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ABSTRACT

Kalman Filtering techniques are combined with a
semianalytical orbit generator to develop two sequential
orbit determination algorithms, analogous to the standard
Linearized Kalman Filter (LKF) and Extended Kalman Filter
(EKF), respectively. The new _algorithms ave called the
Semianalytical Xalman Filter (SKF) .~ and = the FExtended

Semianalytical Kalman Filter ( BESKF) . The design
implications of the interaction between the filter and the
perturbations theory are discussed. The results of

numerical tests conducted to verify design assumptions are
nresented. ' S

The new algorithms were im>lemented in the testbed
provided by the Research and Development version of the
Goddard Trajectory Determination System (RD GTDS). They are
investigated for comoutational efficiency, accuracy, and
radius of convergence by comparison with the special
perturbations ILKF and EXF previously implemented in the RD
GTDS FILTER capability. ' A short-arc test case is used to
examine transient behavior. = A many-orbit test case using
real observational data illustrates ESXF and EKF steady
state nerformance in the oresence of real-world observation
and force model errors. The ESKF is shown to meet or exceed
EKF nerformance for these tests. '

An algorithm is derived that allows calculation of a
suitable bprocess noise strength based on a oriori physical
considerations. This algorithm 1is verified using the r=al
data test case,



The real data test case led to the discovery of an
interesting force model anomaly: a truncated 3x8 GEM 9
gravity field gave better prediction nerformance than the
full 21x21 field. The satellite was in a low altitude orbit
in sharp resonance with the 15th order geopotential
harmonics. The atmosohere was relatively quiet. The 16th
order GEM 9 gravitational coefficients ars shown to account
for the prediction performance degradation. Additional work
is required.
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Chapter 1

INTRODUCTION

Orbit determination processes require two capabilities:
the capability to accurately predict an orbit, given initial
conditions; and some estimation algorithm indicating how
observations of the satellite orbit should be used in up-
dating the ephemeris. Advances in the technology of either
capability imply corresponding advances in orbit determina-
tion processes. This thesis exploits recent advances in
Semianalytical Satellite Theory to develop and test two new

sequential orbit determination algorithms.

In their overview of earth satellite orbit determina-
tion, Kolenkiewicz and Fuchs [1] predict widespread use of
sequential estimation techniques by the mid 1990's. Indeed,
orbit determination systems relying on sequential algorithms
are already operational, motivated by increases in timeli-
ness, accuracy, or efficiency of the results. A literature
search turned up several examples that highlight interest-
ingly the differences between the algorithms designed herein

and previous work.

1.1 Previous Work

Telesat [2], a satellite communications system, has
been using a sequential algorithm to support station keeping
operations for several vyears now, with both improved
accuracy and reduced costs. This system uses an Extended
Kalman Filter (EKF) in conjunction with a special perturba-
tions ephemeris generator. Any orbit generator that applies

12



a high precision numerical integrator directly to a formula-
tion of the equations of motion [e.g., Cowell, Encke, VOP]
is called a Snmecial Perturbation Theory. Special perturba-
tions theories have the advantage of being highly accurate,
but suffer from computational expense due to the small step-
sizes required by the high »recision integrators. The
special nerturbations filter develooved by the Comobuter
Sciences Corvoration (CSC) in sunoort of NASA/Goddard's
study of autonomous navigation technology illustrates this
point well. CSC recommends use of a 10 or 15 second steo-

size in order to achieve the desired accuracy [3].

Alternate satellite theories exist, <called General
Perturbations theories, that wuse analytical methods ¢to
improve comonutational efficiency; they require simonlifica-
tions in the force model for analytical tractahility,
implicitly causing losses in accuracy. The United States
Air Force Aerospace Defense Command (ADCOM) mAaintains a
catalog containing avoproximate eohemerides for all manmade
earth satellites, Efficiency is mandatory for this large
orbit Adetermination task; ADCOM uses general perturbations
satellite theoriess and a recursive least squares estimation
algorithm to accomolish the routine undating of the catalog
[4], [5]. However, a snecial verturbations theory is still

required for high accuracy orbit determination.

The Global Positioning System (GPS) uses a sequential
orbit determination system with an interesting architec-
ture [6]. This system was designed to estimate the nosi-
tions of the GPS satellites with a 1.5 meter accuracy in
real time, while simultaneously having low owerating costs
for continuous ovneration. The expensive real time comvuta-

tions are minimized by using currasnt observations to tune a

13



highly accurate prestored nominal trajectory with a Kalman
Filter (LKF) linearized about that trajectory. The nominal
trajectory and all other parameters needed by the filter are
generated offline, once again with a sonecial o=rturbations
theory. Nne of the algorithms investigated in this thesis

also uses a LXF to tune a orestored nominal trajectory.

Tha last 2xamnle is the Epnoch State Navigation Filter,
not overationally employed, bhut oroonosed by Battin,
Crooonik, and Lenox [7], and later studied in anplication to
autonomous navigation by Menendez [3]. The use of a Varia-
tion of Parameters (VOP) formulation of the equations of
motion iz an assential similarity to Semianalytical Satel-
lite Theory, although tha above investigatioans emnloyed

special nerturbations methods therzaftar.

Semianalytical Satellite Theory reoresents a unifica-
tion of the strengths of snecial nerturbations and general
nerturbations methods. Semianalytical 3at=1llite Theory
starts with th2 same force model as snecial perturbations
theori=s, so the same accuracy 1is achievable in orincipnle,.
By using VOP equations of motion, only the o=2rturbing forces
must bhe integrat=d. The small magnitudes of these forces
allows formal apnlication of asymototic m2thods, a steo
beyond that taken in investigations of the Enoch State
Navigation Filter., The asymntotic method is antly bvased on
the method of averaging, which was Adeveloned by Xrylov and

=

Bogoliubov for analysis of nonlinear oscillations., Heuris-
tically, the method of averaging r=2aov2s the neriodic
content of the VOP =2quations of motion, allowing <either
analytical solution or numarical integration with large

stensizes, It is the latter avnnroach wherse the fundamental

14
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difference with general ©perturbations methods occurs:
analytically intractable portions of the force model are

treated numerically, vpreserving real world accuracy.

1.2 Semianalytical Satellite Theory at CSDL

Since the sequential orbit determination algorithms
discussed in this thesis are based on the Semianalytical
Satellite Theory currently being developed at the Charles
Stark Draper Laboratory {CSDL), that theory is described in

more detail below.

McClain [9] formulated the asymptotic expansion of this
theory in terms of the Generalized Method of Averaging
(GMA) . Use of the GMA allows the rigorous and recursive
development of formal equations for approximations of
arbitrary order. Equinoctial variables were selected to
avoid artificial singularities in the VOP equations for near
circular or equatorial orhits. Cefola [10], McClain [11]
and Collins ([12] have developed analytical expressions for
the averaged equinoctial element rates Adue to central and
third body gravity perturbations, employing special func-
tions and recursion relations to maintain force model
generality and flexibility while maximizing efficiency.
Green [13] formulated the numerical treatment of drag
perturbhations. More important for orbit determination
processes, though was his development of a Fourier series
expansion of the short periodic components averaged out of
the osculating elements. It is the efficient recovery of
these short periodics that makes this Semianalytical Satel-
lite Theory as accurate as special perturbations theories
while preserving the efficiency gains accruing from the
analytical development. Recent work at CSDL has been

16



directed toward increasing the efficiency of short periodic
recovery by further analytical development of the gravity
perturbations [14], [15], [16], [17], [18], and the desiqn
of appropriate interpolation algorithms [19]. The resulting
theory can be 5 to 100 times as efficient as special pertur-

bations theories, depending on the application.

The Semianalytical Satellite Theory has been investi-
gated for orbit determination before. Green's work was
motivated by an interest in orbit determination processes
for low altitude satellites. He used his results in a batch
differential corrections (DC) estimation algorithm, finding
accuracies and converdgdence properties quite comparable to
high precision Cowell results. He also proposed a sequen-
tial algorithm that generated the interest motivating this
work. '

1.3 Overview of Thesis

This thesis reports on the application of semianaly-
tical satellite theory to sequential orbit determination.
The sequential estimation techniques used are adaptations of
the Kalman Filter. Although the Kalman Filter is not the
optimal solution to the nonlinear estimation problem posed
by orbit determination, experience [20] has shown that it

can be adapted to perform quite adequately.

The first algorithm design is quite similar to that
used by the GPS system described above. The Semianalytical
orbit generator is used to generate an averaged ephemeris
and associated short periodic interpolators. Thus highly
accurate values for the osculating satellite position and

velocity can be recovered at observation times; the result-

17



ing observation residuals are wused by a Kalman filter
linearized about th2 mean trajectory to improve the esti-
mate. The resulting algorithm is called the Semianalytical
Kalman Filter (SKF).

Sequential orbit determination exnerience? has shown
that the EKF generally has much suverior onerformance than
global linearizations 1lik= tha LXF, Another algonrithm was
designed that em»nloys extanded-tyoe ideas where onossible,
This algorithm is called the Extznded Semianalvtical Xalman
Filter (ESKF).

Chantar 2 ©oresents mathematical introductions to
semianalytical satellite theory and estimation theory as

hackground for the SKF and ESKF designs.

Chanter 3 discusses the designs of the SKF and ESKF.
These filters are based on the standard Kalman algorithms
rather than on the square root or similar algorithms since
numerical stability is not an issue in this impnlementation.
The results of numerical tests which justify key assumntions

are also nresented,.

Chapter 4 oresents the results of orbit determination
test cases employing simulat=d observations. These test
cases serve to validate the software and give voreliminary
indications of the nrooerties and nerformance of the SKF and
ESKF.

Chanter 5 gives the results of EKF and ESKF aonlication

to real observational data. The results are verv »oromising.

18



Conclusions and suggestions for future work are stated

in Chapter 6.

The Appendices A and B discuss process noise modellinq
and the software implementation, respectively.

19



Chapter 2

BACKGROUND

This chapter presents the mathematical background
required for the design of the Semianalytical Xalman Filters
(SKF and ESKF) discussed in Chapter 3. Semianalytical
satellite theory is described first to define the notation
and motivate its advantages. An introduction to filtering

theory surveys candidate estimation algorithms.

2.1 Semianalytical Satellite Theory

The accurate and efficient propagation of an ephemeris
requires both a precise model of the forces acting on the
satellite and an accurate and efficient means of inteaqrating
the equations of motion. The equations of motion are agiven
hy Newton's Second Law as

2

Q
I

u -
+ ;§ r = aj (2-1)

2
ot
N

The terms from left to right are the satellite's accelera-
tion, the point-mass qgravitational attraction, and all other
(distyrbing) accelerations, due to oblatness, drag, third
bodies, etc. The disturbing accelerations are typically
several orders of maqgnitude smaller than the point mass

force.

20



- Now any integrator is most accurate and efficient for
systems with only small nonlinearities and low frequencies
in the force model. Historically, this fact has motivated
tradeoffs between analytical methods, which use simplified
force models and analytical approximations to obtain the
integrated evnhemeris efficiently, and numerical methods,
which retain the full force model and use high orecision
numerical integrators to obtain the integrated enhemeris

quite accurately,

To increase the efficiency of an enhemeris generator,
it is necessary to decrease both the magnitude of the
nonlinearities as well as the high frequency content of the
force model. The magnitude of the nonlinearities can be
reduced by choice of the orbital elements, For examnle,
Keplerian and equinoctial elements incorovorate the effects
of the noint-mass acceleration, leaving only the disturbing
acceleration to be accounted for. The transformation from
cartesian wnosition and velocity to such an element s2t is
the basis of Gauss' VOP equations.

The VOP equations for a general satellite orbit can be
written

ef(a, 9 (2-2)

lw,
I

| e
]

n(a) + &(a, "
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Here the vector a represents those elements describing the
shape and wpnlane of the orbit, while the vector _? is an
appropriate set of nhase variables that accounts for the
high frequency variations in the satellite acceleration.
Examples of such vhase variables are the satellit2 angle and
the Greenwich Hour Angle. Sometimes the angle of the sun,
moon, or a planet is considered a nhase variable in examin-
ing third body perturbations. Alternatively, the motion of
the third body can be modelled by taking tine itself as a
nhase variable. The symbol € formallv denotes the small
magnitudes of the generalized disturbing accelerations
ef(a, ¥ and eg(a, 8. Just as a satellite's mean anomalv is
analagous to time through Xenler's equation, the close rela-
tionshio between time and other nhases variables is indicated
in Egquation (2-2) by the dominant term in (_3 being the
generalized mean motion, n(a), a nonzero, almost constant
rate. Since a satellitzs orbit is Aalmost oeriodic in time,
the generalized disturbing accelerations €_f_(3,f) and €_g_(§,_?)
are almost 9neriodic in _9; this is consistent with the onhase
variables accounting for the high frequency comnonents of
the disturbing accelerations, Semianalytical Satellite
Theory averages the VOP equations (2-2) over the pneriods of
the nhasa variables,. The method is illustrated below in
develoning a first order theory (in €) with a singls »hase
variable, taken to be the satellite angle., S=ze McClain [9],
Green [13], and Collins [12] for extensions to higher order,
weak time devnendence, and multinle nhase angles, resnec-
tively. McClain's work is fundamental and comnrehensive,
while Greasn's and Collins' rasults show the opower and suc-

cess of semianalytical satellite theory in two amnlications.
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2.1.1 A First Order Semianalytical Satellite Theory

When the satellite mean longitude is taken as the only
ohase variable, the VOP equations become

[
]

ef (a, })

e
1}

n(a) + eg(a, A) (2-3)

This Aevelonment uses equinoctial variables, which can be

expressed in terms of classical Kenlerian element as

a = [a,h,k,n,q,]T

fl)
L}

a, the semimajor axis

h = e sin(w + IQ)
k =e cos(w+ 1 9)
I . (2-4)
P = tan (i/2) sin @
I,.
q = tan (i/2) cos €

A=M + w4 IQ

I = ¥, the retrograde factor
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Thus n(a), in the expression for the rate of A in Equation
(2-3), is the mean motion

n(:a_) B n(a) = u_ (2—5)

If the right hand sides of equations (2-3) depended
explicitly only on time, then periodicity would imply that a
and A could be expanded in a PFourier series whose coeffi-
cients were linearly dependent on the small parameter €. In
actuality, a Fourier series expansion in A is asymptotically
valid, but the dependence of the coefficients on ¢ |is
complex, making expansions of various orders possible. The
Generalized Method of Averaging (GMA) developed by
Mitropolsky provides a rigorous mathematical formalism for
obtaining asymptotic approximations of arbitrary order. To
first order, the results of the ®&A are equivalent to
averaging the VOP differential equations over the period of
the satellite angle, 0 < A < 2, to obtain mean element
rates. The resulting mean elements correspond to the
constant term in the Fourier series. The averaging opera-
tion is denoted by a super-bar, so that the mean elements
are denoted az and A. The relationship between the mean
elements and the unaveraged or osculating elements is stated
by the near-identity transformation

|
I
jvy
+
m
E
I
-
>
o

>
]
>l
+
(Y]
3

(a,X) (2-6)
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The functions en  and 8n6 are called the short
neriodic functions and to first order account for the
oeriodic terms in the Fourier series; thus they satisfy the

constraints

en (3, A + 2m = en (3, (2-7)

and

2
/ eni(E,X) ax = 0 (2-3)
0

for i = 1,2,...,5.

Since the mean =2lements are obtained by integrating the
average of the equations of motion (2-3), the mean element

rates cannot demend on A or A, Thus the equations of motion
for the mean elements can be written

o,
]

€ A(3)

7 = n+ € As(é) (2-9)
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The mean element rates and short periodic functions are
completely determined by asymptotic matchina between Fqua-
tions (2-3) and (2-9), applying as constraints the near
identity transformation (2-6) and short periodic properties
(2-7) and (2-8). The matchina is most easilv carried out by
formal Taylor series expansion; differentiate (2~6) to

obtain

. * %en +  3en
a = at+-— a+— 12
2a ax
. 9EN . dEM )
o= Y+ —2a3+—8 3 (2-10)
3a 3

and X from (2-9) and retaining terms to

[ .

Substituting for

first order in ¢ for the asymptotic match gives

. _ aen

a = € A(a) + — n

- - 3

. _ _ aen€ _

A = n+¢e A_(a) + ~ n (2-11)
6= 3

Equation (2-3) asymptotically becomes

e
[}

m

Jrh
—

fwi
-
>
S

| >0
[
]
‘E
+

(a - a) + eg(a,nr) (2-12)



since the residuals a - a and X - X are first order in ¢.

By differentiating the equation for the mean motion, (2-5),

the final result is

Ie
1
[p]
Jrh
i
>1

' X)

[ >
]
o]
|
ol W
wi sl
m
=
et
|
-
>1
+
om
Q
|

(2-13)

Explicit equations for the mean element rates and short

periodic functions result from comparison

of equations

(2-11) and (2-13) and application of the constraints (2-7)

and (2-8). Comparison yields

3 - -
) - =— €en,(a,Ar)
25 1

m
Q
ﬁ;
>

eA (a) +

Integration over 0 < X < 2r allows application
(2-8) by use of the identities

27
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ax

(2-14)

of (2-7) and



2 asni(_é'_,)?) o _ o o
/ = n dX = nfen;(a,X+2r) - en (2, X)] =0
0 I
(2-15)
and
2w F! - - 'X'_l 27 - -
/ = enj(a,X) dx = = [ eny(a,xX) ax = 9
0 a a 0
(2-16)
Carrying out the averaging of equations (2-14) vields
- 1 2m - - -
e Ala) = 5= [ ¢ f(a,Xx) 4x
— '"’ — —
0
- 1 2w - = -
e A_(a) = 5= [ € g(a,r) ax (2-17)
6'— LI -

With the eAi now known, equations (2-14) become a set of
coupled partial differential equations. The solution
satisfying the constraints is easily verified to be
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X

e n(3, %) = L [ [e £(3,6) - € A(3)] dE + € n(3,0)
n 0
- - 1 X - -
eng(a,X) = = [ [e g(asg) - eA (a)] 3¢
n 0
3 X - ~
- — f € nl(ir«‘;) dg + ¢ _qu(_a_lo)
p) AS
2a 0

(2-18)

Equations (2-17) and (2-18) provide a natural structure to
ephemeris generation by Semianalytical Satellite Theory.
The Averaged Orbit Generator (AOG) computes the mean
elements by use of (2-9) and (2-17); the Short Periodic
Generator (SPG) recovers the short peridic wvariations by
solution of (2-18). These equations are still purely formal
results. The efficiency and accuracy of Semianalytical
Satellite Theory depend on maximizing the analytical
development, with numerical methods used when further analy-
sis is not possible. Thus the averaqina of gravity pertur-
bations in (2-17) 1is done completely analytically 1[10],
[11], while the mean element rates due to drag and solar
radiation are computed by numerical quadrature [21].
Additional formal development of the short periodic func-
tions 1is possible. The approach due to Green [13] is

described below.
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2.1.2 Fourier Series Development of the Short Periodics

Accurate solution of the VOP equations by semianaly-
tical satellite theory requires recovery of the short
periodic variations. But direct application of equations
(2-12) is undesirable, since inteqration of the osculating
force model would once aqgain require small stepsizes. The
constraint equations (2-7) and (2-8) imply that the short
periodic functions can be developed in a Fourier series in
the mean-mean longitude, 2. Green [13] developed this
expansion to achieve generality in the short-periodic model;
this concept also leads to improved computational

efficiency.
The SPG equations (2-18) imply that the disturbing

forces also have a Fourier series expansion. The derivation

starts with the assumption of such an expansion

e f(a,X) = ¢ io(é) + ) e&a(é) cos oX
o=1
+ ego(é) sin oX
€ g(a,x) = EXG.O(E) + cil € XG,G(E) cos oA

+ € 26,0(3) sin ol

(2-19)
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The Fourier coefficients of the disturbing forces can be

written as

e X,(a) = ;_L—,r rf) e £(a,X) aX = ¢ A(a)
1 2m _ _

e Xg ol3) = 53 (f) € 9(a,X) dX = e A (a)
eX (a) 1 27 o cos oA _

’ = 2 [ ef&YN {  _}ax
€7 (5) 0 sin ol

_—O —

eX (a) 27 _ _  cos oX
[ %97} = 2 T eq@En [ ) ax
€Z6,o(a) 0 sSin oA

(2-20)

The Fourier coefficients of the short periodic func-
tions can be related to these known coefficients of the
disturbing function by substituting equations (2-19) into
(2-18) and carrying out the inteqration explicitly.
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Write the short periodic expansions as

€ ﬂ(érx)

The short periodic

solved for as

sgc(é)

32

) €C_sin oX - eD_ cos o
=0 =0

o=1
(2-21)
6 - -
= ) ECG,O sin o} - €D, cos o}
o=1
Fourier coefficients may finally be
1 -
— & X,(3)
on ¢
1 —
— ¢ 2 (a)
on
=L ex, (@) +-2 ep (@)
on o 20a !
1 3
== ¢ 7 (a) - —— € C (a)
on  01° 263 19

(2-22)



Although this formulation still requires implicit integra-
tions of the disturbing force models as in equations (2-20),
three factors contribute greatly to efficiency qains

1. the integrations can be done analytically for all
gravity perturbations;

2. the Fourier coefficients depend only on the slowly
varying mean elements, and so vary slowly them-
selves, allowing extensive use of interpolators
[13];

3. the series converge quickly, and so can bhe trun-

cated at low harmonics.
Computational issues for the whole of Semianalytical
Satellite Theory are discussed in more detail below after

discussing the variational equations.

2.1.3 General Notation

The development so far has emphasized the essentially
different mathematical character of the satellite angle-i,
and the other orbital elements, a, by deriving separate
equations for each. While this distinction is necessary to
understand and implement Semianalytical Satellite Theory, it
is less important for the application of Semianalytical
Satellite Theory to orbit determination. By using vector
notational conventions similar to the scalar Kronecker
Delta, a common description of both the % and the E equa-
tions can be developed. The unified equations are presented
in Table 2-1, referenced to the text above by "primed" equa-
tion numbers. The rest of the thesis will reference the
equations in Table 2-1.
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Table 2-1
Unified ®wquations for First Order
Semianalvtical Satellite Theory

Indicial vector

T
e; = [o...010 (il

]T
t ith element, out of six elements
Orbital Elements
ia. = [alhlklolql )\] (2-4)‘

VOP Equations

A = neg + () (2-3)"

Mear Identity Transformation
A = E+ cnd) (2-5)

Mean ®lement Equations

a = ne;+ £A(A) (2-9)"

Mean FElema2nt Rates

2™
A(F) = 55 /e £(F) 4 (2-17)"
9

Short Periodic Functions

5
en(a) = — [ [e£(3) - ea(a)]an
n
3 k =
- = ﬁG . f enl(i) ax (2-18)"
2a
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Generalized Disturbing Acceleration Fourier Series
Coefficients

2T _ cos O
[ e£(3) | Fax  (o1) (2-20)°
0 - sin oA

EX 4(2)

1
=

€z 4(2)

Short Periodic Function Fourier Series Coefficients

- 1 - 3 -
e€C4(3) = ';r_l‘ &X,(a) + '2‘;_; 2g ED]_,o(fa_)
(2-22)"
€ (3) = - & (3) --3-e, €, (3)
o a 07 2@ % o=
Short Periodic Function Fourier Series
en(a) = ) €C,sin dX - eDp_cos o} (2-21)"

o=1
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2.1.4 The Variational Equations

In addition to prescribing the method of computing a
satellite's state over time, most satellite theories also
indicate how to compute the variational equations, or
partial derivatives of the satellite motion. These partials
are required for orbit determination; the variational equa-
tions and all other partial derivatives required for orbit
determination with Semianalytical Satellite Theory are
presented here, following Green's development [13}.

The variational equations describe to first order the
effects of small perturbations or variations in the initial
conditions on the satellite motion at later times. The
equations of motion are linearized about the motion corres-
ponding to the nominal initial conditions, resulting in a
linearized differential equation describing the propagation
of the perturbation. The state transition matrix of this
differential equation is also called the matrix of partial
derivatives of the satellite motion. For Semianalytical
Satellite Theory, the partial derivatives of the motion give
the dependence of the mean equinoctial elements at a time
tl to the mean elements at an earlier time to.
Denote the state transition matrix by ¢(t1,tn); then

o(ty,ty)) = —= (2-23)
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is a notational identity. Letting ty be an arbitrary

time t and differentiating with respect to time gives

< = = = (2-24)

Application of the chain rule for the partial derivatives

with respect ¢to E(to) and substitution of equations

(2-9) for the mean element rates gives

d er@) g3

. T
d(t,t) = {———— -3 o T} a(t,t,) (2-25)
0 2 a(t) 2z —6 -1 0

The effects of variations of dynamic parameters in the equa-
tions of motion are also described by variational equa-

tions. Let c be the vector of dynamic parameters and define

(2-26)

Chain rule expansion of the derivative of equation (2-26)

gives rise to two terms in the variational equation for

¥(t,ty)
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; AR R be A(3)
¥(t,t,) = - 21 e,ef} w(t,t)) + ————
0 3 é(t) 25 =6—1 0 3_C_
(2-27)

The first term accounts for variations in the mean element
rates due to the implicit dependence of E(t) on c¢; the
second term describes the explicit Aependence of the rates.

Use of Green's notation [13)]

de A(a) —~
Mo = 3

3 a(t) 2a .

de A(a)
D(t) = —

ac

(2-28)

By(t) = 8(t,tg)
By(t) = ¥(t,tg)

gives his results for the Averaged Partial Generator (APG)

o
1]

AB

(2-29)

De
1]

AB_, + D
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The initial conditions for equations (2-25), (2-27), and
(2-29) state the independence of the variables _élto) and

[} for a fixed time t0

B, (t

(2-30)

]
o

¥(tyity) = By(tg)

Since the desired output of Semianalytical Satellite
Theory is the high accuracy osculating position and velocity
at a given time t, the partials with respect to the corres-
ponding mean elements are also needed. The transformation
from mean elements to osculating position and velocity
occurs in two steps: the near identity transformation (2-6)
gives the osculating equinoctial elements, which are then
converted to position and velocity by a well-known transfor-
mation [22]. The partial derivatives are developed by chain

rule as

ax(t) axX(t) 3 en(a)
= 330 [T + ————— ] (2-31)

2a(t)

Here x is the six component vector of position and velocity;
substitution of (2-6) results in the form of the second

factor.
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For special

perturbhations theories,

osculating

position and velocity do not have any dependence on the

dynamical parameter ¢ if the orbital elements at the same

time are also taken as independent variables.

However,

explicit dependence of the short periodics on the disturbing

forces, shown in (2-18), does result in nontrivial partials

for Semianalytical Satellite Theory.

ax(t)

3¢

ax(t)  den(a)

Specifically

da(t) ac

(2-32)

when a(t) and c are taken as the independent variables. 1In

Green's notation

giving

3x(t)

da(t)

Ix(t)

den (3)

9

li

3en(a)

Q
|

(ad

S

QL
|
—
-+
p—

Q
%
——~
ot
S

Q
v
—
(nd
-
S
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The partials of the transformation from osculating
equinoctial elements to position and velocity are well-known
and can be computed explicitly; the Bl’ Bz, B3,
and B4 matrices must be computed by the Semianalytical
orbit generator. The details of computation of these and
other outputs of Semianalytical Satellite Theory are
discussed next. The computation of the B2 and B3
matrices is performed by the Averaged Partial Generator
(APG); the Bl and B4 matrices are computed by the

Short Periodic Partial Generator (SPPG).

2.1.5 Computational Aspects of Semianalytical Satellite
Theory

The central goal of Semianalytical Satellite Theory is
the development of the general formulation of a satellite's
equations of motion for optimal computational efficiency.
Full use has been made of special functions: recursive
computation, and truncatable expansions in the analytical
development of the AOG and the SPG., Thus each evaluation of
a mean element rate or a short periodic Fourier series
coefficient has been made as efficient as possible while
still maintaining the generality of the theory. In an orbit
determination environment, the osculating position and
velocity must be computed at arbitrary times and arbhitrarily
frequently, to allow utilization of the observations. Semi-
analytical Satellite Theory relies heavily on global and
local interpmolation strategies developed by L. Early [19],
A. Bobick [23], and P. Cefola [19] to meet this requirement
efficiently. It is the interaction with these interpolators
that constrains the design of a sequential estimation

alqgorithm. Their structure is discussed here in detail.
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2.1.5.1 Mean Element and Variational Equation Comouggpiong

The fundamental nrovnerty of the averaged equations of
motion (2-9), (2-25), and (2-27) is the absence of high
frequency terms. Integration stepsizes from a half day for
low altitude cases to several days for high altitude cases
easily oreserve comnutational accuracy. A self-starting
Rungae-Kutta integrator orovides the flexibility to handle
oroblems of any arc length. The mean element rates are
comouted by either analytical averages or numerical averag-
ing quadratures. Computation of the A and D matrices (2-28)
for computing the rates in the variational equations (2-29)
can be done analytically for the oblateness perturbation, or
by central finite differences aoplied to the mean element
rates for all other perturbations. A hermite interpolator
recovers the values of the mean elements and the wpartial
derivatives of the motion (referenced to epoch) at output
times. The state transition matrix between two Aarbitrary
times t and t is comduted by the semigroup

1 2
nrooerty

and its corollary

Wtg,ty) = ¢H(E ) (2-36)
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The same hermite interpolator used to compute the partials
¢(t,t0) can be used to compute its matrix inverse in

(2-36) by using the rate equation

é‘l(t,to) = - Q_l(t,to) dt,tg) ¢‘1(t,t0) (2-37)

This equation is obtained by differentiating the identity
-1
d>(t,t0) ] (t,to) = TI.

A similar development can be used to calculate the
partial derivatives of the motion with respect to the
dynamic parameters at arbitréry times, from evoch referenced
values. The variational equation interpolator computes the
solution W(t,to) to equation (2-27) at required output
times. The solution to equation (2-27) can be written

formally by variation of parameters as

t
¥(t,ty) = [ e(t,Tr) D(t) dr (2-38)

to

The partials W(tz,tl) between arbitrary times t

1
and t2 can be computed by expanding this inteqral
) Y

{ ®(t, 1) D(T) dT = o(t,,ty) [ ®(ty,7) D(1) At

t

0 0

t2
+ ®(t,,t) D(1) dr (2~39)
t1

43



Appropriate identification of the terms leads to the desired

result

W(tz,tl) = Y(tz,to) - Q(tz,tl) W(tl,to) (2-40)

Use of (2-35) and (2-40) allows all needed mean quantities
to be computed quite efficiently. The interpolator for the
transition matrix inverse results in off-diagonal elements

0—16

on the order of 10‘10, compared to 1 for the exact

inverse.

2.1.5.2 Short Periodic Coefficient Computation

As part of his study of the Fourier series expansion of
the short periodic functions, Green examined the computation
of the coefficients. Since the coefficients depend only on
the slowly varying mean elements and not on the mean-mean
longitude A, smooth time histories are expectable. Green
[13] verified this hypothesis; his plots of short periodic
coefficients show very smooth behavior over several-day
spans. Early [19] implemented a variable order Lagrangian
interpolator for these coefficients with the same stepsize
as the Runge-Kutta interator. He found accuracies depending
on the order and the stepsize as shown in Table 2-2. Since
the short periodic coefficients have to bhe evaluated only
once per step, it is clear that large gains in efficiency

can be made even with low densities of output points.
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2.1.5.3 Position and Velocity Interpolation

Many orbit determination situations call for infrequent
station passes, with high data rate sensors taking large
numbers of observations to achieve the desired accuracy.
Now each call of the short periodic coefficient interpolator
described above requires the computation of six coefficients
for each frequency retained in the Fourier series expansion
(usually at least five). Then the Fourier series must be
summed in order to obtain the short periodics, and finally,
the resulting osculating equinoctial elements must be
transformed to position and velocity. In high data rate
situations, the computational load would grow rapidly. To
accomodate such cases more efficiently, L. FEarly developed
low order, short arc interpolators for the osculating posi-
tion and velocity; P. Cefola developed corresponding inter-
polators for the partial derivatives of position and
velocity with respect to the epoch mean elements. Typical
interpolator stepsizes are one or two minutes, with arc
lengths up to 9 or 10 minutes. Farly used a hermite inter-
polator for position and a Lagrangian interpolator for
velocity; Cefola used a Lagrangian interpolator for the
partial derivatives. The variation of the accuracy of the
position and velocity interpolator with order and stepsize
is shown in Table 2-3. The performance of both interpola-
tors has been assessed in batch differential corrections
(DC) orbit determination tests; with their use the Semi-
analytical Satellite Theory has exceeded special

perturbations Cowell in efficiency.
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Table

2-3

Position and Velocity Intermolation Errors

e S
Points Sten (sec) Az (m) sz(mm/sec)
60 .72 .074
120 11.6 392
2 139 59 .333
249 185 10.6
431 2550 640
| I [ ———— ———
60 .N02 .N43
120 .N92 1.08
3 180 .93 7.4
240 5.1 29
430 305 389

The reference position and velocity values were generated by
the Cowell high orecision orbit generator for an AE-C
elliptical orbit over a ten-minute interval around nerigee

with a 4x4 Earth potential model,

Harris-Priester atmosphere model,

sun,

moon,

and

The step size is the interval between successive

interpolation points,

47
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2.1.6 Summary of Semianalytical Satellite Theory

The salient features of the Semianalytical Satellite
Theory under development at CSDL have been discussed. The
existing literature gives more details on analytical deriva-
tione and on accuracy and efficiency comparisons with
special perturbations Cowell. The constraints the theory
places on a sequential estimation algorithm have been intro-
duced and will become clearer after the introduction to
filtering theory in the next section. The next chapter will
use this material as background for the design of a
Semianalytical Kalman Filter.

2.2 Introduction to Sequential Estimation Theory

The prohlem of orbit determination is the accurate and
efficient estimation of a satellite ephemeris given observa-
tional data. Sequential estimation algorithms are desirable
since they make immediate use of new observations, giving
real-time availability of the optimal estimate of the
ephemeris. Satellite observations are taken at discrete
points in time; the Semianalytical Satellite Theory
discussed above will be used to propagate the ephemeris
estimate from observation time to observation time. A
filtering algorithm is needed to specify how to determine a
new estimate after receipt of another observation. This
section presents results from sequential estimation theory,
as background for the design of the complete orbit determi-

nation algorithms in the next chapter.
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2.2.1 Problem Formulatiqg

Modern estimation theory requires a orobabilistic model
for the orbit determination problem, The Semianalytical
equations of motion (2-9)' are modelled as

zZ(t) = £(z,t) + w(t); z(tg) =z, (2-41)

The state vector z(t) is the estimated solve-for vector and
includes the mean equinoctial elements a(t) and other
dynamical solve parameters, Thus we can write

a(t)
[C

] (2-42)

z(t)

where ¢ is the vector of dynamical solve warameters, such as
the coefficient of drag. The deterministic force model is
represented by the function f(z,t); equation (2-42) implies
that f(z,t) deoends on the mean element rates € A(a).
Notice that the nresence of the nerturbation narameter € is
not of direct significance in the estimation problem. The
vector w(t) is a Gaussian white noise orocess. It is a
random inout used to account for model errors in the
dynamics; examples of such errors are given by atmosnheric
density or solar radiation oressure model errors, geonoten-
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tial coefficient errors, and avproximations in the analy-
tical development of the equations of motion. The
statistics assumed for the orocess noise w(t) and the

initial condition z, are

=h!
rlwty} = o
Efw(t) wi(D} = o(t) §t-1 (2-43)
E{_z_} = _E.Q
E{.Z_ "_—z_g)(_z_()"_—z.n)T} = Py

The function §6( *) is the Dirac delta function and satisfies
. 5ty = 0 (t #0) (2-44)
and

] £(t) &ty = £(0) (2-45)
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These properties of the delta function imply

]
8

§(0) (2-46)

so that this function is not well defined in the usual

sense.,

The notation E{+} denotes the expected value of a
random variable. For a given random variable x =

[xl,...,xn]T, the associated probability density

function is denoted by

P,(x) = P

x(X Xy reeesx (X17e0erXy) (2-47)
- n

Using this notation the expected values of x and a function

f(x) are computed by

1
n
o]
——
]
Nt
1
—
£
i}
b
I
[oN)
1%

(2-48)

and

Hﬂ
(%
~|
]
=
——
Hh
——
b
~
——
]
—
Hh
|4
A
o
—
|
joN)
ta]
——
N
i
S
O
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The integral notation here is defined

[ax = [ax; ... [ax (2-50)

Observations of the satellite eohemeris are modelled by

Ye = bzt ),t) + v (2-51)

for increasing times tk (k = 1,2,...). Her2 the func-
tion h(z( tk) ,tk) represents the deterministic model
of the mechanism for obtaining the observation Yy of the
current satellite state, Z‘-(tk)' The measurement noise
v, describes all model errors; there are many vresent in

k
any measurement process. The statistics of the Vv are

E{vk} = 0

- ' (2-52)
E{vkvz} = Rk skl

for k, %1,2,... The symbol sz is the Kronecker delta,
defined by

i + L
1, if k=2
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These statistics imply that the kth measurement Vi is
unbiased with wvariance Rk' and that the errors for

different observations are indenendent.,

Equations (2-41) through (2-53) vprovide a general
formulation of the orbit determination problem for applica-
tion of estimation theoretic results. Cases where the
proc2ss noise 1is correlated, the measurement noise is
correlated or state-dependent, or the measurements are
biased, can all be treated in the above context by approo-
riate augmentation of the state, z, and redefinition of the
functions f£(z,t) and h(z,t) [20]. Furthar extensions or a
rigorous formulation requires use of the Ito calculus or

measure theory.

2.2.2 Optimal Linear Filtering

There are many definitions of an ontimal estimate, 1In
the linear case, most of them are equivalent and result in
the Kalman Filter. The fundamental criterion £for orbit
determination appolications is the minimum mean squares error
criterion, With this criterion, the optimal estimate is the
conditional mean of the state given the measurements. Let
Zy be the value of the stochastic process 3z(t) in (2-41)
at time t = tk' Let Y, be the set of observations
Yi in (2-51) up to and including time ty

Yo = lygvyeeearv,l (2-54)
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A

Use the notation gi to represent the estimate of

the process at time tk based on the set of observations
32. When k=%, this estimate 1is the filter solution;
when k>%, the estimate is a prediction, and when k<&, the
estimate is a smoothed estimate. Using this notation, the

mean square error of the filtering estimate at time k is

J, = E{(z, - 25)T - zk)}

" 2z, - 2) (2, -z (2-55)

~

Choosing gi to minimize the mean square error yields the

conditional mean estimate

~

z, = E {z, v, } (2-56)
2k Ek'xk —k'—k

When the Adynamics and measurement models are linear, equa-

tions (2-41) and (2-51) become
z(t) = F(t) z(t) + w(t) ; z(t,) = 25 (2-57)

and

Y Hk E(tk) + Vi (2-58)
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The statistics of w(t) and Ve Aare given by equa-

Z
__0'
tions (2-43) and (2-52), respectively.

The Kalman filter gives an optimal estimate of z(t).
The filter has a natural division into two varts, a predic-
tion algorithm and an uodate algorithm., These equations are

well-known and are summarized below.

The pnrediction algorithm yields the o»timal orediction

~k-1 ; : k-1 : ;
Zy and 1its covariance Pk for wuse 1in orocessing the

new observation Yy - The state is vredicted by

k-1 _ k-1

Ze = bty ) 2

bt e, 1) = F(E) Ht,e ) (2-59)
*tp_yrtr-y) I

The covariance is predicted by

k-1 _ k-1 ,T
P T o= ety ) Bl Tt )+ Myt )
tk .
A
(tyrty q) tf oty , M AT O (t,, T AT
k-1

(2-60)
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Notice that the predictions depend only on the previous
filtered estimates. The new filtered estimates similarly
depend only on the latest predictions. The update algorithm

computes the new filtered estimate and is given by

K, = pi'l Hy (Hy p]}:‘l Hy + R) Y (2-61)
E]}: = éi-l * R - 21:-1) (2-62)
and
PX = (I -k H) P (2-63)
The Kalman Filter equations form the basis of many
practical nonlinear estimation algorithms. Three such

algorithms are discussed next.

2.2.3 Suboptimal Nonlinear Filters

The above section discusses the Kalman Filter. When
all the random variables are Gaussian, it is the optimal
solution to the 1linear filtering problem. In the more
general case, where either the initial condition, process
noise or measurement noise 1is not Gaussian, the Kalman
Filter is optimal only among estimators with a linear form.

Mast extensions of the Kalman Filter to nonlinear estima-
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tion problems make additional linearizing assumptions, based
on a perturbation series expansion of the system equations
(2-41) and (2-51). The method and its djustification are

illustrated by the following scalar example.

Let h(x) be a given differentiable function of the
. - . 2
random variable x. Let X have mean x and variance o~ .

The Taylor series expansion of h(x) around x

h(x) = h(X) + h'(X) (x = %) + % h"(X) (x = %)% + ...

can be used to evaluate the expected value of the function
h(x). Substitution of (2-64) into the expectation operator

and use of its linearity gives

E{h(x)} = h(¥) +3 h"(%) o°

2R E{(x - 07} + ... (2-65)

An additional assumption that x 1is Gaussian allows further
development of (2-65). All odd order terms must vanish,
while even order terms can be calculated explicitly in terms
of 02. The fourth order term [in (2-65)] is 1/8
h(4)(x)c4, as compared with 1/24 h(4)(x)
(x—§)4, which is the term in the original expansion
(2-64) of h(x). In general, the nth order term in (2-64)
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will become nth order in o when its expected value is
computed. Thus the convergence properties of the two series
will be similar, with (2-64) faster when |x-x|<<c and vice
versa when [x-x >>0. Depending on the magnitude of ¢, equa-
tion (2-65) can be truncated at first or second order with
little accuracy loss.

Suboptimal filters for the nonlinear estimation problem
posed in equations (2-41) through (2-53) can be derived by
applying the above expansion method to the force model
f(z,t) and observation model h(z,t). When the perturbation
series are truncated at first order, either the Extended
Kalman Filter (EKF) or the Linearized Kalman Filter (LKF)
result. When terms through second order are retained, the
result is called a Gaussian Second Order Filter. These
filters require the estimation errors to be small.
The difference between the filter estimate and the true
state will grow unstably due to neglected nonlinearities if
the estimation errors ever get too large. Divergence can
also result from errors in the force model or observation
model. Jazwinski has designed two filters to control filter
divergence. One filter [24] adaptively adjusts the process
noise covariance to provide feedback on filter gains magni-
tude; the other [25] actively estimates model errors and
subtracts their effects from the filter estimate. Since
divergence 1is not a problem in most crhit determination
applications, these two filters are not presented here.
Only the extended, linearized, and second order filters are
presented here.

58



2.2.3.1 The EKF

The Extended Kalman Filter results from direct applica-
tion of the method presented 1in equations (2-64) and
(2-65) . Perturbation series truncated at first order are
used for both the dynamics and observation models. The
expansions are based on the last filter estimate, _gﬁ:%;
it is tacitly assumed that gk:% is in fact the mean of
the true state. For the state prediction the perturbation

equation is

zZ(t) = Z(t) + Az(t) (2-66)

The assumed mean Z(t) obeys

Z(t) = £(Z(t),t)
(2-67)
- _ k-1
Zlte ) = 2k
Differentiation of (2-66) gives
2(t) = Z(t) + AZ(t) (2-68)
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while expansion of f(z,t) in (2-41) yields

z(t) = f£(Z,t) + F(t) Az(t) + wW(t) (2-69)
where
af(z,t)
F(t) = __?;___ (2-70)
= Z(t)

Thus the perturbation Az(t) obeys

Az(t) = F(t) Az(t) + w(t) (2-71)

The solve vector prediction is the conditional mean; thus it
is predicted by

(2-72)

The covariance is predicted by application of the usual XF
prediction equations to (2-71). The prediction equations
for the EKF are
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Zx = _'z'_(tk)
z(t) = £(z(t),t) (2-73)
k-1
2(tg1) = Z
k-1 _ k-1 ,T
Pe 7 Mpetpop) By Tt ) v ME )
b(t,t, 1) = F(E) t,t )
(2-74)
HEgo1r k1) I
t
k T
Mty oty q) = tf ot ,T) QT O (t,T) AT
k-1

where F(t) is defined in equation (2-70). The EKF update
equations also us2 the oerturbation eguation (2-66). The
measurement equation (2-51) is expanded to vield

_ k-1
Y = bz .t + H Bt + v (2-75)

where
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dh(z, ,t.)
Zk'"k
H = -Tﬁ§:—~——— _ “k-1 (2-76)

Since éirl is assumed to be the mean of the process, the
predicted observation is

') (2-77)

The EKF 1is estimating the correction Ag(tk) to be added
to Ek_l
date equations as the Kalman Filter algorithm (2-61) to
(2-63).

; this estimate is accomplished hy the same up-

2.2.3.2 The LKF

The Extended Kalman Filter continually updates the
integration trajectory in Equation (2-67), used for the
dynamics and observation model 1linearizations, (2-70) and
(2-76) . The trajectory update is bhased on the latest state
estimate; thus the computations in (2-67), (2-70), and
(2-76) must all be done in real time. The Linearized Kalman
Filter allows more efficient computation by assuming a
global nominal trajectory for the integration (2-67) and
linearizations; the filter estimates the nonzero mean
correction to this trajectory by the usual Xalman Filter
equations. This filter is more attractive for use with
Semianalytical Satellite Theory due to the latter's ability
to generate long time trajectories (e.q., 1 day or more)
very efficiently. The derivation of the LKF is straight-
forward; only new equations are presented here.
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A nominal trajectory for the LKF is generated exactly

as it is for the EKF, by

Zy(t) = £(zyt)
(2-78)
Zn(te) = 2y
The perturbed system becomes
AZ(t) = Fo(t) az(t) + wW(t)
(2-79)
Ayk = HN Az(tk) + Vi
. O2

where AYy is computed from the real observation Yy
by
AYy = Yy - h(EN(tk)'tk) (2-80)

The 1linear <coefficients FN(t) and HNk in (2-79) are
computed by linearization about the nominal trajectory

3£(_z_lt)
Fo(t) = ———
N 3z 2 = 2 (t)
dh(zy by ) (2-81)
k =k 2y = Zy(ty)
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The Kalman Filter equations are now anolied directly to the
system (2-79) to produce the estimate. Since the nominal
trajectory is not locally upndated, the estimated corrections
égk can become quita large; the LKF tends to vproduce
less accurate estimates and to diverge sooner than the EKF,
One means of correcting this problem is to nuse the Second

Order Gaussian Filter discussed next.

2.2.3.3 The Second Order Gaussian Filter

The Second Order Gaussian Filter retains terms through
second ordzsr in the oerturbation expansion (2-64). The
contributions of the new second order terms are analyzed hy
assuming a Gaussian nrobability distribution, giving rise to
the filter name. Second order filters tend to have better
accuracy and convergence characteristics than either the LKF
or BKF, since nonlinearities are accounted for to second
order. Second order filters have been derived by Widnall
[26] and Athans, et al. [27]; second order analysis of non-
linearities was first done by Denham and Pines [23]. Gelb
[29] and Jazwinski [20] contain complete derivations as nart
of their surveys of nonlinear estimation techniques. In
this paner, the Second Order Gaussian Filter is used only
for the analysis of the effects of nonlinearities for the

SKF; thus only the new equations are oresentesd.

Gelb defines a linear operator (eq. 5.1-25 of Ref 29)

2(g,3) = trace {[25—]3] (2-82)
n
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The arguments are a scalar function g(x) and a matrix B [x
is (nxl), B 1is (nxn)]. Using this operator, a dynamical
bias correction term is computed, using B = P, the estimate
covariance, and g = fi(E't)' the ith component of the
force model f(z,t). The ith component of the bias is

2 .
b, = 3°(f;,P) (2-83)

The EKF prediction equation (2-73) bhecomes

Z(t) = £(Z,t) +3b (2-84)
while the LKF prediction equation for Az(t) becomes
A7 = P _(t) a7 +Lb (2-85)
2 N 2 7 =
The bias due to an observation nonlinearity is
2
c = 3°(h,P) (2-86)

The predicted observations are corrected

65



) _ "k-1 1
Yy = h(Ek ,tk) + 5 c (2-87)

for the EKF [see (2-77)], and

- 1
Ayy = ¥p = hizyg(t ).t ) -5 ¢ (2-88)

for the LKF [see (2-80)].

There is also a second order correction to the predict-
ed measurement covariance used in the Xalman gain computa-
tion; this correction effectively augments the measurement
noise Rk' The covariance correction is not needed for

the analysis of nonlinearities and so is not included here.

2.2.4 Summary of Estimation Theory

Nonlinear estimation theory has been introduced and
three estimation algorithms were presented. The LKF appears
to have better computational form, but the EKF should per-
form better in the presence of large nonlinearities. The
Second Order Gaussian Filter uses bias correction terms to
reduce nonlinear effects; these terms can bhe used to assess
the impact of nonlinearities. The next section uses the
discussions of Semianalytical Satellite Theory and Filtering

Theory to design a Semianalytical Kalman Filter.
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Chapter 3

SEMIANALYTICAL FILTER DESIGN

This chapter discusses the design of two sequential
estimation algorithms for use with Semianalytical Satellite
Theory. They are analogous to the Linearized Kalman Filter
(LKF) and the Extended Kalman Filter (EKF) discussed
previously; they are called the Semianalytical Kalman Filter
(SKF) and the Extended Semianalytical Kalman Filter (ESKF)

respectively.

When Semianalytical Satellite Theory is cast in an
orbit determination role, two time frame definitions are
important:

1. the integration qrid is the time frame used by the
integrator and associated short-periodic
coefficient interpolators in the software

implementation;

2. the observation grid specifies the arrival times
of obhservations and consequently the output times
for the satellite position and velocity generated
by the integrator.

The Semianalytical Satellite Theory implementation
discussed previously makes it clear that the efficient
operation of Semianalytical Satellite Theory cannot allow
relinearization of the equations of motion within the
integration grid. Relinearization should occur only at the
boundary of an integration grid; since the integrator is
self-starting, it can be relinearized at the cost of one
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additional evaluation of the mean element and variational
equation force models. The resulting interaction between
the filter and the inteqgrator on their resnective time
frames is shown in Figure 3-1. The relationshins shown in
Figure 3-1 apnly to both tha SKF and the ESKF,

It is clear that the SXF can be designed by the
straightforward anpnlication of LKF ideas with the
Semianalytical integrator. The ESKF requires some
approximations before EKF concents are used, Before these
designs ars presented, the issue of the filter solve vector

is discussed,

3.1 Solve-Vector Choice

The choice of the filter solve-vector is not alwavs
trivial. For examole, for two-body dynamics KXenlerian
elements would be a much more natural solve vector than
nosition and velocity; this example is striking in that the

element choice makes the equations of motion linear.

For more general force models, the dynamics are
nonlinear regardless of element choice. The equations of
motion and the observation model must then be linearized for
application of the LKF or EKF equations. By use of the
chain rule and the 1linearity of the filter equations, it
follows 1immediately that the solve vector <choice is
mathematically irrelevant to the computation of the filter
correction, as 1long as the nominal trajectory is not
updated. When the nominal trajectory is undated, second and
higher order terms in the element set transformation cause

differences in the updated trajectories.
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The Semianalytical Differential Corrections (SDC)
software at CSDL can update both the epoch mean position and
velocity and the mean equinoctial elements. Generally, no
distinct trends have been observed in either SDC accuracy or
convergence rate with the choice of update elements.

The equations for the Second Order Gaussian Filter
include bias correction terms depending on the second
partials of the force model and observation model with
respect to the solve vector. These second partials do not
transform linearly; application of the chain rule yields a
term containing the second ©partial of the element
transformation. For example, the equation

-4
N
[N
]
~
o]
EIN!
| S—
~—~
lw
N
~—~~
%)
o}
| ——
+
~—~
wlo:
I
N’
=
NI
| —

(3-1)

[-%]
5

describes the transformation of the second partial of the
observation model with respect to the element sets a and Xx.
Clearly solve vector choice will affect filter performance
here, but in a complex and unpredictable way.

The natural solve vector for Semianalytical filters
uses the mean equinoctial elements, &a(t), produced by the
integrator. Since the SKF and ESKF use linear filter
equations and the trajectory will be updated relatively
infrequently, this choice should have minimal impact on
accuracy. The solve vector may also include dynamic
parameters, ¢, when they are estimated.
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3.2 SKF Design

The SKF algorithm is a direct result of the application
of the LKF algorithm to the Semianalytical Satellite
Theory. Although conceptually simple, the implementation is
mcre complex due to the interaction of the observation grid
and integration grid, as shown in Figure 3-1. The algorithm
is detailed explicitly below to emphasize this interaction.
The algorithm statement is broken down by operations
performed on the integration grid and those performed on the
observation grid. The integration grid operations are
usually executed much less frequently than the observation
grid operations, due to the 1long integration stepsizes
allowed by Semianalytical Satellite Theory. T™ue to the use
of a Runge-Kutta integrator, it suffices to consider only
one integration step; all others are processed identically.

3.2.1 Operations on the Integration Grid

1. At time t = t0 update the nominal initial state for
the new integration grid with the filter correction
from the previous grid

s

= 0 a
z = 2, + Az, where z = [Z]
=N, =0 =0 = c
Update the initial covariance PO = Pg

Initialize the filter <correction and transition
matrices
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(]
(tQ'tO) I
¥ = i vy
(torto) 0, save in s
et ,t,) = 1, save in ¢
n’'"9- ' = s

and compute force evaluations for the
motion and variational equations

equations of

- . ° o__l

2. Do the averaged integration until time t = t:0 + At

obtain éN(t), At,ty), W(t,to) and

invert #(t,t;) to get ¢—l(t,t0)

evaluate the corresponding rates to allow set un of the
mean intervolators for
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3. Compute short periodics ego(gN), er(gN)

at time t, and t for set up of the short periodic

0
coefficient interpolators

3.2.2 Operations on the Observation Grid

The SKF executes the following steps when a new

observation is received.

1. Obtain the new observation, Y(ti)’ at time t = ti

2. Interpolate for gN(ti), ¢(ti,t0), W(ti,tn)

-1 .
we already have ¢ (ti—l’to) in ¢s

3. Interpolate for short periodic coefficients

eC _(ay(t;)), eD_(ay(t;))

4. Construct the osculating elements
- N -— -
agl(ty) = EN(ti) + o'-)'_-l eC, sin oX - eD_ cos o}

transform to cartesian coordinates 5N(ti)
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5. Compute the nominal observation

YN(ti) = h(iN(ti)'ti) = h(EN(ti)lti)

and the observation residual

AY(ti) = Y(ti) - yN(ti)

compute the observation partials

_ ah _ dh )
H, = == (2prt;) = e [T + 31;34]
3zy

5 - den,(a )

1 p

day

I denq(a )

4 ac

6. Compute the transition matrix and variational partials

Q(ti,t.

1—1) Q(ti'to) Qs

BAASTATIR

W(ti,to) - Q(ti,ti_l) Vs

. I | =
using ¢ = ¢ (ti_l,to), and ¥y = W(ti_l,to)

7. Obtain predicted solve vector and covariance

-i-1 _ -i-1
8377 = e(t,ty_y) 83T

"i-1
+ ¥t ety ) Bci
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i-1 i-1
hoy 7= Ay
i-1 o(t.,t. ) ¥t.,t. o) _i-1 ®(t.,t. 1) ¥(t.,t. )T
Py = i’"i-1 i'7i-1 ] Pi-l [ i'7i-1 if7i-1 ]
0 I 0 1
A
AR )
A - . (t. -
(5085 4) 0 =ty -t 4)
8. Comnlete the upndate nhase of the filter.
P;_l q;t
Calculate the gain Ki e
(2. 7t 1, Tawy
i7i i
uodate the state &l = a2ty ok, [&y(t.) - 4, Az%—l]
=1 21 i i i =i
update the covariance Pr = (I - K.H.) pi—1
i i7i i

9. Intervolate for ths transition matrix inverse and save

for next observation

-1
¢ = ¢
S (ti'tO) and
Yy = ¥
s (tilto)

The SKF continues with step one until the integration grid
boundary is crossed; then the integration grid algorithm is

reneated, When ti = ti only stens 1, 5, 7 and 8

-1
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must bhe executed. Since the SKF does not update the nominal
trajectory within the integration grid, the solve vector
corrections estimated by the filter can become large enough
to cause filter divergence due to model nonlinearities.
This tendency is reduced for the ESKF algorithm presented
next.

3.3 ESKF Design

The ESKF is motivated by the desire to reduce the
impact of observation nonlinearities, and is allowed by the
approximately linear nature of the Semianalytical dynamics.

The mean elements obey the equation of motion (2-9)°

e
I
=]

|®

¢t e Ad) ; alt)) =a (3-2)
Thus, to zeroth order
a(t) = ne. At + ag (3-3)
The zeroth order state partials are
3%(t) = I + 36 g? é At (3-4)
830 a

76



The mean motion, n, 1is small for most satellites. The
semimajor axis, a, further attenuates the second term, so,
especially for small time differences At, the mean
equinoctial elements E(t) exhibit linear behavior. Now if
equation (3-2) 1is 1linear, then the estimate éftk) is
propagated optimally by either the original KF prediction
equations or the LKF prediction equations. That is, optimal
prediction, analogous to EKF prediction, is accomplished by

the LKF prediction equations.

This argument can be made more explicit as follows.
Let EN(ti-l) be the a priori nominal state at time
ti-l and let A%E:% be the Kalman Filter correction
after a measurement at time ti-l' An EKF would use the

new state

i-1

ti + AEi-l (3-5)

-1

as the initial condition for the state propagation equations
and a corresponding relinearization of the filter
equations. When the dynamics are linear, this new initial

condition results in a predicted state at time ti

= Z(t;) = e(ty,.t, ;) Z(t; ) (3-6)
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Substitution of (3-5) and use of the notational definitions
gives

i ci-1
Pltirb ) Znltyg) *+ 0l 05 ) 825,

N
I

“i-1
EN(ti) + AEi (3=7)

Equation (3-7) states the desired result explicitly:
optimal EKF prediction can be accomplished by adding the
LKF-predicted filter correction to the nominal trajectory

when the dynamics are linear.

The ESKF design assumes that the semianalytical
dynamics (3-2) are linear. This assumption is investigated
in Section 3.4 below. The above argument indicates that the
only application of EKF concepts lies in the measurement
update computations. The measurement linearization matrix
HK is computed based on the nominal trajectory; the
predicted observation, however, 1is based on the state
predicted by (3-7). Computation of an observation based on
the mean equinoctial elements generated by the

Semianalytical integrator requires three transformations:

1. computation of short periodic functions and

osculating equinoctial elements;

2. computation of the osculating position and

velocity; and

3. computation of the resulting observation.
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The state prediction in Equation (3-7) 1is implemented in
mean edquinoctial elements. The resulting observation

computation can be written

~ ~

1

A

y; = h[x(@y(t;) + a3}~ 1

+oen(Fy(ty) + 430 ] (3-8)

Clearly exact application of EKF predicted observation
concepts requires explicit recomputation of the short
periodic functions, precluding the wuse of either the
coefficient or position and velocity interpolators. More
efficient implementations of (3-8) allowing use of these
interpolators can be obtained by successive linearization of
the arguments of h(x). For use with just the short periodic
coefficient interpolator, the following computations are

optimal for accuracy and efficiency.

~
-~

(1) a; = 3y (t;) + (I + B)) 83; " + enl(dy(t;))
(ii)  x; = x(a;) (3-9)
(iii) y; = h(x;)

Recall that the Bl matrix is defined in (2-33) as the
partial of the short periodics with respect to the mean
elements. When the position and velocity short arc
interpolator is used, the following computagions implement

the ESKF predicted observation calculation.
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(1) ap(t;) = ay(t;) + en(ay(t;))

o o 2x(2y) g O
(1ii) x; = x(t;) + 73, [T + B8] aa;
(iv) yi = h(xi)

Green [13] proposed using (3-9) (i) and (ii) for generating
the filter's state history output, but not for use in
computing the predicted observation. Green's semianalytical
estimation algorithm is quite similar to the SKF. An
algorithmic flow for the ESKF employing equations (3-9)
follows; an algorithm using (3-10) is quite similar.

3.3.1 Operations on the Integration Grid

These operations are identical to those for the SKF,
due to the use of the assumed linearity of the Semianalytic
dynamics.

3.3.2 Operations on the Observation Grid

The ESXF performs the following steps in processing a

new observation.

1. Obtain the new observation, y(ti), at time t = ti
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2. Interpolate for g_N(ti), <1’(t.1,t0), ‘l’(ti,to)

-] .
we already have ¢ (ti-l't()) in 4’3

3. Interpolate for short periodic coefficients

compute the short periodic functions

N
eﬂ(é_N) = ) €, sin oA - €D, cos oA
. o=]1

4. Compute the transition matrices

] =
(t;08_4) °(ti.t0) ‘I’S
b4 = ¥ -
(£5r851) (tirtg) - ¥t 0ty 50 ¥
5. Predict the filter corrections
=i-1 =i-1 T i1
= ¢ b4
= (Birk5p) B3y + HEhE ) Ry
it o oacil
=i =i-1
6. Compute the predicted osculating elements
i _ = —i-1 - -i-1
alt;) = aylty) + f3; &+ en(ay) + By

Y

transform to cartesian elements —’E(ti)
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7. Compute the oredicted obhservation

A A

y(t) = h(x(t;),t;)

and the observation residual

-

compute the observation partials

oh

(-Z-N'ti) = aé;\]‘

o]
il

l
[I + 31:84]

)
T lay)
4 %

8. Predict the filter covariance

¢ b4
pi-l_Firtia) e

1

']

+ A(ti,t.

1—1)

A . . = * .- )
(Bt 1) =2 * (t; - ¢

Compoletz the updatzs vhase of the filter.
i-1 T
Calculate the gain K, -

Yt . .
(tl'tl

-1) ]



undate the state AE; = AE;_; + KiAy(ti)

undate the covariance Pi = (I - K;4.) Pi-l

10. Internolate for the transition matrix and inverse and

save for next observation

-1
] ()
s (ti’to)

¥
s

¥(t,
(tl'to)

The ESKF continues with step 1 until all observations
have been processed or the integration grid boundary is
crossed, When the boundary is crossed, vprocessing continues
as indicated presviously. When two observations come at the

same time, ti then only steps 1, 6, 7, and 9

t, R
i-1
must be executed for the second observation.

3.4 Verification of SKF and ESKF Design Assumptions

Several assumptions have been made in the design of the
SKF and ESKF algorithms. One not commented on onreviously is
the computation of the orocess noise contribution to the
predicted covariance (see SKF, step 7, and ESKF, step 8).
The process noise term is assumed to grow linearly in time.
This assumption and the nonlinearitizs in the observation

and dynamics models are tested below.

3.4.1 The Process_Noise Test

The SKF and ESKF model the orocess noise contribution
to the predicted covariance as being linear in time. This
follows the assumption wused in the Goddard Trajectory
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Determination System, Research and Development version (RD
GTDS) software [3], which served as the testbed for SKF and
ESKF development. The equation for Kalman Filter covariance

prediction (2-60) derives the process noise term as

t T
= [ o(t,T) 2AT) & (t,T) dt (3-11)

ty

A(t,to)

where Q(t) is the process noise strength at time t

E{w(t) ¥ (1)} = 0O(t) &(t - 1) (3-12)

and #(t,t) is the system state transition matrix. If Q(t)
is a constant matrix and ¢(t,t) is the identity matrix, then

equation (3-11) reduces to the GTDS assumption

A(t,to) = 0 « (t -t (3-13)

o)

Shaver [30] computed the state transition matrix for mean
equinoctial elements explicitly, including two body and
oblateness effects. His state transition matrix has the

form

¢(t,t0) = A(t,to) + eB(t,tO) (3-14)
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The matrix A has order 1 constant and sinusoidal elements;
the matrix €8 has a secular growth in (t—tn). BEquation

(3-14) leads to a process noise covariance form

- 2
A(t,to) = Cl(t - tO) + €C2(t - tO) + ... (3-15)

This result validates the GTDS annroach for small
(t—to). Equation (3-13) was verified by numerical test
for large time intervals using the low altitude satellite
described below. The state transition matrix included J2
and drag. The exact equation (3-11) was integrated by the
trapezoidal rule, so <quadratic terms in A(t,to) were
exactly computed. The wvalue used for 0 is shown in Table
3-1 as is the value of A(t,tn) after 16 hours. Clearly
the main diagonal terms behave linearly in time; notice,
however, that the model (3-13) does not account for cross
correlations that develoo in the exact equation (3-11). 1In
actual filter tests, the model (3-13) has nverformed
adequately. Observe that the same methodologies annly for
choosing the bprocsss noise strength, 0, under hoth (3-11)
and (3-13).

3.4.2 Evalution of Dynamical Nonlinearities

The Second Order Gaussian Equations specify bias
correction terms for the dynamics and measurement models,
The filter orediction equation is
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Table 3-1

Process Noisz CovAariance Test Results
satellite: WNMTST (see Table 4-3)
nrocess nois2 strength
. -10 ~-16 -15 -17 -17 -13 -3
n = aiag[107?,1071%, 107,107 107 1071070
nrocess noise covariance contribution
at time t = 14 hours = 57500. seconds
=
0.580-05 0.130-10 ~0.810-10 0.14D-10 -0.14D-10 -0.38D-07
0.130-10 0.580-11 0.130-16 =-0.41D-15 -0.22D-1¢ -0.58D-13
At,0) = -0.810-10 0.130-14 0.570-11 -0.60D-14 0.58D-1¢  0.31D-12
0.14D-10 =-0.41D-15 -0.60D-16¢  0.60D-12 -0.82D-15 -0.15D-12
-0.14D-10 -0.22D-14 0.58D-14 ~-0.820-15 0.55D-12  0.910-13
-0.380-07 -0.530%13 0.310-12 -0.150-12 0.91D-13  0.61D-08
0.0 0.0 0.0 0.0 0.0 0.0
L
a . L
Note: 2z = [c ] 50 that Drag orocess noise is included. The
D
value of 9 1s similar to those emnloyed in test cases
below. Notice the strong correlation between a and

nredictable from equation (3-4).
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AZ(t) = F(t) Az(t) + b (3-16)

where the vector b accounts for the dynamical nonlinearities
causing a bias in the filter estimate; the ith component of

b is given by

P} (3-17)

The other terms in equations (3-16) and (3-17) are defined
by

Az = estimated filter solve vector
fi = ith component of f(z,t)
f(z,t) = system dynamics force model
Zy = nominal system state
af(zrt)

F(t) = ——————-—BE Y -y

Z 72N
P = covariance matrix of Az
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The bias correction vector provides an increment to the
filter estimate Az given by

(a2

6z(t) = [ &(t,T) b(7) dr (3-18)

The matrix ¢ is the system state transition matrix.
Equation (3-18) was integrated by Euler's method for 11
hours; the variational equation force model included the
oblateness effects. The matrix F(t) was computed
analytically. Second partials of the force model were
computed by finite differencing F(t); the accuracy of the
numerical derivatives was verified by the equality of
off-diagonal terms, i.e.

2 2
9 fi _ 3 fi

0Z 02 T 9z az (3-19)
m’ “n n’“m

indicating that the analytical and finite differenced
partials had the same accuracy. The results are shown in
Table 3-2. The perturbation §z had fairly regular growth in
time, finally reaching the wvalue shown after 11 hours.
Since magnitude of the 6z correction is much smaller than
typical filtering corrections, it is concluded that the
dynamical nonlinearities have negligible impact. This
conclusion supports the design assumptions of the ESKF.
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Table 3-2

Results of the Dynamical Nonlinesarityv Test

satellite: WNMTST (see Table 4-3)

state covariance:

p, = diag [107°,1071%,10712,10712 10712 19710 ]

Nonlinearity bias correction:
at time t = 11 hours

bz(t) = -0.126D-08  0.134D-16- -0.1670-14 =-0.7250-15 0.772D-15 0.2580-12

Note: PO imnlies

clearly Azi >> 5zi. These r=2sults are linzar in

Ro’ imolying validity for all scalings of Bo'
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3.4.3 Evaluation of Measurement Nonlinearities

The analysis of observation model nonlinarities is
essential to the design of the ESKF. Any nonlinearities in
the observation model result directly in filter biases. The
Second Order Gaussian Filter update equations approximate
this bias as

Q
i
Nl
o+
[a]
ey
Q
)
S
L)
Nyt

Q
IN
Z N

(3-20)

where ¢ 1is the bias, y is the observation, Zy is the
nominal filter state, and P is the filter covariance. This
bias can be expanded explicitly in terms of the
computational method used by Semianalytical Satellite Theory

for obtaining predicted observations.

Semianalytical Satellite theory computes an observation
by the following sequence of calculations

(1) a = a+en(d)
(i) x = T@) i x = [E]
r
.. =LT
(111) Xrp Dx-R; Xt T [XLT]
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(iv) 'y = hix;q)

The transformation in (iii) accounts for the
transformation from inertial oosition and velocity, x (in
1950 coordinates), to earth-fixed coordinates, and from
there to the local tangent frame at the observation station
location, R. The transformations (i) and (ii) have been
discussed above; the observation model (iv) devends on the

current observation tyve.

First and second partials of the observation model can
be comouted by application of the chain rule to
transformations (i) - (iv). The second order pvartials are
desired for analysis of the bias correction term (3-20).
Three terms will arise naturally in the chain rule expansion
of the second order partials; the terms will contain the
second partials of one of the nonlinear transformations (i),
(ii), or (iv). The transformation (iii) is 1linear, so has

vanishing second partials. Writing

c = % tr{(a+38+0p} (3-21)

the three terms A, 3, and C become

% T 2y [ X
A= [plg)r+s)] 3 [D(—a-é Jr+Bp]  (3-22)
LT
3 razx ]
B = D |- : (I +B;) : (I + B.) (3-23)
a-(-LT 3a2 1 1
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3 X
c = &% o, - 1L (3-24)

The quantity 325/332 is a third order tensor; the
two multiplications by (I + Bl) result from the
application of the chain rule in each of the partials with
respect to a. The quantity aBl/ag is similarly third

order.

The relative magnitudes of the three terms A, B, and C
were evaluated in a station pass assuming range observations
were taken. Analytical implementations already existed in
the Semianalytical Satellite Theory in the CSDL version of
RD GTDS for the equinoctial-to-cartesian partials, the D
matrix, the J,-short periodic partials (B matrix), and
the range obs partials. Analytical second order range
partials were implemented. Only the second order partials
in B and C remained to be implemented; they were implemented
by finite differences operating on the first order analytic
partials. Accuracy was verified by the equality of
off-diagonal terms. Table 3-3 gives two printouts of the A,
B, and C matrices and their sum T; the first printout is at
the start of the pass, the second is at the middle. These
printouts show that A and B usually have the same order of
magnitude; C is several orders of magnitude smaller than A
or B8 and so can be neqglected. Thus an extended-type
algorithm should include the nonlinear effects due to the
obhservation type and the equinoctial-to-cartesian element
transformation but can neglect nonlinearities in the short
periodics. Nne will expect an FESKF algorithm employing

(3-9) to perform better than an algorithm using (3-10).
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Table 3-3

Results of the Observation Nonlinearity Test

satellite: WNMTST (see Table 4-3)

station: MALARD
height -4.0 (km)
latitude 232 1' 12"
longitude 279° 18' 50,4"

station nass interval 03:45:90.0 to 03:55:00.0

observation tyoe: range
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3.5 Summary

This chapter opresented the design of two sequential
semianalytical orbit determination algorithms, the SKF and
the ESKF. Preliminary numerical tests verified the
assumptions made. The next chanter pnresents results from

simulation test cases,
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Chapter 4
SIMULATION TEST CASES

This chapter discusses the results from two simulated-
data test cases. The Semianalytical Kalman Filter (SKF) and
Extended Semianalytical Kalman Filter (ESKF) designed 1in
this thesis are compared with the Linearized Kalman Filter
(LKF) and Extended Kalman Filter (EKF) previously implement-
ed in the Research and Development version of the Goddard
Trajectory Determination System (RD GTDS). All filters are
compared against the performance baselines provided by the
application of batch estimation algorithms to the same

observational data.

The question of test uniformity is fundamental to per-
formance comparisons between different filters. The vali-

dity of performance comparisons can be guestioned on two

bases:

1. The estimation problem 1is stochastically formu-
lated, meaning that all results are randomly
distributed; Monte Carlo testing is usually re-
guired to achieve a high degree of confidence in
the results.

2. The particular filters compared here estimate

intrinsically different quantities; the SKF and
ESKF estimate mean equinoctial elements, while the
LKF and EKF estimate osculating position and velo-
city. Thus different input parameters are re-
quired by the different filter types. The impact
of any resulting changes in performance must be

carefully addressed.
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The section on test case philosophy below addresses this
question in detail. The two test cases are then discussed,

with important points summarized at the end of the chapter.

4,1 Test Case Philosophy

The RD GTDS software package provides a natural struc-
ture for implementing the simulated-data test cases dis-
cussed in this chapter. This package has five hasic capabi-

lities important for this discussion.

1. EPHEM: The EPHEM program allows the propagation
of an ephemeris from a given set of initial condi-
tions, using one of a large variety of satellite
theories and force models. The capabilities for
high precision Cowell numerical integration and
semianalytical ephemeris propagation are important

here.

2. DATASIM: The DATASIM program can simulate a wide
variety of observation types from a specified
tracking station network. The capability to simu-
late range, range-rate, azimuth, and elevation
observations from a C-band tracking station net-

work, with random errors included, was used here.

3. EARLYORB: The EARLYORB program provides initial
estimates of a satellite orbit using just a few
observation sets. The algorithms used are similar
to Gauss' method; typical errors are on the order
of 50 kilometers in the initial position and
velocity.
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4. DC and FILTER: RD GTDS implements both batch
differential corrections (DC) estimators and
sequential filtering algorithms (FILTER). Both
capabilities have been extended to allow the use
of Semianalytical Satellite Theory as the epheme-
ris generator. The resulting DC algorithm is
called the Semianalytical DC (SDC). The DC algo-
rithm employing the special perturbations high
precision numerical integrator is called the
Cowell DC (CDC). The FILTER algorithm abbrevia-

tions are defined above.

5. COMPARE: The COMPARE program allows the point-
by-point comparison of the time histories of two
ephemerides. The comparison of an estimated
ephemeris with the simulation truth ephemeris

provides a measure of estimator accuracy.

Each simulated-data test case required defining a truth
ephemeris, simulating C-band observations, and processing
the observations with the various filters. The first test
case was directed primarily toward software verification and
included only these steps. The second test case investi-
gated input parameter selection and performance for a diffi-
cult filter convergence problem; the EARLYORB program was
used to provide the initial orbital estimate, while DC runs
and the COMPARE program gave performance baselines and per-
formance measures, respectively. The EPHEM program with the
Cowell integrator was used to generate the truth ephemeris
~— high precision Cowell integration provides a generally

accepted high accuracy standard for ephemeris prediction.
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Valid performance comparisons can be achieved either by
comparing estimator performances for corresponding input
parameter choices, or by comparing the optimal performance
of each algorithm over all possible choices of the input
parameters. Both of these approaches are used within this
chapter. The input paraheters to be selected are the
initial orbital elements, the a priori covariance of these
elements, the process noise model, and the force model used
in the equations of motion and the variational equations.

The CDC, LKF, and EKF all estimate the osculating posi-
tion and velocity. These estimators can be initialized with
the Cowell truth initial elements for software validation
tests, or with the EARLYORB elements when initial errors are
desired. The SDC, SKF, and ESKF, on the other hand, all
estimate mean equinoctial elements. The mean equinoctial
elements corresponding to a given osculating initial posi-

tion and velocity can be obtained in two ways.

1. A Precise Conversion of Elements (PCE) procedure
consists of solving for epoch mean elements with a
SDC, using exact osculating position and velocity
measurements taken at a uniformly high data rate
as the input observations. An EPHEM run using the
high precision Cowell integrator is required to
generate the position and velocity measurements.
This initialization procedure has been used before
with excellent results [12], ([13], [18]. It gives
highly accurate mean elements, especially approp-
riate for Ggenerating a Semianalytical truth
ephemeris corresponding to the simulation Cowell

truth ephemeris.
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2. An Epoch Point Conversion (EPC) procedure inverts
the near identity transformation (2-6) relating
the mean and osculating equinoctial elements.
Walter [31] proved that the near identity trans-
formation is a contraction mapping, ensuring the
convergence of the successive substitutions

iteration

agp1 = & - enlay) (4-1)

This iteration has been programmed using Zeis’
[16] explicit J,-short periodic expressions, which
are zeroth order in the eccentricity. The
converged mean elements cannot be expected to bhe
highly accurate, due to the short periodic model
truncation. They are adequate, however, for the
conversion of osculating EARLYORB elements to

corresponding mean initial elements.

When corresponding mean equinoctial and osculating
position and velocity initial covariances are desired, the
usual transformation equation for covariance applies. The
result is

ax(t_) ax(t )
Pt = [ P (t ) [——

—_— (4-2)
33(t,) —a o 33(t,)

1lo0



Here P and P are the initial osculating position
and velocity covariance matrix and mean equinoctial covari-
ance matrix, respectively. The required partial derivatives
are discussed in Section 2.4. Corresponding process noise
covariances can be obtained in a similar fashion, as

discussed in Appendix A.

Highly accurate orbit determination usually requires as
complete a force model for the equations of motion as
possible. Semianalytical Satellite Theory allows great
flexibility in force model truncations without accuracy
loss, based on order-of-magnitude considerations. Trunca-
tion decisions are typically bhased on assumptions like the
smallreccentricity approximation, fourier series coefficient
attenuation, and perturbation magnitude. When the perfor-
mance impact of force model truncations is assessed, only
the technical description of the force models is given.
Consult the references [13], [15], [18], [19] for further
clarification. May [32] investigated the variational equa-
tion force model accuracy necessary for good DC converg-
ence. Any variational equation force model simplification
achievable is highly desirable, since the number of varia-
tional derivatives (36) makes their integration quite
costly. She found that inclusion of the J, perturbation was
usually sufficient for good convergence and accuracy. The
filter tests here use only the J, and drag perturbations in
the variational equations; the validity of this model is
confirmed by the overall filter performance.

Relative filter performance was assessed in three

ways. Efficiency was measured by the CPU time required for

the observation processing. Predictive orbit determination
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accuracy, which measures the accuracy of the filter estimate
without input observations, was computed by comparing a 24
hour prediction of the final filter estimate with the simu-
lation truth ephemeris. The filter convergence and defini-
tive orbit determination accuracy were measured by the
histcry of the magnitude of the position error during the

observation span.

The results presented in this chapter represent a
single Monte Carlo trial. Since complete Monte Carlo
testing requires a large number of trials to achieve high
confidence in the results, such testing was ruled out by the
consequent cost. Rather, an EARLYORB initial estimate was
used to give realistic initial errors. The consequence of
this economical approach is the need for a word of caution;
the results are promising, but further testing and experi-

ence are required.

4.2 Test Case One: FILTEST 1

This test case was used to verify the software imple-
mentations of the SKF, EKF, and LKF. The satellite observed
is a low altitude satellte; only J, was included in the
force model. C-hand range and range rate observations were
taken; no random errors were added to the observations. The
LKF and EKF both used the ¢truth initial conditions and
dynamical model. These initial conditions and model are
presented in Table 4-1. Table 4-2 shows the corresponding
initial conditions and force model for the semianalytical
truth ephemeris, also used by the SKF. This truth was
generated by an SDC run; the errors from the Cowell truth
averaged about 10 centimeters in position error and 5 milli-

meters per second in velocity error.
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Table 4-1
FILTEST 1 Truth Model

Initial Conditions:

1)
[®)
Qo
Q
=

March 21, 1979
6673.0 km
.01
65.0 deg
deg
deg
deg

= I3 bl—"fu ID__;

OI
0.
0.

[N Nl

Dynamical model:
J2 only in the eguations of motion and variational
a2quations

Observations:

range and range rate (C-band), no errors
1 d?y snan

Truth Integrator:

12th order Cowell/Adams Predictor-Corrector

Stepn Size:
50.0 sec.
BEKF/LKF Integrator:

4th order Runge-Kutta Fehlberg

Step Size:

10.0 sec.
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Table 4-2
FILTEST 1 Semianalytical Truth Model

Initial Conditions:

epoch = Marcn 21, 1979
a = 6654.673 km

e = 0.0093

i = 64.9335 deg
9] = 0.0 deg

" =

360.9999 deg
0.0001 deg

Integrator 3tep Size: 43200.9 sec.

Force Model:
2 o
AOG: J2, J2 e
SPG: Jo J2°e°
APG: J2

SPPG: J2 e°
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The final estimation errors for all filters from their
respective truth ephemerides were less than 10 centimeters
maximum in total position error. The SKF tests all used the
short periodic coefficient interpolator and the state tran-
sition matrix interpolator. One run also used the local
position and velocity interpolator and others tested the
end-of-integration grid relinearization. All tests were
positive. These results verify the software implementations
of the SKF, EKF, and LKF. The ESKF was developed later; its
implementation was verified by similar tests.

4.3 Test Case Two: WNMTST

A critical test of a filter's performance is its
transient response to the initial conditions. The transient
response is especially important for the nonlinear estima-
tion problem because filter estimates diverge if the
required corrections are too large. This test case is posed
as a rigorous test of the model accuracy of the Semianaly-
tical Satellite Theory in the presence of large initial
condition errors by including a (21x21) gravity field and
atmospheric drag in the force model. The next section gives
the complete problem statement. Then the performance
properties of each of the SKF, ESKF, LKF, and EKF are
described, following with a section comparing the filters'
performance with the SDC and CDC baselines.

4.3.1 Test Case Formulation

This test case was formulated along the lines discussed
in Section 4.1. The complete description of the truth model
is given in Table 4-~3. The truth trajectory in osculating
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Table 4-3
Test Case Two Truth Model

satellite: WNMTST
epoch: June 8, 1979, 3 hrs, 44 min, 5.4 sec

reference frame: 1950

coordinatas: a = 7016.7363 (km)
e = 0,0535734
i = 97.8520 (deqg)
2= 224.4883 (deq)
w= 127.3311 (degq)
M = 237.6709 (deq)

drag coefficient: CD = 2.0

area: A = 1.0 (mz)

mass: m = 217. (kqg)

density model: 1964 Harris-Priester atmosnhere
(FlO 7=150)

gravity field: 21 x 21 (GEM-9)
integrator: 12th order Cowell/Adams oredictor-corrector

stepsize: 30.9 (sec
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position and velocity was generated by the high precision
Cowell integrator implemented in the GTDS testbed. The GTDS
DATASIM program was used to generate simulated observations;
observation types and statistics, and the resulting observa-
tion history are summarized in Table 4-4. There are several

interesting facets of this orbit determination problem.

First, the observations are extremely accurate; Denham
and Pines [28] argqgue that the effects of observation model
nonlinearities become more significant for more accurate
observations. Thus the situation is favorable for extended
filters; linearized filters might be expected to diverge.

Second, both stations are at approximately the same
latitude; since the orbit is nearly polar this means that
both stations will observe the same relative point in the
orbit but at different times. This creates an interesting
problem in observation geometry for the estimator; the
eccentricity and the argument of perigee may be hard to
estimate.

Finally, only 333 observations (approximately 20
minutes total observation time) are taken of the satellite
during its passage of two stations. The resulting estimate
accuracies will be an interesting indication of the rate of

filter convergence.

A Semianalytical truth ephemeris was generated from the
Cowell truth ephemeris using a PCE. The PCE elements and
their generating Semianalytical model corresponding to the
osculating model of Table 4-3 are shown in Table 4-5. The
resulting mean-plus-short periodics trajectory is compared
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Table 4-4
Test Case Two Observation Data

Station 1:

AMOSQ

TRANSMITTER @ TYPE-C-BAND FREQUENCY-2200.000 MH.

HEIGHT LATITUDE LONGITUDE
COORDINATES 3.048 KM 20 42 0.0 (DDD MM SS.SSS) 203 42 0.0 (DDD MM S5.555)
ERROR 0.0 M, 0 0 0.0 ¢ MM §3.SSS) o 0 0.0 Mt $5.555)
MINIMUM ELEVATION ANGLE IS 5.000DEGREES

observation type (C band) Statistics (standard dev)

Range 0.1 (m)

Azimuth 0.9003 (deg)

Elevation 0.003 (deqg)

Station 2:
MALABQ

TRANSMITTER : TYYPE-C-BAND FREQUENCY-2200.000 MH.

HEIGHT LATITUDE LONGITUDE - -
COCRDINATES -0.004 KM 28 1 12.000 (DDD MM SS5.SSS) 279 18 50.400 (DDD MM SS.SSS)

M 0 0 0.0 ¢ MM §5.5SS) 0 0 0.0 Mt S5.SSS)

ERRCR 0.0
MININUM ELEVATION ANGLE IS 5.000DEGREES

observation type (C band) Statistics (standard dev)
Range 2.0 (m)
Azimuth 0.000556 (deg)
Elevation 0.000555 (deg)
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Station Pass History

REV KuM |

1 2

3

START  {79060817906081790608([790608|
| o637l 394001 501361 659051

s
QlELHAX]
[ aostl

1l A0S |
Al |
L} Los |
Al |
BlELHANI
Ql sosLi

- e e =

ACQUISITION OF
03

17906081
| 34e00]
17900081

CF SIGHAL

Total observation time:

17506051

701101

|750s08]

709301
| 15]
17906081
l2035581

SIGNAL

3 hrs,
by MALABQ until the comoletion of
obs by AMOSQ
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Table 4-5
Filter Test Case Two S=mianalytical Truth Model
satellite: WNMTST
a2noch: June 8, 1979, 3 hrs., 44 min., 6.4 sec.
referencz frame: 1950

coordinates:

Mean Equinoctial ~ Mean Renlerian

a = 79093.0073 km 3 = 7903.0073 km
h = -0.0073252 e = 0.05381335

k = 0.0533125 i = 97.8535667 Adeg
» = ~-,03041503 = 224,43964 deg
q = -0.8136052 w= 127.63585 deg
A= 229.43174 deg M = 237.30524 deg

drag coefficient = CD = 2.0

area: a 1.0 (mz)

mass: m 217. (kqg)

density model: 1954 Harris-Priester atmosvhere
(FlO 7=150)

gravity field: 21x21 (Gem-9) averaged notential
AOG resonance (15,15) - (21,15) shallow
second order J2 and Drag and counling

zonal short w»neriodics (21x7)

sixth order =2

m-daily short neriodics (21x21)
SPG 3ixth order e

tesseral short »neriodics (21x19)

sixth order e

integrator: 4th order Runge-Kutta

stensize: 43200. (sec) = 1/2 dav
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to the Cowell truth in Figures 4-1 through 4-3. The quad-
ratic growth in the errors is dus to slight initial condi-
tion errors. The excellence of the Semianaytical wmodel is
shown by the small magnitude of the errors during the £fit
span from 0 to 5 hours. The nosition error RMS during the
fit sman is 5.6 meters, while the velocity error RMS is 4.7

millimeters ver second.

The FARLYORB program was used to gensrate aonroximate
orbital elements for filter initialization. The LKF and EKF
used these elements directly; corresnonding mean elements
for SXF and ERESKF initialization were generated by PCE
applied to the osculating EARLYORB elements and by EPC using
the iteration (4-1). The EPC converged in five iterations
to elements consistent to 10 decimal wvlaces. Clearly the
errors from the PCE relements are small. All of these
element sets are shown in Table 4-5. The nerturbations of
the osculating and PCE mean EARLYORB elements from the true
elements are also given. The initial error in hoth the
osculating elements and the mean elements is abhout 59
kilometers. These initial errors vrovide a good 1initial

error for testing filter convergence.

4.3.2 SKF Properties

This section presents results from an investigation of
the effects of four variables on SKF n»erformance. The

variables that were investigated are:

1. force model selection for the equations of motion

and the variational eguations;
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Table 4-56

Osculating and Mean EBarly Orbit Elements and

Initial Perturbations

Early Orbit Keolerian Elements

Osculating
7004. 285
0.054123
97.9693
224,848
127.380

237.566

PCE Mean
7005.566
N.054359
97.9765
224,849
127.730

237.207

7005.173
0.054302
97.9645
224.347
127.324

237.114

Osculating and Mean Perturbations

Osculating Cartesian

32.86 (km)
33.71 (km)
12.36 (km)
23.26 (m/s)
0.47 (m/s)

3.34 (m/s)

||.2|| 48.67 (km)

|| 2v|] 23.50 (m/s)

g &8 & & F

>4
>

|| &l |
| &
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Mean Equinoctial

2.44 (km)
0.3038E-3
0.59208-3
0.538E-2
0.3378-2
N.529E-2
48.55 (km)

22.21 (m/s)



2. selection of the process noise covariance and the

initial state covariance;

3. trajectory update considerations for the nominal

trajectory used in the SKF; and
4, mean state initialization by PCE and EPC,

The filtering issues (1) to (4) above provide a natural
test grid for exploring the properties of the SKF, Two
options are presented for each issue or consideration. With
a total of four questions to be examined, the resulting grid
has sixteen points. The tests reported have essentially
diagonalized the grid, providing insight into the interac-
tion of each of the issues. The options available are
summarized in Table 4-7 in the context of the 1list of

issues.

The force model issue explores the effect of one force
model truncation on filtering accuracy. The process noise
options test the sensitivity of the SKF to the process noise
strength., The relinearization of the SKF nominal trajectory
after a station pass causes the SKF to look more like an
EKF. The relinearization option was implemented by changing
the inteqration grid length. Additional confirmation of the
approximate EPC procedure (4-1) 1is given by performance

measurements in actual runs.

Seven SKF runs tested various combinations of these
options. The options used for each run and the resulting
performance are given in Table 4-8. The final estimate of
each SKF run was used as the initial condition for a 24-hour

predicted ephemeris. The RMS values given in Table 4-8 are
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Table 4-3
SKF Test Grid Runs and Performanc=

TEST RUNS A B* Cc* D E F G
l_-———;%

1 Force Model 2 1 1 2 2 2 ==ﬁ?j
2 Process Noise 1 2 2 2 1 2 2
3 Trajectory Upd. 1 1 1 1 2 2 1
4 Early Orbit 1 1 1 1 1 1 2
PERFORMANCE (km)

Radial RMS 2.5 .25 .3 .24 2.7 .19 .3
Cross RMS 3.5 .21 .3 .22 3.2 <37 .3
Along RMS 21.6 7.2 7.8 7.0 119.2 |1.14 |9.0
Total RMS 22.0 7.2 7.3 7.0 119.7 J1.22 |9.0

* Run B used the coefficient interpolator only;
the position and velocity interoolator (step
the coefficient interpolator.

well as
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the root mean squared residuals of these predicted
ephemerides from the Cowell Truth ephemeris of Table 4-3.
The results shown support the following statements:

1. use of the position and velocity interpolator does
not seriously impact SKF performance (the observed
RMS increase is probably accentuated by the highly
accurate observations) [B, Cl;

2. the truncated force model does not seriously
impact SKF performance [B, D];

3. SKF accuracy 1is very sensitive to the process
noise strenqgth choice [A, D and E, F];

4, more frequent trajectory updates in a convergence
test do not necessarily speed convergence or
improve accuracy [A, E and D, F];

5. The EPC mean EARLYORB procedure does not seriously
impact SKF performance [B, G].

The letters in brackets reference the runs in Table 4-8
supporting the statement. The results in Table 4-8 are
consistent with filter histories of the various runs. This
means that the filter runs have converged, so the results
shown are not especially dependent on the particular filter
output estimate used to generate the predicted ephemeris.

The changes in performance in the sequence of runs A,
D, and F is remarkable. The performance in each case is
dominated by the along track error. The performance
improvements from run A to D to F correspond directly to
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decreases in the error of the final semimajor axis estimate
from 130 meters to 70 meters to 7 meters. Figures 4-4
through 4-8 show plots comparing runs D and F. Figure 4-4
shows the along track prediction error for run F; it
contains a .5 kilometer amplitude error at the orbital
frequency. This error is due to coupling between the
semimajor axis and the error in the satellite angle.
Figures 4-5 and 4-6 show the semimajor axis filtering
histories for runs F and D, respectively; the variable DA
plots the error while PA is a 30 standard deviation bound.
Figure 4-6 graphically shows the bias in the final semimajor
axis estimate of run D, Roth fiqures otherwise show very
similar behavior. Figqures 4-7 and 4-8 show the filter
histories of the total estimate position error DR, with the
306 bound PR also plotted. Once again, the SKF runs D and F
show very similar behavior, including similar final position
errors of about 300 meters. Both show final standard devia-
tions of about 10 meters. It is interesting to note the
error transient in Figure 4-8 for run D: at 11800 seconds a
spike occurs indicating a position error of about 1.1 kilo-
meters. The transient occurs at the start of the new
station pass, after a 3 hour outage. Any such similar
transient for run F has been overwritten by the 3¢ standard
deviation history. The presence of such a transient is
consistent with the apparent divergence of these SKF runs;
the actual errors are 30 times their standard deviations.
Note that this divergence is probably only apparent; addi-
tional observations should serve to make the errors and
their standard deviations consistent. Two final conclusions

are drawn:

1. An adequate process noise model for the lineariza-

tion errors due to initial condition errors would
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Melp nprevent such as»arent divergence, The
discussion in Aonoendix A provides one avonroach.
Jazwinski's [24] Adantive Noise filter gives

another oossibility,

2. In the same veiln, filters using global lineariza-
tions without further compensation ares likesly to
suffar convargence problems. This can bas taken as

directly motivating the davalopment of the ESKF.

4.3.3 ESKF Properties

This section describzs a series of tests investigating
the oerformance imnact of fiva input »arameters. Thres of
the oarameters w2re neld in common with the SKF investiga-
tion above. Process noise sensitivity was not investigated;
1ll &SKF runs used orocess noise ontion 2 from Table 4-7,
Th2 two naw 1input parameters and the motivation for their

consideration are:

(1) ESKF interonolator imolem=2ntation: In the discus-
sion of thes RSKF design, two imolementations were
oresented for use according to the interoolator
structures being accomodated. BEquation (3-9)
annlies to the case whare only the short neriodic
coefficient interpolator is us=2d; equation (3-10)
is employed waen the short-arc interoolator for
osculating position and velocity 1is also bheing

ased. These ars ontions 1 and 2, respectively.

(ii) Bl matrix comoutation: 3oth equations (3-9)

and (3-10) assume that the Bl matrix (i.e.,

the short periodic function stat=z »nartials
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matrix) 1is being computed. This corresponds to
the linearization of the short periodic functions
about the nominal trajectory. Experience [19]
with the SDC has shown that the B1 matrix is
not important to SDC estimation accuracy or
convergence. The SKF tests above did not employ
the B matrix. A decision to truncate the

Bl magfix for the ESKF is not simple: if the
state correction Aa becomes large enough, a
significant estimate bias will be introduced by
its neglect. Option 1 neglects Bl computa-
tion; option 2 includes the Bl matrix due to
the J, perturbation, computed analytically to

zeroth order in the eccentricity.

Table 4-9 summarizes the input parameters investigated
for the ESKF. Table 4-10 presents the test results. All of

ESKF test runs show a marked improvement over corresponding

SKF runs.

1.

This data supports the following statements:

The approximate EPC procedure does not seriously

impact ESKF performance [A, B];

The truncated force model does not seriously

impact RSKF performance [A, C];
More frequent nominal trajectory updating and
relinearization does not necessarily improve ESKF

performance [C, D and F, G];

The computation of the Bl matrix can improve

(significantly) ESKF accuracy [C, F] ([D, G]);
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Table 4-9
Summary of ESKF Test 0O»ntions

Innut
Parameter

Ontion 1

Ontion 2

Comments

1. Forcz Model full truncated s2e Table
A-7
2. Trajectory undates after uodat=2 at the| see Table
Undates each station end of the 4-7
pass obhservation
span
3. Mean PCE EPC sea Table
EARLYORB 4-7
init.
4, BSKF* mode PV intern. off PV intern. on nv off:
(3-9)
nv on:
(3-19)
5. Short neglect the comnute the B is
periodic B1 matrix 3] matrix comnuted
partials analy-
comnutation tically
incluﬂiqg
J2 at 2

* When used,
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Table 4-10
ESKF Parameter Test Results

Input Test Runs¥*
Parameter
A 2] C D B F G
1. force model| 1 1 |2 2 2 2 2
2. trajectory 1 1 1 2 1 1 2
updates
3. mean 1 2 1 1 1 1 1
init.
4. ESKF mode 1 1 1 1 2 1 1
5. 31 matrix 1 1 1 1 1 2 2
Parformanca**
Radial RMS .1971 .213 }1.183 .196 «231 {.166 |.174
Cross RMS .N20} .024 }{.019 .013 .026 1.015 }.019
Along RMS .930} .336 }1.153 |1.345 }.559 |1.185}.500

* all test runs used covariance parameters

P
O

0

diag[1.0,10- %.10- 8,10~ %,10- %, 10~ §

aiag(10- !9 10~ 12,10~ 12,10~ 1%, 10- 1%, 10~ 1}

** nerformance is measured by computing the root mean
squared residuals of the differences betwzen the Cowell

truth epvhemeris of Table
a2ohemeris based on the final filter estimate,.
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5. The ESKF using the position and velocity
interpolator can produce satisfactory predictions.

The data in Table 4-10 is 1limited in depth; quite
clearly only very conservative conclusions can be drawn from
these results. And yet, even in this light, statement (5)
above is startlingly conservative. The reason for this lies
in the limitations of the prediction error RMS performance

measure used in Table 4-10.

Figures 4-9, 4-10, and 4-11 show the dominant along
track prediction errors for runs A, E, and G, respectively.
Each of the ESKF runs uses the same strategy to reduce the
prediction RMS: the along track error is biased such that
the RMS is reduced by the distribution of initial errors in
the mean semimajor axis and the mean-mean longitude. 1In all
cases, both the semimajor axis estimate and the mean
longitude estimate are too large. The increased semimajor
axis causes a decrease in the mean motion, implying slower
growth in the too-large mean longitude. Thus the mean
longitude error will cross zero within the predict span,
causing the reduction in the along track RMS. Table 4-11
summarizes the final estimation errors in the osculating
Keplerian elements for each of the runs A, E, and G. Note

the generally superior accuracy of run G.

The inadequacy of the prediction error RMS performance
measure alone is indicated by the filter history plots in
Figures 4-12 to 4-14. These fiqgures show plots of the posi-
tion error history for runs A, E, and G respectively.
Notice that run G produces the smallest position errors,
followed by run A and run E. The histories for runs A and G
are essentially the same; both ESKF runs produce meter-level
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Table 4-11
Final Kenlerian Element ESKF Estimation Errors

Run

Element

A B G
a* 9.0 9.5 2.7
e 3.6 x 10~ ° 4.2 x 10-° 3.3 x 10~ °
ik 2.2 3.4 2.9
Qx 2.7 3.5 1.9
wk * ~54.0 +220.0 -33.0
M* * -12.0 -290.0 +20.0
a* 8.0 0.3 1.5

* units are meters

** uynits are microradians
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accuracy 1in their final estimates. The position error
history of run E is fundamentally different. Estimate
transients of several kilometers occur during both tracking
station passes and the final estimate is only accurate to
within 200 meters. This degraded performance probably
results from the additional lihearization of the two body
element transform from equinoctial variables to position and
velocity. Certainly the results of the observation model
nonlinearity test of Section 3.4.3 indicate that the element
transformation nonlinearities are often of the same order of
magnitude as the observation model nonlinearities. Thus
care must be exercised in the use of the position and
velocity interpolator with the ESKF,.

The significant results of this section are:

1. The ESKF results in greatly improved performance
over comparable SKF runs, both in the filter error
history and in the prediction RMS; the fact that
ESKF performance does not change greatly with
parameter variations is also important;

2. Calculation of the B
for ESKF accuracy;

1 matrix can be important

3. The coefficient-interpolator-only ESKF algorithm
gives much better performance than the position

and velocity interpolator version.

4.3.4 LKF Properties

The LKF runs discussed here required making choices for
three input parameters. The first two are typical estima-
tion parameters. They are
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(1) covariance parameter selection, and

(2) coefficient of drag estimation.

All LKF runs used the same a priori covariance; it was
selected to be consistent with the initial condition errors

and has value

6 -6 -6]

P = diag[100.,100.,100.,10 °,10 °,10

Many values for the process noise strength were tested in a
trial and error search for the best value. All choices were
diagonal and used the same variance for all position coordi-
nates and all velocity coordinates respectively. A process

noise choice

Q0 = diaq[107F,107%,107F,107%,107%,107°]
is denoted by QO = J[r,s] in the presentation of results
below. If r=0 then the corresponding elements in 0O are

replaced by zero.

Several of the runs tested the impact of coefficient of
drag estimation. While accurate drag coefficient estimation
cannot usually be achieved over observation spans as short
as that of this test case, the presence of the additional
estimation variable does sometimes allow performance

improvements.
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The last input parameter tested allows the LKF to
emulate SKF end-of-integration grid trajectory updating.
The two options here allow relinearization after a station
pass and global 1linearization over the observation span,

respectively.

The LKF test run parameter choices and the correspond-
ing RMS prediction errors are shown in Table 4-12. These

results support the following statements.

1. Coefficient of Drag estimation for this short-arc
problem does not significantly help or hurt per-

formance [A, B and D, E].

2. The dependence of LKF performance on the process
noise strength selected is complex and interest-
ing. Runs [H, I] and [D, F] indicate that process
noise should be modelled for position as well as
velocity, contrary to 1its interpretation as an
unmodelled acceleration, Runs [A, C] contradict
this; the interesting thing about run A is that
the large value of position process noise caused
such an increase in the semimajor axis variance
during the data outage between station passes that
the LKF thought the orbit was hyperbolic at the
start of the second pass. The changes in perform-
ance from run J to H to E to B as the process
noise scaling changes are also interesting:
performance 1is not a monotonic nor a convex func-

tion of the scaling.

3. Short-arc or station-pass relinearization may

improve the performance of the LKF.
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Figure 4-15 shows the wvosition error history of a
typical LKF run (D). Two transients of about 50 kilometers
magnitude each are shown. The first corresponds to the
initial condition error; the second results from the data

outage between station passes,

The results of the testing of the LKF are best

described by two additional conclusions.

1. The global linearization of the satellite dynamics
used by the LKF is not approvoriate when conver-
gence in the presence of large initial errors is
required. This is consistent with the common

oreference for the EXF over the LKF,

2. Improvements must be made in orocess noise
modelling for convergence situations. Essentially
this is advocating the use of the Gaussian Second
Order Filter when there are large initial errors.
This filter augments the oredicted measurement
covariance with a orocess noise-like term. This
correction term depends on the estimate covariance

and measures the nrobable linearization error.

4.3.5 EKF Properties

This section presents the results of an investigation
of the effects of the a priori covariance and process noise
strength selection on EKF performance. The coefficient of
drag was estimated in all the tests, based on LKF

experience.
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The initial EKF runs showed the same poor (or worse)
RMS prediction performance as corresponding LKF runs. 'This
inability to select a process noise strength by trial and
error for good performance led directly to the development
and implementation of the process noise covariance
transformation equations discussed in Appendix A. A utility
routine for transforming a mean equinoctial a priori
covariance to a —corresponding position and velocity

covariance was also implemented.

A total of eight EKF tests were conducted. The a
priori covariance used was either the same as for the LKF
(Option 1),

P, = diag[100.,100.,100.,107°%,107°,107°]

or the transform of the SKF/ESKF a priori covariance (Option

2), given in equinoctial coordinates as

8 8 -6 -6

P, = diag(1.0,107%,107%,107%,107%,1079]

2

The process noise used was either one of a series of
diagonal trials or else the transform of the second SKF
process noise option. As in the LKF discussion above, the
symbol [r,s] is used to denote a diagonal process noise

-r -r -S -S

0, = diag[107F,107%,107%,107%,107%,107%]
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Recall that the process noise strength used as Option 2 of
the SKF tests is

=12 -12

10 ,10-14 -14 —12]

0, = [10777,10 ,1074%,10

Note that this value of process nhoise was also used in all
of the ESKF runs.

The options used for each of the eight EKF tests and
the resulting performances are presented in Table 4-13,

These results support the following statements:

1. The dependence of EKF performance on the proces
noise strength used is complex and unpredictable.
This is probably due to the time varying nature of
the linearization error being poorly modelled by a
constant process noise strength. A Gaussian
Second Order Filter would probably reduce this

problem.

2. A process noise strength giving acceptable RMS
prediction performance was selected [run F].

3. The transformation of the a priori covariance and
the process noise strength from equinoctial coor-
dinates to position and velocity coordinates gives
acceptable RMS prediction performance. Both
transformations appear to be required for best

performance [runs G, H].
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Table 4-13
EKF Parameter Test Results

Input Test Runs

Parameter a B C D E F ALG l H

A Prigri 1 1 1 1 1 1 1 2
Covarilance

Process off |[18,221]|([0,18]1]10,141}[10,141][0,10] |SKF |SKF
Noise

Performance

Radial RMS 2,2 5.3 2.2 10.2 11.5 0.31 3.010.99
Cross RMS 2.5 2.6 2.5 8.3 7.7 0.03 0.4]0.02
Along RMS 58.61132.4 53.1 2683.1 }243.9 9.47 84.3123.4

Notes: (1) the coefficient of Drag was estimated in all runs;

C. = 2.0 (trus value) 0% = 10°°
DO C

(ii) A priori Covariance:
Option 1 = same as LKF
transform of SKF

]

Ootion 2

(iii) Q = SKF means option 2, the transformed pnrocess noise

0 = [r,s] means 0 = diag [1075,107%,1075,107°,107%,107% ]

unless r = 0, which means

0 = diag [0,0,0,107%,1075,107% ]
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The EXF achieved best performance in runs F and H.
Since these runs used very different methods for a nriori
covariance initialization and process noise calculation, a
detailed comparison of their vperformance is of interest,
Figures 4-156 and 4-17 show their A4dominant along track
orediction errors. The growth of the along-track error for
run H 1is much larger than for run F. This is Adue to the
final semi major axis errors of 295 meters and 95 aeters,
respectively. The £final =2rrors in Aall of the Kevnlerian
elements for runs F and H are shown in Table 4-14. These
2rrors are consistent with the element errors for bhoth runs
over the last fifty observations; they are insensitive to
the final filter outpnut time.

The filtering histories for the ssmimajor axis and
position errors for runs F and H are shown in Figures 4-183
through 4-21, The difference between the resoective plots
is striking. The nlots for run F show apvarent divergence
and large errors for much of the observation span, with good
convergence only in the latter oart of the second station
nass. The »nlots for run H show good convergence throughout
the observation span, although the semimajor axis nlot shows
explicitly the final bhias reovortad in Table 4-14. 3oth runs
have similar position errors for the last fifty observations
of the second nass: about 10 meters for run F and 5 meters
for run H. It is interesting to observe how similar the
semimajor axis and position error histories for run H are to
the corresnonding histories for the SXF and ESKF; this
orovides a good verification of the transformation method.

There are two explanations for the difference in the

filtering histories for runs F and H, The first is a
restatement of statement (1) above: a time varying process
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Table 4-14
Final Keolerian Element EKF Estimation Errors

Run
Element

F H
ak 96.0 -295.0
e -7.8E-6 -2.4E-5
ix* 5.4 -2.7
it 3.8 -2.0
wkk -259.0 720.
M** +240.0 -367.

* units are meters
** units are microradians
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TEST CRSE 2: WNMTST ERROR HISTORY
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noise is required to account the EKF linearization error,
The process noise of run F probably strikes a balance
between a value representative of the convergence
requirement of the first station pass and the steady state
requirement of the latter part of the second station pass.
The second explanation has to do with the geometry of the
process noise variables: the geometry of eqgquinoctial
variables is uniformly valid throughout a satellite's orbit,
while the geometry of inertial position and velocity
coordinates changes with the time varying constraint imposed
by the current satellite location within the orbit. Both
explanations are needed to account for the differences
between runs F and H.

4.3.6 Test Case Two Performance Summary

This section summarizes the results of the previous
four sections and provides efficiency estimates and compari-

sons with CDC and SDC baselines.

The DC runs were subjected to a slightly more strenuous
test case. In addition to the initial condition errors
given by use of the appropriate EARLYORB elements, the SDC
and CDC were required to estimate the coefficient of drag,
starting with an initial estimate of 2.1 as compared to the
truth value of 2.0. Both runs converged to a final estimate
of 2.08, illustrating the difficulty in short arc estimation
of the drag coefficient. Two factors allow comparison of
these DC results with the filter tests. First, both DC
estimates give respectable predictions against the Cowell
Truth. And second, the drag coefficient estimate varies

over a range well including the true value over the course
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of the five iterations required for convergence. Thus the
final drag coefficient estimate apparently gives the best
fit.

Table 4-15 1lists the results of the best filter run
from each of the sections above for comparison with the
other filters and with CDC and SDC. The runs are identified
by the appropriate letter from each section; two runs are
listed for the EKF, reflecting the two essentially different
methods for process noise and a priori covariance choice.
These results indicate that the SKF and ESKF have converged
faster than the LKF and EKF for this test case.

The results of timing tests are given in Table 4-16.,
The times recorded are the CPU times required for processing
the observations from the two station passes. These timing

estimates should be conservative for two reasons:

1. The observation span was very short, only 3.5
hours, compared with typically allowable integra-
tion grid lengths of up to 1 day; since much of
the cost of semianalytical ephemeris generation is
due to inteqration grid force evaluations and
short periodic coefficient computations, any
increase in grid length will further increase the
timing advantaqge of the SKF and ESKF,

2. The complexity of a semianalytical force evalua-
tion allows more room for efficiency gains by
model truncation or code optimization than does a
comparable Cowell force evaluation. Most of the
present code for semianalytical satellite theory
in the RD GTDS testbed was implemented primarily
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Test

Table 4-15

Case Two Performance Summary

o Test Runs ) )
Performance CcnC SDC ékF ESKF LKF-_ EKF EXF
(F) (G) (J) (F) (H)
Radial RMS .030 .051 .185 .i%4 2.79 ].313 1.986
Cross mis | 005 | 007 | 371 .10 |.685 |.033 |.015 |
Along RMS . 725 <367 1.145 }.500 §31.9 }9.47 2§TZ~
- Table 4-16
Test Case Two Timing Estimates
Filter Run CPU Execution Time*
SKF B 0:30.97
T SKF C 0:29.33 |
" SKF D 1 0:15.49
T eske 6 0:17.58
[ kF u 0:38.69
[ EkF F 0:40.90

* units are minutes:seconds
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to verify accuracy, and not to achieve operational
system efficiency. A preliminary indication of
this is given by the two force model options
tested for the SKF. The timing impact of the
position and velocity interpolator for the SKF and
B matrix calculation for the ESKF are also

1
given.

The results of this test case give a very promising

indication of SKF and ESKF performance. Further testing is

required.

4.4

Conclusions

This chapter accomplished several important tasks:

1. A survey of the problems involved in SKF and ESKF
testing and performance evaluation was presented,

and a resulting test methodoloqy was detailed;

2. Results indicating successful software validation

were presented;

3. The transformation equations for the a priori
covariance and process noise were verified to
result in corresponding filter histories when
employed;

4. The ESKF was shown to achieve position estimates

with accuracy equal to that of the conventional

EKF for the test case considered.
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The principal simulated data test case discussed in
this chapter was a short-arc case measuring the convergence
properties of the SKF and ESKF. Of qreater importance 1in
many applications is the steady state filtering accuracy in
the presence of real world errors. The real data test case

of the next chapter provides an excellent test of this

issue.
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Chapter 5
THE REAL DATA TEST CASE

This chapter oresents the results from the annlication
of the EKF and the RESKF to th2 real observational data of a
low altitude earth satellite, The data had been obtaineAd
previously from the Aerospnace Defense Command (ADCOM) for
use in orbit determination studies at CSDL. This test case
is used to discuss the effects of model errors on steady

state filter performancza.

The organization of this chaoter is similar to that
employed in Chavoter 4. The formulation of the test case is
described first, including some interesting results on the
EM 9 gravity field emnloyed by GTDS. The second section
discusses the actual filter results; only the EKF and RSKF
are examined, based on the results from Chanter 4. The

final section summarizes the imoortant results.

5.1 Test Case Formulatiqg

Nine days of ADCOM tracking data orovided the basis for
the filter tests presented in this chanter. The data repre-
sents the tracking history for Soace Vehicle 10299 (SV10299)
in the ADCOM catalog over the time wveriod from Augqust 30,
1977 to September 7, 1977. ADCOM orovided CSDL with the
observational data, a tracking network descrintion, and a
history of geomagnetic and solar activity for use in orbit
determination tests. P. Cefola [19] conducted a series of
batch estimation tests using this A4data, compmaring SDC and
CDC performance. The filter test case formulated here was

based on his exparience.
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The data emploved did not include a satellite descrio-
tion or satellite 1initial conditions. In addition to
addressing these two 1issues, this test case formulation
section discuss2s the modelling of the 4drag and gravita-
tional forces, the obszsrvational data, and the question of

filter verformance measurement.

Some knowledge of the satellite is required in order to
estimate its asrodynamic characteristics for correct drag
force modelling. The satellite can bs tentatively identi-
fied as the COSMOS 947 satellite, bas2d on its orbital
characteristics [19]. Confirmation is offered hy the fact
that reasonable drag coefficient estimates result when the

COSMOS 947 mass and area data [49] are used.

The results from Chapnter 4 indicate that the RD GTDS
EARLYORB orogram gives satisfactoryv initial conditions for
EXF tests, and that the simnle EPC iteration (4-1) orovides
an adesquate set of corresponding mean elements for ®SKF
initialization. The osculating FARLYORB elements and the
corresponding mean EPC elements used for this test case are
shown in Table 5-1., Once again the EPC procedure converged
very quickly. This table also oresents the estimated errors
in the Early Orbit elements, computed as the difference
between the EARLYORB-based elements and the hest CDC and SDC
estimates generated during Cefola's work. ©Notice that both
the initial nosition errors and the semimajor axis error are
quite large, so that this test case will onrovide another
interesting convergence nroblem. The estimated errors in
the Early Orbit mean equinoctial elements resulted in the
choice of a mean equinoctial a nriori covariance for use in

the ESKF tests, The covariance transformation equation
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Table 5-1
Osculating and Mean Filter Initial Conditions

Early Orbit Keplerian Elements

Osculating

6631.8

14

0.003684

72.826

126.216

71.332
96.966

EPC Mean

5522.
0.0083
72.83
126.2
57.39
100.4

453
572
7 (deg)
11 (deq)
3 (deq)
32 (deg)

(km)

Truth Minus Early Orbit Perturbations

Osculating
15.33 (km)
39.70 (km)
33.76 (km)
43.6 (m/s)
4,5 (m/s)
2.2 (m/s)
57.5 (km)

T CEERER

|

Mean

—— e

13.36 (km)
0.0002 '
0.0013
0.0048
0.0035
N.0032 (rad)
57.4 (km)

M2an REquinoctial A Priori Covariance

Py

Position and Velocity

-11 12 13

14 15 16
22 23 24
25 26 33
34 35 36
44 45 46
55 56 66

5778729370402
.9107241940-02
+ 9353584540402
.2668856910-01
.694130954D0-01
.1110074680-03
»100737766D-03

[
[-N-N-N-N-X-X-J

diag [100,10”

7

-0.
-0.
-0.
-0.
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-7

10 7,10

2478117620402

.1135780110-01
.233366991D+02

429364632D0-01
926367328D0-01
1406315620-04
383030973D0-05

-6

/10

-5

107%]

r

Transformed Covariance

.2710832380+02
+3301723950-01
.3619211290-01
.1289029320+03
+359536922D-01
.258469178D-04
.495533978D-04



(4-2) was used to comoute the corresnonding osculating nosi-
tion and velocity a oriori convariancz for use with the EKF.

These covariances are listed in Table 5-1,.

The many filtar tests oresented in Chanter 4 indicate
that the correct choice of a orocess noise model is essen-
tial for filter oerformance. The desire to relate the
nrocess noise model of this test case to the probable real-
world force model arrors led to the derivation and annlica-
tion of the algorithms »nrzsented in Aonendix A, The calcu-

lations detailed there led to a orocess noise strength of

0 = diag [2E-3,28-16,28E-16,2E-17,2E-17,3E-15 ]

for use with the FHESKF, The nrocess nnise usad with th2 EXF

#as obtained by use of the transformation eaquations (A-13),.

RD GTDS contains two density model ontions: =ither the
Jacchia 1971 Density Model or the 1964 Harris-Priester
Atmosphere Density Model can be used. Based on onerational
considerations ({411, the simnler Harris-Prizster Densitv

Model was selected.

The Harris-Priester Density Model uses different
density tables according to the current value of the mean

solar radiation flux, Table 5-2 nresents wvalues

F‘lf) 7°
for the solar radiation flux and the daily average value of

the geomagnetic index, A for each day bhetween August

PI
30, 1977 and Seotember 4, 1977. Evidently there were only

small variations in either warameter, so onlvy small changes
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Table 5-2
Solar Radiation Flux and Geomagnetic Index History

Dal‘ig’ﬂi“ F10.7 By
Aug 30 85.5W 4.9
Aug 31 34.7 6.0
Sent 1 33.1 4.1
Sepnt 2 34.2 4.1
Sept 3 37.2 3.4
Sent 4 84.2 3.0
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in the atmosoheric density ovrofile should have occurred
during the tracking veriod of interest. Notice, however,
that the average geomagnetic index does increasz 1in the
second three day span, reflecting a small geomagnetic storm
and an accompanying increase in the Aatmospheric density.

The Harris-Priester density table for =100 was

F10.7
used. The difference between the tabular wvalue for the
solar radiation flux and the actual values was one motiva-
tion for estimating the coefficient of drag; uncertainties
in the satellite's mass and aerodynamic area oprovided ano-
ther. The filter tests used an initial value of 2.0 for the
coefficient of drag and an a oriori variance of 0.333,
reflecting the aonroximately 20% uncertainty in the drag

force model.-

All of the filter tests used the GEM 9 Gravity Model
[36], which is the most recent gravity model available in
the CSDL version of RD GTDS. 3 truncated version of this
gravity model was used, with only terms through =ighth
degree and order retained. The gravity model was truncateAd

for two reasons:

1. Most of the tracking data was not of very high
accuracy, and so did not warrant using a very high
precision force model; and

2. Batch estimation tests [19] indicated that use of
the truncated field gave better oredictions than
when the full (21x21) field was used.

The filter test force models also included the third body
gravitational forces duse to the moon and the sun. Solar
radiation woressure was naglected due to the low altitude of
the satellite.
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Bach filter test processed the observations recorded on
August 30, 1977. A total of ten radar stations tracked the
satellite that day, taking 576 observations. Range, azi-
muth, elevation, and range rate observations were taken,
The observations were usually not of very high quality.
Typical standard deviations for the observations were:
between 39. meters and 1.5 kilometers for range, between
0.01 degrees and 0.04 degrees for azimuth and elevation, and
between 1.0 meters per second and 10.0 meters ner second for
the range-rate observations. Tahle 5-3 gives an exnlicit
account of each satellite station wnass, listing the orbit it
occured in, the average satellite true anomaly during the
nass, the elansed time since the last station pass, and the
number of observations taken during the current oass. This
data will be impnortant for analyzing the filter oerformance

results presented below,.

In Chapter 4, filter vperformance was measured by
comparing a filtered eohemeris with the simulation truth
ephemeris. In a real data orbit determination problem, the
truth ephemeris is the actual satellite vosition and velo-
city history, which 1is unknown, A truth ephemeris was
defined for this real data test case by using the converged
ephemeris estimated by a long arc CDC. A consistency check
for this 2zphemeris was orovided by the corresponding SDC
converged eohemeris., The CNC and SOC used the three days of
tracking data from Auqust 30, 1977 through Sentember 1,
1977. Table 5-4 summarizes the truth model used by the CNDC
for generating the r2al 4ata truth eohemeris. The corres-
ponding SNDC truth model is given in Table 5-5, The Semi-

analytical truth ephemeris agrees excellently with the
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Tabla 5-4

Real Data Test Case Truth Model

satellite: 35V10299

epoch: August 30, 1977, 0 hrs.,

reference frame: Mean of 1950

coordinates:

Position and Velocity

X = 3544.2402 (km)
y = =-5517.4040 (km)
z = 1140.65632 (km)
Vx = 2.655753 (km/sac)
Vy = 0.115046 (km/sec)
Vz = =7.260209 (km/sec)
drag coefficient: CD = 1.3421078
area: A = 6,1 (mz)
mass: m = 5700. (kg)

0 min.,

0

sec.

Keplerian

o e L e, i it 8

a

e
i
Q
w

M

6644.2294

(km)

0.009311915

72.93236%
125.76742
68.5756733
99.994253

density model: 1964 Harris-Priester Atmospherea

(F = 100)

10.7
gravity field: 8x3 (GEM-9)

third bodies: Moon, Sun

(d=qg)
(deg)
(deqg)
(deqg)

integrator: 12th order Cowell/Adams predictor corrector

steo size: 45.0 seconds

168



Table 5-5
Real Data Test Case Semianalytical Truth Model

satellite: SV10299
epoch: August 30, 1977, 0 hrs., 0 min., 0 sec,
reference frame: Mean of 1959

coordinates:

Mean Equinoctial Mean Keplerian

a = 6635.3109 (km) a = 6635.8109 (km)

h = =0.001390938 e = 0,90979471

k = =0.00961044 i = 72.969333 (deq)
p = 0.50004557 = 125.770814 (deqg)
q = -0.,43230204 w= 65,360707 (deg)
A = 294.359231 (degq) M = 103,22775 (deg)

drag coefficient: CD = 1.8408701

area: A = 6.1 (mz)

mass: m

5790. (kg)

density model: 1964 Harris-Priester atmosnhere
(Fi9.7 = 100)

gravity field: 8x3 (GEM-9)

third bodies: Moon, Sun
integrator: 4th order Runge-Kutta
step size: 43400, sec = 1/2 day

8x0 averaged posenqial
second order J2° e and Drag-J 2 counling
AOG lunar-solar single averaged (»arallax=8,4),

zonals (3x0), e’
m-dailies (8x3), e
SPG tesserals (8x83), =2
drag 83 frequencjzes0
second order J2 e

second order J-m-Aaily counling (8x8), e2
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Cowell truth evhemeris; this 1is shown quantitatively in
Table 5-6, which gives the RMS position and velocity
differences between the two ephemerides for the three day
fit sman and for the three day predict span. The agreement
between the two ephemerides is quitz good.

Examination of Tables 5-4 and 5-5 shows that both of
the truth models also use the truncated 8x8 gravity model
instead of the full 21x21 field. The reason is the same as
for the filter tests: the truncated field gives better opre-
diction performance. Table 5-7 presents the results of five
tests conducted in the study of this gravity model anomaly.
The setup for each test was the same as for the CDC and SDC
truth models, with only the gravity model changing. The
coefficient of drag was estimated in all tests. The RMS
values shown are the weighted RMS observation residuals for
the given three day span; the nredict span is from Seotember
2, 1977 through Sentember 4, 1977. The prediction wnerfor-
mance degradation can be seen by comparing the first and
third tests or the second and fourth tests, The parallel
CDC and SDC tests show that the ohenomenon is not satellite
theory dependent: it is a force model anomaly. The satel-
lite SV19299 was in a 201x331 kilometer orbit and had an
89.93 minute period; it made sixteen revolutions wver day.
Calculations indicated that the resulting resonance with the
sixteenth order geopotential harmonics was very sharn: long
periodic motions at avproximately 960 times the orbital
period were introduced. The last test oresented in Table
5-7 indicates that the resonant geonotential coefficients
(the coefficients of sixteenth order and degree varying from
sixtezen through twenty-one) account for the degradation of
the prediction performance.
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Table 5-5%
Semianalytical and Cowell Truth Ephemeris
RMS Differences

Fit Sopan Differences

August 30, 1977 to September 1, 1977

POSITION RMS VELOCITY RMS

(Kt (KM/SEC)
RADIAL 0.44604D-02 0.11352D0-04
CRO5S TRACK 0.193940-01 0.226270-04
ALONG TRACK 0.11655D0-01 0.512490-05
TOTAL 0.230620-01 0.25830D-0%

Predict Span Differences

September 2, 1977 to September 4, 1977

POSITION RMS

VELOCITY RMS

(KM) (KM/SEC)
RADIAL 0.43556D-02 0.11831D-03
CROSS TRACK 0.31077D0-01 0.36222D0-04
ALCHG TRACK 0.10166D+00 0.530050-05
YOTAL 0.10639D0+00 0.123850-03
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Table 5-7
GEM 9 Gravitational Coefficient Model Anomaly Data

Run Gravity Fit Span Predict Span Drag
Type Field RMS RMS Coefficient

CDC 3x3 1.63 13.41 1.342

sDC 8x38 1.46 19.06 1.841

CDC 21x21 1.61 57.40 1.891

SDC 21x21 1.34 53.45 1.339

8x3
SDC {plus (15,15) 1.36 55.75 1.883
-(21,16)

Notes: 1. GEM 9 Gravity coefficients were used.

2. The drag coefficient was estimated in all runs.

3. All runs included drag effects and lunar-solar
third body overturbations.
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There are several nossible explanations for these

results:

1. The sixteenth order GEM 9 geopotential
coefficients may be in error;

2. Additional sixteenth order geopotential coeffi-
cients beyond the sixteenth through twenty first
degree coefficients may be required by the sharn-
ness of the resonance and the 1low altitude of
SV10299;

3. The Harris-Priester Density Model may be inanprop-
riate for use with the GEM 9 Gravity Model in this

sharp resonance situation; and

4, The coefficient of drag estimated in the tests
with poor nerformance may have been hiased, either
by not using a time varying model, or by using the

10.7°199¢

which may be too far from the real wvalues of about

85.

Harris-Priester density table for

It is interesting to consider [19] two facts about the

GEM 9 gravity modelling process [36]:

1. The GEM 9 coefficient solution 4id not use track-
ing data from any 16 rev/day satellites; the solu-
tion did wuse several satellites with orbital
frequencies ranging from 12 revs/day to 15 revs/

day;
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2. The coefficient error estimates oroduced by the
GEM 9 solution showad a sharn increase for the
16th and higher order coefficients, in comparison
with the error estimates for the 12th order

through 15th order coefficients.

While these results make the possibility of errors in the
sixteenth order GEM 9 geonotential coefficients at least
nlausible, clearly more work is required before any credible
conclusions can be drawn. 1In varticular, the whole question
of atmosnheric modelling must be carefully investigated,
both in terms of general model errors and in terms of the
effects of the small geomagnetic storm that occured during
the predict span.

5.2 Eggl Data Test Case F{lggguResults

This section prasents the results of several tests
examining the nerformance of the EKF and ESKF for the real
data test case formulated above. These results are of

interest for several reasons:

1. Real observational data of a low altitude earth
satellite was processed, so that real-world errors
in the observations, the gravitational and drag
force models, and the event times and coordinate

transforms are present;

2. Enough data was orocessed so that the filters
achieved a steady state, in spite of the large

initial errors; and
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3. The nrocess noise strength was computed using the
model developed in Appendix A, so that the success
of that model can be judged from the filter
histories.

The results from five fiiter tests are repnorted in this
section, Four of the tests arz ESKF tests; therz is only
one EXF test, reflecting the fact that the a »riori covari-
ance and the nrocess noise have already been selected. The
four ESKF tests investigate the effects of the integration
grid length and the force mndel on the overformance of the
ESKF for this long arc test cas=2. Thes2? issues w=2re inves-
tigated in Chanter 4 for the short arc test case, The
results oresented there indicate that ESKF Aaccuracy has a
slight dependence on certain force model truncations and a
much greater dependence on the inteqration grid length used;
these issues were discuss2d in Chanter 4 in terms of the
question of whether or not to uodate the nominal trajectorv
after a station vass. The RSKF tests in this section were
designed to extend those results to a long arc case.

The results from all of the filter tests are shown in
Table 5-8. This table presents the force model truncation
and integration grid length options selected for each ESKF
run, the final coefficient of drag estimate for each run,
and the RMS trajectory error statistics for the difference
between a one day filter estimate prediction and the CDC
truth evnhemeris. These results supoort the following

statements:
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Table 5-3
Real Data Filter Performance Results

Innut ESXF Test Runs The EXKF
Paramaters Test Run
A 3 C N
E:—x:
1 Force Model 1 1 1 2
2 Integration
Grid Length 43290. 129900, 9600, 21000, 1n.
Performance
Radial RMS* 0.049 0.953 n.nN55 n.045 0.047
Cross RVS* 0.072 0.979 n.31 0.057 0.043
Along RMS* 0.405 1.973 1.646 N.262 N.507

Estimated nNrag
Cozfficient 1.89 1.99 2.N45 1.83 1.93

* units are kilometers

Notes: 1. The B3] matrix was comnuted in all ESXF runs,
2. All filter tests included draqg coefficient
estimation.
3. The EXF used the transformed initial conditions
and nrocess noise of the ESKF runs.
4., The ESKF force model ontions Aare:
option 1: same as Semianalvtical Truth, Table
5-5
ontion 2: imnroves on ontion 1 by taking all
first order short veriodics to fourth
order in =2, and including J 2~-drag and
drag-drag coupling in the ANG.
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1. The accurate estimation of the coefficient of drag
is essential for ensuring the prediction accuracy
of a low altitude satellite orbit,. It can be
shown that a five percent change in the drag
coefficient can produce along track errors of
several kilometers after one day;

2. Neglecting the along track errors as Dbeing
contaminated by drag coefficient-induced errors,
then all of the filter tests show equivalent
performance to within the tolerance of the SPC and
CDC truth ephemeris agreement (see Table 5-6);

3. Each of the filters essentially reproduces the
estimation results of the CDC truth ephemeris.,

Six aspects of the filter test runs of Table 5-8 ars now
considered in detail.

5.2.1 The Effects of Drag Coefficient Errors

The effects of drag coefficient errors can be assessed
either directly or indirectly. A direct assessment can be
derived by considering how the effect of a semimajor axis
rate opropagates through the mean motion, into a resulting
perturbation in the mean anomaly; a perturbation in the mean

anomaly maps directly into an along track error.
An indirect assessment of the effects of a drag coeffi-

cient error is oresented here, by comparing the ESKF run D

with the BEKF run. Figures 5-1 and 5-2 show the along track
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differences batween the CDC truth enhemeris and the EKF and
ESKF filter wpnredictions for August 31, 1977. The along
track differences are signed, and are compnuted as the CDC
truth minus the given filter orediction. These two figures
imply a total along track error between the EKF and FRSKF of
1.5 kilometers aftsr one day, growing from an essentially
zero difference. Some of this error is due to initial
orbital element differences between the EKF and RSKF nredic-
tions; thes2 initial orbital element differences and the
difference between their resoesctive drag coefficient esti-
mates are given in Table 5-9, All of the differences are

very small.

The critical differences for along track =rror growth
are the s2mimajor axis =arror and the drag coefficient
error. A simnle two body dynamical analysis shows that the
semimajor axis error accounts for about 300 meters of the
final 1.5 kilometer trajectorv diffarence; the remainder 1is
accounted for by semimaijor axis error rate induced by the
coefficient of drag Adiffzsrence. NMotica that the Adrag
coefficients Aiffer »y only three nercent, which is a quite
accentable =zrror in a drag coefficient estimate. These
results Jjustify essentially neglzcting the along track RMS
results in Table 5-3 when comparing the onerformance of

various filters.

5.2.2 Preliminary Timing Results

The results of Tabhle 5-3 indicate that the ®BKF and ESKF
recover from large initial errors to =2ssentially reproduc=
the CDC truth enhemeris estimatas. This conclusion is

interesting for two reasons:
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EKF and ESKF

Table 5-9
Element Differences

Element Difference /EKF-ESKF D/
 —

a 2.1 meters

e 4 x 10’

i 0.7 microradians

Q 1.6 microradians

A 0.5 microradians

CD 0.05 = 3%

Table 5-10

Real Data Test

Case Timing Estimates

L==}Filter Run CPU Execution Time*
ESKF 3 ;:17.10
ESKF D 0:25.58
EKF 1:57.24

* ynits are minutes:seconds
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1. CDC and SDC tests starting with the same
EARLYORB based initial elements and constrained to
process the whole day of observations in one batch
could not converge; convergence can be obtained
when shorter arcs of observational data are
orocessed first to reduce the size of the initial

errors.

2, The second reason has to do with efficiency. The
filter runs required only one pass through the
data and started from large initial errors; the
CDC truth run required four vasses and started

from much smaller initial errors.

It appears that the filters can achieve about the same
accuracy as the hatch differential corrections estimators
with increases in efficiency and without sacrifice of any

convergence pronerties,

Timing estimates for the EKF and two ESKF tests from
Table 5-8 are nresented in Table 5-19. The times given are
based on the GO sten CPU times required by the regvective
filter tests for orocessing the observations. The ESKF
tests allow comparison of ths timing requirements of the two
force model options used. The CPU times shown indicate that
the ESKF tests are between four and seven times as efficient
as the corresoonding EKF test. This estimate of the
efficiency advantage of the ESKF should be conservative, as
indicated in Chapter 4.
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5.2.3 ESKF Integration Grid Length Selection

This section discusses the effect of the integration
grid length on ESKF operformance. The results from the short
arc test case of Chapter 4 show that shorter integration
grid lengths do not necessarily yield improved performance.
An upper bound on the integration grid length is imposed by
the bounds on the region of validity for the linearization
assumption required by the ESKF.

Figures 5-3 through 5-7 show the filter histories of
the osculating semimajor axis error for each of the filter
tests presented in Table 5-8.. The variable DA is the actual
error, while the variable PA is a three standard deviation
bound., The histories start after the initial condition
transient has decayed, to allow the 1later detail to be
seen. The semimajor axis error was computed relative to the
CDC truth ephemeris. The error history from the ERF is
included (as Figure 5-7) to orovide a baseline against which
the impact of varying the ESKF integration grid length can
be seen,

The integration grid lengths used by each ESKF test
were presented in Table 5-8., Using this data together with
a detailed study of the EKF history and the histories of the
ESKF tests yields three important observations:

1. Each ESKF history shows transients at the end of
each integration grid; the transient at the end of
the first integration grid was always the largest,
due to the 1large error in the initial orbital
2lements (58 kilometers).

183



kilometers

0.0S

REAL DATA TEST CASE: SV10299

ELEMENT ERRGR It - RIES

© CA

0.65

# PA

0.55

-0.0S

o
T

-0.15

-0.28

4
T

-0.35

S,

+ P

10600

(&)

Figure 5-3.

20000  30C30 40200 AT 50000  6COCG 70000 80000  9C20Q

seconds

ESKF Semimajor Axis Error History, Run A
(grid length = 43200 seconds)

184

10c0900



RERL DATA TEST CRSE: 5VI10289

ELEMENT ERROR HISTGRIES

& DA

* PA

wn
w
o

+
T

kilometers
0.15

0.0%

-0.15

5

-0.2
+

0.35

S

-P.OS
~\\\\\\

.

&

10000 20000 30020 40000 'T 50000 62000 7363 8000G  §9003

seconds

Figure 5-4. ESKF Semimajor Axis Error History, Run B

(grid length = 29000 seconds)
185

100000



kilometers

u.05

REAL DATA TEST CRSt: SV10298

ELEMENT ERROR HISTAORIES

o BA

* PR

wn
[T}
o

0.45 0.55

0.35

D
o

= 2,
'o

PR

10000

Figure 5-5.

20000 30000 40000 50000 60000 76000 80000 80000

seconds

ESKF Semimajor Axis Error History, Run C
(grid length = 9600 seconds)

186

100000

-3



kilometers

REAL DARTA TEST CAHSE: 5V10238

ELEMENT ERRGR HISTORIES

® BA * PA

0.65

0.35 045  0.55

0.25

0.05

-9.05

—.
¥

-0.15

-0.25

0.35
¢
&4

i

- g

10000 200C) 20000 46000 .T 50000 50000 70000 80000 800S0 150000

o Ve

seconds

Figure 5-6. ESKF Semimajor Axis Error History, Run D
(grid length = 21000 seconds)

187



Q
"2}
(=]

-0.00

-0.10

kilometers

RERL DRTA

ELEMENT ERAOR HISTORIES

¢ DA

TEST CASE: SV10288S

* PA

-+

10000 20000

Figure 5-7.

30000 40000 rT 50000 §0000

seconds

70000

80000 90000

EKF Semimajor Axis Error History

(integration stepsize

188

10 seconds)

100000



2, The BSKF tests B and D used intermediate
integration grid lengths and show the smallest
transients. The other ESKF tests used much
smaller or much larger integration grid lengths
and show much larger initial condition
transients. WNotice that the integration grid for
run A ended in the niddle of a long data outage
(see Table 5-3); this may wpnartially account for

the large size of the transient for that test.

3. All of the filter histories agree quite closely
from 60,000 seconds on, This implies that the
tested integration grid lengths do not cause any
appreciable accuracy differences once steady state
filter operation has been achieved: the lineari-
zation errors for a steady state nominal trajec-

tory are small.

The error histories for the other orbital elements show a

very similar bhehavior, verifying these statements.

5.2.4 EKF and ESKF Steady State Performance

This section describes the steady state overformance of
the EKF and BSKF. Performance is measured by compnaring the
EKF and ESKF position estimates with those of the CDC truth
ephemeris. Recall that the filter tests use the same force
model as the CDC truth ephemeris. Thus the performance that
is being measured is the ability of the filters to renroduce
the batch DC estimate, in the opresence of real-world obser-

vation and force model errors.
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Figure 5-8 and Figure 5-9 show the nosition error
histories for the EKF test and the ESKF test D, The
variable DR 1is the actual error, while the variable PR
renresents a three standard deviation bound. Note that the
histories start after the initial condition transient has
decayed. There are four important observations to make:

1. The two filter histories are essentially
identical, confirming all of the ESKF design
assumptions for this test.

2. Both of the filter tests achieve a final position
error of less than 50 meters with respect to the
CDC truth eohemeris; the prediction error results
presented in Table 5-8 verifv this accuracy of the
final filter estimates,

3. The transients in the position =2vrror and in the
error bound result from the observation historv,
nresented in Table 5-3. Bach increase in the
error or 1its hound reflects a data outage;
decreases reflect the orocessing of new

observations.

4. The actual nosition error is greater than the
three standard deviation bound, indicating either

slow filter convergence or apparent divergence.

The nosition error history for only one of the ESKF
tests, test D, was 9»rasented here. The other ESKF tests
show larger initial condition-related integration grid

transients that are not nertinent to this discussion; note,
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however, that the steady state performance of all the filter
tests were essentially identical, both in the actual nlot
trace and in the final estimate accuracy.

The next section discusses the question of the filter
nprocess noise modelling, which is related to the question of

apoarent filter divergence, mentioned in (4) above.

5.2.5 Process Noise Model Verification

This section discusses the nerformance of the process
noise model used in this real data test case. The process

noise model is of interest for two reasons:

1. The correctness of the oprocess noise model deter-
mines the accuracy of the filter estimation

results; and

2. The value of the opnrocess noise strength was
computed using the method derived in Aonendix A.
The results from this test case reflect the
validity of that method.

The EKF and ESKF position error histories presented in
the orevious section show an apparant filter divergence:
the position errors consistently exceed the three standard
deviation bound. Note that the wposition errors remain
bounded, implying that the process noise model is adequate.
A more detailed investigation can be made using the element

histories.
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Figures 5-19 and 5-11 onresent the osculating Kevlerian
and mean equinoctial element histories for the EKF test and
the ESKF test D, respectively. Variables prefixed by a 'D'
refer to the actual error, while those prefixed by a 'P!
refer to the corresponding three standard deviation bound.
Two of the Keplerian variable names require exnlanation,
The name 'CO' means capital omega, which is £, the longitude
" of the ascending node; the name 'LO' means lower case omega,
which is ®, the Aargument of Dperigee. All of the other
variable names follow directly from the usual notation.

Figure 5-10 includes the osculating Keplerian histories
for the inclination, the longitude of the node, and the
argument of werigee; each of these element histories shows
an apvarent divergence for a significant portion of the
observation span. The mean equinoctial element Q is the
only mean element showing an anparent Adivergence. The
apparent divergence of Q is fundamental, since the vrocess
noise calculations for both the EKF and the ESKF are based
on the process noise strength comnuted in mean equinoctial
coordinates using the method given in Aonendix A,

Three possible explanations for the mismodelling of the

process noise for Q are oroposed:

1. The observations offer poor observability of Q, so
that =2ither a longer data arc or multipnle passes
through the data ars required;

2. The filters are tracking the real satellite
dynamics, as indicated by the observations, rather
than the truncated and aporoximate force model
employed by the CDC truth ephemeris; and:
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3. There is an error in either the method or the
statistics used in the process noise strength

calculations of Appendix A.

The second provosed explanation can be made more
specific. The discussion of the CNDC and SDC truth
ephemerides indicated that the satellite was in very sharp
resonance with the sixteenth order geovotential harmonics.
The effects of this resonance were not considered in the
process noise calculations of Appendix A, Now a filter
tends to follow the observtions more closely than does a
differential corrections algorithm, so it is possible that a
bias was introduced by the neglect of resonance in the force
model. Certainly the error history of Q indicates that only
a small bias is required. It is interesting to note that
resonance generally causes motions of the orbital plane, and
hence has a significant impact on the equinoctial elements P
and 0.

In conclusion, Figures 5-10 and 5-11 show that the
nrocess noise model Adeveloned in Anpendix A was basically
successful. Additional work must be done in order to
completely exnlain the apnarent divergence of the estimate
of the eguinoctial element 0.

5.2.5 Semianalytical Modelling Errors

This section nresents evidence indicting a very small
semianalytical force model error when compared with the real
world dynamics.
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Figures 5-12 and 5-13 present the inclination errors
from the CDC truth ephemeris for one day nredictions of the
final estimates of the EKF test and the ®SKF test D,
respectively. WNotice that the EKF prediction error is quite
smooth, while the FESKF prediction error shows an error

residual with a twelve hour veriod.

Proulx, et al. [18] investigated similar 12 hour
veriodic errors, and successfully modelled a large nortion
of such errors as resulting from the counling between the
average element rates due to oblateness and the m-daily
short periodics. Proulx's model was employed in all of the
ESKF and SDC tests conducted for this test cas=2; the 12 hour
periodic error shown in Figure 5-13 is the residual error.
While additional work 1is required to account for this
residual error, its small magnitude Adoes not make such work

an urgent requirement.

5.3 Real Data Test Case SummAary

The results of this chanter extend the conclusions of

Chaoter 4 in several important ways:

1. The EKF and ESKF were used to orocess real
observational data, with the resulting accuracy
consistent with that of the batch CDC and SDC
estimators;

2. The primary impact of the choice of the inteqra-
tion grid 1length was found to be due to the
linearization errors induced by the large initial

condition errors used in this test cas2;

200



1013 UOTIRUTTOUI POIOTPAId JINA °ZT-§ °Inbra

. 1£00L0 1£004L .
. SYH MI  SSIBIHI  GGHHAR HO¥4 3IWIL

00°52 0§°22 00°02 0§°LT 00°ST 09°2¢ 00° 01 005°L 000°S 006°2 ‘0
1 o . . . . . . meaa . -1
1 I
1 I
I I
1 » I
I » 1
) ¢ " 1
I » 1
I " ¢ I
. » .
I » * I
I L] * n I
I » ] L » I
1 " [ ] » » sl
- [] ] L] " » LT I B
I » " » e " " I
I ] " L1 L ] I
I » 11 ] I
I [ 1) ” (1] I
‘ » [ . » :
1 L I I
I " [ 1 ) I
I [ T2 ) I
I » 1
. . . = .
I » . n I
I " 1
1 " » I
X » *» 1
. » » .
I [] I
1 L] L] L * " I
1 » 1
I " " I
. " “
I I
1 » X
I b 4
I L] I
I L] I
I » . I
b4 " 1
I I
I I
I * I
I 1
I I
1 . . . . . . . . . ‘1

0009062 SIINIYIIAT0 INIHITI NVIHIT43IN

$107d U3ININd 6019

0002 p-

00505 b~

1
0006€°D

00§48° ﬁn

i

0009¢€ .Fn

0054 " 9-
0005€° 9~
005TE°9-
00005 " b-
00sez"p-

000£2°9-

THUXOZTADNALTN

-z

HMIZOAZL O

201



a uny ‘Ixoxxd UOTILUTTOUI PO3OTPaad JIMST °*€T-§ danbryg

[ 180044
SHH NI SSHINNE  QONHAX MO¥J INIL .

00°§2 05°¢2 00°02 05°L1 00°ST 0s°31 60’01 005°L 000°S 00§°2 ‘0
. . . . . . 1

1’ rememctcntccacamann - ‘mmaccnmm-

O bt g ot o el Dl 0o D o Dl bt Bed Dt o e b b B
®
x
t 4
x
*
x
=
L 3
L d
L
3
t 3
=
x
(R RN R R B R R BN N B N BN NN

LR BN
E 3
]
=
»
z
=
x
o e

L1 ”*

o e Dot b D o et et bt o et Bt o b B Bt e

=
=

=

]

=

E 3

O b bl Yot Bt o el b b Dt o B b bl D o D e B

o bt bt b
LR R R _B ]

1 . . . - . . . . . 1

0809064 SIOMINIIITQ ANIHITI NYIddAN

$107d ¥IINI¥4 85019

0000%° L~

EEELEL~

49993° L~

00002°4~

£EEET°L-

499904~

00000°L~

£2££6°9-

£9999° 9~

00000° 9~

£L£€L°9~

HZ SHUEOC<XOMATO

HZOAHZ L= HO S

202



3. The EKF and BESKF were found to have very similar
filter histories and accuracy when corresnonding
input parameters were used, esnecially in the

region of steady state performance;

4, The ESKF was found to have a considerable
efficiency advantage over the EKF, even though the
computer software emnloyed for the ESKF tests has

not been optimized;

5. The onrocess noise model developned in Appendix A
was basically verified, although additional work
must be done to improve the modelling for one
element,

In addition to these results, an interesting force
model - anomaly concerning the GEM 9 sixteenth order gravita-
tional coefficients was discovared; a good deal of
additional work must be done to identify and nrove the
mechanism for the anomaly.
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Chapter 6
CONCLUSIONS AND FUTURE WORK

The primary goal of this thesis has been the design of
improved sequential orbit determination algorithms hy an»nli-
cation of the computational methods of semianalytical satel-
lite theory to the estimation algorithms resulting from

sequential filtering theory.

Two new orbit determination algorithms are ovresented in
this thesis, They are called the Semianalytical Kalman
Filter (SKF) and the Extended Semianalytical Xalman Filter
( ESKF). Both of these algorithms were designed with the
objective of achieving the same accuracy as existing seguen-
tial orbit determination algorithms while retaining the
advantage in comoutational efficiency 2enjoyed by semianaly-

tical satellit=2 theory.

The SKF and ESKF designs are based on subootimal fil-
tars: the Linearized Xalman Filter (LKF) and the Extended
Ralman Filter (EKF), resnectively. These subo»ntimal filters
are typically used in sequential orbit determination algo-
rithms and have been found to narform quite adequately. The
nuse of these filtars is important for the SKF and ESKF de-
signs, since they allow a good deal of decounling between
the computational structures of the satellite theory and the
filter. Chapter 2 nresents the mathematical introductions
to semianalytical satellite theory and to sequential estima-
tion theory required for the design of the SKF and the ESKF,
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Chapter 3 discusses the actual designs of the SKF and
the ESKF. The SKF served as the baseline for the design of
the ESKF, The computational flow of each algorithm is
explicitly detailed to indicate the interaction between the
filters and the satellite theory. The SKF and ESKF assume
that the solve vector consists of the mean equinoctial
2lements genarated by the semianalytical orbit generator and
any unknown dynamic narameters, such as the coefficients of
drag or solar radiation pressure. This solve vector is the
most natural one for the given satellite theory, and
accounts for all of the possible interactions between the
satellite theory and the filter solve vector. Chapter 3
also presents the results of three numerical tests conducted
to verify simplifying design assumptions for the SKF and the
ESKF. These design assumptions allow: (1) neglect of the
state transition matrix in ovrocess noise calculations, (2)
the use of the LKF state correction pnrediction equations for
the ESKF, and (3) the use of the B3; matrix for short
periodic corrections instead of recomputed short veriodic
coefficients in the calculation of the ESKF opredicted
osculating elements. Each of these assumptions has a large
impact on the overall efficiency of the SKF and &ESKF; the
latter two represent the interaction of the nerturbation
theory formulation of semianalytical satellite theory with

the filtering techniques =zmployed.

The results from two end-to-end orbit determination

test cases are prasented in Chapters 4 and 5.
The test case of Chanter 4 used a short arc of simu-

lated data for a low altitude nolar satellite to examine the
verformance characteristics of the SKF, ESKF, LKF, and EKF
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during their transient response to a large initial condition
error, No errors were introduced in the filter dynamical
models, but errors were added to the observations. A real-
istic initial condition error was generated by using the
GTDS early orbit algorithms. The performance of each filter
was tested subject to several of the avpolicable innut vara-

meters. These parameters included:

1. the a priori covariance,

2. the onrocess noise model,

3. the filter force model,

4, relinearization strategy for the nominal trajec-
tory,

5. coefficient of dArag estimation,

6. B matrix short wvneriodic linearization or trunca-
tion,

7. the semianalytical interpnolator structure, and

8. mean early orbit initialization for the SKF and
ESKF.

The wonzrformance of each test was measured in three
ways: by the accuracy of evhemeris oredictions based on the
final filter estimate; by the vosition error history during
the observation processing svan; and by the efficiency esti-

mate given by the CPU time requir=d for execution.

The test case of Chanter 5 extended the results of the
short-arc test case of Chanter 4 in two ways: the filters
processed a sufficient amount of data to achieve a steady
state, and real satellite tracking data was orocessed, so
real-world errors occurrad in the ohservations and in the

force model. Only the EKF and ESKF w=2re used to orocess
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this Adata. The EKF and ESKF tests used corresponding
(transformed) initial conditions and process noise models.
The nrocess noisz model used in these tests is develoned in
Appendix A, This model is anproximate but allows considera-
tion of the effects of nrobable real world force model
errors. Several ESKF tests were conducted to determina the
impact of semianalytical force model truncations and the
integration stepnsize on ESKF overformance. The same verform-
ance measures used in Chaoter 4 were used here: onrediction
accuracy, the observation span earror history, and the CPU
exacution time. The nrediction accuracy and the observation
span error history were measured relative to the baseline
provided by a batch differential corrections (NDC) orbit
determination algorithm,

The real data test case formulation uncovered an
intaresting force model anomaly: the interaction of the GEM
9 16th order gravitational coefficients with the Harris-
Priester Amtospheric Density Mod2l and drag coefficient
estimation caused a degradation in the prediction verform-
ance of the NC algorithms. The given satellite was in a
very sharp resonance with the 16th order geonotential
harmonics. The results of several NC tests defining this
anomaly are opresented in Section 5.1. More work is required

to completely exnlain this anomaly.

6.1 Conclusions

The fundamental conclusion to be Adrawn from the work
nresented in this thesis is that substantial improvements in
efficiency can be made without loss of accuracy by the
annlication of semianalytical satellite theory to the
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sequential orbit determination problem. This conclusion is
supnorted by the results of the short-arc test case of
Chapter 4, used to examine filter transient response, and by
the results from the many-orbit test case of Chapter 5, used
to examine steady state filter nerformance in the oresence

of real-world model errors.
Several other significant conclusions can be stated:

1. The computational structures of the LKF and the
EKF are comonatible with the interpolator struc-
tures of semianalytical satellite theory; the one
possible excention occurs when the ESKF is used
with the oosition and velocity intermolator [see
Equation (3-19) and Section 4.3.2]. '

2. The assumptions employed in the design of the SKF
and the ESKF have been verified, both by direct
numerical tests, and by the final filter

oerformance.

3. Semianalytical Satellits Theory offers consider-
ablza flexibility for truncations in the analytical
development of the force model, with the notential
for large improvements in the efficiency without

loss of accuracy.

4, The length selected for the integration grid can
have a significant effect on SKF and ESKF accuracy
during transients; there were not any detectable
accuracy differences during steady state filtering

for the cases considered.
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10.

11.

The linearized corrections to the short periodic
functions obtained by use of the B) matrix are
important for the accuracy of the ESKF predicted

osculating elements.,

The oprocess noise model empnloyed by any of the
filters tested can have a significant imoact on
the resulting estimation accuracy. The process
noise model developed in Anpendix A was generally
successful in accounting for the dynamical model
errors in the real data test case.

Drag coefficient estimation can be very important
for the accuracy of the epnhemeris predictions of

low altitude satellites.

The Epoch Point Conversion Iteration (4-1) gives a
low-cost means of obtaining good mean equinoctial
elements.

The process noise and a priori covariance can be
successfully transformed £from mean eguinoctial
coordinates to osculating position and velocity
coordinates when corresponding ESKF and EKF tests
are desired.

The EKF and ESKF are able to successfully estimate
and predict satellite orbits in the opresence of

real-world observation and force model errors.
The EXF and the ESKF offer significant improve-

ments in nerformance over simple global lineariza-
tion algorithms like the LKF or the SKF. There
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are specific apolications, however, where the
simpler comnutational structures of the LXF and

SKF will maks their use uniquely desirable [6].

Each of these conclusions 1is supoorted by the results
from th2 test cases considered. None of the conclusions is
totally unexpected. It is desirable that additional sunvort
be provided by further testing. This and other issues for

future work are addressed in the next section.

6.2 Future Work

The research oresentad in this thesis motivates addi-
tional work in filtering theory, in semianalytical satellite
theory, and in the requirements for the operational imple-
mentation of the oroit d=termination Aalgorithms studied in
this thesis. Rzcommendations are also »resented €for areas
requiring further testing, both to verify the conclusions of
this thesis and to establish the nerformance characteristics

for different orhit determination oroblems.

One of the imoortant results of Chanter 4 was the
discovery of the sensitivity of filter performance to the
process noise model emnloyed. This discovery motivated the
develooment of the vrocess noise model of Aopendix A, which
allowed the a priori calculation of a orocess noise
strength. Alternative approaches to the oprocess noise
modelling problem are given by the work of Wright [35] and
the covariance correction tzarm of the Gaussian Second 0Order
Filter, which model gravity model errors and filter lineari-
zation errors, resnectively. The anplication of these

alternate avnproaches to the semianalytical filters discussed
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herain deserves further study. In particular, it may be
possible to use the slowly varying nature of semianalytical
dynamics to develop very efficient implementations of these
methods. The Dynamic Model Compensation (DMC) method [34]
may offer additional benefits.

Two extensions of Semianalytical Satellits Theory will
help support additional testing of the SKF and the ESKF,
The test cases in this thesis studied low altitude nearly-
circular satellite orbits. The development of exvnlicit
third body short veriodics will allow mean element initiali-
zation for high altitude satellites at low cost, by use of
an EPC wnrocedure, The development of analytical 3] matrix
models for the third body perturbation and for the oblate-
ness vperturbation (closed-form in the eccentricity) will
allow the ESXF to bz tested efficiently with high altitude
and high eccentricity satellites, resvectively.

Several aspects of the overational imvlementation of
the SKF and ESKF require investigation. Very little has
been done to establish the tradeoffs between accuracy and
efficiency when various truncations of the analytical
development of the semianalytical force model are made. The
tests presented in this thesis indicate that large increases
in efficiency with only small 1losses of accuracy are
possible, The question of software ontimization should also
pe addresssed. The current imolementation did not have
efficiency as a primary goal, and so a good deal of optimi-
zation is possible. A timing budget of the program flow
would be helpful here., Finally, one of the imoortant appnli-
cations for the SKF and ESKF may lie in the area of autono-
mous satellite navigation. The standard Kalman prediction
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and uodat2 algorithms currently implemented should be rather
easily repmlaced by a more stable square root formulation.
The requirements for imvlementing semianalytical satellite
theory in a small word length comnuter should be studied.

The 1last area for future work consists of recommenda-
tions for additional orbit determination test cases to be
examined. Thare are many extensions to the test cases
studiz4 in this thesis. For exampnle, wnerformance evalua-
tions for high altitude and high eccentricity satellites are
of 1interest, The question of steady state accuracy when
very high accuracy observations are available is imoortant,
Equally impnortant is the estimation accuracy when there is
only a very snarse schedule of observations. Further tests
are required to establish the exact oerformance »roverties
of the ESKF when the nosition and velocity internnlator is
used (see Section 4.3.2). The last test case nrovnosed for
future study examines the effects on filter accuracy and
stability of detzrministic force model errors, such as
satellite maneuvers, or ranid - atmosnheric density
changes. The use of real observational data offers one
means of making these tests. In this regard, a further
investigation of the £force model anomaly can be made by
using ths tracking data from thz MAGSAT satellite. This
satellite should also have been in a very sharp 1l6th order

geovotential resonance during several days of its decay.
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Appendix A
PROCESS NOISE MODEL SELECTION

The results from Chapter 4 show that filter estimation
accuracy can be very sensitive to the process noise model
used. A trial and error search for the process noise
strength giving the best estimation accuracy could be con-
ducted for the simulated data test of Chapter 4, since a
truth model existed for measuring that accuracy. The real
data test case of Chapter 5 and efficiency requirements in
general motivate the development of more rigorous methods
for process noise modelling. This appendix discusses the
selection of the process noise strength for the real data
test case and indicates extensions for other situations.
The transformation of the process noise covariance from
equinoctial coordinates to cartesian coordinates for making

analogous EKF and ESKF runs is also presented.

A.l1 Process Noise Analysis for Semianalytical Satellite

Theory

Process noise models are used to account for the growth
of the true estimation error due to dynamical modelling
errors. The basic requirement for stable estimation with a
filter is that the true errors correspond to the covariances
computer by the filter; the squared errors should roughly
equal the computed variances. When the covariances are too
small, the Kalman gain is also too small, so the required
corrections are not made. When the covariances are too
large, the Kalman gain is correspondingly too large and over

corrections are made that can result in unstable oscillation
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of the estimate errors. These insights form the basis of

the three approaches to process noise modelling found in the

literature:

1.

Use of the white noise model for the process
noise, with the strength set either by trial and
error or by physical considerations [3}, [20],
(291, [33];

Modelling the process noise as a first order
Markov process, with the initial conditions and
dynamics selected parametrically for optimum

performance [34]; and

Analytical development of force model error
correlations based on qeodetic error analysis
[35]1.

The first approach is used here, taking advantage of the

near-linearity and slowly-varying character of the semi-

analytical dynamics.

The development of the process noise model assumes the

formal existence of the true dynamical model as well as the

known nominal model. These are represented as

and

jpe

o
—~
(e

e A)(3) + e’ AL (E) + ... ) = a (A-1)
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Ve
L

3y = e Ag(ay) +u;oag(t) = _S_NO (A-2)

respectively. Note that the true model contains the
complete expansion of the averaged equations of motion, so
that no analytical approximations are made at all. The
nominal model is truncated at first order, consistent with
the Semianalytical Satellite Theory developed in Chapter 2.
Also, the first order term €Ay is not exact, reflecting
the errors in known force models. The term u is the process
noise; it is to be selected to minimize the difference

between a_ and a.

N

Let fa = a - é& be the trajectory error between
(A-1) and (A-2). Write eél(-) = eéN(-) + Gél(-)
to explicitly account for force model errors. A perturba-
tion equation for KE results from subtracting (A-2) from

(A-1)

. de
Aa = _AN A§+%-A§_ —5— 43 + ...
aEN 3a N
_ 5 _ (A-3)
+ 8A(3) + e° A () + ...
with initial condition day, = ay, - ange This

equation accounts for all three sources of dynamical model
error in the perturbation equation employed by semianaly-
tical filters; the second, third, and fourth terms on the
right hand side of (A-3) are due to: |
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1. neglect of higher order terms in the linearization

of the equations of motion required by filtering

theory;
2. first order force model errors; and
3. truncation of the asymptotic series expansion of

the averaged equations of motion (see McClain [9]
for the general development of this series).

These error sources are modelled using process noise as

Aay = —— Aay + Vv ; Aa, =0 (A-4)

The new process noise v is to be selected for the best
matching of Aa and Aay . This matching is done statis-
tically, by equating covariances, in recognition of lack of
knowledge of wv.

Equation (A-4) is a linear equation and so has a state

transition matrix solution ¢(t,to). The solution to
(A-4) is
_ t
pag(t) = [ 4(t,T) v(1) At (A-5)
t
(o)
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Now semianalytical (and other VOP) dynamics are almost
linear, so the approximation ¢(t,to) = I is quite good,

as discussed in Section 3.4. The trajectory error becomes

t
AgN(t) = [ (1) drt (A-6)

t
(o]

Using the white noise model for the process noise and assum-
ing it has constant strength gives the result verified in
Section 3.4.1

A(t,t)) = Q ¢ (t - t)) (A=7)

On the other hand, another expression for A can be derived
using semianalytical heuristics. Since v is a vector of
unmodelled mean element rates, it is slowly varying. It can
also be deterministically modelled, since it results from
errors in deterministic models. The new expression for A
assumes that v is not random; thus the mean square value of
v is

t t T
f f v(t) v (o) dt do

At,t)

(A-8)

lie
=
N
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Equating this result with (A-7) gives

Q = v v At (A-9)

This result 1is approximate, as indicated in two ways.
First, no time argument is given for the mean element rate
errors, v. Rather, these rates will be computed based on
knowledge of the truncation, force model, and initial condi-
tion errors; these error rates are assumed (and verified) to
be sufficiently slowly varying. Second, some mean value for
the prediction interval t-to must bhe computed, to give
the best fit between the time-linear model (A-7) and the
quadratic model (A-8). The mean data outage time is a good
value for At, since filter divergence usually starts during

an outage.

A.l.1 Real Data Test Case Process Noise

The process noise model presented above in BEquations
(A~1) through (A-9) was initially developed for the real
data test case in Chapter 5. The process noise strength for
that test case was selected to account for atmospheric
density model errors and geopotential coefficient errors.
The computations giving the process noise used for the real

data test case are summarized here, step by step.

1. At was taken to be the mean data outage time.
Outages on August 30, 1977 ranged from 30 seconds
to 4.5 hours. The mean outage time was 1.125
hours or 4050.0 seconds.

218



2.

A 1literature s=2arch was conducted to determine
geopotential coefficient errors. Reference [36]
gives the geonotential coefficients and estimated
errors for the GEM 9 field used in GTDS. Tynical
coefficients and their errors are w»resented in
Table A-1, '

A mean valus of over all geonotential

(o}

rel
coefficients was desired, for computation of V,
This value was comnuted bv means of a weighted
average of the geonotential coefficient =arvrors,

The formula used was

T e

2 §

_ n=0 m=0 nm

rel NZ nz 2, g2 (A-10)
N

The numerator renresents the vesulting variances

in the geonotential due to the random coefficient

errors Gnm' The denominator s3cales this stan-
dard deviation to make it relative to the whole
geonntential werturbation. For an 8x3 field,
Cral = 2.4 * 10~ " resulted.

A literature search [371, [38], [39] into atmo-
spharic density model errors resulted4d in an error

standard deviation choice of arol = 20%.
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Table A-1
Geonotential Coefficients and Errors

Taken from Gravity Model Improvement Using Geos-3

(GEM 9 & 10)

T GSFC, 1977

n,m C S $ o

n,m n,m n,m rel

1E-6 1E-6 1E-9
2,9 -434.2 ——— 1 2E-@
3,0 0.958 - 1 1E-3
4,9 0.542 - 1 2E-3
5,0 0.068 ——— 2 3E=-2
6,0 -0.151 -——— 2 1E-2
7,0 0.093 - 2 2E-2
8,0 0.051 - 2 4E-2
15,0 0.001 - 5 5E-0
17,0 0.016 - 5 3E-1
2,2 2,434 -1.3983 3 1E-3
3,1 2.023 0.252 5 2E-3
3,2 0.892 -0.622 3 7E~3
4,1 -0.533 ~0.465 5 7E-3
4,2 0,353 0.663 5 7E-3
4,3 0.933 -0.203 4 4E-3

Notes: C_ , = geoootential coefficient
nm nm
$ = coefficient error
nm
Gn
m A .
Grel = -:5::::%:: = relative error
C2 + 5
nm nm



Mean element rate histories were generated over a
12 hour arc with the semianalytical integrator.
Mean element rate contributions due to the geopo-
tential and drag were printed separately. An 8x8
gravity field was used. The rates are given in
Table A-2, The relative error standard deviations
calculated in 2) and 3) are used to compute the
probable errors in the mean element rates of Table
A-2; these errors and the resulting total probable

error are shown in Table A-3.

A diagonal process noise strength matrix Q was

calculated, using

o1
(4]

(A-11)

N

The resulting value of Q is

Q = diag[z.E—S,4.E—19,2.E—lG,l.E—l7,2.E—l7,8E-16]

The elements h and k and the elements p and gq have
similar geometry. The matrix Q is normalized to
give these corresponding elements the same noise
strength. The value of Q used in the test case of
Chapter 5 is

Q = diaq[2.E"'8’2.E—16,2.E"'16,2.E"l7,2.E"l7,8E"16]
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Table A-3
Mean Element Rate Probable Errors

Yy = ¢ea” ral

Vv Drag V Grav
a -2.E-6 . 0.9
h -3.E-12 2.48-12
k 2,E-190 -2.48-13
D -2,E-12 4.3E-11
q 2.BE-12 7.2E-11
A -1.8-12 -4.8E-10

-1.B8-12

Vo= 2.E-10
5.E-11

7.8-11

-5.E~-10
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A.1.2 Process Noise Modeling Extensions

The method used for the process noise computation for
the real data test case of Chapter 5 can be used to model
the process noise terms due to initial condition (i.e.,
linearization) errors and truncation errors. The basic
requirement is the computation of the mean element rates v
due to the error source. The state dynamics bias correction
term from the Second Order Gaussian Filter can be used as an
estimate for v due to initial condition errors. McClain's
[9] equations for higher order terms in the averaged equa-
tions of motion must serve when modelling the process noise

Aue to mean element rate truncation.

A.2 Process Noise Transformations

The desire to compare SKF and ESKF performance with the
LKF and EKF implemented in the RD GTDS FILTER program raised
the question of the validity of such comparisons. That is,
the semianalytical filters have parameters and inputs given
in mean equinoctial coordinates, while the Cowell filters
have cartesian inputs and parameters. The transformation of
the initial state and covariance are straightforward and are
discussed in Chapter 4. The equations for transforming the

process noise are developed here.

The process noise covariances in mean equinoctial and

cartesian elements are

t
A(tet)) = e (t,T) O (1) ¢l(t,1) dr  (A-12)

%
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and

t
T
A (trt) = tf by (trT) Q (1) ¢ (t,7) dr (A-13)
o
respectively, where
3a(t)
¢ (trT) = — (A-14)
da(T)
and
ax(t)
¢x(tlT) = aX(T) (A—l5)

The process noise strengths Q are related in the same manner

as the initial covariances. Thus

9K(T) ax(T) T
]+ o (1) -

o (t) = [ (A-16)

85(1) EE(T)



The partial derivatives ¢x can be expanded by the chain

rule in terms of 4 by

aX(t) Ix(T)
] o oty o ]

b (trr) = ] (A-17)

3a(t) da(r)

Substitution of (A-17) and (A-16) into (A-~13) gives the

desired transformation

028 [85(t)]T
A_(t,t ) (A-18)
a o 3é(t)

A(t,t ) = ]
X O Bé(t)

There are two comments. First, the partials of position and
velocity are time varying, so the process noise covariance
calculated in (A-18) is not linear in time, contrary to GTDS
assumptions. Second, the implementation of (A-18) requires
the computation of the position and velocity partials; these
partials can be expanded by the chain rule wusing the
osculating equinoctial elements as intermediate variables as
done in (2-34). Only the two body partials are used; the

Bl matrix of short peridic partials are neglected.
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Appendix B
SOFTWARE OVERVIEW

The SKF and ESKF were implemented in the testbed
provided by the version of RD GTDS resident at CSDL. The
Semianalytical Satellite Theory developed at CSDL has been
implemented in this version of RD GTDS. This version of RD
GTDS also contains an LKF and EKF capability, implemented by
the FILTER program. Many of the FILTER subroutines are also
used by the SKF and ESKF,. The program development of the
SKF and ESKF is summarized below as well as the set up for

execution.

B.1l Software Description

Four new subroutines were written and forty-four exist-
ing subroutines were modified in this thesis work. Twenty-
one of these routines were written or modified for SKF and
ESKF implementation, nine for test case support, and

eighteen for bug correction and code clarification.

B.l.1 SKF and ESKF Subroutine Descriptions

Short descriptions of the subroutines written and

modified for filter implementation follow:
COREST: Updates the integration nominal trajectory with

the current filtered correction; modified to allow
SKF and ESKF updates and CDRAG and CSOLAR solve.
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ESTSET:

GVCVL:

KFEND:

KFHIST:

KFOBS::

KFPRED:

Sets switches for APG and SPPG model selection;
modified to set SKF and ESKF options.

Sets output titles; modified to include mean equi-

noctial variable names.

The Kalman Filter executive routine; modified to
eliminate unnecessary computations to allow effi-

ciency tests.

Does end of filtering processing by making the
final nominal trajectory update and propagating
the estimate and covariance to the report time;
modified for SKF and ESKF operation.

A new routine that generates filter state and
covariance histories at observation times in car-
tesian, Keplerian, and mean equinoctial

coordinates.

Controls acceptance of the next observation,
propagation of the nominal trajectory, and compu-
tation of the predicted observation for Kalman
Filter operation; modified to accumulate statis-
tics on edited observations and observation

residuals.

Implements the Kalman Filter state and covariance
propagation equations; modified to interact with
ORBITV for semianalytical state transition matrix

computation and ESKF state prediction.
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KFSTRT:

KFUPDT:

OBSPRT:

ORBITV:

OUTSLV:

RESINV:

Initializes the filter correction vectors and
observation statistics; modified to initialize

observation residual statistics.

Implements the Kalman Filter state and covariance
update equations; modified to accumulate observa-
tion residual statistics and to control state and

covariance history output.

Controls the computation of observation partials;
modified for SKF and ESKF computations to account
for the mean equinoctial to osculating position
and velocity transformation partials (partials

computation is controlled by ORBITV).

The executive for the Semianalytical Satellite
Theory edquations of motion and variational equa-
tions. Controls AOG and SPG computations (SPORB)
and APG and SPPG computations (SKFPRT); modified
to control SKF and ESKF nominal trajectory updates
and ESKF state correction prediction and updated

state computation.

Prints the filter estimate and covariance at the
initial report time; modified to allow mean equi-

noctial variables.

Performs initialization tasks for the Semianaly-
tical inteqrator by initializing the state and the
partials; modified to initialize the mean equinoc-

tial state transition matrix.
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RKINTG:

RPTEST:

SKFMAT:

SKFPRT:

SKFUDT:

SNGSTP:

The variable order Runge Kutta integrator for the
Semianalytical equations of motion and variational
equations, written by A. Bobick [20]; modified to
integrate the 1inverse of the state transition

matrix.

Prints the filter estimate and covariance at the
final report time; modified to allow mean equinoc-

tial variables.

A new routine that computes the transformation
partials from the mean equinoctial plus dynamic
parameters solve vector to the corresponding oscu-
lating equinoctial variables (i.e., implements the
SPPG). '

A new routine that controls computation of the
Semianalytical state transition matrix (uses the
transition matrix inverse interpolator set up by
RKINTG) and the computation of the Semianalytical
solve vector to osculating position and velocity
transformation partials (implements a local inter-
polator) required by OBSPRT,.

A new routine that updates the Semianalytical
nominal trajectory and reinitializes the integra-

tor at the end of an integration grid.

Generates the first integration grid and short
periodic coefficient interpolators for Semianaly-
tical Runge Kutta integrator; modified to set up
the state transition matrix interpolator.

230



SPORB: Controls calculation of the osculating position
and velocity and mean equinoctial elements for the
Semianalytical integrator at output times within
the current integration grid. Implements the
local position and velocity interpolator and uses
the short periodic coefficient interpolators;
modified to make ESKF updated state computations

more efficient.

B.l1.2 Test Case Support Subroutine Descriptions

Modifications to nine subroutines were required to
support three aspects of the SKF and ESKF testing; summaries

of the requirements and the subroutine descriptions follow.

The coefficient of drag was estimated in two test cases
to improve estimation performance; one subroutine was modi-

fied to support this capability for the LKF and EKF,

AERO: Computes atmospheric drag forces and partial

derivatives; modified to calculate CDRAG partials
for CDRAG estimation by the LKF and EKF.

Two of the test cases required the capability to have
station-specific observation statistics for C-Band tracking
stations. Four subroutines were modified for this

capability:

DSPEXC: This routine 1is the executive for the DATASIM
capability in RD GTDS; it was modified to allow
the simulation of observations of the same type

with different error statistics.
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OUTDS1 : Prints the observation statistics summary for the
DATASIM program; modified to account for station-

specific statistics.

SETDC: One of the RD GTDS control card processors; modi-
fied to read in station-specific observation
statistics.

WEIGHT: Computes the weight assigned to each observation

residual by differential corrections and filter
programs; modified to account for station-specific

observation statistics.

Implementation of the process noise transformation
between mean equinoctial and osculating position and velo-
city frames required modifying three routines. One routine
was modified to support the real data process noise

computation.

AVRAGE: Computes the Semianalytical mean element rates;
modified to print the rate history for gravita-
tional and drag perturbations for the real data

process noise calculation.

ANOISE: Computes the process noise covariance contribution
to the Kalman Filter prediction equations; modi-
fied to include the equinoctial to cartesian

process noise transformations.
SETAPC: Initializes the Kalman Filter a priori and process

noise covariances; modified to account for process

noise transformation initialization.
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SETFIL: The control card processor for the RD GTDS FILTER
program; modified to allow control card input of

the process noise transformation option.

B.l.3 Software Bug Removal

Eighteen subroutines were modified to remove errors or
clarify the code. Since the corrections are specific to the
particular subroutine implementations, only the subroutine
names are given here, The modified routines are EDITOR,
ELERD, EO, KFINIT, ©OBEDIT, OBS, OBSWF, OBSWT, OUTPAR,
RPTIME, RSETRK, SETRUN, SPCOTO, SPJ2PR, VARSP, VRSPAN,
VRSPFD, and WFCONT.

B.1l.4 1Interaction Diagrams

-Software interaction diagrams for key routines of Sec-
tion B.1l.1 and B.l1.2 are shown in Figure B-1, See reference

[3] for additional information.

B.2 Program Execution

This section describes the setup of the JCL, RD GTDS
control cards, and software flags in subroutines ESTSET and
HWIRE as required for SKF and ESKF program runs.

B.2.1 JCL Setup

Up to three data sets may be required for an SKF or
ESKF run.

The Linkage Loader control cards describing the overlay

structure are currently in
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SPT1244.SKF.GTDS.OVERLAY.OBJ

The source code, INCLUDE statements, and load modules
for the updated routines of Section B.l are in

FORT
SPT1244,.GTDS.UPDATE. OBJ
LOAD

respectively.

The state and covariance histories may be generated on
output data sets for plotting by setting the flags (dis-
cussed below) IWUPD, IWPRD, and IPRFIL. Data sets of the

required format can be generated by the ALLDS command.

B.2.2 RD GTDS Control Cards

The RD GTDS control cards directly impacting the SKF
and ESKF operation as well as the new control card imple-
mented for station-specific observation statistics are
described here.

The selection of an extended-type Kalman Filter versus
a linearized-type filter remains unchanged from the previous
FILTER implementation but is repeated here for emphasis.
The pertinent control card is

col 1-8 9-11 12-14
FILTER I J
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The variable I=1 selects either the LKF or SKF, while I=2
selects the EKF or ESKF. The variable J=1 indicates that

process noise covariances should be computed.

Selection between semianalytical and Cowell filters
(e.g9., LKF vs. SKF or EKF vs, ESKF) for the same FILTER card
is accomplished by the ORBTYPE card. This card selects the
orbit generator type; it has the format

col 1-8 9-11 12-14 15-17 18-28 39-59
ORBTYPE I J K 5 T

The pertinent variables are I, S, and T. Setting I=5
selects the Semianalytical Filter while 1I=10 selects the
Cowell version. The variable S sets the integrator step-
size; typical values are S=10 for Cowell and S=21600 for
Semianalytical integrations. The variable T=1 is required

for semianalytical runs.

The process noise transformation from the equinoctial
frame to the cartesian frame for making a LKF or EKF run
analogous to a SKF or ESKF run is set by the INPUT card; the

format of this card is

col 1-8 9-11
INPUT I

The variable I=1 selects inertial cartesian process noise,
while I=2 triggers the transformation. The process noise
strength is input by SPNOISE cards as described in [3]; when
I=2 the 1input strength 1is taken to be 1in equinoctial

coordinates.
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The new control card implementing the station-specific
observation statistics is called the "station card zero"
card by analogy with GTDS terminology for the control cards
describing other properties of the tracking station

network. The new card has the form

col 1 2-8 9 10-11,12-14,15-17 18-38,39-59,60-80

/ statname 0 Il IZ 13 Rl R2 R3
where

statname = a legal RD GTDS station name

I,,15,13 RD GTDS observation type

R)sRy,Ry = the corresponding observation standard

deviation

The appropriate units are meters, centimeters per second,
and arc seconds for range, range rate, and angle measure-

ments, respectively.

B.2.3 Software Switches

The software switches required for SKF and ESKF opera-
tion are set in the subroutine ESTSET, but interaction of
the ESKF with the position and velocity interpolator
requires the discussion of the subroutine HWIRE. Before the
implementation of SKF software, these subroutines selected
the semianalytical variational equations (APG + SPPG) and
equations of motion (AOG + SPG) force model options,

respectively.
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The flags added to ESTSET affect filter operation and
intermediate output. The output flags are summarized in
Table B-1. There are three flags that determine SKF and
ESKF operation and one flag that enables the LKF to emulate
SKF operation by relinearization of the nominal trajectory.

The flag IUPD=1 causes relinearization of the Semi-
analytical nominal trajectory for the SKF and ESKF at the
end of an integration grid by adding the filter correction
to the final grid state; when IUPD=2 the semianalytical

linearization is global over the observation span.

The flag INTINV=1 turns on the state transition matrix
inverse interpolator; otherwise, the required inverse is
computed explicitly.

The flag ILKFUP=1 causes LKF relinearization at inter-
vals specified by DTLKF. Otherwise, the linearization is
global.

The selection of the ESKF versus the SKF is controlled
by the flag IESKF. When IESKF=2, the SKF is selected. The
choice of the ESKF observation prediction equations changes
according to whether or not the local position and velocity
interpolator is being used. The different equations
employed in the two cases are discussed in Chapter 3. The
position and velocity interpolator is switched on and off in
the routine HWIRE; INTPOS=1 turns the interpolator on,
INTPOS=2 turns it off. The corresponding settings of the
flag IESKF are IESKF=3 and IESKF=1. Both ESKF implementa-
tions assume that the short periodic coefficient interpo-

lator is on.
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ISLVPT

INPRD

IAUPD

IPRFIL

Table B-}
Print Flag Settings
(1 = ON; 2 = OFF)

nrint the nominal trajectory elements
bafore and after adding in the filter
correction

nrint the filter state and covariance
in cartasian, kenlerian, and m=an
equinoctial (for SXF/RSKF) elements as
sredicted at the current observation
time

print the corresponding state and
covariances after the measurement
undate

this set the outnut FRN for the filter

history (e.9., =43 1imnlies outnut on
FT43FNN1)
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