eq. (2-35), which determines the

directional variation of the total intensity, can be written

as a sum of two spatial Fourier transforms, namely,

i:



72

j (DX/3s)V F (p) e d p
V V V

+ 3-
+ (X/UP) V G(p) e d3 (2-50)

V

Therefore, the isotropy of the scattered intensity equiv-

alently reflects the fact that the mean-square spatial

Fourier amplitudes of entropy and pressure fluctuations

are independent of K in the range

O i IK < (1/s), (1/p)

Since the wave vectors of the fluctuations responsible for

the scattered light observed at an angle 0 to the incident

direction have the magnitude

JJ l= 2k0 sin (0/2) = 2 (2r/Xair)n sin (0/2),

I(r) will be independent of 0 when the incident wavelength

hair satisfies the inequalities

1 1
>

air 4rn ' 4rrnp

For wavelengths in the visible region of the spectrum, and

liquid samples at room temperature and atmospheric pres-

sure, we have X >> (1/rs), (l/ip) and I (r) is experimen-

tally found to be accurately independent of the scattering

angle. However, in the case of x-ray scattering from a

Chapter 2, Section B.3.
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liquid we approach X < (1/t) and, therefore, obtain the

short range behavior of the susceptibility correlation

function AX(p,O)AX(O,O). Such x-ray measurements show

that t for normal liquids, like toluene, is equal to the

intermolecular distance a 6 within a factor of two. 17 ,1 8

Using the relationships = (1 + <X>) and
2 4 4 4 4

1 + <X> = n , and writing k = (Wo/C ) = (Wo/C) n s 0 m o 0

we have the intensity in the form

4

(r) = O(c)
0

sin) [I2 pc + - 1TB2
(4rr)2 n ( kP kTBs

By convention we define the Rayleigh ratio as4

R =R +Rp - 1 r 17(0=io90 )ldg (2-52)

where R and Rp are the contributions from entropy and

pressure fluctuations respectively. From Eq. (2-51) one

finds easily

4

4
4 2

R o 1 2(s)s kTB 
4 2 4T 2 -

c 2(4r)o

entropy fluctuations

(2-53)

pressure fluctuations

The scattered intensity may be given in terms of Ras

N

(2-51)

LL

I
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21oVR 2
r 2 - sin 4 (2-54)

2
r

By writing V, the volume of the illuminated region, as

the product of a cross sectional area and a length L, we

have for the power scattered into a solid angle as

P = 2PoRL(sin. 4)2 (2-55)

Therefore, R represents the fraction of the incident

power, P, scattered into unit solid angle per unit

length of scattering volume.

Appendix B shows that the Rayleigh ratio can be cal-

culated from the definitions of Eq. (2-53) by evaluating

the susceptibility derivatives (X/as)p and (aX/aP)s in

terms of the pressure and temperature dependences of the

index of refraction. Table I gives values of R s and Rp

which are obtained at a temperature of T = 20.00 C from

the known static measurements of these quantities and

an assumed incident wavelength of Xair = 6328 A.

Fabelinskii4 has reviewed the experimental measure-

ments of R made prior to 1957 while Lundberg, Mooney, and

Gardner19 have presented new data taken with a laser light

source. The general agreement with the static theory is

good; however, because most of the experimental data were

taken on spectrally unresolved light, it is usually im-

possible to verify the values of Rs and Rp separately.

The analysis of the intensity given in this section,

based on the treatments of Einstein20 and Ginzburg, 21 is

one of two approaches to the problem. As stated in Section

C.2, an alternative method is to calculate the intensity of

the light scattered at a given angle by computing the



Table I THE RAYLEIGH RATIOS R AND R FOR SOME
SCATTERERS

SCATTERERS

Material

CS2

Benzene

Toluene

H20

Glycerol

CC14

Acetone

Methanol

Fused Quartz

KC1

-1- cm

2.9 x 106

2.05 x 106

0.45 x 106

0.50 x 106

-1R -cm

2.05 x 106

0.95 x 106

0.79 x 106

0.0040 x 0-610

0.046 x 106

0.61 x 106

-6
0.45 x 10

0.175 x 106

0.00216 x 106

0.003 x 10-6

0.0025 x 106

75

TYPICAL
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NaC1
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Fourier amplitudes IAXK(t) 12 directly. Recently, Benedek 22

has carried through such a calculation for a representation

of AXK in terms of the thermodynamic variables pressure and

entropy, or density and temperature. He proves that each

Fourier amplitude AXK is an independent random variable by

showing that the probability for finding an ensemble member

with a specified set of amplitudes, AXK, factors into an

extended product of Gaussians, each depending only on a

single amplitude. The variance of each Gaussian is the

required mean-square amplitude of the corresponding plane

wave fluctuation. The expression obtained for the intensity
**

by this method is identical to that given in Eq. (2-51).

D. The Spectrum of the Scattered Light

The spectrum of the scattered light is determined by

the time dependence of the fluctuations in susceptibility,

AX(r,t). If we go back to Eq. (2-20) for the scattered

field and use the spatial plane wave expansion for AX given

in Eq. (2-22), then ES(r,t) may be written in the form

4.4r Vl( 'i(k r - wot) (2-56)
E(rt) = V0(t)}

where K is fixed by the direction of r through Eq. (2-31)

and (r) is the time independent factor

4s r 

Appendix C.
**

Chapter 2, Sections D.4 and D.5.
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Assuming that AX arises from fluctuations in entropy and

pressure we have from Eq. (2-32)

i(k r -ot) p K-(t]
(,t) = V ( )e s {(x [As (t)] + (p) [AP (t)]}

p -K s -K

(2-58)

In this section we show (1) that the spectrum of the

entropy fluctuation term in Eq. (2-58) is a single Lorent-

zian line centered at the incident frequency wo and having

an intrinsic width which is dependent on the value of K;

and (2) that the quantity APK(t) represents two sound waves

having wave vector IKI and traveling in opposite directions.

The spectrum of this part of ES(r,t) gives the two Lorentzian

B-M doublet components, each broadened by an amount deter-

mined by the sound wave attenuation coefficient.

The spectrum of the scattered light, or more precisely,

its power spectral density, is by definition the scattered

optical intensity per unit frequency interval. Clearly the

spectrum is related to the ordinary Fourier time transform

of ES(r,t), the desired power spectral density at any fre-

quency w being simply vEc o/p o times the square of the

Fourier amplitude of that particular frequency. However,

_ (r,t) does not satisfy one of the fundamental existence
-s

theorems for the Fourier integral; it is not mean-square

integrable over the infinite time domain. 2 3 Therefore,

the ordinary Fourier integral does not exist. Even if we

were willing to expand S in a large, but finite, time do-

main using a Fourier series representation, another problem

still remains. Both AsK(t) and AP (t) are random variables ;

Chapter 2, Section C.

i
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therefore, it is impossible to specify the exact time

behavior of either quantity. However, we can get the

desired spectral information on the fluctuations as

follows.

1. Definitions of the Time Correlation Function

and the Power Spectral Density

Suppose that x(t) is a real random variable

and that the random process for which x(t) is a sample

function is wide sense stationary.24 Then we define the

time correlation function of x(t) as

T

Rx(T) = Tim 2T x(t)x(t+T)dt = <X(t)x(t+t)> (2-59)

-T

The indicated limit exists provided Rx(0) =x2(t)>,

which is the average "power" in x(t), is finite. This

condition can be compared to the normal requirement on

x(t) for the existence of the Fourier integral, namely,

that x(t) be mean-square integrable in the limit T+.

This latter condition demands that the total "energy"

in x(t) be bounded.

If Rx(T) exists and is absolutely integrable, the

power spectral density of x(t) can be given as the Fourier

cosine transform

+0

Sx (w) = (1/2r) I Rx(T) cos wT dT (2-60)
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The function Sx() gives the "mean-square x" per unit time

per unit frequency interval (or per unit bandwidth) as a

function of the frequency w. By combining Eqs. (2-59)

and (2-60) we find that Sx() is essentially the square

of the cosine Fourier amplitudes of x(t); however, the

former is normalized in terms of "power" <x2 (t)> rather

than "energy" T<x2 (t)>. This normalization allows us to

treat random variables, such as the scattered field, which

are characterized by infinite total "energy" but finite

average "power." In addition, a calculation of R (T) does

not require a knowledge of the precise time evolution of

x(t). If the associated random process satisfies the

ergodic hypothesis then, as shown in the following sec-

tion, we need only describe its ensemble average time

evolution from some fixed instant.

As written in Eq. (2-59), Rx(T) is a symmetric func-

tion of ; therefore, it follows immediately from Eq. (2-60)

that Sx(w) is also symmetric. Although this symmetry con-

vention is convenient in the mathematical treatment, it

should be pointed out that the physical "mean-squared x"

per unit bandwidth can exist only for w20. Applying Eqs.

(2-59) and (2-60) to the simple example x(t) = cos wot

shows that the physical power spectral density is simply

S () = S(w) + S(-W)

(w>0)

2. The Correlation Function for the Scattered Field

The desired spectral information on the scattered

field may be obtained from the correlation function



RE(T) RE() E(r,t) Es(rt+T)>RE(I) = RE( - = < E s
(2-61)

Recalling that As (t) = As (t) and AP (t) = AP (t), we
-K --E-K -K -K

have from Eq. (2-58)

2 +w T 2
V 1 2 .

RE(T) = 4-f (r) 2 eo ( x ) as (t)as (t+T)V2 .12p -K( -K

i[2ksr - wo(2t+T)] (aX 2
+ e as) As (t) As (t+T)

p-K K

i+ T

+ e 0 X) AP (t) AP (t+T)
DP --- K -Ks

i[2ksr - w (2t+T)] ( 2
DP) AP (t) AP (t+T)

s K -K
S~~~-

+ the complex conjugates of all terms)] (2-62)

If the characteristic frequencies in AsK(t) and AP K(t)

are small compared to the optical frequency wo this result

becomes

V II(-) 12 (I 2
RE () = I 2 x

P
0i LAsK(t) ALsK (t+T)>+ c.-i+ ) e PW 

+ e (o <APK(t)A PK (t+T)> + c.c

80

(2-63)
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In both Eq. (2-62) and Eq. (2-63) we have assumed that

cross products such as <iK(t)APK(t+r)> vanish identically.

A more exact treatment 2 which retains these terms shows

that this assumption is valid in the limit in which the

spectrum SE() consists of three non-overlapping lines

corresponding to the Brillouin and central components

respectively. For all measurements reported in this

thesis, the no-overlap condition is satisfied to excel-

lent approximation.§

3. Transformation of the Correlation Functions to

Statistical Averages

The correlation functions for the entropy and

pressure fluctuations,

R (K,) = <sK(t)K (t +)>

and

Rp(K,T) <AK(t) APK (t+T) ,

are most easily evaluated by expressing them in terms of

statistical rather than time averages.

Suppose that the process describing a random variable

x(t) is ergodic and stationary in the strict sense.24 Then

we have immediately

<x(t)x(t+T)> = x(t)x(t+T) = x(O)x(T) (2-64)

§ Chapter 5, Sections B.1, B.2, and C.2.
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where the bar denotes an average over an ensemble of identi-

cal, similarly prepared systems, for example, an ensemble of

identical light scattering experiments. The stationary

character of the process guarantees that the ensemble aver-

age is independent of the time origin and hence we have

chosen t=O arbitrarily.

Physically, the ensemble average would be performed

by measuring x(t) and x(t+T) on each of the members of the

ensemble, multiplying, adding the results, and dividing by

the number of members.25 In the limit as this number ap-

proaches infinity the result is the required average

x(t)x(t+T) =- N im N xi(t)xi (t+T) (2-65)

where i labels a particular ensemble member. The counting,

however, may be ordered in a different way. Suppose we

group together all terms in (N) which have the same values

of x(t) and x(t+T), say x(t) = x1 and x(t+T) = x2 respec-

tively, and write the number of times this particular pro-

duct appears in E(N) as n(xl,x 2). In this case Eq. (2-65)

may be rewritten as

x(t)x(t+T) im 1 I n(x1lx2 )x1x2 (2-66)
X1 ,X2

where (xl,x2) is to be carried out over all occurring

values of x1 and x2. Now in the limit N-+o

Nim {n(xl,x2)/N}

is just the ensemble average joint probability P(Xl,x2)

that x(t) has the value x and that x(t+T) has the value

x2. If x(t) is a continuous random variable, then p(x1,x 2)
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is zero in the limit N-t~, and it is convenient to intro-

duce the joint probability density

im n(x1 ,x2)
PIx 1x] E - 2 (2-67)

2

P[Xl,x2] gives the ensemble average probability that in

a measurement on any particular member of the ensemble we

will find x1 < x(t) X +dx2'

As N we have then

co co

x(t)x(t+T) = { { xxll p[x' (t) ,x"(t+T)]dx' dx"
X =-G__ X l' 

(2-68)

The correlation function can be written in another

useful form by factoring the joint probability density

P[ into a conditional probability density and a simple

probability density2 7 as

p[x'(t),x"(t+T)] = p[x"(t+T)fx' (t)] P[x'(t)] (2-69)

P[x"(t+-r)x'(t)]dx" specifies the probability that a single

measurement of x(t+T) on any member of the ensemble will

give x" < x(t+T) < x" + dx" if it is known that x(t) had

the value x' for that member. P[x'(t)]dx' gives the simple

probability of finding an ensemble member with x' < x(t)

< x'+dx'. Equation (2-69) is merely another way of order-

ing the basic counting process described in Eq. (2-65). In

terms of PE I ] the correlation function R (T) may be

expressed as

i
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R (T) = (O)X(T)x

+00 +0o

= |-J x'x" P[ "(T) I' (0) P[x' (0)]dx'dx"

X! =-X x =-O
(2-70)

This result is the relationship between the time averaged

and ensemble averaged behavior of a random variable which

is needed to compute the pressure and entropy correlation

functions.

4. The Correlation Function and Power Spectral

Density for Isobaric Entropy Fluctuations

Let us first consider the entropy fluctuation

term in Eq. (2-63), namely,

-As (K,1) <AsK(t))sK(t+T )

According to Eq. (2-70) we need the two probability den-
* ! I

sities P[ASK (T) AsK (0) and P[AsK (0)] in order to

evaluate this correlation function using an ensemble

averaging technique. However, an explicit calculation of

the conditional probability density P[ I I implies that

we exactly specify the time evolution of the canonical

ensemble entropy s(r,t) in every member of the ensemble.

In reality we are only able to give the equations of mo-

tion for the thermodynamic or ensemble average entropy

of the system s(,t). Fortunately, RAS(K,T) depends only

on averaged properties of P[ I ] which can be obtained

directly from thermodynamic considerations.
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In order to decide what features of P[As K (t) IAsK (0)]

are required to evaluate RAs(K,T), let us first describe its

interpretation in physical terms. This probability density

asks that we prepare an ensemble of identical systems all

having As = As ' at the time t=0. This is a very unusual

state. First of all, it is not in thermodynamic equilibrium

since the statistical average AsK(t) is non-zero; rather we

have As (O) = As . However, if we release such an ensemble

at t=O, then we expect at some later time t to find that its

members have reached thermodynamic equilibrium, i.e.

ASK(t) = K P[As K (t) I AsK ()]dAsK = 0

In fact, the ensemble average or thermodynamic entropy

s(r,t) relaxes to equilibrium under constant pressure con-

ditions according to the heat diffusion equation2 8

A V2s(r,t) = (2-71)
PCp at

where A is the thermal conductivity and cp the specific

heat at constant pressure per unit mass. By taking the

spatial Fourier transform of this equation we find that

the Fourier amplitude sK(t) obeys the equation

2 a sK (t)
AK sK(t) (2-72)

Therefore, assuming the initial condition SK() = AsK

we find the solution

-rt
AsK(t) = AsK e(2-73)K _K 

where



F = (A/pc) 2 (2-74)

That is, the ensemble average entropy disturbance AsK

relaxes back to equilibrium exponentially at a character-

istic rate . In fact, it is this average time behavior

that determines the spectrum of the fluctuations and, hence,

of the scattered light. Therefore, we have one of the im-

portant properties of P[AsK "*(T)IAsK' ()], namely

i. *
As K (T) = as

'* -rFT
= As e (2-75)

-K

We can now show that the average sK (T) is sufficient

information to compute the desired correlation function

RAS(K,T). Writing out R AS(K,T) explicitly in terms of the

conditional probability density P[ I ] yields

RAs(K,r) = I (s K * (A K ) () I* (0)J (AsK) (SK ) P[AsK (T) lAsK (o)]

dASK-K

" *
The AsK (T) integral is identically ASK (T) as given in

Eq. (2-75). Therefore, Eq. (2-76) simplifies to the form

-FrT I * ' '
RAs (K,T) = e J sK (0 )AsK (0) P[ASK (0)] d[AsK (0)]

(2-77)

L.

86

(2-76)

II* P t s ,1 ( ) Irs I( ) d- cSKs o~a

X [A SK (0) d.
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The remaining integral over ASK(0) is just the ensemble

average mean-square amplitude of the entropy fluctuation

with wave vector K. Using the assumed equivalence of time

and ensemble averaging we have

RAS(K,T) = - IAK() I2 e <AsK (t) 2> (2-78)

This result points out the two pieces of information which

are contained in the correlation function RAs(K,T). The

first is its T behavior which, via Eqs. (2-60) and (2-63)

determines the power spectral density of both AsK(t) and

the scattered field. The derivation leading to Eq. (2-77)

shows that this T dependence is fixed completely by the

equations of motion for the thermodynamic variables of the

system. Secondly, the correlation function evaluated at

T=0 gives the mean-square amplitude of the corresponding

entropy fluctuation and, therefore, is proportional to

the intensity in the central component of the scattered

light observed at an angle 0 [K = 2k0 sin (0/2)] to the

incident beam.

The calculation of the probability density P[ASK(O)]

which is outlined in Appendix C yields the result

/ F v[AsK ( 0)] 2
PIAsK(O) ] = exp -K (2-79)

2rr kpc 2kpc

from which we find

§ Chapter 2, Section C.
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IL kpc (2-80)

Therefore, the entropy fluctuation time correlation function

has the form

kpcp -Fr

R (K,) = V e (2-81)

where

r = (A/pcp)K2 (2-82)

From the derivation of Eq. (2-81) it follows that

RX(K,T) for any thermodynamic variable X can be evaluated

by the simple two steps of (1) computing the mean-square

amplitude of the corresponding fluctuation AXK(t) and

(2) multiplying by the normalized solution of the differ-

ential equation that governs the time evolution of XK.

The power spectral density of AsK(t) can now be found

by taking the Fourier cosine transform of the correlation

function. Using Eq. (2-60) we have

-00o

from which it follows that

s K =( )P) (2r/7r) (2-83)
V 2 2

L +F

Thus the spatial plane wave component of the entropy fluc-

tuations with wave vector K has a Lorentzian power spectral

density with its maximum value at =0 and a width at half-

height of r rad/sec.
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Let us now go back and calculate the entropy contri-

bution to the correlation function of the scattered field,

[RE(rT)]As, and its associated power spectral density.

From Eqs. (2-63) and (2-81) we have

= 2 (r) () (kpcp)e cos LOo
T

P

where§

()2 k sin E 2

r 2 ( ) E0
(4 r)

Evaluated at T=O, [RE(r,T)]As gives o times the total

intensity observed at the point r as a result of scattering

from entropy fluctuations. This expression may be compared

with the calculations of Section C as summarized in Eq.

(2-49).

For the power spectral density of the scattered field

we have

[SE(w)]As 21 
E As = Tr~~--O

-rFT

[RE(,O)]Ase cos(o0T) cos (T) dT

The integration is straightforward and yields

[SE()]As = [RE(rO)]As 2 2

(w>o) (50)+ r

or equivalently

[SE(a)]s = <IE s ( t) >s ( 2 + 2
(w>O) 0+ P

§ Chapter 2, Section B, Eq. (2-57)

(2-85)

(2-86)

[REr -) A 
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The factor depends on the direction of observation, r,

through the relations r = (A/pcp)K2 and K = 2kosin (0/2),

where 0 is the scattering angle.

Equation (2-86) shows that if we illuminate a medium

with monochromatic light of frequency wo and observe the

light scattered at an angle 0 to the incident beam, then

this light has a component with a Lorentzian spectrum

centered at the incoming frequency o.' The natural breadth

of this "unshifted" component varies with the scattering

angle 0, its half-width at half-height being given by

r = (A/pcp)[2ko sin (0/2)]2 (2-87)

The line width assumes its maximum value, rmax, for back-

scattering (O = 1800) and goes to zero in the forward

direction (O = 0°). Table II gives values of (rmax/2 )

computed for a number of liquids and a few isotroptic

solids assuming an incident wavelength air = 6328 A. The

values of A, p, and cp used in these calculations were

those corresponding to room temperature and atmospheric

pressure.

5. The Correlation Function and Power Spectral

Density for Adiabatic Pressure Fluctuations

In this section we consider the pressure term

in the correlation function for the scattered field, namely,

AP(K,-) = <P(t)APK x (t+T)>

The pressure fluctuation correlation function may be eval-

uated by the same statistical ensemble averaging technique

kl
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Table II PREDICTED CENTRAL LINE WIDTH (r /2rr) FOR SOMEmax
TYPICAL SCATTERERS

Material

CS2

Benzene

Toluene

H20

Glycerol

CC14

Acetone

Methanol

KC1

NaCl

*

watts/cm°C

1.61 x 10-

1.32 x 10 3

1.38 x 10-

-36.18 x 10

2.9 x 10 3

1.06 x 10-3

1.6 x 10-3

2.09 x 10 3

69.6

69.7

-3x 10

x 10

(F . /2r)max

Mc/sec

21.2

12.4

13.3

16.4

13.6

10.5

10.6

11.6

712

556

n, p, Cp

*

The required values of n, p, and cp are given in
Table BI, Appendix B.
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presented in the preceding section for entropy fluctuations.

Because the methods employed in both cases are identical, we

will here proceed by the simple two-step technique suggested

there; namely, <APK(t)APK (t+T)> is given by the product of

the mean-square amplitude <IAPK(t) > and the normalized

solution of the governing differential equation.

We can immediately calculate <IAPK(t) 12> from the

probability density P[APK(0)] derived in Appendix C as

<IP~K(t)I> ~= K()2 = V(-8kTB

-- 1 > () = 12 s (2-88)

where B is the adiabatic bulk modulus, and V is the

illuminated volume.

The description of the elastic behavior of a compres-

sible continuum which is needed to determine the time evo-

lution of the pressure fluctuation, is in its complete

generality given by the solutions of the hydrodynamic

equations.29 However, several important simplifying as-

sumptions can be made in the present instance. For example,

if we evaluate the root-mean-square amplitude of APK(t)

from Eq. (2-88), using V = 0.1 cm and T = 300°K, we find

for a typical liquid

[IAPK (t) ] 10 atm

Under these conditions the hydrodynamic equations may be

linearized30 in terms of small deviations of the pressure

and fluid velocity from their equilibrium values. Secondly,

by confining our attention to liquids or solids, we find

that the effects of heat conduction on the propagation of

the thermal sound waves responsible for the Brillouin-

Mandel'shtam doublet may be neglected. Therefore, terms
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in the linearized equations of motion involving gradients

of the temperature can be dropped. Liquids exhibit the

additional simplifying feature of having zero shear rigid-

ity. This leads to purely longitudinal disturbances for

which we can write a simple one dimensional differential

equation.

These assumptions lead to the usual Navier-Stokes

equation 2
~u) P u

p(au) = a + (4n+ 1n )a (2-89)
1 ax

where u is the fluid velocity in the direction xl, which

we choose to be the direction of K. The quantities n and

n' are the shear and compressional viscosities respective-

ly.31 The required equation of motion for the adiabatic

pressure can now be obtained by specifying the adiabatic

equation of state for the medium. In terms of the pres-

sure and fluid velocity we have for a liquid32

(1/Bs) (Ps/t) = - (au/axl) (2-90)

Taking the partial derivative of the Navier-Stokes equation

with respect to x, and using Eq. (2-90), gives

a2Ps a2 P a P
P 2 2 + + ') 2 (2-91)

sat ax s ax at

which is a damped wave equation for P. The desired differ-

ential equation for APK(t) is simply the spatial Fourier

transform of this result

2 [AP"(t) + aLAPK(t)] K2 4 PK(t )
P 2 = -K APK(t )] (2-92)
s at s at
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To calculate the pressure correlation function RAp we need

the general solution to this equation which is unity at

time t=O. This is most easily found by assuming a solution

of the form AP (t) = exp( t). Substitution of this pro-

posed solution into Eq. (2-92) yields a quadratic algebraic

equation in i whose roots in the limit of small damping are

= -2( 4 n + n ) + i - K (2-93)

The corresponding solutions for APK(t)

APK(t) = exp - 2p(n + n')t exp[i Kt (2-94)

show that the adiabatic pressure fluctuations with wave

vector K are damped propagating waves with a frequency

1

'K = (Bs/P)2K

traveling in opposite directions with a phase velocity

vs = (/K) = (B /p)T

Of course, this velocity v is just the velocity of

ordinary sound in the medium.

According to Eq. (2-94) the thermally excited sound

waves exhibit a characteristic damping rate, yK' given by

2

~- = K2(4 + ) K2(4 + n)2pv 5 2~~~(2-95)and showing the classic dependence. This damping rate
and showing the classic 2 dependence.33 This damping rate

is related to the spatial decay constant, a, normally meas-

ured in ordinary ultrasonic experiments, by the identity
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2

aK YK n + n (2-96)
v s 2pv3

The approximation used in obtaining the roots i+ displayed

in Eq. (2-93) involved assuming that yK << K; it follows

from Eq. (2-96) that this approach is equivalent to assum-

ing that the sound wave in question is not appreciably

damped in a distance of one acoustic wavelength.

The general normalized solution to the Navier-Stokes

equation can now be written as

YKT iK -iKT
e [ae + be ]

where (a + b) = 1. Combined with the mean-square amplitude

factor given in Eq. (2-88) this result leads immediately to

the correlation function RAp (K,T) as

R_ (K,T) = PK(t)AP K (t+T)>

kTB -YKI iKt -iT
=- V e [ae + be ] (2-97)

Calculating the power spectral density of APK(t)

according to Eq. (2-60) gives

kTBs (YK/)
SAp(w,K) = V (2-98)

A P V (W-W 2 2

(Wm0- K) K K

That is, the pressure fluctuations of wave vector K have

a Lorentzian spectrum centered at the sound wave frequency

WK and with a half-width at half-height of yK rad/sec.



96

The pressure part of the correlation function for the

scattered field follows directly from Eqs. (2-97) and (2-63)

as

V l~i=, 12 a -YK 
[RE(r T)]P 2 (X (kTB )e, AP 2 = -- apJ ) s

x[a cos (Wo-K)T + b cos ( o+iK)T] (2-99)

Evaluated at =O, [RE(r,T)]Ap gives the total mean-square

field <Es(,t) l observed at r due to scattering from

spontaneous pressure fluctuations in the sample. The wave

vector of the fluctuation responsible for this scattering

is given in Eq. (2-31).

The power spectral density of the scattered field

follows from Eq. (2-99) as

2 JE S (, t) ~ e Y T
[S E(W)]A = 2 J <I'ES(rt) I>AP e (2-100)

(w>0) 0

x[a cos (o-ziK) + b cos (o+K) T] cos T dT

from which we obtain

b (YK/r)
2 2+ - 2 2 (2-101)[W ( oUK)]2 + YK

Therefore, we find that the light scattered from pressure

fluctuations of wave vector K has a spectrum consisting of
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two Lorentzian components, one centered above the incident

frequency wO by an amount wK and the other below w by the

same amount. Besides being shifted by the sound wave fre-

quency ZUK' both components are broadened because of the

acoustic attenuation so that each Lorentzian exhibits a

half-width at half-height of yK rad/sec. Figure 2-6 illus-

trates the spectrum of the light observed at an angle 0 to

the incident beam, K = 2k° sin (0/2), including both the

doublet components and the unshifted line.

As was stated in Section B of this chapter, the split-

ting of the doublet corresponds classically to the Doppler

shift imposed on the incident light because of the motion

of the scattering fluctuation, in this case, a thermally

excited sound wave. Quantum mechanically, the two terms

in Eq. (2-101) represent respectively the annihilation and

creation of a single thermal phonon. This interpretation

also fixes the values of a and b; at room temperature

(kT >> UiK) the transition probabilities for annihilation

and creation are equal2 and we have a = b = 1/2. It follows

that the total scattered intensity contained in the "pressure

fluctuations" term in Eq. (2-51) actually represents the

total power in both of the Brillouin-Mandel'shtam components.

With the help of Eq. (2-31) the frequency shift K and

the line width yK can be expressed as a function of the

scattering angle 0 as

UK = vsK = 2kv sin (0/2) (2-102)

2

2D'K n ) K s (2-103)
2pvs

s

i
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or with k written in terms of the incident wavelength,

Xair' and the index of refraction of the scattering
medium, n, as

-K = 2(2 /Xair)nvs sin (0/2) (2-104)

Table III gives values of (K/ 2 7) and (YK/2~) in some

typical materials for the three angles, 0 = 1° , 0 = 10° ,

and 0 = 180°. These results were calculated on the basis

of low frequency ultrasonic values of vs and a and an in-

cident wavelength Xair = 6328 A. In each case yK was deter-

mined by an extrapolation of a based on an assumed 2

dependence. Such a procedure is known to fail in some

liquids where Bs, n and n' are, in fact, functions of the

frequency of the sound wave.3 4 In general this frequency

dependence takes the form of a relaxation, the usual result

being an increase in vs with increasing frequency and an

attenuation which falls below the 72 extrapolated result.

Surprisingly enough in view of the predictions of Table

III, no liquid whose Brillouin spectrum has been studied

has ever shown a broadening comparable to the frequency

shift.

E. The Spatial Coherence Properties of the Scattered Field

1. Introduction

Having calculated both the total intensity and

the spectral distribution of the scattered light, we turn

in this section to a description of two additional charac-

teristics of the scattered electric field. These are:

(1) the geometrical shape of its constant phase surfaces,

i.e. its wavefronts, and (2) the range of spatial coherence

on each of these wavefronts.
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As it is used here the term spatial coherence refers

to a mutual dependence or correlation 35 between the time

behaviors of the instantaneous electric field amplitudes

observed at two spatially separated points r and r2. To

describe this correlation quantitatively we introduce the

spatial correlation function, a suitably normalized ensemble

average of the product of the electric fields ES(rl,t) and

ES(r2,t). The desired information on the range of spatial
coherence is contained in the variation in the magnitude

of this average as a function of the separation (r2 - rl

In this section we will determine the general behavior

and average range of this correlation function when both

rl and r2 lie on the surface of a sphere Q centered on the

scattering volume V and having a radius much larger then

the maximum dimension of V. This calculation demonstrates

an unusually close relationship between spatial coherence

properties and simple diffraction theory; the total scat-

tered field reaching Q can be expressed as the sum of a

set of far field diffraction or antenna patterns of the

three-dimensional "source" V. We find that there is no

time average correlation between the electric fields of

two different diffracted beams while perfect correlation

exists at all separations (r2 - rl) for the field of a

single diffracted beam. As a result the behavior of the

spatial correlation function versus (r2 - r) is deter-

mined completely by the electric field amplitude distribu-

tion in the ordinary diffraction pattern of the scattering

volume.

The motivation for studying the spatial coherence

characteristics of the scattered field is provided by the

calculations given in Sections C.2.a.2 and D.3.a of Chapter

3. These results show that the usefulness of an optical

..
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mixing spectrometer is determined not by the total available

scattered power, but rather by the amount of power scattered

into the solid angle of a single diffracted beam. The size

of this "coherence solid angle" depends on three factors;

(1) the shape of the scattering volume V, (2) the scatter-

ing angles 0 and , and (3) the variation of the incident

light intensity in a plane normal to the direction of the

incoming beam, 

For purposes of presenting some explicit calculations

of tpyical coherence properties we consider a rectangular

parallelopiped scattering volume and an incident intensity

profile which corresponds to a laser light source operating

in the so-called uni-phase or fundamental transverse modes,

TEM . For this type of source, a semiquantitative descrip-ooq
tion of the spatial coherence function can be obtained easily

from the geometrical properties of the reciprocal or K-space

lattice of points representing the wave vectors K. used in
** J

the Fourier series expansion of the susceptibility fluc-

tuations AX(r,t).

2. The Definition and General Properties of the

Spatial Correlation Function

To measure the degree of coherence between the

scattered fields observed at the two separated points r

and r+p we define the spatial correlation function T(r,p)

as follows:

Chapter 4, Section B.2.
*Chapter 2, Section B.*

Chapter 2, Section B.
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E (r+p,t).E S (r ,t)
T(r,p) (2-105)

[ES (r,t)Es(r,t)][ s(r+p,t)-Es(r+p,t)]T

The bar denotes a statistical average taken over an ensemble

of identical light scattering experiments generating all

possible behaviors of the random variable E (,t). Since

we assume that E (r,t) is strict sense stationary, and

also satisfies the ergodic hypothesis, T(r,p) is indepen-

dent of t and may be written3 6 in an equivalent time aver-

aged form as

t + <E (r+p,t)-E (rt)
T(r,p) = -S -S (2-106)

[<IEs(r,t)12>] [< Is(r+p,t)12>]

Equation (2-106) shows that T(r,p) measures the degree to

which the time behavior of the field at r+p is influenced

by, i.e. is correlated with, its behavior at r.

The general properties of T(r,p) can be examined by

writing out the numerator of Eq. (2-105) explicitly in

terms of its ensemble average, namely,5

(r+p,t)*(rt) ,t) E (r+pO)E(r,)

.+ifE ( · sr+pO)KeS(r o)
Es (r+p) ES(')

X P[ES (r+pO)Er (-,0)] d[ES (,0)l (2-107)

§ Chapter 2, Section D.3.

.
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where P , I is the joint probability density that the

field at r has the value ES (r,0) and that the field at

r+p has the value E(r+p,0). As usual§ the joint proba-

bility may be factored into a product

P I = P[ (r+p,0)IEs (r,0 )] p[E_(r,0)] (2-108)

in which P[ I ] is the conditional probability density that+ s+6' p
the field at r+p has the value E(r+p, given that the field

at r has the value ES (r,0 ).

First, suppose that the fields detected at r and r+p are

completely independent of one another. Then P I ]I becomes
simply P[_S (r+p,0)] and Eq. (2-107) yields

E (r+p 0) E ( = 5(r+p,O).E(r,O) = 0 (2-109)

The zero result follows from the fact that ES(r,t) has a

zero mean for all r. Since the denominator in Eq. (2-105)

measures the mean-square fields at r and r+p, it is non-

vanishing; therefore, Eq. (2-109) implies that T(r,p) 0

in the absence of correlation.

On the other hand, suppose that the fields at r and

r+p are completely linearly dependent, so that Es (r+p,0)

is simply some complex function (p) times S (r,0). Then

we have

P[ I ] = 6[E-s - ) (r+,0)) - (2-110)

and Eq. (2-107) yields

Chapter 2, Section D.3.

LL.
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ES (r+p,0) E S (r,O) = (p) E (r,O) E (r,O) (2-111)

Therefore, in the case of perfect correlation T(r,p)

becomes -i (p)
T(r,p) = , (2-112)

a normalized description of the phase and amplitude of the

field at r+p relative to the field at r.

The behavior of T(r,p) in the intermediate range of

partial correlation can best be described by expressing

Es(r+p,O) in terms of a completely uncorrelated component-_ un -+ + + +-
E (r+p,0) and a perfectly correlated part (p)Es(r,).

In this case we find

4 3 P (P)T(r,p) = (2-113)

(P)[ + r]T
The quantity r

<IES u n (r+, t )

r= (2-114)
I(P) I Es(r+P,t) I>

is the ratio of the intensities in the uncorrelated and

correlated components of Es(r+p,).

With this result and Eqs. (2-105), (2-109) and (2-112)

the qualitative dependence of T(r,p) on the separation

may be given as follows:

(1) The magnitude of T(r,p) reflects the degree

of coherence existing between the fields reaching the two

observation points r and r+p; IT(r,p) has a maximum value

of one, representing perfect correlation, a minimum value

of zero, corresponding to no correlation, and intermediate

I
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values for the case of partial coherence. The case of zero

separation, =O, by definition gives IT(r,p) = 1, while

the separation for which IT(r,p)I falls to some pre-set

value may be termed the coherence distance.

(2) The actual value of T(r,p) describes the phase

and amplitude of the fully correlated component of E(r+p,0)

as measured relative to E (r,0).

3. The Origin of the Finite Range of Spatial Coherence

In computing T(,p) for the field of some arbitrary

source, we find that two basic phenomena can combine to de-

stroy coherence between the fields reaching the points r and
4. 4- -++

r+p. The first enters whenever r and r+p are situated at

different retarded times

I+ r I
t t 0ret cm

from the source, and represents an uninteresting effect of

the temporal coherence characteristics, RE (), of the emitted

radiation.

The second mechanism enters whenever r and r+p point in

different directions. In this situation we find from Fig.

2-7 that the wavelets originating from any two volume ele-

ments in the source will, in general, interfere with some-

what different relative phases at the two observation points.

For our purposes we may regard the field leaving AVi as having

an arbitrary and random phase with respect to that leaving

any other AV , ji. It follows that the total fields at r

and r+p,

It follows that AVi must be large compared to the cube
of the range of the pair-correlati.on function which is
described in Section C.3 of Chapter 5.
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-i(2/X)6r+p (v i
)

E (r+p,t)= E (Avi,t)e
AV.

and

i(2 /X)6r (Vi)
E(r,t) = I E(AVi,t)e

AV.

will have a time average product which vanishes unless the

sum of the "diagonal" terms

<E (r+pt)E(,t)> = E <IE(AVi't) l2>ei(27T/X) [6r(Vi) - 6r+p (Vi)]
AV.

(2-115)

is a non-zero. Correlation between the two fields is de-

stroyed when the original phase factors (2f/X)6r(Vi ) are

replaced by a new set of values (2f/X)6r+p ( Vi) for which

the differences

2 [6r (Vi) - r+p(Vi)]

are distributed between - and . Clearly this second

mechanism for destroying spatial coherence is a purely

geometric effect, depending only on the shape of the

source and its intensity distribution IE(AVi,t) I2 We

will prove below§ that these factors enter the calculation

of T(r,p) and the ordinary diffraction pattern of the source

in identical manners.

Chapter 2, Section E.4.c.
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4. The Spatial Correlation Function for the Scattered

Field

a. The Description of the Scattered Field by

Analogy with Diffraction

In Section B we obtained a general expression

for the field scattered by a volume V of nominally homogeneous

material exhibiting fluctuations in its optical susceptibility.

This result was based on three simplifying assumptions. First,

the distance between the observer and the scattering volume

was assumed to be large compared to the maximum dimension of

V, thereby placing the observer in the far field region of the

source. Secondly, the incident beam was taken to have a con-

stant amplitude E over its cross section; this intensity

distribution approximates the focal region of a laser light

source operating in its uni-phase modes. Third, the change

in wavelength on scattering was neglected so that

Ito = I = (/c )

where k and k are the wave vectors of the incident and
0 S

scattered fields respectively.

In this case, by expanding the susceptibility fluctua-

tions AX(r,t) in terms of a spatial Fourier series, we ob-

tained the scattered field as a sum of terms [E (r,t)]K

each of the form

Chapter 4, Section B.2.
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i(k r - w t)

[ES(r,t)]K = k x(k XEer ( K(t)

i( k +k )K) 3(1
x e d r (2-116)

V

giving a total field

ES (r ,t) = I [Es(r,t)]K (2-117)
K

Note that the explicit variation of [Es( ,t)]K with the

direction of r is described in the right hand side of Eq.

(2-116) entirely through the wave vector ks

ks = (Wo/cm)r (2-118)

which points in the direction of observation.

For purposes of comparing this expression for the

scattered field to ordinary diffraction, consider the

vector diffraction integral generalized to a three-dimen-

sional diffracting region V, namely3 7

_+ ;t+ 1
ED(r, ) 4 Tr : | (2-119)

where E(rl,t1) is the total field acting in V.

Equation (2-119) has been written for a medium in which

the velocity of light is cm = (co/n) and the permittivity
2 m 0

is = n o, where n is the index of refraction. In actual

diffraction calculations the Kirchhoff approximation is

L
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made by taking E(rl,tl) as being the incident field rather

than the sum of incident and diffracted fields.

Suppose the incoming beam corresponds to a uni-phase

laser source

INC (r-t) = E e
E (r ,t ) = E eINC 0

Then with the Kirchhoff assumption and the usual far

field approximations we find for the diffracted field

i (kdr - w0 t)
ED( "r t) = dX(kdXEdo ) 4rr (1 | i ( d) rl d3 

V

(2-120)

where

kd = (/Cm)r

A comparison of Eqs. (2-116), (2-118), (2-120) and (2-121)

shows that the field scattered by a single spatial Fourier

component of the fluctuations can be regarded as the dif-

fraction pattern of the scattering volume V, as illuminated

with an effective incident field

i[(o +K)-r - t]
INC(rt) = oAXK(t)Eoe (2-122)

The orientation of this beam is illustrated in Fig. 2-8.

*
Chapter 2, Section B.1.

(2-121)

!
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I

Figure 2-8 Equivalent illumination of the volume V for a
diffraction interpretation of the scattering
process.

I

t

i

Vi



TF 

113

An even stronger statement of the analogy can be made

by contrasting Eqs. (2-119) and (2-3) for the diffracted

and scattered fields respectively. On the basis of this

comparison it can be shown that the diffraction interpre-

tation of the scattering process is valid (1) in both the

near and far field regions of the source volume, (2) for

an arbitrary intensity profile for the incident electric

field, and (3) for the exact field integrals without

Kirchhoff-like approximations as to the ratio of incident

and diffracted intensities.

It follows that the total scattered field can be

described as the superposition of a series of diffraction

or antenna patterns, each one characterizing the geometri-

cal shape of the illuminated volume V and an effective in-

cident beam of the form displayed in Eq. (2-122).

b. The General Expression for T(r,p) in Terms

of the Interference or Diffraction Integral

In calculating T(r,p) for the scattered

field ES(r,t) we will be interested only in the lack of

spatial coherence that is due to the finite geometrical

size of the illuminated region. Therefore, to avoid the

effects of the temporal coherence characteristics of the

scattered light we compute T(r,p) for the case where r

and r+p are located at identical retarded times from the

scattering volume V. The points r and r+p are taken to

lie on a single wavefront of the scattered field.

Equation (2-116) shows that in the far field each

"diffracted beam," [Es(rt)]K represents a spherically

Chapter 2, Section E.3.

i
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spreading wave whose amplitude in a particular direction

r is determined by the interference integral

+ r. i (it[0 -its+II.r 1 3
I(r,K) _ J e d r (2-123)

V

and the definition

s (w/cm)r (2-124)

Therefore, we will assume that the two observation points

r and r+p lie on the surface of a sphere, Q, centered on

V and having a radius r much larger than the largest

dimension of V. On Q the field scattered by a suscepti-

bility fluctuation of wave vector ft has an average ampli-

tude and phase fixed by the factor

i(ko0 r - w0 t)

t X(2sxi 0) e 4o (-) AXK(t)

and modulated by the interference integral I(r,~) given

in Eq. (2-123). The orientation of the vectors r and r+p

and their associated wave vectors s(r) and s( r+p) are

illustrated in Fig. 2-9.

Writing S(r,t) in terms of I(-,K) with the help of

Eqs. (2-116), (2-117), and (2-123) gives T(r,p) on the

surface of Q as

Chapter 2, Section B.3.
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x, k x

z,7kz

Figure 2-9 The spherical surface Q used in the computationof the spatial correlation function.
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The maximum value of K that need be considered in the

double summation corresponds to scattering in the back-

ward direction (O = 180°) where

Kma = 2kO = 2n(2/Xai r )

For larger K, I(r,K) is zero for all possible r. Further-

more, under normal circumstances the range of the pair-

correlation function± in the scattering medium is small com-

pared to (1/Kmax) and AX(rlt 1) may be regarded as a random

function of the position coordinate r as well as of the time

tl. In this limit, the set of Fourier amplitudes

1 1 3-
AXK(t) = V Ax(rlt)e d r

K<Kmax

form a sequence of statistically independent random func-

tions of time, and the ensemble average

XE(t)AXK,(t)

vanishes unless = A'. Therefore, TQ(r,p) immediately

reduces to the simpler form

i (r,p) = (2-126)

.+-* *

Ax A(t)xt) I( I r+,K
K

&~·,xA(t) A (t) II( It x XK(t)AXK (t)I(r+p,K) I

Chapter 2, Section E.4.e.

Chapter 5, Section C.3.

L
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The product I(r,K)I (rep,K) appearing in the numerator

of Eq. (2-126) shows that correlation will occur between

the fields observed at r and r+p only if at least one of

the "diffracted beams" has a non-vanishing intensity at

both r and r+p. This result may be interpreted as showing

that perfect correlation exists at all p in the field scat-

tered by a single AXK(t) while the fields associated with

different values of ~ are completely uncorrelated.

In fact, the spatial correlation function for one of

the field components [Es(r,t)]K can be computed from Eq.

(2-116) as

[(E (r,t)]K [ (r+p,t)]K>

KIIE (r,t)]K| <1[ Er+p

_ 8

where

B = ¢ -i(o S+K) r1 +i(o -k +K) r2-e s lo s 2 3+ 3+
= ~e d rd 2

V V

(2-128)

The wave vectors s and ' point in the directions of r

and r+p respectively. Since [T (r,p)] has unit magnitude

for all p, it follows§ that the field of a single diffracted

beam is spatially coherent over the entire sphere Q. On the

other hand, the statistical independence of AXK(t) and

AXK' (t) guarantees that the average

§ Chapter 2, Section E.2.

L
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[ ~, ( tH p+,t) AXO , X(t)AXXV (t)
T=( K XK

vanishes for K K' and, hence, there is no correlation

between the fields scattered from fluctuations of differ-

ent K.

In a qualitative fashion, then, the desired information

on the range of spatial correlation in the scattered field

is determined entirely by the r behavior of a single inter-

ference integral I(r,K). However, as is clear from a com-

parison of Eqs. (2-120) and (2-123), I(,K) is simply the

ordinary diffraction integral for the region V.

c. The Relationship Between the Spatial

Correlation Function for the Scattered Field

and the Diffraction Pattern of the Scattering

Volume

A rigorous equivalence between the diffrac-

tion pattern and the spatial correlation function may be

established as follows. Let r, the principal direction of

observation, be fixed, and consider first of all the

diffraction pattern of V. Suppose that V is illuminated

with a plane wave incident beam traveling in the direction

r, as in Fig. 2-8, so that the observer at r is at the

position of maximum intensity of the diffracted beam.

Then if r and r+p lie on a spherical surface Q, we have

II=

and Eq. (2-120) gives the ratio of the fields observed
4. 

at r+p and r as

L



ED (r+p,t)

ED (t)

O 1 + -

1 ecm rIr 1 3 I3
V Je m I'' d r1

V

Next, consider Eq. (2-126) for (r,p) in the usual
*

situation in which XK(t) XK* (t) is independent of K over

the range

i |ff < K

K >> k
0

In this case the sums over may be performed explicitly

and we find

(rp = V e

VV7

wo 1 -* -i - - p'r
cm Ir

1 3.
d r.

Comparing Eqs. (2-129) and (2-130) shows that T (r,p)

for the scattered field identically describes the amplitude

distribution in that particular diffraction pattern of V

whose center lies in the direction r.

Finally, consider the field scattered by the suscepti-

bility fluctuation whose wave vector K satisfies the condi-

tion

ko - o k -K +K =k - r+K= 0o s 0 0 (2-131)

Chapter 2, Section D.3; Chapter 5, Section C.3; this
K independence is a direct result of assuming that
the range of the pair correlation function is small
compared to the wavelength of a fluctuation having
K=Kmax=2ko. Equation (2-130) can be obtained directly
from this assumption by evaluating TQ(k,p) in terms of
Ax(t,t) rather than AXK(t).

120

(2-129)

I (2-130)

*

A
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The corresponding interference integrals

w
°1 ipr

4 ( r+ I .. - cmII 3+
I (r+pk s -k0) = d r1 (2-132)

VI -(,' ) = V (2-133)

show that the spatial correlation function may be written

in the form

+. 3 1 *- + ,
T (rP) = I (r+p lk O) (2-134)V' s o

From Eqs. (2-129), (2-130), (2-134), and the properties

of T(r,p) described in Section E.2 we may draw the following

conclusions.

(1) The range of spatial correlation in the scat-

tered field is the extent of the ordinary diffraction pattern

of the illuminated volume.

(2) Distinct regions of spatial coherence on the

spherical surface Q can be interpreted as the diffraction

patterns or scattered beams originating from susceptibility

fluctuations of different wave vectors.
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d. The Averaged Properties of TQ(r,p) Which

Are Important in Light Mixing Spectroscopy

Although the behavior of I(r,K) and, there-

fore, of (r,p) can be displayed explicitly for certain

simple geometrical shapes of the illuminated region, the

calculations given in Sections C and D of Chapter 3 indi-

cate that only certain averaged properties of T enter into

determining the effects of spatial coherence on the opera-

tion of an optical mixing spectrometer. Specifically, we

encounter the following surface integrals,

A, J~ -~ +~ ~(2-135)ACOH = TQ(rop)dp (2-135)

Q

and

ACOH Q (roP)d P (2-136
Q

Since the maximum value of T (r,p) is T(r,O) = 1, both of-Q
these expressions determine an effective area on Q over

which there is complete spatial coherence. Both are desig-

nated as coherence areas of the scattered field. The

desired integrals can be put in a form which is independent

of the choice of Q by computing the corresponding coherence

solid angles

0COH = (ACOH/r2) (2-137)

and

* * 2
0COH (ACOH/ro ) (2-138)

L .
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respectively. The usefulness of a light mixing spectrom-

eter is determined by the amount of scattered power avail-

able in a single coherence solid angle.

e. The Properties of I(r,K) for a Rectangular

Parallelopiped Scattering Volume

The calculations and discussions of this

section are directed toward investigating the important

properties of the diffraction integral I(r,K). First,

we consider its exact behavior with the direction of

observation, r, using a specific choice for the shape

of the scattering region and a single value of K. This

behavior describes the intensity distribution in the field

scattered from a single fluctuation AXK(t) and also, via

Eq. (2-134), gives a qualitative picture of the spatial

correlation function S (r,p). Secondly, we obtain an

approximate form for i (r,p) which allows the integrals
-Q *

defining the coherence solid angles COH and COH to be

carried out explicitly. Finally, we investigate the rela-

tive spatial orientation of the "diffracted beams" I(r,K)

corresponding to the entire set of allowed K values.

Let us first consider the exact evaluation of I(r,)

with a particular choice for the shape of the illuminated

volume V; specifically, let V be a rectangular parallelo-

piped with dimensions Lx, Ly, and Lz along the x, y, and

z axes respectively. The z axis is oriented along the

direction of the incoming beam, i0, as illustrated in

Fig. 2-10. With this choice for V Eq. (2-123) has the

form

i

T'
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I(rK) =

L
x
2 i(Kx-qx)XI

I e
L

-2

L

dx' I 2

__
2

LZ
z

i (Ky-q )y'
e

2 i(Kz-qz)z'
x e

T.

2

z

q -E s o o= (/cm)r -0~~~

The integrations are straightforward and we find for I(r,K)

I(r,K) = V
sin (Kx-qx)(Lx/2)

(Kx-qx) (Lx/2)

sin(K -q ) (L /2)
(Kyqy)(Ly/2) 
(K -q) (L /2)

y y y

sin (Kz-q z)(Lz/2)

(Kz-qz) (Lz/2)z z zz

Each of the three cartesian factors in this result is of

the general form

g(w) = [(sin w)/w]

The function g(w) peaks sharply at w = 0, going to unity

in the limit (w -+ 0), and then dies off in an oscillatory
-1

manner for large w with an envelope (w)1. Figure 2-11

illustrates this behavior for the range -4' < w < 4.

I

dy'

where

dz' (2-139)

(2-140)

(2-141)

Am

I

!
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Equation (2-141) shows that the diffraction integral

I(r,i) contains two interesting pieces of information.

One, for a fixed direction of observation, k , it demon-

strates that the fluctuations which contribute to the

observed scattering have a wave vector that satisfies the

condition

K - q = S -i + K = 0 (2-142)
0 S

This is simply the constructive interference or momentum

transfer requirement stated without proof in Section B.

Two, for a fixed value of , I(r,i) describes the

angular range of r (or ks) over which the fluctuation

AXK(t) will contribute a non-negligible scattered inten-

sity. This angle is the opening angle of a single "dif-

fracted beam" [$S(r,t)]K and, hence, from Eq. (2-134),

measures the desired coherence solid angle of the scat-

tered light.

For the purpose of calculating the coherence solid

angles 2COH and QCOH from I(r,K) and Eqs. (2-135) through

(2-138), we may approximate the factors g(w) = (sin w)/w

by a step function g (w) which is unity in the range

-Aw < w < Aw, and zero otherwise. The increment Aw is

chosen by equating the areas under g(w) and g (w) respec-

tively. As an example, for the x component of q we find

(Ak

-sin (Kx-qx) (Lx /2) d() d(s) x = d (s )x L
Kx-qx) (Lx/2) -(Ak x

(2-143)

.I
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The corresponding result for I(r,i) is

T 1 -

V;

( / X) (k k+K) < (r/Lx)

(7/Ly) < (ko-k s +K)y < (/Ly)

-(7/Lz) (ko-ks+K)z (Tr/Lz)

.L LL\ I _ (2-144)

0 ; otherwise

From the form of Eq. (2-144) we may state two con-

clusions.

(1) The fluctuations that will produce scattering

in the direction r = k must have wave vectors K such that

o + K falls inside a rectangular parallelopiped cell i

which is centered on the wave vector k and has dimensions

(Akx, Aky, AkZ) = [(2r/Lx ), (2r/Ly), (2r/Lz)]. That is,

K comes within an amount (Akx,Aky,Akz) of satisfying the

condition 0 - s + K = 0 given in Eq. (2-142). This al-

lowed deviation from exact momentum conservation § can be

explained semi-classically in terms of the uncertainty

relation ApAx = h and the finite dimensions of the scat-

tering volume.

(2) For a fluctuation K. which satisfies the

above requirement, it follows that I(rK) is non-zero only

if r remains within the diffraction pattern of Kj by taking
J

Chapter 2, Section B.

I
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on only those orientations on Q around the direction k + K

for which falls in the same cell 5 now centered on the

vector k + K.
0

The possibility of interpreting the interference

integral in these two ways follows directly from its sym-

metrical dependence on the wave vectors ks and K. We will

show in Section 5 below that both interpretations lead to

identical results for the coherence solid angles.

We now determine the spatial relationship between

the cells corresponding to different K by specifying

the values of K. which are to be used in the plane wave
J

expansion of the susceptibility fluctuations AX(r,t).

Equation (2-22) gives AX(r,t) as

iK.r
AX(r,t) = XK(t)e (2-22)

K

iKr
where the e terms are a set of plane wave functions

which are complete and orthonormal on the scattering

volume V. Applying the usual8 Born-von-Karman boundary

conditions on the faces of the rectangular parallelopiped

volume V yields

Kj = K--n = (21/L )x + (2Tm/L )y + (27m/L)y + (2-145)J Kzn x y z

where X, m, and n are the integers

(Z, m, n) = 0, +1, ±2, ... (2-146)

The lattice of points Kmn may be conveniently plotted in
a cartesian -space or reciprocal space whose kx, ky, and

kz axes are exactly coincident with the x, y, and z axes
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of Fig. 2-4. As shown in Fig. 2-9, the use of this dual

coordinate system allows the wave vectors s and O and

the position coordinate r to be displayed simultaneously

on the same set of axes.

From the spacing of the points Kn and the approxi-

mate form for I(r,K) given in Eq. (2-144), we notice first

that only a single Kn can fall inside the cell ; there-

fore the light scattered in the direction r is produced by

a single Fourier component of the fluctuations. This

Fourier component will have a wave vector K which is

within an amount (Akx,AkyAkz) = [(r/Lx),(7/Ly),(T/Lz)]

of satisfying the condition to - s + 0 =0. Secondly,

we find that since the spacing of the allowed KZ are

identically the dimensions of i, the cells attached to

all possible vectors + K- form a non-overlapping netall possible vectors mo Kn
which fills all t-space. Figure 2-12 shows a projection

of this net onto the (x,z) plane of Fig 2-10. There is

no overlap between adjacent diffracted beams.

5. Calculation of the Coherence Solid Angle

In this section we calculate COH as a function

of the direction of observation r and the dimensions of

the rectangular parallelopiped scattering volume V which

was described above. These results are obtained by syn-

thesizing three alternate viewpoints. First, we consider

an explicit calculation of the coherence solid angle based

on the definitions given in Eqs. (2-135) through (2-138).

For the simplified form of I(r,K) given in Eq. (2-144)

this method yields the average angular range open to r

for which remains within one cell in t space, i.e.s
within a single diffraction pattern of the scattering

L
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volume V. This direct approach proves to be tractable

only when ks lies in one of the high symmetry planes of

V. Secondly, for the same high symmetry planes we verify

the results of the direct approach by applying a simpli-

fied diffraction angle technique suggested by the discus-

sion of spatial coherence presented in Section E.3.

Thirdly, we derive a general expression for QCOH which

is valid for an arbitrary direction of observation, ks

This last calculation proceeds by evaluating the number

of Kn per unit solid angle which contribute to light

scattered into the desired direction.

a. The Direct Approach

In the approximation that IQ(r,K) and,

therefore, TQ(r,p) have the simple step function form

given in Eq. (2-144), the two coherence solid angles

QCOH and QCOH defined via Eqs. (2-135), (2-136), (2-137),

and (2-138) become identical

QCOH C( H') ( 2I TQ(rO,p)d2 (2-147)
= rCOH J' T p

o Q

where r points in the principal direction of observation

(9,~). From Eq. (2-134) we have

COH(, )1Vr I IQ (r +pKZ d2 (2-148)

o Q

where

o -(r) + Ki-n = 0

.L
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The required diffraction integral IQ (ro+p,KZmn) is given

in Eq. (2-144) as

T a V 1___ -

V;

-(/Lx) [o s mn]x 

-(Tr/L ) [ko- is (r O+p) +in y r/L )

-(¶r/L )< [ _ ( /L z ) (T/ )- o s ( K m z

Q o , 1
0; otherwise

(2-149)

Equation (2-148) can be put in a somewhat more transparent

form by recalling that s points in the direction r and is

confined to the surface of a sphere Qk having a radius

0Io| = (Wo/Cm). With this simplification s(ro+p) becomes

am s (ro+ -o
s 0~O~ 0Iro I Cm

and COH(,O) can be rewritten as an integral over Qk using

Eq. (2-134), namely,

Co(O IID) 1 J TQ (A KZ) d S (2-150)

° Qk

where
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I, l: __ _

1;

-( r/L ),[ ) + K- x< ([i/Lx+/x) - [ko S Kmn]X

· · · · · · · · · · · · . . . . .

· · · · · · · · · · · · · · · · ·

AQ S mn/ =

0 ; otherwise

(2-151)

The function TQ vanishes if ks falls outside the cell 5 of
dimensions

[Akx,Aky,Ak z] = [(27/Lx,(2T/Ly) ,(2i/Lz ) ]

centered at (io + Kjmn); thus the integral in Eq. (2-150)

is identically the surface area of Qk contained inside i.

It follows that the coherence solid angle COH is the

angular range open to r (or kS) for which k terminates

within a single cell in reciprocal space. A pictorial

representation of this coherence solid angle is illustrated

in Fig. 2-13.

Under normal circumstances all three dimensions of

V will be large compared to the wavelength of the incident

light and we may take the dimensions of , [(2/L x ),(27T/Ly),

(2r/Lz)], to be small compared to the magnitudes of s and

,o' Iisl = IoI = (2r/X). In this limit the surface of Qk

is essentially planar in the immediate vicinity of any

particular _in-.

i
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x,kx

z,kz

yY

Figure 2-13 A pictorial illustration of the coherence solid
angle as fixed by the area of the sphere QK
contained within a single i cell of reciprocal
space.
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Suppose that the direction of s is given in terms of

the scattering angle and the azimuthal angle 0 shown in

Fig. 2-4, and we consider the special case = 900 so that

k lies in the (y,z) plane. Then the solid angle open to

ks within one cell in k-space can be obtained by inspection

from Figs. 2-14 and 2-15. These figures illustrate the

intersection between Qk and the cells as seen in two par-

ticular orthogonal directions around the point (, = 90°).

Figure 2-14 represents the (x,ks) plane of Fig. 2-4.

The half-angle of coherence in this plane is simply

A= 1 (2 1 X (2-152)2 x lji -2L

where X is the wavelength of the incident light in the

medium.

Figure 2-15 illustrates the situation in the (y,z)

plane of Fig. 2-4. In this direction the opening angle

of a particular diffraction pattern depends on the pre-

cise location at which Qk intersects the cell i. Per-

forming an average over all possible locations based on

an equal probability for each we find

A 1 X (2-153)
L sin 0 + L cos 
z y

The orientations of AG and AT in relation to s are shown

in Fig. 2-16. From the two orthogonal full-opening angles,

2A and 2AT, we find the desired coherence solid angle as

2

C (OH(, = 900) = 4-A* = (2-154)
Lx(Lz sin + Ly cos )
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b. A Simple Diffraction Approach

In the interest of estimating COH by some

simple technique it is useful to point out that AO and AT

can often be derived directly by using the basic descrip-

tion of the spatial coherence phenomenon as given in Section

E.3; namely, coherence vanishes when the relative phases of

the waves reaching r from any two points on the source change

by an amount +±7 as we proceed to r+p. The source points that

produce the maximum relative phase change are determined by

the extremal dimensions of the source as seen by the observer

at r.

Figure 2-17 shows that the maximum dimension of V in

the (x,ks) plane of Fig. 2-4. is just Lx. The relative

phase at the observer's position Q between waves originat-

ing at the two extremal points A and B changes with the

angle at a rate

d(relative phase) 2 d(A) _ 2 sin 0) (3-155)
dT~- X d (Lx sin )

For a maximum phase change of at = 0 we have

AT = (X/2Lx) (2-156)

which is in agreement with Eq. (2-152).

In the (y,z) plane shown in Fig. 2-18 the extremal

path length increments

A = L cos 0
1 z

and (2-157)

A2 = L sin 
2 y
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both change with the scattering angle 0. The relative phase

measured at Q for waves originating at points A and B

changes with a rate which is related to the variation in

the difference (A2 - A1) by the derivative

d(relative phase) 2ir d(A2 A1) 2 cos + L sin 
dO = dO = X (Ly CosO + L zsine)

(2-158)

Therefore, a variation of in relative phase occurs when

0 changes by an amount

A = (2-159)
2[Lz sin 0 + Ly cos 0]

A comparison with Eq. (2-153) shows that this result is

precisely the half-angle of coherence in the plane (0,D=90°).

This simple technique based on phase changes and the

extremal source dimensions is generally the most straight-

forward method for obtaining COH

c. The Shell Approach

Although the computation of the angular size

of a single diffracted beam is straightforward for the sym-

metry planes of V, the general result COH(0,,) is more

easily obtained from an entirely different approach. The

analysis of Section E.4.f indicated that the form of the

interference integral I(r,K) may be interpreted from two

equally valid points of view; the first, in which we regard

K as fixed and ks as free to assume all allowed positions

in the space cell l, leads to the calculation of %COH

by the direct method given above. However, Eq. (2-144) can

I
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also be taken to mean that if a fluctuation of wave vector
4- 
K is to scatter light into the direction ks = ( /cm)r,

then the wave vector ko + K must fall inside a rectangular

parallelopiped volume centered on the wave vector s and

having dimensions (Akx,Aky,Akz) = [(2/L x ) ,i(2/Ly) , (2r/Lz)].

In this interpretation, the cell is attached to the direc-

tion of observation and not to the lattice of points Kzmn.

If ks is allowed to assume all possible positions on

the sphere Qk' then the motion of the attached cell sweeps

out a shell-like volume whose thickness is determined by the

dimensions of and the orientation of . If a fluctuation

with wave vector Kn is to contribute to scattering then

the vector k + K n must terminate somewhere inside the

shell. Figure 2-19 shows a cut through the shell taken in

the (x,z) plane of Fig. 2-4.

The shell thickness in the general direction (,m) is

simply the maximum dimension of , its diagonal, projected

onto the vector ks. Expressing the length and orientation

of this diagonal by the vector notation

A = (2/Lx) x + (2ir/Ly )+ (2r/Lz (2-160)

we find for the shell thickness in spherical coordinates

Aksk = 2~sin 0 cos + sin sin (2-161)
s L L L (2-161)

5 y z

It follows that the volume of t-space occupied by the shell

in allowing s to take any position on Qk within a solid

angle is simply

Vk = 4o .if k)Q. (2-162)v5 = IkoE
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Figure 2-19 The shell swept out by a single cell in allowing

s to assume all allowed positions on Q .
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With this result and the volume density of it--- points in
*mn

k-space, namely,

1 V
Pk -- = 3 ,(2-163)

Ak Ak Ak 87rx y z

we have for the number of i contributing to the scattered

field in a small solid angle d as

dN V sin 0 cos + sin 0 sin + cos 0
do Ax Ly L z 3 (2-164)

xLy Z

or, writing V = L L L, in the more useful form
y z

d~ = ( [LyLz sin cos + LxLz sin sin 

+ L Ly cos E] (2-165)

Inverting Eq. (2-165) yields an average solid angle per

contributing kmn~ and, therefore, a coherence solid angle

of the form

2

0COH (e , )
L Lsin cos + L L sin sin + L L cos 

(2-166)

This result represents the desired generalization of the

calculation made via the direct approach in Section E.5.a.

Setting = 90° shows that Eq. (2-166) is in agreement with

the previously derived expression given in Eq. (2-154).

Chapter 2, Section E.4.

L
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6. The Behavior of OH and the Optimization of the

Scattered Power per Coherence Solid Angle

The manner in which the coherence solid angle

varies with the direction of observation (O,f) and the

sample dimensions (Lx,Ly,Lz ) can be summarized easily in

terms of the simple diffraction approach of Section 5.b.

The diffraction or coherence angles at some particular

(0,O) are inversely proportional to the sample dimensions

projected on a plane perpendicular to the direction of

observation.

Although the behavior of QCOH itself is of some in-

terest from the viewpoint of analyzing the light collec-

tion system of an optical mixing spectrometer, the

quantity which determines the detection capability of

such an instrument is the available scattered power per

coherence solid angle, PCOH' Since the amount of scat-

tered power per unit solid angle is itself a function of

the sample dimensions, it is more useful to investigate

the properties of POH directly rather than QCOH

For the case = 90° , we find from Eq. (2-154) and

(2-55)

2 2

PCOH = 2P RLz (sin (2-167)
Lx(L sin 0 + L cos 0)

Po - the incident power

R - the Rayleigh coefficient

- the angle between the polarization vector of the

incident beam and the direction of observation

Chapter 4, Sections E.2.b and E.2.c.
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X - the wavelength of the incident light in the

scattering medium

Equation (2-167) shows that PCOH depends on the geometrical

shape of the illuminated region through the factor

1
P COH (2-168)

Lx[sin + (Ly/Lz)cOs ]

In attempting to maximize PCOH by changing Lx, Ly, and Lz
we may note the following points from Eq. (2-168).

First, it is advantageous to have Lx, the dimension

of the scattering volume V in the direction normal to the

scattering plane, as small as possible. This procedure

maximizes the coherence angle A = (X/2Lx).

Second, only the ratio of Ly to Lz appears in PCOH'

Lz being the length of V in the direction of the incident

beam, and L its width in the scattering plane. The larg-
Y

est values of PCOH occur for the smallest values of (L /Lz)

independent of the scattering angle 0.

Third, the dependence of PCOH on the sample length

L exhibits two distinct limiting behaviors depending on

whether the ratio (Ly/Lz) is larger or smaller than the

tangent of the scattering angle.

Starting from small values of Lz, (Ly/Lz) >> tan 0,

PCOH grows linearly with increasing Lz. In this limit
the coherence angle AT is controlled by the L dimension

Y
of the source

AE (Ly/Lz) >> tan 
2L cos e' 

Yi

i
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while the scattered power per unit solid angle is propor-

tional to L

If Lz is increased until (Ly/Lz) << tan 0 the available

power per coherence area becomes independent of Lz, an in-

crease in the total scattered power P L being exactly

offset by a decrease in the coherence angle AO

AO (Ly/Lz) < < tan 
2L sin 

z

It follows from Eq. (2-168) that in optimizing PCOH for a

fixed value of , it is essentially unnecessary to lengthen

Lz beyond the value which gives (L/Lz) = tan 0. In this

case P is one-half of its maximum possible value

if 1~~~~~~2 k2
[P ]X = 2Po (sini (2-169)

COHMAX o L sin 0x

For fixed dimensions Lx, Ly, and Lz, PCOH shows two

types of behavior as a function of the scattering angle.

At values of O much larger than Oc = tan (Ly/Lz) the

length Lz is sufficiently large to yield the optimum value

of PCOH and we find

P cc 1 tan >> (L/L)
COH L sin y z

X

as in Eq. (2-169). The power per coherence solid angle

dips below its maximum value when O approaches Oc' while

for 0 << Oc we have

L
COc L tan O << (Ly/L)
PCOH L L cos xy

I
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which levels off as 0 -+ 0. The ratio of the actual to the

optimum value of PCOH at an arbitrary scattering angle 0

can be written in the useful form

P
COEH = 1 (2-170)

[P COH]MAX 1 + (tan 0c/tan 0)

-1

Oc - tan (Ly/L) (2-171)

For the laser source and scattering cell geometry used

in this thesis the dimensions of the illuminated region are

L = 0.019 cmx

L = 0.028 cm (2-172)
Y

L = 2.54 cm
z

yielding 0c = 0.636°. Figure 2-20 shows a plot of the cor-

responding coherence angles AO and A calculated from Eqs.

(2-152) and (2-153) using the numerical quantities

X =6328 air
(2-173)

n = 1.49

This same figure also displays the behavior of the coherence

solid angle QCOH = 4A0.AT. To illustrate the 0 variation of

PCOH and [P COH]MAX for this example, we show in Fig. 2-21

the ratios PCOH/Po and [PCOH]MAX /Po obtained from Eqs. (2-167),
(2-172) and (2-173) for the case of scattering from entropy

-6 *
fluctuations in toluene where RAs 10 /cm.

Chapter 4, Section C.4.
**

Chapter 5, Section C.4.a.

L
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Chapter 3

THE THEORY OF LIGHT MIXING SPECTROMETERS

A. Introduction

From the calculations and numerical results presented

in Section D of Chapter 2 it becomes apparent that in many

cases an investigation of the spectrum of light scattered

from thermal fluctuations in liquids requires spectro-

scopic techniques whose fractional resolutions (6w/wo)

are far beyond those obtainable by classic methods. The

three main features, the splitting and natural width of

the Brillouin-Mandelshtam components, and the natural

width of the central component, indicate that desirable

resolutions are respectively (6w/wo) 10 - 10-7,
-7 -110 -8 -14

(6w/w ) 10 - 10 , and (6w/w) 10 10 In

comparison, the best available grating spectrometersl

achieve (6w/wo) 10-6 while ultrahigh resolution Fabry-

Perot etalons 2,3 can approach (6w/wo) 5 x 10-8.

The problem of obtaining extremely high resolving

powers in the optical region of the electromagnetic spec-

trum has its exact analog in the difficulties of sufficient

selectivity faced by the radio frequency (rf) engineer.

Since the latter have been solved by very effective methods,

it is instructive to approach the problem from the view-

point of conventional rf practices. In particular, the

relevance of this approach stems from the availability of

an optical "oscillator," the laser, which makes possible
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the actual realization of optical equivalents to well

known rf systems.

Figure 3-1 shows a block diagram representation of

the simplest rf receiver4 along with its optical analog;

an example of a typical optical spectrometer. The func-

tion of both receivers (or spectrometers) is to examine

the power per unit frequency interval, SE(w), in the

electric field at their respective inputs. In the rf

case the signal is amplified and then passed through a

tunable filter whose bandwidth is chosen to be narrow

compared to the spectral width of SE(S). The output of

the filter contains those frequencies in SE() which

fall within this bandpass. The filtered rf signal is

then rectified and the resulting dc level displayed as

the output. A recording of this output as the rf filter

is tuned through its range yields a plot whose amplitude

reflects the input power spectral density. This elemen-

tary system is referred to in electrical engineering

terms as a tuned-radio-frequency or crystal receiver.

Although at present there are no optical amplifiers

equivalent to their low noise, high gain rf counterparts,

the operation of the optical spectrometer analog shown in

Fig. 3-1 is identical to that of the crystal receiver.

The tunable optical filter may represent a scanning Fabry-

Perot etalon, a diffraction grating, or any of the common

optical dispersing instruments. The "optical rectifier"

is a photodetector, which has the advantage over the rf

rectifier diode of being a perfect square-law device; its

output current is linearly related to the square of the

amplitude of the incident electric field. Thus a plot of

the output of the optical receiver as the filter is tuned

is exactly proportional to the desired power spectral

density at the input, SE(w).
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Figure 3-1 Radio frequency and optical analogs of
a tuned radio frequency receiver.

Figure 3-2 Radio frequency and optical analogs of a superhet-
erodyne receiver.
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Both the optical and rf versions of this type of

receiver exhibit limited resolution because the associated

tunable filter cannot be made with an arbitrarily small

bandwidth. In the rf case (6w/wo) is typically 10 5

minimum. In the optical case if the dispersing element

is chosen as a Fabry-Perot etalon then we can approach

(6W/ o) 10 . The basic difficulty in obtaining any

specific bandpass 6w lies in the requirement of achieving

this bandpass at the incoming frequency wo. However, if

the information in SE() centered at the frequency o

could be translated down to a sufficiently low frequency

prior to filtering it would be possible to achieve the

desired bandwidth at this new center frequency. This

chapter is in essence a detailed analysis of how such

a frequency translation may be accomplished in the opti-

cal domain.

The most common rf technique used to shift the center

frequency of the incoming signal is encountered in the

superheterodyne receiver5 shown in Fig. 3-2 along with

its optical analog. After amplification the incoming

rf signal is "mixed" in a non-linear element with a pure

sinusoidal signal produced by the rf local oscillator.

Because the mixer is non-linear its output signal as a

function of time involves a sum of various products of

the incident and local oscillator signals. These product

terms represent "beats" between the two mixer inputs. In

particular, if the mixer is assumed to be a square-law

device and the local oscillator has a frequency LO' then

the beat signals between each frequency component of the

input signal and the local oscillator give rise to a mixer

output whose spectrum is identical to the spectrum of the

input signal, SE(w), except for a shift in center frequency
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to 1 = ( - WLO). The spectrum of this intermediate

frequency (i.f.) signal is examined with a tuned filter

in a manner identical to that used in the crystal

receiver. In practice the fractional resolution (6w/wo)

of the tuned filter is approximately independent of its

center frequency w ; therefore, the heterodyning or

mixing procedure results in an overall decrease of the

fractional resolution by a factor (1//Wo) That is, the

effective resolution is given by

(6w/wo) = (/Wo)(6w/w 1).

The optical superheterodyne spectrometer achieves

its resolving power in a fashion identical to its rf

counterpart.6, 7 , 8 , 9 ,1, 1 In this case the local oscil-

lator is a laser light source whose frequency differs

from the center frequency of the signal, w0, by the

desired amount, 1. Although, in principle, the inter-

mediate frequency w1 may be selected to be anywhere be-

tween low audio and optical frequencies, the lack of

suitable optical mixers limits the choice at present to

the microwave regime and below, in which case photosen-

sitive detectors can be used as the mixing elements.

Because photodetectors are perfect square law devices

the spectrum of the optical signal, SE(X), is faithfully

preserved in the frequency translation process. The

spectrum of the i.f. signal and, therefore, the optical

signal can then be determined by the standard rf methods

being outlined here. With this technique it is possible

to achieve effective fractional resolutions from (6w/wo)
-5 -15

- 10 to (6w/wo) 10 1 5 These resolutions encompass

the specific range of particular interest in light scat-

tering experiments.
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A second frequency translating receiver used in the

rf domain is diagrammed in Fig. 3-3. The amplified in-

coming signal is again fed to a mixer; however, unlike

the superheterodyne spectrometer, this receiver has no

local oscillator. The beat signals observed at the

mixer output are simply the result of beating between the

various frequency components of the input signal itself.

For a square-law mixer the beat signals observed at some

frequency w1 are produced by all pairs of components in

the input signal which are separated by an amount w1.

As an example, consider the input spectrum shown in Fig.

3-4 which corresponds to a carrier weakly amplitude

modulated at the frequency M. Mixing between the car-

rier at the frequency o0 and the upper and lower side

bands produces a mixer output at the modulation frequency

wM' while mixing between sidebands gives an output at a

frequency 2 M. When the percentage of modulation is small

the latter signal may be neglected and the mixer output

simply reproduces the original modulation signal impressed

on the carrier. For this reason the system is often re-

ferred to as a crystal video'2 receiver.

From the viewpoint of application to rf spectroscopy

the important feature of the crystal video receiver is

that its mixer output consists of frequencies between

zero and roughly the spectral width of the input, SE(w).

That is, the self-mixing or self-beating of the signal

with itself accomplishes a frequency translation of the

signal information from the original center frequency

o down to dc. A rigorous calculation shows that the

power spectral density of the output of a square-law

mixer is the convolution of the power spectral density

of the input, SE(w), with itself. Therefore, a measure-

ment of the spectrum of the mixer output does not give
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the input spectrum directly; however, if SE() has certain

common forms (Lorentzian, Gaussian, rectangular, and so on)

its line shape and line width can be derived easily from

the mixer output spectrum. In particular, if SE() is a

Lorentzian of half-width at half-height y, then the mixer

output spectrum is also a Lorentzian with its maximum at

w = 0 and with a width at half-height of 2y. Since the

spectral information at the input has been shifted down

to (w = ) the crystal video receiver is capable of frac-

tional resolutions given by

(6W/Wo)effective = (/wo) (6/Y).

This represents a decrease over the tuned rf case of (y/w ).

Furthermore, since the center frequency of the tunable

filter is (w1 y= ), it is, in theory, always possible to

achieve the condition (6w/y) << 1 and, therefore, to ex-

amine the i.f. spectrum in detail.

The optical "self-beating" spectrometer shown in

Fig. 3-3 is identical in operation to its rf analog.13'1 4' 1 5

The self-mixing takes place at a photo-sensitive detector

and the mixer output signal is the electrical current out-

put of this detector. The spectrum of this current is

then examined by an appropriate filter. In theory the

self-mixing spectrometer has no lower limit to its frac-

tional resolution and has an upper limit dictated only

by the maximum beat frequency to which a photodetector

mixer can respond. In practice, resolutions of

(6w/0) = 10- 8 to (6/w ) 10 -1 4 are readily achiev-

able. 1 4 ,151 6 , 1 7

In this chapter we will examine in detail the oper-

ation of optical superheterodyne and optical self-beating

spectrometers. We start with the relationship between
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the power spectral density of the incoming field and the

spectrum of the current which this field produces from a

photodetector, and proceed through the signal-processing

operations to derive the final signal-to-noise (S/N) ratios

to be expected from each spectrometer. The results are

presented in terms of a set of parameterized universal

curves from which the sensitivity of the spectrometer can

be deduced, given the spectral width of the incident field

and the characteristic features of the instrument. One of

the most striking results of this analysis is that while

both light-mixing methods are capable of exceedingly good

resolution they both exhibit a minimum detectable power

which is critically dependent on the spatial coherence

properties of the incident optical field. In contrast to

the conventional optical spectrometer, the optical mixing

spectrometer does not have an output signal-to-noise ratio

determined by the total available input power. Rather,

its sensitivity is fixed by the available power per coher-

ence area. For this reason it is interesting to compare

the minimum optical powers that can be detected by an

optical mixing spectrometer and a conventional Fabry-Perot

etalon instrument. This comparison shows that the two

light-mixing methods secure their resolutions at the cost

of available sensitivity. Moreover, it becomes strikingly

apparent that this limited sensitivity is not simply a

result of the effects of spatial coherence, but is, in

fact, due to a fundamental difference in the nature of

the "measuring" processes that distinguish a mixing spec-

trometer from a "crystal" receiver.

Finally, in order to delineate the resolution and

sensitivity limits which can be approached by a practical
1 4 -U4-_m_4 cuIm8A @orw-v 4-Ac1rhoFh I.L.~L L-ILL...L.J.1. iPt_.L;.-LU.L LL tt -e L .' sluubbLy . . .::L.U ¢ . LL=L 

L.
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present state-of-the-art in regard to the components which

form the optical mixing and detection system. In this

analysis particular attention is given to the properties

of available photomixers and their associated electronics.

B. The Relationship Between the Spectrum of the Current

Output of a Photodetector and the Spectrum of the Incident

Optical Field

In this section we derive the basic relation which

describes the heterodyning or mixing action that occurs

between optical fields of different frequencies which are

coincident on a photosensitive surface. We consider

first a simple classical picture of the mixing that pin-

points the physical origin of the production of beat sig-

nals but which neglects the essentially stochastic nature

of the photoemission process. We then proceed to a more

rigorous theory which accounts for the fact that the rela-

tionship between the incident field and the photocurrent

it generates is a statistical one. Further, we examine

the generalization of this theory to the case where the

incident field itself is a Gaussian random variable as

is the situation for the light scattered from thermal

fluctuations. These considerations are used to obtain the

time correlation function of the photodetector output cur-

rent in terms of the time correlation function of the

incident field. The Fourier transform of this result

yields the desired relationship between the spectrum of

the incident field and the spectrum of the mixer output.
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1. The Classical Description

Consider two light waves, one of frequency w1

and one of frequency 2' which are incident on a photo-

sensitive surface designated the photocathode. We sup-

pose that the wavefronts of the two beams are identical

and collinear as shown in Fig. 3-5. Let us compute

the time variation of the resulting photocurrent.

In the usual description 18 of the photoelectric

effect the current density j(r,t) produced by the total

electric field acting at the point r on the photocathode

is written as being simply proportional to the instanta-

neous intensity or Poynting vector evaluated at (r,t).

If the constant of proportionality is expressed in terms

of the quantum efficiency, , which gives the ratio of

the number of emitted photoelectrons to the number of

incident photons then we have

+(~,) e i ( t)12j (r,t) = Ok (1 )(r,t) i2 (3-1)

e - the electronic charge

Po - the permeability of free space
c - the velocity of light in the medium

surrounding the photocathode

In Eq. (3-1) w0 is the center frequency of the spectrum

of the total field E(r,t). We will always assume this

spectrum to be sufficiently narrow that the variation in

fiwis negligible over the range of interest. Since nwo is

the incident photon energy and [(l/poCm)<IE(r,t) 12> is

the incident power per unit area, the ratio

The lack of collinearity is treated in Section D.3.b
of this chapter.



167

o
43
o

o 0
3 4

O

3 HG

Ed 5:~w

-4

H
O u

43

r{

-H

U]
w4-
.H-n
0)

43

,1ur=
k4

0o O 4

o Eq r0 
0

I,

-H

-'4

.0
0.

#0

.0 00

op
01

00

41



168

(1/n o ) (l/ocm ) lE(r,t) 1 is the number of photons arriving

at the photocathode per unit time and per unit area.

Writing the two incident fields in our example as

E1 ( rt) = E (r)cos w1t and E2 (r,t) E2 (r)cos w2t we have

for the square of the total incident field

E(' -t~l+ E 2E (r t) | = |El r,t) + E2 t)|

= (1/2)IE1(r) 2 + (1/2) E2(r)

+ (1/2) El1 ( r ) 12 cos 2w1t

+ (1/2) 1E2 (r) I2cos 2 2 t

+ 2[E l(r) E2 ( )]cos wlt cos w2t (3-2)

Neglecting the double frequency terms and the sum frequency

term from the expansion of the cosine product, since photo-

detectors cannot produce such optical frequency currents,

we find for the current density j(r,t)

j (r,t) = a[(1/2)]El ( ) l + (1/2)E 2 ( ) I2

+ El (r ) .E2 (r )cos (2 - lt] (3-3)

where a is defined as

; -( 1 ) m (3-4)
fiw 0 1 ci

This current density can be interpreted as follows. The

two time independent dc terms represent the time average

photocurrents that would flow if either E 1 rt) or E (,t)
were present on the photocathode alone. In fact, from
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the definitions of El(r,t) and E2(r,t) we can write
2 = <-+ 12 +

(1/2) IEl(r) 12 = <E l( r t) 12> and (1/2) E2() 12

= <E 2( ,t) 2>, so that the dc terms are the photo-

electric response to the time average incident power

per unit area in each beam.

The factor of real interest in Eq. (3-3), however,

is the term which oscillates at the frequency (w2 - 1)

and has an amplitude which is proportional to the product

of the amplitudes of the two incident fields. This con-

tribution to the photocurrent output represents a beat

note due to the heterodyning or mixing between the two

input optical signals. The appearance of the beat note

results physically from the non-linear response of the

photodetector to the incident electric field as expressed

by Eq. (3-1). Because of this relationship the photo-

detector can be called a perfect square-law mixer.

Having found that a photo-sensitive detector can act

as an optical mixing element we now proceed to derive a

general relationship between the spectrum of the photo

current and the spectrum of the total incident field.

Since we will be interested in fields which are in essence

random noise and hence which cannot be decomposed into

sinusoidal frequency components by ordinary Fourier

analysis,l9 we attack the problem by computing the

correlation function of the total photocurrent, Ri(T)

Ri(T) = <i(t+T)i(t)> = i(t+T)i(t)

The bar indicates an average over an ensemble of identical

processes which generate the random incident field; for

example, an ensemble of identical light scattering experi-

ments. The total photocurrent i(t) is given by the surface
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integral of the current density over the photocathode as

i(t) = j (,t)dS (3-5)

A

Once we have computed Ri(T), the power spectral density§

of the current, Si(w), is found by evaluating the Fourier

cosine transform

00

Si() = (1/2T) I Ri (T)cos wTdT (3-6)

2. The Stochastic Description

Before performing the average over the ensemble

of incident fields we must first account for the purely

statistical relationship that obtains between the photo-

current and the square of the incident field. Suppose

we illuminate a photosensitive surface with an exactly

defined incident field E(r,t). Then we know that although

Eq. (3-1) predicts a well defined continuous current den-

sity, in actuality this current is composed of a series

of pulses in time corresponding to the ejection of single

photoelectrons from the photocathode. Moreover, the emis-

sion process itself is a random one. 20' 21' 2 2 Thus the

appropriate description of j(r,t) is the specification of

the probability that the current density has a given value,

j(r,t), if the photosurface is illuminated with the field

E(r,t). We designate this probability as p[j(r,t)].

Chapter 2, Section D.
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p[j(r,t)] is computed by considering an ensemble of

identical photocathodes, all illuminated with the same

incident field E(r,t) and represents the "photocathode

ensemble" average probability of finding the specified

j(r,t). Knowing P[j (r,t)] we may calculate the "photo-

cathode ensemble" average value of j(r,t), designated

j(r,t), by the usual definition

r _ _

j(rt) t= j (,t) P[j(I,t) (3-7)

From a consideration of the quantum mechanical problem

of the interaction between the electromagnetic field and

the atoms of the photocathode 20'2 1,22 one can calculate

the "photocathode ensemble" average probability that a

single photoelectron will be emitted at a time t within

an interval 6t from a unit area at r as

p(l,tr)6t 1 E(r 6t (3-8)
o om

Since the photoelectron carries charge e this is the

probability that j(r,t) has the value (e/6t). In the

derivation of Eq. (3-8) it is assumed that t is chosen

so short that either zero or one photoelectron is observed.

Therefore, Eq. (3-8) actually specifies the probability

distribution that n photoelectrons are observed in 6t as

P(n,t,r) =

1 - P(l,t,r) ; n=O

P(l,t,r) ; n=l (3-9)

0 ; n>2
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Since the possible values of the current density are

discrete, the integral in Eq. (3-7) becomes a sum and we

have

__ _ _ __ co

j(r,t) = ( P(n,t,r)6t (3-10)
n=O

which yields

j(r t) -e 1 Em t)r = E(+ ,t) 2 (3-11)

Thus the expression given in Eq. (3-1) actually represents

the "photocathode ensemble" average response of a photo-

surface. However, in addition to describing this average

behavior, P(n,t,r) also contains information on fluctua-

tions about the average. We will see that these fluctua-

tions correspond to the so-called "shot-noise" associated

with the time average photocurrent.

The measured current i(t) whose correlation function

we want to calculate is, in fact, the "photocathode

ensemble" average current. That is, the statement of

Eq. (3-5) is more rigorously written as

i(t) = j (r,t)dS (3-12)
A

It follows that the photocurrent correlation function has

the form

Ri.(T) < = A Al…-73(rittT>= j(r,t)> dSdS' (3-13)

Equation (3-13) contains information on the two funda-

mental properties of the mixing process.

(1) The time behavior of Ri(T) and, therefore, the

photocurrent spectrum is described completely by the
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correlation function of the current density

<j(r,t+T) j (r,t)> .

(2) The spatial characteristics of the mixing

process are contained in the double surface integral

which describes the properly phased addition of the

currents produced at different points on the photo-

cathode to yield the total current i(t).

3. The Spectrum of the Photocurrent-The Time

Correlation Function for the Photocurrent Density

We first consider the current density corre-

lation function R(T) = < (r,t+T)j(r,t)> and the

corresponding spectral features of the photocurrent.

In order to evaluate R(T) we need the ensemble

average behavior of the product of the current densities

at two distinct times, namely, j(r,t2)j(r,tl). This

average may be calculated if we know the joint probabil-

ity distribution p[(n,t 2,r),(m,tl,r)] 6t 16t2 which

specifies the probability that m photoelectrons are

emitted at time t in the interval 6t1 per unit area at

r and that n photoelectrons are emitted at time t2 in

the interval 6t2 per unit area at r. In terms of

p[( ),( )] we have

0 o 00

j (r t2 )(tl) P[(nt2 r),(m,tl r)]st 6t
n= m=O 2

(3-14)

where j(r,t2) = (ne/6t2) and j(r,tl) = (me/6tl). The

required distribution has been calculated by Mandel,

Sudarshan, and Wolf2 as
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p(nt21), (mt,+)] 2 2= (2 I (,t2) 12+E(t tl) 
P[(n,t,r), (m,tl,r)] = (/e) E,2 ( r

(3-15)

for t1 $ t2. For tl = t2 we have simply

(3-16)

Implicit in Eqs. (3-15) and (3-16) is the assumption that

6t1 and 6t2 are both sufficiently small that one count

at-most is recorded in either interval. The physical

meaning of these distributions may be explained by expres-

sing P[(lt 2,r),(l,tl,r)] in terms of a conditional

probabilityi as

P[ (l,t2,), (l,t l ,r ) ] = P[ (l,t2,r) | (,tl,r ) ] P(l,t,(r)
(3-17)

Comparing Eqs. (3-8), (3-15), and (3-16) gives for

P[(,t2,r) (1,t,) ]

(a/e) I|j(,t2) 12

P[(l,t2,) (1,tl,r)] =

1

(l,t2 r);

t t 2

(3-18)

This result implies that the photo-events at times t1 and

t2 are completely correlated for t1 = t2, as must be the

Chapter 2, Section D.

P[(l11,,,r .cl,t1,r) = (/e ibW,tl 1
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case; but that the events at different times (t2 tl) are

completely random and uncorrelated even for arbitrarily

small It2 - tll. This randomness is a result of the com-

plete independence of the emission process on the past

history of the photocathode; the probability of photoemis-

sion depends only on the instantaneous light flux.

Combining Eqs. (3-14), (3-15), and (3-16) yields the

desired ensemble average

a ( t2 E(r,t l) I t2 tl

21~t2 1 tl

Setting t1 = t and t2 = t + T in Eq. (3-19), and performing

a time average, we have the current density correlation

function as

RI(T) = 2<lE(rt+T)l2 E (rt)12>+ E l r (T (3-20)

or in terms of Eq. (3-11)

2 -*- 2--t 2 j r.Y3621Rj (T) = <E (rt+T) E rt + ej(rt) ) (3-21)

The first factor of this result would have followed directly

from the classical expression for j(r,t) given in Eq. (3-1).

By analogy with the simple analysis given above it must,

therefore, describe both the dc current produced by E(r,t)

and the beat notes between its spectral components. The

second factor represents a "shot-effect" due to the non-

continuous nature of the photocurrent.
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To examine the features of Rj (T) let us consider the

simple example of an incident field composed of only two

frequencies w1 and 2. Using IE(r,t) 2 as given in Eq.

(3-2) we find:

2 < 2(rt)>] cos 22T

2 -- -- + 2
+ (a /2)[El(r)' E2(r)] cos (1+2)I

+ (2 /2)[E 1 (r)-E2 (r)] cos ( 2- 1 )T

+ e[<jl(r,t)> + <j2(rt)>]6(T) (3-22)

where <jl(rt)> = (a2/2) E1 l() 12 is the dc photocurrent

density produced by E (r,t) and (<2(r,t)> the dc current

density produced by E2(r,t). Utilizing the T dependence

to recognize the time behavior of the various factors we

find that the first term in Eq. (3-22) represents the

square of the total dc photocurrent density. The next

three factors correspond respectively to two second

harmonic ac currents and to a sum frequency beat note

at ( 1+W2). The fifth term represents a beat note at

frequency ( 2-W1). All these contributions come from

the first term in Eq. (3-21) and correspond to the results

of the classical analysis given before. The remaining

term is more easily interpreted from the power spectral

density of j(r,t) defined by

Sj (w) = (1/27) R.Rj () cos WT dT (3-23)

Neglecting the optical frequency currents we find from

Eq. (3-22)
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S. () = [<jl(",t)> + <j (rt)>] ()

(w>O) 2 2
+ (a /2)[El (r) E2 (r) ] 6[(w2 - 1) - ]

(e/ )[<j( + <j2(r<t)>t (3-24)

Thus the delta function part of Ri(T) produces a uniform

contribution to the spectrum, the last term of Eq. (3-24),

which on examination is just the shot-noise current power

per unit bandwidth to be expected2 3 from an emission limited

diode carrying a dc current [<jl(r,t)> + (j2 (r,t)>].

Figures (3-6) and (3-7) illustrate the components of R (T)

and their corresponding power spectra together with the

total spectrum Sj(w).

As expressed in Eq. (3-21), Rj(T) is valid for a

specified incident field (r,t). Suppose, however, that

E(r,t) is taken to represent a single member of an ensemble

of possible fields generated by some random process, e.g.

light scattering. Then the measured correlation function

is found by averaging Eq. (3-21) over all members of this

ensemble, i.e.

<jr,t+T) j (r,t)> <<j(r,t+Tjr,t)>> =

2<E(rt+T) 12(r t) 2>+ e<<j(r,t)>>6(T) (3-25)

Since in all cases of interest here (r,t) will be a strict

sense stationary random variable and will satisfy the

ergodic hypothesis, the time and ensemble averages on the

quantity < E(r ...... > are redundant. Therefore, we

may write Rj() as simply

R.(T) = a ( ,t+) | 2 (,tI2> + e<<j (r,t)>6 (T) (3-26)j(c 2 1 r E r 
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Figure 3-6 Illustration of the dc, shot-noise, and signal
components of the photocurrent density corres-
ponding to mixing between two monochromatic
optical fields.
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Sj ](W)
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Figure 3-7 The power spectral density of the photocurrent
corresponding to mixing between two monochromatic
optical fields.
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This result is the fundamental relationship that describes

the spectral output of an optical photodetector-mixer.

We must now attempt to express the correlation func-

tion for the square of the field in terms of the correla-

tion function of the field itself in order to write the

spectrum S () in terms of the spectrum of the incident
J

field, SE(X). This step can be accomplished only if

E(r,t) is an exactly defined non-stochastic function or

if it is a Gaussian random variable. In the latter case

we may utilize the following theorem2 5 to factor the first

term of Eq. (3-26).

If xl, x2, x3, and x4 are real random variables with

a Gaussian joint probability density function and if all

have zero mean, then the ensemble average x1 x2 x3x4 may be

factored according to the rule

1 X 2X 3X 4 = (Xlx2 ) (x3x4) + (XlX3)(x2x4) + (x 4 ) (x 2 x3 )
(3-27)

As we saw in Chapter 2 the scattered field ES(r,t) is

distributed according to a Gaussian distribution and has

a zero mean-value for all times, t. Therefore, if E(r,t)

represents the scattered field we have immediately

Rj (T) = a { [,(E,t+) E ( ,t) E(r,t)]

+ 2[E(r,t+) E(r, t) E t) E(rt+)

+ e<<j (r,t)>> 6 (T) (3-28)

Using the fact that E(r,t) is strict sense stationary

and employing the definition of the correlation function

RE(r,T) = <E(r,t+T)-E(r,t)> gives
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R(T) = a {[<E(r,t) 12>] + 2 (r )

+ e<<j(r,t)>>6(T) (3-29)

Since (<j(r,t)>> = a<KE(r,t)12> this result can also be

written as

R () = [<<j (r, t)>>] + 2 RE (rt) + <j(t)>>(T) (3-30)j T) + e ,t) r) (3-30)

The three terms in Eq. (3-30) represent the three essential

features of the photocurrent that emerged in the simple

example given above; namely, the square of the dc photo-

current, the beat terms between different frequency com-

ponents of the light, and the shot-noise.

Equation (3-30) allows the spectrum of the photocurrent

density to be obtained easily in terms of the spectrum of

the incident field, i.e.

SE(w) = (1/2) RE(T) coswT dT (3-31)
--co

Multiplying both sides of this expression by cos WT' and

integrating over all w gives the inversion relation

RE(T) J SE(W) cos IT dw (3-32)

If RE(-) in Eq. (3-30) is written in terms of its power

spectrum,Rj (T) takes the form

R(T) [<<jt)>>

+ 2ca2 J SE(W' )SE (")cos IT COS "T1 d'dw"
--O) -- 00

+ e<<j (r,t)>> 6 (T) (3-33)
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This correlation function has a power spectrum given by

Sj () = [<<j(,t)>>] 2 6(w) + (e/2r)<<j(r,t)>>

+ (2/2) SE(Y'){SE(-W'+) + SE(W'+w)

+ SE(-W-w) + SE(E('-)ldw' (3-34)

Since SE(X) is a symmetric function,§ the terms corre-

sponding to the frequencies (w'+w) and (w'-w) can be

grouped to give

Sj() = [<<j (,t)>>]26(() + (e/2) <<j (rt)+>

+ 2 IJSE(W')[SE(W+W) + S E (w'-)]dw' (3-35)

Thus we find that the optical mixing action that produces

the signal part of the spectrum can be interpreted in the

simple manner suggested at the beginning of this section;

the beat note observed at a frequency w is generated by

the mixing of all pairs of frequencies in the incident

light wave which are separated by an amount w, i.e.

[w',w'+w] and [',w'-w]. The sum of all these beat notes

is expressed mathematically by the convolution integral

appearing in Eq. (3-35) which gives the desired spectral

properties of the mixer output.

§ Chapter 2, Section D.
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4. The Effects of Spatial Coherence-The Time

Correlation Function for the Total Current

Having found the ac and dc current signals

generated at a single point on the photocathode we now

ask how these signals add to produce the total current

i(t). The "photocathode ensemble" average current is

simply the surface integral of Eq. (3-11), viz.....
i(t) = i(r,t)dS = JIE(r,t) 2dS (3-36)

A A

It follows that the total dc current is

<<i(t)>> = (t = a <E(r ,t) 12>dS
A

= aA<Er o,,t) 12> (3-37)

the last equality being valid if the time average intensity

is uniform over the photocathode. We designate this time

average current as i, thus
P

ip : <<i(t)>> : A<lE.(ro,t) 12> (3-38)

Since (A/pocm)<IE(rot) 12> is the total average power,

PO falling on the photocathode, i can also be written
Pp

in the more useful form

i = (Ee/iwo)P . (3-39)

The ensemble averaged correlation function for i(t),

R i (T) = <<i(t+T)i(t)>>, is given by the double integral

<<i(t 2 )i(t) > = AJ (r 2 1 t2 )j(rl tl)>dSldS2 (3-40)
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To compute j(r2,t2)j(rltl) we need the joint distribution

specifying the probability that n photoelectrons are emitted

at time t2 in the interval 6t2 per unit area at r2 and that

m photoelectrons are emitted at time t in the interval 6tl

per unit area at r1. Making the assumption that the points

of emission as well as the emission times of two distinct

photoelectrons are completely uncorrelated we have

(a2/e2) I(2t2) 121(rlt l) 12;
t1 t2 or r1 r2

P[(n,t 2,r 2),(m,tl,r1 )] =

W(s/e) =(rl, t) ;

tl = t2 and r1 = r2

(3-41)

by analogy with Eq. (3-15). Applying Eq. (3-14) gives the

desired average

2 IE(r2,t2) I2 IE(rlt1) 12

t2

j (r2t2) j (ltl)

aIE(rltl) I ; t2 = '

I

t1 or r2 r1

t1 and r2 = r1

(3-42)

Finally, on taking the time average of this expression and

performing an ensemble average over all possible incident

fields we find:
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<<j (2't2)j("l'tl)> > = a < E(r2,rt2) E(rltl)2 >

+ e<<j(rl'tl)>>6 (r2-r1 ) 6 (t2-t) (3-43)

This result represents a generalization of Eq. (3-25) to

include the effects of both the temporal and the spatial

coherence properties of the incident field. Let us set

1 t, 2 = t + T, r1 r, and r2 = r + p in Eq. (3-43)

and perform both surface integrals over the photocathode

area A. This gives Ri (T) in the form

Ri(T) = <<i(t+T)i(t)>>

2 J < E(r+p,t+u) 12[E( ,t) 2>d 2 ~ d2 +

+ ei 6 (T) (3-44)
p

with i as defined in Eq. (3-38). This result for R(T)
p

expresses the fundamental description of the photomixing

operation as seen via the output current of the detector.

Again, it is valid either for a specifically defined

field E(r,t), or for a random field that satisfies the

ergodic hypothesis and is strict sense stationary.

To simplify R i(T) further requires assuming that

E(r,t) is either a well defined, non-stochastic field

or a random field with Gaussian statistics. In the latter

case, the correlation function <IE(r+p,t+T) 2E(r,t)1 >

can be expanded with the help of Eq. (3-27) as

<l (r+'pt+) [E(r,t) 2> = <IE(+p ,t+T)r<1( ,)12>

+ 2 E (r+p,t+T) (, t)>] (3-45)
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The surface integrals can be performed on the first term

to give

2Ri(T) = ip + eip 6(T)

+ 2a2 [(++ t+p ) t > 2 d2 d+ (3-46)
AJ AJ 

As we found for R.(T) the Gaussian assumption results in

the separation of the correlation function into three

terms representing the dc current, the shot-noise, and

the beat signals respectively. The dc and shot-noise

current terms scale in proportion to the detector area in

a manner which would be expected intuitively from Eq. (3-30).

However, the beat note term in Ri(T) no longer depends only

on the temporal correlation function of the incident field,

RE(T); but, in fact, now contains the effects of spatial

coherence between the fields at the points (r) and (r+p). 

In general, the correlation function <(j(r+p,t+) P(rt)>

cannot be factored into separate time and space parts.

However, under certain restrictions that are easily satis- i

fied in all practical optical photomixing applications

this decomposition can be made.2 6 The conditions are as

follows: (1) the largest dimension of the photosensitive

surface, A, must be small compared to the wavelength of an

electromagnetic wave with a frequency equal to that of the

highest frequency beat signal; (2) the optical frequency

currents must be neglected. The physical interpretation

of these statements can be seen by reference to Fig. 3-8

which shows two collinear light beams with frequencies w1 

and w2 incident on a photocathode surface, A. At any

instant, t, the phase of the beat note ( 1-W2) varies

with position along the direction of propagation. This

is represented by the relative spacing of the wavefronts
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of the two incident fields. The result is a phase differ-

ence between the current densities produced at the points

r and (r+p) which is due not to the spatial coherence

properties of the incident wave but to the equivalent

time delay between the arrival of a given phase front

at the two points. However, in the limit in which the

maximum time delay becomes small with respect to the

period of the beat signal, the correlation of j(r+p,t)

and j(r,t) is determined entirely by the spatial correla-

tion function of the incident field. Condition (1) given

above is an alternate description of that limit.

With these assumptions Beran and Parrent2 6 have

shown that we can write

\E(r+p,t+T).E(r,t)> =t - (r ,t+) <~(~tt)

(3-47)

If the intensities at r and r+p are equal, the quotient

term in Eq. (3-47) is the real part of the spatial corre-

lation function T(r,p) defined in Section E.2 of Chapter

2. In this case we have the desired factoring

< (r+p,t+) (r,t)> = T(r, p)RE) (3-48)

Substituting this result into Eq. (3-46) gives for the

total current correlation function

Ri (T) = ip + eip6 (T) + 2 2RE2 (T.) I T2 (r p)d2r d2p (3-49)

A comparison between Eqs. (3-49) and (3-30) shows

that the total current and the current density have

identical spectral features: a dc term representing
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the time average photocurrent, a frequency independent

shot-noise term that results from the non-continuous and

stochastic nature of the photoemission process, and a beat

note term that describes the optical mixing action at the

photocathode. However, the magnitude of the beat note

term in Ri(T) does not simply increase with A2 as might

be expected from Eq. (3-30). Rather, the strength of the

beat note observed in the total current i(t) depends both

on the size of the detector and the range of spatial cor-

relation in the incident field.

If the time average intensity is uniform over the

photosurface, T(r,p) is independent of r on A and we have

A T (rp) d r d p = A J T (rp) d (3-50)

where r gives the reference position of the photodetector

in the field E(r,t). The integral

2-J (r op) d 
all p

is a measure of the area surrounding a given point on the

photosurface over which the incident field and hence the

beat note photocurrent densities j(r,t) are all in phase.

We designate this area as the coherence area, ACOH,

ACOH T (r 0p) dp (3-5i)
COH all 0p

It follows that the double integral in Eq. (3-50) has two

limiting behaviors. If the size of the photocathode is

large compared to the range of T(ro,p), then the integrals

give

A J = AA COHChapter 2, Section E.
t Chapter 2, Section E.
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on the other hand, if the photocathode is small compared

to the size of a coherence area, then we have

This yields Ri() in the form

This yields Ri(T) in the form

R () = i2 + ei 6 (T) + 22R 2(T)A2

1 ; A << ACOH

(ACoH/A); A >> ACOH

(3-52)

The effects of spatial coherence on the operation of an

optical mixing spectrometer are described completely by

the quantity ACOH. A detailed discussion of these effects

and their physical origin is presented in the following

two sections which analyze the self-beat and superhetero-

dyne optical mixing spectrometers respectively.

The correlation function given in Eq. (3-52) repre-

sents the desired generalization to i(t) of the result

found in Eq. (3-30) for the current density. The power

spectral density of the total current, Si(w), can be cal-

culated by the same method used to compute Sj(w), with the

result

Si( W) = ip2 6(w) + (e/2r)ip

+ 2 A 2

(ACo/A)

(3-53)

ISE(')[SE(W'+) + SE(w-w )ldw '
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C. The Self-Beating Optical Spectrometer

In the preceding section we considered in detail the

operation of a photomixer and derived the basic relation-

ship between the spectrum of the photocurrent and the spec-

trum of the incident field. We are now in a position to

analyze the two optical mixing spectrometers that were

described in the introduction to this chapter. Here we

will consider the self-beat or self-mixing spectrometer

in which a frequency translation of the spectral informa-

tion in the incident field is accomplished by simply

allowing the light to fall on a photosurface. In this

case mixing takes place between the different frequency

components of the field itself and generates a photocur-

rent beat note spectrum located around w = 0.

In this section we will assume that the spectrum of

the incoming field is Lorentzian and determine the spec-

trum of the resulting photocurrent. We find that if

SE(W) is Lorentzian then Si(w) is also Lorentzian, but

that the latter has its maximum at w = 0 and has a width

at half-height equal to twice the half-width at half-

height of SE(X). We then consider the step-by-step

processing of the current signal i(t): the examination

of its spectrum with a narrow band tunable filter, the

rectification of the filtered current, and the display

of the output. The objective is to calculate the sensi-

tivity of the spectrometer by determining a "signal-to-

noise ratio" at the output for a given amount of input

optical power. The choice of a suitable definition for

this (S/N) ratio will emerge in the course of the cal-

culation. The sensitivity results are presented in the

form of a set of parameterized curves called isones which

represent lines of constant output (S/N) ratio. From
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these curves it is possible to predict easily how a spe-

cific change in input optical power, filter bandwidth,

photomixer quantum efficiency, and so on will affect the

detection capabilities of the instrument.

A very striking feature that emerges from the

analysis is that increasing the size of the detector

area in order to accept more light does not increase

the output (S/N) ratio once the area of the photosurface

exceeds the coherence areat ACOH This result is

explained in terms of the randomness in phase between

beat frequency currents generated at two different co-

herence areas on the photocathode surface.

1. The Observed Photocurrent Power Spectrum for

the Case of a Lorentzian Input Field

Let us consider the self-beating spectrometer

shown in Fig. 3-9. We assume that the incident field can

be described as Gaussian random noise, perhaps the light

scattered from thermal fluctuations in a liquid. The

power spectrum of this field is taken to be a Lorentzian

centered at the optical frequency wo and having a half-

width at half-height of r rad/sec, that is

SE(X) = 2|trO, t) > 2 )(r/2E)2 + ( +( /2 r2 (3-54),(w) Kt(=,t) 2/ (r/27) + (/27).(W-W) + (w+w) + 

Equation (3-54) expresses SE() in its symmetric form ;

the actual power per unit spectral interval at any fre-

quency 0ŽO is found by adding SE(-) to SE(w). The

Chapter 3, Section B.4.

§ Chapter 2, Section D.
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intensity of the incoming beam (l/pocm)<IE( t) 12> has

been assumed to be constant over the photosurface.

Suppose we let the field described by Eq. (3-54) be

incident on a photodetector. The power spectrum of the

resulting photocurrent then follows directly from

Eq. (3-53) as

Si(W) = i 26(w) + (e/2n) i
1 p p

+ A2{ 22t (2r/Tr)+aA 't 2 2
t ; (Ac oH/A) w + (2r)

(3-55)

the upper line in the braces corresponding to A << ACOH,

the lower line to A >> AO H. Writing

i = oA<E (r 0o,t) I2>

gives Eq. (3-55) in the more useful form

Si ( W) = ip 6(w) + (e/2T)ip

+ (AC/A)} [ 2 (3-56)
2 + (2r)

(AcoH/A

This result shows that for a Lorentzian optical spectrum

the beat note term in S () is also a Lorentzian; however,

rather than being centered at -= w0, the spectral

Chapter 3, Section B.4, Eq. (3-38).
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information has been translated down to w=0. In addition,

the half-width at half-height of the self-beat spectrum is

twice that of the incoming light. The calculation of Si(w)

can also be carried through by employing the correlation

function corresponding to the assumed incident field, viz.

RE(T) = (r,t) 2> erTcos WoT (3-57)

The correlation function of the photocurrent is then com-

puted using Eq. (3-52) with the result

Ri (T) = i 2 + ei 6(T) + 2A 2
I[(r0,t) 12> e-2 rT

(3-58)

Equation (3-56) follows directly on taking the Fourier

cosine transform

Si(M) = (1/27) JRi(T) cos (T) dT

The total current spectrum including the signal, the dc,

and the shot-noise components is illustrated in Fig. 3-10.

Clearly the self-beating process does accomplish

the desired frequency translation of the spectral infor-

mation present in the optical field, with the exception

of the value of the original center frequency w0 which

is lost. Furthermore, although the spectral distribution

of the light is not preserved exactly in the photocurrent

spectrum, if the incident light wave does have a Lorentzian

power spectrum then the two are related in a trivial

manner.



III
196

-.3

-H

I

I a

I -4

ollI

I

II 
I
I
I
I
I
I
I

r~4

3

.O.N
r 0

U

4

04J0 -H

04 J

0 )

0 

. 0
0 - U)
oa f

nJ

) rd

-.H 4-I

0

--- -H
U) - 0

o0 1

d 4- ICid 

O. - d

H- C44-4-r 
04

0
I

0

-,

I

I



197

2. The Processing of the Photocurrent Signal

We turn now to the problem of measuring the self-

beat part of Si(w) and determining the possible sources of

noise that make this measurement uncertain. For handling

the processing of the current it is convenient to label

each of the three components of Si(w) separately; therefore,

we define the signal, the shot-noise, and the dc terms

respectively as

IS () = [
S ip 2 (4/r)2 (1>)

Lw + (21) 

IN ) = (e/7i)i (w) (3-59)

2 2
I i
o p

a. The Pre-Detection Signal-to-Noise Ratio

(1) Definition

As is evident from Fig. 3-10, one

measure of the detectability of the signal current spec-

trum is its power per unit bandwidth (power spectral

density) as compared to that of the shot-noise. We

define the pre-detection signal-to-noise ratio, (S/N)PRE,

as
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2 i2
(S/N)R - [I (0) /I (0)] { (3-60)

(A/) eA

or using Eq. (3-39) to write i in terms of the total
P

optical power falling on the photocathode by

PO
(S/N) RE = u-) } (3-61)

(Ac/A)

The ratio ( P /r) measures the incident optical power per

unit frequency interval while (ACoH/A)Po is just the

optical power falling on a single coherence area of the

photosurface. The behavior of (S/N)pRE with r is easily

understood by noting that the total power in the signal

part of the current spectrum,

c IS 2 (w)dw,

is independent of r and depends only on the incident light

intensity and the area of the detector. Therefore, a

decrease in r must cause an increase in the available
signal power per unit bandwidth at w=0.

(2) Effects of Spatial Coherence

The really interesting feature of

(S/N)pRE is its behavior with increasing photodetector

area, A. Writing i in terms of a uniform incident light

intensity (l/pocm)(<(o,t)12> and analyzing the cases

A >> ACOH and A << ACOH separately we find
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A >> ACOH

IS2 (W) =AA <o IE I >S COH '

IN2() = Aa [< (ro,tt) 12)] (e/w)

(4 r/7)
2 + (2r)2

Io2= A /2[<t ( t) 1 2>]2

(S/N)PRE ACOH(a/er) [<l(,t) 12>]

(3-62)

A << ACOH

Is2() = A2 .a2[<(I ° ,t) 2)]2 (4r/7)
w + (2r)

IN2(w) = Aa[(l (ol0 t) 12] (e/r)

02 = A2 a2 [<l1(rot) 12>]2

(S/N)PRE = A (a/er) [<(o 0,t) 12>]

2
Consider the shot noise terms, IN2 (w), for each limit

first. Although the dc photocurrent power goes up as

the square of the photocathode area, the shot-noise power

spectral density increases only linearly with A. This is

I

L

w>0

I

z

i
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a direct result of the random character of the photoemission

process which demands that the phases of the shot-noise cur-

rents generated at separated points on the photodetector

be completely uncorrelated. These randomly phased currents

can add only linearly to the total shot-noise power. A simi-

lar argument applies to the beat signal currents, I (W),

where the phases are determined by the spatial coherence

properties of the incident field. In the case A << ACOH,

in which E(r,t) is spatially coherent over the detector,

the beat signal currents produced at all points on the

photosurface are in phase. Therefore, they add linearly

to the total beat current and quadratically to its power
2 2

spectrum. In this case we find IS (w) A. In the oppo-

site limit, A >> ACOH, the photosurface must be divided up

into a large number of areas equal in size to ACOH. The

beat signal current generated in each of these regions is

randomly phased relative to that generated in any other

coherence area. These randomly phased currents add to

produce a signal power spectrum that increases only linearly

with A.

The behavior of the pre-detection signal-to-noise ratio

with increasing A can be summarized as follows. For A << ACOH,
2

(S/N)PRE increases with A since I (0) grows faster than

IN2(O); but, when A = ACOH, (S/N)pR E limits at the value

(S/N)PRE = ACOH (L/er) IE(rOt) 12>

and is unchanged by further increases in A. This analysis

suggests a conclusion that is verified by the final

Chapter 3, Section B.4

Chapter 2, Section E, and Chapter 3, Section B.4, Eq.(3-48) l
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calculations, namely, that the sensitivity of an optical

mixing spectrometer is dependent not on the total avail-

able optical power but on the optical power per area of

spatial coherence in the incident field.

If we define the power per coherence area as

P COH = (AcOH/A) P the limiting value of (S/N)pRE is

P

(S/N)pRE= -( COH A A COH (3-63)
o

For incident light with a wavelength air = 6328 and for

a quantum efficiency of 100% we find that the power per

unit coherence area, per unit bandwidth necessary to give

(S/N)RE = 1 isPRE

pCOH) = 3.1 x 10-19 watts
r 3.1 x 10 radian/sec

(S/N) PRE 1

= 2.0 x 10-18 watts
cps

Although this ratio is one measure of the sensitivity of

the self-beating spectrometer it neither specifies how

accurately we can measure the spectrum of IS 2(), nor

what the source of noise in the measurement will be. It

is an indication simply that the shot-noise spectrum

provides a uniform background against which IS (X) must

be determined.

b. The Electronic System

(1) The Tuned Filter

We now proceed to examine the effects

of the tunable filter. The result of passing a signal
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through such a linear element is usually specified in terms

of the so called system or filter function27 H(w) as

Sf(w) = IH(w) 2 S (W) (3-64)

where Sf(w) is the power spectral density of the filtered

current. An equivalent relation can be given between the

output correlation function Rf(T) and the input correlation

function Ri(T) in terms of the unit impulse response of the

filter2 7 h(t2-t1), viz.
~co0 ~ ~ 00

Rf(T. = h( )d I h(T")dT" R(T+T'-T') (3-65)
00 -00 

The unit impulse response of the network and the network

system function are related as Fourier cosine transform

pairs, that is

co

h(T) = (1/27) J H(w) cos wT dw

Here the action of the filter is specified in terms of

IH(w) I2 which we assume to have the rectangular form shown

in Fig. 3-11 . This filter passes perfectly all frequen-

cies in S(w) between [f - (Auf/2)] and [f + (AWf/2 )]

and stops all others. If we also block the dc photocurrent

from getting to the filter (e.g., with a capacitor) then

the spectrum of the filtered shot-noise and beat signal

components of Si (w) is given by

Sf(w) = I S
2 (w)IH(w) 2 + IN2 (w) H(w) 2 (3-66)

(w>O)



IH(w) 12

Awf

Figure 3-11 Assumed system function for the tuned filter
used to examine the photocurrent spectrum.

Sf(W)

2 (
IN (Wf)
N f I

[Wf- ( Af/ 2 ) I

i

0

[Wf+ (Awf/2 ) 

Figure 3-12 The power spectral density of the filtered
photocurrent.
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Sf(W) =

(w>0)

(ACoH/A) ip 2( 4 / ) 2 + (e/7)i ;

[Wf - (Af/ 2 )] < w [f + (Awf/ 2 )]

0 ; otherwise

Under normal circumstances the bandwidth of the filter,

AWf, is chosen to be small compared to the line width of

the signal spectrum, 2r. The variation in the amplitude
2

of IS (w) over the range of frequencies passed by the

filter is then negligible and we have Sf(w) in the simple

form

Sf(W) = 4

(W20)

IS2(Wf) + IN2(Wf) ; [f - (Awf/2 )] < w [f+ (Awf/2)]

(3-67)

0 ; otherwise

This filtered spectrum is shown in Fig. 3-12. It consists of

two uniform contributions, one from the signal and one from

the shot-noise. The quantity of interest, I2(w), is now

reflected in the total power output of the filter. That is,

as the filter is tuned, its power output traces out the value

of [I 2(W) + I ()]; furthermore, the constant IN () mayS N N
be determined by tuning to a frequency w >> 2r where

Is2(w) 0.

Eq. (3-59)

204
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(2) The Detector

To measure this output power we must

put the filtered current into some sort of detector or

bolometer. As indicated in Fig. 3-9 we choose a detector

with a square-law response, e.g. a diode biased into its

quadratic current regime. The properties of such a detector

can be described as follows. If the instantaneous filtered

current is called if(t) and the instantaneous output voltage

of the detector vD(t), then if(t) and vD(t) are related by

vD(t) = Mif2(t) (3-68)

where M is called the transfer constant. However, the

current if(t) is, in fact, a random noise current; 2 8

therefore, the appropriate description of the detector

output is found by calculating the power spectral density

of vD(t), designated Sv(w), in terms of the spectrum of

the filtered current, Sf(w). The desired result can be

obtained easily by noting the formal similarity between

the relation of vD(t) and if(t) given in Eq. (3-68) and

the relation between the photocurrent density and the

electric field as given in Eq. (3-1). Both of these

equations describe the operation of a "square-law" device.

Equation (3-35) can immediately be adapted to the present

case in the form

Sv(W) = [<<vD(t))>] 26()

+ M2 JSf(W') Sf(W'+W) + Sf(w'-w)]dw' (3-69)

The dc detector output voltage <<vD(t)> is given by

(KvD(t))> = (if 2(t)>> (3-70)
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Equation (3-70) can be rewritten in a more useful form by

noting that the mean square amplitude <<if 2 (t) is equal

to the integral under the power spectrum Sf(w) by

Parseval's theorem

<if 2(t)> = ISf(w')dw' (3-71)

so that we also have the result

<<VD (t )> = MI Sf(w')dw' (3-72)
-00

Equations (3-69) and (3-72) completely specify the action

of the detector. The features of the detected spectrum

are identical to those found in the output current spectrum

of a "photo" square-law detector; a dc term which measures

the average total input power, an ac part representing

beats between all pairs of frequency components present

in the input signal, and a shot-noise term that has been

neglected in Eq. (3-69). The shot-noise contribution,

although actually present in a real detector, can always

be made as small as desired relative to the ac beat sig-

nals by suitably amplifying the filtered current prior to

detection.

If the detector input is the filtered self-beat and

shot-noise current whose spectrum is given in Eq. (3-67)

and shown in Fig. 3-12, then the dc detector output is

<<vD (t)> = M[IS2(f) + IN2 (W)Af (3f 73)

part of which is the desired signal term IS2 (W). The

total power spectrum has the form
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Sv( ) = M2 (A f)2 [IS 2 ( f) + N (f)]

2 2 2 2 (AW W1+ 2M[I (f) +I N2(Wf) (AWf) WS f N f f ' (3-74)

0 < < Af

in which the terms at frequencies w 2wf have been ne-

glected. The ac part of Sv(w) represents a triangularly

shaped spectrum as shown in Fig. 3-13.

The source of noise encountered in measuring I2 (w)

now becomes evident. The desired information, I2( f ),
is present at the detector output as a dc voltage which

can be measured, for example, by a meter. However, the

detector output also contains ac noise voltages which will

cause the meter reading to fluctuate, thus making the

determination of IS2 (Wf) uncertain. Moreover these

"noise" voltages are simply "beat notes" between all

pairs of frequency components present in the filtered
2 2

current; both in the signal I2 ( f) and shot-noise IN (Wf)
contributions. These "noise beats" which interfere with

the measurement are produced through the non-linearity of

the detection process.

(3) The Post-Detection Signal-to-Noise Ratio

Suppose we define a post-detection (S/N)

ratio as the ratio of the dc detector output produced by

the signal I2(Wf) to the root-mean-square ac component,

namely,

(S/N) SIGNAL (3-75)

.,_~ ,, ~<I[vD(t)]acl
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the average < [vD(t)]ac12> simply measures the mean-

square fluctuations in detector output around its average

value <<vD(t)>> and is defined by

<I[VD(t)]ac 2> = <IVD(t) - <vD(t)> 12>

Because [vD(t)]ac has a zero time average, Parseval's

theorem29 can be applied to yield

12|vDt]a(> = |)d (3-76)
<oo* v

The spectrum Sv (w) is identical to Sv(w) excluding the

dc term.

The definition of (S/N)POST implies that for a signal-

to-noise ratio of unity the rms fluctuation in meter reading

is equal to the meter deflection due to the signal. Suppose,

for example, that the meter can respond equally well to

all ac frequencies present in the detector output

(0 < < Af). Then the post-detection signal-to-noise

ratio in the self-beating spectrometer follows from Eqs.

(3-75), (3-76), and (3-74) as

(S/N)POST = 2(f) 2 () + N (f)]

2
I s (Wf)

(3-77)

I2 (Wf) + IN2 (f)

This result shows that both the shot-noise and the signal

parts of the filtered current beat with themselves and

each other in the detector to produce the observed meter
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fluctuations. Moreover, even in the absence of the shot-

noise contribution, the signal term alone will produce

sufficient meter noise to completely mask the desired

dc deflection. Clearly some method of "filtering" or

"averaging" out these ac noise currents must be employed

prior to recording.

(4) Post-Detection Filtering

The simplest such averaging scheme is

the RC filter or "time constant circuit" shown in Fig. 3-9.

This network passes the entire dc detector output to the

meter but bypasses some of the undesired ac output voltage

through the capacitor C. As was the case for the tunable

filter, the effect of such a network is most easily speci-

fied in terms of its system function, H(w). For the RC

filter we find IH(w) 2 as

2
H(w ) 1

2
- (1/RC) (w0O) (3-78)

+ (1/RC)

a Lorentzian having a maximum response at w = 0 and a

width at half-height equal to (1/RC). Therefore, this

filter will pass on to the output indicator only those

frequencies in the detector output spectrum which lie

within a bandwidth (A T ) = (1/RC) of zero frequency.

The product RC is generally referred to as the time

constant of the circuit since the RC network impulse

response

-T/RC
h(T) = e
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shows that the output of this circuit requires a time Tc = RC

to respond to any change made at the input terminals.

Calling the filtered detector output voltage vo(t) and

its power spectral density S (w) we have easily from Eqs.
0

(3-64), (3-74), and (3-78)

SO(X) = S (w)IH(w)1 (3-79)0 V

2 2 2 2 2
M2 (Awf) [IS2 (Wf) + N ( f)]26()

2 2 2 2 Awf) - (AT)
+ 2M [IS (Wf) + IN (f) f L (Af) JLAT) 2

(0 < w Af)

The filtered output spectrum is shown in Fig. 3-14 for the

case (AWT) << (Awf)

c. The Output Signal-to-Noise Ratio

We now define the output signal-to-noise

ratio of the spectrometer in analogy with (S/N)poST as

__ 0 I SIGNAL
(S/N) OUT GNAL (3-80)

/< [Vo (t)Il2>

The physical interpretation of (S/N)OUT completely parallels

that given (S/N)POST: (S/N)OUT measures the ratio of the

signal deflection of the output device to the rms fluctua-

tion in deflection.

The total mean-square ac output voltage can again be

calculated by using Parseval's theorem
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Kl O[v(t)] acI2>= JSO (w')dw'

where the spectrum S (w) is identical to the ac part of

SO (w) as given in Eq. (3-79). Evaluating

00

we find easily

<I[vo(t)]ac12 >= 2M2 [Is2 (~f) + IN2 2(f)] f) x

A w (A T)2

(AWT)tan 1(5) T 2 n
T (Awf)2

+ (AWT)2

T)2T

In the usual limit (AT) << (A f) this result becomes simply

<[Vo(t)]acl 2>= M 2[IS2 (wf) + IN2 (Wf)] 2(Af) (AT) (3-81)

In determining (S/N)OUT using Eqs. (3-80), (3-81), and

(3-79) we arbitrarily choose f = 0; at this point IS (Wf)

takes on its maximum value and, therefore, (S/N)oUT is also

a maximum. This choise yields as the final result

-SI· (3-82)(S/N) - 1 f IS (0)OUT (7) T I2() + I 2 ( (3-82)

Equation (3-82) together with Eqs. (3-59) and (3-39)

represent the desired expressions for the detection capa-

bility of a self-beating optical spectrometer. They spec-

ify in terms of a signal-to-noise ratio the accuracy with

which one can measure the spectrum of the self-beat current,

and hence that of the incident light. An almost identical
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result is found for the superheterodyne optical spectrom-

eter. For this reason, and since the discussions of the

sensitivities of each of these light mixing spectrometers

would be practically identical, we postpone the detailed

analysis of Eq. (3-82) to Section E of this chapter.

D. The Superheterodyne Optical Spectrometer

In this section we consider the detailed operation

of the typical optical superheterodyne spectrometer whose

basic features were outlined in Section A. The super-

heterodyne mixing spectrometer achieves its ultrahigh

resolving powers by translating the spectral information

present in the incident electric field from an optical

frequency wO down to a lower intermediate frequency w1 .

The frequency shift is accomplished by mixing the light

beam whose spectrum is to be analyzed with a monochromatic

optical "local oscillator" beam. The mixing process is

carried out by superimposing these two beams on a photo-

detector; the desired beat signal at the intermediate

frequency is observed in the resulting photocurrent.6,30,31,32

We find that unlike the self-beat system the super-

heterodyne spectrometer preserves the spectrum of the in-

cident light exactly in the process of frequency trans-

lation, including information on the center frequency wO.

In fact, the spectral shape of the signal part of the photo-

current power spectrum is identical to the spectrum of the

incident field, the latter being centered at w = 0 and

the former at 1 = wo - WLO' where LO is the local oscil-

lator frequency. 31,32

The processing of this photocurrent proceeds exactly

as in the self-beating case. The desired final result for



214

the output signal-to-noise ratio may be taken over directly

from the calculations presented in the previous section.

Furthermore, most of the arguments presented there regarding

the role of the spatial coherence properties of the incident

field apply equally well to the present case. In particular,

we again find a pre-detection signal-to-noise ratio which is

limited by the available optical signal power per coherence

area.

The analysis of the superheterodyne spectrometer also

points out a very important feature of optical mixing which

did not appear in the self-beat case: the necessity of

interferometric alignment between the wavefronts of the

mixing fields. We examine here how the amplitude of the

observed beat signal depends on the angular misalignment

and radius of curvature mismatch between these wavefronts.

Let us consider then the optical mixing receiver shown

in Fig. 3-15. There are two fields incident on the photo-

detector-mixer, a local oscillator field (LO(r,t) and a

signal field ES (r,t).

1. The Temporal, Spatial, and Statistical Coherence

Properties of the Local Oscillator Field

The local oscillator field will be assumed to

be a monochromatic wave of frequency LO and of a uniform

intensity (1/oCm) <ELO(ro,t) 12> over the surface of the

mixer. Its spectral properties can be specified in terms

of a correlation function, RLO(T), and a power spectrum,

SLO(W), given by
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RLO () = LO(rot) > cos LOT (3-83)

SLO () = <LO(rO, t) > {26(W+WLO + 6 (W-WLO

where SLO() es expressed in its symmetric form.t

It is appropriate to comment at this point on the

definition of the term "coherent" as applied to an oscil-

lator such as a laser. Two meanings of the word coherence

have already been introduced in previous sections in

reference to the properties of an optical field; namely,t
temporal coherence or correlation, which is a measure of

the spectral purity of the field, and spatial coherencei

which measures the time average correlation between the

temporal behaviors at two distinct points in the field.

A comparison between lasers and ordinary black body sources

shows the laser to be a superior light source from the

standpoint of both temporal and spatial coherence proper-

ties; although, as Forrester3 2 has pointed out, the tem-

poral coherence of ordinary atomic spectral lines extends

over many periods of the optical oscillation. In fact,

such a discharge line may have a relative spectral purity

(6w/Wo) that would correspond to a frequency stability of

0.1 cps in a 600 kc/sec "oscillator." However, the use

of the word "oscillator" in describing a particular source

of electromagnetic radiation implies still a third defini-

tion of coherence. Coherence in this last sense is a

statement concerning the statistical properties of the

electric field amplitude. A useful definition of this

Chapter 2, Section D.

Chapter 2, Section E.Chapter 2, Section E.;



217

coherence characteristic can be formulated as follows.

Suppose we express the time evolution of the electric

field from a spectrally narrow band source in its most

general form as

E(t) = [Eo + E(t)] cos [o t + O(t)] (3-84)

where Eo is a constant. The quantities Eo (t) and (t)

are random variables characterizing that portion of the

time behavior of E(t) which can be given only in terms of

a correlation function; as such they are not specifically

defined functions of the time.

The source of the electric field given in Eq. (3-84)

is said to be statistically coherent or amplitude stabilized

when the envelope function or amplitude defined by

E(t) = E + 6Eo(t)

is a constant, E(t) = Eo, independent of time. On the

other hand, the source may be designated statistically

incoherent for the case

E(t) = E(t)

so that E(t) is a random variable.

If we neglect phase fluctuations then the time depen-

dence of the field from a statistically coherent source,

for example an ideal oscillator, may be displayed explicitly.

The time behavior of the field from a statistically inco-

herent source can be given only in terms of a correlation

function.
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The degree of statistical coherence may be specified

for the general field by the quantity W

W = <IE(t) - <E(t)> 12)
(1 - T/4)<E(t) 12>

(3-85)

which measures the mean-square fluctuations in the envelope

function. If the random component of E(t)

ER(t) = 6Eo (t) cos [ot + (t)] (3-86)

has the usual Gaussian probability distribution, i.e.

1
exp -

2 <IER (t) 2>

E 2
R

2<1ER(t) l 

then the corresponding probability distributions for 6Eo

and are

P( Eo) =

26E
o

<I 6Eo (t)12>o

exp ; 6E > 0

(3-88)

; otherwise

and

1
27T

(3-89)

otherwise

P(ER) (3-87)

0

0

L

i
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as given by Davenport and Root.34 Assuming the equivalence

of time and statistical averages24 we find for the field

given in Eq. (3-84)

<(16Eo(t)l > (3-90)
W (3-90)

<IEo + EO(t)1

Thus a source with full statistical coherence, such as an

ideal oscillator, has (W = 0) while a narrow band Gaussian

noise source, such as a spectral line, has (W = 1).

The importance of the degree of amplitude stabilization

for the present purposes is that for W = 0 and neglecting

phase fluctuations we can describe the corresponding field

using a well defined time function in addition to the usual

temporal and spatial correlation functions.

Measurements by Freed and Haus 3 5 and by Smith and

Armstrong '6 of <16Eo(t) 2 and E for laser light have

i shown that except very near oscillation threshold, a laser
light source, in fact, is characterized by W = 0 to excel-

lent approximation.

We will assume here that our local oscillator is both

temporally and statistically fully coherent. Thus its time

dependence may be given explicitly, viz.

~LO (,' t) = O(r) cos LOt (3-91)

We will assume, however, that the optical signal field

E S(r,t) is Gaussian random noise.
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2. The Correlation Function for the Total

Photocurrent

Since one component of the total incident field

has a non-Gaussian amplitude distribution, the factoring

process which led to Eq. (3-49) for Ri(T) is no longer

valid. In this case we must refer back to the general

form of the photocurrent correlation function given in

Eq. (3-44) in order to calculate the spectrum of the

photomixer output. Equation (3-44) gives Ri(T) as

Ri (T) = <i(t+T)i(t)>

= aJ IA <1E('+'pt+T) IE(rt)| d r d p + ei 6(T)

(3-92)

In a superheterodyne spectrometer the dc photocurrent ip

is produced by contributions from the signal and local

oscillator intensities and has the form

ip = aA[<IEs(rt) 12> + (1/2) ELo(ro) 2 i (3-93)

where A is the photocathode area and r is some convenient

reference point on A. Here we will assume the local

oscillator intensity to be much greater than the intensity

of the signal beam and take ip as simply

ip = (A2) 2 = (Ee/hw )PLO (3-94)

where PLO is the total local oscillator power incident on A.

Writing E(r,t) as the sum of the two incident fields,

ELO(r,t) and Es(r,t) and using Eq. (3-91) we find easily
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iE(,t) l2 = IELO(r) 12 COS2 LOt + 2[ ELo(C)S (r,t)] cos WLOt

+ Is( ,t) 2 (3-95)

and a similar result for JE(r+p,t+T) 2. Taking the product

of these expressions and performing the required time average

indicated in Eq. (3-92) yields the result

<E( r+p,t+) 21r(>:,t)12 = [(1/2)IELO(r)1] (3-96)

+ 2[(l/2) ILo() 12]<ls(r+pt+T)12>

+ <IEs(r+Pt+T) IEIs(,>t) 2>

+ (1/2)[(1/2) IELo () 12]2 cos 2LOT

+ 2<[ EL(r+p) E(r+p t+)] [EL() 'ES(,t)]cos WLOT

The first two terms of this result represent contributions

to the square of the exact total dc photocurrent as given

in Eq. (3-93). The missing factor [<IEs( ,t) 2>]2 is con-
tained in the third term which is just a self-beat correla-

tion function of the type examined in the preceding section.

As would be expected, the signal field incident on a super-

heterodyne spectrometer still produces its self-beat contri-

bution to the photocurrent spectrum. Equation (3-45) shows

that the time average <ES(r+p,t+T) I 2 Es(,t) l2>may be

broken down into the missing dc term and an ac term describ-

ing the correlation function of the signal part of the self-

beat current spectrum. The fourth factor in Eq. (3-96)

represents an uninteresting second harmonic term. Finally,

the fifth and last term describes the mixing between the

two incident fields.
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If we assume that the local oscillator intensity

greatly exceeds the intensity in the signal beam, we may

safely ignore the self-beat contribution to R (T) and
1

write

R(T) = ip + ei 6(T)
1 p p

+ 2 < ELO (r+) Es(r+p,t+T)] [ELo() s(,t)]>x

2x cos 2 (3-97)
x cos T d d r (3-97)

LO

Let us consider some of the features of the signal part of

this result and determine if it can be simplified to a more

useful form.

From the integrand of the double surface integral it

becomes apparent that the beat signal term will vanish if

the polarizations of the two incoming beams are at right

angles. For simplicity we will assume that the directions

of polarization are identical and write

<[ELO(r+p) Es(r+,t+T)] [ELO() ES( t]>

ELO(r+)ELo () <E S( r+p,t+ ) E S t> (3-98)

where ELO (r) and E(r,t) are the scalar amplitudes of the

respective vector fields. The remaining time average is

the two point, two time correlation function encountered

in Section B.4. As described there, we may, under suitable

conditions, factor this average into separate time and

spatial parts as

<ES(r+,t+) ES (r,t)> = TE(r,p)RE(T) (3-99)r~~~p~~~t+~~~~)E~~(3-9



In this case the spatial and time correlation

TE(r,p) and RE(T) are given by

* <E(r+p,t)-* (r,t)>
TE ' -ErE(rP) t)E (r,t)

functions

(3-100)

and

(3-101)

The primary restriction that insures the validity of Eq.

(3-99) can be stated as follows: the largest dimension

of the photosurface, A, must be small compared to the

wavelength of an electromagnetic wave with a frequency

equal to that of the highest frequency beat signal. An

examination of the cutoff frequency and active photosurface

dimensions of present day photomixers shows that the condi-

tion is well satisfied in all cases.

We may also define a spatial correlation function for

the local oscillator field as

T (r,p) =-Lo
<-LO(r+pt) -ELo (rt) (3-102)

For the form of ELO(r,t) given in Eq. (3-91) we find easily

O(,E) ELO (r+p)
LO(rp) = (3-103)

ELO)

Chapter 2, Section E.

Chapter 2, Section D.
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l RE(T)=<B(;rt ) E (" 0)

< LO (',t LO (', 
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Thus the function TLO(r,p) is simply a normalized descrip-

tion of the amplitude and phase behavior of the local oscil-

lator field as a function of position relative to the

fixed reference point r.

Combining Eqs. (3-97), (3-98), (3-99), (3-103), and

(3-83) we have Ri (T) in the form

Ri(T) = ip + ei 6( )

+ 4a A RLO(T)E(T) I TLo(rop)TE(rip)d r d (3-104)

where Eq. (3-83) was used to identify RLO(T). Equation

(3-104) is the desired simplification of Eq. (3-97); it

represents a factoring of the two important characteristics

of the superheterodyne spectrometer, namely, the spectral

and spatial features of the mixing process itself. Before

proceding to analyze each of these we note that the double

surface integral in Eq. (3-104) has a maximum value of A2

and define the spatial factor B] as

12 TLOrp) TErp d r d P- [B] (3-105)

A A

This puts the correlation function in the form

Ri(T) = ip + ei 6(T) + 4a A 2 RLo(T)RE (T )[B] (3-106)
i p p

When [B] has its maximum value [B] = 1 Eq. (3-106) takes

the form that would be obtained in an intuitive manner

from Rj(T) in Eq. (3-30). The [B] factor describes what

might be called the spatial efficiency of the mixing

process.

I

I

II

I

p
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3. The Spatial Characteristics of the Mixing Process

Let us first examine the spatial factor [B]. If

we assume that the intensities of both the local oscillator

and signal beams are uniform on A, then TLO(r,p) and TE(r,p)

are both independent of r on A and we have

[B] = (1/A) TLO(r oT ) TE( op) d P (3-107)

The remaining integral describes an interference pattern

between the wavefronts of the local oscillator and signal

fields. It contains two pieces of information. The first

is the effect of the spatial coherence properties of the

field S(r,t).

a. The Effects of Spatial Coherence

Suppose, as an example, that the shape of

the surface A corresponds exactly to the shape of the

wavefronts of the local oscillator so that TLO(ro,) = 1

on A. Further, suppose that the nominal surfaces of

constant phase of iS(r,t) are identical in shape and

orientation (i.e., are collinear) with those of ELO(rt).

Then as p assumes different points on A, TE(r ,p) will

vary, but only§ due to the finite range of spatial corre-

lation in the field since p remains on a single wavefront

of E(r,t). In this case the expression for [B] can take

on two values depending on the ratio of the size of the

photosurface to the range of the correlation function

TE(ro,p). If we define the coherence area ACOH as

§ Chapter 2, Section E.2
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ACOH = T(r) d (3-108)
all p

then [B] has the limiting values1 *
1 ; A << ACO H

[B] = (3-109)
* *

(A COH/A) A >> ACOH

A simple analysis shows that this result is valid even if

the surface A does not have the exact shape of the incoming

wavefronts as long as these wavefronts are exactly collinear.

By comparing Eq. (3-58) to Eqs. (3-106) and (3-109)

for the case of perfect collinearity we find that a finite

range of spatial correlation in the signal field has identi-

cal effects on both superheterodyne and self-beating spec-

trometers. In this regard it is interesting to note that

the collinearity condition is automatically satisfied in a

self-beating spectrometer since the signal field is mixing

only with itself.

The physical explanation of Eq. (3-109) in terms of

the phasing of the beat signal currents generated in dif-

ferent coherence areas on the photocathode exactly parallels

that given in the preceding section.

The efficiency factor [B] also describes the effect

of a finite range of correlation in the local oscillator

field. Clearly, since TE(r,p) and, therefore, the integrand

in Eq. (3-107) goes to zero as IPl approaches the correlation

range in the signal field, it is unnecessary to have the

local oscillator spatially coherent over the entire photo-

cathode area in order to maximize [B]. The local oscillator

need be coherent only over an area corresponding to one

coherence area of the signal field. Under some circumstances
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it may be impossible to achieve this condition and the

coherence area of the local oscillator may, in fact, be

smaller than that of the signal beam. In this case, in

evaluating Eq. (3-107) for assumed collinearity, we may

set TE(rO,p) = 1 over the range of integration. The

term ACOH is then to be interpreted as

r _ -L o

ACOH AJ TLO(rO ' )d p

the coherence area of the local oscillator field.

The above results may be summarized as follows: if

the nominal surfaces of constant phase of the signal and

the local oscillator fields are identical in shape and

orientation over the photomixer, then the spatial factor

[B] takes the value unity for A << ACOH and the value

(A,,,/A) for A >> A,,1 . Further, A, is to be identified

as the smaller of the coherence areas describing the local

oscillator and signal beams.

b. Collinearity of the Mixing Fields

(1) Angular Misalignment

The second piece of information con-

tained in [B] concerns the effect on the mixing process of

a lack of collinearity between the two input fields. To

illustrate this point suppose that the two input fields

are plane waves incident on the photosurface shown in

Fig. 3-16. The photocathode is a rectangular surface in

the (y,z) plane with dimensions dy and dz. Both incoming

beams are assumed to be non-stochastic, well defined fields

with coherence areas much larger than the size of the photo-

surface.



z
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Figure 3-16 Two plane waves incident non-collinearly on
a plane photosurface.

;NAL FIELD
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t LOCAL OSCILLATOR
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Figure 3-17 Two collinear, spherically spreading beams
exhibiting wavefront radius mismatch.
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The local oscillator field ELO(r,t) is incident normal

to the photocathode and may be written as

ELO (r,t) = EL exp [i(iLo. r LOt) (3-110)

with

kLO =(WLO/C)x (3-111)

The signal beam is incident at an angle to the surface

normal in the (x,y) plane; its electric field has the form

ES (r,t) ES exp [i(s. r) - t)H (3-112)

where

ts = (w/c)[(cos )X + (sin s)y] (3-113)

r UJ. , ,L1.0 ULLYL L.s A CL.JL %lJ.L jJ_.L.J.l %-.J .%A LJJ. %1.A L 4&~

two fields can be evaluated easily from Eq. (3-102) as

TLo(0,p) = cos (kL ) P
(3-114)

TE (0,) = cos (k )

with r chosen as the point (x,y,z) = (0,0,0). Since p has

the form p = y(y) + z(z) on the surface A, we have on the

photocathode

TLo(Op) = 1
(3-115)

TE (0,P) = cos [(w/c)y sin £]

f
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The general expressions in Eq. (3-114) give us the normalized

bhhavior of the amnlitudes of the two electric fields a a

function of some arbitrary position p relative to the point

ro = 0. On the photocathode we find TLO(0,p) = 1 since all

points on A lie on a single wavefront of the local oscillator

field. However, because the signal field makes an angle ith
I-k~.~ II9%e!L'IV~F~ #S~V~r~ifti~ 1 ~ -Fi-,ii e% , N- 44-e_ ti~y~..

L-1N r AV L % J " X V X J. LLLaII. WC V_ GA% VI L Vet VJ'.J VA L 1 L WA V" -

fronts to another as we change the y coordinate on A. This

phase advance is described by the sinusoidal variation of

TE(O,p) with y.

The integral for [B] indicated in Eq. (3-107) can now

be carried out easily as

d d

[B] = (d(d) (1) cos[ (w/c)y sin E]dy dz (3-116)

Z y y=O z=0

with the result

sin[(w/c)d sin ]
[B] = (3-117)

[(w/c) dy sin e]

Let us examine the salient features of this expression

in terms of the relative amplitude and phase of the beat

note currents generated at different points on A. As was

apparent in the general description of Ri (), the role of

the area integral appearing in [B] is to sum, with appro-

priate phases, the beat signal current contributions from

various parts of the photocathode. Of course the instan-

taneous amplitude of the beat signal current produced at

the position (r,t) is simply proportional to the local

*
Chapter 3, Section C.2.

;
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product of the amplitudes § of the two mixing fields,

ELO(r,t) and E (r,t). Therefore, the product

[TLo(0,)TE(0,P)] describes the spatial variation of

the beat note amplitude as a function of position on A.

In the present example, the phase and amplitude of this

product is constant over A only for (=0), i.e. for exact

collinearity between the two incident beams. In this

limit then the beat note phase and amplitude are also

constant over A; the current contributions from various

portions of the photocathode must add in phase to produce

a beat note power that increases as A. This result

follows by setting [B] = 1 in Eq. (3-106).

For (0), according to Eq. (3-115) the product of

the field amplitudes and, therefore, the amplitude of

the heterodyne signal varies sinusoidally with y. The

result is a destructive interference between currents

generated at two points on A. The net effect of this

interference in reducing the beat note amplitude is

determined by the expression for [B] given in Eq. (3-117).

It is worthwhile to point out that the interference being

described here is not the addition of randomly phased

currents which would result in a beat note power that

increased as A, but is the addition of currents with

exactly specified phases which can sum to identically

zero.

The result for [B] is of the functional form

g = (sin w)/w which was examined in Section E of Chapter

2. The interesting features of g are that it is a func-

tion highly peaked about (w = 0), going to one in the

limit (w 0); that it is effectively non-zero only in

Chapter 3, Section B.1.
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the range [(-7/2) < w < (/2)]; and that it has zeros at

w = ±nr where n is integral and not equal to zero. These

characteristics determine the angle E which can be toler-

ated between the vectors of the two mixing fields before

we incur a serious loss in beat note signal power.

According to Eq. (3-117) the condition for the first

zero of [B] at [(w/c) d sin ] = , occurs when there is
Y

a relative phase advance of radians between the two

incident beams over the range (y = 0) to y = d ). In

this case the beat note amplitude goes through exactly

one-half of a complete period of the cosine function as

we traverse the photo-cathode and total destructive inter-

ference takes place. With the relation (w/c) = (2n/X),

where X is the wavelength of the signal beam, this first

zero occurs at an angle given by sin £ , (X/2dy) In

general d is much larger than X and we have approximately
y

* = (X/2dy

For ( = ) the wavefronts that overlap at (y = 0) are

separated or "misaligned" by a distance of (X/2) at

(y = d ). As becomes larger than the beat note
Y

amplitude goes through additional oscillations as we

move across A and for all practical purposes the destruc-

tive interference can be regarded as complete.

On the other hand, the condition [(-7/2) w (7/2)]

on w and, therefore, the condition

{-(f/2) < [(w/c) d sin c] (/2)}
yields B 0.637 and implies a misalignment between the sur-

yields B 0.637 and implies a misalignment between the sur-

faces of the two incident wavefronts which is less than (X/4)

over the photomixer area. This extremely stringent requirement

L&.

I
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I£1< (X/4dy (3-118)

is, of course, the characteristic condition for "inter-

ference" between the two beams.3 7

(2) Wavefront Radius Mismatch

For the example used above to demon-

strate the effects of non-collinearity, in which both

beams are perfect plane waves, the condition [B] = 1

can always be assured by having the directions of propa-

gation kS and LO be parallel. However, in practice the

signal and local oscillator fields generally will have a

finite radius of curvature. In this case, as shown in

Fig. 3-17, there may still be a relative phase advance

between the two beams even if the vectors S and LO are

collinear. Let RL0 and RS be the radii of curvature of

the local oscillator and signal wavefronts, respectively,

as measured at the photodetector, and d be a character-

istic dimension of the photocathode. Then an analysis

similar to the example presented above yields the two

conditions

IsEi (X/8d) (3-119)

and

IRLO -RSI ()(R LoRs/d ) (3-120)

Appendix D.
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for [B] 0.81. These conditions guarantee that the total

wavefront misalignment from both causes, i.e. non-

collinearity of the vectors and wavefront radius mis-

match, is less than (X/4) over A. Taking d = 1 cm and

RLO = RS 100 cm as being typical values we find the

numerical limits

I£ < 10 - 5 radians 5 x 10 4 degrees

O - RS < 101 cm

(3) Wavefront Distortion

A third possible cause of misalignment

that is always present to some extent in a heterodyne

spectrometer is the inevitable distortion of the wave-

fronts of the signal and local oscillator fields that

occurs in the light gathering and focussing optics. This

factor cannot be removed by suitable alignment of the beams

and must be curtailed by the use of high quality Schlieren

free3e8 lenses, preferably with surface figure tolerances

of better than (X/4) over the beam width, and reflecting

optics of similar tolerance. The total wavefront distor-

tion over the detector should be kept below (X/10), if

possible, to ease the requirements on alignment accuracy.

The quantitative effect of distortion is difficult to

evaluate in practice but an order of magnitude estimate

may usually be obtained by determining the approximate

total wavefront distortion X over the distance d and

calculating a value of [B]DISTORTION using the relation



[B] DISTORTION
sin [27(X /X)]

2r (X /X)

Equation (3-121) represents only the effect of wavefront

distortion and must be multiplied by a misalignment factor,

if necessary, to get the value of [B].

c. The Heterodyning Efficiency

It is useful to symbolically combine the

effects of angular misalignment, wavefront curvature

mismatch, spatial coherence, and wavefront distortion in

referring to the factor [B] as the heterodyning efficiency.

This efficiency has a theoretical maximum value of unity

and a practical upper limit set by the quality of the

optical system used to combine the two input beams.

The analysis of [B] given above is valid for A << ACOH
and yields the current correlation function in the form

R (T) = i 2 + ei () + 4a A RLo(r)RE(T) [B]i P p L (3-122)

where

[B] = [B] DISTORTION [B]AANGLE [B]ARADIUS (3-123)

[B] DISTORTION

[B] A-ANGLE

[B] A-RADIUS

- the wavefront distortion factor;

Eq. (3-121)

- the angular misalignment factor;

Eq. (3-117)

- the wavefront radius mismatch

factor; Appendix D.
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(3-121)
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In the case A >> ACOH the heterodyne signal current

changes phase randomly outside an area ACOH due to the

finite spatial correlation range in one of the incident

fields. Thus the alignment and distortion criteria need

be satisfied only over ACOH rather than over the entire

photocathode area. The heterodyning efficiency factor

for this area is designated [BCOH] and is defined by

[BCOH] = TE( rP)L (rO p)d P (3-124)

ACOH ACOH

The behavior of [BCOH] with the angle , the radius mis-

match IR - RS1, and the wavefront distortion is

identical to that of [B] with the detector dimension d

replaced by the appropriate coherence distance. Since

the integrand in Eq. (3-124) vanishes for rj greater
than this coherence distance, we have for [B] from Eq.

(3-107)

[B] = (ACoH/A) [BcoH] (3-125)

where A >> ACOH. Equation (3-125) combines the effects

of both misalignment and spatial coherence and gives

Ri(T) in the form

2 2
Ri (T) = 2 + ei 6 (T) + 4a2A (ACoH/A)[BcoH]RLO(T)RE(T)

(3-126)

where

[BCOH] = [BCOH] DISTORTION [BCOH] A-ANGLE [BCOH] A-RADIUS

(3-127)
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4. The Spectrum of the Photocurrent

Having examined the spatial factor [B], let us

now turn to a calculation of the spectrum of the mixer

current,

Si(W) = (1/2T) JRi(T) cos WT dT.

Using Eq. (3-83) for RLO(T), Eqs. (3-122) and (3-126)

for R i(T), and the definition of SE(w) gives immediately

2
Si(W) = ip 6(w) + (e/2T)i (3-128)

[B] ; A < < ACOH

+ 2ipaA[SE (W+WLO) + SE (W-WLO) ]

(ACOH/A) [BCOH]; A >> ACOH

where Si(w) is expressed in its symmetric form.

The current spectrum contains the usual three com-

ponents; a dc term produced here primarily by the local

oscillator beam, a uniform shot-noise part, also due

principally to the local oscillator, and the heterodyne

beat signal. Equation (3-128) shows that the spectral

information in the incident field around the optical

frequency w0 is present in the photocurrent around the

intermediate frequency w1 = o - WLO' Furthermore, the

shape of the optical spectrum has been preserved exactly

in the frequency translation. Therefore, regardless of

the structure of SE(w), a measurement of the spectrum of

t Chapter 2, Section D.1.
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the mixer output of a superheterodyne spectrometer yields

directly the spectrum of the incident light beam.

Let us assume that the signal field incident on the

superheterodyne spectrometer is the same one used to-3 1 'L_ --'L-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~UesrlUD ne operation or ne se-I-DeaL spectrometer;

namely, a field having a Lorentzian spectrum centered

at w = w and a half-width at half-height of r rad/sec.

The power spectral density of this field was expressed

in Eq. (3-54) as

r

SE() 0<L (W-W o)2 2 + )2 2 + r

Putting this spectrum into Eq. (3-128) and neglecting

the sum frequency beat terms yields, for w 0,

2
Si(W) = i 6() + (e/T)ip (3-129)

(w>0)

[B] ; A << ACOH

+ 2i i ( 2/) w20
p s [w- (Wo-WLO)]2 + r

(A COH/A) [BcoH] ; A >> ACOH

where we have defined the dc photocurrent produced by the

signal beam as

aA<IE(ro,t) 12 - is (3-130)

The resulting photocurrent spectrum is shown in Fig.

3-18. As expected, the beat signal term in Si (w) is also

Lorentzian with a half-width at half-height of r rad/sec,

and now centered at the intermediate frequency w1 = (Wo-WLO).
0 LO~~~~~~~~~~~~~~~~~~

I
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5. The Processing of the Photocurrent Signal

a. The Pre-Detection Signal-to-Noise Ratio

The processing of the photomixer output,

as diagrammed schematically in Fig. 3-15, proceeds

exactly as it did for the self-beat spectrometer except

that the tuned filter now operates about the intermediate

frequency w1', rather than around w = 0. It is again use-

ful to separate Si (w) into its dc, shot-noise, and signal

components as

[B] ; A << ACOH

IS () = 2ipi (1)2 + 2

(oŽ0) I (w) +* *
(A OH/A) [BcoH] ; A >> ACOH

IN2(w) = (e/r)ii (3-131)

(X>0)

2 2
I = i

o p

respectively.

We may define the pre-detection signal-to-noise ratio,

(S/N)PRE, in analogy with that of the self-beat spectrom-

eter,§ as the ratio of the signal to the shot-noise current

power per unit bandwidth evaluated at the peak of the sig-

nal, here = w1. This yields

Chapter 3, Section C.2.a.
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A[B] ; A << ACOH

S = (w1) P (3-132)
(S/N)pRE = i E (3-132)

1 N (1 lw * PAI COHL-COH '- -- COH

where P is the total optical signal power reaching the

detector. Surprisingly, we find that the pre-detection

signal-to-noise ratio for the heterodyne spectrometer is

completely independent of the local oscillator power.

This situation results from the fact that the magnitude

of both the signal and the shot-noise terms increases

linearly with ip = (e/Ewo)PLO-

Comparing Eq. (3-132) with the equivalent result

for the self-beat spectrometer given in Eq. (3-61) we

find that for unity heterodyning efficiency the two

expressions for (S/N)pRE are identical except for a

factor of two advantage to the superheterodyne instru-

ment. Moreover, this factor of two appears simply because

the total beat note power is distributed in a Lorentzian

line of half-width 2r in the self-beat spectrometer versus

a half-width of r in the heterodyne instrument.

The discussion and physical interpretation of the

behavior of (S/N)pRE as we vary the area of the mixer

is also identical to that presented for the self-beat

case. In particular, we again find a pre-detection

signal-to-noise ratio limited by the available signal

power per coherence area on the detector; now with the

modification that ACOH may be attributed to lack of

spatial coherence in either the local oscillator or

the signal field. If we define the power per coherence

Chapter 3, Section C.2.a.

K... -
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area as COH (ACOH/A)Po, where Po is the total signal
power reaching the mixer, then this limiting value of

(S/N)PRE is

POH

(S/N)RE = ( C )[BCoH] (3-133)

This result is the analog of Eq. (3-63) in the preceding

section.

b. The Output Signal-to-Noise Ratio

The pre-filtering, detection, and post-

filtering of the photocurrent is carried out exactly as

before' and leads to an output signal-to-noise ratio

given by

/A f IS 2 (W 1 )
(S/N)ou T ( T IS2 (l) + IN2 (Wl)

A discussion of the physical significance of this quantity

may be found by reference to Section C.2.b of this chapter.

Having found essentially identical expressions for

(S/N)oUT for both light mixing spectrometers we turn in

the next section to a detailed analysis of these results.

' Chapter 3, Section C.2.b.
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E. The Detection Capabilities of Optical Mixing

Spectrometers-The Ideal Case

1. Introduction

In this and the following section we present

a detailed analysis and discussion of the output signal-

to-noise ratios of self-beating and superheterodyne

optical spectrometers. This analysis is broken down

into two parts. In the first we examine the mathemati-

cal results for (S/N)oUT as derived in the two preceding

sections. We determine how (S/N)oUT for a light mixing

spectrometer depends on the available optical power, the

spatial coherence of the incident electric field, the

spectral width of the input field, and the parameters

characteristic of the spectrometer itself, for example,

the photomixer quantum efficiency, . The results are

expressed in a set of parametrized curves, called isones,

which are simply lines of constant output signal-to-noise

ratio. From these curves it is possible to predict easily

how a specific change in input optical power, tunable

filter bandwidth, photomixer quantum efficiency, and so

on will affect the noise properties of either spectrometer.

The isones also form a convenient representation of the

minimum optical signal power that can be detected by either

method in terms of a choice of a lower limit on (S/N)oUT.

We will refer to this minimum signal power as the sensi-

tivity of the spectrometer for the condition (S/N)oUT = 1.

Because the expressions for (S/N)OUT that are used

in the above discussion were calculated neglecting such

factors as photomixer dark current, Johnson noise, and

extraneous noise inherent in the processing electronics,

they describe what may be called the ideal light mixing
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spectrometer. The following section analyzes these added

practical complications in terms of the state-of-the-art

characteristics of present day photomixers and their

associated electronics. Fortunately the effects of all

these additional noise sources can be taken into account

through a simple modification of the original signal-to-

noise expressions. Furthermore, the reinterpretation of

the isones can also be handled in a straightforward manner.

2. The Effects of Spatial Coherence on the Output

Signal-to-Noise Ratio

The expressions for (S/N)ouT to be analyzed

here are given by Eqs. (3-134) and (3-82) for the super-

heterodyne and self-beat cases respectively as

superheterodyne

1 faw S (W1
(S/N) (3-134)

OUT (+ 2 2( + (3-134)
S (W1) + N (L 1)

self-beat

1 R ~ I 2(0)
1 IS ( ) I () (3-82)
(7) -T IS (0) + IN(0)

In actuality these two results are much more closely

related than simply the formal similarity of their

mathematical statements. This can be seen by dividing
2

through in each equation by the appropriate IN ( ) and

identifying the definition of the pre-detection signal-

to-noise ratio. We have then
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1 /A ~f · (S/N)pRE(S/N)OUT /Xwf (S/N)PRE superheterodyne
OUT (Tr)A-WT 1 + (S/N)RE

(3-135)

1 Wf (S/N) PRE
(S/N) OUT 1 + (S/N) PRE self-beatOU/N~oVT JaWT NAw

T 1 + (SIN)PRE

If the same Lorentzian input optical field is incident

on both spectrometers, and we assume a unity hetero-

dyning efficiency for the superheterodyne instrument,

then

(S/N)superheterodyne = 2(S/N)pRelf-beat (3-136)
PRE PRE

follows from Eqs. (3-133) and (3-63). Furthermore,

because the pre-detection (S/N) ratio is proportional

to the optical signal power per coherence area we con-

clude that the behavior of (S/N)oUT for a superhetero-

dyne spectrometer is identical to that of a self-beating

spectrometer receiving twice the incident signal power

per coherence area.

The expressions for (S/N)oUT as given in Eq. (3-135)

do not depent explicitly on the incident signal power.

Therefore, they must exhibit a saturation phenomenon

with increasing detector area as does (S/N)PRE. That is,

increasing the detector area A beyond the coherence area

does not increase (S/N)pRE and, therefore, (S/N)ouT will

also remain constant. Thus we find that the ultimate

sensitivity of an ideal light mixing spectrometer is not

Chapter 3, Sections C.2.a and D.3.a.
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specified in terms of total available optical signal power

but by the available power per coherence area on the de-

tector.

3. The Limiting Behaviors of (S/N)oUT

a. Large Values of (S/N)pRE (S/N)pRE >> 1

The output signal-to-noise ratio shows two

distinct limiting behaviors in the regions (S/N)pRE >> 1

and (S/N)pRE << 1 respectively. Let us consider first

(S/N)PRE >> 1, where we have approximately

1 /AWf 
(S/N)ouT ~ (7)z A (S/N)RE >> 1 (3-137)

This result is completely independent of both the input

signal power per coherence area and the spectral line

width. Physically this behavior represents a situation
2

in which the beat signal power per unit bandwidth, IS (w),

is sufficient to completely overwhelm the shot-noise
2

contribution IN (). In this case the filtered photo-

current consists essentially of a signal part onlyt and

the source of noise in the measurement is the ac component

of the detector output generated by this filtered signal
s

itself. Because the signal is acting as its own source

of noise, increasing the incident power per coherence

area causes no change in (S/N)oUT.

Chapter 3, Section C.2.b.1.

§ Chapter 3, Section C.2.b.2.
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This rather startling situation would also occur in

a conventional optical spectrometer, such as that shown

in Fig. 3-1, if the power spectral density in the self-

beat part of the detector output exceeded that in the shot-

noise. This self-beat spectrum arises simply from mixing

at the photodetector between the various spectral components

of the filtered optical signal itself and aids the shot-

noise in obscuring the desired measurement of the dc photo-

current. This "signal" contribution to the noise, which

is normally39 neglected in calculating (S/N)oUT for a con-

ventional instrument, is discussed in more detail in Section

G of this chapter.

The limiting form of (S/N)OUT in Eq. (3-137) may be

explained as follows. Parseval's theorem applied to the

filtered current states that the total ac power output of

the detector is equal to the total dc power output, where

both are now due entirely to the signal. That is, from

Eqs. (3-76), (3-69), (3-72), and (3-67) we have

< [vD(t)]ac 2>= [<<VD(t)>>]2 = M(Af) 2(f)} (3-138)
{M(awf)1I (Wf)} (3-138)

including only frequencies in [vD (t)]ac below (2Awf) In

this "large signal" limit then it follows from Eq. (3-75)

that the signal-to-noise ratio in the absence of a post-

detection RC filter is unity. With the output filter,

(S/N)oUT defined in Eq. (3-80) is simply the square root

of one over the fraction of the ac power that gets to the

output meter. This fraction is [fAwT/A f] for the RC

output filter, from which Eq. (3-137) follows immediately.

Eq. (3-81).
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Therefore, we find the important conclusion that

even with unlimited input power the output (S/N) ratio

of a light mixing spectrometer is bounded by the value

given in Eq. (3-137).

Equation (3-63) gives (S/N)pRE for the self-beat

spectrometer as

self-beat (COH) (3-63)(SIN) PRE = - ( (3-63)

This result indicates that a likely situation for finding

(S/N)pRE >> 1 occurs in measurements on very narrow spec-

tral lines. However, Eq. (3-137) shows that it is pre-

cisely these measurements that are the most difficult

from the standpoint of sufficient output signal-to-noise

ratio because of the requirements they impose on (Awf)

and (AwT). To illustrate this point suppose the optical

signal has a line width of (r/2r) = 10 cps and we wish to

examine the resulting current spectrum with a tunable

filter whose bandwidth is (1/10) of the optical line

width, i.e., (Awf/2w) = 1 cps. Then to achieve (S/N)OuT

= 10 we require an RC post-detection filter whose time

constant is at least T = (1/AwT) = 50 sec.

If (r/2w) = 1 cps and (Awf/2w) = 0.1 cps then we need

T = 500 sec for the same output signal-to-noise ratio.

Therefore, although narrow lines may yield large pre-

detection signal-to-noise ratios, they can require post-

detection filters having excessive time constants to

achieve reasonable output signal-to-noise ratios.

The conclusion is that large values of the pre-

detection signal-to-noise ratio do not necessarily imply

ease of detectability, i.e. large (S/N)oUT.
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b. Small Values of (S/N)pRE (S/N)pRE << 1

In the second limiting region, (S/N)pRE << 1,

we have the output signal-to-noise ratio as

(S/N)OUT ~ (S/N) (3-139)
OU/NVT (Or3' PRE

which is now implicitly dependent on PCOH and r through

the quantity (S/N)pRE as given in Eqs. (3-61) and (3-132).

The detector noise in the regime (S/N) << 1 isPRE
entirely due to the filtered shot-noise since the condition

2 2
(S/N)RE = I /S2 (0) << 1

implies that the shot-noise power per unit bandwidth greatly

exceeds that in the signal. Therefore, the filtered current

and, hence, the ac portion of the detector output is primar-

ily the product of the shot-noise part of the photocurrent.

In fact, the total ac noise power at the detector output

will be [(S/N)RE ]- 2 times the dc detector power in the

signal. Therefore, in the absence of an output filter we

would have

T 1

PDC(I
(S/N)OUT [-2 = (S/N)PRE

DC [(SIPRE ]

The post-detection filter passes only the fraction

[iAWT/Awf] of the ac noise power to the meter, and

we find

Figure 3-13.
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P 1T
(S/N)OUT = DC 2

{[TAWT/Af] [(S/N)PRE] PDC

1 tif= _ MA * (S/N)RE
(Tr) T PRE

in agreement with Eq. (3-139).

Equation (3-139) is often interpreted6'4 0, 4 1 as meaning

that a wide input bandwidth (Auf) and a narrow output band-

width (AwT) "results in an increase of the signal-to-noise

ratio by the factor [Awf/AwT] ." Such an interpretation

does not properly distinguish between pre- and post-

detection signal-to-noise ratio and is valid only for

(S/N)pRE << 1. In fact, as implied above, (S/N) OUT can

become smaller than (S/N)pRE in the regime (S/N)pRE >> 1.

By using Eq. (3-63) for (S/N)pRE in Eq. (3-139) we

have (S/N)oUT in a form that displays its dependence on

r, , and PCOH' namely

COH · rf COH(S/N)UT - 1 ( n1) O self-beat (3-140)
OUT -T K r

[(S/N)pR E << 1]

Therefore, in the region of small pre-detection signal-to-

noise ratio the output (S/N) ratio varies linearly with

the photomixer quantum efficiency and the input optical

power per coherence area. Ordinarily the tunable filter

bandwidth (Axf) will be chosen as some fixed fraction of
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the optical line width so that (S/N)OUT will be propor-

tional to r-.

We may summarize the important characteristics of

(S/N)ouT as follows:

(1) It depends on the input optical power per

coherence area, not the total input power.

(2) In the limit of small pre-detection

signal-to-noise ratios, (S/N)pRE << 1, we have

(S/N)OUT - (PCOH/r)

(3) In the limit of large (S/N)pRE , which may

occur for large PCOH or small r, (S/N)OUT approaches

a maximum value

(S/N)OUT = [AWf/(QAWT)].

4. The Isones

Although Eq. (3-135) does describe the general

behavior of the output signal-to-noise ratio for arbitrary

(S/N)pRE , it is not particularly useful in its present

form. In general, the quantities which are the readily

available and independently specified variables are the

power per coherence area, PCOH' and the half-width at

half-height, r, of the input optical spectrum. The band-

width (Awf) is normally fixed at some fraction of this

line width

(Awf/r) - a (3-141)



252

where a is the "normalized resolution." The photomixer

quantum efficiency, , is a fixed parameter; the output

filter time constant, T, and hence the filter bandwidth

(AWT), is limited by long term instrumental stability and

can also be regarded as a fixed parameter. Under these

conditions a more useful expression for the relation in

Eq. (3-135) would have the functional form

PCOH = [Fr;(S/N)OUT] (3-142)

in which r is the independent variable, (S/N)OUT is a

"variable parameter," and PCOH is the dependent variable.

A plot of the function in Eq. (3-142) gives the power per

coherence area required to achieve a given (S/N)OUT as a

fin -f the ^irl1 line w4id*h r A fmilv rf scah

curves drawn for various values of (S/N)oUT forms a two

dimensional plot of PCOH versus r which displays lines

of constant output signal-to-noise ratio. Therefore,

given PCOH and r, we may find (S/N)OUT by determining

which member of the family of curves passes through the

point (PCOH, r). Furthermore, since the relation for
(S/N)pRE as given in Eq. (3-63) can also be expressed in

the form

PCOH = g[r;(S/N)PRE] (3-143)

the lines of constant pre-detection signal-to-noise ratio

may be drawn on this same plot. In this case the point

(PCOH'r) intersects two curves that specify (S/N)OUT and

(S/N)R E respectively. Such a set of curves, which we

call isones. redict the usefulness of a liaht mixing

spectrometer in examining the spectrum of a given field

when we know PCOH and r.

j14

I

I

II

r
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For the self-beat spectrometer the required functions

(f) and (g) are found by solving Eqs. (3-135) and (3-63)

respectively for PCOH' This procedure gives

io_o 
P = 0 r self-beat (3-144)
COH C 1 a 21

AT (S/N) OUT

and

Kw

COH C r(S/N)pRE self-beat (3-145)COH PRE

Figure 3-19 shows these two functions plotted for the

following choice of fixed parameters.

X = 6328 air

E = 0.05 (S-20 photosurface at air = 6328 A)

a = (Awf/r) = 0.1

T = (l/AWT) = 1 sec

The lines of constant output signal-to-noise ratio are

labeled by the value of (S/N)OUT since Eq. (3-144) shows

that this quantity can be easily corrected for changes in

the fixed parameters (a) and (Aft).

The isones illustrate in a quantitative fashion the

qualitative features of (S/N)OUT that we have been describ-

ing. Above the line (S/N)PRE = 1 the curves of constant

(S/N)oUT quickly become vertical as (S/N)OUT approaches

its asymptotic value
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(S/N)OUT = [AWf/TAWT] = [ar/rAw

[(S/N) PRE>> 1]

and becomes independent of PCOH' In the region (S/N)pRE >> 1

the isones are simply lines of constant r. Below the line

(S/N)pRE = 1 we go over rapidly into the limiting behavior

for (S/N)pRE << 1 where Eq. (3-140) gives

(S/N) OUT c (PCOH/r 2 )

In this case the power required to maintain a constant

output (S/N) ratio increases as the square-root of the

optical linewidth.

Although the curves given in Fig. 3-19 correspond to

a self-beat spectrometer with definite values of the fixed

parameters , a, and AT they are easily corrected for

changes in these parameters and generalized to the super-

heterodyne spectrometer.

We first note from Eq. (3-144) that the curves of

constant (S/N)OUT have a universal shape namely

P OH[cr;c(S/N)2T] = cP [r;(S/N)2 (3-146)COH OUT COH OUT

Therefore these curves can simply be translated relative

to one another in order to generate lines corresponding

to arbitrary values of (S/N)2UT. Furthermore, Eqs. (3-144)

and (3-145) indicate that changes in the quantities , a,

and AT are easily accounted for by the following set of

rules:
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(1) A change in from 1 to E2 corresponds to a

shift in the power scale; the new values of (S/N)PRE

and (S/N)oUT are found by changing the ordinate PCOH

at constant r by the factor ( 2/E1).

(2) For constant P and r we have (S/N)2 a;COH OUT
but, changes in a do not affect (S/N)PRE.

(3) For constant PCOH and r we have (S/N) 2COH ~OUT
but changes in T do not affect (S/N)PRE.

Thus a given set of isones apply universally for an

arbitrary choice of all the quantities that characterize

the spectrometer.

Secondly, with a slight modification the signal-to-

noise curves given for the self-beat case can be used

equally well for the superheterodyne spectrometer. It

was noted in Eq. (3-135) and the accompanying text that

(S/N)OUT for the superheterodyne and self-beat spectrom-

eters are identical functions of their respective pre-

detection (S/N) ratios. Furthermore, Eqs. (3-132) and

(3-61) give the general relationship between the two

values of (S/N)pRE as

(S/N)superheterodyne = 2[BcoH] N)self-beat (3-147)
(/PRE COH PRE)

for A >> ACOH. It follows that the desired values of

(S/N)pRE and (S/N)oUT for the superheterodyne instrument

are found by using Fig. 3-19 and plotting the known

power per coherence area and half-width as the point

{2[BCOH] PCOHF} instead of (PCOHF). Corrections to
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the resulting value of (S/N)OUT because of changed fixed

parameters follow exactly the same rules prescribed above

for the self-beat case.

In applying Fig. 3-19 we should note that these

curves reflect three implicit assumptions. First, they

are drawn for a mixing spectrometer in which the photo-

mixer area A satisfies the condition A >> ACOH . If

instead we have A < ACOH the power to be used on the,

ordinate scale is the total optical signal power falling

on the photocathode. Secondly, the approximations

(AWT << Af << r) that were utilized in the process of

calculating (S/N)ouT in Section C.2.b have been incor-

porated into the results given here; therefore, the

isones are only approximately correct when these condi-

tions are not satisfied. Thirdly, in deriving the output

(S/N) ratios given in Eq. (3-135) we neglected the effects

of such factors as photomixer dark current and inherent

noise in the processing electronics. Therefore, the

curves of Fig. 3-19 refer to an "ideal" light mixing

spectrometer.

5. An Example

A superheterodyne spectrometer is to be used

to examine the spectrum of an optical field with a center

frequency wo = (2c/air ), where air = 6328 A, and a

Lorentzian spectrum with a half-width at half-height of

(r/2n) = 105 cps. A total of 10 9 watts of signal power

falls on the photocathode which contains 100 coherence

areas. The photomixer has a quantum efficiency of

= 0.2 at air = 6328 . The total misalignment between

the signal and local oscillator wavefronts and the wave-
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front warp are such that [BCOH] = 0.1. The spectrum of

the photomixer output current is measured by a tuned

filter whose bandwidth is 1000 cps. This filtered cur-

rent is rectified by a square-law detector and the output

is post-filtered by an RC network with a time constant of

RC = 10 sec. What are the pre- and post-detection (S/N)

ratios?

Labeling the fixed parameters used in Fig. 3-19 by

the subscript (1) and those of the present example by

(2) we have

= 0.2 ( 2/E1 ) = 4

-2 -1
2 =102 (a2/a1) = 10

2 = 10 sec ( 2 /T 1) = 10

2 [BCoH] = 0.2

PCOH = 1011 watts

(r/2wr) = 105 cps

The ordinate used for PCOH must be corrected for the

difference in quantum efficiencies, the factor of two

appropriate to the superheterodyne instrument, and the

heterodyning efficiency. The value to be plotted in

Fig. 3-19 is

2PCOH( 2/S1 ) [BcoH] = 08 x 10 watts

K
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This gives

(S/N)PRE 2

2 4
(S/N)oUT 2 x 10 (S/N)OUT 140

The corrections to (S/N)ouT because of the altered values

of a and T cancel one another so that we have as the

answer

(S/N)pRE 2 (S/N)OUT 140

F. The Detection Capabilities of Optical Mixing

Spectrometers-The Practical State of the Art

1. General Discussion

Although we have found a mathematical result

that expresses the sensitivity of light mixing optical

spectrometers, the significance of this result remains

rather doubtful without the answers to the following

questions. Can a practical instrument achieve this

theoretical sensitivity, and how does the actual attain-

able sensitivity compare with that of other optical spec-

trometers? Is the light mixing spectrometer inherently

any different than any other optical spectroscopic

instrument? In this and the following section we

discuss the answers to these questions.

To analyze the problem of practical sensitivities

we must account, in particular, for the effects of three

sources of noise which were neglected entirely in the
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calculation of (S/N)OUT as presented above. These are

(1) the inevitable dark current in the photodetector and

its associated shot-noise, (2) the thermal or "Johnson"

noise in the load impedance presented to the output of

the photomixer and (3) the internal noise inherent in

the processing electronics, particularly the amplifiers

immediately following the photomixer. Fortunately all

three of these added noise voltages or currents have a

common feature that simplifies their inclusion in the

expressions for (S/N)pRE and (S/N)OuT. They all have

power spectral densities, i.e., power per unit bandwidths,

that are constant with frequency; as a result, each acts

as a uniform background against which the beat note

spectrum is to be measured. These background contribu-

tions to the current spectrum have an effect on the noise

properties of the spectrometer which is identical to the

effect of the photomixer shot-noise.

The photocurrent shot-noise power spectral density

is

IN2() = (e/r)ip = (ee/w )P (3-148)

(w>0)

where i is the dc photocathode current and P is the total

optical power incident on the photomixer. Since IN () is

measured at the photocathode it is convenient to also refer

to each of the three additional noise sources in terms of

an equivalent current power per unit bandwidth generated

at the photocathode. We denote these equivalent contri-

butions as ID2(w), the dark current shot-noise, IR2 (w), the

Eqs. (3-59) and (3-131).
Eqs. (3-59) and (3-131).
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Johnson noise in the photomixer load, and IRA2(), the

equivalent input amplifier noise. Using these definitions

we may describe the photocathode current spectrum as having

a frequency independent part, an effective shot-noise power

per unit bandwidth, of the form

2M I2 2 2I2
N ]effective = IN ( ) + ID2 ( ) + I ( ) + IRA 2()

(3-149)

Figure 3-20 shows the self-beat photocurrent spectrum S i()

of Fig. 3-10 modified to include the three new noise con-

tributions.

The filtering, detection, and post-filtering processes

of both mixing spectrometers are carried out exactly as

before; the only effect of the additional background terms

is to replace I 2(w) at each step by the effective shot-

noise term [IN (W)]eff' In particular, we again find

(S/N) OUT as

OUT

however, (S/N)PRE is now given by

2 2* IS() IS ()
(S/N)2 = I 2 2 2

IN)E ()]eff N ( ) + ID ( ) + IR ( ) + IRA ( )

(3-151)

Therefore, the detection capabilities of a practical light

mixing spectrometer can be completely specified by modifying
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the interpretation of the pre-detection signal-to-noise

ratio. The actual pre-detection (S/N) ratio, (S/N)PRE,

is related to the "ideal" result, (S/N)PRE, by

. (S/N) PRE
(S/N) PRE (3-152)
PRE 1 + F

where

2 2 2I (W) + I () + I
F D R RA (3-153)

IN ()

The description of the limiting behaviors of the output

signal-to-noise ratio and the quantitative results ex-

pressed by the isones are still valid if we now simply

interpret (S/N)PRE in Eq. (3-150) to be its appropriately

modified value, (S/N)DpF. In particular, by writing

(S/N)PRE in terms of the signal power per coherence area,

PCOH' and the optical line width, r, we have from Eq. (3-63)

PCOH
(S/N)pR = Or fiH w + F A >> ACOH (3-154)

f

for the self-beat spectrometer and a similar result for

the superheterodyne instrument. Thus the original isones

may be used to predict both (S/N)pRE and (S/N)oUT by

nlottina the effPective sianal nower er coherence area

PCOH/(1 + F) as the ordinate in Fig. 3-19. Since Eq.

(3-153) gives F 0 this procedure always results in a

decrease in the predicted pre- and post-detection

signal-to-noise ratios.

In order to calculate the typical reduction in

sensitivity we must now determine the individual contri-

butions to the factor F due to dark current shot-noise,

2 _-- _ I _ - ---- I- -- _U__- ,-1 -- C -- --- -_ --- _
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Johnson noise, and amplifier noise respectively. We will

examine each of these contributions in terms of the rele-

vant properties of state-of-the-art photomixers and their

associated electronics. The objective is to delineate

quantitatively the limits of sensitivity and resolution

that can be achieved by a practical light mixing spec-

trometer utilizing present day techniques.

2. Relevant Properties of State-of-the-Art Photomixers

Table IV lists the important characteristics of

some typical photodetectors that are useful as optical

photomixers. These devices fall into two basic categories:

(1) those in which the photocurrent is generated by the

ejection of electrons from a suitable "photosurface" mater-

ial into a surrounding vacuum, i.e. the photo-equivalent

of the vacuum tube, and (2) solid state junction devices

in which the photocurrent carriers are electron-hole pairs

produced by the incident photons. The basic operation of

these photodetectors will not be described here and the

interested reader is referred to the bibliography accom-

panying the table. A detailed explanation of the quantities

that appear in this table is given below in the process of

calculating the dark current and thermal noise contributions

to F.

17'

I

I

I

I



265

Table IV ELECTRICAL PROPERTIES OF SOME USEFUL PHOTOMIXERS

Device

RCA-7265
Photomultiplier tube
S-20 photosurface

Vacuum photodiode
S-20 photosurface

Bi-planar vacuum photodiode
S-20 photosurface

Dynamic crossed-field
electron multiplier
S-1 photosurface

Bell Labs static crossed-
field photomultiplier
S-1 photosurface

Sylvania traveling
wave phototube
S-1 photosurface

EG&G SD-100
silicon photodiode

Philco L4501 silicon
photodiode

Bell Labs point contact
germanium photodiode

Bell Labs silicon
epitaxial photodiode
with avalanche gain

I

(kair = 6328A)

0.05

0.05

0.05

0.004

0.004

0.004

> 0.5

> 0.5

> 0.5

> 0.5

II

PDARK - WattsDARK

2.5 x 10 13

1.2 x 10-14

1.2 x 1014

4.65 x 1010

cm

cm

-2

-2

-2cm

-10 -24.65 x 10 10 cm

4.65 x 10 -24.65 x 10 cm

-510

N.S.

3 x 10

N.S.

1

2

3

4

5

6

7

8

9

10

l

.. l.
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III

(u/27r) - cutoff

200 Mc/sec
(transit time)

500 Mc/sec
(transit time)

1 Gc/sec
(transit time)

3-9 Gc/sec
(transit time)

4 Gc/sec
(transit time)

Covers octave
intervals 1-2 Gc/sec;
2-4 Gc/sec; 4-8 Gc/sec.

130 Mc/sec - RC

15 Gc/sec - transit time
40 Gc/sec - RC

100 Gc/sec - RC

10 Gc/sec - transit time
8 Gc/sec - RC

(continued)

IV

GDC

106

1

1

1

2-6

V

GAC

6

1

1

106

102

1

1

2-6

10

VI

I OU T -MAXOUT

100 lIamps

100 amps

100 amps

100 amps

100 pamps

100 wamps

1 ma

10 ma

3 ma

3 ma

266

1

2

3

4

5

6

7

8

9

10

J
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Table IV (continued)

VII

RLOAD

arbitrary

arbitrary

arbitrary

50 

50 2

50 

arbitrary

arbitrary

arbitrary

arbitrary

VIII

RSHUNT

00

00

00

00

00

00

107 Q

N.S

N.S.

N.S.

IX

RSERIES

N.S.

N.S.

N.S.

N.S.

N.S.

N.S.

150 Q

5 

11.5 

15-25 

X

CSHUNT

6 pf

0.3 pf

1.0 pf

N.S.

N.S.

N.S.

8 pf

0.8 pf

0.15 pf

1.0 pf

Bibliography

a,b

a

a

b,c,d,e

f,b

b

g

h

i

j

1

2

3

4

5

6

7

8

9

10

I
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Table IV (continued)
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3. The Effects of Dark Current Shot-Noise

We first investigate the contribution to the

signal-to-noise reduction factor F from shot-noise associ-

ated with the photomixer dark current. Designating this

factor as FD, we have from Eq. (3-153)

FD [ID (w)/IN (w)] (3-155)

Ideally ID2() = 0 and Eq. (3-152) shows that favorable

values of FD correspond to the region FD << 1.

2
The power spectral density ID (w) is the equivalent

current power per unit bandwidth in the dark current shot-

noise as seen at the photocathode. If ipd is the dc

photocathode dark current then we have

ID (W) = (e/r)ipd (">0) (3-156)

while the photocurrent shot-noise term IN (w) is given by

IN () = (e/r)ip (w>0) (3-157)

The dc photocurrent, i , is produced by the signal itself

in the self beat spectrometer and by the local oscillator

beam in the superheterodyne instrument. In terms of the

total power, P, on the photocathode we have

ip = (e/wio)P (3-158)

It is convenient to also represent the dark current ipd in

terms of an equivalent optical input power which would

generate the specified current. This quantity, denoted by

PDARK' is defined by the relation
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ins = (Ee/hmw)PADnv (3-159)

Equations (3-155) through (3-159) yield the value of FD as

simply

FD [PDARK/P] (3-160)

Column II of Table IV gives PDARK in watts or in

watts per square centimeter of photocathode area for some

useful photomixers. The values fall into three groups

according to the active photomaterial: the S-1 photo-

surface, the S-20 photosurface, and the solid state junc-

tion. Taking a minimum useful photocathode diameter as

1 mm we have

1 x 1 0
- 1 6 watts (S-20)

PDARK 3.5 x 1012 watts (S-i) (3-161)PDARK =

1 x 10 watts (solid state junction)

The values of PDARK given in Table IV and in Eq. (3-161)

are appropriate to a photocathode temperature of T = 250C.

The dark currents of the photosurface devices may be

decreased by cooling with an apparent lower limit for both

S-20 and S-1 surfaces of about one electron per second per

square centimeter of active area. 42 For a 1 mm diameter

photocathode this corresponds to

6 x 10-18 watts (S-20)

P. cooled (3-162)
PDARKs (S-c)

8 x 10-17 watts (S-1)

P

I

r

I I
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at X = 6328 . The above values of PRK are now to be

compared with the total optical power available at the

photocathode.

a. The Self-Beat Spectrometer

Consider the self-beat spectrometer first.

Figure 3-21 shows the ideal sensitivity curves, i.e. the

isone (S/N)OUT = 1, for the three different types of

active photoemitters. These curves were obtained from

Eq. (3-144) and the values of given in column I of

Table IV. By comparing the minimum optical power

P = PCOH required to achieve (S/N)oUT = 1 with the values

of PDARK given above we may draw the following conclusions:

(1) The S-20 surface photodetectors have sufficiently
,w A7,,r mil .,A: 4- r-nm i-mnrrr r'n Arhiz ui P << 1

for all values of r even with the minimum optical signal.

(2) The S-1 surface photodetectors at room tempera-

ture yield values of FD between FD 100 and FD 0.3 in

the range of line widths from (r/2r) 10 cps to

(/2) 100 Mc/sec. On the other hand a cooled S-1

surface device can maintain FD << 1 for all .

(3) The solid state junction detectors have large

dark currents which when coupled with their good quantum

efficiencies lead to values of FD between 2 x 1011 and

5 x 10 as (r/2r) varies from 10 cps to 10 cps.

I 
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These conclusions are valid when the total power

incident on the photomixer is the minimum required to

obtain (S/N)OUT = 1. This will be the case when we

have A ACOH and the ordinate in Fig. 3-21 is to be

interpreted* as the total power falling on A.

The condition (S/N)oUT = 1 requires a certain minimum

optical power per coherence area; however, the result

F_ << 1 depends only on the total available ower. There-

fore, a significant reduction in FD from the values found

for A ACOH can be obtained by arranging to collect light

from a large number of coherence areas in the incoming

field, thereby increasing the total power incident on the

photomixer. Of course, this process does not alter PCOH

and, therefore, the basic sensitivity of the instrument

remains unchanged. This result points out that although

(S/N)pRE for the ideal light mixing spectrometer depends

only on PCOH the modified result for a practical spec-

trometer, (S/N)pRE, also depends explicitly on the total

input power P through the factor F.

The quantity of interest then in deciding the merit

of a particular detector in regards to its dark current

is the ratio [P/POH ]. Here PCOH is the power per coher-

ence area in the incident field necessary to achieve

(S/N),,m = 1 for some particular value of r, and P is

the total incident power that will make FD negligible.

For a self-beat spectrometer, [P/PCoH] is just the number

of coherence areas from which the spectrometer must gather

light in order to override the effects of dark current and

achieve its maximum sensitivity.

I * _ .~~
Chapter 3, Section E.4.

.

.
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(r/27) cycles per second

Figure 3-22 The ratio of the power required to swamp the
photomixer dark current to the power per
coherence area necessary to achieve unity output
signal-to-noise ratio. The ratio is plotted
versus the half-width at half-height of the
Lorentzian spectrum under investigation.
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Figure 3-22 shows this ratio, [P/PCOH], plotted for

the three types of photoemitters; the condition on FD was

taken as (FD = 0.1). The curves drawn for the photosurface

detectors correspond to a photocathode diameter of 1 mm,

and are given for both room temperature and for the optimum

cooled temperature.

From a dark current standpoint then the photomixers

that are most useful in self-beat spectrometers are the

S-20 photosurface detectors, and the S-1 photosurface

detectors, in that order. For both types it is generally

possible to insure that (S/N)PRE does not deviate from its

ideal value due to dark current shot-noise. This situation

may be realized either by cooling the photosurface to

reduce the dark current or by gathering light from a

reasonable number of coherence areas in order to overcome

the equivalent dark input power. Although the solid-state

junction devices offer the attractive advantage of high

quantum efficiency, their dark currents are so high as

to make them useless except in very unusual cases.

b. The Superheterodyne Spectrometer

For the superheterodyne spectrometer the

total power on the photomixer is essentially just the

local oscillator power, PLO; therefore, in this case we

have

FD [P DARK/PLO] (3-163)

However, the values of (S/N)PRE and (S/N)OuT for the ideal

instrument are completely independent* of PLO' Therefore,

Chapter 3, Sections D.5.a and D.5.b.

-
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we can in theory always make (F << 1) without affecting

the operation of the spectrometer by suitably increasing

the local oscillator power. Moreover, since FD no longer

depends on the total available signal power, we need

gather light only from a single coherence area in the

signal field in order to achieve the maximum values of

(S/N)pRE and (S/N)oUT. Under these circumstances the

usefulness of photomixer is related only to its quantum

efficiency and the preferred mixers in order of increasing

sensitivity would be; the S-l photosurface detector, the

S-20 photosurface detector, and the solid state junction

detector respectively.

One of the operating characteristics assumed for the

superheterodyne spectrometer was that PLO >> PS, where

PS is the total signal power reaching the photocathode.

This condition guarantees that the self-beat part of the

photomixer current sectrum is nealiaible commared with

the heterodyne beat signal. If the photomixer contains

a single coherence area then a satisfactory ratio would

be PLO 100 PCOH' If, in addition, PLO must satisfy

the inequality PLO >> PDARK in order to achieve FD << 1,

then we have from Fig. 3-21 and the values of PDARK given

in Eq. (3-161)

100 PCOH S-1 photosurface

PLO 100 PCOH S-20 photosurface (3-164)

(1010 - 13 )P solid state junctionCOH

Chapter 3, Section D.2.

,
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These values were chosen to simultaneously satisfy the

two conditions; P 100 PCOH and (FD < 0.1). When the

photomixer contains N coherence areas the equivalent

results are:

loo(N)P COH S-1 photosurface

PLO > 100(N)PCOH S-20 photosurface (3-165)

10 13
(101 -10 13 )PCH solid state junction

The number of coherence areas appears in the first

two conditions since for the photosurface type detectors

the minimum value of PLO is set by the requirement

PLO > 100 PS' The value of N does not appear in the

condition on PLO for the solid state junction detector

as in this case PLO is fixed by the much stronger require-

ment PLO >> PDARK'

The importance of the inequalities given in Eqs.

(3-164) and (3-165) lie in the rather stringent limits

which they impose on the allowable amplitude modulation

of the local oscillator. Such a modulation generates

a pair of "sidebands" on the local oscillator spectrum

which are separated from LO by the modulation frequency

WM. The result is a self-beat signal in the photomixer

output current at the modulation frequency which is due

to the mixing between the local oscillator carrier at

= LO and these sidebands. If M is near the i.f.

frequency 1 then this spurious beat note can interfere

with the observation of the desired heterodyne beat signal.

In general the serious amplitude modulation present

on a well designed laser is confined to low audio fre-

quencies, generally less than a few hundred cycles per
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second. Furthermore, its strength is a rapidly decreasing

function of increasing modulation frequency. For example,

a possible local oscillator spectrum including the effects

of modulation is shown in Fig. 3-23. The half-width at

half-height of the sideband spectrum is typically

(wc/2r) 100 cps and the tails of the spectrum fall off
-2

at least as fast as (-wLO) . Therefore, it is usually

possible to make modulation effects negligible by appro-

priately raising the intermediate frequency w1.

A quantitative analysis of the problem may be formu-

lated as follows. Suppose that the optical power per unit

bandwidth in the local oscillator modulation spectrum is

taken as

SLO(w) = m(W-w)LO (O't) 2 > (3-166)

(W#WLO)
(>0)

That is, m(w) is a modulation index giving the fraction of

the total local oscillator power present in the sideband

spectrum per unit bandwidth. Then the spurious self-beat

note in the photocurrent at the i.f. frequency has a

power spectral density

2 ) = 2C A 2r(W21) [< IO( rot) 2>12 (3-167)

(wr0)
2

= 2m(w 1)i

as calculated from Eq. (3-53). Taking the ratio of IM2(l )

to the power spectral density of the heterodyne signal

IS (W1) we have from Eq. (3-129)
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2

2s2
IS (W1)

2
m(Wl)i

ipi s (1/Tr) (ACOH/A) [BCOH]
l

t

I

With [B = 1] and the currents i and is written in terms
COH .·p s

of the local oscillator and signal powers respectively,

Eq. (3-168) becomes simply

I ( W ) 
IS ( 1)) PLO
Is (W l) COH

(3-169)

This result combined with the minimum required ratios of

(PLO/PCOH) given in Eq. (3-165) and a choice as to the
maximum allowable ratio of spurious to actual signal

strengths will yield a numerical condition on m(wl).
2 2

For the case [IM (W1)/Is (W1)] < 0.01 we find

( 4
10 N

(X) 1104N

S-1 photosurface

S-20 photosurface (3-170)

(r7T

(1012

1

- 1015)
solid state junction

Equation (3-170) points out two important conclusions:

(1) a superheterodyne spectrometer using a photosurface

type mixer should gather light from only a single coher-

ence area in order to ease the requirement on amplitude

modulation, (2) although attractive because of its quantum

efficiency the solid state junction detector imposes such

280

(3-168)

m (In) <

'Ir Fr"-

I

I m m

--' '-1 ' I
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severe restrictions on m(w1) that it is useful only for

rather high (> 10 Mc/sec) intermediate frequencies.

c. Summary

We may summarize the preceding analysis

as follows. In a self-beat spectrometer using an S-1

or S-Zu photosurface type mixer the effects of dark

current can be made negligible. The S-20 surface devices

achieve this with the minimum optical power required to

obtain (S/N)OUT = 1. The S-1 surface has a higher dark

current than the S-20 surface, but this current can be

reduced by cooling or overcome by suitably increasing

the total signal power accepted by the mixer. The solid

state junction detector is not useful in a self-beat

instrument because of a large dark equivalent input power.

In a superheterodyne spectrometer we can always make the

effects of dark current negligible by suitable increasing

the local oscillator power. However, large values of

PDARK place severe restrictions on the amplitude stability

of the local oscillator source.

4. The Effects of Johnson Noise

Equation (3-153) gives the thermal noise contri-

bution to the factor F as

FR = R ()/IN ()] (3-171)

2

where IR2() is the equivalent current power per unit band-

width in the thermal noise as referred to the photocathode.

In order to quantitatively analyze this result we will
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investigate the four possible configurations in which

a photomixer can be operated, their associated values

of FR, and the specific methods peculiar to each one by

which FR can be minimized.

The four basic operating situations can be grouped

into two categories according to the characteristics of

the photomixer: (1) the photomixer has no internal

current gain of its own so that the output current is

simply the photocurrent, or (2) the detector does have

such an internal gain. For each of these categories

there are two distinct possibilities for the type of

operation: (1) the beat note spectrum is centered at

w = 0, or (2) the beat note spectrum is centered at an

i.f. frequency w1 0. Each of these four configurations

has its own characteristic thermal noise features.

The thermal noise referred to in Eq. (3-171) has

its origin in the resistive part of the load impedance

presented to the photomixer. 4 3 Calling this impedance

-L and adopting the usual complex plane notation 4 4 we
have

Z R + jX (3-172)-L

where R and X are respectively the resistive and reactive

components of the load. The thermal noise properties

of such an impedance can be described in a number of

ways. The most common45 is to represent the resistance

R and its inherent thermal noise by a noiseless resistor

R and an appropriate series voltage generator. From the

central limit theorem4 6 this voltage source is a Gaussian

random noise generator whose voltage power spectral
2

density, Vr (w), is given by
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2 2kT
V (W) =-'R (3-173)
r *IT

(Žz0)

where k is Boltzmann's constant and T is the absolute

temperature. For the purpose of noise analysis then, the

corresponding lumped circuit schematic of the impedance

ZL is drawn as in Fig. 3-24. An equally valid description

that will be useful here represents ZL as a noiseless

impedance, ZL = (R + jX), in parallel with a suitable

current generator.' 5 This generator is also a source

of Gaussian noise and has a current power spectal density,

I 2(), which is
r

2kT
I (X) = T 1 (3-174)
r T R

(X20)

Figure 3-25 illustrates the corresponding lumped circuit

schematic of ZL.

Both Eqs. (3-173) and (3-174) reflect the fact that

a circuit element at a finite temperature T has associated

with it a thermal noise power per unit bandwidth Pr(w)

2kT
P () = - (3-175)

(r>O)

that is independent of the electrical nature of the element.

This fact can be used to give a simple explanation of the

objective in choosing the value of ZL; the photomixer

should be terminated by a load into which it will deliver

the maximum amount of power. This condition will guarantee

the minimum possible value of FR.
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Equation (3-174) specified I2 () as referred to the

load, L From this point the evaluation of FR can pro-

ceed in two equivalent directions; starting from I ()
r

we may calculate the thermal noise as seen at the photo-
2

cathode and then use Eq. (3-171) or given IN () we can

determine the shot-noise current power as delivered to
2

the load, I (w), and make use of a corresponding result

for FR, namely

FR = [I, 2()/I n (w)] (3-176)

The calculations presented here will follow this second

course.

a. The Case of Zero Intermediate Frequency

and Unity Internal Photodetector Gain

Let us begin by analyzing the simplest of

the four possible photomixer configurations. We assume

that the mixer has no internal gain so that the maximum

current available at its output terminals is just the

photocurrent, i(t). Furthermore, we consider the case

in which the signal part of the photocurrent spectrum

is centered at = 0. The latter will be true either

for a self-beat spectrometer or for a superheterodyne

spectrometer in which the intermediate frequency is

chosen as (w1 = 0). The objective of the following

discussion is to determine the load impedance which

will optimize the shot-noise current power delivered

to the load by the photomixer.

By its nature the photoemission process is the

source of a current whose magnitude is determined solely

by the incident optical field and is independent of the
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details of the load into which this current is delivered.

That is, the photocurrent can be regarded as originating

in an ideal current generator whose current power spectral

density is simply Si(w). The actual output of the photo-

mixer, on the other hand, must also reflect the effects

of the internal electrical characteristics of the device.

One simple example of such an internal property is the

unavoidable stray capacitance associated with the physical

construction of the detector. For the purposes of an

electrical analysis these characteristics can be repre-

sented by a so-called lumped equivalent circuit of the

photomixer. 3

Figure 3-26 shows the schematic diagram of a rather

general equivalent circuit that is appropriate to the

class of photodetectors bheing considered here, namely,

those with no internal current gain.4 3 This basic

equivalent circuit contains four components: (1) an

ideal current generator having a power spectral density

Si(w); (2) a leakage or junction resistance R which

describes the bypassing of that portion of the dc photo-

current which flows inside the detector; (3) a stray or

junction capacitance C. that reflects the size and

proximity of the two electrodes that serve as the current

generating and current gathering elements; and (4) a

dynamic series resistance Rs which represents the finite

conductance between these electrodes and the output

terminals. Typical values of Rj, Rs, and C. are givenJ 3
in columns VIII, IX, and X of Table IV as RSITUNT, RSERIES,

and CSHUNT respectively.

Figure 3-26 applies equally well both to photosurface

type mixers and to solid state junction devices having no

internal current gain. The photodetectors that fall into
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R

si(W) Cj
I

Figure 3-26 The general equivalent circuit of a photodetector
mixer with unity gain.

R
S

Si(W)

Figure 3-27 Simplified equivalent circuit for a photo-
mixer operating into a pure resistance load.
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this category can be identified from Table IV by the

values of the internal ac and dc current gains quoted

in columns IV and V; these gain factors have been desig-

nated GAC and GDC respectively. Figure 3-26 is appropriate

to the case (GAC = GDC 1

Let us determine the optimum load impedance for a

photomixer having such an equivalent circuit. We take

the incident optical field to be the usual Lorentzian

of half-width r and assume that the signal part of the

photocurrent arises either from a self-beat detection

process or from a superheterodyne arrangement with w1 = 0.

In either case the frequencies of interest in the mixer

current spectrum extend from w = 0 to = 10r. Ideally,

the frequency response of the combined photodetector-load

circuit should be uniform over this interval in order to

avoid distorting the observed shape of the photocurrent

spectrum. At the same time, in order to minimize FR,

Lhe mixer should deliver to the load at each frequency

the maximum amount of power which is theoretically con-

sistent with its own internal circuit characteristics.

However, if the detector has an equivalent circuit of

the sort shown in Fig. 3-26 then there is no load

impedance which can simultaneously achieve both of these

conditions. In reality, the choice of the optimum load

impedance, ZL, represents a compromise between efficient

power transfer and a tolerable amount of non-uniformity

in the frequency response. The appropriate form for

ZL can be deduced from the following arguments.

For very low frequencies, where XCj, the reactance

of Cj,is essentially infinite, Xc >> R + Rs, the ideal

load is a simple resistor RL whose value is

(3-177)RL = R. + R
j s
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"Ideal" here signifies that the condition ZL = RL = (R.+ R )
j s

results in the theoretical maximum power transfer between

mixer and load.47 For all practical purposes R. may be

regarded as infinite, as is evident from Table IV; there-

fore, in the limit of zero frequency the ideal load imped-

ance is that associated with a simple current generator,

namely, an infinite resistance. In that limit the power

per unit bandwidth dissipated in the load takes the form

XC >> RL

PL(w) = Si ()RL (3-178)

Rj >> RL

and can be increased to an arbitrarily large value by

suitably increasing RL. In particular, since the thermal

noise power spectral density of any load is independent

of its impedance, it follows that the load that yields

the minimum value of FR at very low frequencies is a

simple resistor with the largest possible resistance.

Equation (3-178) also shows that a resistive load

will result in a uniform frequency response for that

range of frequencies where Xc >> RL. In this case the

power per unit bandwidth seen across the load is simply

proportional to Si(w). It follows that the optimum load

from the standpoint of both uniform frequency response
-~~ ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ----- - - ·~ 

aroun w = u anri maximum power ranszer i pun- n-msi~s-

tance, = RL. The magnitude of RL should be as large

as possible with a maximum value limited only by the

finite reactance of C. at the highest frequency of inter-

est in the photocurrent spectrum.

These results may be expressed quantitatively by

reference to the photodetector and load circuit illus-

4-~ tt ; i,_ a -27 A nimnle clculation shows that the

- _ _ __ 1 . - _ _- _ _ _ - = - _ _

__ - - 1. -v. - I -_ 1Z -- - -- - -- -___ _ -___ 

i
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current power spectral density produced in the load 3

resistance RL.is '

I

S.(X) (2 Si(W)
ILOAD() = (3-179)LOAD 2, .- , 22

.L -r (L) KSKL .

Since the reactance of C. at the frequency w is given by

XCj(W) = (/wCj) (3-180)

We may also write I ( asLOAD

2 S. ()i
ILOAD ( (3-181)

1+ Rs + RL 2
XCj ( )

Clearly the condition of uniform frequency response from

(w = 0) up to a specified frequency max requires that

we have

Rs + RL
dma (Rs +RL)Cj << 1 (3-182)

XCj (Wmax)

thus placing an upper limit on RL. When Eq. (3-182) is

satisfied the pcwer per unit bandwidth dissipated in the

±oaa becomes simply

PL(W) = IL D (w)RL = Si( L (3-183)L ( )=LOAD L i (

the result given in Eq. (3-178).

The limiting frequency that satisfies the equality

(wRsC. = 1) is called the RC cutoff frequency, RC of(sCJ

I

I

I
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the detector. Equation (3-179) shows that at this point

at least one half of the available current power produced

by the generator flows internally through C even for

RL = 0. Therefore, RC represents an absolute upper

limit on the highest frequency which a mixer can produce

in a resistive load simply because of its internal circuit

parameters. Numerical values of this cutoff frequency

appear in column III of Table IV. Column II also gives

a maximum usable mixer frequency which is traceable to

a dispersion of the times required for photocarriers to

travel from their generation point to the collecting

electrode. For most mixers this transit time cutoff

frequency is smaller than the RC cutoff frequency, thus

we may take (wRsCj ) << 1 for all w at which a specific

detector will be useful. With this assumption Eq. (3-182)

reduces to

mmaxRLCj << 1

In actual practice by using a slightly more sophisticated

load network we can usually achieve a load current response

versus frequency which is uniform within approximately 1%

up to the frequency Wmax even if RL satisfies the less

stringent requirement

3maxRCj 1 (3-184)

The required load network'48 is basically a resistance

RL having inductive compensation to increase the apparent

load impedance at high frequencies, i.e. w = max' In

this case RL represents the resistive component of ZL'

If Wmax is taken as 10r then choosing RL as its

maximum value
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1 1
RL ~ X_ C. 1 (3-185)

max 3 3

guarantees an essentially flat frequency response over the

entire region of interest in the signal part of the photo-

current spectrum. This choice also represents the desired

optimum compromise between uniform response and maximum

power delivery. When RL satisfies Eq. (3-185) the relation

between ILOAD() and Si( ) for w < 10r becomes simply

2 M = S M (3-186)
ILOAD) = Si() (3-186)

and we have from Eqs. (3-176) and (3-174)

2 2 2kT

F ( e) iT_ = - (3-187)
R 2) In () eRL

where i is the total dc photocurrent. Equation (3-187)

shows explicitly how the ratio of thermal to shot-noise

powers at the load is degraded by an upper limit on RL.

The thermal noise power (2kT/T) is independent of the

choice of ZL while the amount of available shot-noise

power (e/f)ipRL depends linearly on RL.

Writing ip in terms of the total optical power

falling on the photomixer gives FR as

2kT olw

FR = ( )-- RL (3-188)

If we demand that FR satisfy the condition (FR < 0.1), then

Eq. (3-188) yields a requirement on P of the form

2kT
P > lo( - )nT 1 (3-189)

Ee RL
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Finally, taking RL as the optimum load impedance given by

Eq. (3-185), we have

2kT
P 2 100(- )Hw0 (rCj) (3-190)

Ee

Formally speaking,Eq. (3-188) and the inequalities

in Eqs. (3-189) and (3-190) are identical to the equiva-

lent results presented in the discussion of dark current

shot-noise. That is, the appropriate F factors, FD and

FR, both depend solely on the total power incident on the

detector. The analysis given in Section F.3 showed that

the usefulness of a given photodetector operating under

these circumstances can be measured by the ratio [P/PCOH] .

The quantity PCOH is the power per coherence area needed

in the signal beam of an ideal mixing spectrometer in

order to obtain (S/N)oT = 1, and P is the minimum total

incident power required to achieve shot-noise limited

operation, in this case (FR < 0.1). The salient points

of that analysis can be restated here briefly as follows.

(1) Moderate or small values of [P/PCOH], for

example, [P/PCOH] 10, imply that the detector under

consideration will achieve ideal sensitivity in a self-

beat spectrometer which is capable of gathering incident

light from a sufficiently large number of coherence areas,
: 5 _ _~ iqs 1 -' n -n I ma e _ __ __ _ _ _ _

namely, N L/ COHJ. nls same aetector usea in a

superheterodyne spectrometer will also exhibit the ideal

sensitivity while imposing only the minimum restriction

on local oscillator amplitude modulation.! , , -....... ..... , r,~n ' I ,.....1 rD/ D . n7
I agL values oU Lr/rCOHJ, Lur xaj.ltpLe, Lr/rCOHJ / u ,

characterize detectors that are unsuitable for use in self-

beat detection. Although such detectors can in theory

i
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operate with ideal sensitivity in a superheterodyne instru-

ment the larger values of [P/P COH] lead to severe require-

ments on local oscillator amplitude stability.

Figures 3-28, 3-29, and 3-30 present the data

necessary to determine the usefulness of the four detectors

listed in Table IV as satisfying the condition (GAC = GDC = 1).

Two of these are solid state junction photodiodes and two are

S-20 photosurface type devices. In each case, the data

corresponds to operation with the desired beat signal spec-

trum, either self-beat or superheterodyne, centered around

= 0.

The resistive part of the optimum load impedance was

calculated for each of these detectors using Eq. (3-185)

and the stray capacitance values listed in column X of

Table IV. The results are presented in Fig. 3-28 as a

plot of RL versus the line width of the incident optical

field. The data on RL for a particular mixer extend up

to a maximum value of related to the transit time cutoff

frequency, tr' by

10r = tr

For larger half-widths the highest frequency of interest

in the photocurrent spectrum exceeds the ultimate usable

mixer frequency. Each curve is also terminated for small

values of r at that half-width rL where the optimum load

resistance becomes RL = 10 7. We assume that 10 7Q is a

maximum permissible value of RL set by leakage resistance

in the circuitry external to the mixer.

Combining the values of RL shown in Fig. 3-28 and

the inequality given in Eq. (3-189) yields the total

optical power which must be received by the detector
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in order to bring about shot-noise limited operation,

(FR < 0.1). The results, based on a load temperature of

T = 3000K, are shown in Fig. 3-29. For small , where we

take RL = 10 independent of rF, the required power is also

constant at a value determined only by the quantum effi-

ciency ; the curves break at r = rL and for larger widths

P is proportional to r as in Eq. (3-190). The data on

each detector again extends up to a maximum line width

limited by the transit time cutoff frequency and the con-

dition 10r < tr' However, the dashed portions of the

curve indicate that the necessary total incident power

would exceed the maximum power rating of the detector,

PMAX'

The appropriate values of PMAX were determined from

column VI of Table IV which specifies the maximum allow-

able dc photodetector output current (IouT)MAx. For the

unity gain detector, (GAC = GDC = 1), (IOUT)MAX is related
I-.nAC DC OUT MAX-MAX -'

(Ee/Hw o (3-191)(lOUT)MAX = (e/ ) PMAX(3-191)

Combining the results given in Fig. 3-29 with the

ideal sensitivity curves of Fig. 3-21 yields the values

of [P/PCOH1 plotted in Fig. 3-30. As in Fig. 3-29 the

dotted extensions of the curves indicate regions acces-

sile from tne standpoint or trequency response but in

which P exceeds PMAX' On the basis of these results and

the discussion of Section F.3 we can state the following

conclusions:

(1) A unity gain detector is not useful in a

self-beat spectrometer because of the effects of Johnson

II noise.
I

II

I AI I IN

1. . . - r 
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(2) A superheterodyne optical receiver employing

a unity gain detector and operating at an i.f. frequency

W1 = 0 can achieve ideal sensitivity. However, this mode
of operation would impose severe limits on the local

oscillator modulation index , m(w).

It is also interesting to compare the relative im-

portance of dark current noise and thermal noise to unity

gain detectors. Comparing Figs. 3-29 and 3-22 we find

that with an S-20 type photosurface detector the optical

input power necessary to swamp the thermal noise is from

9 to 12 orders of magnitude larger than that required to

overcome the equivalent dark input power. On the other

hand, the solid state junction devices have such large

values of PDARK that in this case the two constraints

are of comparable orders of magnitude.

The important features of the thermal noise analysis

can be summarized as follows. The choice of a load

impedance for any photomixer involves four basic con-

siderations: (1) a realistic equivalent circuit for the

detector, (2) the necessary frequency response character-

!i istics of the combined mixer and load circuit, (3) maximum

transfer of power between the mixer and load consistent

with this required frequency response, and (4) the rela-

tionship between the photocurrent and the load current

under these optimum conditions.

I~~~~~
1I

;

~ Chapter 3, Section F.3.b.

i
i

i
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b. The Case of Zero Intermediate Frequency

and Arbitrary Internal Photodetector Gain

Let us now consider how the thermal noise

situation changes when the mixer has an internal current

gain other than unity. We will still assume that the

signal part of the photocurrent spectrum is centered

around (w = 0) and that it represents the self-beat or

superheterodyne detection of a Lorentzian optical spec-

trum with half-width r. This case represents the second

of the four possible photomixer configurations.

The lumped equivalent circuit for a photodetector

with an ac current gain GAC and a dc current gain GDC

is shown in schematic form by Fig. 3-31. Although the

ac and dc gain processes and corresponding outputs are

drawn as being distinct, they will actually coincide

for most detectors. In the latter case we have

GAC = GDC = G and the simplified equivalent circuit

schematic of Fig. 3-32. The components of both equivalent

circuits are identical to those of the unity gain detector

circuit shown in Fig. 3-26 and have the same functions

as were described there. In fact, the only new features

in Figs. 3-31 and 3-32 are the amplifiers that act on the

photocurrent prior to delivering it to the remainder of

the equivalent circuit. We will assume that these "black

box" amplifiers are ideal, noiseless, current multipliers;

that is, if iac(t) and idc are the ac and dc parts of the

photocurrent respectively, then the output of the ac

amplifier is

[i ac(t)] out GAC iac(t)

and the output of the dc amplifier is
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Figure 3-31 The general equivalent circuit for a photo-
detector having arbitrary internal gain.

Si () I

Figure 3-32 The general equivalent circuit for an arbi-
trary gain detector with coincident ac and
dc outputs.
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[idc] out = GDCidc

where GDC and GAC are constants. The usual gain mecha-

nisms, namely, electron multiplication by secondary

emission and avalanche carrier multiplication, are

indeed pure current gain phenomena. Moreover, the

small amount of data available on the inherent noise

of the multiplication process supports the assumption

of an essentially noiseless amplification. 49,5 ° Under

these circumstances the equivalent circuits presented

in Figs. 3-31 and 3-32 may be redrawn as in Fig. 3-33.

For the purposes of an ac analysis then, the

characteristics of a photomixer with a gain GAC are

identical to those of a unity gain detector with a

photocurrent power spectral density GACSi(w). In par-

ticular, the optimum load, ZL', for maximum power trans-

fer and uniform frequency response is again an inductively

compensated resistance RL whose value is given by Eq.
(3-185). Equation (3-186), the desired relationship F
between the load current and the photocurrent, now

becomes

2 2
ILOAD(w) = GACSi(W) (3-192)

for the range of frequencies (0 < w 10< l). Finally,

considering only the shot-noise term of Si (w), we have

FR from Eq. (3-187) as

2kT
FR 2 (3-193)R =2

GACeRL p

Since FR is the ratio of thermal to shot-noise power

as seen either at the load or at the photocathode, the

effect of an internal gain can be described in two equiv-

alent ways. In the first, the gain process can be viewed

1.
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as enhancing the photocurrent shot-noise power which is

dissipated in the load relative to a fixed thermal noise

power. In the second the effect of the gain may be taken

as an apparent decrease in the thermal noise power of the

load as seen by the photocurrent. In either case the
2

result is a reduction in FR by the factor GAC.

Writing the dc photocurrent, i , in terms of the

total optical power, P, incident on the detector gives

FR as

2kT )

FR £e2( RL (3-194)
e PG L

If we demand that FR satisfy the condition (FR < 0.1) in

order to make the effects of thermal noise negligible

then Eq. (3-194) yields a requirement on P of the form

2kT Ew I

P 10( ) 2 R (3-195)

Ce GAC

For the case GAC = 1 this inequality reduces to the result 
derived in the preceding section. The typical values of

GAC quoted in column V of Table IV range from GAC = 2 for

the Bell Labs point contact germanium photodiode up to

GAC = 10 for the RCA 7265 photomultiplier. Therefore, on

the basis of Eq. (3-195), the presence of an internal gain
12

will represent a reduction of from 4 to 10 in the mini-

mum total incident power necessary to achieve shot-noise

limited operation as compared to the result for an other-

wise identical unity gain mixer. This reduction is ex-

tremely important in view of the conclusions given in the

preceding section concerning the usefulness of unity gain

detectors.

The importance of thermal noise problems for the

photodetectors listed in Table IV as having (GAC Z 1)

~~AC ai
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can be decided on the basis of the data presented in Figs.

3-34, 3-35, and 3-36. Figure 3-34 shows the optimum load

resistance, RL, for each of these detectors plotted versus

the half-width of the spectrum of the incident optical

field. For two of the devices, the two crossed field

photomultipliers, the value of RL is fixed at RL = 502

by the inherent design of the mixer output coupling and

is therefore independent of r. This fact is noted in

column VIII of Table IV. The remaining three mixers are

capable of operating into an arbitrary load impedance and

for each of these the optimum value of RL was calculated

using Eq. (3-185) and the values of C. listed in Table IV.

As in Fig. 3-28 the data on RL for a given detector ex-

tends up to a maximum half-width determined by the transit

time cutoff frequency, tr' and the relation (10r = tr).

In addition we again assume that RL has a maximum permis-

sible value of RL = 10 2 and also terminate the curves at

this point.

Combining the values of RL given in Fig. 3-34 with

Eq. (3-195) yields the minimum total optical input power

necessary to achieve the condition (FR I 0.1) as a function

of r. The results of this calculation are shown in Fig.
I_I F-- .i-U ho -of o - AnOV i7 ;-- rn 4-l 4A--+- y.yvl Fh
.J-JJ .AULI.J. ;Q SC .J.L - JVV L1'.L LL G 11UG WLLV. l & L.L

fair = (2rc/wo), of air = 6328 A. As before the high

frequency limits correspond to the condition (10r = tr).

Consider the crossed-field PMT's first. Since the

optimum load resistance for both of these detectors is

independent of r, the total optical power required to

swamp the thermal noise is a constant fixed only by the

gain, G,,; the quantum efficiency, ; and the load

resistance RL = 500. In spite of the small value of

RL the large internal gains that are characteristic of

I photomultipliers are sufficient to yie±a a conaiton on
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P which in both cases is comparable to the requirement on

P set by dark current. For comparison the power necessary

to override the room temperature dark equivalent input

power of a 1 mm diameter S-1 photocathode is also indicated

in Fig. (3-35) with the label [P(FD=0.1) S-l].

The remaining curves of P versus r show the same two

step behavior encountered in Fig. 3-29; a horizontal

section corresponding to the range of half-widths where

RL has its limiting value RL = 107 2 and a region in which

P is proportional to r as per Eq. (3-190). Of particular

interest is the RCA 7265 photomultiplier whose enormous

gain capability results in values of P which are at least

an order of magnitude below those required to overcome the

room temperature dark current. However, this is, in part,

due to the rather large dark current associated with this

detector because of its 2" diameter photocathode. For

example, compare the two conditions on P that yield

(FD=0.1) which are given in Fig. 3-35 as [P(FD=0.1) 7265]

and [P(FD=0.1)S-20]. The latter value corresponds to a

1 mm diameter active photosurface.

A second advantage of internal gain is evident in

Fig. 3-35 from the fact that in no case does the total

power necessary to swamp the thermal noise exceed the

maximum input capability of the mixer, PMAX' For the

detectors of interest here, GDC $ 1, PMAX is related to

the maximum allowed dc output current, (IOUT)MAX, by the

relation

(IOUT) MA = GDC(e/wo )P MAX (3-196)

For the usual.situation GDC = GAC = G, and' a fixed value

of (IOUT)MAX' Eq. (3-195) shows that the ratio [P/P.AX]
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will decrease as (1/G). Therefore, although an increasing

gain does produce a corresponding decrease in allowable

input power, the total power required to give (FR=0.1)

decreases at a more rapid rate.

Finally on using the results given in Fig. 3-35 and

the ideal sensitivity curves of Fig. 3-21 we can calculate

the desired ratio, [P/PCOH], which is plotted in Fig. 3-36

versus the optical line width, r. From these curves and

the discussion of Sections F.3.a and F.3.b we may draw the

following conclusions:

(1) From the standpoint of both thermal noise

and dark current the three photomultiplier detectors can

all achieve ideal sensitivity in a self-beat spectrometer

capable of accepting incident light from a reasonable number

of coherence areas N [P/P COH. The worst case corresponds

to N = 5 x 10. These same detectors can also yield ideal

sensitivity in a superheterodyne spectrometer with a local

oscillator power that exceeds the minimum requirements

[P/PCOH] = 100 by less than a factor of 103.

(2) Although the gain avilable in solid state

junction devices does decrease the ratio of [P/PCOH] which

is necessary to maintain the condition (FR~0.1), the dark

current of these mixers already imposest the constraint

[P/Pc H] > 109 for all r even in the limit of infinite

gain. Therefore, these detectors are unsatisfactory mixers

for self-beat spectrometers. Moreover, because of the

severe restrictions which large values of [P/PCOH] place

on local oscillator amplitude modulation they are also un-

suitable for use in optical superheterodyne receivers which

have an intermediate frequency near w1 = 0.

§ Chapter 3, Section D.2.

Chapter 3, Section F.3.
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c. The Case of a Non-Zero Intermediate

Frequency and Arbitrary Gain

Having considered both photomixer configura-

tions that operate with the beat note spectrum centered at

(w=O), we now examine the case of the optical superhetero-

dyne spectrometer utilizing a non-zero intermediate fre-

quency. As was discussed in Section F.3.b this latter

situation will tend to ease the requirements imposed on

local oscillator amplitude stability by large values of

[P/P COH] ; however, in order to determine the nature of

this advantage, if any, we must decide how the thermal

noise properties of the optimum load circuit differ from

those characteristic of the case (w1=0). In particular

we must ask if the less severe conditions on local oscil-

lator stability are not partially or totally offset by

increases in the value of P/PCOH] . In the present anal-
COH_ _ _

y.Dl.- W: W.L.L LLLt=LLL LU LbW1L Ll LLJW.Lly . UCL 'jLA.LL

(1) Is there an optimum choice for the intermediate

frequency, w1' when the optical spectrum under investiga-

tion is a Lorentzian with a half-width of r radians per

second?

(2) What is the optimum load impedance, ZL, for a

given i.f. frequency from the standpoint of power transfer?

(3) Is the frequency response of this load circuit

consistent with that required to unambiguously examine

the signal part of the photocurrent spectrum?

(4) What are the values of [P/PCOH] that characterize

the load which is the best compromise between frequency
_ _~~, _A ,', _v:. -- _... | -_to$)response ana maximum pow1er wros PL U

(5) How do these values compare with those obtained

for the case (w =0)?
1

CICI�� e�� rr� -·Le�m�rc ·rA -rr�rrr+Au ·rrrr\ �� r\r.l-·rrr crl,�c�·r-r��c�·

i
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Section F.4.b showed that the electrical character-

istics of a unity gain detector are described by the

same results that apply to a detector with arbitrary gain;

therefore, we will immediately adopt the equivalent cir-

cuits shown in Fig. 3-33 as the basis for the present

discussion. However, the choice of the optimum load for

these circuits now depends critically on the i.f. frequency,

W1' and the ratio of the i.f. frequency to the line width

of the current spectrum under investigation, (wl/r). Under

normal circumstances we have (>>r) so that in actuality

the load need only achieve maximum power transfer over the

relatively narrow band of interesting frequencies near

(W=W1). The appropriate form of ZL for this situation

can be found from the circuit analysis outlined below.

Suppose we represent the equivalent circuits of Fig.

3-33 together with an arbitrary load impedance, L , as

shown in Fig. 3-37. The impedance Z is in general complex

since it corresponds to the parallel combination of R. and
J

C.. If this circuit is driven from an ideal current gener-
J
ator whose rms output at a frequency w is designated as

I(w), then the rms voltage between points A and B, VAB(W),

is simply

Z(R + Z )
V B(W) = I() L (3-197)

(Rs + ) + 

and the rms current in the load branch is

V (W) I(W)Z
I ( (W) = (3-198)

R +Z Z + Z + R
s -L -L s

From this result it follows that the current in the load

impedance ZL of Fig. 3-37 is identical to that which would

be produced by an ideal voltage generator having an rms

output V(w) = I(w)Z in the series circuit drawn in Fig.
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I () 

B

Figure 3-37 General photomixer equivalent circuit
with an arbitrary load.

V(w) = I(w)Z

Figure 3-38 Voltage generator series equivalent circuit
for a photomixer with an arbitrary load
impedance.
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3-38. That is, the current generator equivalent circuit

representation of a photomixer can be transformed to a

voltage generator equivalent circuit involving only series

elements. This step is an important simplification in

the determination of the optimum load impedance. In fact,

the fundamental power transfer theorem4 7 of electrical

engineering states that a circuit of the type shown in

Fig. 3-38 will deliver the theoretical maximum power to

the load at the frequency X when ZL satisfies the condition

* *

L = (Z + Rs) = Z + Rs (3-199)

This optimum impedance is called a complex conjugate load.

If we neglect Rj so that Z is the impedance of the junction

capacitance, Cj, then we have

1. I]

and

Z = 1
WCj

The positive imaginary impedance Z represents an induc-

tance, L, whose impedance is

i= jwL = - (3-200)

Therefore, the ideal load from the standpoint of power

transfer at a single frequency is a series combination

of a resistance, Rs, and an inductance, L, where the

latter satisfies the requirement

w2 LC = 1 (3-201) i

{

i

I

i

i

I

I
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This is precisely the condition of series resonance

between the load inductance and the internal capacitance

of the mixer.

Let us examine the frequency response and power

transfer characteristics of the complex conjugate load

when L is chosen to resonate with C. at the intermediate
J

frequency w1 The appropriate circuit schematic is drawn

in Fig. 3-39. The impedance, Z1, presented to the gener-

ator is

(1 - w LC.) + j2wC.R
Z_ _ + 2 + iLT = _
-- Cj 's 'uj

leading to a current in the load branch given by

I(L A ) V() I(W) jC j
LOAD - jwC (1 - 2LCj) + j2wCjRs

J Js

=- I(W) (3-202)
(1 - LCj) + j2wCjRs

Knowing the load current, ILOAD(w), we may calculate

the power delivered to the load, PL(w), by using the

relation

I ()R

P L) = ILOAD(W)ILOAD (w)R5 =2 1 (3-203)
PL() = ILOAD ()ILoAD(~)R s -(1 - w LC.) + (2wC R )2

Although I ( ), as written in Eq. (3-203), represents the

mean-square generator output current at the frequency w

it is equally valid to interpret this quantity as a current
^T.1r .A :n cr dons:; 4-i I ti T, i ca s P ( i the cower

e 'JWJ - -JL.6 LI.-- . .- "' -"' -- ----- L -_-Il-XI------

per unit bandwidth dissipated in the load at the frequency

w. It follows that I2 (w) can be taken to be the photo-

L~

i

I

I, , ,� ,
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V(W) = j()
jWC.

B

Figure 3-39 Series equivalent circuit of a photomixer
terminated by a complex conjugate load.

A Cj RSI s

V(W) = (W))wC.
J

B

Figure 3-40 Series equivalent circuit of a photomixer
terminated by a modified complex conjugate
load. The resistive component of the load is
allowed to take on an arbitrary value.
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current power spectral density as seen after internal

amplification in the mixer. Writing the product (LCj)

in terms of 1 with the help of the resonance condition
2

(W1 LCj = 1) we have PL() as

G Si ()
P ( =) 2 (3-204)L 2 = 2

(1- 2) + (2CjRs)2

(1

Thus the power delivered to the load at the i.f. frequency

is

2 2GS. (W) G S.( ) Xc ( 1)
P ( ) = 1 1 (3-205)

PL(W) 2 - 4R(2wCj 2Rs s

where XCj(l) is the reactance of Cj. By comparing this

result with Eqs. (3-183) and (3-192) we find that the

complex conjugate load is equivalent to a pure resistive

load (R)eq whose resistance is a function of the i.f.

frequency and given by

1 XCi(W 1)
(3-206)(RL)eq 2 4R

4(wC. R5 5

The ratio of this equivalent load resistance to the optimum

value of RL found for l = , that is the ratio of the

powers delivered to the load in each case, clearly hinge

directly on the choice of the intermediate frequency.

Although Eq. (3-205) would indicate that the most favor-

a±le situation corresponds to the lowest possiile value

of 1 there are two additional features of the resonant

I I . . . . . .
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load yet to be considered. The first is the question of

uniformity in its frequency response in relation to the

line width of the signal part of the photocurrent spectrum.

If we make the reasonable assumption that wl must be

much less than the RC cutoff frequency of the detector it

follows that (wlRsCj ) satisfies the condition (wlRsCj<<l).

In this case Eq. (3-204) shows that the load response

function defined by

H() =2 [PL()/G Si()] (3-207)

has the form

(wl 2/4)
H(w) = 2 1 4 2 2 (3-208)

(wWl) + w1 Cj Rs

That is, the efficiency of power transfer between the

photodetector and a tuned load is a Lorentzian peaked at

the i.f. frequency and having a half-width at half-response

given by

2
Awl = CjRs (3-209)

mu - _ - _- r . . X 1 A . .· _ I __ _ -. v , B _ - A- o- 
Tne ratio LWl/LW 1)J Is normally Uaerinea as le " or Une

load resonance, i.e.

01 Xj

W1Q - ___ R (3-210)Awl = l R = RT w1Cj s s

Equation (3-208)shows that the resonant load acts essen-

tially as a filter; only those frequencies that lie inside

the filter bandwidth Aw = 2Aw_ are passed on to the spec-

trometer electronic system. In order to achieve a uniform

response over the entire frequency range of interest in

I

I

I
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the beat signal spectrum we would then require Aw 10 or.

However, the inductance L may be tuned in such a way that

the center of the load response tracks the tunable filter

used to examine the photocurrent spectrum; in this case

Awi need only satisfy the weaker inequality (Aw > Af).

Since the tunable filter bandwidth Awf is ordinarily taken

as some fraction a of the line width r (Awf = ar, where

typically a = 0.1) we derive a condition relating Awl and
2

r, namely

Awl > (a/2) r (3-211)
2

This result combined with Eq. (3-209) yields a minimum

allowable value for w1 in terms of the line width r as

L1 RsCj > (a/2)r (3-212)

This condition will guarantee the desired frequency response

when ZL is taken as a complex conjugate load.

A second consideration also places a lower limit on

the intermediate frequency. In order to avoid a distortion

in the shape of the signal part of the photocurrent spectrum

all the frequencies of interest in this signal must lie in

the region w > 0. This point can be understood as follows.

If the beat note spectrum overlaps the point w = 0 then the

local oscillator frequency must lie within that range of

optical frequencies in which the incoming signal has a sig-

nificant power spectral density. But in this situation the

beat-note observed at a frequency w actually consists of

two contributions, namely, a mixing between the local oscil-

lator at the frequency wLO and the signal power at the two

frequencies (LO+w) and (LO-w). This "overlap" distorts

the shape of the optical spectrum as seen via the photocurrent.
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Of course, one of these two beat notes can always be made

negligible by choosing LO to be sufficiently removed from

the center frequency of the optical signal. This is equiv-

alent to demanding that 1l be large enough such that the

tail of the signal part of the current spectrum is insig-

nificantly small at (w = 0). Assuming that the heterodyne

beat signal can be disregarded when it falls to 1% of its

peak value we obtain a numerical condition on w1 given by

"1 > 101r (3-213)

Let us consider the three results presented in Eqs.

(3-205), (3-212), and (3-213). Equation (3-205) states that

the most favorable intermediate frequency from the stand-

point of power transfer alone is the lowest possible value.

Equation (3-213) places a fundamental lower limit on the

choice of 1 which must be satisfied if we wish to obtain

an unambiguous measure of the spectrum of the incident

optical field. This condition must always be satisfied.

Equation (3-212) represents a secondary limit on w1 which

is necessary in order to achieve the required frequency

response if we use a complex conjugate load. We can decide

on the importance of this secondary limit from the follow-

ing analysis.

Suppose that the fractional resolution a (Awf/r)

used to examine the photocurrent spectrum is a = (0.1).

Then Eq. (3-212) can be restated as

2
W1 > (0.05)FwRC (3-214)

where RC = (1/RsCj) is the RC cutoff frequency of the mixer.
2 2

Designating this limit on 1 as (1 )2 and taking the ratio

of this result to the square of the inequality in Eq. (3-213)

we have

i

i

I

II
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(W) 2) (0.05)RC -4
2 21 22 ~~ 2RC 5 x 10 (WRC/') (3-215)(WI ) 1oor

Now the largest value of which can be handled by a par-

ticular photodetector is determined by its transit time

cutoff frequency, tr' If W1 is its minimum allowed value

(W1 = 10r) then the highest frequency of interest in the

signal part of the photocurrent spectrum is (wl + 10r) = 20r.

Therefore, the maximum permissible half-width, rm, is simply

rm = (Wtr/20). In practical photomixers tr is smaller than

WRC a typical ratio being (RC/Wtr) = 3. Using these
relationships we can give Eq. (3-215) in terms of r and

r asm

2

-1 22 0 03(-) (3-216)

(W1)

That is, for half-widths greater than approximately 3% of the

maximum useful value the condition (w1 = 10r) is dominant.

Under these circumstances the resonance width of the complex

conjugate load is always sufficient to give the desired

frequency response. On the other hand for r < (0.03)r m

the secondary limit on w1 imposed by Eq. (3-212) is dominant.

In this case if we choose (w1 = 10r) and use a complex con-

jugate load then the Q of the resulting resonant circuit

formed by the load and the internal circuit elements of

the mixer is too high to permit all the frequencies of

interest to be delivered to the remaining electronics of

the spectrometer. In the latter situation the Q must be

decreased.



322

From the analysis leading to Eq. (3-212) we find that

one method for reducing the Q of the load resonance is
.... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

simply to increase the intermediate frequency beyond the

value w1 = 10r until Eq. (3-212) is satisfied. However

a second possible approach is to keep w1 fixed at w1 = 10r

and decrease Q by making the resistive component of the

load larger than the value Rs. Naturally, both of these

methods lead to a decrease in the amount of power delivered

to the load at the i.f. frequency. To decide on an optimum

load impedance we must therefore determine which case yields

the maximum power transfer consistent with the desired value

of Q.

When the resistive component of ZL has an arbitrary

value , as shown in Fig. 3-40, the impedance, Z1 pre-

sented to the voltage generator V(w) is

1 (1 - 2LC) + jCj (Rs+ RL )
Z1 jC +i juL S (3-217)
-1 s] j OC.

If the inductance L resonates with C. at the intermediate

frequency, then we find that the power dissipated in the

load at the frequency w is given by

PL ( ) ILAD() ILOAD () LOAD ) RL

2
G S(w)RL

2 2 ()R(3-218)

2 22 (Rs+ RL)2
W1

i

I

I
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In particular the power delivered to the load at the i.f.

frequency takes the form

I
2

G Si(W1)RL

PL(WW1) 2 2 2 (3-219)
W1 Cj (Rs + )

It is easily verified by direct differentiation that PL(l)

has its maximum value for RL = Rs, i.e. for the complex

conjugate load.

tMUy ---- -- of~ @ ho Chow Am; A _1 AA -4 tor;-. 4 mY.7 hoCv f o4 m
I J [ i 1111 I ll 11 II X '1 1 X 1/ I I .'& .I I .rl ...

1 2Q =+ = I + RS~lCJ2(3-220)
Aw- (RL + Rs)lC

For RL = Rs we recover the result given in Eq. (3-210).

Clearly Q may be decreased by increasing either 1 or RL,

or possibly both. To determine the best approach we will

write PL(W1) in terms of the single variable 1 in such

a way that the expression always satisfies the desired

constraint on Q, namely

Aw = -= (a)r (3-221)
2_ Q 2

In this case the optimum i.f. frequency can be found by

inspection.

Combining Eqs. (3-219), (3-220), and (3-221) yields

PL(W1) at fixed r and Aw in the form

G Si (1) RLQ G2
[PL(W1)Q 4 G S(Wl)RL(l/aF) (3-222)Q~~~~~~~~~~~~~322

while Eqs. (3-220) and (3-221) combine to give RL as

-17 F*-'
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arR-- Rat (3-223)L 2- _ s
-

This last expression specifies the value of RL required to

maintain the desired Q for an arbitrary choice of the i.f.

frequency. From Eqs. (3-222) and (3-223) we find the

power dissipated in the load at a given intermediate fre-

quency subject to the constraint of a minimum permissible

resonance width in the load circuit as

[PL(w)] G2S ( ) {a ( R} (3-224)
Q

Since Si(W1) is independent of the choice of w1 the i.f.

frequency which yields the condition of maximum power I

transfer is (w, = 0). Therefore, if the Q of the load

must be reduced to obtain the desired frequency response

then the condition of optimum power delivery is always

obtained by increasing the resistive component of the

…load at the lonwest… nnihl intrmediate freAuencv

The results which we have found may be summarized in

terms of the answers to the first three questions posed

at the beginning of the discussion.

(1) There is an optimum choice for the interme-

diate frequency. When the optical spectrum to be investi-

gated is a Lorentzian with a half-width of r rad/sec the

choice is (w1 = lOr).

(2) The load impedance which gives the condition

of maximum possible nwer transfer is a complex conjugate

load. This load forms a resonant circuit at the operating

frequency in conjunction with the internal impedance of

the photomixer.

I

I
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(3) The frequency response of this load is

consistent with that required to examine the signal part

of the photocurrent spectrum for large values of F, i.e.

(r 0.03 rm). For smaller values of the half-width the

resonance width of the load must be increased by employing

a modified complex conjugate load in which the resistive

component is larger than the optimum value (RL = Rs).

Having quantitatively fixed the form of the impedance

ZL and the i.f. frequency we may now proceed to determine

the values of [P/PCOd which are necessary to overcome the

Johnson noise. This is most easily done in terms of the

apparent resistance presented to the mixer,

(RL)eq - [PL ()/G Si ( 1)]

i . .

and the formulae of Section F.4.b. Equations (3-224) and

(3-205) yield (RL)eq as

(RL)eq =4

1 W1 2
arc( :Rs RL Rs

(3-225)

12 2R: RL = Rs
4w R

This quantity was calculated for some typical detectors

using the data presented in Table IV. The results are

plotted in Fig. 3-41 versus the line width of the incident

optical spectrum. The following assumptions were employed

in constructing these curves.

(1) The intermediate frequency is taken as

(W1 = 10r).1
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(2) The maximum usable mixer frequency is the

transit time cutoff frequency, tr. Assuming that the

tunable filter used to examine the signal part of the

photocurrent spectrum operates between w = = 10r and

= W1 + 10r = 20or we terminate the curves at r = (tr/ 2 0).

(3) The fractional resolution used in examining

the spectrum of the beat signal is a = (Awf/r) = (0.1).

(4) The maximum permissible value of (RL)eq is

set by circuit leakage at (RL)eq = 10 Q.

(5) The lower limit on intermediate frequency

1 l, fixed by the properties of practical inductors avail-

able to resonate with Cj, is (w1/27) = 106 cps, correspond-

ing to a value of r given by (r/2r) = 10 cps.

The resulting curves for (RL)eq show three distinct

types of behavior, the first being simply (RL)eq = constant

which characterizes those devices limited to operating into

a 500 termination. A second behavior which is typical of

those detectors that have (Rs Z 0) is seen at large values

of r, near the maximum permissible half-width. In this

regime the appropriate form for ZL is the exact complex

conjugate load impedance and (RL)eq increases with decreas-
-2

ing as ( RL )eq F .r This corresponds to the case of

theoretical maximum power transfer described in Eq. (3-206).

For these same detectors we find a break in (RL ) eq when r

is decreased through that point where RL is forced to become

greater than R . For smaller values of r power transfer is
sacrificed for proper load Q and (RL)eq increases only as

r-1 The photosurface devices, which were assumed to have

R = 0, exhibit this latter behavior over their entire

useful range.
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The importance of the data in Fig. 3-41 lies in its

comparison witn the results given previously or tne case

(w1 = 0) in Figs. 3-28 and 3-34. This comparison shows

that although a superheterodyne spectrometer with a non-

zero intermediate frequency must operate at somewhat higher

beat frequencies than its ( = 0) counterparts, there is

an enhancement in power transfer obtainable with a resonant

circuit load which yields a net advantage at any specific

half-width to the case (w1 0). This advantage appears

as an increased value of the apparent load resistance

presented to the amplified photocurrent. The ratio of the

resistances in the two situations, w1 f 0 and w1 = 0, is

between two for r = rm to 100 for r < (0.03)rm . It is easy

to show that, in fact, the greater portion of this gain is

achieved simply because of the relaxing of the requirement

on the frequency response of the load from Aw = 10r to

Ae = (ar/2). The resonance properties of the circuit merely

serve as a means of shifting the point of maximum load

response from (w = 0) to (w = 1). Of course, it is the

fact that this resonance frequency may be changed at will

that makes possible the use of a less stringent condition

on AW+.

The total incident optical power, P, required to

swamp the thermal noise of ()eq for the mixers listed in

Table IV was calculated from the data presented in Fig.

3-41 and the condition given in Eq. (3-195), namely

2kT flw

P > 10(- 2} 2° 1 (3-226)
£e GAC (RL)eq

This inequality corresponds to the situation (FR < 0.1).

The results, which are shown in Fig. 3-42, exhibit an

improvement over the similar results for w1 = 0 in terms of

I

I

I
i

I
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Figure 3-42 The total incident optical power required to
overcome the Johnson noise in the load of a
photomixer terminated by a modified complex
conjugate load.
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a reduction in the amount of local oscillator power needed

to obtain shot-noise limited operation. This reduction

has two immediate consequences. First, all the detectors

except the EG&G (SD-100) silicon photodiode now operate

well within their maximum power ratings at all allowed

values of r. Secondly, in the case of the solid state

detectors the dark current requirement on P now exceeds

the value set by Eq. (3-226) over a rather large fraction

of the accessible range in rF. Therefore, these mixers

are ordinarily operating under dark current limited con-

ditions and the effects of Johnson noise may be neglected.

Of particular interest among the detectors repre-

sented in Fig. 3-42 are the RCA 7265 photomultiplier tube

and the Bell Telephone Laboratories point contact ger-

manium photodiode. As discussed previously the 7265

achieves shot-noise limited operation quite easily be-

cause of its large internal gain; however, we note that

the Bell Labs diode also requires considerably less

incident power than the other solid state mixers. This

is not an effect of internal gain but the result of

especially small values of both Rs and C.

The usefulness of each of the above mixers can be

deduced from the plots of the ratio [P/PCOH] shown in

Fig. 3-43. The data for these curves were obtained from

the results of Fig. 3-21. On the basis of previous dis-

cussions of the relevance of [P/PCOH] we may draw the

following conclusions concerning the applicability of

the various detectors as mixers in a superheterodyne

spectrometer:

Chapter 3, Section F.3.
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the incident spectrum (r/2n).
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7(1) For line widths less than (r/2r) = 10 cps

and in iiituations where the additional uantum fficitncnv

of a solid state mixer is not crucial,. the RCA 7265 photo-

multiplier is the ideal detector. Its high gain guaran-

tees that shot-noise limited operation can be obtained

with the minimum permissible local oscillator power.

Therefore, this mixer imposes only slight restrictions

on the tolerable local oscillator amplitude modulation.

(2) For line widths between (/2) 107 cps

and (r/2~) = 10 cps the crossed field photomultipliers

represent the best choice of mixer when the relatively

low value of for the S-1 photosurface is not critical.§

(3) The best solid state detector, including

those with and without internal current gain, is the

Bell Telephone Laboratories point contact germanium

photodiode. This mixer achieves its low values of

[P/PCOH] because of its extremely small junction capaci-

tance, Cj, and dynamic series resistance, Rs. The re-

quired local oscillator power exceeds the minimum allow-

able value (P = 100P H ) by a factor that varies between
~ .n4 iiI/ ln rlwo Ir^ n n 1 f/9 - 9 2 in

cps. However, since modulation effects become signifi-

cantly less important with increasing i.f. frequency,

these values of [P/PCOH] should not place unduly severe

limits on the amplitude stability of the local oscillator

source. p

The values of E used throughout this thesis refer to
Xair = 6328A.

Chapter 3, Section D.2.
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5. The Effect of Excess Amplifier Noise

Iair;n4 rA 1.' 4-.h 4h,. A-1r &, .Irr.n4 And 4hni J1
noise terms in the expression for F we now turn to an

examination of the effects of the unavoidable excess noise

that characterizes any practical amplifier. The "amplifier"

of interest here is that device which must handle the low-

est level signals in the mixing spectrometer electronics

and, therefore, which most seriously degrades the pre-

and post-detection signal-to-noise ratios. In general

this will be the radio frequency amplifier or receiver

that is connected to the photomixer output terminals.

The excess noise of an amplifier manifests itself as

a current power per unit bandwidth at the device output

terminals even under conditions of zero input. Its origin

and magnitude may be determined explicitly from the thermal

noise and shot-noise characteristics of the amplifier com-

ponents. However, a much simpler approach which utilizes

the concept of an amplifier "noise figure" is sufficient

for the present discussion.

Suppose that we consider simultaneously the effects

of Johnson noise in the photomixer load and amplifier
V I%' O tna tn: · I ntrI",l r' r lrn t-n tn in c 'T' ry" I - ---Iq CA r -

duction factor F follows from Eq. (3-153) as

I 2 + I 2(X)
R +IRA (m)F' = FR + FRA 2 (3-227)R R 2I(w

The current power spectral densities in Eq. (3-227) are
*k

defined as equivalent values referred to the photocathode.

However, as stated above, F may be calculated at any

Chapter 3, Section F.1.
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desired point in the signal processing chain by suitably

computing the current powers as referred to that point. In

the present case it is convenient to work with the currents

produced at the photomixer load impedance, that is, at the

amplifier input terminals. Using the notation for these

currents which was adopted in Eq. (3-176) we have

2 2
I (W) + I (W)

FR r (3-228)R 2
n

This relationship may be written in a more interesting

form as

2 2 2
I (W) I () I (W)
' = r 1 ra ra -9V = 1 4.- = 1 4.-1I -, IOR J LR -2 ' J - .l'i
I 2 () I () I () 2
n r r

The quantity

2

ra1+
Ir () 

when expressed in decibel units is defined as the noise

figure (N.F.) of the amplifier.1 Since this quantity

represents the ratio of two powers, rather than two rms

currents, we have under the usual conventions5 2

2
(W)

N.F. 10 g + ra db (3-230)
2 }

r

The argument of the logarithm in Eq. (3-230)

·
I

0
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I (W) + I 2(L)
r ra

2
I (W
r

is just the ratio of the total equivalent noise power per

unit bandwidth referred to the amplifier input terminals

to the Johnson noise power generated by the resistive com-

ponent of the amplifier input impedance, Zin. Since an

ideal amplifier would have I 2 () = 0 it follows that the
ra

noise figure measures the performance of a real amplifier

.ro.IA i to + h- f .n vhrlt4-1 T e ac ir- yi.;f 1 wl

taking into account the unavoidable Johnson noise which

will be present in either case.

In general N.F. is a function of both Z. and the
in

operating frequency. Since Zin for a mixing spectrometer

represents a combination of the photodetector internal

impedance and the load impedance, the relationship between

FR and FR in Eq. (3-229) depends on the exact nature of

the mixer, through the value of ZL, and on the line width

and center frequency of the signal part of the current

spectrum. However, under optimized conditions we may

regard the noise figure as being independent of ZL and

also of the choice of photomixer. This situation is

obtained as follows. For most good amplifiers and re-

ceivers N.F. is a quite slowly varying function of fre-

quency; however, it is almost always a strong function

of the input impedance. As a result an amplifier normally

has a frequency independent optimum input impedance which

will guarantee the minimum possible noise figure. More-

over, this minimum value of N.F. will itself be essentially

frequency independent. The problem of transforming the

impedance seen at the output of the photomixer-load circuit

to the desired value of amplifier input impedance has been

I
i
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treated in detail by Twiss and Beers, 53 and is feasible

under certain general restrictions on the impedances to

be matched. We assume here that such a transformation is

always possible and write FR' as

FR = (10) F R (3-231)

with

(N.F.) in db
f mn (3-232)

-I t%1
1U

The quantity (N.F.)min is the noise figure obtained under

optimum matching conditions and is a property only of the

amplifier under consideration.

under these circumstances the effect o excess

amplifier noise is a quite simple one. The amplifier with

a non-zero noise figure can be represented as contributing

an additional thermal noise power to the photomixer load

circuit. This noise contribution increases the apparent

value of FR by a factor (10)f with f given by Eq. (3-232).

As a result we must require that the photodetector receive

a correspondingly increased total optical input power in

order to maintain "shot-noise" limited operation,

FR' < (0.1). The curves of P versus and [P/PCOH] versus

r which were presented in Figs. 3-29, 3-30, 3-35, 3-36,

3-42, and 3-43 retain their validity if the results read

from their ordinate scales are multiplied by the factor
f(10)

Figure 3-44 shows typical values of the noise figure

that are encountered in amplifiers or receivers which

either (1) are tunable over at least an octave frequency

interval or (2) have at least an octave bandwidth. Al-

though narrow band devices can achieve significantly lower

noise figures, they are in general unsuitable for use in

i
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light mixing spectrometers. The data presented in Fig.

3-44 indicates that in the range (/2r) = 0 to (/2f)

250 Mc/sec amplifier noise will result in less than a

factor of two increase in FR. For frequencies below

(w/2r) = 10 cps this excess noise is negligible. However,
8for freauencies above (/2n) 5 x 10 cs the noise

figure grows sharply and represents an increase in FR

by a factor of 12 at the highest usable mixer frequencies

encountered in Section F.4.

As a result, the curves for P and [P/PH ] versus r
which were given for FR < 0.1 remain essentially unaltered

except for large r and high intermediate frequencies. For

the photosurface type mixers which are capable of operating

in the regime r > 5 x 108 cps, namely the crossed-field

photomultipliers, the ratio [P/PCOH] for large values of

r is already being controlled solely by dark current con-
siderations. Therefore, the apparent increase in FR has

no effect on the minimum required optical input power.

However, in the case of the solid state mixers it is pre-
8

cisely in the range F > 5 x 10 cps that P and [P/PCOH]

are dominated by Johnson noise considerations and P ap-

proaches the maximum input rating of the detector. For

these devices we conclude that observations on line
8

widths greater than (r/2w) 10 cps will in general be

degraded by Johnson noise and excess amplifier noise

simply because of the limited power input capability of

the photomixer.

Chapter 3, Section F.2
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6. Summary

In the preceding sections we have analyzed the

importance of practical noise sources in reducing the pre-

and post-detection signal-to-noise ratios of an optical

mixing spectrometer. The surprising result is that none

of these effects alter the basic sensitivity of the instru-

ment. This sensitivity is specified in terms of a minimum

detectable power per coherence area in the input optical

signal while the importance of the detrimental effects

of dark current shot-noise, thermal noise, and amplifier

noise depends only on the total optical power falling on

the photomixer. As a result a light mixing spectrometer

can achieve its theoretical sensitivity over a range of

line widths which is limited solely by the transit time

cutoff frequency of the photodetector and its maximum

permissible input power. The combination of the effects

is such as to place an upper limit on (r/2r) of about

109 cps for either the self-beat or superheterodyne spec-

trometer.

The data on the state-of-the-art capabilities of

optical mixing spectrometers is summarized in Fig. 3-45

for three instruments: (1) a self-beat spectrometer,

(2) a superheterodyne spectrometer with a zero interme-

diate frequency, and (3) a superheterodyne spectrometer

with (w1 = 10r). For each of these Fig. 3-45 gives the

"sensitivity curve" as a function of the optical line

width r, that is the minimum power per coherence area

necessary to achieve the condition (S/N)OUT = 1. The

detectors which are represented here were chosen on the

basis of best quantum efficiency consistent with the

desired frequency response and a tolerable value of

[P/P COH]. This ratio, [P/PCOH] , is indicated on eachCOH lO

r
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of the curves with the following notation: points denoted

by a solid dot correspond to a value of [P/PCOH] set by

dark current considerations only, solid triangles indicate

that [P/PCOH] is fixed by thermal noise and amplifier noise.

These results represent the sensitivity achieved under

the following conditions:

(1) The tunable filter used to examine the photocurrent

spectrum has a fractional resolution a = (Awf/T) = (0.1).

(2) The output filter§ time constant is T = 1 sec.

(3) The heterodyningt efficiency for the superhetero-

dyne spectrometer is [B] = 1.

G. A Comparison Between Optical Mixing and Conventional

Spectrometers

Although Sections E and F present a quantitative

analysis of the theoretical and practical sensitivities ofj anntinal miin =ae--rf m t=r-_ -he numerica rslts nh-
tained there can be put into proper perspective only with

the answers to the following qualitative questions. How

do these sensitivity results for light mixing spectrometers

compare to similar calculations for conventional optical

dispersing instruments such as grating spectrographs and

Fabry-Perot etalons? Are there any fundamental differences

between the two spectroscopic methods? In this section we

discuss this problem in terms of a comparison between the

ideal sensitivity curves for a self-beat optical spectrom-

eter and those for a Fabry-Perot spectrometer of the same

resolution.
IE

1 t§ Chapter 3, Section C.2.b.4

Chapter 3, Section D.3.c
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1. The Fabry-P6rot Etalon Spectrometer

A block diagram of a typical Fabry-Perot etalon

spectrometer is shown in Fig. 3-46. The operation of such

an instrument in measuring the spectrum of the incident

field, SE(), was described briefly in Section A. The

action of the etalon itself is completely analogous to

that of the simple tuned filter shown in Fig. 3-1; its

purpose is to examine the incident power spectrum by pass-

ing to a photodetector only that portion of the spectrum

which lies inside its "bandpass." The desired information

on the spectrum of the incident light, SE(X), is contained

in the total power getting through the etalon as a function

of its center transmission frequency, wf. This power is

measured by an ordinary photodetector.

a. The Signal Processing

The details of the filtering process may be

specified in terms of a system or filter function H(w) 12

as introduced in Section C.2.b.l. In this case we have

for the power spectral density of the field reaching the

photodetector

Sf(L) = IH(w)12SE(W) (3-233)

The system function that describes the frequency transmis-

sion characteristics of a Fabry-Perot etalon is ideally a

Lorentzian 5 4

(AWf)2
I H ( ) 12 = 2 (3-234)

(W-Wf) + (Awf)
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having unity response at the center frequency of its

bandpass (w = f). The ratio of wf to the full-width

at half-transmission 2Awf is normally referred to as the
resolving power of the etalon.

Suppose that the power spectral density of the

incident field is a Lorentzian centered at the optical

frequency wo and having a half-width at half-height of

r rad/sec. Then from Eq. (3-54) we have

SE() 2 >( 2 (3-235)

(W-co ) + r
(W >. 0)

Using Eq. (3-234) for IH(M) yields Sf(W) as

K)<1( 1r.O t) I2>(r/7) (AWf)2
Sf(w) = 2 2 2 (3-236)

(- O) + r (-f) + (Auf)
(rO)

If the effective area of the etalon-detector combina-

tion is A, it follows that the total power falling on the

photodetector is given by

Pf = (A/pcm) ISf (w)d (3-237)

In the limit in which the "bandpass" of the etalon, Awf

is small compared to the optical line width, r, we have
immediately from Eq. (3-236)

(A/%cm)<l (ro,t) I (wf) Por (Awf)
f = 2 2 2

(Wf-o) + (WfWo) r3-238)
l
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where P = (A/pocm)<j('o,t) 2> is the total optical

signal power collected by the etalon. Clearly as wf is

tuned through its range Pf simply traces out the spectrum

of the incident light.

Allowing the filtered optical field to fall on a

photodetector produces the usual three components in the

power spectral density of the photocurrent; a dc current

given by

ip = (se/w )P (3-239)
p 0 Pf

- - *9yj -1jj%4 #%9 l1-'i4
L Uj. J. % LL 3 J a-1UL. AJ X- -1 ̂  L U % LIIJILL

I ()= (e/) ip (3-240)ip
(w20)

and a self-beat term

1 (2A /T2)
I 2() 2 (3-241)

(ACOH/A) w + (2 Awf)

The upper line in the braces of Eq. (3-241) applies when

the etalon area is small compared to the coherence area

of the signal field, A << ACOH, while the lower line holds

for A >> ACOH. Because the desired information in the

photocurrent is present as the dc current component, the

self-beat part of the detector output represents an addi-

tional noise power per unit bandwidth around (w = 0) which

will tend to obscure a determination of i . This situation
P

Chapter 3, Sections C.1 and C.2.

I

i
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is completely equivalent to the condition encountered at

the detector output of a light mixing spectrometer.

However, for practical applications involving conventional
2 2spectrometers we usually have[I S (0) << IN (0)] and,

therefore, the primary source of noise in the measurement

of i is the ac shot-noise power, IN (). If these ac
p N

noise currents reach the output meter they cause the meter

reading to fluctuate and hence make the determination of

i uncertain. To block a majority of the ac currents from
P
the output indicator the photodetector output is passed

through a suitable RC filter as indicated in Fig. 3-46.

b. The Output Signal-to-Noise Ratio

The description of this post-detection

filtering process and the definition of an output signal-

to-noise ratio proceed exactly as in Section C.2.b and

yield the result

(S/N)OUT = ) PfT (3-242)

where (T = RC). The quantity (c/wo)PfT is just the

number of photoelectrons ejected from the photocathode

during one "response time" of the output filter, -r; that

is, Eq. (3-242) reflects the intuitive result that the

numerical counting of N uncorrelated photo-events is

uncertain by an amount /i.

Equation (3-242) may be written in a form that can

be compared with the analogous results for a light mixing

Chapter 3, Section C.2.b.2.
**

Chapter 3, Section B.2.
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spectrometer by evaluating P at the point of peak etalon

transmission, f = o', and taking T = (1/AwT). In this

case we have

AIf
(S/N) OUT= i-h7o (3-243)

c. The Effects of Spatial Coherence

The most striking feature of Eq. (3-243) is

that the output (S/N) ratio for a conventional optical

spectrometer is unaffected by the coherence properties of

the incident electric field and has a sensitivity speci-

fied in terms of the total available optical power. There-

fore, in a situation in which it is feasible to collect

light from a large number of coherence areas in the signal

beam the Fabry-Perot spectrometer has an initial advantage

in minimum detectable power that is related to the ratio

i, ~ [Po/PCOH]

2. The Intrinsic Difference Between Conventional

and Light Mixing Spectroscopy

Suppose, however, that we arbitrarily restrict

the Fabry-Perot to accepting light only from a single

coherence area. How does the sensitivity of such an in-

strument then compare with the sensitivity of an ideal

self-beat spectrometer? For purposes of comparison we will

assume that the following conditions hold for both spec-

trometers: (1) the normalized resolution in each case is

(Awf/F) = 0.1, (2) both photodetectors have unit quantum
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efficiency (E = 1), and (3) the outputs are filtered by

identical RC circuits with a time constant T = 1 sec.

Furthermore, the effects of dark current, thermal noise,

and amplifier noise are to be neglected in both cases.

Under these circumstances we find the sensitivity curves

shown in Fig. 3-47. The results give the optical signal

power per single coherence area which the corresponding

spectrometer requires in order to achieve a unity output

signal-to-noise ratio. Clearly the ideal Fabry-Perot

etalon instrument is capable of examining the spectrum

of a much smaller amount of optical power than the ideal

self-beating spectrometer. This discrepancy is an indi-

cation that an inherent difference exists between the

physical processes by which the two methods obtain spectral

information on the incident field. In fact, the explana-

tion o tnis difference is to De rouna in a unaamental

limit on the amount of information which any device may

extract from the electromagnetic field; a limit set by

quantum mechanical uncertainty considerations.

Any amplifier or detector of electromagnetic radiation

produces an output which is some representation of the

intensity and possibly also the phase of the input wave.

It is possible then, that such a device may obtain, simul-

taneously, information on the number of quanta in the

incident field and also a measurement of its phase. If

so, its performance must be limited5 5 by the uncertainty

relation between these two conjugate quantities. That is,

a single measurement at the output of an amplifier or

detector from which we can deduce both the phase and the

number of quanta in the incoming beam implies an uncer-

tainty in these quantities which must satisfy the inequality

AnA 1 (3-244)

2nA~ 
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The factors (.An) and (A) are the rms uncertainties in the

number of incident photons, n, and the phase of the incoming

field, , respectively.

This uncertainty principle also places a fundamental

lower limit on the amount of optical-power which the

detector or amplifier requires in order to extract infor-

mation from the field. In particular, if the sensing appa-

ratus is capable of fixing the phase of the input wave within

an error A, then during the measuring period this apparatus

must receive at least nMIN photons, where

nMIN A An = 2^¢ (3-245)nMiN ~ An - 2A

Equation (3-245) states that the number of photons at the

input must exceed the inherent uncertainty in n if a meas-

urement is to determine whether the output data in fact

represents an input signal. The equality (nMIN = An) is

equivalent to a unity value of output signal-to-noise ratio,

the rms uncertainty in the desired quantity being equal to

the value of the quantity itself.

Suppose that a single "experiment" involves N inde-

pendent measurements of the type described above. Then

An, and therefore nIN, are reduced by the factor Vi, yield-

ing a detectability condition

A. n 1
nMIN i An

We now proceed to determine the values of A and N which

characterize light mixing and conventional spectroscopy.

First consider a self-beat spectrometer which is

providing information on the spectrum of an incident light

beam having the usual Lorentzian power spectral density
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with a half-width at half-height of F rad/sec. This spectral

information is present at the photodetector output as the

signal part of the photocurrent spectrum shown in Fig. 3-48.

The amount of phase data which we gather by examining this

beat note spectrum can be calculated as follows. The phase

advance of the incident optical field in a measuring time

6t is simply

= if the optical frequency is uncertain by an amount

However, if the optical frequency is uncertain by an amount

Aw then at the end of the measurement the phase is also

uncertain, namely

A~ = Aw*6t (3-247)

From the information available in the self-beat current

spectrum we may conclude that the spectral width of the

input field is r and, hence, during the time t the exact

incident frequency was uncertain by an amount (Aw = F).

Furthermore, the time required for the photomixer to provide

one independent determination of S. () is just the corre-
* 1

lation time of the photocurrent , at = (1/2r). Thus a self-

beat spectrometer makes a phase measurement on the incoming

signal field having an uncertainty

A| = r(1/2r) = 1 radian
2

This reil- in cnmbinA-in with (-24) implies that… .-.- -..- - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-. --s.. '…-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-x-^- -~~

in a time t = (1/2r) the mixer must receive at least

I I ~~ -- r- -ITo

Chapter 3, Section C.1, Eq. (3-58).

i
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I 2 (w)
S

l

l

.U~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I
Figure 3-48 The spectral information available at the

photodetector output of a self-beating optical
spectrometer.
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(nMN >_ 1) quanta. If the incident power is denoted as
P then an equivalent statement is

1 -) -2 r 21(3-248)

This condition refers to a single elementary determination

of S() as made in a time 6t = (1/2r). Suppose, however,

that we detect the presence of the beat signal by passing

the photocurrent through an electrical filter of the type

considered in Section C.2.b.l. This filter has the rec-

( tangular frequency response shown in Fig. 3-11 and a re-

sponse.time Tf = (r/Awf) as calculated from its impulse

response, h(T). If we have Tf > 6t, that is Awf < (2r/I),

then in a time (T > Tf) this filter will make

N = T/Tf

independent determinations of the possible presence of a

beat signal. Writing AwT = (1/T) we find the minimum

required input power from Eq. (3-246) as

P 1
FP ) 2r 2 i

that is

(P) 2r wf 1 (3-249)hw 2r T

Comparing this result with Eq. (3-140) and employing the

A .a m n-In n 1 Chor7C oh's- I (a-2494 ; A i a i r 1 
--- v a' __ - -v w - -_ - ,,-. - ,- , -- a,,I --

the condition which yields (S/N)OUT 1 for the ideal
self-beat spectrometer. Therefore, we come to the

Chapter 3, Section C.2.b.1.

i

i

I
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following important conclusion. An ideal optical mixing

spectrometer operating at its limit of sensitivity,

(S/N)OUT = 1, is extracting from the incident field the

maximum amount of information allowed by the uncertainty

principle. An argument similar to the one presented above

shows that this conclusion is equally valid for both self-

beat and superheterodyne instruments.

Let us now ask what amount of phase data is present

at the detector output of the Fabry-Perot etalon spectrom-

eter. In this case the desired information is contained

in the dc component of the photocurrent. However, since

a determination of the dc photocurrent contains no phase

information on the incident field, a conventional spectrom-

eter has a characteristic value of A given by

A = , (3-250)

This result, together with the minimum input power condition

in Eq. (3-245), implies that a single, elementary determina-

tion of the presence of an input signal can be made with an

arbitrarily small number of incoming quanta. Of course,

since the dc photocurrent represents the infinite time

average of the incident light intensity

Tip= AIJ(ot) i2 cA ~ i Tdt

the time interval required for the detector to produce such

a single measurement is 6t = a. For the conventional

optical spectrometer then, the condition (S/N)OUT = 1

implies a minimum detectable optical power which is set

simply by the requirement of having at least one photo-

electron ejected during the measurement interval, not by

the uncertainty principle.
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In view of this result perhaps a more revealing com-

parison between optical mixing and conventional spectro-

scopy than that illustrated in Fig. 3-47 is contained in
- a - --. L.: - - : : .. - - d L L1 A A P 1 .4 - ho 1 - . 4TIe rat.Lio uLr minimum UeLecdLa)lV syigaLl j.wJUrWtL JL1 L1n n LJLL.LL

(1/AwT) + . Again confining the Fabry-P6rot to

gathering light from a single coherence area we have from

Eqs. (3-243) and (3-140)

PMIN (self-beat) (3-251)

PMIN(Fabry-P6rot) XT

In the limit (T + a) this ratio increases as / and

becomes infinitely large. That is the inherent sensitivity

of a conventional optical spectrometer is infinitely greater

than that of an optical mixing spectrometer. Furthermore,

the origin of this advantage lies in the amount of phase

information which is obtained by each method in the pro-

cess of examining the spectrum of the input optical field.

Table V gives a list of some common detecting schemes

classified according to their characteristic values of A.

I

I

I

I

i
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Table V THE UNCERTAINTIES An AND AX FOR VARIOUS MEASUREMENT

TECHNIQUES

Measurement Technique

Quantum Countersa

(Particle Detectors)

Optical Mixing Spectrometers

Optical Mixing Receiverb

(detecting an unmodulated carrier)

Ideal Maser Amplifiera

Ideal Phase Detectora

1

2

l
1

2n

a. R. Serber and C. H. Townes, in Quantum Electronics,
edited by C. H. Townes (Columbia University Press,
New York, 1960), p. 233.

b. B. M. Oliver, Proc. IRE 49, 1960 (1961).

H. A. Haus and C. H. Townes, Proc. IRE 50, 1544 (1962).

B. M. Oliver, Proc. IRE 50, 1545 (1962).

.

Ii

i

I

I
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Chapter 4

THE EXPERIMENTAL APPARATUS EMPLOYED IN THE STUDY

OF THE BRILLOUIN-MANDEL'SHTAM AND CENTRAL COMPONENTS

IN THE LIGHT SCATTERED FROM TOLUENE LIQUID

A. Introduction

This chapter describes the important features of two

superheterodyne optical mixing spectrometers which were

used to detect the Brillouin-Mandel'shtam and central com-

ponents respectively in the light scattered from toluene

liquid. The discussion of the experimental apparatus and

techniques that were employed in these two experiments can

be conveniently divided into four major sections.

MI, -r 4r4 4; 4C~t 4-of; on ;-k - C-1, ; o 1

operational characteristics of the helium-neon gas laser

which is used to illuminate the scattering medium and also

acts as the source of an optical local oscillator field.

We examine in some detail two particularly important prop-

erties of this light source: (1) the intensity distribu-

tion in its electric field as measured at points both

inside the laser resonator and in the laser output beam,

and (2) the shade of the constant hase surfaces of this

electric field. A knowledge of these wavefront charac-

teristics is essential to a calculation of the intensity

and spatial coherence properties of the scattered field

Chapter 2, Section E.4.a.
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as well as to an understanding of the operation of the

mixing spectrometer optical systems. Special attention

is also given to a discussion of the precautions which

were required to suppress excessive amplitude modulation
*

of the laser output.

The second section presents a physical description

of the scattering cell and emphasizes the special features

that permit this cell to be used inside the laser resonator.

A simple geometrical optics approach serves to analyze the

trajectories of rays leaving the cell and to express the

externally measured scattering angle and ray divergence

angles in terms of their values inside the scattering

medium. We also examine here the novel technique that

was used to accurately fix and measure the rather small

(O < 3) scattering angles to which the present observations

were confined.

The third and fourth sections analyze the optical

systems, electronic detection apparatus, and alignment

procedures of two optical superheterodyne spectrometers:

one used to detect the presence of the Brillouin-Mandel'shtam

doublet in the light scattered from toluene at = 0.5470,

the second used to obtain the natural width of the central

component in the same sample over the range

(0.310 < 0 i 2.830).

Chapter 3, Section F.3.b.
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B. The Laser

1. General Features

The light source which was used in the measure-

ments presented in this thesis is a conventional helium-

neon gas discharge laser oscillating on the air 6328.2 A
visible transition of neon.

The gas mixture is contained in a Brewster angle

terminated, quartz plasma tube from a Spectra-Physics

Model 112 laser.2 This tube is of the so called "dual bore"

variety with a total length of 115 cm made up of two equal

length sections having inner diameters of 8 mm and 5 mm

respectively. The required current discharge is maintained

by rf energy coupled in capacitively through the tube walls.

As indicated schematically in Fig. 4-1 the large electrical

impedance (200 k) of the tube is lowered by dividing up

the discharge path into a number of parallel connected

segments. An inverted pi-network 3 matches the resulting

impedance to a standard 500 transmission line.

The rf driving power necessary to saturate4 the

6328A transition was approximately 50-75 watts. In order

to minimize amplitude modulation of the optical output,

this power was supplied from the highly regulated, crystal

controlled rf transmitter whose schematic diagram is given

in Fig. 4-2. The total rms noise and ripple on the rf

output voltage of this device was less than 0.01% under

typical operating conditions. In addition, the efficiency

of the residual noise in producing a laser power output

fluctuation was reduced substantially by operating the

laser near its saturation point4 where to first order

the laser power output becomes independent of the discharge

current. These two precautions were sufficient to guarantee

i
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that noise from the rf power supply contributed negligibly

to both the short and long term instabilities in laser

output.

2. The Phase and Intensity Profiles of the Laser

Electric Field

The plasma tube is mounted inside a cavity

resonator formed by two high reflectivity dielectrically

coated mirrors placed in a hemispherical5 configuration.

For the present experiments these are: (1) a spherical

mirror with a radius of curvature of r = 200 cm and a

reflection coefficient R (0.999); and (2) a flat mirror

with a reflection coefficient R = (0.98). For hemispheri-

cal operation the mirror spacing is adjusted to be

slightly less than the radius of curvature of the spheri-

cal reflector, rs. The simple physical argument given

below serves to explain the intensity and phase patterns

that are normally generated by a laser with this particu-

lar mirror arrangement.

Since the laser output represents an oscillation on

one or more of the normal modes (resonances) of the cavity,

the resulting intensity and phase distributions inside

the resonator will in general be characteristic of its

lowest loss resonances. A normal mode of the cavity may

be defined6 ,7 8 as an electric field disturbance that

reproduces itself in spatial distribution and phase,

although not in amplitude, as the wave bounces back and

forth between the two reflectors. Suppose we consider

a hypothetical "normal mode" having a uniform phase and

intensity over the surface of a spherical reflector. In

this case the trajectory and intensity profile of the
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field that propagates away from the mirror can be described

simply in analogy with the problem of focussing by an ideal

lens. Figure 4-3 illustrates the equivalence between the

proposed "normal mode" field pattern and that produced by

a lens of focal length (f = rs) illuminated by a uniform

intensity, parallel light beam.

The solution to the problem of the diffraction limited

focussing of parallel light is well known.9 For our pur-

poses one of the most useful results of this analysis

shows that the focal plane, the plane normal to the axis

of the lens and containing the geometrical focal point,

F, is a plane of inversion symmetry for both the phase and

intensity profiles of the focussed beam. It follows that

the proposed electric field disturbance can be made into

a normal mode of a resonant cavity by placing a flat

mirror so that its reflecting surface is coincident with

the focal plane. This situation, in fact, represents the

condition of exact hemispherical 5 operation. Moreover,

the "constant phase" normal modes represent the lowest

loss resonances of the system.8

The rigorous solutions describing the complete set of

normal modes of the hemispherical resonator have been given

by Boyd and Kogelnik. 8 The important features of their

results are summarized below.

The modes may be designated by the usual microwave

convention, TEMmnq where TEM indicates that the normal

mode disturbance is a transverse electromagnetic wave.

The mode designations m and n give the number of phase

reversals, (O + ) or ( + 0), encountered while traversing

the reflector surface in two orthogonal directions (x,y),

(r,e), etc. The mode designation q gives the number of

half-wavelengths which are contained in the resonator. The

self-reproducing condition demands that q be integral.
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Based on this notation the "constant phase" normal

modes which we described above are given the designation

TEM and are commonly referred to as "uni-phase,"
ooq

"longitudinal," or "axial" modes. Those cavity resonances

that have (n > 0) or (m > 0) are generally called "trans-

verse modes."

The uni-phase modes exhibit a number of important

properties that make them especially useful in light scat-

tering experiments. The first is their distribution of

intensity and phase near the resonator "focus."

For a hemispherical cavity having azimuthal symmetry

about the axis of the resonator, the uni-phase modes have

an electric field amplitude distribution on both reflectors

which is Gaussian,8 viz.

-4r2/D2
E(r) = E e (4-1)

0o

where r is the radial distance from the cavity axis. The

quantity (D/2) is the value of 'r at which the field ampli-

tude falls to (l/e) of its central (r = 0) value; we will

refer to D as the spot diameter. Integrating the square

of Eq. (4-1) over the reflector surfaces shows that 86.5%

of the power reaching the reflector is contained within

these spot diameters. Taking as the mirror spacing in

a hemispherical system and rs as the radius of curvature

of the spherical mirror we find for the spot diameters 8

=Df' = 2 ( s )(rs)T}T (4-2)

r
D ' 2{{ s )(r£)}2'=(4-3)

s
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on the flat and spherical reflectors respectively.

For the usual condition of hemispherical operation,

(e r = f), Df' can be written in terms of D as

Df = 1 27( air (4-4)
S

This is almost precistly the relationl s between lens

aperture diameter (d D ') and the diameter of the first

Airy disk in the image formed by an ideal lens of focal

length f. We may again use the focussing analogy to ad-

vantage in discussing the intensity distribution between |

the two reflectcrs. Except near the focal point F, which

in this case is at the flat mirror, the mode phase-fronts

remain spherical and the majority of the power in the

beam is concentrated inside the geometrical ray cone

drawn from F to a circle of diameter Ds' on the spherical

mirror. This ray cone is shown in Fig. 4-4. On the other

hand, the effects of diffraction become severe at the

focal plane where instead of a geometrical point focus

we have the total power smeared out over a disk of diam-

eter Df'. It is useful to define the focal region as

that cylindrically shaped volume with diameter Df' and

length L

2

L = 6.770(D X (4-5)

whose cylindrical axis is collinear with the resonator

axis and centered at the geometrical focus F. Approxi-

mately 85% of the total power reaching the focal plane

passes through this tubular region. Furthermore, Farnell'

has shown that the wavefronts in the focal region are

planes normal to the resonator axis. Figure 4-5 sche-

matically illustrates a cross section of the focal
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Figure 4-4 The geometrical ray cone of the constant phase
normal modes of a near-hemispherical resonator.
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region showing the general shape of the high intensity

region and the wavefront behavior. The important conclu-

sion is that the focal region of the hemispherical resona-

tor operating in a uni-phase, TEMooq, mode consists essen-

tially of a plane parallel pencil of light collimated to

the diffraction limit.

The discussion presented in Section E.6 of Chapter

2 showed that such a plane wave, narrow pencil illumina-

tion of the scattering volume results in a maximum value

of the scattered power per coherence area, PCOH There-

fore, the hemispherical resonator provides two regions,

one inside and one outside the flat mirror, which are

ideal for scattering purposes. Furthermore, because

the focussed beam is obtained without the use of auxil-

iary lenses, this system avoids an added source of wave-

front distortion and consequent loss in heterodyning

efficiency.

Although Eqs. (4-2), (4-3), and (4-4) would indicate

that the mirror spacing can be used to control the

diameter of the focal region, in general D s' and, there-

fore, Df' are fixed by a second consideration. In the

exactly hemispherical configuration the natural mode

diameter on the spherical mirror approaches infinity and

Df' tends to zero. This situation is one of extremely

high losses6, 7 8 since the aperture of the system is

restricted to the inside dimensions of the plasma tube.

The laser can be allowed to oscillate in the uni-phase

modes by decreasing the mirror spacing until the geomet-

rical ray cone of the mode fits inside the plasma tube.

Chapter 3, Sections C.2.a.2 and D.3.a.

Chapter 3, **Section D.3.b.3.
Chapter 3, Section D.3.b.3.
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At this point the losses are minimal and these modes

oscillate strongly. By reducing further we can de-

crease Ds ' and increase Df'; however, this also allows

oscillation on transverse modes, which in general have

somewhat larger spot diameters and, therefore, larger

losses than the uni-phase modes. 7,8,9

In the present case the resonator length was ad-

justed to maximize the uni-phase power while suppressing

all tendency for oscillation on transverse modes. Under

these conditions with

r = 200 cm
S

I was approximately

= 199 cm.

The spot diameter on the spherical mirror was estimated as

D ' - 0.53 cm (4-6)

Using Eqs. (4-4) and (4-5) we have for the dimensions of

the focal region

Df' = 0.030 cm (4-7)

and (L/2) = 30 cm (4-8)

The predicted value of Df' was checked by direct observa-

tion of the beam diameter at the flat mirror using a 20X

power microscope. This measurement gave D 0.01"ff
= 0.025 cm.

The uniphase laser power output in the hemispherical

configuration was

P 25 milliwattsOUTPUT
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continuous output at Xair = 6328.2 A, and was avilable
.I-1L.- - - .. L- L..- - rI _ - -J ....... _ I 'n , h-% - - ' ..... I - -' - -' IUnrLugn 1ne r£a±l mirror K U. ). Assuming a negLjgj.LL

loss coefficient in the mirror coating this corresponds

to a cavity power of

POUTPUT
T__- = 1.25 watts

where T is the reflector transmission coefficient.

A second important advantage of the hemispherical
uni-phase mode of operation is that the available laser

output consists of a spherically spreading wave emanating

from a diffraction limited point source. As we saw in

Section E.4.c of Chapter 2 the wavefronts of the scat-

tered field in the Fraunhofer region are also spheres.

Therefore, if the laser output is used as the local
**

oscillator source, the necessary wavefront matching

can be accomplished with a minimum of difficulty.A,~ ~ ~ ~ lr-rrrL -I-- IL-L---_--
-nie punuts n Lavor or tne nemispnerical resonator

can be summarized as follows:

(1) It provides a collimated, plane wave beam

without the use of additional optics. This collimated

beam is avilable both inside and outside the resonator.

(2) It is a structure in which the lowest

loss resonances are the desired uni-phase TEM modes.ooq
(3) Its uni-phase output is a simple spherically

spreading wave.

1 The loss coefficient of good dielectric coatings is
typically less than (0.002).

Chapter 3, Section D.3.b.2.
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3. Amplitude Modulation Effects

Operation of the laser under varying conditions

revealed that serious amplitude modulation of the laser

output, corresponding to rms power fluctuations of a few

percent, were traceable to four primary sources.

a. Mechanical Stability

The first is any mechanical instability

which can modulate the positions of the resonator reflec-

tors. In the present system an angular misalignment of

the spherical reflector by about (0.3) minutes of arc can

completely stop the laser action.5 This represents a

tilting of the mirror surface from exact alignment by

approximately one wavelength of light over the spot

diameter.

The following steps were taken to minimize the me-

chanical instability problem. The reflectors were held

in a pair of precision gimbal suspensions (GS-253) manu-

factured by the Lansing Research Corporation. Although

capable of (0.1) second of arc resolution 2 these mirror

mounts proved barely adequate from the standpoint of both

rigidity and adjustability. The resonator itself was

formed by attaching these mounts to a (3" x 6" x 8')

solid piece of stress relieved aluminum jig plate. This

base exhibited excellent thermal stability, showing only

the expected linear change in length with varying temper-

ature. However, it did have serious acoustic resonances.

For this reason the experiments described here were car-

ried out in the "40 foot room" facility of the M.I.T.

Spectroscopy Laboratory. The floor of this room is
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acoustically isolated and effectively damped except for

extremely low frequencies (3 cps). In addition, the room

ambient audio noise level is exceptionally low under

optimum conditions. Even with these precautions, the lower

lower limit on laser amplitude modulation was, in fact,

set by mechanical microphonics. The modulation spectrum

was peaked at zero frequency with a modulation index of

2i[m(30 cps)] 10-6 cps-l

at (/2f) 30 cps which rapidly declined to better than

10-8 (cps) at (w/2T) 1000 cps.

J b. Discharge Current Noise

The second source of amplitude instability

was noise in the plasma tube discharge power supply. This

problem was eliminated by the methods discussed at the

beginning of this section.

c. Dust

The presence of dust inside the resonator

provided a third source of power fluctuations. In a

hemispherical resonator this problem is seriously enhanced

by the small diameter of the laser beam in the focal re-

gion. In fact, a single dust particle located at the

center of the focal region in some cases caused sufficient

Chapter 5, Section C.

Chapter 3, Section F.3.b.

I-

I
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loss to stop the laser oscillation completely. This

extraneous modulation was eliminated by sealing the open

portions of the resonator in Plexiglas enclosures. The

dust remaining inside the cavity was then electrostati-

cally precipitated to the walls by rubbing the Plexiglas

with a dry cotton cloth. After a few hours only one or

two dust particles per second could be seen crossing a

30 cm length of beam near the resonator focus.

d. Axial Mode Locking

The fourth source of amplitude noise re-

sulted from a weak interaction between the various longi-

tudinal modes which were in simultaneous oscillation at

maximum laser power output. Although the point was not

stressed above, in fact, the uniphase modes correspond

to an infinite number of resonances, TEM , which differ
ooq

only in the value of their axial mode number q. The

frequency difference between two adjacent resonances,

TEMooq and TEMoo(ql) is called the axial mode spacing

axial and is given by

AWaxial c
(4-9)2~ = 2T

where c is the velocity of light in the resonator. For

£ = 200 cm we have

AW
baxi 75 Mc/sec
2 Tr

Since the Doppler-broadened gain profile of the 6328 A
neon transition has a full-width at half-height of

approximately 1.5 kMc/sec,1 3 there are about 20 such
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modes in simultaneous oscillation at any given time.

Figure 4-6 illustrates the corresponding power spectrum

of the laser, SLASER(w).

In the absence of any non-linearity in the optical

properties of the medium these modes are uncoupled and,

therefore, would oscillate with random relative phases.

However, Lamb' 4 has shown that the reaction of the plasma

to the process of oscillation is such as to result in a

resistive as well as reactive coupling mechanism between

modes. If this coupling is sufficiently weak the modes

still oscillate with random phase; however, the resonance

frequencies are slightly "pulled" from their uncoupled

values. This pulling lifts the degeneracy of the axial

mode spacing, AWaxial' As the coupling strength is
increased'5 a point is reached at which the modes spon-

taneously "phase lock" to one another; under these con-

ditions the relative phases of the oscillating modes are

exactly defined and time independent. In this case

SLASER(w) as shown in Fig. 4-6 represents a time function

which is a sine wave "carrier" at a frequency w = L

being pulse modulated at the frequency of the unperturbed

axial mode spacing. Recently, McClurel6 has observed that

this "mode locking" will tend to occur naturally in suf-

ficiently long cavities.

This natural locking tendency was found to be rather

strong in the laser used for the present measurements.

However, it was not sufficiently strong to keep the modes

permanently locked as the length of the cavity varied due

to thermal expansion. The observed result was a transition

from locked to unlocked operation and a consequent return

to lock as the cavity length changed by (X/2). Unlocked

operation and particularly the transitions in either direc-

tion were always accompanied by a large amount of broadband

i
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audio (2000 cps) amplitude modulation of the laser output.

On the other hand, operation in the locked condition re-

sulted in an undetectably small noise modulation.

The following method was used to observe and correct

the cavity length in order to maintain the situation of

maximum laser output stability. The degree of locking was

continuously monitored by detecting beat-notes between

the axial-modes with a high frequency photodiode and

displaying the resulting current spectrum on a panoramic

spectrum analyzer. The monitoring system is shown sche-

matically in Fig. 4-7. A small amount of laser power

available through the spherical mirror is focussed onto

an E&G SD-100 silicon nhotodiode. The resulting self-

beat current is examined by a Singer-Metrics Division

model SPA-4a Panoramic spectrum analyzer which is tuned

to display approximately a 200 kc/sec wide band of fre-

quencies centered at the axial mode spacing, (axial/ 2 f)

- 75 Mc/sec. The interpretation of the characteristic

behavior of this spectrum as a function of cavity length

can be summarized as below.

(1) The changing pattern of the beat spectrum

repeated itself at regular intervals as the cavity length

increased due to heat flow from the plasma tube to the

resonator base. Since the operation of the laser should

be identical whenever the axial mode resonances assume

equivalent positions relative to the laser gain curve,

this interval corresponds to a resonator length change

EA = (X/2). The time necessary for one such complete

cycle was generally 30-100 sec.

(2) The laser operated in the locked condition

during approximately 70% of one cycle. During this

period the axial mode beat note was extremely narrow,

6
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having a width which was undetectable even at the minimum

available analyzer resolution (Aw/2r) 1 kc/sec. Further-

more, the short term (< 1 sec) amplitude stability of the

beat note was as good as the output stability of a good rf

signal generator. The first condition indicates that the

frequency spacing between all pairs of adjacent axial modes

is degenerate, while the observed amplitude stabilization

implies that the relative phases of these pairs is indeed

constant with time.

(3) The power in the beat note as seen during

the "locked" portion of the cycle executed a single maxi-

mum. The points of transition into and out of lock occurred

at roughly 75% of this peak value.

(4) Operation in the unlocked condition produced

a rather broad ( 150 Kc/sec) axial mode beat note spec-

trum which was composed of many closely spaced, barely

resolvable contributions. Moreover, there was no detect-

able amplitude stabilization; the observed spectrum re-

sembles that of a narrow band random noise generator.

( In order to allow for small adjustments (± X) in the

cavity length to one of the regions of stable, locked

operation the spherical resonator mirror is mounted on a

piezoelectric cylinder whose length is a function of the

applied voltage. The "servo" system used to control this

voltage is shown in Fig. 4-8. The battery voltage V is

adjusted such that the range V = 0 to V = V corresponds

to a (X/2) length change of the piezoelectric element.

The single turn potentiometer R1 is made continuously

rotatable so that V can be made to go "discontinuously"

i from V = V to V = 0 or vice versa. In this way the con-

tinuous expansion of the resonator base caused by heating

need be counteracted only over a range AE = (X/2). Suppose,
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for example, that the length of the piezoelectric element

increases with increasing applied voltage. As the resonator

base expands, V is increased to keep constant; however,

when V = V no further correction is avilable. At thiso
point V is made to go "discontinuously" to V = 0, increas-

ing the cavity length to [ + (X/2)]. Since £' = [Z+ (X/2)]

is also a region of stability the process repeats as before

starting with V = 0. The RC network formed by resistor R2

and the capacitance of the piezoelectric element guarantees

that the change in applied voltage across the element occurs

slowly enough to avoid transients in the laser output.

The servo loop is completed manually by visually

observing the beat note power on the spectrum analyzer;f R1 is then rotated to keep this power near its peak value.

Under these conditions the total rms noise modulation on

the laser power output due to the locking phenomenon was

less than (0.005%). In terms of the modulation index m(w)

this implies the result

J m(w)d < 5 x 10 - 5

0

e. Importance of the Modulation Effects

For measurements on the spectrum of the

central component, which were made using a zero inter-

mediate frequency (w = 0), all four of the above pre-

cautions were necessary to insure that the self-beat

between the local oscillator and its own modulation

spectrum did not swamp the desired heterodyne signal.

On the other hand, the intermediate frequency for detec-

tion of the Brillouin components was (/2W) = 30 Mc/sec.t~~~~~~~~~~~~~~~~~
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In this case no dust shielding or cavity length control

were required even though very large local oscillator

powers were necessary to overcome the photomixer dark

current.

C. The Scattering Cell

The cell which contains the liquid sample was designed

specifically to be placed in the focal region inside the

laser resonator. As stated in the previous section, the

optical power available in the cavity was approximately

fifty times greater than the actual laser output. However,

if intra-cavity operation is to result in an enhanced inci-

dent power, the cell design must meet three criteria. First,

because the amplitude of the laser oscillation can be seri-

ously reduced even by very small losses (0.1%) introduced

into the resonator, special precautions are necessary to

keep these losses to an absolute minimum. Second, the

allowed tolerance on the cell dimensions must be small

enough to guarantee that the cell may be adjusted inside

the cavity without causing an apparent misalignment of the

resonator mirrors due to wedge angle effects. Third, the

non-uniformity in optical thickness of cell windows and

fluid combined should not appreciably warp the wavefronts

of the incoming beam. If possible, the apparent optical

length of the cell should be uniform to within (X/20) over

the beam diameter.

Chapter 3, Section F.3.b.
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1. General Description

A sectional view of the cell used in the present

experiments is shown in Fig. 4-9. With the cell properly

oriented in the laser cavity the plane of this drawing

contains the resonator axis, AB, and also coincides with

the plane of polarization of the incident electric field.

The cell is basically a cylindrical bar of stainless

steel, C, with an axially bored hole S serving as the sam-

ple chamber.

a. Reflection Losses

In order to minimize reflection losses at

the outer window surfaces, the faces of the cell are cut

at an angle such that a ray which travels along the cell

axis enters and leaves the windows at the Brewster angle,

OB. In actual use the cell is rotated about an axis normal

to the plane of Fig. 4-9 in order to obtain the exact

Brewster angle condition. At optimum alignment the total

reflection loss at both windows is less than (0.1%). In

general the window-liquid interface would represent a

serious loss problem since ordinarily it will not have

the same Brewster angle as the outer air-glass interface.

In the present case, however, the index of refraction of

the toluene sample (n = 1.4925) so closely matches the

index of the window (n = 1.52) that this reflection is

less than (0.002%) as calculated from the Fresnel equa-

tions. 17 Since the transmission of the flat mirror repre-

sents a (2%) cavity loss the Brewster angle cell design

was quite adequate from the standpoint of reflection

losses.
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K

b. Wedge Angle

Figure 4-10 illustrates the fact that

inserting the cell into the laser resonator will result

in a rather large (=0.4") translation of the apparent

cavity axis as seen by the nearest reflector, M1. How-

ever, in the hemispherical resonator employed here, the

desired position of the cell is inside the focal region;

therefore, M1 is a flat mirror. In this case, cavity

alignment will be maintained automatically if the cell

does not change the angular direction of the beam. The

allowable wedge angle in the windows and cell body can

be calculated easily in terms of the angular alignment

sensitivity s of mirror M1. Using the values of Ds'

Df ' £, and r given in the preceding section we find

a maximum permissible wedge angle, a, as

a = 0.02 radians 10

This large tolerance reflects the characteristic align-

ment insensitivity of the flat mirror in a hemispherical

system and is quite easily satisfied.

For the cell shown in Fig. 4-9 there are two contri-

butions to a, the wedge angles of the windows and the cell

body respectively. The cell windows are standard reticle

blanks'8 having a quoted wedge angle of less than 10-5 rad.

Typical machining tolerance (±0.0001") on the thickness
-4variation of the cell body contributed a = 10 rad to the

overall wedge. Experimental observations showed, in fact,

that the angular readjustment of the flat mirror which was

required to peak the laser output power once the cell was

in the cavity generally amounted to less than 10 3 radians.

L

I
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c. Optical Thickness Distortion

The most serious problem encountered with

intra-cavity operation was a severe wavefront distortion

due to random variations in the apparent optical thickness

of the cell. Assuming that the scattering liquid has a

uniform temperature and hence index of refraction we may

conclude that the problem originates entirely at the win-

dows. Three principal sources of distortion were observed:

(1) actual physical warpage of the windows induced by the

stress of clamping, (2) poor surface flatness of the window

blanks even in an unstressed condition, and (3) optical

inhomogeneities in the window material.

The reticle blank windows employed here were circular

disks 1.2 mm thick and 22 mm in diameter. The quoted

surface flatness was ±(X/4) over the central 10 mm diameter

area. These windows were thin enough to introduce a negli-

gible wavefront distortion from the viewpoint of inherent

inhomogeneities; however, this thinness made them easily

susceptible to bending. The following steps were taken to

lower the clamping pressure necessary to join the windows

to the cell body. First, the cell faces were fine ground

to a flatness better than (±0.0001") using a conventional

surface grinder. This figure was then improved to about

(±3X) by hand lapping in a slurry of Lava soap and water.

Finally the faces were optically polished using chromium

oxide on paper. 19 With this surface preparation a direct

glass-to-metal optical contact could be achieved between

the cell body and the windows using only minimal clamping

pressure.

Based on the measured surface figure of the cell

faces and the value quoted for the windows by the manu-

facturer we may estimate the optical thickness variation

L A

I
I
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of the cell as (±X) over a usable aperture of 1 cm. This

represents a distortion of +(X/30) over the laser beam

diameter (Df' = 0.030 cm) in the focal region.

The above cell design proved to be entirely adequate

for operation inside the cavity from the standpoint of

optical quality. If could be inserted, translated, and

rotated inside the resonator with only a small loss in

alignment. This fact permitted adjustment of the cell

to the exact Brewster angle and lateral positioning for

minimum window scattering without the need for continu-

ous±y retuning mirror 1 to maximum laser output.

2. The Thermal Lens Effect

Although a factor of 50 enhancement in incident

power was expected with intra-cavity operation, the gain

obtained experimentally was between 2 and 4. With the

cell in position the cavity power dropped from 1.25 watts

to (50-100) milliwatts and the laser output correspond-

ingly decreased from 25 milliwatts to (1-2) milliwatts.

The origin of this large unexpected loss of power

was traced to a local heating of the fluid due to abaorp-

tion of the laser radiation. This phenomenon has been

observed and explained by Gordon and his co-workers20 as

a "thermal lens effect" resulting from gradients in the

index of refraction of the medium induced by the heating.

Although the absorption coefficient, A, of "optically

clear" liquids is quite small2 l at Xair = 6328 A,

A 5 x 0l4cm 1 , a very slight temperature rise at

the center of the illuminated region is sufficient to

destroy the apparent optical homogeneity of the sample.

The result is a large effective cavity loss due to dis-

tortion of the mode wavefronts.

l
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Gordon et al.20 have solved the required heat flow

problem to determine the sample temperature distribution

for a uni-phase laser beam having a Gaussian intensity

profile. They find for the temperature rise on the beam

axis

AT(r=0) =
0*06APcavity [ 2 a2 ]

A D
(4-10)

Pcavity - the incident laser power

A - optical absorption coefficient of the sample

at the laser frequency; in cm1

A - thermal conductivity of the sample

a - diameter of the sample chamber

D - spot size of the incident beam

- Euler's constant ( = 1.781...)

Using the following values for the quantities appearing

in Eq. (4-10)

Pcavity
= 100 mW

A = 4.7 x 10-4
-1cm

A = 1.38 mW/cm °C

21_ toluene

22_ toluene

a = 1 cm

Df' = 0.030 cm

I

I

I

lI
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we find

AT(r=O) 17 millidegrees

This temperature rise was sufficient to produce an apparent

shortening of the optical path along the beam axis; how-

ever, it has a negligible effect on the measurements of

the properties of the fluid as deduced from the spectrum

of the scattered light.

3. Refractive Corrections to the Scattering Angle

We turn now to a description of the scattering

geometry as seen from outside the cell. Specifically we

will consider three effects of refraction at the cell

windows: (1) the change in the dimensions of the inci-

dent beam, (2) the alteration in the divergence angle

between two rays from its value measured inside the scat-

tering chamber S, and (3) the change in the apparent

scattering angle.

The scattering plane, that is the plane containing

the axes of the incident and scattered beams, was chosen

as the plane of Fig. 4-9. Therefore, it coincides with

the plane of Brewster angle incidence for the incoming

beam. Figure 4-11 illustrates the trajectories of the

incident beam and of two rays scattered from an arbitrary

point inside the illuminated region as viewed in this

scattering plane. For reference purposes we also show

the cartesian co-ordinate system which was used to orient

Toluene has a negative value of (dn/dT).



395

o

a) 

(HDa)

H 1U

0
4n3

H (

r--

LN

rd jc '--H

Q)

.U Q)

OU)

OU-H

re

.,-

a) _

E 

Hl
,-
I

·r4

N

'C

44
n

I



396

the scattering angles 0 and introduced in Chapter 2.

Figure 4-11 corresponds to the situation = 900°.

The first effect of refraction is to increase the

actual incident beam diameter Df' to a larger value Df

as measured along the y direction inside the illuminated

region. Using Snell's law and the Brewster angle23 con-

dition we find easily

D nD' (4-11)
f f

where n is the index of refraction. We assume throughout

that the indices of refraction of the toluene and the

windows are the same and equal to n = (1.5). The result-

ing increase in the y dimension of the beam has a direct

effect on the size of the coherence solid angle of the
** (

illuminated region.

The second effect of refraction is to alter the true

scattering angle, 0, as observed from outside the cell.

Calling the external angle ' and again applying Snell's

law and the Brewster angle condition yields the exact

relation f
n{cos - n sin } = n cos 0' - sin 0' (4-12)

For the small angles (O < 3) used in the present experi-

ments we may to good approximation take sin 0 0,

sin 0' - 0', and cos 0 cos 0' 1. In this case we have

from Eq. (4-12)

E' =n 2 0 (4-13)

which is the desired result.

Chapter 2, Section E, Fig. 2-4.

Chapter 2, Section E.5.
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The third effect of refraction is to modify the

divergence angle 60 between two rays leaving any given

point in the scattering volume. This effect is extremely

important since it directly modifies the coherence solid

angle of the scattered light. Differentiating Eq. (4-13)

gives the result

2
60 = n (60) (4-14)

where 60' is the angular divergence of the rays as viewed

from outside the cell.

The geometry in the direction perpendicular to the

scattering plane can be handled in a similar manner.

Figure 4-12 shows a cut through the illuminated region

in the xz plane of Fig. 4-11. Since the beam enters the

cell at normal incidence in this plane its lateral dimen-

sion is unaltered. A single application of Snell's law

gives the desired relation between the internal angle 

and the external angle ' as

n sin = sin ' (4-15)

For small this may be approximated as

i' = n (4-16)

The relationship between the internal and external diver-

gence angles, 6 and 6Y' respectively, follows directly

from differentiating Eq. (4-16), namely

BY' = n(6T) (4-17)

The results outlined above may be summarized as fol-

lows. As a result of refraction at the cell windows the

incidnt hbeam has an elongated snot diameter with imen-

sions Df' and nDf' in the x and y directions respectively.
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Secondly, the light scattered into an angle 0 from the

forward direction leaves the cell at an angle n20 to the

incident beam. Finally, since the true coherence solid

angle, QCOH, may be written as a product of two coherence

angles as

COH = t4 A'-A (4-18)

it follows that the refraction corrections increase the
3

apparent coherence solid angle by a factor n , i.e.

CO = n QCOH (4-19)

where LCOH is the coherence solid angle as measured out-

side the scattering cell.

4. The Dimensions of the Illuminated Region

Since the scattering cell was used inside the

focal region of the laser described in Section B, the beam

passing through the sample may be described as a collimated

pencil of light with a cross-sectional intensity distribu-
**

tion given by

I(x,y) = (0,0) exp -[8 2exp [ - 2 (4-20)
(Df L (nDf' 

The coordinates (x,y) are measured from the beam axis in

-the cartesian system of Fig. 4-11. For purposes of calcu-

lating the spatial coherence solid angle of the illuminated

Chapter 2, Section E.5.
**Chapter 4, Section B.2.

Chapter 4, Section B.2.

o

.1
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region it is convenient to approximate this Gaussian dis-

tribution by the uniform intensity distribution

C T. T.

I (x,y) =4

X X I
< x<

I(0,0) L L

2 < Y(4-21)
2 2otherwise (4-21)

0 ; otherwise

Equating the total incident power for each case we find

Df' Df'
L = =
x )T7 1.596

(4-22)

nDf ' nD
L =
y v-s(-/:i 1.596

where L and L will be called the lateral dimensions of
x y

the illuminated region. Using the measured value of D

and (n=1.5) we have

L = 0.019 cmX

L = 0.028 cm (4-23)
Y

L = 2.54 cm
z

where L is the axial length of the scattering chamber.

l



A A

5. Measurement of the Scattering Angle

There are a number of experimental factors which

combine to preclude the use of a urelv aeometric procedure- - - J - - -_ ";_ -_ - - - j - - ____ -_ - - - - -- _ __ 

for fixing the scattering angle 0 and achieving the neces-

sary alignment between the scattered light and the local

oscillator.

Firstly, for the small angles involved in the present

measurements (O < 3) no simple geometrical method is

capable of determining 0 to good fractional accuracy.

Moreover, such a measurement would imply extremely pre-

cise knowledge of the direction of the resonator axis

inside the scattering chamber.

Secondly, to achieve good heterodyning efficiency
4-1 --- P -4h- -;C of ra - 4-4 - -A I 4;h-tU 4- mrL Ir- h - -1 roA

L1 WV.L.LI..LAL J.L LL .cLLtJ.e Y .LLL mLL..ut Ue. a.LLy.1U

with those of the local oscillator source to interfero-

metric accuracy. This is an extremely difficult condition

':i to meet using a non-interferometric alignment technique.

Thirdly, even the exact relationship between the

observed and true scattering angles as given in Eq. (4-12)

assumes that the cell is set precisely at the Brewster angle

relative to the resonator axis. In practice the laser power

is rather insensitive to a rotation of the cell by as much

as a few degrees. Therefore, unless the angle of incidence

can also be determined directly, the calculation of 0 from

a measurement of 0' is uncertain.

To avoid these difficulties a simple trick was used

to obtain an intense beam originating in the scattering

volume and leaving the illuminated region at a precisely

defined scattering angle, 0. This technique utilizes

ia o*
:* ~ Chapter 3, Section D.3.b.

: 
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j
i
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the fact that the intensity of the light which is spon-

taneously Brillouin scattered from a sound wave of a

particular wave vector K can be enhanced 8-9 orders of

magnitude by launching an externally generated sound

wave of the proper frequency and direction into the

illuminated region. The result is a "Bragg reflected"

or Brillouin scattered beam leaving the cell at an angle

determined by the condition

_U.0
K = v 2k sin (4-24)aS

which was derived in Chapter 2.

K - the wave vector of the scattering sound wave

w - the angular sound wave frequency

vs - the phase velocity of sound in the medium

ko = (27 )n - the wave vector of the incident
air light in the medium.

Therefore, by measuring the frequency of the injected

sound wave we may compute the scattering angle, 0.

This method of angle measurement had a number of

distinct advantages. One, it determined the quantity K

directly by producing a beam which is scattered from a

particular wavelength fluctuation. From Section D of

Chapter 2 it is clear that K rather than 0 is of funda-

mental importance; for example, the splitting of the B-M

doublet and the width of the central component are given

by

I
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= v K (2-102)
;i ~~~~s

and

I r (A/pc= (2-82)

respectively. Since the purpose of measuring w and r is

to determine the sound velocity and thermal diffusivity

respectively, the specification of the alignment of the

spectrometer in terms of K circumvents the necessity for

a precise determination of the scattering angle.

Secondly, having an intense (1 mW) beam coming from

the scattering region at the desired internal angle we

can visually align the optical system of the spectrometer

without explicitly calculating the refractive effects at

the cell windows.

Finally, by observing the beat note between the

Bragg beam and the local oscillator we can effectively

bring the wavefronts of the scattered light into inter-

ferometric alignment with the local oscillator simply by

1 adjusting the optical system for maximum beat note ampli-

tude and, hence, maximum heterodyning efficiency. With

approximately 1 milliwatt of power in each of these beams

the detection of the beat note becomes quite easy even

when the system is in only crude alignment.

Fluid contamination and the necessity of placing a

sound wave transducer inside the sample chamber were

eliminated by injecting the sound waves into the cell

through the fused quartz buffer rod, BFR, shown in Fig.

4-9. The transducer is an X-cut crystal quartz disk

having a 10 Mc/sec fundamental thickness resonance and

co-axially plated gold-platinum contacts. The disk is

bonded onto the end of the buffer rod using a thin film
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of crystalline salol (salicylic acid, phenyl ester) or

a high viscosity silicon grease.

An rf voltage applied between the transducer contacts

generates a longitudinal sound wave travelling along the

axis of the buffer rod. In the limit of small , 0 < 5° ,

the wave vectors of the sound waves responsible for

Brillouin scattering are very nearly perpendicular to

o', the wave vector of the incident light. Therefore,

the required orientation between ko and K is achieved by
h=Tr r4 e ,=l f1Fr rvi- A =o;, iI r;Lrhf4 t n l n" Mc 4ha 1 * +-n, h

of the illuminated region as is indicated in Fig. 4-9.

Figure 4-13 gives a pictorial-schematic diagram of

the apparatus used to drive the transducer. For the

anqles involved here (0.3 0° 0 2.80) the required sound

wave frequency w was in the range 16.7 Mc/sec (/2w)

< 153.5 Mc/sec. The rf driving signal is obtained from

a Hewlett-Packard Model 608D V.H.F. signal generator and

amplified to approximately 15 volts rms by a Boonton

Model 230A RF power amplifier. This output is then

stepped up to approximately 150 volts rms by an inverted

X network3 and applied to the transducer electrodes. A

Hewlett-Packard Model 5245L electronic counter measures

the signal generator frequency to an accuracy of one part
6

in 106

For frequencies below 100 Mc/sec a driving voltage

of 150 volts was sufficient to scatter approximately 2%

of the incident power into the "Bragg" beam. In this

case the power in the scattered beam was equal to the

laser output power. At higher sound wave frequencies

the attenuation between the end of buffer rod and the

illuminated region due to acoustic absorption in the

sample became serious and appreciably more voltage was re-

quired to maintain a sufficient amount of scattered power.

I
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Figure 4-13 Pictorial and block diagram of the quartz
transducer and associated electronics used
to inject sound waves into the scattering cell.
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Using the above technique K could be determined

with an accuracy varying from (1.2%) at (O = 0.30) to

(0.7%) at ( = 2.80). These quoted errors include a 1

(0.6%) uncertainty in the velocity of sound in toluene.

The remaining error originates entirely in the align-

ment procedure discussed in Section E.

6. Sample Preparation

After careful cleaning and assembly the sample

cell was filled by a continuous flushing procedure which

served to eliminate all foreign particles left inside

the sample chamber. Baker reagent grade toluene entered

the cell through the radial hole a shown in Fig. 4-9

after passing through a Millipore2 4 25 mm diameter micro-

syringe filter holder equipped with a (0.22p) filter disk.

Approximately 1000 cc of fluid were necessary to completely

flush the 2 cc sample chamber. This cleaning procedure was

found to be extremely important in eliminating fluctuations

in laser output power caused by particles that slowly

drifted through the illuminated region.

D. The Optical and Electronic System for Detection of

the Brillouin Components

1. The Optical System

Figure 4-14 shows the basic optical system of

the superheterodyne spectrometer which was used to detect

the Brillouin-Mandel'shtam components in the light scat-

tered from toluene at (O = 0.50). The light coming from

the Brewster angle cell C at the appropriate external
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scattering angle O' is collected by a small mirror M5
and sent to a beam splitter, S, where approximately one-

half of the collected power is reflected in the direction

of the photomixer. The local oscillator of the spectrom-

eter is the laser output beam exiting through the flat

resonator mirror M1; it combines with the scattered light

via mirrors M3 and M4 , and the beam splitter.

The light gathering system composed of M5 , M3, M4 ,

and S forms a classic 4-element Mach-Zehnder interferom-

eter. 25 The approximate path lengths involved are:

CM1 = 6 cm M1M3 = 25.4 cm

CM5 = 33 cm M3M4 = 38 cm (4-25)

M5S = 38 cm M4S = 64.4 cm

Since M1 is the flat reflector of a hemispherical resonator

the local oscillator beam is a spherically spreading wave

originating from a diffraction limited point source located

on mirror M1. Thus the local oscillator wavefronts at the

beam splitter are spheres of radius RLO, where

0 = M1M3 + M3M4 + M4S = 127.8 cm (4-26)

In addition, since the total signal path length to the beam

splitter CM5 + M5S = 71 cm is large compared to the maximum

dimension of the illuminated region L = 2.54 cm, thez *
wavefronts of the scattered light at S are also spheres

Chapter 4, Section B.2.
**

Chapter 4, Section C.4.

Chapter 2, Section E.4

{;,
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with a radius of curvature R given by

R = CM5 + MS = 71 cm (4-27)

Comparing RS and RLO indicates a sizable difference in the

wavefront curvature of the two mixing fields. The maximum

radius mismatch which can be tolerated if we permit a 40%

loss in heterodyning efficiency [B] RADIUS follows from

Appendix D as

IRLO - RSI = (X) (2 RLoRS/d) (4-28)

where d is either the local oscillator beam diameter at S

or the characteristic dimension of one coherence area of

the signal field at S, whichever is smaller. In the

present case we find

d =dCH d 0.2 cm (4-29)

as calculated below in Section E. This yields the condi-

tion

IRLO - RSI 28 cm (4-30)

as compared to the actual difference

IRLo - RSI = 56.8 cm

To avoid a serious loss in heterodyning efficiency because

of this large mismatch, the real local oscillator source

point at M is imaged to a virtual focus at the required

distance (71 cm) behind S by means of a simple negative

Chapter 4, Section E.
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lens. This lens alters the observed position and diver-

gence of the local oscillator beam as illustrated in

Fig. 4-15.

The distance between the lens and the virtual source

point s' is given by the thin lens formula as

1 1 1I1 1 1 (4-31)
s s' f

where f is the focal length (f < 0) and both s and s' are

taken as positive quantities. Solving Eq. (4-31) for the

apparent reduction in the local oscillator path length

(s - s') yields the result

s - s' = s (4-32)

s+ Ill

The lens also increases the observed local oscillator

divergence angle M-LO to an apparent value jTLO given by

I TO E = 5LO(s/sI) (4-33)

In the present system L1 had a focal length of

Ifl = 100 cm

and the desired path length reduction of (s - s') = 56.8 cm

was obtained with

s = 108.9 cm

The corresponding increase in local oscillator divergence

angle was

AOLO s 108.9 (4-34)
3LO ET = - 52.1
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The layout of the complete optical system including the

negative lens L1 and a focussing lens L2 is shown in

Fig. 4-16.

For the experiment described here,mirrors M1, M2,

and M5 were held in Lansing Research Corporation Model

GS-253 precision gimbal suspensions which were attached

directly to the resonator base. Mirrors M3 and M4 , the

beam splitter S, and negative lens L1 were also held in

GS-253 mounts; in addition, L1 had an intermediate trans-

lational stage which allowed it to be moved a distance of

approximately 3 cm along the local oscillator beam axis.

For stability reasons the four mounts were attached to

large brass blocks which rested on a soapstone slab that

also supported the laser base. The mechanical stability

of this system is described below in the discussion of

the optical alignment procedure.

In calculating the expected efficiency of the spec-

trometer is is important to include the effects of reflec-

tion and transmission losses in both the local oscillator

and signal arms of the interferometer. The reflection and

transmission coefficients of the beam splitter S were

experimentally determined at Xair = 6328 X to be (R = 0.49)
and (T = 0.45) respectively. The value of R for mirrors

M3, M4 , and M5, which are all first surface aluminum coated

reflectors, was measured as (R = 0.89) at a 450 angle of

incidence. The reflection losses at lenses L1 and L2, and

at the rear surface of S may be taken as the usual (0.04)

per surface. 26 The combined effects give a local oscil-

lator power at the detector of approximately 29% of the

laser output at M1,

PLO ' 0.29PLASER (4-35)
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The combined losses in the path of the scattered light

give a detected signal power of

P 0.38PSCATTERE D (4-36)
S SCATTERED

2. The Alignment Procedure

The systematic technique required to bring the

optical system of Fig. 4-16 into interferometric alignment

at some specific scattering angle, which in the present

measurement was = 0.5470, is most easily described by

giving the detailed steps of a typical alignment procedure.

We assume a starting point at which the laser reflect-

ors are accurately aligned for maximum power in the absence

of the scattering cell.

(1) The cell is then inserted and adjusted to

the Brewster angle by minimizing the intensity of the

specular reflections from the windows.

(2) At this point the cell may also be trans-

lated back and forth across the beam to avoid any window

scattering that may be present.

(3) Mirror M1 is now used to repeak the laser

power and, if necessary, steps (1) and (2) are repeated

to optimize the output.

(4) The exact positions of the beam splitter S

and mirrors M3 and M4 are unimportant except that the

final location of lens L1 must fall at some available

location in the (M1M3M4S) leg of the interferometer.

Once some convenient position has been chosen for the

beam splitter, M3 and M4 are simply aligned visually to

.1
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reflect the local oscillator beam through the approximate

center of S.

(5) Sound waves of the appropriate frequency,

namely

) S2r = 2 sin (0/2)

are now injected into the illuminated region using the

system described in Section C.5 of this chapter. The

sound wave amplitude is generally increased until the

power in the Brillouin scattered beam exiting toward

M5 is approximately (0.5 mW). Mirror M5 is then visually

centered on this beam and its angles are adjusted until

the reflected rays strike the reflecting surface of S at

the same point as the local oscillator beam. The latter

adjustment centers the two beams on each other at S to an

accuracy of about (0.5 mm).

(6) The locations of M3, M4, M5 , and S are now

final; only the angular positioning of S and a slight

angular readjustment of M5 are necessary to complete

their alignment. Therefore, the distances CM5, M1M3,

M5S, M3M4, and M4S are also fixed. These lengths are

now measured to (+1 mm) accuracy and the results, together

with Eqs. (4-26), (4-27), and (4-32), are used to determine

the position of L1. Lens L1 is inserted at the appropriate

point, visually centered on the local oscillator beam, and

adjusted in angle until the rays which it reflects back

toward M1 are within a few beam diameters of retracing the

local oscillator axis. The condition of exact back reflec-

tion results in the formation of a parasitic cavity between

Chapter 4, Section C.5, Eq. (4-24)
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M1 and L1 and leads to unstable laser operation.

(7) Mirror M5 is now realigned, if necessary,

to again center the two beams on each other at S as de-

scribed in Step (5).

(8) With the beam axes in rough coincidence

at S the directions of these two axes are now made approx-

imately parallel by superimposing the two beam spots at

another point about 3 meters from S in the direction of

the photomixer. The beam splitter angles are set to make

the centers of the two spots coincide to (±2 mm). This

step yields an angular misalignment Ili which is smaller

than

|l 10-3 radians = 5 x 10-2 degrees

and completes the visual portion of the alignment procedure.

(9) The maximum tolerable angle between the two

beams that still allows good mixing efficiency can be cal-

culated from the "diameter" of the coherence area of the

scattered field and the alignment criterion given in Eq.

(3-118). Using dCOH as quoted in Eq. (4-29) we find

I 8 x 10-5 radians = 4.5 x 10- 3 degrees

which is approximately 20 seconds of arc. The beam

splitter angles are now set to this accuracy by focussing

the two beams coming from S onto an auxiliary photomixer

and searching for a beat note at the sound wave frequency

(U/2) due to mixing between the enhanced Brillouin beam

Chapter 3, Section D.3.b.
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and the local oscillator. The electronic system employed

for this purpose was illustrated in Fig. 4-7. With approx-

imately (0.5 mW) in each of the two beams even this simple

system can detect a beat note which is a factor of 105 below

its value at optimum alignment. Because of this sensitivity

the coarse visual adjustment scheme given in steps (1)

through (8) always resulted in an easily observed beat note

and no "blind" searching was required.

(10) The beam splitter S is now set to maximize

the beat note amplitude; this adjustment results in a final

misalignment angle Icl of less than 0.5 seconds of arc. At

this point the negative lens L1 may also be moved along the

local oscillator beam axis to optimize the wavefront curva-

ture; however, as would be expected from Eq. (4-30) this is

an extremely non-critical adjustment. This step completes

the interferometer alignment.

The availability of a strong, readily detected beat

note between the "enhanced" Brillouin scattered light and

the local oscillator also made possible a rather simple

evaluation of the spectrometer stability and efficiency

under actual operating conditions. Some of the more im-

portant observations are given below.

The Mach-Zehnder interferometer system proved to be

extremely microphonic, a common problem with long path

length instruments such as the one used here. This vi-

bration sensitivity seemed to originate to a large degree

in the rather poor mechanical stability of the mirror

mounts, although some distortion of the soapstone inter-

ferometer table was also detected.

The modulation effects of dust inside the laser

resonator and in the interferometer arms were negligible
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at the beat frequency of the experiment (/2w) = 30 Mc/sec.

,Furthermore, the mode locking phenomenon described in Section

B.3.d of this chapter had an undetectably small effect on

beat notes at this frequency. As a result, no dust shielding

or cavity length control were found necessary in this por-

tion of the experiment.

A semi-quantitative check was made on the actual

heterodyning efficiency factor [BCOH] by simply removing

lens L1 from the optimally aligned system. Using the values
r% f PD ,n e;3 r ;A n Vrha A-1;\9 (A4-7 vnA (AS4-C7

-x ^LO' ''S -' COW. yV J 1 1 M-. -&, as a,I %. go~,
respectively we find with the help of Appendix D that this

should result in a decrease in the beat note power by a

factor of approximately W = (6.3). The observed reduction

was W 2 indicating sufficient wavefront warpage over

dCOH to substantially offset the eect ot L1. An estimate
of [BCoH] with L1 in position gives

[BH] < 0.3 (4-37)

3. The Electronic Detection System

a. General Discussion

The choice of the photomixer and electronic

detection apparatus to be used with the optical system de-

scribed above was made on the basis of one criterion: to

provide a simple, low noise system which could detect the

beat note between the local oscillator beam and the light

spontaneously Brillouin scattered from toluene at a single

angle (O = 0.5470) where the Brillouin-Mandel'shtam shift
*.

Chapter 3, Section D.3.b.3.
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was (/2r) = 30 Mc/sec. Figure 4-17 shows a block diagram

of the major components of this system.

The "tunable filter" which examines the photocurrent

spectrum is simply a high-Q resonant circuit that also

serves as the photomixer load impedance. The filtered

current is amplified directly at the i.f. frequency and

then sent to a square-law detector. Meter m monitors

the dc detector output voltage <vD(t)>>; its deflection

is proportional to the total power in the filtered current

including the beat note, shot-noise, Johnson noise, and

excess amplifier noise contributions. It was found ex-

perimentally that the pre-detection signal-to-noise ratio

was rather poor; the filtered beat note power per unit

bandwidth contributed only a very small fraction (0.01) of

the total detector output. The following technique was used

to prevent slow drifts in <<vD(t)> from completely masking

this small "signal." A chopping wheel inserted in the CM5S X

arm of the interferometer interrupted the scattered light

at a 150 cps rate; the "signal" part of the detector out-

put is therefore a 150 cps ac signal whose amplitude can

be measured by a conventional lock-in detector. Since

the shot-noise, Johnson noise, and amplifier noise signals

are unmodulated, meter m2 responds only to the power in

the signal component of the total filtered current. The

desired heterodyne signal spectrum is then obtained by

recording the lock-in output as the center frequency of

the tuned filter is swept through its range.

The following sections describe some of the important

features of the electronics from the "practical sensitivity"

viewpoint which was adopted in Section F of Chapter 3. In

Chapter 3, Sections C.2.b.2 and F.1.
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particular, we discuss the experimentally measured values

of the resolution and the quantities FR and FD which de-

termine the degradation of the pre-detection (S/N) ratio

from its ideal value.

b. · The Photodetector

The photomixer which detected the 30 Mc/sec

beat signal was an Edgerton, Germeshausen, and Grier model

SD-100 silicon photodiode operating with 90V of reverse

bias.27 The principal advantages of this detector over

the other devices listed in Table IV are: (1) its good

quantum efficiency, (2) fast response, (3) a relatively

large active area (0.073 cm2), and (4) commercial avail-

ability. The dark current (200C), quantum efficiency,

and equivalent circuit parameters of the particular

SD-100 used in this experiment were experimentally meas-

ured as

iD = 0.3 pamps (T = 200 C)

= 0.59

(4-38)

C. = 7 pf

R = 220 

S

Chapter 3, Section F.l.
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c. The Tunable Filter and Photomixer Load

Circuit

Figure 4-18 shows the circuit diagram of

the combination photomixer load impedance and tuned filter

element.

The parallel combination of L, C, CSTRAy, and the

diode impedance form a resonant circuit whose center fre-

quency can be swept from 26 Mc/sec to 34 Mc/sec via tuning

capacitor C. A parallel equivalent representation of de-

tector and load as drawn in Fig. 4-19 shows that the large

amount of capacitance added to the circuit by C and CSTRAY

has the effect of increasing the Q of the load resonance

from

R
QO (30 Mc/sec) = = 3.6

X(Cj)

to

R
Q1(30 Mc/sec) = 27 (4-39)

X(C + C + C
x~j CSTRAY

This method of Q increase was essential in obtaining a

filter bandwidth (Awf) which was smaller than the line

width of the signal part of photocurrent spectrum.

Unfortunately, the circuit of Fig. 4-18 cannot be

transformed to a simple frequency independent series

equivalent of the type analyzed in Section F.4.c of

Chapter 3. However, an explicit numerical calculation

of the load impedance L seen by the mixer at (w/2r)

= 30 Mc/sec gives the circuit of Fig. 4-20a as compared

Chapter 5, Section B.2.d.
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(a)

XL=750Q ACTUAL
LOAD

(b)

XL =750O COMPLEX
CONJUGATE

LOAD

Figure 4-20 Equivalent series circuit of the photomixer and
load as compared to the ideal complex conjugate
load.

R = 22012 RL= 102

I
I

I
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to the ideal complex conjugate load shown in Fig. 4-20b.

The consequence of the Q increase is a sacrifice in the

efficiency of power transfer to the load and, therefore,

a corresponding boost in the minimum optical local oscil-

lator power required to achieve shot-noise limited opera-

tion. The local oscillator power available at the detec-
**

tor was

PLO 0.29 PSER milliwatt

yielding a dc photocurrent of

i = 100 amps (4-40)

The thermal noise part of the signal-to-noise reduction

factor F can be calculated from Eqs. (3-175) and (3-219)

and the observed dc photocurrent. The predicted value

of FR is

2kT w2C (R + R)
FR( 3 0 Mc/sec) = i ~ s L = 4.8 (4-41)

p RL

not including the effects of excess amplifier noise.

Under the same conditions the complex conjugate load would

lead to (FR = 0.81). Equation (4-41) impliest that the

actual pre-detection (S/N) ratio for this spectrometer

must be at least five times smaller than the ideal. This

prediction is contradicted by the experimentally observed

value of F reported in Section D.4.

Chapter 3, Section F.4.c.
**

Chapter 4, Sections B.2 and D.1.

Chapter 3, Section F.1, Eq. (3-152).
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d. The Pre-Amplifier and Main Amplifier

The filtered beat note signal and various

noise currents are amplified directly at the intermediate

frequency, rather than heterodyned to a new i.f. frequency,

since excellent gain and low noise figures are readily ob-

tained at 30 Mc/sec. Figures 4-21 and 4-22 present the

schematic diagrams of the pre-amplifier and main amplifier

respectively; both devices are broadband units capable of

amplifying all frequencies falling within the range of the

tunable filter (26-34 Mc/sec).

The pre-amplifier is a modified LEL (-3) series inter-

mediate frequency mixer preamp2 5 having the following char-

acteristics:

CENTER FREQUENCY = 30.0 Mc/sec

BANDWIDTH (3 db) = 8±1 Mc/sec

N.F. - 3 db

GAIN = 46 db

The main amplifier is a variable gain unit with 10 Mc/sec

bandwidth (3 db) and a maximum voltage gain of 104 (80 db).

e. The Detector

A detector with small signal square-law

characteristics was obtained by operating a 6AL5 vacuum

diode at low forward currents in the full-wave circuit

shown in Fig. 4-22.

The total dc detector output <vD(t)>> is amplified

and then read out by meter m 1. Equations (3-73) and

(3-149) show that this dc voltage is proportional to the
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total filtered current power, including the signal, shot-

noise, thermal noise, dark noise, and amplifier noise con-

tributions. In terms of the relevant power spectral den-

sities we have

2 2 2
<<vD(t)>> = M(Awf) [IS (Wf) + IN (f) + IR (Wf)

+ ID2( f) + I RA (f)] (4-42)

where A is the tunable filter bandwidth and M is a con-

stant.t The deflection of meter ml can be used to measure

two important characteristics of the spectrometer; the

modified pre-detection signal-to-noise ratio, (S/N)PRE,

and the total signal-to-noise degradation factor, F, as

follows. By reading m1 with the path of the scattered

light blocked (1) and then open (2) we obtain (S/N)PRE

directly from the ratio

<<vD(t)> >l IN2 (f) + IR2 (f) + ID2(Wf) + IRA2 (f)

<<vD (t)>>2 IS2 f + IN2() + IR (Wf) + I2(W) + IRA2 (f)

1 - (S/N) RE(443)

the last equality following from the definition given in

Eq. (3-151). Furthermore, by temporarily interrupting

the local oscillator beam with the signal path blocked

we can also determine the experimental value of F as

t Chapter 3, Section C.2.b.2, Eq. (3-68).

Chapter 3, Section F.1, Eq. (3-151).

Chapter 3, Section F.1, Eqs. (3-152) and (3-153).
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<vD(t)>>3 IR2(wf) + ID2 ( f) + IRA2 ( f<Dv (>t)24I (Wf) + IR2 (f + ID2 (Wf )

~~~~~F ~(4-44)
1- F

Where F is given by Eq. (3-153). The voltage ratio in

Eq. (4-44) simply measures the ability of the photocurrent

shot-noise to dominate all the "extraneous" noise sources

in the spectrometer.

In principle, if the output signal-to-noise ratio

is sufficiently large, then a plot of the desired spectrum

can be obtained by recording <<vD(t)>> as the tuned filter

frequency wf is swept over its range. However, in the

present case, the observed pre-detection signal-to-noise

ratio (S/N)PRE was considerably less than one. This re-

sult implies that the filtered signal power satisfied the

inequality

I () << (W) + I (f) (WIRf)

- [IN (Wf)]eff

In this case Eq. (4-42) shows that slow changes in

[IN2(f)]eff caused by drifts in amplifier gain and by
the variation in amplifier frequency response with wf

will combine to completely mask the small change in

<<vD(t)>> due to the beat signal. For this reason the

scattered light and, therefore, IS (Wf) is chopped at

150 cps and the resulting ac component of vD (t) measured
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by a synchronous (lock-in) detector. A straightforward

analysis shows that this 150 cps signal in vD(t) has an

amplitude

[vD(t) ] l IS ( f)

which is determined only by the signal component of the

filtered current. Thus a plot of the lock-in output

versus wf reproduces the desired beat note spectrum

without interference from drifts in the large "effective"

shot-noise level.

The addition of synchronous detection to the signal

processing chain discussed in Section C.2 of Chapter 3

does not produce any drastic alteration in the output

signal-to-noise ratio of the spectrometer. In fact, if

the chopping is a square wave modulation and both systems

employ final RC filters with identical time constants

then we find

(S/N)sy nchronous - (0.90) (S/N)u T (4-45)
OUT OUT

representing a slight overall decrease in sensitivity.

4. The Resolution and Sensitivity of the

Spectrometer

The basic resolving power of the present spec-

trometer is fixed entirely by the frequency response

characteristics of the tuned circuit photomixer load.

This response was determined experimentally by using the

optical system of Fig. 4-16 and the complete electronic

system illustrated in Fig. 4-17 to detect the beat note
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between the local oscillator beam and the "enhanced"

Brillouin scattered beam produced by injecting 30 Mc/sec

sound waves into the scattering cell. Since the spectrum

of this beat note is a delta function at the sound wave

frequency, a plot of lock-in output versus filter frequen-

cy f gives what might be called the "instrumental profile"

of the spectrometer. Figure 4-23 shows this instrumental

profile for the case (sound/ 2 ) = 30.20 Mc/sec; the dotted

curve includes the correction for rolloff in the pre-

amplifier and main amplifier frequency response. A fit of
**

the observed profile to the expected Lorentzian shape

gives the results shown in heavy dots and a measured fill-

width at half-response of

AWf
= 2.35 Mc/sec (4-46)

2 7T

The corresponding resonant circuit Q

2 sound
Q1 Awf = 25.5

is in excellent agreement with the value Q = 27 calculated

in Eq. (4-39) on the basis of the load and photodetector

circuit parameters.

The equivalent instrumental resolving power of the
14

spectrometer at an optical frequency of (wo/2rr) = 4.74 x 10 cps

(Xair = 6328 ) is

RESOLVING POWER 2.2 x 10 (4-47)

and the resolution

Chapter 4, Section D.3.d.
**

Chapter 3, Section F.4.c.
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Af
f -9

RESOLUTION = - 4.4 x 10 (4-48)
0

This resolving power may be compared to the value 5 x 107

attainable with ultra-high resolution Fabry-P4rot etalons.

In the process of measuring the practical sensitivity

of the spectrometer a serious contradiction arose in the

form of a large discrepancy between the theoretical and

experimental values of the signal-to-noise reduction fac-

tor F. The calculation of Eq. (4-41) and the pre-amplifier

noise figure quoted in Section 3.d combine with Eqs. (3-227),

(3-231), and (3-232) to give

I 2 (w) + I 2(W)IR (~)+ IRA (X)
> F'= = 9.6

R 2 (W)
N (~)

On the other hand the value measured by observing the

change in meter reading m1 on interrupting the local

oscillator beam was

F(Measured) = 1.66

The possibility that this result was due to laser ampli-

tude modulation at 30 Mc/sec was ruled out by illuminating

the mixer with a sufficient amount of white light to give

the required dc photocurrent of i = 100 amps. It follows

from the definition of F that this result must originate

from an experimental shot-noise current power per unit

bandwidth IN2(w) which is approximately 5.8 times as large

as its theoretically expected value. There are two pos-

sible explanations for this excess noise. The first is

that the photomixer has a gain G greater than unity due

to avalanche effects, 29 and that the quantum efficiency

( = 0.59) quoted in Eq. (4-38) is actually in error.
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Writing the mixer dc output current as IOUT we have

IOUT = Gip = (Ge) (eP/Fwo)

and a shot-noise level given by

IN () = G2 [ (e/)ip ] = Ge/w)IOT

Since IOUT depends only on the product (Ge) we may resolve

the discrepancy in FR ' by taking G = 5.8 and E = 0.10.

This interpretation was further supported by measuring the

fraction of the total light incident on the photodiode

which was lost because of specular reflection from the

silicon chip; this fraction was observed to be greater

than (0.5) at air = 6328 A. Therefore, a quantum effi-

ciency = 0.59 is clearly inconsistent with the number

of photons actually available at the junction region.

A second possible explanation is that the photocarrier

production process in this type of diode is intrinsically

more noisy than would be predicted by simple shot-noise

theory. At present there is no evidence to firmly contra-

dict or support this possibility.

Since the reflection data proves conclusively that

the SD-100 detector had greater than unity gain, we will

here adopt the following self-consistent set of diode

parameters:

G = 5.8

(4-49)

E = 0.1
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Furthermore, we assume that simple shot-noise theory

adequately describes the noise characteristics of the

mixer at (w/27) 30 Mc/sec. In this case the modified

pre-detection (S/N) ratio in Eq. (3-152) has the simple

form

* (S/N) PRE
(S/N) PE (4-50)

1 + F' + FD

Using the measured values

F' = 1.66

FD = 0.003

we have

, (S/N) PRE
(S /N) PRE (4-51)

Equation (4-51), the detector parameters given in Eq.

(4-49), and the estimated value of [BcoH] in Eq. (4-37)

completely determine the sensitivity of the spectrometer.

These results will be used in Chapter 5 in order to com-

pare the values of (S/N)oUT and (S/N)pRE observed in the

detection of the Brillouin-Mandel'shtam components with

values determined from the signal-to-noise curves of Fig.

3-19 and the known scattering cross section.
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E. The Optical and Electronic System for Superheterodyne

Detection of the Central Component

1. General Discussion

The overall objective which determined the basic

features of the mixing spectrometer used in this part of

the experimental investigation was to obtain measurements

of the natural line width of the central or Rayleigh com-
*

ponent in the light scattered from toluene. The calcula-

tions presented in Section D.4 of Chapter 2 gave the pre-

dicted spectrum of this component as a Lorentzian

SE(X) = <ls(ro't)l > (_ ) 2 2
(w-w) + r

whose half-width at half-height r

2 2
r = [(A/pcp)4k° ] sin (0/2)

is a function of the scattering angle but whose center

frequency is the frequency of the incident light, wo. The

measurements reported in this thesis were confined to scat-

tering angles near the forward direction (0.30 < O < 2.80)

where the narrow line widths [75 cps (r/2w) 7500 cps]

led to large values of the scattered optical power per unit

frequency interval, per unit coherence area [PCOH/r] and

consequently to good pre- and post-detection signal-to-

noise ratios.

Chapter 2, Section D.4.
**

Chapter 3, Section E.3.

I

I

I
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Since the desired information is contained only in

the line width of the spectrum, either type of light mixing

spectrometer can be used to obtain the necessary resolving

power. In the present case, because of serious problems

with stray light which are discussed below, a superhetero-

dyne method was chosen over the simpler self-beating tech-

nique. Since the central component is not shifted away

from the frequency of the laser source a superheterodyne

spectrometer which uses the direct laser output as a local

oscillator, such as the one illustrated in Fig. 4-16, pro-

duces a heterodyne signal whose spectrum is peaked at the

intermediate frequency (w1 = 0).

However, some preliminary measurements pointed out a

modulation-like effect that made width measurements on

narrow lines (r/27) 10 kc/sec incompatible with the Mach-

Zehnder optical system shown in Fig. 4-16. The effect was

a random noise, time dependent disturbance of the inter-

ferometer alignment brought about by the sensitivity of

the system to acoustic noise. The depth of this "modula-

tion" was essentially 100%, the rms amplitude of the fluc-

tuations in angle between the local oscillator and signal

beam axes being sufficiently large to vary the beat note

amplitude between zero and its maximum value. If the time

dependence of this noise is described quantitatively by

specifying the correlation function of the alignment fluc-

tuations, RM(T), then the signal part of the photocurrent

correlation function given in Eq. (3-106) takes the form

[Ri(T)]SIGNAL RM(T) [RE(T)RLO()] (4-52)

where RLO(T) and RE(T) are the correlation functions of

the local oscillator and the scattered fields respectively.

It follows from Eq. (4-52) that regardless of the intermediate
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frequency the observed "signal" part of the photocurrent

spectrum will be the convolution of the spectrum of the

incident field

SE(W) = (1/2T) JRE(T) cos T dT

with the spectrum of the alignment modulation

SM(w) = (1/27) iRM(T) cos WT dT

Because SM(w) tends to be extremely irregular and irrepro-

ducible, in addition to having a "half-width" (2kc/sec)

which is comparable to the line widths of interest here,

it is impossible to separate out the two spectra by a

de-convolution procedure.

The most direct way of eliminating the alignment noise

is to have both the local oscillator and signal beams fol-

low identical paths from the scattering cell to the photo-

mixer. However, this requires (1) that the local oscillator

beam originate somewhere in or extremely near the illumi-

nated region and (2) that it leave the cell at the desired

angle. Both of these conditions can be met by the enhanced

Brillouin scattered beam which is generated by injecting

the appropriate frequency sound waves into the medium. Of

course this scheme results in an intermediate frequency

which is simply the frequency of the sound wave

(1 = = 2kov s sin (0/2) (4-53)

k = (2/air )n - the wave vector of the incident lighti air
in the medium

Vs - the phase velocity of sound in the medium
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- the angular frequency of the sound wave

0 - the scattering angle as measured inside the cell

For the angles of interest here in the scattering from

toluene we find the limiting values of w 1 and F tabu-

lated below.

Toluene

T = 20°C

0

0.30

3.0 °

(W/2Tr)

16.5 Mc/sec

165 Mc/sec

(r/27)

85 cps

8500 cps

Although ideal from the standpoint of alignment modu-

lation this method has a number of undesirable features:

first, the intermediate frequency changes with scattering

angle so that the electronic detection system must be

capable of operating over a rather wide frequency range.

Secondly, the intermediate frequency is much larger than

the ideal value = 10r. As described in Section F.4.c

of Chapter 3 the situation w1 >> 10r will be accompanied

by a sacrifice of power transfer between the mixer and

its load and correspondingly enhanced thermal noise prob-

lems. Thirdly, the high i.f. frequencies require the use

of high speed, no gain photomixers, further exaggerating

the thermal noise problem. Finally, practical difficulties-

make it virtually impossible to achieve the necessary filter

bandwidths (Awf 0.1r) at the resulting i.f. frequencies;

a further heterodyning process is necessary before the

*
Chapter 5, Section B.1.
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central component spectrum can be scanned with sufficient

resolution.

An attempt to use the sound wave injection technique

to obtain a local oscillator beam at = 0.5470 with

(w1/2w) = 30 Mc/sec gave an extremely strong beat-note

at the sound wave frequency. This signal was traced to

mixing between the enhanced Brillouin scattered beam and

the light which was elastically scattered in all directions

from "dust" or grinding imperfections located at the two

points where the laser beam strikes the outer surfaces of

the cell windows. The wavefronts of this "stray" light

and those of the light scattered from the illuminated

volume were evidently sufficiently collinear to allow

mixing between the two fields.

The elastically scattered light provided a convenient

source of light at the laser frequency; and, for all the

central component line width measurements reported here,

the stray light was used as the local oscillator beam of

the spectrometer. The resulting optical system exhibited

the following important features.

(1) It yields a zero intermediate frequency

independent of the scattering angle. For the range of

line widths investigated here the choice xl = 0, in fact,

offered some very attractive advantages. First, since

the signal information in the photocurrent will be located

at relatively low frequencies, in the present case

l0(r/2w) < 100 kc/sec, we can take advantage of high gain

but slow speed photomultiplier mixers, and broadband re-

sistive mixer loads. Secondly, commercial spectrum ana-

lyzers with a convenient range of filter bandwidths,

Chapter 3, Section F.
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excellent sensitivity, and low noise figures are readily

available for these frequencies. Thirdly, the combination

of high gain mixers and low noise receivers make it simple

to achieve the theoretical ideal pre- and post-detection

(S/N) ratios.

On the other hand, the spurious beat-notes produced

in the photocurrent by local oscillator amplitude modula-

tion also tend to become seriously large in the range of

frequencies below a few kc/sec. This modulation must be

eliminated if meaningful spectral measurements are to be

taken near 1 = 0.

(2) The intensity of the elastically scattered

light was typically 105 times the intensity in the central

component so that no interference arises from the self-
**

beat part of the photocurrent spectrum.

(3) Since the two beams travel the same optical

path, acoustic noise does not introduce alignment modula-

tion; however,

(4) the source points of the local oscillator and

signal beams are not exactly coincident; as a result some

loss in heterodyning efficiencyt is to be expected.

A detailed analysis of the operation and sensitivity of

this spectrometer is presented below.

Chapter 3, Section F.3.b.
**Chapter 3, Section D.2.

Chapter 3, Section D.2.

Chapter 3, Section D.3.
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It should be pointed out that the presence of the

stray light also made it impossible to use the simpler

self-beat detection system. The amount of elastically

scattered light reaching the detector was so much greater

than that coming from the liquid sample that it produced

sufficient dc photocurrent shot-noise to completely over-

whelm the desired self-beat signal.

2. The Optical System

a. General Features

Figure 4-24 shows the complete optical sys-

tem of the superheterodyne spectrometer which was used to

make measurements of the central component line width. The

scattering plane is the same one illustrated in Figs. 4-11

and 4-14 and corresponds to the plane of Brewster angle

incidence at the scattering cell, C.

The scattered light coming from the cell at the de-

sired external scattering angle O' is collected by mirror

M5 and sent via mirror M3, aperture A, and focussing lens

L2 to the surface of the photomixer. Some of the elasti-

cally scattered light produced at the cell windows is also

collected by M5 and reaches the photodetector via the same

optical path as the signal beam.

The distance between the source points of the signal

and local oscillator beams and the limiting aperture A is

CM5 + M5M3 + M3A = 100 cm

Since this distance is large compared to the maximum
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dimension of the illuminated volume (Lz = 2.54 cm) the

wavefronts of the signal field at A are spherical with a

radius of curvature R = 100 cm. Furthermore, since the

imperfection which scatters the local oscillator field

must be small compared to the incident beam diameter

(Df' = 0.030 cm), and hence much smaller than RS, the

local oscillator also has spherical wavefronts at A.

Clearly efficient mixing can take place between the two
**

fields if the angular alignment and wavefront radius

mismatch t criteria are satisfied. In the Mach-Zehnder

interferometer of Fig. 4-16 these conditions were easily

fulfilled since the wavefront radius of curvature and

the axis of the local oscillator beam were both contin-

uously variable. However, in the optical system of Fig.

4-24 the two fields cannot be affected individually since

they follow identical paths to the detector. As a result

the mixing efficiency of this spectrometer is fixed a

priori by the geometry of the scattering cell and the

scattering angle.

In calculating the expected signal-to-noise ratios

from the known laser power and the scattering cross sec-

tions it is important to specify the amount of power

which is lost in the light gathering system. Using the

measured reflection and transmission of M5, M3, and L2,

we find for the scattered power reaching the photodetector

Ps 0.73 PSCATTERED (4-54)S SCATTERED

Chapter 4, Section C.4.
**

Chapter 3, Section D.3.b.1.

Appendix D.
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b. The Wavefront Radius Mismatch Heterodyning

Efficiency

The effect of wavefront radius mismatch can

be determined from Appendix D which gives the appropriate

heterodyning efficiency factor [BCOH] in the form

sin w
[BCoH A-RADIUS w

where

W1 [ ) d R LOR (4-56)

RL - the radius of curvature of the local oscillator

beam at some convenient reference point H in the

optical system.

RS - the radius of curvature of the local oscillator

beam at H.

d - the smallest of the following dimensions as

measured at H: (1) the diameter of the coher-

ence area of the scattered light, (2) the diam-

eter of the local oscillator coherence area, or

(3) the limiting aperture diameter of the light

collection system set either by the aperture or

the size of the photodetector.

In order to apply this result to the present system we may

choose the reference point as the aperture and calculate

the sizes of the local oscillator and signal field coher-

ence areas at A.
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The coherence half-angles of the light coming from

the scattering volume were calculated in Section E.5 of

Chapter 2 as

A= = (4-57)

2[L sin 0 + L cos O]
z y

= 2L (4-58)
x

X - wavelength of the incident light in the

scattering medium.

Lx, Ly, Lz - the dimensions of the illuminated volume

measured in the cartesian coordinate system

of Figs. (4-11) and (4-12)

- the scattering angle as in Fig. (4-11)

- the angle measured normal to the scattering

plane as in Fig. (4-12)

Equations (4-57) and (4-58) give the "internal" coherence

angles as seen from inside the cell. Correcting for the

*refractive effects at the cell windows with the help of

Eqs. (4-14) and (4-17) we have for the externally observed

coherence angles, A0' and A'

-' = n2 1

(4-59)

T' = nAT

where n is the index of refraction of the scattering

medium. Therefore, the coherence area of the scattered
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field in the plane of the aperture can be described as a

rectangle whose dimensions in the 0' and ' directions are

n2Rs .
[d H]0 = 2RS ' = (4-60)

L sin 0 + L cos 0
z y

and

nR A
[dcoH]JI = 2Rs' - (4-61)COHi L
respectively. The dimensions of the illuminated region

were given in Eq. (4-23) as

Lx = 0.019 cm

L = 0.028 cm (4-62)
Y

L = 2.54 cm
z

Combining these results with the quantities

RS = CM5A 100 cm

n 1.5 (4-63)

X = (Xair/n) = 4220 A

we find the numerical values of a-, ,a T, A t', [dCoH] ,

and [dCoH], which are plotted in Figs. 4-25 and 4-26.

A calculation of the local oscillator coherence area

at A follows an identical procedure. For our purposes it

is sufficient to note from Eqs. (4-57) and (4-58) that AO

and AT are both inversely proportional to the dimensions
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Figure 4-25 The coherence angles for the experimental scattering
geometry.
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Figure 4-26 The 0 and dimensions of the scattered field
coherence area at the beam splitter of the
Mach-Zehnder spectrometer.
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of the scatterer. However, the dust particle or scratch

which acts as the local oscillator source has a maximum

dimension D that satisfies the inequality D << (Lx ,Ly L);

therefore, the size of the local oscillator coherence area

is large compared to [dcoH],,''. It follows that, regard-

less of the aperture size, the maximum possible value of d

appearing in Eq. (4-56) is just [dcoH]y, - 0.4 cm.

The important factor in w1 yet to be determined is

the difference between the optical path lengths (RLo - RS)

from the signal and local oscillator source points to the

aperture. This quantity can be calculated on the basis

of Fig. 4-27 which shows the effective positions of these

two points in relation to the illuminated volume and the

light collection system. The difference RLO - RS follows

directly as

(RLO - RS) = (Lz/2) cos (4-64)

Taking cos 0 = 1 in Eq. (4-64) and d < [dCoHI], yields an

upper limit on the factor wl given by

{( 4 TT 2 (L/2)(4-65)w 1 < {(X ir)[dCOH cOR (4-65)

< 0. 087

We immediately find from Eq. (4-55) that the wavefront

radius mismatch part of the heterodyne efficiency factor

has a minimum value

[B]ARADIUS > 0.99 (4-66)
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Since the ideal value of [B] is [B] = 1, this result shows

that the spectrometer exhibits a negligible loss of mixing

efficiency due to wavefront curvature differences.

c. The Angular Misalignment Heterodyning

Efficiency

The heterodyning efficiency factor due to

an angular misalignment of the two mixing fields was cal-

culated in Section D.3 of Chapter 3 as

sin w2
[B]A-GLE (4-67)AANGLE w2

with

W2 a ] (4-68)

C - the angle between the axes of the two beams at

the mixing surface

d - the smallest of the following dimensions measured

at the photodetector in the plane defined by the

two beam axes: (1) width of the mixer active area,

(2) the width of the local oscillator coherence

area, (3) the width of the coherence area of the

scattered light, or (4) the limiting aperture

dimension as seen at the photomixer.

Because of the effects of the imaging optics between the

mixer surface and the cell it is more convenient to express

Eq. (4-68) in a form which allows d and to be determined

at some arbitrary reference point in the optical system.
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Such a reformulation must always be possible on general

grounds since once the two fields have been combined the

mixing efficiency cannot be altered by any optical process-

ing which affects them both in the same manner. This

statement can be proved rigorously by examining the free

space propagation characteristics of the two spatial co-

herence functions, TLO(r,p) and TE(r,p), that enter into

the calculation of [B].

Figure 4-28 illustrates the origin of the angle 

between the local oscillator and signal beam axes as seen

from some arbitrary point H. Calling the lateral separa-

tion of the two source points as observed from outside

the cell W' we have

= (W'/R) (4-69)

in the usual small angle approximation. The externally

observed W' is related to the internal separation W by

W' = (W/n)

as follows from Snell's law and the Brewster angle con-

dition. Expressing W in terms of Lz and 0 from the geom-

etry of Fig. 4-27 gives

L
= (2R) sin 0 (4-70)

which depends explicitly on the choice of the point H

through the factor R. However, d also depends on the

location of the reference point. In fact, in the present

Chapter 3, Section D.3.b.
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case d is the 0' dimension of the scattered field coher-

ence area and Eq. (4-63) gives

d = [d COH]0 = 2RsA0' = 2Rsn2 AO (4-71)

A- being the coherence half-angle as defined in Eq. (4-57)

and RS the total optical path length between the apparent

source point of the field and the point H. As would be

expected intuitively for a spherically spreading wave

[dcoH], simply increases linearly with Rs. If we ne-

glect the cell dimensions relative to the distance R, so

that we have approximately R = RS, then w2 takes the form

= [(X2f)LZ] nAO sin 0 (4-72)

This expression includes all the effects of refraction at

the cell windows and is independent of the location of the

point H as desired.

The factor [B]A-ANGLE can now be calculated from Eq.

(4-72) using the numerical data given in Eq. (4-62) -and

Fig. 4-25. The results are plotted in Fig. 4-29 for the

range (0O 0 < 4). In obtaining [B]AANGLE from the

value of w2 for w2 2 0.69 radians it was assumed that slight

irregularities in the mixing wavefronts would wash out the

zero crossings of the function (sin w2)/w2 and give an rms

[B] value which was approximately

1 0

[B]A-ANGLE 1 = w2

W2 2

For w2 < 0.69 radians (O < 0.1770) the curve shown in Fig.

4-29 is that calculated from the exact expression presented

in Eq. (4-67).
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These results demonstrate that the angular misalign-

ment caused by having the local oscillator source point

outside the scattering volume produces a moderate loss in

the heterodyning efficiency except for very small scatter-

ing angles. For the range of 0 covered here (0.30 ° < 0 2.8°)

[B]A-ANGLE varies from (0.63) to (0.25).

For the purpose of deciding whether a particular local

oscillator source position will result in a good heterodyning

efficiency it is interesting to note that the "radius" and

"angle" criteria of Eqs. (4-55), (4-56), (4-67), and (4-68)

depend respectively on the depth and lateral separations of

the two sources. That is, for good mixing efficiency the

origin of the local oscillator beam should be confined to a

specified rectangular region whose dimensions are fixed by

the scattering angle and the geometrical shape of the scat-

tering volume. In fact, the size of this region has a rather

simple physical interpretation in terms of the spatial "re-

solving power" of a circular aperture with diameter d. Sup-

pose we express the factors w1 and w2 in terms of the depth

and lateral separations between the sources, namely (RLo-RS)

and W'. Then writing (RL0 RS R) _ f we have

RLO-RS
Wl = 4 2

(f/d) X

and

W'
2 = (f/d)

2
But the quantities (f/d)X and (f/d) are respectively

nothing but the usual Rayleigh resolution criterion and

the resolvable depth of field that apply to two sources

located a distance f from an optical system with a limit-

ing circular aperture of diameter d. Or viewing the
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reverse process, as we did in Section B.2, they represent

the diameter and length of the focal region which is pro-

duced by spherical wavefronts leaving the same aperture

with a radius of curvature f. These two situations are

illustrated in Fig. 4-30; in the first the "observer" is

unable to resolve the two sources because the wavefronts

passing through d produce overlapping diffraction patterns

in his optical system. Although the resolution criteria

are not usually presented in these terms, two sources

which lie within the Rayleigh limit, or equivalently

within the diffraction limit, generate wavefronts at d

which are collinear to within (X/4) over the aperture

area. In the reverse process the observer is incapable

of deciding where he is in the focal region because of

the uniformity of the intensity and phase distributions.

He is therefore unable to detect differences in direction

and radius of curvature between two different spherical

waves reaching the aperture unless their focal regions

are clearly separated. Again this resolution limit im-

plies that the two wavefronts at the aperture are collin-

ear to within (X/4) over its entire area.

From this viewpoint the condition for good mixing

efficiency over a single coherence area, or over the

limiting aperture of the system if it is smaller, is that

the local oscillator and signal source points must be un-

resolvable when viewed through this area. The data given

in Fig. 4-29 expresses the physically plausible result

that in the optical system of Fig. 4-24 the two sources

are unresolvable only when viewed from the extreme for-

ward direction (O < 0.10).

Chapter 4, Section B.2.
J
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d. Determining the Scattering Angle and the

Instrumental Acceptance Angle

The limiting aperture A has three important

functions in the spectrometer optical system. Unlike the

Mach-Zehnder system shown in Fig. 4-16 the spectrometer

of Fig. 4-24 cannot rely on the excellent directivity of

a local oscillator beam to result in a heterodyne signal

at the mixer only from those rays which leave the scatter-

ing cell at some fixed angle. The intensity pattern of

the elastically scattered local oscillator field is almost

isotropic, allowing it to mix to an extent determined by

[BCOH]A ANGLE with light leaving the cell at an arbitrary

angle. Therefore, the first purpose of the aperture is

to define the mean scattering angle 0m. A ray leaving

the illuminated region at the angle m passes through the

center of the aperture. Secondly, the aperture size can

be chosen to accept only a single coherence area of the

scattered field, thereby minimizing the effects of laser

amplitude modulation. Thirdly, its ' dimension also

controls the range of scattering angles which simultane-

ously contribute to the light reaching the detector. If

the full range in 0' collected by the detector is desig-

nated the acceptance angle, Acc' we have

A'cc = (DO,/R) (4-74)

where D, is the 0' dimension of the aperture and R is the

optical path length between the aperture plane and the scat-

tering cell. The acceptance angle measured inside the cell

Chapter 3, Section F.3.b.
**

Chapter 4, Section C.3, Eq. (4-14).

.II
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is

AO = (Do ,/n
2 R) (4-75)

Since Eq. (2-82) shows that the line width of the central

component will be a function of the scattering angle,

A acc must be small enough to avoid a distortion of the

actual spectrum which is characteristic of the mean scat-

tering angle = m. If the light leaving the illuminated

volume at the angle 0 has a Lorentzian spectrum whose half-

width at half-height increases as sin2 (0/2) as predicted

by Eq. (2-87) then, for small ratios of (AOacc/0m) the

spectrum of the total field reaching the detector is to

first order also Lorentzian. However, this latter spec-

trum has a half-width which is larger than the half-

width at the mean angle m by the fractional amount

A0 2()r (I acc (4-76)

m m

For the measurements reported here (A0acc/0m ) was adjusted

to satisfy the inequality (AOacc/Om) < 0.1 leading to an

extraneous line width increase of less than 1%.

3. The Alignment Procedure

The techniques that were found to be useful in

optimizing the performance of the spectrometer at some

predetermined scattering angle can be most easily described

by giving the detailed steps of a typical alignment proced-

ure. We assume a starting point at which the laser reflect-

ors are accurately' aligned for maximum laser output power

in the absence of the scattering cell.
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(1) The cell is then inserted into the resonator

and adjusted to the Brewster angle by minimizing the inten-

sity of the specular reflections from the windows.

(2) Choosing the wave vector K of the entropy

fluctuations whose spectrum are to be determined, indirectly

fixes the scattering angle via Eq. (2-31).

K = 2k° sin (0/2)

Sound waves of the identical wave vector are now injected

into the cell using the technique discussed in Section C.5.

The result is an "enhanced" Brillouin beam leaving the

illuminated region at the appropriate value of given by

Eq. (2-31).

(3) The cell is now translated back and forth in

the incident laser beam to locate a scratch or dust particle

on one of the windows which scatters a significant amount

of light in the direction of the Brillouin beam. The cell

position is locked at the point which maximizes the inten-

sity of this scattering.

(4) With the injected sound waves turned off,

mirror M1 is adjusted to repeak the laser output power.

At this point step (3) may also be repeated to optimize

the intensity of the elastically scattered light.

(5) The sound wave amplitude is now increased

to give about (0.5 mW) of power in the Brillouin scattered

light. Mirrors M5 and M3 are then visually positioned to

reflect this beam in the direction of the photomixer.
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(6) In order to check and optimize the hetero-

dyning efficiency of the spectrometer,the beat-note between

the enhanced Brillouin beam and the superimposed elasti-

cally scattered "local oscillator" field is detected by

the auxiliary photodiode and spectrum analyzer system

shown in Fig. 4-7. The amplitude of the beat-note is

then maximized by repositioning the cell as described in

step (3). This procedure, in addition to peaking up the

intensity of the local oscillator, also serves to minimize

the relative warpage between the wavefronts of the elasti-

cally scattered light and the light coming from the scat-

tering volume. The alignment of the optical system is

now complete except for the insertion of aperture A.

(7) The size of the rectangular aperture A is

now selected on the basis of the dimensions of the scat-

tered field coherence area at the aperture plane and the

maximum allowable acceptance angle. For the angles in-

volved here (0.30 ° < O < 2.80), taking the aperture to

be the size of a single coherence area, D, = [dcoH]e,

and D, = [dCoH],, gives from Eqs. (4-75), (4-60), and

(4-59)

(acc) COH [d ]0 1( ) 0

m nR m m 

In the extreme cases 0 = 0.30 and = 2.80 we would find

from Fig. 4-25

A0acc A0acc
0.2 0.005

0m Om0.,30 2.80

In order to maintain the condition (A0acc/Om) < 0.1, D,

was stopped down to be smaller than [dcoH]01 for scattering
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angles in the range (O < 1°) and was made correspondingly

larger than [dcoH]0, for larger angles.

(8) The final position of the aperture is now

fixed by visually centering it on the enhanced Brillouin

scattered beam. For the typical aperture size D 0.4 cm

the tolerance in placement was (±0.2 mm) and represents a

possible error in the mean scattering angle of

60 = ±0.0050m

The result is an uncertainty in the square of the wave

vector of the scattering fluctuation

±0.033 0 = 0.30m

6(K2 260m
(4-77)

2 0K m

±0.004 0 = 2.80m

Step (8) completes the alignment of the optical system.

4. The Electronic System

Figure 4-31 presents a block diagram of the

electronic detection apparatus which was combined with the

optical system of Fig. 4-24 to obtain measurements of the

central component line width. The mixer is a conventional

photomultiplier whose output is terminated in an untuned

broadband resistive load. The spectrum of the ac part of

the mixer output is examined by a commercial audio wave

analyzer having a bandwidth which is small compared to
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the line width (F/27) of the signal part of the photo-
2

current spectrum, IS (w). The wave analyzer acts as a

narrow band tuned filter whose center frequency can be

swept over the range of frequencies of interest in the

beat-note spectrum. The analyzers which were used for

the present measurements incorporated their own internal

detectors. However, these detectors were linear-law

devices3 rather than the square-law variety whose rec-

tification properties were analyzed in Section C.2.b.2

of Chapter 3. The linear rectifier produces a dc detec-

tor output voltage <<vD(t)> that is proportional to the

root-mean-square current at its input.31 As a result the

analyzer output is a dc voltage which is proportional to

the square root of total power passed to the detector by

the narrow band filter. Thus as the filter frequency,

Wf, is tuned over its range, the deflection of meter ml

traces out the square root of the desired photocurrent

spectrum, i.e. VSi(wf). In order to generate a plot of

Si (w) directly, the dc detector output is "squared" by

a simple analog "computer" prior to recording.

a. The Photomixer

The photodetector-mixer used in this ex-

periment was an RCA 7326 multiplier phototube having an

S-20 type photosurface. This tube is a lower gain ver-

sion of the RCA 7265 whose features were discussed in

Section F of Chapter 3; it has the following typical

characteristics:32
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£(kai r 6328 ) 0.05

-13
P (T = 200 C) = 2.5 x 10 wattsDARK

G GAC 1.5 x 105
DC AC

(4-78)

Rj = 00

R =0
S

C. 7 pf.

Although this detector has a lower quantum efficiency than

is available with a solid-state junction device, it exhibits

three important advantages in the present system. First its

dark equivalent input power PDARK is approximately 9 orders

of magnitude smaller than that typical of solid state junc-

tion detectors. The amount of optical local oscillator

power necessary to overcome the dark current is correspond-

ingly reduced, thereby decreasing the effects of local oscil-

lator amplitude modulation to a tolerable level. Secondly,

the large internal gain available in a photomultiplier

allows the amplified photocurrent shot-noise to overwhelm

both the thermal noise in the load and any excess amplifier

noise, again with anabsolute minimum of local oscillator
**

power input. These first two features were essential

considerations since measurements were made near (w1 = 0)

where the problems with laser modulation are most severe.

Chapter 3, Section F.3.b.
**

Chapter 3, Section F.4.b.
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Thirdly, a photosurface type detector does not exhibit

the troublesome "one-over-f" type excess noise which

characterizes semi-conductor devices.33 This feature

was indispensable in obtaining reliable, undistorted

spectra in the range of line widths below

(r/2r) < 1000 cps.

The photomultiplier high voltage requirements were

supplied by a well regulated, highly stable (0.01% per

hour) Northeast Scientific Corporation 34 model RE-3002

power supply capable of delivering up to 3 kV to the

multiplier dynode chain. The dc anode current of the

detector was monitored by a Hewlett-Packard model 425A

DC Microvolt-Ammeter.

b. The Mixer Load Circuits

The mixer terminations employed here were

in essence untuned, broadband, resistive loads of the

type discussed in Section F.4.a of Chapter 3. However,

the large internal mixer gain which was available made

it unnecessary to choose the load resistance RL as the

recommended optimum value corresponding to the line

width being measured. Negligibly small values of the

signal-to-noise reduction factor FR were obtained even

with RLselected on the basis of the total circuit capac-

itance to provide a flat response over the entire useful

frequency range of a particular wave analyzer.

Figure 4-32 shows the equivalent mixer and load

circuit used in conjunction with a General Radio Model

1900A wave analyzer capable of tuning the frequency range

Chapter 3, Sections F.4.a and F.4.b, Eq. (3-185).
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0 < (f/27) 60 kc/sec. The parallel combination of

RL = 29.4 k and the total circuit capacitance C = 72 pf

would comprise an equivalent load whose power response i

dropped to one-half of its zero frequency value at

(WRC/2 f) 75 kc/sec. However, the expected rolloff

is counteracted to a large degree by inductance L which

introduces a moderate amount of shunt compensation 3 5 in

order to increase the apparent load resistance at high

frequencies. The compensated network achieves an overall

power response which is flat to within +0% and -3% be-

tween (wf/2f) = 0 and (wf/2f) = 58 kc/sec respectively.

The pre-detection signal-to-noise reduction factors

FR and FD that describe the detector-load-analyzer com-

bination of Fig. 4-32 are given by Eqs. (3-193) and (3-163)

as

2kT
F= (3-193)
R GAC2 eRLi

FD = (PDARK/ LO (3-163)

Typical values of the local oscillator power PLO and

mixer gain G = GDC = GAC for the measurements reported

here were

-8
P 2 x 10 watts
LO

(4-79)

4
G 6.5 x 10

yielding from Eqs. (4-78), (3-193), and (3-163)

Ii
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i Ee )P = 4.6 x 10 10 amps
p W LO0

IOUT =Gi = 0.03 ma
OUT p

(4-80)

FR = 9 x 10-7

FD = 1.2 x 10

The resulting F factors indicate that the effects of both

thermal and dark current noise are completely negligible;

therefore, apart from the question of heterodyning effi-

ciency, this spectrometer will achieve the ideal pre-

and post-detection signal-to-noise ratios predicted by

Fig. 3-19.

Figure 4-33 illustrates the combined mixer and load

circuit used at the input of a Hewlett Packard Model 310A

wave analyzer which has a tuning range of 1 kc/sec < (wf/2 7)

< 1.5 Mc/sec. The half-power frequency of the uncompensated

network consisting of RL = 10 k and a total shunt capaci-

tance C = 57 pf was (w RC/2) = 280 kc/sec. For the present

measurements, which extended out to (wf/2) = 100 kc/sec,

the undesirable rolloff in load response was corrected by

a combination of shunt (L1) and series (L2 and L3) compen-

sating inductors.35 The overall power response of this

circuit was flat to within 1.8% for filter- frequencies

in the range 1 kc/sec < (wf/2 r) 75 kc/sec.

The expected F factors for the above detector-load-

analyzer system follow directly from Eqs. (3-193), (3-163),

and (4-80) as
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FR = 2.7 x 106

(4-81)
-5F = 1.2 x 10

D

We again find that the amplified photocurrent shot-noise

is sufficiently large to completely swamp both dark current

shot-noise and Johnson noise effects. Thus the expected

pre- and post-detection (S/N) ratios are the ideal values

given in Fig. 3-19.

c. Wave Analyzers

The mixer current power spectral density,

Si(w), was examined by one of two wave analyzers: a

General Radio Model 1900A for measurements on line widths

less than (r/2f) 2500 cps, and a Hewlett-Packard Model

310A for larger half-widths.

The 1900A has a tuning range of 0 < (wf/2 f) < 60

kc/sec and selectable filter bandwidths of

(Awf/2 f) = 3, 10, 50 cps

These bandwidths represent effective resolving powers

(Wo/Af) and resolutions (Awf/Wo) at the incoming light

wave frequency as tabulated below.

BANDWIDTH

RESOLVING

POWER

3 cps

1.6 x .101 4

10 cps

4.75 x 1013

6.25 x 10015

50 cps

9.5 x 10

2. 1 x 10 1 1 10 1RESOLUTION
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The quoted resolving powers are typically 105 to 10 times

larger than those obtainable by conventional spectroscopic

techniques.

The Hewlett-Packard Model 310A analyzer can be tuned

over the range 1 kc/sec (wf/2T) 1.5 Mc/sec with filter

bandwidths of

(Awf/2 r) = 300, 1000, 3000 cps

The corresponding resolving powers and resolutions attained

at the light wave frequency are given below.

BANDWIDTH

RESOLVING

POWER

RESOLUTION

300 cps

121.6 x 10

6.25 x 1013

1000 cps

4.75 x 1011

2.1 x 1012

3000 cps

1.6 x 101

6.25 x 1012

Both of these wave analyzers incorporate linear full-

wave detectors to rectify the ac current passed by the

narrow band filter. If the instantaneous input current

from the filter is designated as if(t) then this type of

detector yields an output voltage given by

vD(t) = Mlif(t) (4-82)

where M is a constant. An analysis similar to the one

presented in Section B.2 Chapter 3 for the square-law

photodetector shows36,37 that the dc detector output cal-

culated by taking the appropriate time and statistical

averages of vD(t) has the form
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<<(t)>> = (2/R)M JI f(W) ds (4-83)

= (2/T)T7M <Iif(t) 2>

in which Sf(w) is the power spectral density of the fil-

tered current if(t). Thus the dc output of a linear

detector measures the root-mean-square current at its

input terminals.

If the narrow band filter has the rectangular system

function shown in Fig. 3-11 and a bandwidth Awf which is

small compared to the line width of the heterodyne signal

spectrum, then Sf(w) takes the simple form given in Eq.

(3-67). In this case we have for <<vD(t)>>

1 2
v,(t = M'(AWf)2{I 2 (Wf) + [I (Wf)eff

1 2 2 2
= M'(Af) 2[IS (Wf) + (W IN (Wf ) (4-84)

2 2 1
D RA (f)RA f) ]2

2
where I (if) is the signal part of the photocurrent power

spectral density and [IN2(Wf) eff is the "effective shot-

noise current power per unit bandwitch" defined in Eq.

(3-149). For the spectrometer described here, where

I IR2(), I 2() , and IRA2(w) (the equivalent thermal noise,
R D RA

dark noise, and amplifier noise respectively) are all

negligible compared to the photocurrent shot-noise IN(w),

Eq. (4-84) becomes simply
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<V )> 2 1
<(t) = M' (Awf) 2[I (f) + I2 (4-85)

Therefore, as wf is tuned over an appropriate frequency

range vD(t)>> traces out the square-root of the sum of

the desired beat-note spectrum, IS (), and a constant,
2

IN ().N

d. The Squarer

In order to obtain a convenient plot of

the signal spectrum directly, the analyzer output voltage

was first passed through the post-detection RC filter

shown in Fig. 4-31 and then "squared" by a slow speed

analog squaring machine prior to recording. A block-

diagram schematic circuit of this device is shown in

Fig. 4-34.

In this case the recorded data trace has an ampli-

tude proportional to the square of the dc detector output,

namely

<Vo(t)O [<<VD(t)<] 2

= M' (Awf)[IS2(W I (Wf) + (4-86)

A plot of <<vo(t)>> versus the filter frequency f yields

the desired heterodyne signal spectrum IS (w) superposed
2

on a shot-noise level IN () which is independent of f.
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e. The Effect of a Finite Bandwidth on the

Recorded Heterodyne Spectrum

Equations (4-84) and 14-85) which relate

the detector output to the power spectral density of the

mixer current are valid only when (Awf) is small compared

to the line width of the signal spectrum I (Wf) In this

case the change in IS (w) over the filter bandpass is

neglected; if the input optical field has a Lorentzian

spectrum of half-width r, the recorded spectrometer out-

put is simply

2

= +B (4-87)
<Vo 2 2

Wf +

where A and B are constants. However, for the line widths

measured here the ratio (Awf/F) fell in the range

0.02 (f/r) 0.15 while the output signal-to-noise

ratio was sufficient to establish the half-width to

typically ±3% accuracy. Under these circumstances it

becomes important to determine the influence of the

finite bandwidth on the shape and width of the recorded

spectra.

The exact relationship between the output voltage,

the filter frequency, the filter bandwidth, and the photo-

current spectrum has the form
AWf f

Wf + 2

<<v(t)>> A' r 2 + B (4-88)

f 2

The evaluation of this integral is straightforward and

gives
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( t) A'r3 -1 (Auf/r)
<V (t)>> A tan f 2 + B (4-89)Wf + (Wf 2 f 2

By using the condition (Awf/r) < 1 and the series expansion

of the inverse tangent we have to second order in (Awf/r)

= 'P2A'r ~<<~v (t)>>~~ = Arr 1(4-90)°V ( =[1 - (AWf/2r)2 + - (wf/r)2 
- (Awf/2r)2

Therefore, in the approximation (Awf/F) < 1 we find that

the recorded spectrometer output is also a Lorentzian;

however, the observed half-width has the value

2
robs r[l + (Awf/2r) ] (4-91)

For the largest ratio of (Awf/r) used here this correction

represented an apparent line width increase of only (0.5%).

5. Operating Characteristics of the Spectrometer

The superheterodyne spectrometer described above

showed several undesirable effects which were not evident

in the spectrometer used for the detection of the Brillouin-

Mandel'shtam components. Most of these difficulties appeared

only because the system was inherently capable of attaining

excellent signal-to-noise ratios and, therefore, of providing

spectral measurements with exceptional accuracy. The follow-

ing paragraphs discuss some of the more important features

that influenced the actual operation of the instrument and

the interpretation of the resulting data.
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Even with the extensive dust shielding pictured in

Fig. 4-24 and with manual control of the cavity length as

described in Section B.3.c, fluctuations in laser output

were still evident. The increase of the power per unit

bandwidth in the laser amplitude modulation spectrum

near w - 0 was sufficiently rapid that spurious signals

in the photocurrent were easily detectable above the shot-

noise level at frequencies below (/2) 30 cps. Because

of this effect most of the data traces exhibit a sharp

increase in amplitude as the filter frequency f is tuned

to within a few filter bandwidths of = 0. In general,

points belonging to these values of wf were discarded in

the analysis of the experimental spectra.

Since the recorded output of the spectrometer is the

sum of a signal term

2Ko(t signal= M"(Awf)[I2 (Wf)l

porportional to I2 (Wf) and a shot-noise background level

<<o O shot= M" (Af) [IN2 (Wf)]

poor pre-detection signal-to-noise ratios,

2 2
(S/N)PRE [I (Wf=0)/IN (Wf=0)] << 1,

imply that small uncertainties in the total output <<vo (t ) >>

may lead to rather large errors in the amplitude of the

signal component. For example, with (S/N)PRE = 0.2 a +3%

non-uniformity in the overall frequency response of the

Chapter 3, Section F.3.b.
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electronic detection apparatus represents a possible error

in <Vo(t signal which is 15% of its peak value

M" (AWf)IS (0). When necessary this source of error was

eliminated by correcting the experimentally recorded spec-

trum to a normalized response curve of the system. This

standard curve was generated by illuminating the photo-

mixer with an extremely stable white light source and

recording the supposedly uniform shot-noise spectrum as

a function of the filter frequency wf.

The effects of long term drift in laser power output

on the uncertainty in <<Vo(t)> Isignal are similarly en-

hanced by small values of (S/N)PRE. To avoid this error

the power output was continuously monitored and manually

corrected by changing the rf drive power to the plasma

tube.

It was also observed that slow drifts in the align-

ment of the laser resonator mirrors tended to change the

local oscillator power as the laser beam altered its posi-

tion slightly with respect to the scattering imperfection

on the cell window. Again in the limit of small (S/N)PRE

the apparent effect on the signal part of the recorded

output is exaggerated by the relatively large change in

shot-noise level. This power drift was monitored during

the course of a data run by simultaneously recording both

the spectrometer output and the dc mixer output current
2 2 *

(Gip) Since both I 2(w ) and I2(Wf) are proportional

to ip, we have <<vo (t) >> i and the experimental spec-

trum can be corrected to "constant local oscillator power"

by using the recorded behavior of ip

Chapter 3, Section D*, Eq. (3-129).Chapter 3, Section D.4, Eq. (3-129).
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As a result of these corrections it is estimated that

the signal spectra obtained after subtraction of the shot-

noise level reproduced the actual heterodyne beat-note

spectrum IS () to within 1% of its peak value.



485

BIBLIOGRAPHY: Chapter 4

1. K. D. Mielenz, H. D. Cook, K. E. Gillilland, and R. B.
Stephans, Science 146, 1672 (1964).

2. Spectra-Physics Incorporated, 738 Terra Bella Avenue,
Mountain View, California.

3. The Radio-Amateur's Handbook, edited by Byron Goodman
(The American Radio Relay League, Newington, Connecticut,
1966), 43rd ed.

4. A. D. White and E. I. Gordon, Appl. Phys. Letters 2,
91 (1963).

5. Spectra-Physics Laser Technical Bulletin Number 2,
Spectra-Physics Incorporated, Mountain View, California.

6. A. G. Fox and T. Li, Bell System Tech. J. 40, 453 (1961).

7. G. D. Boyd and J. P. Gordon, Bell System Tech. J. 40,
489 (1961). _

8. G. D. Boyd and H. Kogelnik, Bell System Tech. J. 41,
1347 (1962).

9. M. Born and E. Wolf, Principles of Optics (The Macmillan
Company, New York, 1964), 2nd ed., pp. 435 ff.

10. Reference 9; pp. 395 ff.

11. G. W. Farnell, Can. J. Phys. 35, 780 (1957).

12. Product Catalog, The Lansing Research Corporation;
Ithaca, New York.

13. Spectra-Physics Laser Technical Bulletin Number 1,
Spectra Physics Incorporated, Mountain View, California.

14. W. E. Lamb, Jr., Phys. Rev. 134, 1429 (1964).

15. L. E. Hargrove, R. L. Fork, and M. A. Pollack, Appl.
Phys. Letters 5, 4 (1964).

16. R. E. McClure, Appl. Phys. Letters 7, 148 (1965).

17. Reference 9, p. 42.



486

18. A. D. Jones Optical Works, Burlington, Massachusetts.

19. J. Strong, Procedures in Experimental Physics (Prentice-
Hall, Inc., New York, 1945), p. 33.

20. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S.
Porto, and J. R. Whinnery, J. Appl. Phys. 36, 3 (1965).

21. R. C. C. Leite, R. S. Moore, and J. R. Whinnery, Appl.
Phys. Letters 5, 141 (1964).

22. American Institute of Physics Handbook, edited by D. E.
Gray (McGraw-Hill Book Company, Inc., New York, 1963),
2nd ed.

23. Reference 9; p. 43.

24. Millipore Filter Corporation, Bedford, Massachusetts.

25. Reference 9; pp. 312 ff.

26. F. A. Jenkins and H. E. White, Fundamentals of Optics
(McGraw-Hill Book Company, Inc., New York, 1957),
pp. 511, 513.

27. SD-100 Data Sheet, Edgerton, Gerheshausen, and Grier
Inc., Boston, Massachusetts.

28. LEL, Division of VARIAN Associates, Copiague, Long
Island, New York.

29. L. K. Anderson, P. G. McMullin, L. A. D'Asaro, and
A. Goetzberger, Appl. Phys. Letters 6, 62 (1965).

30. N. C. Ford, Jr., and G. B. Benedek, in Critical Phe-
nomena, edited by M. S. Green and J. V. Sengers
(United States Government Printing Office, Washington,
1966), p. 150.

31. W. B. Davenport, Jr., and W. L. Root, An Introduction
to the Theory of Random Signals and Noise (McGraw-Hill
Book Company, Inc., New York, 1958), pp.2 67 ff.

32. RCA Phototubes and Photocells, Technical Manual PT-60
(Radio Corporation of America, Lancaster, Pennsylvania,
1963), pp. 165 ff.

33. M. Ross, Laser Receivers (John Wiley and Sons, Inc.,
New York, 1966), pp.58 ff.



487

34. Northeast Scientific Corporation, Acton, Massachusetts.

35. R. W. Landee, D. C. Davis, and A. P. Albrecht, Elec-
tronic Designers' Handbook (McGraw-Hill Book Company,
Inc., New York, 1957), pp. 3-40 ff.

36. S. O. Rice, Bell System Tech. J. 23, 282 (1944).

37. R. E. Burgess, Phil. Mag., Ser. 7 42, 475 (1951).



488

Chapter 5

EXPERIMENTAL RESULTS

A. Introduction

This chapter presents a discussion and an analysis

of the experimental results obtained on the spectrum of

light scattered from toluene liquid at room temperature

and atmospheric pressure. The results may be grouped

conveniently into two sections.

The first describes the observation of the Brillouin-

Mandel'shtam components of the spectrum at a single scat-

tering angle, 0 = 0.5470° . The frequency splitting of the

doublet is found to be (/2X) = 30.0 ± 0.3 Mc/sec, in

agreement with the frequency of the sound waves which were

used in aligning the optical system. The measured half-

width at half-height of the spectrum is approximately

2.2 Mc/sec and is determined primarily by the acceptance

angle of the spectrometer. The natural broadeningt due

to the finite lifetime of 30 Mc/sec thermal sound waves

(16 kc/sec) was undetectable.

In analyzing the observed spectra we also calculate

the values of (S/N)PRE and (S/N)OUT predicted on the basis
of the known Brillouin scattering coefficient for toluene,

Chapter 4, Section D.2

Chapter 2, Section D.
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the theoretical sensitivity results which were derived in

Chapter 3, and the characteristic parameters of the spec-

trometer. The experimentally measured signal-to-noise

ratios are in substantial agreement with these theoretical

values.

The second section presents and analyzes the data

obtained on the line shape and natural line width of the

central component for scattering angles between 0 = 0.30

and 0 = 2.80. The spectrum in this range was found to be

accurately Lorentzian with a half-width at half-height

varying from (r/2f) 75 cps to (r/2'f) 7500 cps. The

line width data accurately follow the K dependence pre-

dicted in Section D of Chapter 2 and yield a measured

thermal diffusivity of

-4 2
(1/2 ) (A/Pcp)exptl.= (1.38 ± 0.05) x 10 cm2/sec

after correction to T = 20.00C. This result is in good

agreement with the thermodynamically determined value

-4 2
(1/2) (A/p p) static = (1.52 + 0.09) x 10 cm /sec

The central component spectra also yielded important

quantitative data on the behavior of the pre- and post-

detection signal-to-noise ratios over a rather wide

dynamic range of the ratio (PCOH/r) and hence of (S/N)pRE .

This information is used (1) to verify the calculations of

the heterodyning efficiency factors which were presented in

Section E.2 of Chapter 4, (2) to test the spatial coherence

Chapter 3, Section D.5.a.
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and signal-to-noise theories given in Chapter 3, and (3)

to confirm the expected operating characteristics of the

spectrometer optical system.

B. The Brillouin-Mandel'shtam Components

1. The Frequency Shift

Figures 5-1 and 5-2 show typical Brillouin spectra

recorded with the heterodyne spectrometer of Figs. 4-16 and

4-17 when the instrument was aligned by injecting 30.0

Mc/sec and 27.5 Mc/sec sound waves respectively into the

scattering cell. The corresponding experimentally measured

frequency shifts are

(q/2r) = 30.0 ± 0.1 Mc/sec

and

(z/27) = 27.5 ± 0.2 Mc/sec

Since an independent determination 6f the scattering angle

0 was not made, these splittings cannot be used to obtain

a value for the phase velocity vs of the thermal pressure

fluctuations. However, the agreement between the ob-

served splitting and the frequency of the injected ultra-

sonic wave confirm the fact that vs is the ordinary phase

velocity of sound in the medium.

Taking (/27) = 30.0 Mc/sec and using an average of

the ultrasonically measured values of vs

Chapter 4, Section D.2.

Chapter 2, Section D.5.
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Figure 5-1 Typical Brillouin spectrum. This spectrum was
obtained with the spectrometer optical system
aligned by injection of 30.0 Mc/sec sound waves.
The lock-in output time constant was = 10 sec.
This spectrum was recorded in about 1 hour.
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Figure 5-2 Typical Brillouin spectrum. This spectrum was
obtained with the spectrometer optical system
aligned by injection of 27.5 Mc/sec sound waves.
The lock-in output time constant was T = 10 sec.
This spectrum was recorded in about 1 hour.
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v = 1332 13 meters/sec (5-1)
S

we may calculate the wave vector and wavelength of the

scattering fluctuation at T = 20.00 C as

3 -1
K = (/vs) = 1.415 x 10 cm

(5-2)
-3

X = 4.4 x 10 cm
f

The internal scattering angle 0 can be determined from

Eq. (2-32) with the quantities

X = 6328 a
air

(5-3)

n(T = 20.00C) = 1.49252

as

0 = 0.547° = 0.00954 rad (5-4)

2. The Line Width

The half-width at half-height of the spectrum

recorded in Fig. 5-1 is approximately 2.2 Mc/sec while

the spectrometer "instrumental profile" determined by the

tuned filter response has a half-width at half-power of

(1/2)(Awf/2 7) = 1.17 Mc/sec. This rather substantial

broadening reflects the natural width of the photocurrent

power spectral density Si(w). There are three factors

Chapter 4, Section D.4.
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that contribute to the overall line shape and line width

of the current spectrum.

a. The Natural Broadening

First, the Brillouin-Mandel'shtam components

of the scattered light have an intrinsic width due to the

finite lifetime of the scattering sound wave. The effect

of this damping, assuming a monochromatic incident beam,

is to give the light scattered into an infinitesimally small

angle dO around = 0m a Lorentzian spectrum with a half-

width at half height of

(YK/2) = (Kv/ 2 r) ; (5-5)

the quantity aK is the amplitude attenuation coefficient

of a sound wave having wave vector

K = 2ko sin (/2)

and, therefore, a frequency

v = (/2 ) = (1/2 )VsK

Heasell and Lamb3 give the ultrasonically determined ratio

(aK/v2 ) as

(aK/v2 ) = 85.5 x 10 sec /cm

Chapter 2, Section D.5.
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independent of frequency for v < 200 Mc/sec. From this

result and the value of vS given in Eq. (5-1) we compute

(yK/27) = 16.4 kc/sec (5-6)

for (/2X) = 30.0 Mc/sec. Clearly this intrinsic width

is negligible compared to the observed broadening.

b. The Effect of Finite Sample Dimensions

The spectrum of the light collected in

some infinitesimally small range of scattering angle is

also broadened by a second effect. Because of the finite

dimensions of the scattering volume and the resultant un-

certainty in the conservation of momentum condition

the light scattered into a particular angle 0 is contrib-

uted simultaneously by fluctuations having a finite range

in wave vector AK around the value

K = 2k sin (0/2)

Appendix E shows that for the light source and the scat-

tering cell geometries and scattering angles involved here

the light collected at the angle 00 has a spectrum given by

2
0 2

S_ L ~ - Y (K- K )
SE(W; 0 SE(wK) e 7 0 dK (5-7)

K=-co

Chapter 2, Section D.5.
**

Chapter 2, Section E.4.e.



Ko = 2ko sin (0o/2)

L - the width of the illuminated volume measured in

the scattering plane; Chapter 4, Section C.4.

where SE(w,K) is the spectrum of the light scattered by a

single fluctuation having wave vector K. Eq. (2-101) gives

the power spectral density of the light scattered by pres-

sure fluctuations of wave vector K as

,, - /1 , 12\ F (1/2) (K/ 2 rr)
-E ", - IS'l''' / Liw - (w + )] 2 + 2

(1/2) (yK/2)

@+ ~ Ko .2 2K (2-101)

In the limit of negligible attenuation (yK - 0), which is

valid here, SE(w,K) takes the simple form

SE (,K) = <ES (,t) 12>{6[w (w + v K)]

(5-8)

where w is the incident light frequency. We then find

easily

T.

L 2
-S (w ,0)- Y E 't) 2 eE 2rv <1*Ss

2

2 -s~22 [a ( ± v K)]
2, 0 V

(5-9)

That is, in the limit K -+ 0 the uncertainty in the con-

dition K = ±(s - 0) caused by the finite size of the

illuminated region results in an artificial broadening
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of each of the B-M doublet components into a Gaussian

spectrum with an effective half-width at half-height of

1

(Y/2T) = (0.693 L (5-10)
Y

From the data given in Eqs. (4-23) and (5-1) we obtain

for the present geometry

(yl/27) = 1.12 Mc/sec (5-11)

c. The Acceptance Angle Contribution

The third factor that contributes to the

observed shape and width of Si(w) is the finite range of 

over which mixing takes place between the scattered light

and the local oscillator field. In the present system

this acceptance angle is fixed solely by the intensity

distribution in the local oscillator beam.

Consider the fields falling on a plane screen H

inserted to the left of the beam splitter in Fig. 4-16

and positioned to be normal to the signal and local

oscillator beam axes. Figure 5-3 shows the surface of

H and a local cartesian coordinate system having its

origin at the center of the local oscillator beam spot

and its x axis lying in the scattering plane, i.e. the

plane of Fig. 4-16. A ray of the scattered light passing

through the point (x,y) = (0,0) leaves the cell at the

external angles 0' and ' = 0 for which the system
Chapter 4, Section C5

Chapter 4, Section C.5.
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was originally aligned. If the total optical path length

from the cell to the plane H is RH then scattered rays

reaching the general point (x,y) have external scattering

angles given by

0' = 0' + (x/RH) (5-12)

and

.' = ' + (Y/RH) (5-13)

in the usual small angle approximation. Equations (4-13)

and (4-16) give the corresponding internal scattering

angles as

0 = 0 + (x/n2RH) (5-14)

and

= o + (y/nRH) (5-15)

respectively.

Suppose that the power spectral densities of the two

fields present at the point (x,y) are designated as

SE(w;x,y) and SLO(w;x,y), the scattered and local oscil-

lator spectra respectively. Then if H were a photosurface

the beat note part of the photocurrent density generated

at (x,y) would have a power spectrum

Sj (w;xy) SE(';x,y)SL ('-w;xIy)dw' (5-16)

as follows directly from Eq. (3-126). Integrating this

current density spectrum over the entire H plane gives

the desired power per unit bandwidth in the total photo-

current as
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Si (w) J dx dy SE(W';X,Y) SLO(w'-w;x,y)dw'

x=-X y=- w ' =-0
(5-17)

Of course, the two power spectral densities SE and SLO can

be functions of x and y for two distinct reasons; the

intensity and/or the spectral shape of the corresponding

field component may depend on the observation position.

The mean-square amplitude of the scattered field

received at H is independent of (x,y); however, its

spectrum is a unction o the observation point via the

scattering angle . For the small scattering angles in-

volved here, the mean wave vector of the fluctuations that

scatter the light observed at the angle 0 may be approxi-

mated as

K = 2k sin (0/2) - k (5-18)0 0

In this case we have immediately from Eqs. (5-9) and (5-14)

L 

SE( ;x 'Y ) = 2 <S(tt) > x
S

(w>0)

2L 2 2

exp - 2 {w - [ vk 0 ( 0 + x)]}2 [o -s o
lTVs nRH

(5-19)

In contrast, the spectrum of the local oscillator

field is independent of (x,y); however, its intensity

Chapter 2, Section C.

'

p

I
I
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has an axially symmetric Gaussian profile centered around

(x,y) = (0,0). Using Eqs. (3-83) and (4-1) we have

SLO(W;X,y) = <IELO( rt) 12>6(w - WL)

(w 20)
82 (x + y2 )

= E(r o ) e 6(w - LO) (5-20)

The spot diameter D is the radial distance from the beam

axis (x,y) = (0,0) at which the field falls to (l/e) of

its maximum value.

Since an observer to the left of the beam splitter

sees the source points of the local oscillator and scat-

tered fields in apparent exact superposition and there is

no limiting aperture in the optical system it is only the

"beam" characteristic of the local oscillator field which

delimits the range of scattering angles over which perfect

mixing between the two fields will take place.

With Eqs. (5-19) and (5-20) for SE and SLO, Eq. (5-17)

takes the form of a convolution of two Gaussians and gives

the photocurrent power spectral density as

(5-21)Si() exp -

(wŽ0)

The result is a Gaussian centered at the sound wave fre-

quency for which the system was aligned, %o = vsko0o, and

Chapter 4, Section B.2.
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having a half-width at half-height

1

"y" _ (0.693)2
27r 2rr

(5-22)

This effective half-width is made up of two contributions:

(1) an "intrinsic" broadening y1 due to the K vector un-

certainty effect discussed above

2
(V) =

(0.693) rVs 2
(5-23)

y

and an instrumental width y2 due to the finite acceptance

angle of the optical system

2
(0.6 93)vs2k 2D2

8n4 RH2
(5-24)

The instrumental width factor can be written in a more

transparent form as follows. From Fig. 4-15 the ratio

(D/RH) is simply the apparent full opening angle of the

local oscillator beam as seen "outside" the negative

lens L1

R 2AOL'
H

(5-25)

Equation (4-34) relates the AOLO to the real opening

angle of the laser beam as

2A®Lo = 4AOLO = 2(D s '/r s)

tIF

j

71
iIi
I

I

I

I

Ii

I

i.

i
i
-1
I

(5-26)
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where D ' is the spot diameter on the spherical resonator

mirror and rs is the radius of curvature of this mirror.

Using Eq. (5-26) and the relation o = v k we have0 500

Y2 = (1.386) - ( O) 2
o n

(5-27)

This expression confirms the expected intuitive result

that y2 must be some fraction a of the frequency shift,

oj, where a is determined by the ratio of the acceptance

angle to the scattering angle. Furthermore, the accept-

ance angle is fixed completely by the opening angle of

the local oscillator beam.

With the help of the quantities

(zo/2f) = 30.0 Mc/sec

0 = 0.00954 radianso
(5-28)

2ALO = (Ds '/r s) = 0.00267 radians

n 1.5

we compute the numerical result

(5-29)(X2/25) = 2.2 Mc/sec

It follows that Si(w) has an effective half-width at half-

height given by

2 Y2 2

+ C(- ) = 2.25 Mc/sec
2 if

(5-30)

_4 t'
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d. The Observed Half-Width

The spectrometer output which is recorded

as a function of the tuned filter frequency wf is the con-

volution of the photocurrent power spectral density Si(w)

with the system function of the filter H(w) 12 . In the

present case then, the observed output should be the fold-

ing of a Gaussian and a Lorentzian having half-widths at

half-heights of 2.25 Mc/sec and 1.17 Mc/sec respectively.

The required convolution, which gives rise to the so-called

Voigt function, cannot be carried out in analytical form;

however, Rautian4 has presented numerical data on the width

of the resulting spectrum from which we find

2(y recorded/2) = 5.9 Mc/sec (5-31)

Figure 5-4 shows a typical spectrum obtained at

(to/2f) = 30 Mc/sec including correction for rolloff in

the response of the signal processing amplifiers. The

measured full-width at half-height is

2(ymeasured/27) = 4.45 Mc/sec (5-32)

The discrepancy between this result and the predicted value

of 5.9 Mc/sec indicates a probable overestimate of the spot

diameter D ' and hence of the laser opening angle AOLO.

The theoretical and measured widths could be brought into

agreement by a 30% reduction in D '.
S
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3. The Signal-to-Noise Ratios

The theoretical pre- and post-detection signal-

to-noise ratios are most easily obtained by calculating

the scattered power per coherence area available at the

detector and then using the (S/N) curves presented in

Fig. 3-19. From Eqs. (2-55) and (2-166) we have

FCOH = 2PpLz(sin COH

where

COH= =

P

2

Lx[Lz sin 0 + Ly cos 0]
x z y

- the power incident on the scattering volume

p - the pressure fluctuation contribution to

the Rayleigh ratio

- the angle between the polarization vector

of the incident field and the direction of

observation

Lx ,Ly,L - the dimensions of the illuminated volume

as in Eq. (4-23)

For 0 = 0.5470 we find from Fig. 4-25

-4
AT = 3.95 x 10 radians

~' = 8.95 x 10 radians

AT = 1.12 x 10- 3 radians

AT' = 1.685 x 10- 3 radians

r

C
I'

I
I?

I
II

(5-33)

T.

A

I4
}
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the primed and unprimed quantities corresponding to values

of the coherence angles as measured inside and outside the

cell respectively. A comparison of these results to the

"external" half-opening angles of the laser source

-3
AOL = L = 2.67 x 10 radians (5-34)

indicates that the spectrometer accepts light from approx-

imately five coherence areas in the scattered signal beam.

For toluene, Fabelinskii5 quotes the value of Rp at

Xair 4358 as p = 9.66 x 10 /cm. Scaling this result

to Xair = 6328 a assuming an 4 dependence gives

-6 
Rp = 2.18 x 10 /cm (6328A) (5-35)

It is worthwhile to point out that Rp represents the frac-

tion of the incident power scattered into both Brillouin-

Mandel'shtam components. In the present spectrometer,

where the local oscillator frequency is the frequency of

the incident light wLO = wo , the signal portion of the

photocurrent spectrum results from simultaneous mixing

between the local oscillator and both the up and down

shifted components of the doublet. Therefore Rp is, in

fact, the appropriate measure of the scattering cross

section.

2
In estimating the factor sin 4 we may note from Fig.

4-16 that the polarization vector of the laser beam lies

in the plane of scattering; it follows that can be ex-

pressed in terms of the scattering angle 0 as ~ = [(7/2) - 0].

In the range < 30, then, we have sin p = 1 to excellent

approximation. In this case taking
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P = 100 milliwatts0
T - CA) c:
J.. - . . ' , - &L

(5-36)
L = 0.019 cm
x

L = 0.028 cm
Y

yields immediately

P =2.05 x 10 1 2 watts (5-37)COH

Betore being plotted on Fig. 3-19, must be adjusted

for the following factors:

(1) Transmission and reflection in the light

collection system. Equation (4-36) gives the detected

signal power as P = 0.38 P C+4A7.'
3 o . CL L Lt 

(2) The difference between the actual photo-

detector quantum efficienty = 0.10 given in Eq. (4-49)

and the value = 0.05 for which Fig. 3-19 was constructed.

(3) The heterodyning efficiency factor estimated

in Eq. (4-37) as [BCoH] < (0.3).

(4) The pre-detection signal-to-noise ratio

degradation factor (1 + F) whose experimentally measured

value is given in Eq. (4-51) as (1 + F) = (2.66).

The combination of these effects yields the power

to be plotted as

' COH -13
PPLOT - (0.38) [P5] [BcoH] C = 1.75 x 1013 watts

(5-38)

Combining this result with the effective half-width of

("y"/2 ) = 2.25 Mc/sec yields from Fig. 3-19

r

. .- , ,- ..

i
I

i
k,,,,,

i
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(S/N)PRE 2.0 x 10-

(5-39)

(S/N)OUT 2.0
T a = (Awf/y) = 0.1

2When (S/N)oUT is corrected§ for the increased values of

the fractional resolution a = (Awf/) and of the final

filter time constant T with which Figs. 5-1 and 5-2 were

obtained we find

2 200 = 10 sec
(S/N)OUT 200

a = (Awf/Y) 1.0

(5-40)

(S/N)ouT 14OUT

An attempt to determine the experimental value of

(S/N)PRE by observing the change in dc detector outputt

as the signal path of the spectrometer was alternately

opened and blocked produced a null result. The sensi-

tivity of this measurement placed an upper limit on

(S/N)PRE of

(S/N)PRE exptl. < 0.01 (5-41)

which is consistent with the expected value

* -3
(S/N)PRE = 2 x 10

§ Chapter 3, Section E.4.

Chapter 4, Section D.3.e.
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From Fig. 5-1 we may estimate the measured output

signal-to-noise ratio as

(S/N)ouT exptl.15 (5-42)

in excellent agreement with the theoretically predicted

value.

C. The Central (Rayleigh) Component

The thermodynamic calculations of Chapter 2 Section

D yielded the predicted spectrum of the central component

as a Lorentzian centered at the incident light frequency

w° and having a half-width at half-height r given by

r = (A/pcp)K , (2-82)

where

K = 2k0 sin (0/2) (2-31)

is the wave vector of the entropy fluctuation responsible

for the observed scattering. The results presented here

are sufficient to test all three basic predictions of

this theory: (1) the Lorentzian line shape, (2) the K2

dependence of the line width, and (3) the quantitative

relation between r, K, and the thermal diffusivity. The

experimental data available to test the theory are con-

fined to scattering angles in the range (0.30° 0 < 2.8 °)

where the small line widths 75 cps (/2w) 7500 cps

lead to a scattered power per coherence area per unit

spectral interval which is within the detection capa-

bilities of the superheterodyne spectrometer.
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4 The central component spectra also yielded important

quantitative measurements of both the pre-detection and

post-detection signal-to-noise ratios over a rather wide

dynamic range of the ratio (PCOH/r) . This information is

used to confront theoretically predicted values of (S/N)PRE
and (S/N)oUT which are calculated from (1) the known scat-

tering coefficient for toluene5 , (2) the coherence solid

angle , (3) the heterodyning efficiency factor of the
tspectrometert, and (4) the signal-to-noise theory pre-

sented in Chapter 3.

1. The Line Shape

The observed central component line shape was

in all cases found to be Lorentzian within an experimental

accuracy limited only by the output signal-to-noise ratio.

Figures 5-5, 5-6, and 5-7 illustrate typical spectra ob-

{ tained at 0 0.310, 0 1.72, and 0 2.80 respectively.

In each case the dashed curves correspond to the actual

spectrometer output after corrections are made for local

oscillator power drift and the non-uniform frequency

response of the electronic detection system. This cor-

rection is negligible in Fig. 5-5 where the pre-detection

signal-to-noise ratio is high, while in Fig. 5-7 it
2

approaches 10% of the peak signal amplitude, IS (0).

The heavy triangles superimposed on each trace are

the results of a least-squares fit of the corrected'curve
2

to a Lorentzian heterodyne signal spectrum I (w) plus a

constant frequency independent shot-noise level IN ().

Chapter 2, Section E.

Chapter 4, Sections E.2.b and E.2.c.
..*

Chapter 4, Section E.5.

.i
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This least-squares analysis procedure involved curve fitting

to the corrected trace at approximately fifty values of

(wf/27r) between zero and ten times the half-width of the

beat note spectrum. As indicated by Figs. 5-5, 5-6, and

5-7, the fits obtained by this technique generally fell well

within the noise present on the spectrometer output.

An estimate of the quantitative accuracy with which

the observed spectra can be assigned a Lorentzian line

shape is obtained as follows. The amplitude differences

between the corrected data and the "best fit" Lorentzian

are measured at the values of (wf/27) used in the least-

squares analysis, are squared, and then summed. The square-

root of this result divided by the number of points measures

the root-mean-square amplitude uncertainty of the fit.

Figure 5-8 shows a plot of this uncertainty as a function

of the observed half-width of the signal spectrum; the

calculated rms deviation is presented as a percentage of

the peak signal amplitude IS (0). As is evident from a

comparison of Figs. 5-5 and 5-7, the increase in line

shape uncertainty for small half-widths reflects a de-

crease in the output signal-to-noise ratio.

2. The Line Width

The natural line width of the central component

was measured for entropy fluctuations whose wave vector

fell in the range

795 cm 1 < 7333 cm 1 (5-43)

The corresponding limits on the wavelength of the scatter-

ing fluctuations f = (27/K) are
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0.008 cm 2 Xf > 0.00085 cm (5-44)

respectively. Since the sound wave injection technique

used to align the spectrometer fixes the value of K,

rather than the scattering angle, the desired experimental

relationship between and K is obtained directly without

a knowledge of the scattering angle, the index of refrac-

tion of the scattering medium, or its temperature depen-

dence. However, the approximate range in scattering angle

can be calculated from Eqs. (2-31) and (5-43) as

0.31° < 0 < 2.83° (5-45)

In order to check the predicted K2 dependence of the

half-width and obtain an experimental determination of the

thermal diffusivity, (A/pcp), the measured half-widths

were corrected to T = 20.0°C by the following method. For

fixed K, Eq. (2-82) relates the half-widths measured at

the temperatures T1 and T2 as

F(T 2 ) = C(T2 ,T)F(T 1) (5-46)

where

A(T2) p(T1) Cp(T1)
C(T2'T1) (5-47)

A(T1 ) p(T2 ) Cp(T2 )

The correction factor C(20.00 C, T1 ) was calculated for

toluene using the known temperature dependences of the

statically measured thermal conductivity and specific

heat at constant pressure. Over the temperature range

Chapter 4, Section D.2.
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involved here (20.00 C T1 < 24.0°C) the change in density

was negligible. The largest required correction factor

C(200 C, 24°C) yielded a 1.6% increase in the observed half-

width.

Table VI and Fig. 5-9 present the line width data after

reduction to T = 20.00 C. The quoted error limits on each

half-width measurement represent that range of (r/2r) over

which the least-squares "Lorentzian" analysis of the data

trace produced a fit that remained within the noise on the

recorded spectrum.

Figure 5-9 shows that the observed half-width at half-

height (r/2f) is linearly proportional to K2 over the entire

range of K to within the accuracy of the measurements. As

discussed in Section C.3, this result indicates that the

simple heat flow equation with wavelength independent thermal

conductivity and specific heat correctly describes the damp-

ing of entropy fluctuations in toluene over the range

0.001 cm < f < 0.01 cm. An extension of the data to even

smaller values of f and, consequently, larger half-widths

has been made by Greytak 8 using a single frequency helium-

neon laser and an ultra-high resolution spherical Fabry-

P6rot interferometer. At 0 = 1730

K = 2.94 x 105 cm-1

he finds (r/2r) = (10.5 ± 2) Mc/sec. A K extrapolation

of the present small-K results to this value of K yields

a half-width of (r/2r) = (12.0 ± 0.35) Mc/sec. This re-

sult suggests that the simple heat flow approach is valid

in toluene for entropy fluctuations whose wavelength is

as small as Xf = 2.1 x 10 cm.

The slope of the best straight line fit to the data,

as shown on Fig. 5-9,gives (1/2w) (A/pcp) = (1.38± 0.04) x 10-
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Table VI EXPERIMENTAL RESULTS FOR THE CENTRAL COMPONENT LINE WIDTH

-1
K - cm

794.5

795.4

1420

1496

1498

2205

2225.4

2306.5

2382

2385

2589

2599

2998

2145

3326

3331

3515

3615

3817

3997

4098

4190

4190

-(20C)- cps

75 ± 10

75 ± 5

250 ± 10

275 ± 15

300 ± 25

650 + 15

700 ± 20

700 ± 20

750 ± 15

725 ± 15

925 ± 25

875 ± 15

1185 ± 25

1387 ± 25

1550 ± 50

1513 ± 25

1636 ± 50

1785 ± 50

1917 ± 50

2170 ± 50

2270 ± 25

2522 ± 50

2396 ± 50

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

-1
K - cm

4272

4283

4303

4442

4610

4767

4880

4880

4995

5120

5155

5295

5295

5320

5466

5470

6060

6205

6323

6466

7333

7333

]-(20°C) - cps

2415 100

2545 ± 50

2578 ± 50

2763 ± 30

3030 + 75

3245 + 100

3397 ± 100

3363 + 100

3421 + 75

3623 ± 80

3800 ± 200

3900 ± 200

3800 ± 100

3850 ± 100

4097 ± 100

4160 ± 50

5400 ± 100

5400 ± 200

5560 ± 200

5944 ± 100

7750 ± 100

7360 ± 100

12

3

4

5

6

7

8

9

2011

12

13

14

15

16

17

18

19

20

21

22

23

.
.

t.,
t�,

I I ��
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Figure 5-9 Experimental results on the central component
line width versus K2 .

I

0

3

3

O

-I
I

D)

D

750(

700

650(

600(

550(

500(

co 450(

0,

a 00(

100(

50C
250(

C

4

/o

/

0

7-

el

., 1
- I I

I

I I I-. l .

I

11 14--. 4



521

2cm /sec. Including a systematic 2% uncertainty in the

determination of K traceable to the quoted error in

the velocity of the sound waves used to align the spec-

trometer and to the alignment procedure itself, we find

-4 2

(1/2) (A/Pcp)experimental = (1.38 0.05) x 10 cm /sec

(5-48)

Conventional macroscopic thermodynamic (K = 0) measure-

ments of A, p, and cp yield

p = 0.8669 g/cc 6

cp = (1.6725 + 0.016)J/g 7 (5-49)

A = (1.38 + 0.07) mW/cm C 6

from which we can compute the static result

-4 2
(1/2rr) (A/pcp)static = (1.52 + 0.09) x 10 cm /sec (5-50)

The good agreement between Eqs. (5-48) and (5-50) indicates

that the thermodynamic heat flow theory quantitatively de-

scribes the damping of spontaneous entropy fluctuations in

'r,, toluene.

3. Discussion of the Results

The central component line shape and line width

data confirm the two basic features of the simple thermo-

dynamic treatment of entropy fluctuations; (1) the exponen-

!'" tially damped time behavior which results in a Lorentzian

spectrum and (2) the proportionality between the damping
Iii
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rate and the spatial derivative of the entropy gradient,

which gives the observed linear dependence of the half-

width on K2. The significance of the present results in

relation to this theory and their bearing on the proper-

ties of the scattering medium are most easily discussed

by examining the restrictions under which the theory is

expected to be valid.

The line shape data shows that in toluene the damp-

ing of an entropy fluctuation that arises at time t = 0

is accurately exponential for times in the range

-4
10 sec < t < o sec (5-5)

However, since the thermodynamic approach assumes that

entropy fluctuations occur quasi-statically compared to

the equilibration time of the system, tc, we expect

deviations will occur from exponential damping for times

that fall in the range 0 < t < tc. Equivalently, the

central component spectrum should exhibit a non-Lorentzian

behavior for frequencies greater than the critical fre-

quency c = (l/tc)

Since the generation or decay of an entropy fluctu-

ation is accompanied by a local change in the temperature

of the medium, the appropriate equilibration time is the

minimum duration necessary to re-establish an equilibrium

Boltzmann population of the energy levels of the system.

It follows that t is fixed by the slowest energy exchange
c

processes in the liquid. For a relatively complicated

structure like toluene, these "slow" processes may corre-

spond, for example, to energy transfer between the trans-

lational degrees of freedom of the molecule and its internal

vibrational, rotational, or structural states.9

i
I
I

I
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9
The study of low frequency (< 10 cps) energy exchange

processes in liquids has been pursued extensively using

sound wave absorption and velocity measurements 9 and, more

recently, using light scattering results based on measure-

ments of the splitting and natural width of the Brillouin-

Mandel'shtam components. l °0 l l,12,13 Typical equilibration

or relaxation times have been found throughout the entire
-5 -10experimental range from t 10 sec to t 10 sec. For

C C
the purpose of describing the behavior of the sound wave

absorption and velocity measurements at frequencies near

c = (l/tc) it is customary to purely formally retain the
thermodynamically derived equations of motion by allowing

the parameters of the medium, such as its compressibility,

specific heat, and viscosity, to become frequency dependent.

The same approach can be adopted in describing the

line shape of the central component by formally rewriting

the power spectral density of an entropy fluctuation with

wave vector K as

Sentropy (,K) V 2 + (5-51)
entropy L + r (

where

r(w) = [A/pCp (w)K 2 (5-52)

The thermal conductivity can normally be assumed to be

frequency independent.l4

An appropriate form for cp(w) can be derived as fol-

lows. Since a system will ordinarily approach equilibrium

exponentially in time, the frequency dependent components
i of S no~rCm; r havr;-I= nm , e r, mInIMr will In erTinemr1l

A1

Wj_ & J.4- - I. %AA. .L.% .LL 1-L L L.dA Y 1L GA LLL-_- -- --- . _ _ - - J r _suu

L
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take the form of a Lorentzian. For example, we may write

the specific heat at constant pressure, cp as

Co p
Cp(w) = 2+ (5-53)

1 + t
c

where t is the relaxation time of an internal degree of

freedom having a specific heat cp and cp is the specific

heat at frequencies much larger than wc = (l/tc). By

Fourier transforming Eq. (5-53) we can also give cp in a

form that explicitly displays the time behavior of the

equilibration process, namely

1 /Cp -t/t
c (t) /p-ic 6(t) + 1 /t cp e (5-54)P P 2V 2 =/7 cp0 (t) V c

Equation (5-54) may be interpreted as follows: a sudden

change in the temperature of the medium at time t = 0

results in (1) an instantaneous heat flow into those

energy levels of the system that equilibrate "infinitely"

rapidly [cp ] , and (2) in a delayed heat flow into the

level [c ]1. The existence of a molecular or structural

energy level having an equilibration time tc gives cp(t)

a non-local dependence on time; the rate of heat transfer

in such a system depends on its past history over the

duration t = tc.

From Eqs. (5-51), (5-52), and (5-53) and from the

toluene line shape data we may conclude that if any toluene

molecular or structural energy levels have tc > 10 sec

then they must contribute only a small fraction v2% of the

zero frequency (thermodynamic) specific heat

co i
cp(w=0) = Cp + Cp
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It appears that the line shape of the central component

will provide an accurate and powerful tool for examining

"thermal" relaxations at very low frequencies < 10 kc/sec

where the ultrasonic technique becomes impossibly diffi-

cult.

The central line width behavior in toluene versus

the scattering wave vector K shows that the linear rela-

tionship predicted by the heat flow equation between the

damping rate of an entropy fluctuation and the spatial

derivative of the entropy gradient is valid in toluene

at room temperature and atmospheric pressure for entropy

fluctuations whose wavelengths fall in the range
-5

(2 x 10 cm < f < a). However, the validity of the

thermodynamic theory must break down at sufficiently

small wavelengths. This fact may be predicted quali-

tatively as follows. Consider the explicit form of the

heat flow differential equation for the thermodynamic

entropy s

A v2- (,t) = s(r,t) (2-71)
PC at

and its complete Fourier transform

. A 2- 
pA K s(K,W) = is(K,) (5-55)

pC

The transform s(k,w) is given by

:t - -+ 3-

(K) 1 - ( t)
s((rW) = 2s(rt) e dt (5-56)
--%.Y) E (272 rI '

~I~~~~'
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If A and cp are constants then Eq. (2-71) shows that

the heat flow approach is a completely local theory; the

damping of an entropy fluctuation at (,t) is controlled

by the properties of the medium at position and time

coordinates that differ only infinitesimally from (,t).

As we saw above, the assumption of a local time dependence

must break down for times small compared to some character-

istic time for energy transfer in the system. Similarly,

the assumption of a local space dependence must fail for

distances which are comparable to the distances over which

the molecular motions exhibit strong correlation.

That is, we may expect15 1 6 a deviation from the K2

behavior of the half-width when the wavelength of the

fluctuation Xf = (2fr/K) approaches. the range of the molec-

ular pair-correlation function. This range is determined

by the strength and range of the intermolecular potential;

for normal liquids it usually does not exceed a few molec-

ular diameters. 1, 18

The problem of calculating the effect of a non-zero

correlation range on the K dependence of the central

component half-width has received considerable attention

recently. In particular, Fixman 1 6 and Felderhof 15 have

considered the departure from K2 behavior as one approaches

the liquid-gas critical point where the pair-correlation

function range is known to diverge.

In order to maintain the equilibrium thermodynamics

equation of motion given in Eq. (5-55) we may express

their results in a purely formal way by allowing the

specific heat cp to become wave vector dependent.

Felderhof finds the first order result

Cp(K= 0)
Cp (K) = + 22 (5-57)

1 + K2
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where is the range of the pair correlation function.

The fact that Eq. (5-57) actually introduces a non-local

spatial dependence into the equations of motion can be

displayed explicitly by taking the Fourier spatial trans-

form of cp (K), namely

1 C(K)e3-
c )= 1 | cp(K) e d3KA P

(27r)2 K

rt rfrom which we findc (r) / 1 c2(K=O e (5-58)

It follows that a heat pulse applied at the point r = 0

in the medium will produce an increase in temperature

At throughout a sphere of radius surrounding that point.

Equation (5-57) predicts an increase in half-width

over the extrapolated K2 value for wave vectors approach-

ing the inverse of the correlation distance t. For tolu-

ene at room temperature and atmospheric pressure r can

be estimated from x-ray scattering data as P 6 .1' 71 8

Therefore, the accurate K dependence of the observed

central component half-width in toluene for entropy fluc-

tuations with inverse wave vectors as small as (1/K)
-6

3.4 x 10 cm = 340 A is consistent with the known pair-

correlation range in this liquid.

In general cp may be regarded as being both wave

vector and frequency dependent, namely

cp (0,0) cpi(0,0)
cp(K,w) =2 2 2 2 2 2 (559)

I 2 2 (1 2 2 2 21 + K (1 + K (1 + t c
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Therefore, in favorable cases the central component spec-

trum can yield information on two independent properties

of the molecular system; (1) the characteristic rate of

slow energy transfer processes, and (2) the range of the

pair-correlation function.

4. The Observed Signal-to-Noise Ratios

The equations given below summarize the results

obtained in Chapters 2 and 3 from which we can commute the

expected pre- and post-detection signal-to-noise ratios

for superheterodyne detection of the central component.

(S/N)pRE (2)2 ( -) C [BCOH (3-133)

1 I^@f (S/N)PR E(S/N)oUT (/NRE (3-135)
OUT A9 T (S/N) PRE+ 1

PCOH= 2PoRLz COH (2-55)

2
5o (0,(=90°) =A(2-166)COHe'=0 =L L siln L L Lus Vxz xy

i

1) 
r = (A/pcp)K (2-82)

K = 2k sin(e/2) (2-31)
0

r

i 



PCO

[BCOH

Aw

P

I

E - quantum efficiency of the photodetector

o - angular frequency of the incident light beam

H - the available scattered power per coherence

solid angle

r - the half-width at half-height of the central

component spectrum, in radians/sec

] - the heterodyning efficiency factor

of - bandwidth of the tuned filter used to

examine the photocurrent spectrum

T - bandwidth of the final post-detection filter

- the incident powero

S - the entropy fluctuation contribution to the

Rayleigh coefficient

- the length of the illuminated region

D) - the coherence solid angle for a rectangular

parallelopiped scattering volume having

dimensions L , Ly, and L in the coordinate

system of Fig. 2-10

X - the wavelength of the incident light in the

scattering medium

K - the wave vector of the entropy fluctuation

responsible for the observed scattering

529
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k = (2Tr/X) - the wave vector of the incident light

measured in the scattering medium

The additional factor of two multiplying Eq. (3-133)

appears only for the special case of a zero inter-

mediate frequency.

a. The Pre-Detection (S/N) Ratio

The predicted values of (S/N)PRE may be ob-

tained as a function of the observed half-width r from the

plot of [BCOH] shown

(2-166), (2-31), and

= 0.05

air

in Fig. 4-29; from Eqs. (3-133), (2-55),

(2-82) and from the numerical quantities

*

= 6328 

(1/27) (A/pcp) = 1.38 x 10-4 cm2/sec

R S = 0.93 x 106 -1 5cm

0.019 cm

0.028 cm

2.54 cm

50 milliwatts

Chapter 4, Section E.4.a.

Chapter 5, Section C.2, Eq. (5-48).

Chapter 4, Section C.4.

Chapter 4, Section C.2.

**

§

§

L =x

L =

L =
z

PO =
t

**
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The results of this calculation are displayed in Fig. 5-10

in two forms: (1) the maximum value of (S/N)PRE which

would be achieved with a spectrometer having a unity

heterodyning efficiency, [B oH ] = 1, and (2) the expected
COH

pre-detection (S/N) ratio for the actual spectrometer

optical system used in these measurements. However, both

of these theoretical curves include the effect of the 27%

power loss in the light collection optics.

The dramatic decrease in (S/N)PRE with increasing

line width is due primarily to its dependence on the

scattered power per unit spectral interval (PCOH/F) rather

than on the explicit variation of PCOH with 0 via the co-

herence solid angle COH(0,) or on the decrease in [BoH].
COH COH

Fig. 2-20 shows that COH decreases by less than a factor

of five between 0 = 0.330 and 0 = 3.30 while the line

width increases by a factor of 100 from (r/2r) = 100 cps

to (r/27) 10 cps.

Figure 5-10 also presents the experimentally measured

values of (S/N)PRE that were obtained from the recorded
1, ,,,,_,, | ,, *_ n EAT t~v_1 Itt CAN 0 hoA.,1 And; a l; A C /\

Spea-r-L.d -L i.y L)JJLY4AJ- LiJ. LU1UdL1LltLdl UtIL±±1LLLUI UIL Di/ LJ jpRE

given in Eq. (3-132), namely,

~~i~~~~ ~2 2

(SIN) I (WS/N)pRE - /I[I (1 ) (3-132)
PRE S 2 N 1

2
Here I ( 1) is the peak amplitude of the signal component

of the spectrum, which in the present case occurs at

: = 0, and IN () is the uniform shot-noise level. The

agreement between experiment and theory is considered to

be excellent, especially in view of the number of approxi-

mations which are involved in the derivation of the coher-
ence solid angle.**ence solid angle.

Chapter 4, Section E.2.a.
**

Chapter 2, Section E.
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lo0

102

w
a-

z

10'

w
*a:

z

100

10-'

102 103 104 10 5

( F/2r) cycles per second

Figure 5-10 The experimentally observed values of the pre-
detection signal-to-noise ratio for the
measurements on the central component in the
light scattered from toluene.
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The measurements on half-widths greater than

(r/2u) 1000 cps, where the limiting acceptance aperture

of the optical system becomes large compared to the size

of a single coherence area, clearly show that (S/N)pRE is

indeed proportional to PCOH rather than to the total col-

lected power. For 0 = 2.83°, where we have (/2r)= 7500 cps,

the number of coherence areas received by the aperture is

N 12. The poor agreement at small half-widths can be ex-

plained in terms of two effects. First, as we approach

0 = 00 the coherence angle in the scattering plane TO' is

increasing toward its maximum value while the 0' dimension

of the limiting acceptance aperture is being decreased to
*

avoid an unnatural broadening of the observed spectrum.

In the regime (/2u) < 300 cps the acceptance solid angle

of the spectrometer was considerably less than the coher-

ence solid angle COH; therefore, the power used to calcu-

late (S/N)PRE should be taken as the total power reaching

the detector rather than P as is assumed in Fig. 5-10.COH
For example, compare the measurement of (S/N)pRE at

(r/27) = 300 cps, shown as a heaving triangle in Fig. 5-10,

to that at the neighboring point (r/2n) = 275 cps; the

former was obtained with an aperture size of approximately

on coherence area while the latter was taken with N= (0.2).

Secondly, for scattering angles smaller than 0 0.5 a

large amount of stray light scattered by resonator mirror

M1 was able to reach the photomixer and produce an increase

in the dc photocurrent and hence in the shot-noise level.

Both of these effects contribute to the observed reduction

in the pre-detection signal-to-noise ratio.

Chapter 4, Section E.2.d.
Chapter 4, Section E.2.**
Chapter 4, Section E.2.a, Fig. 4-24.
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b. The Output (S/N) Ratio

Although the derivation of Eq. (3-135) for

(S/N) OUT

(S/N)
(S/N)ouT W (S/N (3-135)

T( T)r WT 1 + (SN)pRE

depends only on the characteristics of the electronic

detection system, rather than on the properties of the

scattered light or the details of the photomixing pro-

cess, it is interesting to make a comparison between

Eq. (3-135), the usual expression that is given for the

output signal-to-noise ratio

(S/ 11
(S/N)OUT 1 (S/N)pRE, (5-60)

and the experimental results. As was pointed out in

Section E.3.b of Chapter 3, Eq. (5-60) is valid only in

the limit (S/N)pRE << 1 where the primary source of fluc-

tuation in the spectrometer output is the photocurrent

shot-noise. Since most of the measurements taken here

corresponded to the case (S/N)PRE > 1, the experimental

data provides a pertinent test of the theory.

Figure 5-11 presents the experimental results as a

plot of the ratio

= (S U (5-61)
S/N)observed

OUT
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versus (S/N)pRE . If the observed output signal-to-noise

ratio is described by Eq. (3-135) then this plot should

yield a straight line a = 1 + (S/N)R E while if

(S/N)bserved follows Eq. (5-60) then the result should

be the straight line a = 1. Figure 5-11 shows that the

data are, in fact, in good quantitative agreement with

the former behavior.

A striking example of the difference between Eqs.

(5-60) and(3-135) that occurs at large pre-detection

signal-to-noise ratios is provided by the typical data

spectrum presented in Fig. 5-5. The tuned and post-

detection filter bandwidths for this trace are

(Af/2r) = 10 cps and (AWT/2 r) = 0.015 cps respectively.

From these constants and the measured value of (S/N)PRE,

(S/N)R E = 5.5, we find

(S/N)OUT 80

(S/N) OUT
(S/N) 12

OUT (S/N) + 1
PRE

The observed output signal-to-noise ratio on the recorded

spectrum is (S/N)observed 10.MM'rT

iI
i

A
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Appendix A

THE GENERAL EXPRESSION FOR THE

SCATTERED ELECTRIC FIELD

In this appendix we show that the general expression

for the scattered field may be given in terms of the fluc-

tuating part of the optical susceptibility X(r,t).

In the illuminated region V the total fields, incident

plus scattered, must satisfy Maxwell's equations

~-· = 0 (A-l) x = -a/t (A-2)

VN = (A-3) WV = - U l-Al4V -. , -v % J& ' I v s - Pi

where we have assumed that p and j, the free charge and

current densities respectively, are both zero.

Writing 5 = + and assuming that the scattering

medium has unit magnetic permeability gives ~ = ~o and

yields Eqs. (A-l) through (A-4) as

.CB = (A-l) xf = -a3/t (A-2)

.~ G = -(1/t o ) ( -.) (A-5). x = o 0Eo(a./t)

+ Po (a/at) (A-6)

If the scattering medium is characterized by a scalar

optical electric susceptibility X(r,t) the polarization

vector (r,t) has the form

At



r,t) = soX(rt)E(rt)

and Eqs. (A-5) and (A-6) become

.EE = -(1/E) (. OXE)

and

-X6 = Eopo{(a~/at) + a/at[xt]}

(A-7)

(A-8)

(A-9)

respectively. The function X(r,t) may be decomposed into

a time average and a fluctuating component

x(r,t) = <X> + AX(rt) (A-10)

so that we have finally

~·B= -Ex)(d·- - ~.[Ax4B ]

$Xr = -Vie 0{(aE/at) + (x>(a~/at) + (a/at)(Ax.-b)}

(A-11)

(A-12)

The effects of the time average susceptibility may be

removed from explicit consideration by the following pro-

cedure. The results in Eqs. (A-ll) and (A-12) may be

reexpressed as

a.~ = - (x-b)1 + Q>) (A-13)

and

x = o (l + <(X>){-at + a/t[']I0 0 at +x>(A-14)
Let us define the quantities P'(r,t) and cm as

540

I'

i
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P' r,t) =

2
Cm

E AX(r ,t) E (r,t)

1 + <X>

1
PoEo(1 + (X>)

(A-15)

(A-16)

where P' represents the polarization field associated with

the fluctuations,and cm is the velocity of light in the

scattering medium. It follows that <X> is related to the

index of refraction of the medium n as

<x> = n2 1 (A-17)

In terms of P' and c we obtain a set of modified Maxwell's
m

equations

e-B = 0

- =
-E =(1/ o ) (.~'

XE = - a/at

(A-l)

(A-18)

(A-2)

VxB = (1/cm ) [aE/at + (L/s O) (ap'/t)] (A-19)

in which the effect of <X> appears simply as a modification

in the velocity of propagation.

The solutions for the total fields and may be

written in terms of the usual vector and scalar potentials,

A and 4, as

B = xA (A-20)

(A-21)

and

-t:~ ~E = --/at
.!~~~~~~~~~~~~~~~~~~~~~~~~~~~~I ·T -- 

.
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We will take A and to satisfy the modified Lorentz gauge

S.A + (l/cm2) (a{/at) = 0 (A-22)

If B and E are defined as in Eqs. (A-20) and (A-21), then

the Maxwell equations in Eq. (A-l) and (A-2) are automati-

cally satisfied and Eqs. (A-18) and (A-19) become

V2 - a/at(A) = - (l/to)(t.') (A-23)

tx(xft = a , a~A + l.ap (A-24)

Using the gauge condition and the vector identity

~x(~x ) = (~.~) - V A yields

V2 - l ) = (P (A-25)
cm at o

and

V2 - 12p = - 1 (P'ap) (A-26)

m 0 

Thus we find that and c represent solutions to the usual

wave equations in a medium where the velocity of light is

cm and where there are effective charge and current distri-

butions given by

neff=- (s/o) (iF') (A-27)

Jeff = (co/cm (a'/at) (A-28)

The quantities = (1 + <X>)so and c are the optical

susceptibility of the scattering medium and the velocity

of light in free space respectively.

i
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The two wave equations for the potentials A and ( can

be solved§ most easily in terms of a "superpotential." Let

us set

+~ 2 +
A (1/cm ) (Dz/t) (A-29)

and

= - ~(~.) (A-30)

In this case A and ( automatically satisfy the gauge condi-

tion and the A wave equation becomes

1 22z 1 A 1 9' 2z 1 P')1 V2(9Z) a2 ( - ) = 1 2( ) (A-31)
c c 2t c cm m m o m

Removing one 3/3t by integration yields

2+ 1 2 +
V Z (A-32)

2 2 e
c 9t 0

The integration constant, which would be a function of

position coordinates only, can be shown to be zero by

noting that Z must satisfy the free field wave equation

when P' = 0.

Straightforward substitution of Eqs. (A-29) and (A-30)

into the wave equation yield a wave equation for Z which

is identical to Eq. (A-32). Therefore the problem of cal-

culating the fields is reduced to finding the solution to

the wave equation

2 - (1/cm2)(2 t2) =- ('/ ) (A33)
m 0
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Equation (A-33) is of the general form

V2G - (l/cm2 ) ( 2G/ t2) = -4rf(r,t)

which has a Green's functiont solution

G(r,t) =

r - rl

f(rl,tl1 )6[t r - drlI

r1 t 1

(A-34)

(A-35)

Therefore, the desired solution for the superpotential Z

(also called the Hertz vector) is

-r 

Z(" t) 4 7ToE+B~~,t= 4I rj tr111-* Ir T I
1 1

(A- 36)

The fields B and E can be obtained from the Hertz

vector as follows. From Eqs. (A-20), (A-21), (A-29), and

(A-30) we have

B = XA =12 at (XE) (A-3'
2 at

Cm

and

E = - - (ax/at) = (v) - 12 (- (A-3
m2 atCm

7)

8)

The result for E in terms of can be simplified with the

help of the identity bx(xZ) = M(~.z) - V2~ to the form

-

-
k:

Q;

R:
i.

.i-it

-
a.
ji
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E = x(xz) + IV Z - (1/c )(9 Zx) + 2- (1/Cm2) (2Z/t2) (A-39)

It follows that if the observation point is outside the

illuminated region so that P' - 0 we have simply

E = x( x) (A-40)

W. K. H. Panofsky and M. Phillips, Classical Electricity
and Magnetism (Addison-Wesley Publishing Co., Inc.,
Reading, Mass., 1955), p. 254.

J. D. Jackson, Classical Electrodynamics (John Wiley
and Sons, Inc., New York, 1962), p. 183 ff.

I7i
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Appendix B

THE EVALUATION OF THE SUSCEPTIBILITY DERIVATIRES

(aX/DS)p AND (X/'P) s IN TERMS OF THE PRESSURE

AND TEMPERATURE DEPENDENCES OF THE INDEX OF REFRACTION

Consider the two derivatives (X/Ds)p and (/9P) s

which determine the scattered intensity. The optical

susceptibility, X, is related to the index of refraction,
* 2n, by the result n = 1 + <X> so that the required thermo-

dynamic derivatives can be written as

2
(Dx/3s)p = (n2 /Ds)p (B-l)

and

5 (B-2)(DX/DP)s = (Dn2/P) (B-2)

respectively.

Static measurements on the index of refraction are

usually performed as a function of pressure and temper-

ature, and yield the quantities (n/DP)T and (n/DT)p.

The desired entropy and pressure derivatives can be given

in terms of the known pressure and temperature dependences

as follows. Writing n = n(P,T) gives Eq. (3-1) in the form

Appendix A.

,
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(an2/as)p = 2n(an/as)p

= 2n[(an/aT) p(T/3s) + (n/P)T(aP/as) P] (B-3)

The last term vanishes identically leaving

(an2/as)p = 2n(T/pcp) (an/aT)p (B-4)

Cp = (T/p)(as/aT)p - the specific heat at constant

pressure per unit mass

s - the entropy per unit volume

T - the absolute temperature

Similarly we find from Eq. (B-2)

(n2/aP)s = 2n(an/aP)s s

= 2n[(an/aT)p(aT/P)s + (n/aP)T(aP/aP)s] (B-5)

In terms of the thermodynamic equality (T/aP) s = Ta/pcp,

where a is the volume expansivity, a = - (l/V)(aV/aT)p,

we have

(an2/aP) = 2n[(Ta/pcp)(an/aT)p + (n/aP)T] (B-6)

A tabulation of the thermodynamic parameters appearing in

Eqs. (B-4) and (B-6) is given in Table B-I for some typical

liquids and isotropic solids; all are measured at a temper-

ature of 200 C and a pressure of 760 mm of mercury. These
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tabulated results were used to calculate the Rayleigh

ratios which are quoted in Table I of Chapter 2.

Table B-1 USEFUL THERMODYNAMIC PARAMETERS FOR SOME TYPICAL

SCATTERING MEDIA

Material

CS2

Benzene

Toluene

H20

Glycerol

CC14

Acetone

Methanol

Fused Quartz

KC1

NaC1

p - gms/cm3

1.263

0.879

0.867

1.0

1.260

1.595

0.792

0.792

2.22

1.984

2.165

Cp - joules/gm °C

0.994

1.699

1.673

4.185

2.30

0.841

2.210

2.511

0.761

0.684

0.864

Measured at air = 6328 A.air

n

1.6232

1.4975

1. 4925

1.3318

1.4723

1.458

1.3577

1.3278

1.457

1.488

1.542
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Appendix C

THE PROBABILITY DISTRIBUTIONS FOR THE ENTROPY AND

PRESSURE FLUCTUATIONS OF WAVE VECTOR K

In order to calculate the probability densities

P[AsK(O)] and P[APK(O)] we make use of the statistical

mechanical derivation for the probability of locating a

system in a specified non-equilibrium configuration. The

probability for finding the system in a state which may

.be reached reversibly from the equilibrium state by per-

forming an amount of work AW is simply

AW(state)
kT

P(state) = e (C-l)

where k is Boltzmann's constant and T is the absolute

temperature. A straightforward expansion of AW in terms

of the variables s and P leads to

as 2 1 2
P[AspAP s] = Nexp{- 2kT V (AP) kcV (As

(C-2)

where N is a normalizing factor and- s is the adiabatic

compressibility

5s = _ v
5
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Equation (C-2) assumes that APs and Asp are uniform

over the volume V and zero elsewhere. The joint

probability P[AspAP s] may be factored into two

simple probability functions

s 2

2kT Vo (A s)

P[AP s] = N e (C-3)

1 21- V (Asp)
2kpcp o P

P[ASp] = N s e (C-4)

Let us consider P[AP ] first. In a real system APs s
will be a function of both position in the medium and

time, i.e. AP = APs (r,t). It follows that the product

V (APs) is really the integral

A p (r ,t)d r

Vo

which is obtained by letting V + dVo and summing over all

elementary volumes. This result can also be obtained

directly by computing the adiabatic reversible work AW

required to produce a system whose pressure deviation

from equilibrium is given by APs (r,t). Therefore, we have

2kT .I AP 2(r,t)d3r
P[APs (r,t)] = N e o (C-5)

and a similar result for the entropy fluctuation term,

namely
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- 2kpc P V As (r,t)d3 r
p[ASp(r,t)] = N s e (C-6)

Let the volume V refer to the illuminated volume V.0
In this region we have expressed the fluctuations APs(r,t)

and Asp(r,t) in terms of a spatial Fourier series as

K

Asp(rt) = AsK (t ) e
K

iK r
(C-7)

iK*r
(C-8)

where the Fourier amplitudes APK(t) and AsK(t) are given by=--K -

1 r -iK.r
APK(t) = ASp(r,t) e d r

V

1 -t 3-a sK (t) V Asp (1r t) e r +

V

(C-9)

(C-10)

The integral appearing in Eq. (C-5) can now be expressed

in terms of the corresponding Fourier amplitudes as follows.

Expanding

V
AP 2(r,t)d3r

s

with the help of the Fourier series in Eq. (C-7) we have

I
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A 2 (rt)d 3 APP (t)APKIt) d rK K' V V

iK·r iK'·r **
Since e and e are chosen to be orthonormal over

V,the remaining volume integral yields

i(K+K') .r
e d r = V6j K (C-ll)

Using the identity APK(t) = APK(t) we find

AP 5
2 (r,t)d3 = VC APK(t) APK(t) = VX IAPK(t)2 (C-13)
V K K

which is simply Parseval's theoremt as applied to the

real space and -space representations of the zero mean

function APs(r,t). With the help of Eq. (C-13), Eq. (C-5)

becomes

[AP s (r,t)] = Np exp {- 2kT i APK(t) 12 (C-14)
K

This is a separable extended product§ of Gaussians, indi-

cating that the APK(t) are statistically independent

quantities each having a probability distribution

P[APK(t)] = N exp { 2kT IAPK(t) 12 (C-15)
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The corresponding result for AsK(t) follows immediately

from Eq. (C-6) as

[A K ( t ) ] = N exp { 2kcp IAsK(t) 12 } (C-16)

L. D. Landau and E. M. Lifshitz, Statistical Physics
(Pergamon Press Ltd., London; Addison-Wesley Publishing
Co., Inc., Reading, Mass., 1958), p. 344 ff.

Chapter 2, Section E.4.f.

R. Bracewell, The Fourier Transform and Its Applications
(McGraw-Hill Book Company, Inc., New York, 1965),
pp. 112-113.

G. B. Benedek, Lectures on the Theory of the Scatterin
of Light from Thermal Fluctuations, Brandeis Summer
Institute for Theoretical Physics, 1966 (to be published).

*

l

ii·

I.

I
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Appendix D

THE EFFECT OF WAVEFRONT CURVATURE MISMATCH

ON THE HETERODYNING EFFICIENCY

This appendix describes the efficiency of mixing

[B] between two spherically spreading waves having radii

of curvature r1 and r2 and falling on a photodetector of

diameter d. Both incoming beams are assumed to be mono-

chromatic, non-stochastic fields with coherence areas

much larger than the detector aperture.

We will assume that the source points of both

spherical waves lie on a line perpendicular to the photo-

surface and passing through its geometrical center. This

situation avoids the added effect of angular misalignment

which was treated in Section D.3.b.1 of Chapter 3. The

orientation between the two beam axes and the circular

detector aperture is illustrated in Fig. D-1.

From Eq. (3-107) we have [B] in the form

[B] A 1( oIp) 2( tp) P (3-107)

where p ranges over the surface of the detector, A. As

before, T(ro,p) and T2(ro,p) are normalized descriptions

of the amplitude and phase behavior of the two incoming

fields as a function of position p relative to the fixed

point ro. To simplify the evaluation of the integral we

assume that the photomixer has a spherical surface with
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a radius of curvature R = /rlr2 oriented as shown in Fig.

D-2. For r1 = r2 it follows that both beams have constant

intensity on A and Eq. (3-107) may be simplified to

[B] = (l/A) cos [Af(p)]d 2 P (D-l)
A

where A(p) is the phase difference between th'e incoming

fields as a function of position on the photosurface.

Assuming that the mixing geometry is azimuthally symmetric

it follows that A(p) depends only on the polar angle 0

shown in Fig. D-2. In this case we have immediately

0MAXJ cos [A4(O)]2TrR sin dO

[B] = 0 (D-2)

MAX

2rR 2 sin dO

O=0

where

sin 0MAX = (d/2R)

The spatial separation and phase difference between

two wavefronts that coincide on the detector axis at F

are most easily obtained as a function of the radial

distance off axis, x, shown in Fig. D-l. Calculating

the lengths of the perpendiculars CD and ED dropped to

the plane tangent to the wavefronts at F we find

2 2CD =BF=r -r 1 -x (D-3)

ED = r2 r2 x (D-4)

i2
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The resulting phase difference between the waves is

AS(x) = (2Ti/X) [CD - ED] (D-5)

where X is the average wavelength of the two fields.

In the limit x << R, which holds for all the cases con-

sidered here, we have approximately

CD = (x2/2rl )

ED = (x /2r2)

(D-6)

(D-7)

Equations (D-5), (D-6), and (D-7) give A as

2x) = 2 r rl
A (x) = fx 2 r1

k ( r2
(D-8)

Writing x = R sin gives the desired integral for [B] as

0MAX

=0
[B] =

2

cos{ sin (r2 - r) sin de

(D-9)
MAX

0=0

sin dO

Equation (D-9) may be integrated in the usual limit of

(d/2R) = sin «MAX << 1 with the approximation sin 8 = e.

This procedure yields the final result

[B]- sin w (D-
w

and

-10)



560

where

w = r21 rl-2 (D-11)

A detailed analysis of the behavior of the function

g = (sin w)/w may be found in Section D.3.b.1 of Chapter

2.

&,
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Appendix E

THE EFFECT OF THE FINITE SIZE OF THE ILLUMINATED

REGION ON THE SPECTRUM OF THE SCATTERED LIGHT

In this Appendix we examine the relationship between

an uncertainty in the "momentum conservation" condition

= + s o

resulting from the finite dimensions of the illuminated

volume and the spectrum of the light scattered into a

particular angle, 00, away from the incident beam direc-

tion.

For an incident beam having an arbitrary cross sec-

tional amplitude variation, i.e.

i (k r - w0 t)
E =E (r) e (E-l)
-INC o

it is convenient to allow the sample volume V to become

infinite, and to describe the size of the illuminated

region simply in terms of the intensity distribution of

the source

**
Chapter 2, Section E.4.e.

Chapter 2, Section B.1.
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IO (r) = (1/2)so/Po jIO() 2 (E-2)

In this case, the spatial Fourier series expansion of the

susceptibility fluctuations which was introduced in Chapter

2 becomes a Fourier integral,

AX(r,t) (2rr) 3 XK(t) -e

K

iK*r d3
d K

and Eq. (2-18) gives the scattered field as

( t) = f e Eo(r) XK(t) e
(27Kr)

Kri

i (o-ts+) r 31rl

(E-4)

The time independent factor f () and the wave vector of

the scattered light s are defined as5

ik + S 
(r) = 1 ( 0rx xE oeis I

4-~ { - ~r x[~r x]
(E-5)

and

s = (wo/cm)r

respectively.

Equation (E-4) shows that the light observed at r is

contributed by a single spatial Fourier component of the

fluctuations, AXK(t), only when the electric field amplitude

*
Chapter 2, Section B.3, Eq. (2-22).

(E-3)

i
t
J:
ta

SP'

I'

t
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Eo(r1) is uniform throughout all space. In this case, the

interference integral

i(k-k K) .r 
e r (E-6)

picks out only that particular AXK(t) whose wave vector

satisfies the condition

o s (E-7)-+

In general, however, Es(r,t) is contributed simultaneously

by all Fourier components whose wave vectors fall within an

amount

Ak = [xk + Ak + Ak [x(2r/L x) + (2/Ly) + (2f/L )]x y z x + y z

of satisfying Eq. (E-7). The uncertainties Akx, Aky, and

Akz give the range of wave vectors that would be present in

a spatial Fourier decomposition of the incident field ampli-

tude variation, E (rl) The quantities L , Ly, and Lz are

the dimensions of the illuminated region in the cartesian

coordinate system of Fig. 2-10.

For the source and scattering cell geometries used in

this thesis, Eo( rl) has the form

2 2

2L 2L
x y

Eo(rl) (E-8)

0 ; otherwise

Chapter 2, Section E.4.e.
**

Chapter 4, Section B.2; Chapter 4, Section C.4.
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and we have E (r,t) from Eq. (E-4) as
-S

+

4 4t f (r) i 0 Ax(t)
E (r,t) (2T) 3 e 

K

7X 2
2x1

2Lx
e

Wy12

2L 2
Y

e

c0 00 (Lz/2)

I l1 l=- (Lz/2)

-i (ots+K) r
a3 r d3 K (E-9)

Taking ks to lie in the (x,z) plane of Fig. 2-10 and re-

stricting our attention to scattering angles in the range

0 < 5° gives

ks kO Ko- 2ko sin ( /2)y (E-10)

from which we find

_*_+ >f (r) iot I
E S (r,t)- = E e A XK (t )

(2s) 7ro K
K

e
J

.A - -

2

2 + i(Kx) x_0 2 xl
2L

x

lyl 2

L 2 + i(Ky-Ko)yl
2L
y dy1

(Lz/2)

zl=-(Lz/2)

i (KZ ) ldz d3k
1

(E-ll)

Chapter 2, Section B.3, Fig. 2-5.

ZV
F.

dx1

x

X e

*

c

Y1=-w

r
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The (xlYl,Z1 ) integrals are straightforward and yield

2f ()
ES(r,t) = Lx LY (2 ) 3 e

AXK(t) exp[- X exp- Y) 

K4.~~·~ L·[ L 2 r
K

i to
(E-12)

sin (KzLz/2)

(KzLz/2)

This result shows that the spatial Fourier components of

AX(r,t) within a range

(E-13)

of K = K will contribute a significant portion of the
0 +

scattered field observed at r. The power spectral density

of this field may be found via the time correlation function

RE( T). Equations (2-61) and (E-12) combine to give

RE(T) = 1 K (rt)- *(rt+)> (E-14)

4.

2 If () I2 E2 -ioT
2(L L L z) 6 e

Y ~~(27T)) I I <AXK(t) XK (t+T)>

x exp- L K (Kx ) L 2 Ky K2
x x exp exp Y

2 r P-2 T e 2r 2· · · [-x [ Lzcx' " [ L(K1-
L 2(K -K o) sin (KzLz/2) sin (Kz Lz/2)

x exp y y 0 zz L/2)

L _ ( KzLz/2) (Kz Lz/2)
d3 d d3t'

(A ,AK , K = + 2-T 1 v2-T 
x y z f-K) L L L

x Y z

It



566

For the range of K vectors of interest here, two dis-

tinct Fourier amplitudes AXK(t) and AXK,(t) are statistically

independent. As a result the time average in Eq. (E-14)

will vanish unless K = K', i.e.

(AXK(t)XK, (t+T)> = [Rax(T)]K6(l-t') (E-15)

This simplification yields RE () in the form

R2 f () 2E 2 -i IT2 r___ -iWo
RE() = 2(LxLL) 6 e [RAX(T) ]K

K

L 2K 2] [ L 2 (K -K )2 sin2 (KzL / 2)

(E-16)

Equations (2-62), (2-81), (2-82), and (2-99) show that

for thermal fluctuations in liquids [RAX(T )]K is a function

only of the magnitude of K. Since Ko has been assumed to

be collinear with the y axis, the x and z terms in Eq. (E-16)

have only a second order effect on RE (T); to first order

[RAX(T)] may be removed from these integrations to yield

f (r)2E 2 -iw T
RE(T) = (LxLyLz) 3 eX y T 2 (27) 3

22K 7x IF R r j l 

§ Chapter 2, Section E.4.b.



T1

567

The corresponding power spectral density of the observed

field may be written as

L
sE (;o o = Y

E 7'T

00 SE (K)

J S ( ,K) e

2
L 

- - (K-K )
o

K=-o

where

SE(,K) = (LxLyLz)
If (r) 12 E 2

2 (27r)

oo[ XT d

e 0[Rx(T)KCOS wT dT
2T=-A K

(E-19)

is the spectrum of the light scattered by a single Fourier

component of the fluctuations; and 00 is related to Ko via

Eq. (E-10).

dK (E-18)
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