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SEmIANALYTICAL SATELLITE THEORY
AND

SEQUENTIAL ESTIMATION

by

Stephen Paul Taylor
2LT, U. S. Army Engineers

Submitted to the Deoartment of Mechanical
Engineering in September 1981 in oartial
fulfillment of the requirements for the degree of
Master of Science in Mechanical Engineering

ABSTRACT

Kalman Filtering techniques are combined with a
semianalytical orbit generator to develoo two sequential
orbit determination algorithms, analogous to the standard
Linearized Kalman Filter (LKF) and Extended Kalman Filter
(EKF), respectively. The new .__algorithms are called the
Semianalytical Kalman. Filter (SKF) and - the Extended
Semianalytical Kalman Filter ( ESKF). The design
implications of the interaction between the filter and the
perturbations theory are discussed. The results of
numerical tests conducted to verify design assumptions are
presented.

The new algorithms were imlemented in the testbed
provided by the Research and Development version of the
Goddard Trajectory Determination System (Ri) GTDS). They are
investigated for comoutational efficiency, accuracy, and
radius of convergence by comoarison with the special
perturbations LKF and EKF previously implemented in the RD
GTDS FILTER capability. A short-arc test case is used to
examine transient behavior. A many-orbit test case using
real observational data illustrates ESKF and EKF steady
state erformance in the oresence of real-world observation
and force model errors. The ESKF is shown to meet or exceed
EKF performance for these tests.

An algorithm is derived that allows calculation of a
suitable process noise strength based on a riori hysical
considerations. This algorithm is verified using the real
data test case.
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The real data test case led to the discovery of an
interesting force model anomaly: a truncated 3x8 GEM 9
gravity field gave better prediction erformance than the
full 21x21 field. The satellite was in a low altitude orbit
in sharp resonance with the 15th order geopotential
harmonics. The atmosohere was relatively quiet. The 16th
order GEM 9 gravitational coefficients are shown to account
for the prediction performance degradation. Additional work
is required.

Thesis Supervisor: J. K. edrick, Ph.D.
Title: Associate Professor of Mechanical

Engineering

Thesis Suoervisor: P. J. Cefola, Ph.D.
Title: Section Chief

The Charles Stark Draner Laboratory

Lecturer
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Chapter 1

INTRODUCTION

Orbit determination processes require two capabilities:

the capability to accurately predict an orbit, given initial

conditions; and some estimation algorithm indicating how

observations of the satellite orbit should be used in up-

dating the ephemeris. Advances in the technology of either

capability imply corresponding advances in orbit determina-

tion processes. This thesis exploits recent advances in

Semianalytical Satellite Theory to develop and test two new

sequential orbit determination algorithms.

In their overview of earth satellite orbit determina-

tion, Kolenkiewicz and Fuchs [1] predict widespread use of

sequential estimation techniques by the mid 1990's. Indeed,

orbit determination systems relying on sequential algorithms

are already operational, motivated by increases in timeli-

ness, accuracy, or efficiency of the results. A literature

search turned up several examples that highlight interest-

ingly the differences between the algorithms designed herein

and previous work.

1.1 Previous Work

Telesat [2] , a satellite communications system, has

been using a sequential algorithm to support station keeping

operations for several years now, with both improved

accuracy and reduced costs. This system uses an Extended

Kalman Filter (EKF) in conjunction with a special perturba-

tions ephemeris generator. Any orbit generator that applies

12



a high precision numerical integrator directly to a formula-

tion of the equations of motion [e.g., Cowell, Encke, VOP]

is called a Special Perturbation Theory. Special perturba-

tions theories have the advantage of being highly accurate,

but suffer from computational expense due to the small step-

sizes required by the high precision integrators. The

special perturbations filter develooed by the Computer

Sciences Corooration (CSC) in suooort of NASA/Goddard's

study of autonomous navigation technology illustrates this

point well. CSC recommends use of a 10 or 15 second step-

size in order to achieve the desired accuracy [3].

Alternate satellite theories exist, called General

Perturbations theories, that use analytical methods to

improve comoutational efficiency; they require simplifica-

tions in the force model for analytical tractability,

implicitly causing losses in accuracy. The United States

Air Force Aerospace Defense Command (ADCOM) maintains a

catalog containing approximate ephemerides for all manmade

earth satellites. Efficiency is mandatory for this large

orbit determination task; DCOM uses general erturbations

satellite theories and a recursive least squares estimation

algorithm to accomplish the routine uodating of the catalog

[4], [5]. However, a special perturbations theory is still

required for high accuracy orbit determination.

The Global Positioning System (PS) uses a sequential

orbit determination system with an interesting architec-

ture [6]. This system was designed to estimate the oosi-

tions of the GPS satellites with a 1.5 meter accuracyv in

real time, while simultaneously having low operating costs

for continuous operation. The expensive real time comouta-

tions are minimized by using current observations to tune a

13



highly accurate restored nominal trajectory with a Kalman

Filter (LKF) linearized about that trajectory. The nominal

trajectory and all other parameters needed by the filter are

generated offline, once again with a soecial oerturbations

theory. One of the algorithms investigated in this thesis

also uses a LKF to tune a orestored nominal trajectory.

The last examole is the Eooch State Navigation Filter,

not operationally employed, but !rooosed by Battin,

Crooonik, and Lenox [71, and later studied in alication to

autonomous navigation by 4Menendez [31. The use of a Varia-

tion of Parameters (VOP) formulation of the equations of

notion is an essential similarity to Semianalytical Satel-

lite Theory, although the above investigations emoloyed

special erturbations methods thereafter.

Semianalytical Satellite Theory reoresents a unifica-

tion of the strengths of soecial oerturbations and general

perturbations methods. Semianalytical Satellite Theory

starts with the same force model as soecial perturbations

theories, so the same accuracy is achievable in orinciole.

By using VP equations of motion, only the perturbing forces

must be integrated. The small magnitudes of these forces

allows formal apolication of asvototic mthods, a step

beyond that taken in investigations of the Eooch State
Navigation Filter. The asymtotic method is atly based on

the method of averaging, which was evelooed by Krylov and

Bogoliubov for analysis of nonlinear oscillations. Heuris-

tically, the method of averaging removes the oeriodic

content of the VOP equations of motion, allowing either

analytical solution or numerical integration with large

steosizes. It is the latter aonroach where the fundamental

14
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difference with general perturbations methods occurs:

analytically intractable portions of the force model are

treated numerically, preserving real world accuracy.

1.2 Semianalytical Satellite Theory at CSDL

Since the sequential orbit determination algorithms

discussed in this thesis are based on the Semianalytical

Satellite Theory currently being developed at the Charles

Stark Draper Laboratory (CSDL), that theory is described in

more detail below.

McClain [9] formulated the asymptotic expansion of this

theory in terms of the Generalized Method of Averaging

(GMA). Use of the GMA allows the rigorous and recursive

development of formal equations for approximations of

arbitrary order. Equinoctial variables were selected to

avoid artificial singularities in the VOP equations for near

circular or equatorial orbits. Cefola [10] , McClain [11]

and Collins [12] have developed analytical expressions for

the averaged equinoctial element rates due to central and

third body gravity perturbations, employing special func-

tions and recursion relations to maintain force model

generality and flexibility while maximizing efficiency.

Gcreen [13] formulated the numerical treatment of drag

perturbations. More important for orbit determination

processes, though was his development of a Fourier series

expansion of the short periodic components averaged out of

the osculating elements. It is the efficient recovery of

these short periodics that makes this Semianalytical Satel-

lite Theory as accurate as special perturbations theories

while preserving the efficiency gains accruing from the

analytical development. Recent work at CSDL has been

16



directed toward increasing the efficiency of short periodic

recovery by further analytical development of the gravity

perturbations [14] , [15] , 16] , [17] , [18] , and the design

of appropriate interpolation algorithms [19]. The resulting

theory can be 5 to 100 times as efficient as special pertur-

bations theories, depending on the application.

The Semianalytical Satellite Theory has been investi-

gated for orbit determination before. Green's work was

motivated by an interest in orbit determination processes

for low altitude satellites. He used his results in a batch

differential corrections (DC) estimation algorithm, finding

accuracies and convergence properties quite comparable to

high precision Cowell results. He also proposed a sequen-

tial algorithm that generated the interest motivating this

work.

1.3 Overview of Thesis

This thesis reports on the application of semianaly-

tical satellite theory to sequential orbit determination.

The sequential estimation techniques used are adaptations of

the Kalman Filter. Although the Kalman Filter is not the

optimal solution to the nonlinear estimation problem posed

by orbit determination, experience [20] has shown that it

can be adapted to perform quite adequately.

The first algorithm design is quite similar to that

used by the GPS system described above. The Semianalytical

orbit generator is used to generate an averaged ephemeris

and associated short periodic interpolators. Thus highly

accurate values for the osculating satellite position and

velocity can be recovered at observation times; the result-

17



ing observation residuals are used by a Kalman filter

linearized about the mean trajectory to improve the esti-

mate. The resulting algorithm is called the Semianalytical

Kalman Filter (SKF).

Sequential orbit determination exnerience has shown

that the EKF generally has much suoerior oerformance than

global linearizations like the LKYF. Another algorithm was

designed that employs extended-tyoe ideas where oossible.

This algorithm is called the Extended Semianalvtical alman

Filter (ESKF).

Chaoter 2 oresents mathematical introductions to

semianalytical satellite theory and estimation theory as

background for the SKF and ESKF designs.

Chaoter 3 discusses the designs of the SKF and ESKF.

These filters are based on the standard Kalman algorithms

rather than on the square root or similar algorithms since

numerical stability is not an issue in this implementation.

The results of numerical tests which justify key assumptions

are also resented.

Chapter 4 resents the results of orbit determination

test cases employing simulated observations. These test

cases serve to validate the software and give oreliminary

indications of the orooerties and erformance of the SKF and

ESKF.

Chapter 5 gives the results of EF and ESKF aoolication

to real observational data. The results are vervy romising.

18



Conclusions and suggestions for future work are stated

in Chapter 6.

The Appendices A and B discuss process noise modellinq

and the software implementation, respectively.

19



Chapter 2

BACKGROUND

This chapter presents the mathematical background

required for the design of the Semianalytical Kalman Filters

(SKF and ESKF) discussed in Chapter 3. Semianalytical

satellite theory is described first to define the notation

and motivate its advantages. An introduction to filtering

theory surveys candidate estimation algorithms.

2.1 Semianalytical Satellite Theory

The accurate and efficient propagation of an ephemeris

requires both a precise model of the forces acting on the

satellite and an accurate and efficient means of integrating

the equations of motion. The equations of motion are iven

by Newton's Second Law as

d2 r
%+ r (2-1)2 + 3 

dt r

The terms from left to right are the satellite's accelera-

tion, the point-mass gravitational attraction, and all other

(disturbing) accelerations, due to oblatness, drag, third

bodies, etc. The disturbing accelerations are typically

several orders of magnitude smaller than the point mass

force.

20



Now any integrator is most accurate and efficient for

systems with only small nonlinearities and low frequencies

in the force model. Historically, this fact has motivated

tradeoffs between analytical methods, which use simplified

force models and analytical approximations to obtain the

integrated ephemeris efficiently, and numerical methods,

which retain the full force model and use high recision

numerical integrators to obtain the integrated ehemeris

quite accurately.

To increase the efficiency of an ehemeris generator,

it is necessary to decrease both the magnitude of the

nonlinearities as well as the high frequency content of the

force model. The magnitude of the nonlinearities can be

reduced by choice of the orbital elements. For examole,

Keplerian and equinoctial elements incorporate the effects

of the point-mass acceleration, leaving only the disturbing

acceleration to be accounted for. The transformation from

cartesian osition and velocity to such an element set is

the basis of Gauss' VOP equations.

The VOP equations for a general satellite orbit can be

written

a = ef(a,) (2-2)

0= n(a) + eg(a,0)

21



Here the vector a represents those elements describing the

shape and plane of the orbit, while the vector 8 is an

appropriate set of hase variables that accounts for the

high frequency variations in the satellite acceleration.

Examples of such hase variables are the satellite angle and

the Greenwich Hour Angle. Sometimes the angle of the sun,

moon, or a planet is considered a hase variable in examin-

ing third body perturbations. Alternatively, the motion of

the third body can be modelled by taking tine itself as a

ohase variable. The svmbol £ formallv denotes the small

magnitudes of the generalized disturbing accelerations

ef(a, 8) and g(a, 8). Just as a satellite's mean anomaly is

analagous to time through Keoler's equation, the close rela-

tionshio between time and other hase variables is indicated

in Equation (2-2) by the dominant term in 8 being the

generalized mean motion, n(a), a nonzero, almost constant

rate. Since a satellite orbit is almost periodic in time,

the generalized disturbing accelerations f(a, 8) and g(a, 8)

are almost eriodic in 8; this is consistent with the ohase

variables accounting for the high frequency components of

the disturbing accelerations. Semianalytical Satellite

Theory averages the VP equations (2-2) over the oeriods of

the hase variables. The method is illustrated below in

developing a first order theory (in ) with a single hase

variable, taken to be the satellite angle. See McClain [91,

Green [131, and Collins [121 for extensions to higher order,

weak time dependence, and multiple hase angles, resoec-

tively. McClain's work is fundamental and comprehensive,

while Green's and Collins' results show the oower and suc-

cess of semianalytical satellite theory in two alications.

22



2.1.1 A First Order Semianalytical Satellite Theory

When the satellite mean longitude is taken as the only

phase variable, the VP equations become

a = Ef(a, X)

A = n(a) + cg(a, ) (2-3)

This develooment uses equinoctial variables, which can be

expressed in terms of classical Keolerian element as

a = [a,h,k,,q,l T

a = a, the semimajor axis

h = e sin( w + I)

k = e cos( w + I)

I (2-4)
= tan (i/2) sin 

I
q = tan (i/2) cos 

= M + + IQ

I = ±, the retrograde factor

23



Thus n(a), in the expression for the rate of X in Equation

(2-3), is the mean motion

n(a) = n(a) = (2-5)
3a

If the right hand sides of equations (2-3) depended

explicitly only on time, then periodicity would imply that a 4

and X could be expanded in a Fourier series whose coeffi-

cients were linearly dependent on the small parameter . In

actuality, a Fourier series expansion in X is asymptotically

valid, but the dependence of the coefficients on is

complex, making expansions of various orders possible. The

Generalized Method of Averaging (GMA) developed by

Mitropolsky provides a rigorous mathematical formalism for

obtaining asymptotic approximations of arbitrary order. To

first order, the results of the GMA are equivalent to

averaging the VOP differential equations over the period of

the satellite angle, 0 < X < 2r, to obtain mean element

rates. The resulting mean elements correspond to the

constant term in the Fourier series. The averaging opera-

tion is denoted by a super-bar, so that the mean elements

are denoted a and X. The relationship between the mean

elements and the unaveraged or osculating elements is stated

by the near-identity transformation

a = a + en(a,X)

A = X + n6 (a,X) (2-6)
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The functions n and cn6 are called the short

periodic functions and to first order account for the

oeriodic terms in the Fourier series; thus they satisfy the

constraints

Sni ,(a' + 2r) = n ni (, -A)1--- a1 --
2 WrT

I
0

ni ((a,-) d = 0

(2-7)

(2-3)

for i = 1,2,...,5.

Since the mean elements are obtained by integrating the

average of the equations of motion (2-3), the mean element

rates cannot depend on X or . Thus the equations of motion

for the mean elements can be written

a = A(a)

= n + A (a) (2-9)
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The mean element rates and short periodic functions are

completely determined by asymptotic matching between Equa-

tions (2-3) and (2-9), applying as constraints the near

identity transformation (2-6) and short periodic properties

(2-7) and (2-8). The matching is most easily carried out by

formal Taylor series expansion; differentiate (2-6) to

obtain

S aen * aen 
a = a + a + 

aa ax

= A + aa + (2-10)
aa a

Substitutinq for and X from (2-9) and retaining terms to

first order in e for the asymptotic match ives

nA( 
a = A(a) + n

3en
= n + A6 (a) + n (2-11)

- ai

Equation (2-3) asymptotically becomes

a = cf(a,j)

= n(a) + ) (a - a) + q(a,X) (2-12)
aa
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since the residuals a - a and - are first order in .

By differentiating the equation for the mean motion, (2-5),

the final result is

= f(a,3i)

- 3 nX n_- - (a,x) + g(a,)
a 1a

(2-13)

Explicit equations for the mean element rates and short

periodic functions result from comparison of equations

(2-11) and (2-13) and application of the constraints (2-7)

and (2-8). Comparison yields

3 

E f(a,x) = A(a) + - n

3n n(,
E q(a,) - nl(a,X) = eA6 (a) + n

2a ax

(2-14)

Integration over 0 < X < 2 allows application of (2-7) and

(2-8) by use of the identities

27



2 i aen (a, )
I _ n dA = n[cn i(a,+2w) - ni(a,A)] = 
o ax

(2-15)

and

2w - 2w

£nl;(a,A) dX = a J s (a,A) d = o
I0 ia 0

(2-16)

Carrying out the averaging of equations (2-14) yields

2w
E A(a) 2 

n)

£ A6 (a) = 2 I
0

2w

e f( ,) d!

e q(a,X) di

With the Ai now known, equations (2-14) become a set of

coupled partial differential equations. The solution

satisfying the constraints is easily verified to be

28
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E n(a,) = 1 [ f(a,S) - e A(a)] d + n(a,0)

£ n6(a,X) = I j [ gq(a,t]) - A6(a)] dS
n 

3- f c nl(,S) d + n(a,O)
2a 0

(2-18)

Equations (2-17) and (2-18) provide a natural structure to

ephemeris generation by Semianalytical Satellite Theory.

The Averaged Orbit Generator (AOG) computes the mean

elements by use of (2-9) and (2-17); the Short Periodic

Generator (SPG) recovers the short peridic variations by

solution of (2-18). These equations are still purely formal

results. The efficiency and accuracy of Semianalytical

Satellite Theory depend on maximizing the analytical

development, with numerical methods used when further analy-

sis is not possible. Thus the averaginq of gravity pertur-

bations in (2-17) is done completely analytically [101 ,

[111], while the mean element rates due to drag and solar

radiation are computed by numerical quadrature [21].

Additional formal development of the short periodic func-

tions is possible. The approach due to Green [13] is

described below.
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2.1.2 Fourier Series Development of the Short Periodics

Accurate solution of the VOP equations by semianaly-

tical satellite theory requires recovery of the short

periodic variations. But direct application of equations

(2-18) is undesirable, since integration of the osculating

force model would once again require small stepsizes. The

constraint equations (2-7) and (2-8) imply that the short

periodic functions can be developed in a Fourier series in

the mean-mean longitude, X. Green [13] developed this

expansion to achieve generality in the short-periodic model;

this concept also leads to improved computational

efficiency.

The SPG equations (2-18) imply that the disturbing

forces also have a Fourier series expansion. The derivation

starts with the assumption of such an expansion

E f(a,r) = C X0 (a) + eX (a) cos al
a=l

+ cZ (a) sin aX

c g(a,X) = eX6 0 (a) + X 6 (a) cos aX
a=l

+ Z (a) sin aX

(2-19)
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The Fourier coefficients of the disturbing forces can be

written as

2~
- 2 

s X (a) =

2~-61 2w
c X6 , (_a) = j 

=0

E f(a,X) dX = e A(a)

£ q(a,X) dX = e A 6(a)

eX (a) 2w
{ - - 1 

Z (a) 
---

¢ f(a,X) {
cos aX

sin a d

eX6 (a) 2 2 cos X
X 6,a - I 1 f q(a,) _} d

E 0 sin aX
Z6,a

(2-20)

The Fourier coefficients of the short periodic func-

tions can be related to these known coefficients of the

disturbinq function by substituting equations (2-19) into

(2-18) and carrying out the integration explicitly.
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Write the short periodic expansions as

£ n(a,X) 

c n 6 (a,) =

ECC sin aX - D cos aX
-aoa=l -

(2-21.)

6

a=1
EC 6 sin a - ED

6,a 6,a
cos aX

The short periodic Fourier

solved for as

eC (a)-a

eD (a)-a

1

an

1

an

coefficients may finally be

X (a)-a -

£ Z (a)-a

C6 (a) =_ 1 X (a)6,a - 6,a -
3

+ -
2aa

D1 a(a)

D (a) = 1 Z (a)

(2-22)

32

3

2caa
C1 (a)



Although this formulation still requires implicit integra-

tions of the disturbing force models as in equations (2-20),

three factors contribute greatly to efficiency gains

1. the integrations can be done analytically for all

gravity perturbations;

2. the Fourier coefficients depend only on the slowly

varying mean elements, and so vary slowly them-

selves, allowing extensive use of interpolators

[13];

3. the series converge quickly, and so can he trun-

cated at low harmonics.

Computational issues for the whole of Semianalytical

Satellite Theory are discussed in more detail below after

discussing the variational equations.

2.1.3 General Notation

The development so far has emphasized the essentially

different mathematical character of the satellite angle X,

and the other orbital elements, a, by deriving separate

equations for each. While this distinction is necessary to

understand and implement Semianalytical Satellite Theory, it

is less important for the application of Semianalytical

Satellite Theory to orbit determination. By using vector

notational conventions similar to the scalar Kronecker

Delta, a common description of both the and the a equa-

tions can be developed. The unified equations are presented

in Table 2-1, referenced to the text above by "primed" equa-

tion numbers. The rest of the thesis will reference the

equations in Table 2-1.
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Table 2-1
Unified Equations for First Order
Semianalytical Satellite Theory

Indicial vector

eT = [o **. r)10 ... r ]T
-- 1

t ith element, out of six elements

Orbital Elements

T
a = [a,h,k,o,q, 

VOP Equations

a = ne + f(a)

Near Identity Transformation

a = a + E n(a)

(2-4)'

(2-5)'

Mean Element Equations

a = ne 6 +

Mean Element Rates

1

2 r

Short Periodic Functions

[Ef(a) - A(a) dA

·P *I fn l((a) a: ~-5

34

(2-3)'

(2-9)'

2r

0

E f(a)

En(a)

(2-17)'

-X

I1

n

3

2a
(2-18)'



Generalized Disturbing Acceleration Fourier Series
Coefficients

1
= r

2 r

0

f( a)

cos al
{ } d
sin -

(a>l) (2-20)'

Short Periodic

EC (A)

.(.a)

CD (a)

Function Fourier

1

an

1

dn

LX (a)

CZ a(a)
--a

+ _.3
2 oa

3

2 cra

Series Coefficients

-26 l, (a 

e6 EC1, a( a - )
e-6 ~l, o(~)

Short Periodic

rn(a) =

Function Fourier Series

a=1
C sin a - E Da cos

35

E a(a)

--a -
c-Z- a(-%)a)

(2-22)'
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2.1.4 The Variational Equations

In addition to prescribing the method of computing a

satellite's state over time, most satellite theories also

indicate how to compute the variational equations, or

partial derivatives of the satellite motion. These partials

are required for orbit determination; the variational equa-

tions and all other partial derivatives required for orbit

determination with Semianalytical Satellite Theory are

presented here, following Green's development [13].

The variational equations describe to first order the

effects of small perturbations or variations in the initial

conditions on the satellite motion at later times. The

equations of motion are linearized about the motion corres-

ponding to the nominal initial conditions, resulting in a

linearized differential equation describing the propagation

of the perturbation. The state transition matrix of this

differential equation is also called the matrix of partial

derivatives of the satellite motion. For Semianalytical

Satellite Theory, the partial derivatives of the motion give

the dependence of the mean equinoctial elements at a time

tl to the mean elements at an earlier time to.

Denote the state transition matrix by (tl,t 0); then

a a(t )
0(tl,to ) (2-23)

a a(t 0 )
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is a notational identity. Letting t1 be an arbitrary

time t and differentiating with respect to time gives

d a a(t) a a(t)

i(t,t0 ) = (2-24)
a a(t 0 ) a a(t 0 )

Application of the chain rule for the partial derivatives

with respect to a(t0) and substitution of equations

(2-9) for the mean element rates gives

a A(a)

(tt) [a s 3n 2a T6 (t t) (2-25)

The effects of variations of dynamic parameters in the equa-

tions of motion are also described by variational equa-

tions. Let c be the vector of dynamic parameters and define

aa(t)
*J(tt ) = a (2-26)

Chain rule expansion of the derivative of equation (2-26)

gives rise to two terms in the variational equation for

?(t,t 0)
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3a A(a) ae A(a)
~(t,t ) = { 3n e6el} ?(tt + c

a a(t) 2a 

(2-27)

The first term accounts for variations in the mean element

rates due to the implicit dependence of a(t) on c; the

second term describes the explicit dependence of the rates.

Use of Green's notation [13]

A(t) =

D(t)

B2(t)

B3(t)

a A(a) 3n T
e6e

a a(t) 2a 

as A(a)

ac

= (t,t 0)

= (t,t 0)

(2-28)

gives his results

B2 =

3

for the Averaqed Partial Generator (APG)

AB 2

(2-29)

AB + D
3
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The initial conditions for equations (2-25) , (2-27) , and

(2-29) state the independence of the variables a(t0) and

c for a fixed time to

o(t,t) = B2 (t) = I

(2-30)

T(tot 0 ) = B3(t 0) = 0

Since the desired output of Semianalytical Satellite

Theory is the high accuracy osculating position and velocity

at a given time t, the partials with respect to the corres-

pondinq mean elements are also needed. The transformation

from mean elements to osculating position and velocity

occurs in two steps: the near identity transformation (2-6)

gives the osculating equinoctial elements, which are then

converted to position and velocity by a well-known transfor-

mation [22]. The partial derivatives are developed by chain

rule as

ax(t) ax(t) a en(a)
=3t a(t) [+ - ] (2-31)

aa(t) '+

Here x is the six component vector of position and velocity;

substitution of (2-6) results in the form of the second

factor.
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For special perturbations theories, the osculating

position and velocity do not have any dependence on the

dynamical parameter c if the orbital elements at the same

time are also taken as independent variables. However, the

explicit dependence of the short periodics on the disturbing

forces, shown in (2-18), does result in nontrivial partials

for Semianalytical Satellite Theory. Specifically

ax(t) ax(t)

ac aa(t)

when (t) and c are taken as

Green's notation

ac-n(a)

ac (2-32)

the independent variables. In

a sn (a)
B 1 =

a1

(2-33)

asen(a)
B =
4 ac

giving

ax(t) ax(t)

aa(t) aa(t) [I + B 1]

(2-34)

ax(t) ax(t)

ac = aa(t) ' B4
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The partials of the transformation from osculating

equinoctial elements to position and velocity are well-known

and can be computed explicitly; the B1l B2, B3,

and B4 matrices must be computed by the Semianalytical

orbit generator. The details of computation of these and

other outputs of Semianalytical Satellite Theory are

discussed next. The computation of the B2 and B3

matrices is performed by the Averaged Partial Generator

(APG); the B1 and B4 matrices are computed by the

Short Periodic Partial Generator (SPPG).

2.1.5 Computational Aspects of Semianalytical Satellite

Theory

The central goal of Semianalytical Satellite heory is

the development of the general formulation of a satellite's

equations of motion for optimal computational efficiency.

Full use has been made of special functions, recursive

computation, and truncatable expansions in the analytical

development of the AOG and the SPG. Thus each evaluation of

a mean element rate or a short periodic Fourier series

coefficient has been made as efficient as possible while

still maintaining the generality of the theory. In an orbit

determination environment, the osculating position and

velocity must be computed at arbitrary times and arbitrarily

frequently, to allow utilization of the observations. Semi-

analytical Satellite Theory relies heavily on global and

local internolation strategies developed by L. Early [19],

A. Bobick [231, and P. Cefola [19] to meet this requirement

efficiently. It is the interaction with these interpolators

that constrains the design of a sequential estimation

algorithm. Their structure is discussed here in detail.
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2.1.5.1 Mean Element and Variational Equation Comoutations

The fundamental rooerty of the averaged equations of

motion (2-9), (2-25), and (2-27) is the absence of high

frequency terms. Integration stensizes from a half day for

low altitude cases to several days for high altitude cases

easily oreserve computational accuracy. A self-starting

Runge-Kutta integrator rovides the flexibility to handle

oroblems of any arc length. The mean element rates are

comouted by either analytical averages or numerical averag-

ing quadratures. Computation of the A and D matrices (2-28)

for computing the rates in the variational equations (2-29)

can be done analytically for the oblateness perturbation, or

by central finite differences applied to the mean element

rates for all other perturbations. 4 hermite interpolator

recovers the values of the mean elements and the artial

derivatives of the motion (referenced to epoch) at output

times. The state transition matrix between two arbitrary

times tl and t2 is comouted by the semigroup

orooerty

~D t= (t2,t )= (t,t) (2-35)

and its corollary

D(tot) = (tlt) (2-36)
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The same hermite interpolator used to compute the partials

*(t,t 0) can be used to compute its matrix inverse in

(2-36) by using the rate equation

(2-37)

This equation is obtained by differentiating the identity
-1

0(t,t 0) (t,t0) = I.

A similar development can be used to calculate the

partial derivatives of the motion with respect to the

dynamic parameters at arbitrary times, from epoch referenced

values. The variational equation interpolator computes the

solution ?(t,t 0) to equation (2-27) at required output

times. The solution to equation (2-27) can be written

formally by variation of parameters as

t

?(t,t 0) = f (t,T) D(T) dT

t0

The partials ?(t 2,tl) between arbitrary

and t2 can be computed by expanding this integral

times t1

t2 t1

f (t 2, ) D( ) d = (t 2,t 1 ) f (tl,T) D( r) dT
to to

t 2
+ 

t 1

(t2 T) D() dr (2-39)
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Appropriate identification of the terms leads to the desired

result

(t2'tl ) = (t2',t0) - (t2,tl) (tl,t0) (2-40)

Use of (2-35) and (2-40) allows all needed mean quantities

to be computed quite efficiently. The interpolator for the

transition matrix inverse results in off-diagonal elements

on the order of 10-10, compared to 10-16 for the exact

inverse.

2.1.5.2 Short Periodic Coefficient Computation

As part of his study of the Fourier series expansion of

the short periodic functions, Green examined the computation

of the coefficients. Since the coefficients depend only on

the slowly varying mean elements and not on the mean-mean

longitude , smooth time histories are expectable. Green

[13] verified this hypothesis; his plots of short periodic

coefficients show very smooth behavior over several-day

spans. Early [19] implemented a variable order Lagrangian

interpolator for these coefficients with the same stepsize

as the Runge-Kutta interator. He found accuracies depending

on the order and the stepsize as shown in Table 2-2. Since

the short periodic coefficients have to be evaluated only

once per step, it is clear that large gains in efficiency

can be made even with low densities of output points.
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2.1.5.3 Position and Velocity Interpolation

Many orbit determination situations call for infrequent

station passes, with high data rate sensors taking large

numbers of observations to achieve the desired accuracy.

Now each call of the short periodic coefficient interpolator

described above requires the computation of six coefficients

for each frequency retained in the Fourier series expansion

(usually at least five). Then the Fourier series must be

summed in order to obtain the short periodics, and finally,

the resulting osculating equinoctial elements must be

transformed to position and velocity. In high data rate

situations, the computational load would grow rapidly. To

accomodate such cases more efficiently, L. Farly developed

low order, short arc interpolators for the osculating posi-

tion and velocity; P. Cefola developed corresponding inter-

polators for the partial derivatives of position and

velocity with respect to the epoch mean elements. Typical

interpolator stepsizes are one or two minutes, with arc

lengths up to 9 or 10 minutes. Early used a hermite inter-

polator for position and a Lagrangian interpolator for

velocity; Cefola used a Lagrangian interpolator for the

partial derivatives. The variation of the accuracy of the

position and velocity interpolator with order and stepsize

is shown in Table 2-3. The performance of both interpola-

tors has been assessed in batch differential corrections

(DC) orbit determination tests; with their use the Semi-

analytical Satellite Theory has exceeded special

perturbations Cowell in efficiency.
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Table 2-3
Position and Velocity Interpolation Errors

Step (sec)

60
120
130
240
480

60
120
180
240
430

Az(m)

.72
11.6

59
135

2550

.002

.092
.93
5.1
305

Av (mm/sec)
z

.074

.392

.8333

10 .6
640

.043
1. 03
7.4
29

380

The reference position and velocity values were generated by
the Cowell high recision orbit generator for an AE-C
elliptical orbit over a ten-minute interval around erigee,
with a 4x4 Earth potential model, sun, moon, and
Harris-Priester atmosphere model.

The step size is the interval between successive
interpolation points, in seconds.
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2.1.6 Summary of Semianalytical Satellite Theory

The salient features of the Semianalytical Satellite

Theory under development at CSDL have been discussed. The

existing literature gives more details on analytical deriva-

tions and on accuracy and efficiency comparisons with

special perturbations Cowell. The constraints the theory

places on a sequential estimation algorithm have been intro-

duced and will become clearer after the introduction to

filtering theory in the next section. The next chapter will

use this material as background for the design of a

Semianalytical Kalman Filter.

2.2 Introduction to Sequential Estimation Theory

The problem of orbit determination is the accurate and

efficient estimation of a satellite ephemeris given observa-

tional data. Sequential estimation algorithms are desirable

since they make immediate use of new observations, giving

real-time availability of the optimal estimate of the

ephemeris. Satellite observations are taken at discrete

points in time; the Semianalytical Satellite Theory

discussed above will be used to propagate the ephemeris

estimate from observation time to observation time. A

filtering algorithm is needed to specify how to determine a

new estimate after receipt of another observation. This

section presents results from sequential estimation theory,

as background for the design of the complete orbit determi-

nation algorithms in the next chapter.
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2.2.1 Problem Formulation

Modern estimation theory requires a robabilistic model

for the orbit determination problem. The Semianalytical

equations of motion (2-9)' are modelled as

z(t) = f(z,t) + w(t); z(t0) = (2-41)

The state vector z(t) is the estimated solve-for vector and

includes the mean equinoctial elements a(t) and other

dynamical solve parameters. Thus we can write

a(t)
z(t) = [ (2-42)

where c is the vector of dynamical solve arameters, such as

the coefficient of drag. The deterministic force model is

represented by the function f(z,t); equation (2-42) implies

that f(z,t) deoends on the mean element rates £ A(a).

Notice that the resence of the erturbation arameter e is

not of direct significance in the estimation problem. The

vector w(t) is a Gaussian white noise rocess. It is a

random inout used to account for model errors in the

dynamics; examples of such errors are given by atmospheric

density or solar radiation oressure model errors, geoooten-
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tial coefficient errors, and approximations in the analy-

tical development of the equations of motion. The

statistics assumed for the orocess noise w(t) and the

initial condition zO are

E{w(t)} = O

E w(t) wT( T) } = (t) (t- T)

E Iz o = -o

E{z -z z)(z - zT} Po)--0 VI - --

(2-43)

The function 6( ) is the

6(t) = o

Dirac delta function and satisfies

(t * 0) (2-44)

and

I f(t) 6(t) = f(0)
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These properties of the delta function imply

6(0) (2-46)

so that this function is not well defined in the usual

sense.

The notation E{.} denotes the expected value of a

random variable. I
T

[x, . ..,xn ] I the
function is denoted by

For a given random variable x =

associated probability

PX(x) PX 1 ,...,X (Xl' Oxn)_ l· n i" 'n

Using this notation the expected values of x and a function

f(x) are computed by

x = E{x} = f x Px(X) dx-o -

f( = E{f(x)} = I f(x) PX (x) dx
-aD -
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The integral notation here is defined

f dx = f dx ... f dxn (2-50)

Observations of the satellite ephemeris are modelled by

Yk = h(Z(tk) tk) + Vk (2-51)

for increasing times tk (k = 1,2,...). Here the func-

tion h(z(tk),tk) represents the deterministic model
of the mechanism for obtaining the observation k of the

current satellite state, z(tk). The measurement noise

Vk describes all model errors; there are many resent in

any measurement process. The statistics of the vk are

E{vk =

{vkv = k kQ
(2-52)

for k, =l1,2,...

defined by

The symbol 6kt is the Kronecker delta,

= 0 , if k 

1 , if k = 
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These statistics imply that the kth measurement Yk is

unbiased with variance R , and that the errors for

different observations are independent.

Equations (2-41) through (2-53) provide a general

formulation of the orbit determination problem for aplica-

tion of estimation theoretic results. Cases where the

process noise is correlated, the measurement noise is

correlated or state-dependent, or the measurements are

biased, can all be treated in the above context by approp-

riate augmentation of the state, z, and redefinition of the

functions f(z,t) and h(z,t) [20]. Further extensions or a

rigorous formulation requires use of the Ito calculus or

measure theory.

2.2.2 Optimal Linear Filtering

There are many definitions of an otimal estimate. In

the linear case, most of them are equivalent and result in

the Kalman Filter. The fundamental criterion for orbit

determination applications is the minimum mean square error

criterion. With this criterion, the optimal estimate is the

conditional mean of the state given the measurements. Let

Zk be the value of the stochastic process z(t) in (2-41)

at time t = tk. Let Y be the set of observations

Yi in (2-51) up to and including time t z

Yn = {y1 'Y 2 ' . Y} (2-54)YZ= {Y'FY2'' ' z
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Use the notation zk to represent the estimate of

the process at time tk based on the set of observations

Ye. When k=X, this estimate is the filter solution;

when k>z, the estimate is a prediction, and when k<z, the

estimate is a smoothed estimate. Using this notation, the

mean square error of the filtering estimate at time k is

J. = E_(zk k )T (zk - k)}
JK E{ (z k Zk )T (2-55)

^k
Choosing zk to minimize the mean square error yields the

conditional mean estimate

k
-~! ~_ E kk k -z k IY k (2-56)

When the dynamics and measurement models are linear, equa-

tions (2-41) and (2-51) become

z(t) = F(t) z(t) + w(t) ; z(t 0)= z0 (2-57)

and

Yk = Hk z(tk) + Vk (2-58)
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The statistics of z0, w(t) and vk are given by equa-

tions (2-43) and (2-52), respectively.

The Kalman filter gives an optimal estimate of z(t).

The filter has a natural division into two arts, a predic-

tion algorithm and an udate algorithm. These equations are

well-known and are summarized below.

The prediction algorithm yields the otimal rediction
^k-1 k-1zk land its covariance Pklfor use in processing the

new observation k. The state is redicted by

k-l =k-l
Z~k = (tk'tk-1) Zk-1

(2-59)

( tk-l tk-l ) I

The covariance is redicted by

k (t tk-l ) k-1 T (tktk1 ) + A(tktk- )

A(tk,tk 1 ) =

tk

I ( tk, T ) T) (tk, T) T

tk-l

(2-60)
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Notice that the predictions depend only on the previous

filtered estimates. The new filtered estimates similarly

depend only on the latest predictions. The update algorithm

computes the new filtered estimate and is qiven by

k-l T k-i T -
K = P Hk k k (Hk Pk Hk + Rk) (2-61)

k k-l k-1
k k + Kk(Yk - H zk ) (2-62)

and

k k- (2-63)
Pk = (I - Kk Hk) k 

The Kalman Filter equations form the basis of many

practical nonlinear estimation alqorithms. Th ree such

algorithms are discussed next.

2.2.3 Suboptimal Nonlinear Filters

The above section discusses the Kalman Filter. When

all the random variables are Gaussian, it is the optimal

solution to the linear filtering problem. In the more

general case, where either the initial condition, process

noise or measurement noise is not Gaussian, the Kalman

Filter is optimal only among estimators with a linear form.

Most extensions of the Kalman Filter to nonlinear estima-
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tion problems make additional linearizing assumptions, based

on a perturbation series expansion of the system equations

(2-41) and (2-51). The method and its justification are

illustrated by the following scalar example.

Let h(x) be a given differentiable function of the
2random variable x. Let x have mean x and variance a

The Taylor series expansion of h(x) around x

- - 1 - - 2
h(x) = h(x) + h'(x) (x - x) + h"(x) (x - x) +

(2-64)

can be used to evaluate the expected value of the function

h(x). Substitution of (2-64) into the expectation operator

and use of its linearity qives

1 2
E{h(x)} = h(x) + h"(x) a

+ h"' '(x) E{(x - x)3 } + ... (2-65)

An additional assumption that x is Gaussian allows further

development of (2-65) . All odd order terms must vanish,

while even order terms can be calculated explicitly in terms
2

of a . The fourth order term [in (2-65)] is 1/8

h(4)(x)a4 , as compared with 1/24 h(4)(x)

(x-x) , which is the term in the original expansion

(2-64) of h(x). In general, the nth order term in (2-64)
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will become nth order in a when its expected value is

computed. Thus the convergence properties of the two series

will be similar, with (2-64) faster when Ix-x <<a and vice

versa when Ix-xl>>a. Depending on the magnitude of a, equa-

tion (2-65) can be truncated at first or second order with

little accuracy loss.

Suboptimal filters for the nonlinear estimation problem

posed in equations (2-41) through (2-53) can be derived by

applying the above expansion method to the force model

f(z,t) and observation model h(z,t). When the perturbation

series are truncated at first order, either the Extended

Kalman Filter (EKF) or the Linearized Kalman Filter (LKF)

result. When terms through second order are retained, the

result is called a Gaussian Second Order Filter. These

filters require the estimation errors to be small.

The difference between the filter estimate and the true

state will grow unstably due to neglected nonlinearities if

the estimation errors ever get too large. Divergence can

also result from errors in the force model or observation

model. Jazwinski has designed two filters to control filter

divergence. One filter [24] adaptively adjusts the process

noise covariance to provide feedback on filter gains magni-

tude; the other [25] actively estimates model errors and

subtracts their effects from the filter estimate. Since

divergence is not a problem in most orbit determination

applications, these two filters are not presented here.

Only the extended, linearized, and second order filters are

presented here.

58

6



2.2.3.1 The EKF

The Extended Kalman Filter results from direct applica-

tion of the method presented in equations (2-64) and

(2-65). Perturbation series truncated at first order are

used for both the dynamics and observation models. The

expansions are based on the last filter estimate, k-l;

it is tacitly assumed that "k-1 is in fact the mean of

the true state. For the state prediction the perturbation

equation is

z(t) = z(t) + Az(t) (2-66)

The assumed mean (t) obeys

z(t) = f(z(t),t)

(2-67)

z(tk-l) = k-l
k-l =k- 1

Differentiation of (2-66) gives

z(t) = z(t) + A(t)
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while expansion of f(z,t) in (2-41) yields

z(t) = f(z,t) + F(t) Az(t) + w(t)

where

af( z,t)
F(t) = a

az
z(t)

Thus the perturbation Az(t) obeys

A_(t) = F(t) Az(t) + w(t)

The solve vector prediction is the conditional mean; thus it

is predicted by

k-1
lk = z(tk) (2-72)

The covariance is predicted by application of the usual KF

prediction equations to (2-71).

for the EKF are

The prediction equations
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zkk - = z(tk )

z(t) = f(z(t),t) (2-73)

.k-1
(tk-l) = Zk-l

k-- ( tk) k-l T(tk ) + A(tktk_
k O(tk'tk-1) P- 1 'tk-1

$(t,tkl1) = F(t) (ttk- 1)

(2-74)
0( tk-ltk 1 ) = I

A(tktk 1) =

tk

I (tk, T) Q( T) T( tk, T) dT

tk-l

where F(t) is defined in equation (2-70). The EKF update

equations also use the oerturbation equation (2-66). The

measurement equation (2-51) is expanded to yield

Yk = h(k-lk = h (zk ,tk) + k AZ(tk) + Vk (2-75)

where
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ah(Zk'tk)
Hk a= zk (2-76)

k z -Zk = k 1

Ak-1
Since zk is assumed to be the mean of the process, the

predicted observation is

k-1 k-l
=Yk h(z k tk) (2-77)

The EKF is estimating the correction Az(tk) to be added

to zk ; this estimate is accomplished by the same up-

date equations as the Kalman Filter algorithm (2-61) to

(2-63).

2.2.3.2 The LKF

The Extended Kalman Filter continually updates the

integration trajectory in Equation (2-67), used for the

dynamics and observation model linearizations, (2-70) and

(2-76). The trajectory update is based on the latest state

estimate; thus the computations in (2-67), (2-70), and

(2-76) must all be done in real time. The Linearized Kalman

Filter allows more efficient computation by assuming a

global nominal trajectory for the integration (2-67) and

linearizations; the filter estimates the nonzero mean

correction to this trajectory by the usual Kalman Filter

equations. This filter is more attractive for use with

Semianalytical Satellite Theory due to the latter's ability

to generate long time trajectories (e.g., 1 day or more)

very efficiently. The derivation of the LKF is straight-

forward; only new equations are presented here.
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A nominal trajectory for the LKF is generated exactly

as it is for the EKF, by

AN(t) = f(zN t)

(2-78)

z-N(tO) =

The perturbed system becomes

Az(t) = FN(t) Az(t) + w(t)

(2-79)

AYk = HN Az(tk) + vk
k

where Ayk

by

is computed from the real observation Yk

AYk = Yk - h(N(tk ) 'tk) (2-S0)

The linear coefficients FN(t) and HNk in (2-79) are

computed by linearization about the nominal trajectory

af(z,t)

FN(t) = a = 
- K

HNk

(2-81)
ah(Zktk)

aZk k = N(tk)
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The Kalman Filter equations are now aolied directly to the

system (2-79) to produce the estimate. Since the nominal

trajectory is not locally undated, the estimated corrections
^k
Sk can become quite large; the LKF tends to produce

less accurate estimates and to diverge sooner than the KF.

One means of correcting this roblem is to use the Second

Order Gaussian Filter discussed next.

2.2.3.3 The Second Order Gaussian Filter

The Second Order Gaussian Filter retains terms through

second order in the perturbation expansion (2-64). The

contributions of the new second order terms are analyzed by

assuming a Gaussian robability distribution, giving rise to

the filter name. Second order filters tend to have better

accuracy and convergence characteristics than either the LKF

or EKF, since nonlinearities are accounted for to second

order. Second order filters have been derived by ¶Widnall

[26] and Athans, et al. [27]; second order analysis of non-

linearities was first done by Denham and Pines [28]. Gelb

[29] and Jazwinski [201 contain complete derivations as oart

of their surveys of nonlinear estimation techniques. In

this paoer, the Second Order Gaussian Filter is used only

for the analysis of the effects of nonlinearities for the

SKF; thus only the new equations are resented.

Gelb defines a linear operator (eq. 6.1-25 of Ref 29)

a2(g,3) = trace {[2x - ] } (2-82)
D q
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The arguments are a scalar function g(x) and a matrix B [x

is (nxl), B is (nxn)] . Using this operator, a dynamical

bias correction term is computed, using B = P, the estimate

covariance, and g = fi(z,t), the ith component of the

force model f(z,t). The ith component of the bias is

bi = a (fi P ) (2-83)

The EKF prediction equation (2-73) becomes

z(t) = f(z,t) + b

while the LKF prediction equation for Az(t) becomes

Az = FN(t) AZ + b

The bias due to an observation nonlinearity is

c = a2 (h,P)

The predicted observations are corrected
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k-l k-1 1
Yk = h(Zk 'tk) + c (2-87)

for the EKF [see (2-77)], and

1

k Yk - h(zN(tk)'t t k) c (2-8

for the LKF [see (2-80)].

There is also a second order correction to the predict-

ed measurement covariance used in the Kalman ain computa-

tion; this correction effectively augments the measurement

noise Rk. The covariance correction is not needed for

the analysis of nonlinearities and so is not included here.

2.2.4 Summary of Estimation Theory

Nonlinear estimation theory has been introduced and

three estimation algorithms were presented. The LKF appears

to have better computational form, but the EKF should per-

form better in the presence of large nonlinearities. The

Second Order Gaussian Filter uses bias correction terms to

reduce nonlinear effects; these terms can be used to assess

the impact of nonlinearities. The next section uses the

discussions of Semianalytical Satellite Theory and Filtering

Theory to design a Semianalytical Kalman Filter.
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Chapter 3

SEMIANALYTICAL FILTER DESIGN

This chapter discusses the design of two sequential

estimation algorithms for use with Semianalytical Satellite

Theory. They are analogous to the Linearized Kalman Filter

(LKF) and the Extended Kalman Filter (EKF) discussed

previously; they are called the Semianalytical Kalman Filter

(SKF) and the Extended Semianalytical Kalman Filter (ESKF)

respectively.

When Semianalytical Satellite Theory is cast in an

orbit determination role, two time frame definitions are

important:

1. the integration grid is the time frame used by the

integrator and associated short-periodic

coefficient interpolators in the software

implementation;

2. the observation grid specifies the arrival times

of observations and consequently the output times

for the satellite position and velocity generated

by the integrator.

The Semianalytical Satellite Theory implementation

discussed previously makes it clear that the efficient

operation of Semianalytical Satellite Theory cannot allow

relinearization of the equations of motion within the

integration grid. Relinearization should occur only at the

boundary of an integration grid; since the integrator is

self-startinq, it can be relinearized at the cost of one
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additional evaluation of the mean element and variational

equation force models. The resulting interaction between

the filter and the integrator on their respective time

frames is shown in Figure 3-1. The relationshios shown in

Figure 3-1 apply to both the SKF and the ESKF.

It is clear that the SKF can be designed by the

straightforward apolication of LKF ideas with the

Semianalytical integrator. The ESKF requires some

approximations before EKF concepts are used. Before these

designs are presented, the issue of the filter solve vector

is discussed.

3.1 Solve-Vector Choice

The choice of the filter solve-vector is not always

trivial. For examole, for tao-body dynamics Kenlerian

elements would be a much more natural solve vector than

nosition and velocity; this example is striking in that the

element choice makes the equations of motion linear.

For more general force models, the dynamics are

nonlinear regardless of element choice. The equations of

motion and the observation model must then be linearized for

application of the LKF or EKF equations. By use of the

chain rule and the linearity of the filter equations, it

follows immediately that the solve vector choice is

mathematically irrelevant to the computation of the filter

correction, as long as the nominal trajectory is not

updated. When the nominal trajectory is updated, second and

higher order terms in the element set transformation cause

differences in the updated trajectories.
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The Semianalytical Differential Corrections (SDC)

software at CSDL can update both the epoch mean position and

velocity and the mean equinoctial elements. Generally, no

distinct trends have been observed in either SDC accuracy or

convergence rate with the choice of update elements.

The equations for the Second Order Gaussian Filter

include bias correction terms depending on the second

partials of the force model and observation model with

respect to the solve vector. These second partials do not

transform linearly; application of the chain rule yields a

term containing the second partial of the element

transformation. For example, the equation

a2 h X 2 ax x
a h aa ( aa + x)(h 2) (3-1)
Da - ax Ba2

describes the transformation of the second partial of the

observation model with respect to the element sets a and x.

Clearly solve vector choice will affect filter performance

here, but in a complex and unpredictable way.

The natural solve vector for Semianalytical filters

uses the mean equinoctial elements, (t), produced by the

integrator. Since the SKF and ESKF use linear filter

equations and the trajectory will be updated relatively

infrequently, this choice should have minimal impact on

accuracy. The solve vector may also include dynamic

parameters, c, when they are estimated.
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3.2 SKF Design

The SKF algorithm is a direct result of the application

of the LKF algorithm to the Semianalytical Satellite

Theory. Although conceptually simple, the implementation is

more complex due to the interaction of the observation grid

and integration grid, as shown in Figure 3-1. The algorithm

is detailed explicitly below to emphasize this interaction.

The algorithm statement is broken down by operations

performed on the integration grid and those performed on the

observation grid. The integration grid operations are

usually executed much less frequently than the observation

grid operations, due to the long integration stepsizes

allowed by Semianalytical Satellite Theory. Due to the use

of a Runge-Kutta integrator, it suffices to consider only

one integration step; all others are processed identically.

3.2.1 Operations on the Integration Grid

1. At time t = t update the nominal initial state for

the new integration grid with the filter correction

from the previous grid

ZN = + Az where z = [-]
N0 c

Update the initial covariance P0 = P0
0 0

Initialize the filter correction and transition

matrices
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--0

O(t0 ,t)

0

= I

T(tot 0) = 0, save in s

-l(t0 ,t) = I, save in s
00 5~~~

and compute force evaluations for the equations of

motion and variational equations

aN(t0), i(t,t0), (t,t ), and - (tt 0)

2. Do the averaged integration until time t = to + At

obtain aN(t), (t,to0 ), P(t,to) and

invert (t,t 0) to get -(t,t 0)

evaluate the corresponding rates to allow set u of the

mean interpolators for

aN, I, ' ,
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3. Compute short periodics EC (aN), ED (aN )

at time t0 and t for set up of the short periodic

coefficient interpolators

3.2.2 Operations on the Observation Grid

The SKF executes the following steps when a new

observation is received.

1. Obtain the new observation, y(t i), at time t = ti

2. Interpolate for aN(ti), '(ti,t0), (tit 0)

we already have -l(ti_l,t0) in s

3. Interpolate for short periodic coefficients

EC (aN(ti D N(ti))

4. Construct the osculating elements

N

aN(t i ) = -N(ti) + c EC sin aX - ED cos X
a=transform to artesian coordinates ti

transform to cartesian coordinates N(ti)
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5. Compute the nominal observation

YN(ti) = h(XN(ti),ti) = h(N(ti),ti)

and the observation residual

Ay(ti) = y(t i) - YN(ti)

compute the observation partials

Hi = (z = [I +BlB4]

aCnl(a N)B 1=
a-N

aenl (a N
)

B -

4 Dc

6. Compute the transition matrix and variational partials

0(titi-1) = (tito) is
=-(ti'ti) = ?(ti't0) - (titi-1) s

using s = -(ti_l,t 0 ), and s = (ti-l't0)

7. Obtain predicted solve vector and covariance

Aai. = a(titi _1) ai_ + Y(titi ) A
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i-i i-l
--1 -i-i

pi-= (t i ti _ )
i [ 0i-i

0

+ A(ti t i _l )

A( tit_ ) = ·(t - ti 1)lete thei-hase of the i-l

8. Comnvoete the update hase of the filter.

Calculate the gain K.
1

pi-i q T
1 1

i-l T
(H.i P H +R)

uodate the state Az = Azi 1 + K. [(t) - .iAz7, ]

update the covariance Pi (I - KiHi) Pi

9. Interpolate for the transition matrix inverse and save

for next observation

s= 7l(ti ,t) and

Ts= (ti,t0)

The SKF continues with step one until the integration grid

boundary is crossed; then the integration grid algorithm is

reoeated. When t t.1 onlyv steos 1, 5, 7 and 8
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must be executed. Since the SKF does not update the nominal

trajectory within the integration grid, the solve vector

corrections estimated by the filter can become large enough

to cause filter divergence due to model nonlinearities.

This tendency is reduced for the ESKF algorithm presented

next.

3.3 ESKF Design

The ESKF is motivated by the desire to reduce the

impact of observation nonlinearities, and is allowed by the

approximately linear nature of the Semianalytical dynamics.

The mean elements obey the equation of motion (2-9)'

a = n e + A(a) ; a(t) (3-2)-6 a(3-2)

Thus, to zeroth order

a(t) = n e6 At + a 0 (3-3)

The zeroth order state partials are

aa(t)
I + e e - At (3-4)

aao a

76



The mean motion, n, is small for most satellites. The

semimajor axis, a, further attenuates the second term, so,

especially for small time differences At, the mean

equinoctial elements a(t) exhibit linear behavior. Now if

equation (3-2) is linear, then the estimate a(tk) is

propagated optimally by either the original KF prediction

equations or the LKF prediction equations. That is, optimal

prediction, analogous to EKF prediction, is accomplished by

the LKF prediction equations.

This argument can be made more explicit as follows.

Let zN(til) be the a priori nominal state at time

t. 1 and let Az i-1 be the Kalman Filter correction

after a measurement at time t An EKF would use the

new state

z(ti) = z (t ) + Az -1 (3-5)i-l) -N( i-l) -i 

as the initial condition for the state propagation equations

and a corresponding relinearization of the filter

equations. When the dynamics are linear, this new initial

condition results in a predicted state at time ti

i
z. = z(ti) = (titi_) z(til) (3-6)-1 - i-l i-l
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Substitution of (3-5) and use of the notational definitions

gives

^i-1
= ZN(ti) + Azi (3-7)

Equation (3-7) states the desired result explicitly:

optimal EKF prediction can be accomplished by adding the

LKF-predicted filter correction to the nominal trajectory

when the dynamics are linear.

The ESKF design assumes that the semianalytical

dynamics (3-2) are linear. This assumption is investigated

in Section 3.4 below. The above arqument indicates that the

only application of EKF concepts lies in the measurement

update computations. The measurement linearization matrix

HK is computed based on the nominal trajectory; the

predicted observation, however, is based on the state

predicted by (3-7). Computation of an observation based on

the mean equinoctial elements generated by the

Semianalytical integrator requires three transformations:

1. computation of short periodic functions and

osculating equinoctial elements;

2. computation of the osculating position and

velocity; and

3. computation of the resulting observation.
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The state prediction in Equation (3-7) is implemented in

mean equinoctial elements. The resulting observation

computation can be written

Yi = h[x(aN(ti) + Aai + n(aN(ti) + ai) (3-8)

Clearly exact application of EKF predicted observation

concepts requires explicit recomputation of the short

periodic functions, precluding the use of either the

coefficient or position and velocity interpolators. More

efficient implementations of (3-8) allowing use of these

interpolators can be obtained by successive linearization of

the arguments of h(x). For use with just the short periodic

coefficient interpolator, the following computations are

optimal for accuracy and efficiency.( -i-)
(i) ai = a (t.) + (I + B1) ai + ena -(ti))-- N i1 - -- (a i

(ii) xi = x(ai) (3-9)

(iii) yi = h(xi)

Recall that the B1 matrix is defined in (2-33) as the

partial of the short periodics with respect to the mean

elements. When the position and velocity short arc

interpolator is used, the following computations implement

the ESKF predicted observation calculation.
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(i) aN(ti) = aN(ti) + n (aN(ti)):IN 1 - -N

(ii) x(ti) = x(aN(ti))

(3-10)
ax(a -i-1

(iii) xi = xN(ti) + aaN [I + (1] 1i

(iv) Yi = h(xi)

Green [13] proposed using (3-9) (i) and (ii) for generating

the filter's state history output, but not for use in

computing the predicted observation. Green's semianalytical

estimation algorithm is quite similar to the SKF. An

algorithmic flow for the ESKF employing equations (3-9)

follows; an algorithm using (3-10) is quite similar.

3.3.1 Operations on the Integration Grid

These operations are identical to those for the SKF,

due to the use of the assumed linearity of the Semianalytic

dynamics.

3.3.2 Operations on the Observation Grid

The ESKF performs the following steps in processing a

new observation.

1. Obtain the new observation, y(ti), at time t = ti
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2. Interpolate for aN(ti), D(ti,t0), (tit 0)

we already have -1(til,to) in s

3. Interpolate for short periodic coefficients

C (aN(ti ) )t e u(anN(ti))

compute the short periodic functions

cn ( N ) =

N
I) EC sin - cos 

a=1

4. Comoute the transition matrices

O(t i til ) = (ti t 0 ) S

( iti-) (ti, (ti 1 , )- (t i ti 1 ) S

5. Predict the filter corrections

Eai1 = (t i,t i- (ti ti ) -- i-l
-1 i-lA i = i-

6. Compute the predicted osculating elements

a(t i) = a N(ti) + - i-l
transfor to cartesian eleents (ti

transform to cartesian elements x(ti )
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7. ComPute the oredicted observation

y(ti ) = h(x(ti) ti )

and the observation residual

by(ti) = (t i) - Y(ti )

compute the observation partials

H a (Z -Nti1 -ZN
- - - [I + BiS34]

--N I

1
a-N

a4 l(a= )
B = -- T _ 

4 

8. Predict the filter covariance

i-l [ ti t i-)
Pi 0

(ti t i-1 1P i1 [
I i-1

(tti _ )i (ti ti- 1) T
0 I

+ A(ti,ti_l)

A(ti ,ti_ 1) = (t - ti- )1 i-1

9. Comlete the update hase of the filter.
pi-i H T
P H

Calculate the gain K. 1 ---- i

(H. p H.+R)11 1
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update the state Azi = A + K (ti)

i i-iuodate the covariance P (I - Ki.i) Pi
1 i

10. Interpolate for the transition matrix and inverse and

save for next observation

= - l(t t )
s (ti' 0

s= (ti to)

The ESKF continues with step 1 until all observations

have been processed or the integration grid boundary is

crossed. When the boundary is crossed, processing continues

as indicated previously. When two observations come at the

same time, t = ti 1 then only steps 1, 7, and 9

must be executed for the second observation.

3.4 Verification of SKF and ESKF Design Assumptions

Several assumptions have been made in the design of the

SKF and ESKF algorithms. One not commented on reviously is

the computation of the process noise contribution to the

predicted covariance (see SKF, step 7, and ESKF, step 8).

The process noise term is assumed to grow linearly in time.

This assumption and the nonlinearities in the observation

and dynamics models are tested below.

3.4.1 The Process Noise Test

The SKF and ESKF model the orocess noise contribution

to the redicted covariance as being linear in time. This

follows the assumption used in the Goddard Trajectory
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Determination System, Research and Development version (RD

GTDS) software [31, which served as the testbed for SKF and

ESKF development. The equation for Kalman Filter covariance

prediction (2-60) derives the process noise term as

t T
A(t,t 0) = f D(t,T) Q(T) (t,rT) dT

to
(3-11)

where Q(t) is the process noise strength at time t

E{w(t) w (T)} = Q(t) 6(t - T) (3-12)

and (t,T) is the system state transition matrix. If Q(t)

is a constant matrix and (t,T) is the identity matrix, then

equation (3-11) reduces to the GTDS assumption

A(t,t 0) = Q (t - t0) (3-13)

Shaver [30] computed the state transition matrix for mean

equinoctial elements explicitly, including two body and

oblateness effects. His state transition matrix has the

form

D (t,t0) - A(t,t0) + B(t,t0) (3-14)
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The matrix A has order 1 constant and sinusoidal elements;

the matrix EB has a secular growth in (t-t0). Equation

(3-14) leads to a process noise covariance form

A(t,t) - Cl(t - t0) + C2(t - t)2 + ... (3-15)

This result validates the GTDS aroach for small

(t-t0). Equation (3-13) was verified by numerical test

for large time intervals using the low altitude satellite

described below. The state transition matrix included J 2

and drag. The exact equation (3-11) was integrated by the

trapezoidal rule, so quadratic terms in A(t, t) were

exactly computed. The value used for is shown in Table

3-1 as is the value of A(t,t0) after 16 hours. Clearly

the main diagonal terms behave linearly in time; notice,

however, that the model (3-13) does not account for cross

correlations that develop in the exact equation (3-11). In

actual filter tests, the model (3-13) has Performed

adequately. Observe that the same methodologies aoly for

choosing the rocess noise strength, Q, under both (3-11)

and (3-13).

3.4.2 Evalution of Dynamical Nonlinearities

The Second Order Gaussian Equations specify bias

correction terms for the dynamics and measurement models.

The filter rediction equation is
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Table 3-1

Process Noise Covariance Test Results

satellite! WNMTST (see Table 4-3)

orocess noise strength

= diag [10-10 i'- 1 , -l -17 1017,1 , , , 10,

orocess noise

, -1 3 , 10- 3

covariance contribution

at time t = 16 hours = 57500. seconds

K

0.580-05
0.130-10
-0.810-10
0.14D-10
-0.140D-10
-0.38D-07
0.0

0.130-10
0.50-11
0.13D-14

-0.410-15
-0.220-14
-0.5,0013
0.0

-0.810-10
0.130-14
0.570-11
-0.60D-14
0.580D-14
0.31D-12
0.0

0.140-10
-0.410-15
-0.600-14
0.60D-12
-0.82D-15
-0.15D-12
0.0

?Note: z = [a
cD

So that rag orocess noise is included.

value of is similar to

below. Notice the strong

The

those emoloved in test cases

correlation between a and X,

oredictable from equation (3-4).
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A(t,0)

-0.140-10
-0.220-14
0.5&D-14

-0.820-15
0.55D-12
0.91D-13
0.0

2-0.38D0-07
-0.580-13
0.31D-12

-0.15D-12
0.910-13
0.610-08
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.580-03



Az(t) = F(t) Az(t) + b

where the vector b accounts for the dynamical nonlinearities

causing a bias in the filter estimate; the ith component of

b is given by

a2f 
1 1

bi = 2 tr{ 2 P}
az-N

(3-17)

The other terms in equations (3-16) and (3-17) are defined

by

Az = estimated filter solve vector

f.i = ith component of f(z,t)

f(z,t) = system dynamics force model

zN = nominal system state

af(z,t)
F(t) =

P = covariance matrix= of 

P = covariance matrix of Az
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The bias correction vector provides an increment to the

filter estimate Az given by

t

6z(t) = f $(t,T) b(T) dT (3-18)
to

The matrix ' is the system state transition matrix.

Fquation (3-18) was integrated by Euler's method for 11

hours; the variational equation force model included the

oblateness effects. The matrix F(t) was computed

analytically. Second partials of the force model were

computed by finite differencing F(t); the accuracy of the

numerical derivatives was verified by the equality of

off-diagonal terms, i.e.

a 2 f. a 2 f

a1 _ 1 (3-19)az z az z
m n n m

indicating that the analytical and finite differenced

partials had the same accuracy. The results are shown in

Table 3-2. The perturbation 6z had fairly regular growth in

time, finally reaching the value shown after 11 hours.

Since magnitude of the 6z correction is much smaller than

typical filtering corrections, it is concluded that the

dynamical nonlinearities have negligible impact. This

conclusion supports the design assumptions of the ESKF.
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Table 3-2

Results of the Dynamical Nonlinearitv Test

satellite: WNMTST (see Table 4-3)

state covariance:

0
diag [10-6 10 -12, 0-12 10-12, 1012, 1 0 0 ]

Nonlinearity bias correction:

at time t = 11 hours

z (t) [ -0.126D-0 0.134D-16, -0.167D-14 -0.75D-15 0.772D-15 0.258D-1 ]

Note: P imrl ies
-- 0

AZ [10-3 .0- I10-6 10-5 -6 -5 ]T

clearly Azi >> 6z.i These results are linear in

P , implying validity for all scalings of P--o --o
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3.4.3 Evaluation of Measurement Nonlinearities

The analysis of observation model nonlinarities is

essential to the design of the ESKF. Any nonlinearities in

the observation model result directly in filter biases. The

Second Order Gaussian Filter update equations approximate

this bias as

2

c = 1 tr{i- y P (3-20)
azN-N

where c is the bias, y is the observation, ZN is the

nominal filter state, and P is the filter covariance. This

bias can be expanded explicitly in terms of the

computational method used by Semianalytical Satellite Theory

for obtaining predicted observations.

Semianalytical Satellite theory computes an observation

by the following sequence of calculations

(i) a = a + en(a)

(ii) x = T(a) ; x = []

(i) xLT D x R ; xLT = [LTv ]

-LT
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(iv) y = h(xLT)

The transformation in (iii) accounts for the

transformation from inertial oosition and velocity, x (in

1950 coordinates), to earth-fixed coordinates, and from

there to the local tangent frame at the observation station

location, R. The transformations (i) and (ii) have been

discussed above; the observation model (iv) deends on the

current observation type.

First and second artials of the observation model can

be comouted by application of the chain rule to

transformations (i) - (iv). The second order oartials are

desired for analysis of the bias correction term (3-20).

Three terms will arise naturally in the chain rule expansion

of the second order partials; the terms will contain the

second partials of one of the nonlinear transformations (i),

(ii), or (iv). The transformation (iii) is linear, so has

vanishing second partials. Writing

c = 1 tr {( + B + C)P} (3-21)

the three terms A, 3, and C become

ax ax

+(I + ]T a2 y a[D(-) + ]T a 2 [D ) (I + B1)] (3-22)
( LT

82x

= -- D (I + 1) : (I + 1) (3-23)
-LT aa
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x aB
C = aY D . (3-24)

ax aa -
LT aa

The quantity a2x/Sa2 is a third order tensor; the

two multiplications by (I + B1) result from the

application of the chain rule in each of the partials with

respect to a. The quantity aB1 /aa is similarly third

order.

The relative magnitudes of the three terms A, B, and C

were evaluated in a station pass assuming range observations

were taken. Analytical implementations already existed in

the Semianalytical Satellite Theory in the CSDL version of

RD GTDS for the equinoctial-to-cartesian partials, the D

matrix, the J2 -short periodic partials (B1 matrix), and

the range obs partials. Analytical second order range

partials were implemented. Only the second order partials

in B and C remained to be implemented; they were implemented

by finite differences operating on the first order analytic

partials. Accuracy was verified by the equality of

off-diagonal terms. Table 3-3 gives two printouts of the A,

B, and C matrices and their sum T; the first printout is at

the start of the pass, the second is at the middle. These

printouts show that A and B usually have the same order of

magnitude; C is several orders of magnitude smaller than A

or B and so can be neglected. Thus an extended-type

algorithm should include the nonlinear effects due to the

observation type and the equinoctial-to-cartesian element

transformation but can neglect nonlinearities in the short

periodics. One will expect an ESKF algorithm employing

(3-9) to perform better than an algorithm using (3-10).
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Table 3-3

Results of the Observation Nonlinearity Test

satellite: TqNMTST (see Table 4-3)

station: MALABQ
height -4.0 (km)
latitude 23n 1' 12"
longitude 279 °0 18' 50.4"

station ass interval 03:45:00.0 to 03:55:00.0

observation tyoe: range

DATE JUNE 8, 1979 3HRS
ELAPSED TIXE FROl EPOCH =
FLIGHT CENTRAL BODY IS EARTH

46tlIlS 6.379SECS (JULIAN DATE 2444032.6570)
0 DAYS 0 HRS 2 IHNS 0.000 SECS

I I A. B, C, T ' 0.296860-03
1 2 A, B. C. T = 0.274340+01
1 3 A, B. C, T = -0.27774D00
1 4 A, B. C, T = 0.43501000
I 5 A, B, C, T = -0.353140D00
1 6 A. B, C, T = 0.85239000
2 1 A, B, C, T = 0.27434D+01
2 2 A, 8, C, T = 0.30409D+05
2 3 A. B, C, T = -0.937710+04
2 4 A, B, C, T = 0.1180D9005
2 5 A, B, C. T = -0.121910t05
2 6 A, 8, C, T = 0.120340+05
3 1 A. B, C, T = -0.277740+00
3 2 A, B, C, T = -0.937710+04
3 3 A, B, C, T = 0.943140.04
3 4 A, B, C, T = -0.108850+05
3 5 A, B. C, T = 0.123530405
3 6 A, B, C, T = -0.639570+04
4 1 A, B. C, T = 0.435010+00
4 2 A, B, C, T = 0.11809D005
4 3 A, B. C, T = -0.108850'05
4 4 A, B, C, T = 0.126090f05
4 5 A, 8. C, T = -0.142520D05
4 6 A, B, C, T = 0.764700+04
5 1 A. S, C, T = -0.353140+00
5 2 A, 5B C. T = -0.11910D+05
5.3 A. B. C, T = 0.12353005
5 4 A, B. C, T = -0.1425:D+05
S 5 A, B. C, T = 0.161790+05
5 6 A, 8, C, T = -0.835220D04
6 1 A, B, C, T = 0.85239D000
6 2 A, B, C, T 0.120340+05
6 3 A, B, C, T = -0.639570+04
6 4 A, B. C, T - 0.76470D+04
6 5 A, B. C, T = -0.83522D+04
6 6 A, S, C, T = 0.536450+04

0.900760-07
-0.563270+00

0.155150+01
-0.352490+00
0. 286740D00

-0.787160+00
-0.563270+00
0.458150+03
0.20354004

-0.687290+04
0.248950+04
0.264530 04
0.15515001
0.203540D04

-0.65575D+04
0.52039004

-0.475.90+02
0.57419D004

-0.352490+00-
-0.687290D04
0.520390.04

-0. 780830+04
0.332030,04

-0.398440D+04
0.286740D+00
0.248950+04

-0.475290D+02
0.33:030+04
0.136030D+04
0.68918D+03

-0. 787160+00
0.264530D04
0.57410D+04

-0.3?844D#04
0.689180D03

-0.313010+04
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0.297920-07
0.214170-02

-0.582080-03
-0.179510-03
-0.463050-04
-0.13383D-02
0.21417D-02
0.0

.0.0
-0.11615D+02
-0.316710+01
-0.224280+01
-0.582080-03
0.0
0.0
0.153310+02
0.391680+01
0.355630+02

-0.179510-03
-0.116150+02
0.153310D02

-0.128430+02
-0.162510D01
-0.129110+02
-0.463050-04
-0.316710401
0.3916CD001

-0.16251001
-0.473950+00
0.3S8400D01

-0.133830-02
-0.224286001

0.355630+02
-0.129110.02

0.38840D+01
-0.227520+02

0.296980-03
0.218220+01
0.12731D001
0.833330-01

-0.664530-01
0.638840-01
0.21822D+01
0.308670+05

-0.73416004
0.49246D+04

-0.97044D+04
0.146770+05
0.127310+01

-0.734160+04
0.2873;D+04

-0.566570.04
0.123090+05

-0.61822D+03
0.83333D-01
0.492460D04

-0.56657D+04
0.478760+04

-0.109330.05
0.364970D04

-0.664530-01
-0.970440D+04
0.123090+05

-0.109330+05
0.175390D05

-0.765910D04
0.638840-01
0.14677D+05

-0.618220+03
0.364970D04

-0.76591D+04
0.271170+04

------ ----- - -



DATE JL"4E 8, 1979 i 3HRS 511ItNS 6.37)SECS (JULIAN DATE = 244,032.6605)
ELAPSED T!E F.:1 EPCCH 0 DAYS
FLIGHT CENTRAL BODY IS EARTH

0 HRS 7 INS 0.000 SECS

1 1 A B, C, T 0.47344D-03
1 2 A, C, T 0.33641D+01
1 3 A, B. C. T = 0.33.40D+00
1 4 A, B, C, T = -0.34720CD00
1 5 A, B, C, = 0.14505D001
1 6 A, B, C. T 0.265130+00
2 1 A, B, C, T 0.336410+01
2 2 A, B. C, T 0.36618D+05
2 3 A, B, C, T -0.35523D+05
2 4 A. B, C, T = 0.131550405
2 5 A, B, Co T - -0.71647004
2 6 A, B, C, T = 0.217970D05
3 1 A, B. C, T = 0.332400+00
3 2 A BD C. T = -0.35823D+05
3 3 A. B, C, T = 0.114920+06
3 4 A, B. C, T = -0.471650D05
3 5 A, 8, C. T = 0.534940+05
3 6 At B, C, T = -0.596220D05
4 1 A, B, C, T = -0.34,28D00
4 2 A. B, C, T = 0.131550D05
4 3 A, B, C, T = -0.471650D05
4 4 A. B, C, T = 0.194520+05
4 5 A, B, C. T = -0.225330D05
4 6 A, B, C, T = 0.242750405
5 1 A, B, C, T = 0.14505D001
5 C A, B, C, T = -0.716470D+04
5 3 A, B. C, T = 0.534940D05
5 4 A, Bi C, T = -0.22533005
5 5 A, B, C, T . 0.28454D+05
5 6 A, B, C, T -0.26553D+05
6 1 A, B, C, T 0.26513D00
6 2 A, B, C, T = 0.21797D*0
6 3 A, , C T = -0.562D.05
6 4 A, B, C, T 0.24275D+05
6 5 A, B. C, T -0.26553D#05
6 6 A, D, C, T 0.3133.+05

-0.511380-07
0. 415020+00
0.514360+00
0.13163D+00

-0.54619D+00
-0.193530+00
0.41502D+00

-0.38230D+03
0.174020+04

-0.38050:D04
-0.29369D404
0.515280D02
0.51436D*00
0.174020.04

-0.727600+04
0.143030D05

-0.31851D+04
0.40269D+04
0.131630D00

-0.3805D2004
0.14303D005

-0.523793004
0.32C260D04

-0.73330D004
-0.54619D+00
-0.C9365D+04
-0.31861D+04
0.322260+04

-0.56649D+04
0.11571D+04

-0.10353D000
0 .51528002
0.40690D+04

-0.733300+04
0.11571D04

-0.382260+04

0.176880-06
0.212310-03

-0.17730D-02
-0.37617D-03

0.6864680-03
-0. 12860D-02
0.212310-03
0.0
0.0
0.280240D +01

-0.14689D0+01
0.689820+01

-0.177380-02
0.0
0.0
0.532730D+01

-0.19475D+01
0.833060D+00

-0.37617D-03
0.28024D+01
0.53273D001

-0.95117D+01
-0.36945D01
-0.893100D01

0.68648D0-03
-0.14630SD01
-0.194750D+01
-0.369450+01
-0. 2800D000
-0.13156D+01
-0.128600-02

0.689820D+01
0.833060D00

-0.8931CD+01
-0.13156D+01
-0.119400D+02

0.473560-03
0.37794D+01
0.844990D00

-0.21603D+00
0.904980D+00
0.703150-01
0.37794D+01
0.36236D+05

-0.340820D05
0.935230D04

-0.101030D+05
0.218550+05
0.8449?0+00

-0.34082D+05
0.107640D06

-0.32856D+05
0.503060+05

-0.555940+05
-0.216030+00
0.93523D+04

-0.328560D+05
0.141630D05

-0.193140D05
0.1698D*005
0.904980D+00

-0.101030+05
0.50306D+05

-0.19314D+05
0.22789D+05

-0.25397D+05
0.70315D-01
0.218550+05

-0.5559T",05
0.169:8D+05

-0.25397D05
0.275030+05
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3.5 Summary

This chapter resented the design of two sequential

semianalytical orbit determination algorithms, the SKF and

the eSKF. Preliminary numerical tests verified the

assumptions made. The next chaoter presents results from

simulation test cases.
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Chapter 4

SIMULATION TEST CASES

This chapter discusses the results from two simulated-

data test cases. The Semianalytical Kalman Filter (SKF) and

Extended Semianalytical Kalman Filter (ESKF) designed in

this thesis are compared with the Linearized Kalman Filter

(LKF) and Extended Kalman Filter (EKF) previously implement-

ed in the Research and Development version of the Goddard

Trajectory Determination System (RD GTDS). All filters are

compared against the performance baselines provided by the

application of batch estimation algorithms to the same

observational data.

The question of test uniformity is fundamental to per-

formance comparisons between different filters. The vali-

dity of performance comparisons can be questioned on two

bases:

1. The estimation problem is stochastically formu-

lated, meaning that all results are randomly

distributed; Monte Carlo testing is usually re-

quired to achieve a high degree of confidence in

the results.

2. The particular filters compared here estimate

intrinsically different quantities; the SKF and

ESKF estimate mean equinoctial elements, while the

LKF and EKF estimate osculating position and velo-

city. Thus different input parameters are re-

quired by the different filter types. The impact

of any resulting changes in performance must be

carefully addressed.

96



The section on test case philosophy below addresses this

question in detail. The two test cases are then discussed,

with important points summarized at the end of the chapter.

4.1 Test Case Philosophy

The RD GTDS software package provides a natural struc-

ture for implementing the simulated-data test cases dis-

cussed in this chapter. This package has five basic capabi-

lities important for this discussion.

1. EPHEM: The EPHEM program allows the propagation

of an ephemeris from a given set of initial condi-

tions, using one of a large variety of satellite

theories and force models. The capabilities for

high precision Cowell numerical integration and

semianalytical ephemeris propagation are important

here.

2. DATASIM: The DATASIM program can simulate a wide

variety of observation types from a specified

tracking station network. The capability to simu-

late range, range-rate, azimuth, and elevation

observations from a C-band tracking station net-

work, with random errors included, was used here.

3. EARLYORB: The EARLYORB program provides initial

estimates of a satellite orbit using just a few

observation sets. The algorithms used are similar

to Gauss' method; typical errors are on the order

of 50 kilometers in the initial position and

velocity.

97



4. DC and FILTER: RD GTDS implements both batch

differential corrections (DC) estimators and

sequential filtering algorithms (FILTER). Both

capabilities have been extended to allow the use

of Semianalytical Satellite Theory as the epheme-

ris generator. The resulting DC algorithm is

called the Semianalytical DC (SDC). The DC algo-

rithm employing the special perturbations hiqh

precision numerical integrator is called the

Cowell DC (CDC). The FILTER algorithm abbrevia-

tions are defined above.

5. COMPARE: The COMPARE program allows the point-

by-point comparison of the time histories of two

ephemerides. The comparison of an estimated

ephemeris with the simulation truth ephemeris

provides a measure of estimator accuracy.

Each simulated-data test case required defining a truth

ephemeris, simulating C-band observations, and processing

the observations with the various filters. The first test

case was directed primarily toward software verification and

included only these steps. The second test case investi-

gated input parameter selection and performance for a diffi-

cult filter convergence problem; the EARLYORB program was

used to provide the initial orbital estimate, while DC runs

and the COMPARE program gave performance baselines and per-

formance measures, respectively. The EPHEM program with the

Cowell integrator was used to generate the truth ephemeris

-- high precision Cowell integration provides a generally

accepted high accuracy standard for ephemeris prediction.
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Valid performance comparisons can be achieved either by

comparing estimator performances for corresponding input

parameter choices, or by comparing the optimal performance

of each algorithm over all possible choices of the input

parameters. Both of these approaches are used within this

chapter. The input parameters to be selected are the

initial orbital elements, the a priori covariance of these

elements, the process noise model, and the force model used

in the equations of motion and the variational equations.

The CDC, LKF, and EKF all estimate the osculating posi-

tion and velocity. These estimators can be initialized with

the Cowell truth initial elements for software validation

tests, or with the EARLYORB elements when initial errors are

desired. The SDC, SKF, and ESKF, on the other hand, all

estimate mean equinoctial elements. The mean equinoctial

elements corresponding to a given osculating initial posi-

tion and velocity can be obtained in two ways.

1. A Precise Conversion of Elements (PCE) procedure

consists of solving for epoch mean elements with a

SDC, using exact osculating position and velocity

measurements taken at a uniformly high data rate

as the input observations. An EPHEM run using the

high precision Cowell integrator is required to

generate the position and velocity measurements.

This initialization procedure has been used before

with excellent results [12], [13], [18]. It gives

highly accurate mean elements, especially approp-

riate for generating a Semianalytical truth

ephemeris corresponding to the simulation Cowell

truth ephemeris.
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2. An Epoch Point Conversion (EPC) procedure inverts

the near identity transformation (2-6) relating

the mean and osculating equinoctial elements.

Walter [31] proved that the near identity trans-

formation is a contraction mappinq, ensuring the

convergence of the successive substitutions

iteration

ak+ a- n(a k) (4-1)

This iteration has been programmed usinq Zeis'

[16] explicit J2-short periodic expressions, which

are zeroth order in the eccentricity. Th e

converged mean elements cannot be expected to be

highly accurate, due to the short periodic model

truncation. They are adequate, however, for the

conversion of osculating EARLYORB elements to

corresponding mean initial elements.

When corresponding mean equinoctial and osculating

position and velocity initial covariances are desired, the

usual transformation equation for covariance applies. The

result is

T
ax(t o ) ax(t o )

P (t0) = [ ]Pa(to) [ 1 ] (4-2)
aa(t o) aa(t o)
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Here P and P are the initial osculating position-x -a
and velocity covariance matrix and mean equinoctial covari-

ance matrix, respectively. The required partial derivatives

are discussed in Section 2.4. Corresponding process noise

covariances can be obtained in a similar fashion, as

discussed in Appendix A.

Highly accurate orbit determination usually requires as

complete a force model for the equations of motion as

possible. Semianalytical Satellite Theory allows great

flexibility in force model truncations without accuracy

loss, based on order-of-maqnitude considerations. Trunca-

tion decisions are typically based on assumptions like the

small eccentricity approximation, fourier series coefficient

attenuation, and perturbation magnitude. When the perfor-

mance impact of force model truncations is assessed, only

the technical description of the force models is given.

Consult the references [13] , [15] , [18] , [19] for further

clarification. May [32] investigated the variational equa-

tion force model accuracy necessary for good DC converg-

ence. Any variational equation force model simplification

achievable is highly desirable, since the number of varia-

tional derivatives (36) makes their integration quite

costly. She found that inclusion of the J2 perturbation was

usually sufficient for good convergence and accuracy. The

filter tests here use only the J2 and drag perturbations in

the variational equations; the validity of this model is

confirmed by the overall filter performance.

Relative filter performance was assessed in three

ways. Efficiency was measured by the CPU time required for

the observation processing. Predictive orbit determination

101



accuracy, which measures the accuracy of the filter estimate

without input observations, was computed by comparing a 24

hour prediction of the final filter estimate with the simu-

lation truth ephemeris. The filter convergence and defini-

tive orbit determination accuracy were measured by the

history of the magnitude of the position error during the

observation span.

The results presented in this chapter represent a

single Monte Carlo trial. Since complete Monte Carlo

testing requires a large number of trials to achieve high

confidence in the results, such testing was ruled out by the

consequent cost. Rather, an EARLYORB initial estimate was

used to give realistic initial errors. The consequence of

this economical approach is the need for a word of caution;

the results are promising, but further testing and experi-

ence are required.

4.2 Test Case One: FILTEST 1

This test case was used to verify the software imple-

mentations of the SKF, EKF, and LKF. The satellite observed

is a low altitude satellte; only J2 was included in the

force model. C-hand range and range rate observations were

taken; no random errors were added to the observations. The

LKF and EKF both used the truth initial conditions and

dynamical model. These initial conditions and model are

presented in Table 4-1. Table 4-2 shows the corresponding

initial conditions and force model for the semianalytical

truth ephemeris, also used by the SKF. This truth was

generated by an SDC run; the errors from the Cowell truth

averaged about 10 centimeters in position error and 5 milli-

meters per second in velocity error.
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Table 4-1
FILTEST 1 Truth Model

Initial Conditions:

epoch = March 21, 1979
a = 6673.0 km

= 0.01
i = 65.0 deg
Q = 0.0 deg
( = 0.0 deg
M .= 0.0 deg

Dynamical model:

J2 only in the equations of motion and variational
equations

Observations:

range and range rate (C-band), no errors
1 day san

Truth Integrator:

12th order Cowell/Adams Predictor-Corrector

Steo Size:

50.0 sec.

EKF/LKF Integrator:

4th order Runge-Kutta Fehlberg

Steo Size:

10.0 sec.
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Table 4-2
FILTEST 1 Semianalytical Truth Model

Initial Conditions.

epoch = March 21, 1979
a = 6664.673 km
e = 0.0093

i = 64.9335 deg
Q = 0.0 deg
o = 360.9999 deg

it = 0.0001 deg

Integrator Step Size: 43200.0 sec.

Force Model:

AOG: J 2, J 22 e 0

SPG: J 2 , J 2 e

APG: J 2

SPPG: J 2 e
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The final estimation errors for all filters from their

respective truth ephemerides were less than 10 centimeters

maximum in total position error. The SKF tests all used the

short periodic coefficient interpolator and the state tran-

sition matrix interpolator. One run also used the local

position and velocity interpolator and others tested the

end-of-integration grid relinearization. All tests were

positive. These results verify the software implementations

of the SKF, EKF, and LKF. The ESKF was developed later; its

implementation was verified by similar tests.

4.3 Test Case Two: WNMTST

A critical test of a filter's performance is its

transient response to the initial conditions. The transient

response is especially important for the nonlinear estima-

tion problem because filter estimates diverge if the

required corrections are too large. This test case is posed

as a rigorous test of the model accuracy of the Semianaly-

tical Satellite Theory in the presence of large initial

condition errors by including a (21x21) gravity field and

atmospheric drag in the force model. The next section gives

the complete problem statement. Then the performance

properties of each of the SKF, ESKF, LKF, and EKF are

described, following with a section comparing the filters'

performance with the SDC and CDC baselines.

4.3.1 Test Case Formulation

This test case was formulated along the lines discussed

in Section 4.1. The complete description of the truth model

is given in Table 4-3. The truth trajectory in osculating
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Table 4-3
Test Case Two Truth Model

satellite: WNMTST

epoch: June 8, 1979, 3 hrs, 44 min, 6.4 sec

reference frame: 1950

coordinates: a = 7016.7363 (km)
e = 0.0535734
i = 97.8520 (deg)
= 224.4888 (deg)

w = 127.3311 (deg)
M = 237.6709 (deg)

drag coefficient: CD =2.0

area: A = 1.0 (m m 2)

mass: m = 217. (kg)

density model: 1964 Harris-Priester atmosphere
(F1 0 7=150)10.7

gravity field: 21 x 21 (GEM-9)

integrator: 12th order Cowell/Adams oredictor-corrector

steosize: 30.0 (sec)

106



position and velocity was generated by the high precision

Cowell integrator implemented in the GTDS testbed. The GTDS

DATASIM program was used to generate simulated observations;

observation types and statistics, and the resulting observa-

tion history are summarized in Table 4-4. There are several

interesting facets of this orbit determination problem.

First, the observations are extremely accurate; Denham

and Pines [28] argue that the effects of observation model

nonlinearities become more significant for more accurate

observations. Thus the situation is favorable for extended

filters; linearized filters might be expected to diverge.

Second, both stations are at approximately the same

latitude; since the orbit is nearly polar this means that

both stations will observe the same relative point in the

orbit but at different times. This creates an interesting

problem in observation geometry for the estimator; the

eccentricity and the argument of perigee may be hard to

estimate.

Finally, only 333 observations (approximately 20

minutes total observation time) are taken of the satellite

during its passage of two stations. The resulting estimate

accuracies will be an interesting indication of the rate of

filter convergence.

A Semianalytical truth ephemeris was generated from the

Cowell truth ephemeris usinq a PCE. The PCE elements and

their generating Semianalytical model corresponding to the

osculating model of Table 4-3 are shown in Table 4-5. The

resulting mean-plus-short periodics trajectory is compared
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Test Case
Table 4-4

Two Observation Data

Station 1:

AtIOSq

TRANSMITTER : TYPE-C-BAND FREQUENCY-2200.000 tH.

LATITUDE
20 42 0.0

0 0 0.0
(DOD MM SS.SSS)
( HM SS.SSS)

LONGITUDE
203 42 0.0 (DDD tM SS.SSS)

0 0 0.0 ( Ml SS.SSS)

MINIMUM ELEVATION ANGLE IS 5.000DEGREES

observation type (C band) Statistics (standard dev)

Range
Azimuth
Elevation

0.1 (m)
0.003 (deg)
0.003 (deg)

Station 2:

MALABq

TRANSMITTER : TYPE-C-BAND FREQUENCY-2200.000 MH.

LATITUDE
28 1 12.000

0 0 0.0
(ODD MM SS.SSS)
( Mr! SS.SSS)

LONGITUDE'
279 18 50.400

0 0 0.0
(0DD MM SS.SSS)
( MT SS.SSS)

MIINItUM ELEVATION ANGLE IS 5.000DEGREES

observation type (C band) Statistics (standard dev)

Range
Azimuth
Elevation

2.0
0.000556
0. 000556

A

108

COORDINATES
ERROR

HEIGHT
3.048 KM
0.0 n,

COORDINATES
ERROR

HEIGHT
-0.004 KM
0.0 

(m)
(deg)
(deg)

A



Station Pass History

REV NUM I 0 1 2 3
;START 17906081790608179060817906081

I ;:,,6371 3i4061 5S1'61 659051

AI 0S I I I 17906o31
II I I 1 701101
ol LO I I I o7906081
sI I I I 1 709301
QIELItAXI I I 151

I AOSLI I I 17906081
I I I I 12035581

IlI AOS I 17906081 I1 
Al I 1 36001 I
LI LOS I I 7900o iS I
Al I 35501o I I
BIELWAXI I 31 I 
QI AOSLI 17906031 I I

I I 123151 I I

AOS = ACQUISITION OF SIGNAL
LOS = LOSS OF SIGNAL

ELMAX = MAXIMUM ELEVATION ANGLE THIS PASS
AOSL = LOCAL TIME OF AOS

Total observation time: 3 hrs, 23 min from the start of obs
by ALABQ until the comoletion of
obs by AMOSQ
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Table 4-5
Filter Test Case Two Semianalytical Truth Model

satellite: JTNMTST

epoch: June 8, 1979, 3 hrs., 44 min., 6.4 sec.

reference frame: 1950

coordinates:

Mean Equinoctial Mean eolerian

a = 7003.0073 km a = 7003.0073 km
h = -0.0073252 e = 0.05331336
k = 0.0533125 i = 97.353567 deg

= -. 03041503 = 224.43964 deg
q = -0.8136052 w = 127.63585 deg
A = 229.43174 deg M = 237.30524 deg

drag coefficient = C = 2.0

area: a = 1.0 (m2)

mass: m = 217. (kg)

density model: 1964 Harris-Priester atmosohere

(F 1 0 .7=150)

gravity field- 21x21 (Gem-9) averaged otential
AOG resonance (15,15) - (21,15) shallow

second order 2 and Draq and couolinq

zonal short eriodics (21x9)
sixth order e
m-dailv short eriodics (21x21)

SPG sixth order e
tesseral short eriodics (21x19)
sixth order e

integrator: 4th order Runge-Kutta

steosize: 43200. (sec) = 1/2 dav
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to the Cowell truth in Figures 4-1 through 4-3. The quad-

ratic growth in the errors is due to slight initial condi-

tion errors. The excellence of the Semianaytical model is

shown by the small magnitude of the errors during the fit

soan from 0 to 5 hours. The position error RMS during the

fit san is 5.6 meters, while the velocity error RMS is 4.7

millimeters er second.

The EARLYORB program was used to generate aooroximate

orbital elements for filter initialization. The LKF and EKF

used these elements directly; corresponding mean elements

for SKF and ESKF initialization were generated by PCE

applied to the osculating EARLYORB elements and by EPC using

the iteration (4-1). The EPC converged in five iterations

to elements consistent to 10 decimal olaces. Clearly the

errors from the PCE elements are small. 11 of these

element sets are shown in Table 4-5. The erturbations of

the osculating and PCE mean EARLYORB elements from the true

elements are also given. The initial error in both the

osculating elements and the mean elements is about 50

kilometers. These initial errors rovide a good initial

error for testing filter convergence.

4.3.2 SKF Prooerties

This section presents results from an investigation of

the effects of four variables on SKF erformance. The

variables that were investigated are:

1. force model selection for the equations of motion

and the variational equations;
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Table 4-6
Osculating and Mean Early Orbit Elements and

Initial Perturbations

Early Orbit

Osculating

7004.285

0.054123

97.9699

224.848

127. 380

237. 566

Osculating and

Osculating Cartesian

32.86 (km)

33.71 (km)

12.36 (km)

23.26 (m/s)

0.47 (m/s)

3.34 (m/s)

48.67 (km)

23.50 (m/s)

Keplerian Elements

PCE Mean EPC Mean

7005.566 7005.173

0.054359 0.054302

97.9765 97.9645

224.849 224.347

127.730 127.824

237.207 237.114

Mean Perturbations

Mean Equinoctial

Aa 2.44 (km)

$4h 0.3033E-3

X 0.5920E-3

A* 0. 63E-2

aq 0.337E-2

AX 0.529E-2

IrI LI 48.55 (mn)

I tfl 22.21 (/s)
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2. selection of the process noise covariance and the

initial state covariance;

3. trajectory update considerations for the nominal

trajectory used in the SKF; and

4. mean state initialization by PCE and EPC.

The filtering issues (1) to (4) above provide a natural

test grid for exploring the properties of the SF. Two

options are presented for each issue or consideration. With

a total of four questions to be examined, the resulting grid

has sixteen points. The tests reported have essentially

diagonalized the grid, providing insight into the interac-

tion of each of the issues. The options available are

summarized in Table 4-7 in the context of the list of

issues.

The force model issue explores the effect of one force

model truncation on filtering accuracy. The process noise

options test the sensitivity of the SKF to the process noise

strength. The relinearization of the SKF nominal trajectory

after a station pass causes the SKF to look more like an

EKF. The relinearization option was implemented by changing

the integration grid length. Additional confirmation of the

approximate EPC procedure (4-1) is given by performance

measurements in actual runs.

Seven SKF runs tested various combinations of these

options. The options used for each run and the resulting

performance are given in Table 4-8. The final estimate of

each SKF run was used as the initial condition for a 24-hour

predicted ephemeris. The RMS values given in Table 4-8 are
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Table 4-3
SKF Test Grid Runs and Performance

* Run B used the coefficient interpolator only; Run C used
t'he position and velocity interpolator (steo = 100 sec) as
well as the coefficient interpolator.
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TEST RUNS A 1B* C* D E F G

1 Force Model 2 1 1 2 2 2 1

2 Process Noise 1 2 2 2 1 2 2

3 Trajectory Upd. 1 1 1 1 2 2 1

4 Early Orbit 1 1 1 1 1 1 2

PERFORMANCE (km)

Radial rMS 2.5 .25 .3 .24 2.7 .19 .3

Cross MS 3.6 .21 .3 .22 3.2 .37 .3

Along RMS 21.6 7.2 7.3 7.0 19.2 1.14 9.0

Total RMS 22.0 7.2 7.3 7.0 19.7 1.22 9.0



the root mean squared residuals of these predicted

ephemerides from the Cowell Truth ephemeris of Table 4-3.

The results shown support the following statements:

1. use of the position and velocity interpolator does

not seriously impact SKF performance (the observed

RMS increase is probably accentuated by the highly

accurate observations) [B, C];

2. the truncated force model does not seriously

impact SKF performance [B, D];

3. SKF accuracy is very sensitive to the process

noise strength choice [A, D and E, F];

4. more frequent trajectory updates in a convergence

test do not necessarily speed convergence or

improve accuracy [A, E and D, F];

5. The EPC mean EARLYORB procedure does not seriously

impact SKF performance [B, G].

The letters in brackets reference the runs in Table 4-8

supporting the statement. The results in Table 4-8 are

consistent with filter histories of the various runs. This

means that the filter runs have converged, so the results

shown are not especially dependent on the particular filter

output estimate used to generate the predicted ephemeris.

The changes in performance in the sequence of runs A,

D, and F is remarkable. The performance in each case is

dominated by the along track error. The performance

improvements from run A to D to F correspond directly to
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decreases in the error of the final semimajor axis estimate

from 130 meters to 70 meters to 7 meters. Figures 4-4

through 4-8 show plots comparing runs D and F. Figure 4-4

shows the along track prediction error for run F; it

contains a .5 kilometer amplitude error at the orbital

frequency. This error is due to coupling between the

semimajor axis and the error in the satellite angle.

Figures 4-5 and 4-6 show the semimajor axis filtering

histories for runs F and D, respectively; the variable DA

plots the error while PA is a 3a standard deviation bound.

Figure 4-6 graphically shows the bias in the final semimajor

axis estimate of run D. Both figures otherwise show very

similar behavior. Figures 4-7 and 4-8 show the filter

histories of the total estimate position error DR, with the

3a bound PR also plotted. Once again, the SKF runs D and F

show very similar behavior, including similar final position

errors of about 300 meters. Both show final standard devia-

tions of about 10 meters. It is interesting to note the

error transient in Figure 4-8 for run D: at 11800 seconds a

spike occurs indicating a position error of about 1.1 kilo-

meters. The transient occurs at the start of the new

station pass, after a 3 hour outage. Any such similar

transient for run F has been overwritten by the 3a standard

deviation history. The presence of such a transient is

consistent with the apparent divergence of these SKF runs;

the actual errors are 30 times their standard deviations.

Note that this divergence is probably only apparent; addi-

tional observations should serve to make the errors and

their standard deviations consistent. Two final conclusions

are drawn:

1. An adequate process noise model for the lineariza-

tion errors due to initial condition errors would
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TEST CRSE 2: WNMTST ERROR HISTORY
ELEMENT ERROR HISTORY

o DR PA

T
seconds

Figure 4-5. SKF Semimajor Axis Error History, Run F
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TEST CRSE 2: WNMTST ERROR HISTORY
ELEMENT ERROR HISTORY

D R PR
O

T

seconds

Figure 4-6. SKF Semimajor Axis Error History, Run D
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TEST CRSE 2: NMTST ERROR HISTORY
ELEMENT ERROR HI STORT

o ODR + PR

Isoo 3D00 S0ooD D 750 9000soo :SOU i 2000 5SD0o 15030

seconds

Figure 4-7. SKF Position Error History, Run F
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TEST CRSE 2: WNMTST ERROR HISTORY
ELEMENT ERROR HISTORY

o DR + PR

T

seconds

Figure 4-8. SKF Position Error History, Run D
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help prevent such aparent divergence. The

discussion in Aooendix A provides one aooroach.

Jazwinski's [241 kdaotive Noise filter gives

another oossibility.

2. In the same vein, filters using global lineariza-

tions without further compensation are likely to

suffer convergence problems. This can be taken as

directly motivating the dvelopment of the ESKF.

4.3.3 ESKF Properties

This section describes a series of tests investigating

the performance impact of five input arameters. Three of

the ?arameter s were aeld in common with the SKF investiga-

tion above. Process noise sensitivity %was not investigated;

-11 ESKF runs used process noise option 2 from Table 4-7.

The two new input arameters and the motivation for their

consideration are:

(i) ESKF interpolator implementation: In the discus-

sion of the SKF design, two im'3lementations were

presented for use according to the interoolator

structures being accomodated. Equation (3-9)

applies to the case where only the short periodic

coefficient interpolator is used; equation (3-10)

is employed hen the short-arc interpolator for

osculating position and velocity is also being

used. These are otions 1 and 2, respectively.

(ii) 31 matrix comiutation: 3oth equations (3-9)

and (3-10) assume that the 31 matrix (i.e.,

the short periodic function state oartials

126



matrix) is being computed. This corresponds to

the linearization of the short periodic functions

about the nominal trajectory. Experience [19]

with the SDC has shown that the B1 matrix is

not important to SDC estimation accuracy or

convergence. The SKF tests above did not employ

the B1 matrix. A decision to truncate the

B 1 matrix for the ESKF is not simple: if the

state correction Aa becomes large enough, a

significant estimate bias will be introduced by

its neglect. Option 1 neglects B1 computa-

tion; option 2 includes the B1 matrix due to

the J2 perturbation, computed analytically to

zeroth order in the eccentricity.

Table 4-9 summarizes the input parameters investigated

for the ESKF. Table 4-10 presents the test results. All of

ESKF test runs show a marked improvement over correspondinq

SKF runs. This data supports the following statements:

1. The approximate EPC procedure does not seriously

impact ESKF performance [A, B];

2. The truncated force model does not seriously

impact ESKF performance [A, C];

3. More frequent nominal trajectory updating and

relinearization does not necessarily improve ESKF

performance [C, D and F, G];

4. The computation of the B1 matrix can improve

(significantly) ESKF accuracy [C, F] ([D, G]);
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Table 4-9
Summary of ESKF Test Otions

* hen used, the osition and velocity interoolator had a
steo size of 120 seconds for a total san of 4 minuts.

123

Input Ootion 1 Otion 2 Comments
Parameter

1. Force Model full truncated see Table
4-7

2. Trajectory un1ate after uodate at the see Table
Uvdates each station end of the 4-7

pass observation
span

3. Mean PCE EPC see Table
EARLYORB 4-7
init.

4. ESKF* mode PV intero. off PV intero. on nv off:
(3-9)

or) on:

(3-10))

5. Short neglect the comoute the B1 is
oeriodic B matrix B 1 matrix comnutel
oartials analv-
comoutation tically

incluiq
J2 at e

A



Table 4-10
ESKF Parameter Test Results

* all test runs used covariance arameters

8 8 6 6 lo6]
P = diag[l.0,10 .10 ,10- ,10

10 12 12 14 14 12
Q = diag[0l ,10 , 10- ,10- ,10- ,10

** oerformance is measured by computing the root mean
squared residuals of the differences between the Cowell
truth ehemeris of Table 4-3 and a 24 hour predicted
eohemeris based on the final filter estimate.

129

Input Test Runs*
Parameter

A B C D E F G

1. force nodel 1 1 2 2 2 2 2

2. trajectory 1 1 1 2 1 1 2

undates

3. mean 1 2 1 1 1 1 1

init.

4. ESKF mode 1 1 1 1 2 1 1

5. 31 matrix 1 1 1 1 1 2 2

Performance**

Radial R~MS .197 .213 .133 .196 .231 .166 .174

Cross RMS .020 .024 .019 .013 .026 .016 .019

Along RMS .930 .336 1.153 1.345 .559 1.185 .500



5. The ESKF using the position and velocity

interpolator can produce satisfactory predictions.

The data in Table 4-10 is limited in depth; quite

clearly only very conservative conclusions can be drawn from

these results. And yet, even in this light, statement (5)

above is startlingly conservative. The reason for this lies

in the limitations of the prediction error RMS performance

measure used in Table 4-10.

Figures 4-9, 4-10, and 4-11 show the dominant along

track prediction errors for runs A, E, and G, respectively.

Each of the ESKF runs uses the same strategy to reduce the

prediction RMS: the along track error is biased such that

the RMS is reduced by the distribution of initial errors in

the mean semimajor axis and the mean-mean longitude. In all

cases, both the semimajor axis estimate and the mean

longitude estimate are too large. The increased semimajor

axis causes a decrease in the mean motion, implying slower

growth in the too-large mean longitude. Thus the mean

longitude error will cross zero within the predict span,

causing the reduction in the along track RMS. Table 4-11

summarizes the final estimation errors in the osculating

Keplerian elements for each of the runs A, E, and G. Note

the generally superior accuracy of run G.

The inadequacy of the prediction error RMS performance

measure alone is indicated by the filter history plots in

Figures 4-12 to 4-14. These figures show plots of the posi-

tion error history for runs A, E, and G respectively.

Notice that run G produces the smallest position errors,

followed by run A and run E. The histories for runs A and G

are essentially the same; both ESKF runs produce meter-level
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Table 4-11
Final Keolerian Element ESKF Estimation Errors

* units are meters

** units are microradians

134

Run
Element

A E 

a* 9.0 0.5 2.7

e 3.6 x 10-5 4.2 x 10-5 3.3 x 10-

i** 2.2 3.4 2.9

a** 2.7 3.5 1.9

c**~ -54.0 +220.0 -33.0

M** -12.0 -290.0 +20.0

8.0 0.3 1.5

a'



TEST CRSE 2: NNMTST ERROR-HISTORY
ELEMENT ERROR HISTORT

O OR + PR
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seconds

Figure 4-12. ESKF Position Error History, Run A
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TEST CRSE TWO: STELLITE WNMTST
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Figure 4-13. ESKF Position Error History, Run E
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TEST CRSE 2:
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Figure 4-14. ESKF Position Error History,
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accuracy in their final estimates. The position error

history of run E is fundamentally different. Fstimate

transients of several kilometers occur during both tracking

station passes and the final estimate is only accurate to

within 200 meters. This degraded performance probably

results from the additional linearization of the two body

element transform from equinoctial variables to position and

velocity. Certainly the results of the observation model

nonlinearity test of Section 3.4.3 indicate that the element

transformation nonlinearities are often of the same order of

magnitude as the observation model nonlinearities. Thus

care must be exercised in the use of the position and

velocity interpolator with the ESKF.

The significant results of this section are:

1. The ESKF results in greatly improved performance

over comparable SKF runs, both in the filter error

history and in the prediction RMS; the fact that

ESKF performance does not change greatly with

parameter variations is also important;

2. Calculation of the B1 matrix can be important

for ESKF accuracy;

3. The coefficient-interpolator-only ESKF algorithm

gives much better performance than the position

and velocity interpolator version.

4.3.4 LKF Properties

The LKF runs discussed here required making choices for

three input parameters. The first two are typical estima-

tion parameters. They are
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(1) covariance parameter selection, and

(2) coefficient of drag estimation.

All LKF runs used the same a priori covariance; it was

selected to be consistent with the initial condition errors

and has value

P = diaq[100.,100.,100.,10- 6 10- 6 ,10 6]

Many values for the process noise strength were tested in a

trial and error search for the best value. All choices were

diagonal and used the same variance for all position coordi-

nates and all velocity coordinates respectively. A process

noise choice

diaq [l0 - r - -r -s -s -s
,Q = diaq[ ,10 ,lO lO ,lO 

is denoted by Q = [r,s] in the presentation of results

below. If r=O then the corresponding elements in are

replaced by zero.

Several of the runs tested the impact of coefficient of

drag estimation. While accurate draq coefficient estimation

cannot usually be achieved over observation spans as short

as that of this test case, the presence of the additional

estimation variable does sometimes allow performance

improvements.
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The last input parameter tested allows the LKF to

emulate SKF end-of-integration qrid trajectory updating.

The two options here allow relinearization after a station

pass and global linearization over the observation span,

respectively.

The LKF test run parameter choices and the correspond-

ing RMS prediction errors are shown in Table 4-12. nhese

results support the following statements.

1. Coefficient of Drag estimation for this short-arc

problem does not significantly help or hurt per-

formance [A, B and D, E].

2. The dependence of LKF performance on the process

noise strength selected is complex and interest-

ing. Runs [H, I] and [D, F] indicate that process

noise should be modelled for position as well as

velocity, contrary to its interpretation as an

unmodelled acceleration. Runs [A, C] contradict

this; the interesting thing about run A is that

the large value of position process noise caused

such an increase in the semimajor axis variance

during the data outage between station passes that

the LKF thought the orbit was hyperbolic at the

start of the second pass. The changes in perform-

ance from run J to H to E to B as the process

noise scalinq changes are also interesting:

performance is not a monotonic nor a convex func-

tion of the scaling.

3. Short-arc or station-pass relinearization may

improve the performance of the LKF.
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Figure 4-15 shows the osition error history of a

typical LKF run (D). Two transients of about 50 kilometers

magnitude each are shown. The first corresponds to the

initial condition error; the second results from the data

outage between station asses.

The results of the testing of the LKF are best

described by two additional conclusions.

1. The global linearization of the satellite dynamics

used by the LKF is not appropriate when conver-

gence in the presence of large initial errors is

required. This is consistent with the common

preference for the EKF over the LKF.

2. Imorovements must be made in orocess noise

modelling for convergence situations. Essentially

this is advocating the use of the Gaussian Second

Order Filter when there are large initial errors.

This filter augments the redicted measurement

covariance with a orocess noise-like term. This

correction term depends on the estimate covariance

and measures the robable linearization error.

4.3.5 EKF Properties

This section presents the results of an investigation

of the effects of the a oriori covariance and process noise

strength selection on EKF performance. The coefficient of

drag was estimated in all the tests, based on LKF

experience.
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The initial EKF runs showed the same poor (or worse)

RMS prediction performance as corresponding LKF runs. This

inability to select a process noise strength by trial and

error for good performance led directly to the development

and implementation of the process noise covariance

transformation equations discussed in Appendix A. A utility

routine for transforming a mean equinoctial a priori

covariance to a corresponding position and velocity

covariance was also implemented.

A total of eight EKF tests were conducted. The a

priori covariance used was either the same as for the LKF

(Option 1),

P1 diaq[100. 0.,100. ,10 6,10 6,10- 6

or the transform of the SKF/ESKF a priori covariance (Option

2), given in equinoctial coordinates as

P2 = diag[l.0,10- 8 10 8 ,1 n 6 ,0- 6 10- 6 ]

The process noise used was either one of a series of -

diagonal trials or else the transform of the second SKF

process noise option. As in the LKF discussion above, the

symbol [r,s] is used to denote a diagonal process noise

Q1 = diag [l0 r,1 0 - r 0- r l-s l0-s]
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Recall that the process noise strength used as Option 2 of

the SKF tests is

Q2 = [ 10 -12 '10 -12 - 10-14 10-12]

Note that this value of process noise was also used in all

of the ESKF runs.

The options used for each of the eight EKF tests and

the resulting performances are presented in Table 4-13.

These results support the following statements:

1. The dependence of EKF performance on the proces

noise strength used is complex and unpredictable.

This is probably due to the time varying nature of

the linearization error being poorly modelled by a

constant process noise strength. A Gaussian

Second Order Filter would probably reduce this

problem.

2. A process noise strength giving acceptable RMS

prediction performance was selected [run F].

3. The transformation of the a priori covariance and

the process noise strength from equinoctial coor-

dinates to position and velocity coordinates gives

acceptable RMS prediction performance. Both

transformations appear to be required for best

performance [runs G, HI.
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Table 4-13
EKF Parameter Test Results

Notes: (i) the coefficient of Drag was

C = 2.0 (true value) (2 =
D c0

estimated in all runs;

o-6
10)

(ii) A riori Covariance:

Option 1 = same as LKF

Ootion 2 = transform of SKF

(iii) Q SKF means otion 2, the transformed orocess noise

Q [r,s] means Q = diag [ 10- r ,1 0 ,-r 1 0s1 0 - ]

unless r = 0, which means

Q = diag [o,,0O,o10-S,10- s,1-S

14 6

Input Test Runs

Parameter A B C D E F G H

A Priori 1 1 1 1 1 1 1 2

Covariance

Process off [138,22] [0,13] [0,141 [10,14] [0,10] SKF SKF
Noise

Performance

Radial RMS 2.2 5.3 2.2 10.2 11.5 0.31 3.0 0.99

Cross RMS 2.5 2.6 2.5 3.3 7.7 0.03 0.4 0.02

Along RMS 58.6 132.4 53.1 263.1 243.9 9.47 84.3 23.4



The EKF achieved best erformance in runs F and H.

Since these runs used very different methods for a riori

covariance initialization and process noise calculation, a

detailed comparison of their Performance is of interest.

Figures 4-15 and 4-17 show their dominant along track

prediction errors. The growth of the along-track error for

run H is much larger than for run F. This is due to the

final semi major axis errors of 295 meters and 95 meters,

respectively. The final errors in all of the Keolerian

elements for runs F and H are shown in Table 4-14. These

errors are consistent with the element errors for both runs

over the last fifty observations; they are insensitive to

the final filter outout time.

The filtering histories for the semimajor axis and

oosition errors for runs F and H are shown in Figures 4-13

through 4-21. The difference between the respective plots

is striking. The lots for run F show aooarent divergence

and large errors for much of the observation span, with good

convergence only in the latter oart of the second station

pass. The olots for run H show good convergence throughout

the observation span, although the semimajor axis plot shows

explicitly the final bias reoorted in Table 4-14. 3oth runs

have similar position errors for the last fifty observations

of the second ass: about 10 meters for run F and 5 meters

for run YH It is interesting to observe how similar the

semimajor axis and osition error histories for run H are to

the corresponding histories for the SKF and ESKF; this

provides a good verification of the transformation method.

There are two explanations for the difference in the

filtering histories for runs F and H. The first is a

restatement of statement (1) above: a time varying process
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Table 4-14
Final Keplerian Element EKF Estimation Errors

* units are meters
** units are microradians
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Run
Element

F H

a* 96.0 -295.0

e -7.SE-6 -2.4E-5

i** 5.4 -2.7

a2l** k3.3 -2.0

* -250.0 720.

M** +240.0 -557.
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Figure 4-18. EKF Semimajor Axis History,
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Figure 4-19. EKF Semimajor Axis Error History, Run H
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TEST CRSE 2: WNMTST ERROR HISTORY
ERROR HISTORY
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Figure 4-20. EKF Position Error History, Run F
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Figure 4-21. EKF Position Error History, Run H
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noise is required to account the EKF linearization error.

The process noise of run F probably strikes a balance

between a value representative of the convergence

requirement of the first station pass and the steady state

requirement of the latter part of the second station pass.

The second explanation has to do with the geometry of the

process noise variables: the geometry of equinoctial

variables is uniformly valid throughout a satellite's orbit,

while the geometry of inertial position and velocity

coordinates changes with the time varying constraint imposed

by the current satellite location within the orbit. Both

explanations are needed to account for the differences

between runs F and H.

4.3.6 Test Case Two Performance Summary

This section summarizes the results of the previous

four sections and provides efficiency estimates and compari-

sons with CDC and SDC baselines.

The DC runs were subjected to a slightly more strenuous

test case. In addition to the initial condition errors

given by use of the appropriate EARLYORB elements, the SDC

and CDC were required to estimate the coefficient of drag,

starting with an initial estimate of 2.1 as compared to the

truth value of 2.0. Both runs converged to a final estimate

of 2.08, illustrating the difficulty in short arc estimation

of the drag coefficient. Two factors allow comparison of

these DC results with the filter tests. First, both DC

estimates give respectable predictions against the Cowell

Truth. And second, the drag coefficient estimate varies

over a range well including the true value over the course
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of the five iterations required for convergence. Thus the

final drag coefficient estimate apparently gives the best

fit.

Table 4-15 lists the results of the best filter run

from each of the sections above for comparison with the

other filters and with CDC and SDC. The runs are identified

by the appropriate letter from each section; two runs are

listed for the EKF, reflecting the two essentially different

methods for process noise and a priori covariance choice.

These results indicate that the SKF and ESKF have converged

faster than the LKF and EKF for this test case.

The results of timing tests are given in Table 4-16.

The times recorded are the CPU times required for processing

the observations from the two station passes. These timing

estimates should be conservative for two reasons:

1. The observation span was very short, only 3.5

hours, compared with typically allowable integra-

tion grid lengths of up to 1 day; since much of

the cost of semianalytical ephemeris generation is

due to integration grid force evaluations and

short periodic coefficient computations, any

increase in grid length will further increase the

timing advantage of the SKF and ESKF.

2. The complexity of a semianalytical force evalua-

tion allows more room for efficiency gains by

model truncation or code optimization than does a

comparable Cwell force evaluation. Most of the

present code for semianalytical satellite theory

in the RD GTDS testbed was implemented primarily
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Table 4-15
Test Case Two Performance Summary

Performance

Radial RMS

Cross RiMS

Along RMS

IK-------------- Test Runs

CDC

.030

.005

.725

SDC

.051

.007

.367

SKF
(F)

.185

.371

1.145

ESKF
(G)

.174

.019

. 500

Table 4-16
Test Case Two Timing Estimates

Filter Run CPU Execution Time*

SKF B 0:30.97

SKF C 0:29.33

SKF D 0:15.49

ESKF G 0:17.58

LKF H 0:38.69

EKF F 0:40.90

* units are minutes:seconds
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LKF
(J)

2.79

.885

31.9

EKF
(F)

.313

.033

9.47

EKF
(~)

. 9861.986

.015

28.4



to verify accuracy, and not to achieve operational

system efficiency. A preliminary indication of

this is given by the two force model options

tested for the SKF. The timing impact of the

position and velocity interpolator for the SKF and

B1 matrix calculation for the ESKF are also

given.

The results of this test case ive a very promising

indication of SKF and ESKF performance. Further testing is

required.

4.4 Conclusions

This chapter accomplished several important tasks:

1. A survey of the problems involved in SKF and ESKF

testing and performance evaluation was presented,

and a resulting test methodology was detailed;

2. Results indicating successful software validation

were presented;

3. The transformation equations for the a priori

covariance and process noise were verified to

result in correspondnqg filter histories when

employed;

4. The ESKF was shown to achieve position estimates

with accuracy equal to that of the conventional

EKF for the test case considered.
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The principal simulated data test case discussed in

this chapter was a short-arc case measuring the convergence

properties of the. SKF and ESKF. Of greater importance in

many applications is the steady state filtering accuracy in

the presence of real world errors. The real data test case

of the next chapter provides an excellent test of this

issue.
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Chapter 5

THE REAL DATA TEST CASE

This chapter oresents the results from the alication

of the EKF and the ESKF to the real observational data of a

low altitude earth satellite. The data had been obtained

previously from the Aerospace Defense Command (ADCOM) for

use in orbit determination studies at CSDL. This test case

is used to discuss the effects of model errors on steady

state filter performance.

The organization of this chapter is similar to that

employed in Chapter 4. The formulation of the test case is

described first, including some interesting results on the

GEM 9 gravity field employed by GTDS. The second section

discusses the actual filter results; only the EKF and SKF

are examined, based on the results from Chaoter 4. The

final section summarizes the important results.

5.1 Test Case Formulation

Nine days of DCOM tracking data provided the basis for

the filter tests presented in this chapter. The data reore-

sents the tracking history for Sace Vehicle 10299 (SV10299)

in the ADCOM catalog over the time period from August 30,

1977 to September 7, 1977. ADCOM provided CSDL with the

observational data, a tracking network description, and a

history of geomagnetic and solar activity for use in orbit

determination tests. P. Cefola [191 conducted a series of

batch estimation tests sing this data, comparing SDC and

CDC performance. The filter test case formulated here was

based on his experience.
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The data employed did not include a satellite descrio-

tion or satellite initial conditions. In addition to

addressing these two issues, this test case formulation

section discusses the modelling of the drag and gravita-

tional forces, the observational data, and the question of

filter performance measurement.

Some knowledge of the satellite is required in order to

estimate its aerodynamic characteristics for correct drag

force modelling. The satellite can be tentatively identi-

fied as the COSMOS 947 satellite, based on its orbital

characteristics [191. Confirmation is offered by the fact

that reasonable drag coefficient estimates result when the

COSMOS 947 mass and area data [40] are used.

The results from Chapter 4 indicate that the RD GTDS

EARLYOR3 orogram gives satisfactory initial conditions for

EKF tests, and that the simole EPC iteration (4-1) orovides

an adequate set of corresponding mean elements for 'ESKF

initialization. The osculating E.ARLYORB elements and the

corresponding mean EPC elements used for this test case are

shown in Table 5-1. Once again the EPC procedure converged

very quickly. This table also oresents the estimated errors

in the Early Orbit elements, commuted as the difference

between the EARLYORB-based elements and the best CDC and SC

estimates generated during Cefola's work. Notice that both

the initial position errors and the semimajor axis error are

quite large, so that this test case will orovide another

interesting convergence oroblem. The estimated errors in

the Early Orbit mean equinoctial elements resulted in the

choice of a mean equinoctial a oriori covariance for use in

the ESKF tests. The covariance transformation equation
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Osculating
Table 5-1

and Mean Filter Initial Conditions

Early Orbit Keplerian Elements

Osculating EPC Mean

5622.453
0.008572
72.337 (deg)
126.21.1 (deg)
57.393 (deg)
100.432 (deg)

Truth Minus Early Orbit Perturbations

Osculating

15.33 (km)
39.70 (km)
38.76 (km)
43.6 (m/s)
4.5 (m/s)
2.2 (m/s)
57.5 (km)

Mean Equinoctial

PO-0

Aa

Ah

ak

Axrl

I I 11j

13.36 (km)
0. 0002
0. 0013
0.0048
0.0035
0.0032 (rad)
57.4 (kin)

A Priori Covariance

= diag [100,10 - 7 ,10- 7 - 0

Position and Velocity Transformed Covariance

· 11 12 13 0.577872937D+02
14 15 16 -0.9107241940-02
22 23 24 0.935358494D+02
25 26 33 -0.2668856910-01
34 35 36 0.694130954D-01
44 45 46 0.1110074680-03
55 56 66 0.100737766D-03

-0.2478117620D+02
-0.1135780110-01

0.2333669910D02
-0.4293646320-01
-0.926367328D-01
-0.1406315620-04
-0.3830309730-05

0.2710832.380+02
0.3301723950-01
0.3619211290-01
0.1289029320D+03
0.3595369220-01
0.2584691780-04
0.495533978D-04
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e
i
C4W

My

6630. 316
0.008686
72.826
126.216
71.332
96.966

(km)

AVX

AVy

AVz
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Mean
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(4-2) was used to comoute the corresponding osculating Oosi-

tion and velocity a oriori covariance for use with the KF.

These covariances are listed in Table 5-1.

The many filter tests resented in Chaster 4 indicate

that the correct choice of a orocess noise model is essen-

tial for filter oerformance. The desire to relate the

orocess noise model of this test case to the robable real-

world force model errors led to the derivation and alica-

tion of the algorithms resented in Aooendix A. The calcu-

lations detailed there led to a orocess noise strength of

= diag [2E-3,2E-16,2E-16,2E-17,2E-17,3E-16]

for use with the SKF. The orocess noise used with the EKF

was obtained by use of the transformation equations (-13).

RD GTOS contains two density model ootions: either the

Jacchia 1971 Density Model or the 1964 Harris-Priester

Atmosphere Density Model can be used. Based on oerational

considerations [41] , the simpler Harris-Priester Density

Model was selected.

The Harris-Priester Density Model uses different

density tables according to the current value of the mean

solar radiation flux, F1 0 .7. Table 5-2 resents values

for the solar radiation flux and the daily average value of

the geomagnetic index, Ap, for each day between August

30, 1977 and Seotember 4, 1977. Evidently there were only

small variations in either arameter, so only small changes
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Solar Radiation
Table 5-2

Flux and Geomagnetic Index [History
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Day in F10. A
1977

Aug 30 35.5 4.9

Aug 31 34.7 6.0

Sept 1 33.1 4.1

Sept 2 84.2 4.1

Seot 3 37.2 3. 4

Seot 4 34.2 8.0



in the atmosoheric density rofile should have occurred

during the tracking period of interest. Notice, however,

that the average geomagnetic index does increase in the

second three day san, reflecting a small geomagnetic storm

and an accompanying increase in the atmospheric density.

The Harris-Priester density table for Fl 7=10 was

used. The difference between the tabular value for the

solar radiation flux and the actual values was one motiva-

tion for estimating the coefficient of drag; uncertainties

in the satellite's mass and aerodynamic area rovided ano-

ther. The filter tests used an initial value of 2.0 for the

coefficient of drag and an a priori variance of 0.333,

reflecting the aoproximately 20% uncertainty in the drag

force model.

All of the filter tests used the GEM 9 Gravity Model

[36], which is the most recent gravity model available in

the CSDL version of RD GTDS. A truncated version of this

gravity model was used, with only terms through eighth

degree and order retained. The gravity model was truncated

for two reasons:

1. Most of the tracking data was not of very high

accuracy, and so did not warrant using a very high

precision force model; and

2. Batch estimation tests [191 indicated that use of

the truncated field gave better redictions than

when the full (21x21) field was used.

The filter test force models also included the third body

gravitational forces due to the moon and the sun. Solar

radiation ressure was neglected due to the low altitude of

the satellite.
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Each filter test processed the observations recorded on

August 30, 1977. A total of ten radar stations tracked the

satellite that day, taking 576 observations. Range, azi-

muth, elevation, and range rate observations were taken.

The observations were usually not of very high quality.

Typical standard deviations for the observations were:

between 30. meters and 1.5 kilometers for range, between

0.01 degrees and 0.04 degrees for azimuth and elevation, and

between 1.0 meters er second and 10.0 meters ner second for

the range-rate observations. Table 5-3 gives an explicit

account of each satellite station nass, listing the orbit it

occured in, the average satellite true anomaly during the

oass, the elansed time since the last station ass, and the

number of observations taken during the current ass. This

data will be important for analyzing the filter oerformance

results presented below.

In Chapter 4, filter performance was measured by

comparing a filtered ephemeris with the simulation truth

ephemeris. In a real data orbit determination problem, the

truth ephemeris is the actual satellite osition and velo-

city history, which is unknown. A truth ephemeris was

defined for this real data test case by using the converged

ephemeris estimated by a long arc CDC. A consistency check

for this ephemeris was orovided by the corresponding SDC

converged ehemeris. The CDC and SC used the three days of

tracking data from August 30, 1977 through September 1,

1977. Table 5-4 summarizes the truth model used by the CDC

for generating the real data truth eshemeris. The corres-

ponding SDC truth model is given in Table 5-5. The Semi-

analytical truth ephemeris agrees excellently with the
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Table 5-4
Real Data Test Case Truth Model

satellite: SV10299

eooch: August 30, 1977, 0 hrs., 0 min., 0 sec.

reference frame: Mean of 1950

coordinates:

Position and Velocity Keplerian

x = 3544.2402 (km) a = 6644.2294 (km)
y = -5517.4040 (km) e = 0.009311916
z = 1140.6632 (km) i = 72.932366 (deg)

Vx = 2.655753 (km/sec) S= 125.7742 (deg)
Vy = 0.115046 (km/sec) = 68.576733 (deg)
Vz = -7.260209 (km/sec) M = 99.994253 (deg)

drag coefficient: CD = 1.3421073

area: = 6.1 (m2)

mass: m = 5700. (kg)

density model: 1964 Harris-Priester Atmosphere
( 10.7 = 100)

gravity field: 8x3 (GEM-9)

third bodies: Moon, Sun

integrator: 12th order Cowell/Adams predictor corrector

steo size: 45.0 seconds
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Table 5-5
Real Data Test Case Semianalytical Truth Model

satellite: SV10299

epoch: August 30, 1977, 0 hrs., 0 min., 0 sec.

reference frame: Mean of 1950

coordinates:

Mean Equinoctial Mean Keplerian

a = 6635.3109 (km) a = 6635.3109 (km)
h = -0.00189093 e = 0.00979471

k = -0.00961044 i = 72.969833 (deg)
= 0.60004557 = 125.770814 (deg)

q = -0.43230204 w = 65.360707 (deg)
X = 294.359281 (deg) M = 103.22775 (deg)

drag coefficient: CD = 1.8408701

2
area: A = 6.1 (m )

mass: m = 5700. (kg)

density model: 1964 Harris-Priester atmosphere
(F10.7 = 100)

gravity field: 3x3 (GEM-9)

third bodies: Moon, Sun

integrator: 4th order Runge-Kutta

step size: 43400. sec = 1/2 day

8xO averaged otential
second order J 2 e and Drag-J2 couoling

AOG lunar-solar single averaged (arallax=8,4), e

2
zonals (3x0), e 2
m-dailies (8x3), e

SPG tesserals (x3), e
drag 8 frequencies
second order J 2 e
second order J2-m-dail coupling (8x3), e
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Cowell truth ephemeris; this is shown quantitatively in

Table 5-6, which gives the RMS position and velocity

differences between the two ephemerides for the three day

fit san and for the three day predict span. The agreement

between the two ephemerides is quite good.

Examination of Tables 5-4 and 5-5 shows that both of

the truth models also use the truncated 8x8 gravity model

instead of the full 21x21 field. The reason is the same as

for the filter tests: the truncated field gives better ore-

diction performance. Table 5-7 presents the results of five

tests conducted in the study of this gravity model anomaly.

The setup for each test was the same as for the CDC and SDC

truth models, with only the gravity model changing. The

coefficient of drag was estimated in all tests. The RMS

values shown are the weighted RMS observation residuals for

the given three day span; the predict span is from Seotember

2, 1977 through Seotember 4, 1977. The prediction erfor-

mance degradation can be seen by comparing the first and

third tests or the second and fourth tests. The parallel

CDC and SDC tests show that the henomenon is not satellite

theory dependent: it is a force model anomaly. The satel-

lite SV10299 was in a 201x331 kilometer orbit and had an

89.93 minute period; it made sixteen revolutions per day.

Calculations indicated that the resulting resonance with the

sixteenth order geopotential harmonics was very share: long

periodic motions at approximately 960 times the orbital

period were introduced. The last test presented in Table

5-7 indicates that the resonant geoootential coefficients

(the coefficients of sixteenth order and degree varying from

sixteen through twenty-one) account for the degradation of

the prediction performance.
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Table 5-5
Semianalytical and Cowell Truth Ephemeris

RMS Differences

Fit Span Differences

August 30, 1977 to September 1,

POSITION RMS

1977

VELOCITY RMS

(KM)

RADIAL
CROSS TRACK
ALONG TRACK
TOTAL

0.446040-02
0.193940-01
0.11655D-01
0. 30620-01

0.113520-04
0.226290-04
0.512490-05
0.25830D-0'&

Predict Span Differences

September 2,

RADIAL
CROSS TRACK
ALONG TRACK
TOTAL

1977 to Setember

0.435560-02
0.310770-01
0.101660+00
0.106390+00

4, 1977

VELOCITY RMS

(KM/SEC)

0.118310-03
0.362220-04
0.530050-05
0.123850-03
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Table 5-7
GEM 9 Gravitational Coefficient Model Anomaly Data

Notes: 1. GEM 9 Gravity coefficients were used.

2. The drag coefficient was estimated in all runs.

3. All runs included drag effects and lunar-solar
third body erturbations.

4-

O
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Run Gravity Fit Span Predict Span Drag
Type Field RMS RMS Coefficient

CDC 3x3 1.63 13.41 1.842

SDC 3x8 1.46 19.06 1.841

CDC 21x21 1.61 57.40 1.891

SDC 21x21 1.34 53.45 1.339

8x3
SDC plus (16,16) 1.36 55.75 1.883

-(21,16)



There are several possible explanations for these

results:

1. The sixteenth order GEM 9 geopotential

coefficients may be in error;

2. Additional sixteenth order geopotential coeffi-

cients beyond the sixteenth through twenty first

degree coefficients may be required by the sharp-

ness of the resonance and the low altitude of

SV10299;

3. The Harris-Priester Density Model may be inaporoo-

riate for use with the GEM 9 Gravity Model in this

share resonance situation; and

4. The coefficient of drag estimated in the tests

with poor erformance may have been biased, either

by not using a time varying model, or by using the

Harris-Priester density table for F10 7=1001

which may be too far from the real values of about

35.

It is interesting to consider [19] two facts about the

GEM 9 gravity modelling process [36]:

1. The GEM 9 coefficient solution did not use track-

ing data from any 16 rev/day satellites; the solu-

tion did use several satellites with orbital

frequencies ranging from 12 revs/day to 15 revs/

day;
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2. The coefficient error estimates oroduced by the

GEM 9 solution showed a sharo increase for the

16th and higher order coefficients, in comparison

with the error estimates for the 12th order

through 15th order coefficients.

While these results make the possibility of errors in the

sixteenth order GEM 9 geopotential coefficients at least

plausible, clearly more work is required before any credible

conclusions can be drawn. In oarticular, the whole question

of atmospheric modelling must be carefully investigated,

both in terms of general model errors and in terms of the

effects of the small geomagnetic storm that occured during

the predict san.

5.2 Real Data Test Case Filter Results

This section presents the results of several tests

examining the erformance of the EKF and ESKF for the real

data test case formulated above. These results are of

interest for several reasons:

1. Real observational data of a low altitude earth

satellite was processed, so that real-world errors

in the observations, the gravitational and drag

force models, and the event times and coordinate

transforms are present;

2. Enough data was rocessed so that the filters

achieved a steady state, in spite of the large

initial errors; and
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3. The rocess noise strength was computed using the

model developed in Appendix A, so that the success

of that model can be judged from the filter

histories.

The results from five filter tests are reported in this

section. Four of the tests are ESKF tests; there is only

one EKF test, reflecting the fact that the a riori covari-

ance and the rocess noise have already been selected. The

four ESKF tests investigate the effects of the integration

grid length and the force model on the erformance of the

ESKF for this long arc test case. These issues were inves-

tigated in Chanter 4 for the short arc test case. The

results presented there indicate that ESKF accuracy has a

slight dependence on certain force model truncations and a

much greater dependence on the integration grid length used;

these issues were discussed in Chanter 4 in terms of the

question of whether or not to uodate the nominal trajectory

after a station ass. The SKF tests in this section were

designed to extend those results to a long arc case.

The results from all of the filter tests are shown in

Table 5-3. This table presents the force model truncation

and integration grid length options selected for each ESKF

run, the final coefficient of drag estimate for each run,

and the RS trajectory error statistics for the difference

between a one day filter estimate prediction and the CDC

truth ephemeris. These results support the following

statements:
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Table 5-3
Real Data Filter Performance Results

* units are kilometers

Notes: 1. The 3 1 matrix was comguted in all SKF' runs.
2. All filter tests included drag coefficient

estimation.
3. The E'F used the transformed initial conditions

and rocess noise of the SKF runs.
4. The ESKF force model otions are:

option 1: same as Semianalvtical Truth, Table
5-5

option 2: imoroves on otion 1 by taking all
first order short oeriodics to fourth
order in e, and including J 2-raq and
drag-drag coupling in the AOG.

4
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Inout ESKYF Test Runs The ET(F
Parameters Test Run

A 3 C T

1 Force Model 1 1 1 2

2 Integration
Grid Length 43200. 29000. 9600. 21000. 10.

Performance

Radial RMS* O.040 0.053 0.056 0.046 0.047

Cross RMS* 0.072 0.079 0.81 0.057 0.048

Along RS* 0.405 1.073 1.646 0.262 0.507

Estimated Drag
Coefficient 1.89 1.99 2.06 1.88 1.93



1. The accurate estimation of the coefficient of drag

is essential for ensuring the prediction accuracy

of a low altitude satellite orbit. It can be

shown that a five oercent change in the drag

coefficient can produce along track errors of

several kilometers after one day;

2. Neglecting the along track errors as being

contaminated by drag coefficient-induced errors,

then all of the filter tests show equivalent

performance to within the tolerance of the SDC and

CDC truth ephemeris agreement (see Table 5-6);

3. Each of the filters essentially reproduces the

estimation results of the CDC truth ephemeris.

Six aspects of the filter test runs of Table 5-8 are now

considered in detail.

5.2.1 The Effects of Drag Coefficient Errors

The effects of drag coefficient errors can be assessed

either directly or indirectly. A direct assessment can be

derived by considering how the effect of a semimajor axis

rate propagates through the mean motion, into a resulting

perturbation in the mean anomaly; a perturbation in the mean

anomaly maps directly into an along track error.

An indirect assessment of the effects of a drag coeffi-

cient error is presented here, by comparing the ESKF run D

with the EKF run. Figures 5-1 and 5-2 show the along track

177



t . 4 .4
.

2
S

S

*. *46. .4 .4.4 m I"! .4.f b41 ' . .Wm 1 4 *41 ' .WMM

t

2
U

2 S
m

2
2

'
S

I

s

2
S

*
S

it

S
m

s

m

s
s

s

a

aS

*

2

S

r

2
2

s 2m
I

s

S

S

2m

S

U I

a'% I
IL I. I

0.lQI uIU WUkm.
W.0 r,

2.
.

o II

.

P.-

o I

:

. I

* P. * O _ m

*I

gS

a

a

S

2

2

2
*

*

*M1l4.4 .4- -1.494 .- 414.4. .,41.4.

. . o o

O; m o in o c
I I I

S

2

2$
2

S4m

2'a 'a
is

a

a
2

: 

.·MMW4 .341,404 .M.4MM -MM . . MN14

4C C C % 
in3 0 0, 0 0ur~~~~~~l .eJ 0 IA 0 IA-r '4 Ih IAr A

A

<-dozeI P--w.u a1413 wSI-uwm 12 Rwsue>1

178

A

2
2

e

.'a,

S
Iaz

.* 4

OI j
3. <
IW

. UE-,

-4J
I m

54

o P PdM -: 50: *1 4). C U

o o:~ C

*m kr34 q 34

* 14_ _=
:g C.

CU 

tyl
a r.
10

r--l
6; 4

Z4 
* 

I.I

"C

1l
In

0)

r14

rT4



*441.4 411 .04 M.4 .4 - . . 14 .4 .44444 .441.44444 .6. 4. -4 .44444-44 .441.41-41.

* 3

3
*

3

*

*

3

3

*

I

3

*

*

C

I.

* ICu

* IC
3 IC

3 I
* 9.

3 I-

I~~~I

3 ~~~~·I

* ~ICI
* IN

3

*

3

*

*

*

*

*

3

3

I ,.,-,.4 .- .41. 41-,4- .I4- .44 .- .H 1. ,41- ·

O 0 . · a
CD C a 0 0
M M N N 

3

3
*

*

*

3
*

*

*

*
*

*

*

3

*

*

*

M

*

*

*

*
*

*
*

3

*
*

3

M -4 F 44 *4 .44*4F4 .4 k o.- .4 44 4 .44-4I1w I

o o o o a

o .i. . I. .a a I 4 a

a
C

a

C
In

4

0

an

.1

C;

.)
co
U

n)

us <to

C- 0
M In A

E~rE
U

r.

CI

NI

0)
II

-d
r4

.14

rM4

<C a O0y O u C WaWU U == 4 -iaJ ?

179

l -

a- 

o
o.0C
a-

wK

a00
9
E5

bJ

Ua"

II.IL
C

I-4

0C3c
3r

.4

t
l -

ilk

-

I

i
I

II

I
.1



differences between the CDC truth ehemeris and the EKF and

ESKF filter predictions for August 31, 1977. The along

track differences are signed, and are commuted as the CDC

truth minus the given filter rediction. These two figures

imply a total along track error between the KF and ESKF of

1.5 kilometers after one day, growing from an essentially

zero difference. Some of this error is due to initial

orbital element differences between the EKF and ESKF redic-

tions; these initial orbital element differences and the

difference between their resoesctive drag coefficient esti-

mates are given in Table 5-9. All of the differences are

very small.

The critical differences for along track error growth

are the semilnajor axis error and the drag coefficient

error. A simole two body dynamical analysis shows that the

semimajor axis error accounts for about 300 meters of the

final 1.5 kilometer trajectory difference; the remainder is

accounted for by semimajor axis error rate induced by the

coefficient of rag difference. Notice that the drag

coefficients differ by only three ercent, which is a quite

acceptable error in a rag coefficient estimate. These

results justify essentially neglecting the along track RMS

results in Table 5-3 when comparing the oerformance of

various filters.

5.2.2 Preliminary Timing Results

The results of Table 5-3 indicate that the KF and ESKF

recover from large initial errors to essentially reproduce

the CDC truth ephemeris estimates. This conclusion is

interesting for two reasons:
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Table 5-9
EKF and ESKF Element Differences

Table 5-10
Real Data Test Case Timing Estimates

* units are minutes:seconds

1'81

Element Difference /EKF-ESKF D/

a 2.1 meters

e 4 x 10-

i 0.7 microradians

1.6 microradians

X 0.5 microradians

CD 0.05 = 3%

Filter Run CPU Execution Time*

ESKF 3 0:17.10

ESKF D 0:25.53

EKF 1:57.24



1. CDC and SDC tests starting with the same

EARLYORB based initial elements and constrained to

process the whole day of observations in one batch

could not converge; convergence can be obtained

-when shorter arcs of observational data are

processed first to reduce the size of the initial

errors.

2. The second reason has to do with efficiency. The

filter runs required only one pass through the

data and started from large initial errors; the

CDC truth run required four asses and started

from much smaller initial errors.

It appears that the filters can achieve about the same

accuracy as the batch differential corrections estimators

with increases in efficiency and without sacrifice of any

convergence properties.

Timing estimates for the KF and two ESKF tests from

Table 5-3 are resented in Table 5-10. The times given are

based on the GO sten CPU times required by the respective

filter tests for processing the observations. The ESKF

tests allow comparison of the timing requirements of the two

force model options used. The CPU times shown indicate that

the ESKF tests are between four and seven times as efficient

as the corresponding EKF test. This estimate of the

efficiency advantage of the ESKF should be conservative, as

indicated in Chapter 4.
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5.2.3 ESKF Integration Grid Length Selection

This section discusses the effect of the integration

grid length on ESKF performance. The results from the short

arc test case of Chapter 4 show that shorter integration

grid lengths do not necessarily yield improved performance.

An upper bound on the integration grid length is imposed by

the bounds on the region of validity for the linearization

assumption required by the ESKF.

Figures 5-3 through 5-7 show the filter histories of

the osculating semimajor axis error for each of the filter

tests presented in Table 5-8. The variable DA is the actual

error, while the variable PA is a three standard deviation

bound. The histories start after the initial condition

transient has decayed, to allow the later detail to be

seen. The semimajor axis error was computed relative to the

CDC truth ephemeris. The error history from the EKF is

included (as Figure 5-7) to provide a baseline against which

the impact of varying the ESKF integration grid length can

be seen.

The integration grid lengths used by each ESKF test

were presented in Table 5-8. Using this data together with

a detailed study of the EKF history and the histories of the

ESKF tests yields three important observations:

1. Each ESKF history shows transients at the end of

each integration grid; the transient at the end of

the first integration grid was always the largest,

due to the large error in the initial orbital

elements (58 kilometers).

183



REFiL DPTI TEST C FSE:
ELEMENT ERROR I! - -RIES

CR

SV10299

PR

T
seconds

Figure 5-3. ESKF Semimajor Axis Error History, Run A
(grid length = 43200 seconds)
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RERL DTR TEST CE: S 1 0299
ELEMENT ERROR HISTORIES

DR
Lf
EC

toa)

-. I0

X PR

T

Figure 5-4. ESKF Semimajor Axis Error History,
(grid length = 29000 seconds)
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RErL DRTR TEST CASE: SV10299
ELEMENT ERROR HISTORIES

DOR P R

seconds

Figure 5-5. ESKF Semimajor Axis Error History, Run C
(grid length = 9600 seconds)
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RERL DRTR TEST CRSE: SV10299
ELEMENT ERROR HISTORIES

o R PR

T
seconds

Figure 5-6. ESKF Semimajor Axis Error History, Run D
(grid length = 21000 seconds)
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REPL DRTR TEST CSE:
ELEMENT ERROR HISTORIES

o DR

SV 1 0299

PR

T
seconds

Figure 5-7. EKF Semimajor Axis Error History
(integration stepsize = 10 seconds)
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2. The ESKF tests B and D used intermediate

integration grid lengths and show the smallest

transients. The other ESKF tests used much

smaller or much larger integration grid lengths

and show much larger initial condition

transients. Notice that the integration grid for

run A ended in the middle of a long data outage

(see Table 5-3); this may artially account for

the large size of the transient for that test.

3. All of the filter histories agree quite closely

from 60,000 seconds on. This implies that the

tested integration grid lengths do not cause any

appreciable accuracy differences once steady state

filter operation has been achieved: the lineari-

zation errors for a steady state nominal trajec-

tory are small.

The error histories for the other orbital elements show a

very similar behavior, verifying these statements.

5.2.4 EKF and ESKF Steady State Performance

This section describes the steady state performance of

the EKF and ESKF. Performance is measured by comparing the

EKF and ESKF position estimates with those of the CDC truth

ephemeris. Recall that the filter tests use the same force

model as the CDC truth ephemeris. Thus the performance that

is being measured is the ability of the filters to reproduce

the batch DC estimate, in the oresence of real-world obser-

vation and force model errors.
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Figure 5-8 and Figure 5-9 show the position error

histories for the EKF test and the ESKF test D. The

variable DR is the actual error, while the variable PR

represents a three standard deviation bound. Note that the

histories start after the initial condition transient has

decayed. There are four important observations to make:

1. The two filter histories are essentially

identical, confirming all of the ESKF design

assumptions for this test.

2. Both of the filter tests achieve a final position

error of less than 50 meters with respect to the

CDC truth eohemeris; the prediction error results

presented in Table 5-3 verify this accuracy of the

final filter estimates.

3. The transients in the osition error and in the

error bound result from the observation history,

oresented in Table 5-3. Each increase in the

error or its bound reflects a data outage;

decreases reflect the orocessing of new

observations.

4. The actual position error is greater than the

three standard deviation bound, indicating either

slow filter convergence or apparent divergence.

The osition error history for only one of the ESKF

tests, test D, was resented here. The other ESKF tests

show larger initial condition-related integration grid

transients that are not oertinent to this discussion; note,
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REFRL DTR TEST CFRSE: SV10299
ELEMENT ERROR HISTORIES
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Figure 5-8. EKF Position Error History
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REAL ORTR TEST CRSE: SV10299
ELEMENT ERROR HISTORIES

Z PR
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Figure 5-9. ESKF Position Error History, Run D
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however, that the steady state performance of all the filter

tests were essentially identical, both in the actual lot

trace and in the final estimate accuracy.

The next section discusses the question of the filter

process noise modelling, which is related to the question of

apparent filter divergence, mentioned in (4) above.

5.2.5 Process Noise Model Verification

This section discusses the erformance of the process

noise model used in this real data test case. The process

noise model is of interest for two reasons:

1. The correctness of the process noise model deter-

mines the accuracy of the filter estimation

results; and

2. The value of the process noise strength was

computed using the method derived in Appendix A.

The results from this test case reflect the

validity of that method.

The EKF and ESKF position error histories presented in

the previous section show an apparent filter divergence:

the position errors consistently exceed the three standard

deviation bound. Note that the position errors remain

bounded, implying that the process noise model is adequate.

A more detailed investigation can be made using the element

histories.
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Figures 5-19 and 5-11 resent the osculating Keolerian

and mean equinoctial element histories for the EKF test and

the ESKF test D, respectively. Variables prefixed by a 'D'

refer to the actual error, while those refixed by a 'P'

refer to the corresponding three standard deviation bound.

Two of the Keplerian variable names require explanation.

The name 'CO' means capital omega, which is , the longitude

of the ascending node; the name 'LO' means lower case omega,

which is w, the argument of erigee. 11 of the other

variable names follow directly from the usual notation.

Figure 5-10 includes the osculating Keplerian histories

for the inclination, the longitude of the node, and the

argument of perigee; each of these element histories shows

an apparent divergence for a significant portion of the

observation span. The mean equinoctial element Q is the

only mean element showing an anparent divergence. The

apparent divergence of Q is fundamental, since the rocess

noise calculations for both the EKF and the ESKF are based

on the process noise strength commuted in mean equinoctial

coordinates using the method given in Aendix A.

Three possible explanations for the mismodelling of the

process noise for Q are roposed:

1. The observations offer poor observability of Q, so

that either a longer data arc or multiple asses

through the data are required;

2. The filters are tracking the real satellite

dynamics, as indicated by the observations, rather

than the truncated and aporoximate force model

employed by the CDC truth ephemeris; and
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Figure 5-10. EKF Osculating Keplerian Element Histories
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RERL ORTR TEST
ELEMENT ERROR HISTORIES

O DCO A PCO

CASE: S10299
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10000 20000 30000 40000
T

50000 70000 80000 90000 1

10000 20000 30000 'O0000 50000 60000
T

70000 80000 90000 

10000 20000 30000 0000 5b00 6O0o ' 700 000 ' bo 000o o000
T seconds

Figure 5-10. continued

196

-,I0
.re
Cd(a
rd

o
c~

=f

DM

I

~0c
(D

J

' I I i I I I I I i A I I ; I I i

t)

-rl
rd
,(d
s4

U,

0
o

o0000

U,o

A~~~~~~~~d M

,0000

oCl"

n I
d -O
rd 0

Cd °

o

0C.
I

E

100000

· 1 _· �1 · · · · · · · · g

li-J \Y \Y -Y Y ---

i 0 10 Is0 0 *$lo

i pq =tr --tlkm--qg

u,

i i i i i i i i i ! ! i i i 

. I

AS m m - /n .o/l mv _

0 s000

1

v"~~~~--n

10

'____



REAL DTR TEST
ELEMENT ERROR HISTORIES
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Figure 5-11. ESKF Mean Equinoctial Element
Error Histories, Test D
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RE-L DRTR TEST CSE: SV 0.299
ELEMENT ERROR HISTORIES
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3. There is an error in either the method or the

statistics used in the process noise strength

calculations of Appendix A.

The second proposed explanation can be made more

specific. The discussion of the CDC and SDC truth

ephemerides indicated that the satellite was in very sharp

resonance with the sixteenth order geopotential harmonics.

The effects of this resonance were not considered in the

process noise calculations of Appendix A. Now a filter

tends to follow the observtions more closely than does a

differential corrections algorithm, so it is possible that a

bias was introduced by the neglect of resonance in the force

model. Certainly the error history of Q indicates that only

a small bias is required. It is interesting to note that

resonance generally causes motions of the orbital plane, and

hence has a significant impact on the equinoctial elements P

and .

In conclusion, Figures 5-10 and 5-11 show that the

process noise model develooed in Appendix A was basically

successful. Additional work must be done in order to

completely explain the apparent divergence of the estimate

of the equinoctial element Q.

5.2.6 Semianalytical Modelling Errors

This section oresents evidence indicting a very small

semianalytical force model error when compared with the real

world dynamics.
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Figures 5-12 and 5-13 resent the inclination errors

from the CDC truth ephemeris for one day redictions of the

final estimates of the EKF test and the SKF test D,

respectively. Notice that the EKF prediction error is quite

smooth, while the ESKF prediction error shows an error

residual with a twelve hour period.

Proulx, et al. [18] investigated similar 12 hour

periodic errors, and successfully modelled a large ortion

of such errors as resulting from the coupling between the

average element rates due to oblateness and the m-daily

short periodics. Proulx's model was employed in all of the

ESKF and SDC tests conducted for this test case; the 12 hour

periodic error shown in Figure 5-13 is the residual error.

While additional work is required to account for this

residual error, its small magnitude does not make such work

an urgent requirement.

5.3 Real Data Test Case Summary

The results of this chaoter extend the conclusions of

Chaoter 4 in several important ways:

1. The EKF and ESKF were used to orocess real

observational data, with the resulting accuracy

consistent with that of the batch CDC and SDC

estimators;

2. The primary impact of the choice of the integra-

tion grid length was found to be due to the

linearization errors induced by the large initial

condition errors used in this test case;
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3. The EKF and ESKF were found to have very similar

filter histories and accuracy when corresoonding

input parameters were used, especially in the

region of steady state erformance;

4. The ESKF was found to have a considerable

efficiency advantage over the EKF, even though the

computer software emoloyed for the ESKF tests has

not been optimized;

5. The process noise model develooed in A.opendix A

was basically verified, although additional work

must be done to improve the modelling for one

element.

In addition to these results, an interesting force

model anomaly concerning the GEM 9 sixteenth order gravita-

tional coefficients was discovered; a good deal of

additional work must be done to identify and rove the

mechanism for the anomaly.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

The primary goal of this thesis has been the design of

improved sequential orbit determination algorithms by anoli-

cation of the computational methods of semianalytical satel-

lite theory to the estimation algorithms resulting from

sequential filtering theory.

Two new orbit determination algorithms are oresented in

this thesis. They are called the Semianalytical Kalman

Filter (SKF) and the Extended Semianalytical Kalman Filter

(ESKF). Both of these algorithms were designed with the

objective of achieving the same accuracy as existing sequen-

tial orbit determination algorithms while retaining the

advantage in computational efficiency enjoyed by semianaly-

tical satellite theory.

The SKF and ESKF designs are based on subootimal fil-

ters: the Linearized Kalman Filter (LKF) and the Extended

Kalman Filter (EKF), respectively. These suboptimal filters

are typically used in sequential orbit determination algo-

rithms and have been found to perform quite adequately. The

use of these filters is important for the SKF and ESKF de-

signs, since they allow a good deal of decouoling between

the computational structures of the satellite theory and the

filter. Chapter 2 oresents the mathematical introductions

to semianalytical satellite theory and to sequential estima-

tion theory required for the design of the SKF and the ESKF.
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Chapter 3 discusses the actual designs of the SKF and

the ESKF. The SKF served as the baseline for the design of

the ESKF. The computational flow of each algorithm is

explicitly detailed to indicate the interaction between the

filters and the satellite theory. The SKF and ESKF assume

that the solve vector consists of the mean equinoctial

elements generated by the semianalytical orbit generator and

any unknown dynamic arameters, such as the coefficients of

drag or solar radiation pressure. This solve vector is the

most natural one for the given satellite theory, and

accounts for all of the ossible interactions between the

satellite theory and the filter solve vector. Chapter 3

also presents the results of three numerical tests conducted

to verify simplifying design assumptions for the SKF and the

ESKF. These design assumptions allow: (1) neglect of the

state transition matrix in process noise calculations, (2)

the use of the LKF state correction prediction equations for

the ESKF, and (3) the use of the 3 1 matrix for short

periodic corrections instead of recomputed short periodic

coefficients in the calculation of the ESKF redicted

osculating elements. Each of these assumptions has a large

impact on the overall efficiency of the SKF and ESKF; the

latter two represent the interaction of the erturbation

theory formulation of semianalytical satellite theory with

the filtering techniques employed.

The results from two end-to-end orbit determination

test cases are presented in Chapters 4 and 5.

The test case of Chapter 4 used a short arc of simu-

lated data for a low altitude polar satellite to examine the

performance characteristics of the SKF, ESKF, LKF, and EKF
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during their transient response to a large initial condition

error. No errors were introduced in the filter dynamical

models, but errors were added to the observations. A real-

istic initial condition error was generated by using the

GTDS early orbit algorithms. The performance of each filter

was tested subject to several of the applicable input para-

meters. These parameters included:

1. the a riori covariance,

2. the rocess noise model,

3. the filter force model,

4. relinearization strategy for the nominal trajec-

tory,

5. coefficient of drag estimation,

6. BI matrix short eriodic linearization or trunca-

tion,

7. the semianalytical interpolator structure, and

8. mean early orbit initialization for the SKF and

ESKF.

The performance of each test was measured in three

ways: by the accuracy of ephemeris redictions based on the

final filter estimate; by the oosition error history during

the observation rocessing soan; and by the efficiency esti-

mate given by the CPU time required for execution.

The test case of Chaoter 5 extended the results of the

short-arc test case of Chaoter 4 in two ways: the filters
processed a sufficient amount of data to achieve a steady
state, and real satellite tracking data was orocessed, so
real-world errors occurred in the observations and in the

force model. Only the EKF and ESKF were used to process
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this data. The EKF and ESKF tests used corresponding

(transformed) initial conditions and process noise models.

The nrocess noise model used in these tests is develooed in

Appendix . This model is aproximate but allows considera-

tion of the effects of robable real world force model

errors. Several ESKF tests were conducted to determine the

impact of semianalytical force model truncations and the

integration stepsize on ESKF erformance. The same erform-

ance measures used in Chaoter 4 ere used here: orediction

accuracy, the observation span error history, and the CPU

execution time. The orediction accuracy and the observation

span error history were measured relative to the baseline

provided by a batch differential corrections (DC) orbit

determination algorithm.

The real data test case formulation uncovered an

interesting force model anomaly: the interaction of the GEM

9 16th order gravitational coefficients with the Harris-

Priester Amtosoheric Density Model and drag coefficient

estimation caused a degradation in the prediction erform-

ance of the DC algorithms. The given satellite was in a

very sharp resonance with the 16th order geopotential

harmonics. The results of several DC tests defining this

anomaly are resented in Section 5.1. More work is required

to comoletely exolain this anomaly.

6.1 Conclusions

The fundamental conclusion to be drawn from the work

presented in this thesis is that substantial improvements in

efficiency can be made without loss of accuracy by the

application of semianalytical satellite theory to the
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sequential orbit determination roblem. This conclusion is

supported by the results of the short-arc test case of

Chapter 4, used to examine filter transient response, and by

the results from the many-orbit test case of Chapter 5, used

to examine steady state filter erformance in the resence

of real-world model errors.

Several other significant conclusions can be stated:

1. The computational structures of the LKF and the

EKF are comoatible with the interpolator struc-

tures of semianalytical satellite theory; the one

possible exception occurs when the ESKF is used

with the oosition and velocity interpolator [see

Equation (3-10) and Section 4.3.2].

2. The assumptions employed in the design of the SKF

and the ES(F have been verified, both by direct

numerical tests, and by the final filter

Performance.

3. Semianalytical Satellite Theory offers consider-

able flexibility for truncations in the analytical

development of the force model, with the otential

for large improvements in the efficiency without

loss of accuracy.

4. The length selected for the integration grid can

have a significant effect on SKF and ESKF accuracy

during transients; there were not any detectable

accuracy differences during steady state filtering

for the cases considered.
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5. The linearized corrections to the short periodic

functions obtained by use of the 31 matrix are

important for the accuracy of the ESKF predicted

osculating elements.

6. The process noise model employed by any of the

filters tested can have a significant impact on

the resulting estimation accuracy. The process

noise model developed in Apendix A was generally

successful in accounting for the dynamical model

errors in the real data test case.

7. Drag coefficient estimation can be very important

for the accuracy of the ephemeris predictions of

low altitude satellites.

8. The Epoch Point Conversion Iteration (4-1) gives a

low-cost means of obtaining good mean equinoctial

elements.

9. The process noise and a priori covariance can be

successfully transformed from mean equinoctial

coordinates to osculating position and velocity

coordinates when corresponding ESKF and EKF tests

are desired.

10. The EKF and ESKF are able to successfully estimate

and predict satellite orbits in the presence of

real-world observation and force model errors.

11. The EKF and the ESKF offer significant improve-

ments in erformance over simple global lineariza-

tion algorithms like the LKF or the SKF. There
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are specific applications, however, where the

simpler computational structures of the LKF and

SKF will make their use uniquely desirable [61.

Each of these conclusions is supported by the results

from the test cases considered. None of the conclusions is

totally unexpected. It is desirable that additional supoort

be provided by further testing. This and other issues for

future work are addressed in the next section.

6.2 Future Work

The research resented in this thesis motivates addi-

tional work in filtering theory, in semianalytical satellite

theory, and in the requirements for the operational imple-

mentation of the orbit determination algorithms studied in

this thesis. Recommendations are also )resented for areas

requiring further testing, both to verify the conclusions of

this thesis and to establish the erformance characteristics

for different orbit determination oroblems.

One of the imoortant results of Chapter 4 was the

discovery of the sensitivity of filter performance to the

process noise model emoloyed. This discovery motivated the

develooment of the process noise model of Appendix A, which

allowed the a priori calculation of a orocess noise

strength. Alternative approaches to the orocess noise

modelling problem are given by the work of Wright [351 and

the covariance correction term of the Gaussian Second Order

Filter, which model gravity model errors and filter lineari-

zation errors, respectively. The application of these

alternate aoopproaches to the semianalytical filters discussed
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herein deserves further study. In particular, it may be

possible to use the slowly varying nature of semianalytical

dynamics to develop very efficient implementations of these

methods. The Dynamic Model Compensation (DMC) method [34]

may offer additional benefits.

Two extensions of Semianalytical Satellite Theory will

help support additional testing of the SKF and the ESKF.

The test cases in this thesis studied low altitude nearly-

circular satellite orbits. The development of explicit

third body short eriodics will allow mean element initiali-

zation for high altitude satellites at low cost, by use of

an EPC rocedure. The development of analytical 31 matrix

models for the third body perturbation and for the oblate-

ness perturbation (closed-form in the eccentricity) will

allow the ESKF to be tested efficiently with high altitude

and high eccentricity satellites, respectively.

Several asoects of the operational imolementation of

the SKF and ESKF require investigation. Very little has

been done to establish the tradeoffs between accuracy and

efficiency when various truncations of the analytical

development of the semianalytical force model are made. The

tests presented in this thesis indicate that large increases

in efficiency with only small losses of accuracy are

possible. The question of software ootimization should also

be addressed. The current implementation did not have

efficiency as a rimary goal, and so a good deal of ootimi-

zation is ossible. 9 timing budget of the program flow

would be heloful here. Finally, one of the imoortant appli-

cations for the SKF and ESKF may lie in the area of autono-

mous satellite navigation. The standard Kalman rediction
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and update algorithms currently implemented should be rather

easily replaced by a more stable square root formulation.

The requirements for implementing semianalytical satellite

theory in a small word length computer should be studied.

The last area for future work consists of recommenda-

tions for additional orbit determination test cases to be

examined. There are many extensions to the test cases

studied in this thesis. For example, erformance evalua-

tions for high altitude and high eccentricity satellites are

of interest. The question of steady state accuracy when

very high accuracy observations are available is imoortant.

Equally important is the estimation accuracy when there is

only a very soarse schedule of observations. Further tests

are required to establish the exact oerformance rooerties

of the ESKF when the osition and velocity interpolator is

used (see Section 4.3.2). The last test case roosed for

future study examines the effects on filter accuracy and

stability of deterministic force model errors, such as

satellite maneuvers, or ranid atmospoheric density

changes. The use of real observational data offers one

means of making these tests. In this regard, a further

investigation of the force model anomaly can be made by

using the tracking data from the M1GSAT satellite. This

satellite should also have been in a very shar? 16th order

geopotential resonance during several days of its decay.
4
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Appendix A

PROCESS NOISE MODEL SELECTION

The results from Chapter 4 show that filter estimation

accuracy can be very sensitive to the process noise model

used. A trial and error search for the process noise

strength giving the best estimation accuracy could be con-

ducted for the simulated data test of Chapter 4, since a

truth model existed for measuring that accuracy. The real

data test case of Chapter 5 and efficiency requirements in

general motivate the development of more rigorous methods

for process noise modelling. This appendix discusses the

selection of the process noise strenqth for the real data

test case and indicates extensions for other situations.

The transformation of the process noise covariance from

equinoctial coordinates to cartesian coordinates for making

analogous EKF and ESKF runs is also presented.

A.1 Process Noise Analysis for Semianalytical Satellite

Theory

Process noise models are used to account for the growth

of the true estimation error due to dynamical modelling

errors. The basic requirement for stable estimation with a

filter is that the true errors correspond to the covariances

computer by the filter; the squared errors should roughly

equal the computed variances. When the covariances are too

small, the Kalman gain is also too small, so the required

corrections are not made. When the covariances are too

large, the Kalman gain is correspondingly too large and over

corrections are made that can result in unstable oscillation
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of the estimate errors. These insights form the basis of

the three approaches to process noise modelling found in the

literature:

1. Use of the white noise model for the process

noise, with the strength set either by trial and

error or by physical considerations [3] , [20] ,

[29], [33];

2 Modelling the process noise as a first order

Markov process, with the initial conditions and

dynamics selected parametrically for optimum

performance [34]; and

3. Analytical development of force model error

correlations based on geodetic error analysis

[35].

The first approach is used here, taking advantage of the

near-linearity and slowly-varying character of the semi-

analytical dynamics.

The development of the process noise model assumes the

formal existence of the true dynamical model as well as the

known nominal model. These are represented as

a = A2(a) + .. ; a(to) = a (A-l)
and

and
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aN = AN( N) + u = N (A- 2)

respectively. Note that the true model contains the

complete expansion of the averaged equations of motion, so

that no analytical approximations are made at all. The

nominal model is truncated at first order, consistent with

the Semianalytical Satellite Theory developed in Chapter 2.

Also, the first order term AN is not exact, reflecting

the errors in known force models. The term u is the process

noise; it is to be selected to minimize the difference

between aN and a.

Let a - a - aN be the trajectory error between

(A-1) and (A-2). Write A1 () = AN( ) A 1

to explicitly account for force model errors. A perturba-

tion equation for a results from subtracting (A-2) from

(A-1)

-a = + A- Aa +
-- 2- a --3aaN-a N-N N

(A-3)
+ 6A (a) + A(a) +

with initial condition Ao = o - aNO' This

equation accounts for all three sources of dynamical model

error in the perturbation equation employed by semianaly-

tical filters; the second, third, and fourth terms on the

right hand side of (A-3) are due to:
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1. neglect of higher order terms in the linearization

of the equations of motion required by filtering

theory;

2. first order force model errors; and

3. truncation of the asymptotic series expansion of

the averaged equations of motion (see McClain [9]

for the general development of this series).

These error sources are modelled using process noise as

Aa - A N + v ; aN = (A-4)
-N

The new process noise v is to be selected for the best

matching of Aa and AaN. This matching is done statis-

tically, by equating covariances, in recognition of lack of

knowledge of v.

Equation (A-4) is a linear equation and so has a state

transition matrix solution *(t,t ). The solution to

(A-4) is

t

AaN(t) = f (t,T) (T) dT (A-5)
t
o
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Now semianalytical (and other VOP) dynamics are almost

linear, so the approximation (t,to) = I is quite good,

as discussed in Section 3.4. The trajectory error becomes

AaN (t) =

t

f V(T) dT
t0

Using the white noise model for the process noise and assum-

ing it has constant strength gives the result verified in

Section 3.4.1

A(t,to ) = Q (t - to )0 ( 0) (A- 7)

On the other hand, another expression for A can be derived

using semianalytical heuristics. Since v is a vector of

unmodelled mean element rates, it is slowly varying. It can

also be deterministically modelled, since it results from

errors in deterministic models. The new expression for A

assumes that v is not random; thus the mean square value of

V is

A(t,to) =
t t

f f V( T) () dT da
t t0 o

I vT * (t - t )o
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Equating this result with (A-7) gives

Q = v v at (A-9)

This result is approximate, as indicated in two ways.

First, no time argument is given for the mean element rate

errors, v. Rather, these rates will be computed based on

knowledge of the truncation, force model, and initial condi-

tion errors; these error rates are assumed (and verified) to

be sufficiently slowly varying. Second, some mean value for

the prediction interval t-t0 must be computed, to give

the best fit between the time-linear model (A-7) and the

quadratic model (A-8). The mean data outage time is a good

value for At, since filter divergence usually starts during

an outage.

A.l.1 Real Data Test Case Process Noise

The process noise model presented above in Equations

(A-1) through (A-9) was initially developed for the real

data test case in Chapter 5. The process noise strength for

that test case was selected to account for atmospheric

density model errors and geopotential coefficient errors.

The computations giving the process noise used for the real

data test case are summarized here, step by step.

1. At was taken to be the mean data outage time.

Outages on August 30, 1977 ranged from 30 seconds

to 4.5 hours. The mean outage time was 1.125

hours or 4050.0 seconds.
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2. A literature search was conducted to determine

geoootential coefficient errors. Reference [36]

gives the geoootential coefficients and estimated

errors for the GEM 9 field used in GTDS. Typical

coefficients and their errors are resented in

Table -1.

A mean value of are1 over all geopotential

coefficients was desired, for commutation of v.

This value was comouted by means of a weighted

average of the geonotential coefficient errors.

The formula used was

N- n

=

rel N, n 2 (A-10)
I 7+5

n=O =O

The numerator represents the resulting variances

in the geoootential due to the random coefficient

errors 6 The denominator scales this stan-
nrm

dard deviation to make it relative to the whole

geonotential perturbation. For an 8x3 field,

a = 2.4 * 10-4 resulted.
rel

3. A literature search [371, [381, [39] into atmo-

soheric density model errors resulted in an error

standard deviation choice of are = 20%.
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Table A-1
Geootential Coefficients and Errors

Taken from Gravity Model Imorovement Using Geos-3
(GEM 9 & 10)
GSFC, 1977

Notes: C Snm' nm = geopotential coefficient

6 = coefficient error
nm

6

a - nn_ = relative errorre- 1 2_
C 2 + S2

nm nm
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n, Cn,m n,m 6n,m rel

1-6 1E-6 1E-9

2,0 -434.2 --- 1 2E-6

3,0 0.953 --- 1 1E-3

4,0 0.542 --- 1 2E-3

5,0 0.068 --- 2 3E-2

6,0 -0.151 --- 2 1E-2

7,0 0.093 --- 2 2E-2

3,0 0.051 --- 2 4E-2

15,0 0.001 --- 5 5E-0

17,0 0.016 --- 5 3E-1

2,2 2.434 -1.393 3 1E-3

3,1 2.023 0.252 5 2E-3

3,2 0.392 -0.622 8 7E-3

4,1 -0.533 -0.465 5 7E-3

4,2 0,353 0.663 5 7E-3

4,3 0.933 -0.203 4 4E-3
.. .



4. Mean element rate histories were generated over a

12 hour arc with the semianalytical integrator.

Mean element rate contributions due to the geopo-

tential and drag were printed separately. An 8x8

gravity field was used. The rates are given in

Table A-2. The relative error standard deviations

calculated in 2) and 3) are used to compute the

probable errors in the mean element rates of Table

A-2; these errors and the resulting total probable

error are shown in Table A-3.

5. A diagonal process noise strength matrix Q was

calculated, using

Qi= v2 t (A-11)ii = vi At

The resulting value of Q is

Q = diag[2.E-8,4.E-19,2.E-16,1.E-17,2.E-17,8E-16]

The elements h and k and the elements p and q have

similar geometry. The matrix Q is normalized to

give these corresponding elements the same noise

strength. The value of Q used in the test case of

Chapter 5 is

Q = diag[2.E-8,2.E-16,2.E-16,2.E-17,2.E-17,8E-16]
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Table -3
Mean Element Rate Probable Errors

V = C A * 
- -- rel

Total Rate Errors

-2 .E-6
-1.E-12

= 2 .E-10
5.E-11
7 .E-11

-5 .E-10
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v Drag v Grav

a -2.E-6 0. 

h -3.E-12 2.4E-12

k 2.E-10 -2.4E-13

o -2.E-12 4.SE-1ll

q 2.E-12 7.2E-ll1

A -1.E-12 -4. E-10
. . . . , . . ! , !



A.1.2 Process Noise Modeling Extensions

The method used for the process noise computation for

the real data test case of Chapter 5 can be used to model

the process noise terms due to initial condition (i.e.,

linearization) errors and truncation errors. The basic

requirement is the computation of the mean element rates v

due to the error source. The state dynamics bias correction

term from the Second Order Gaussian Filter can be used as an

estimate for v due to initial condition errors. McClain's

[9] equations for higher order terms in the averaged equa-

tions of motion must serve when modelling the process noise

due to mean element rate truncation.

A.2 Process Noise Transformations

The desire to compare SKF and ESKF performance with the

LKF and EKF implemented in the RD GTDS FILTER program raised

the question of the validity of such comparisons. That is,

the semianalytical filters have parameters and inputs given

in mean equinoctial coordinates, while the Cowell filters

have cartesian inputs and parameters. The transformation of

the initial state and covariance are straightforward and are

discussed in Chapter 4. The equations for transforming the

process noise are developed here.

The process noise covariances in mean equinoctial and

cartesian elements are

t T

A (t,t f (tT) Qa(T) a(t,T) dT (A-12)
a oaa 0
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Ax(tto) =x 0

t T

I x(t, T) Qx(T) (t, T) dT
t
0

respectively, where

3a(t)
a (t,T) = _

aa(T)

3x(t)

%x(tT) = ax(T)

The process noise strengths Q are related in the same manner

as the initial covariances. Thus

ax(T ) ax(T) )
Q (T ) = [ - ] * Qa(T) · [-]aa(T) aa(T)

(A-16)
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The partial derivatives px can be expanded by the chain

rule in terms of a by

ax(t) ax(T) -
%x(t,T) =[ - ] *a(t,) * [- ] (A-17)

aa(t) aa( T)

Substitution of (A-17) and (A-16) into (A-13) gives the

desired transformation

ax(t) ax(t)
AX(tt) = [ ] a(t to ) [ o ] (A-18)

aa(t) a(t)

There are two comments. First, the partials of position and

velocity are time varying, so the process noise covariance

calculated in (A-18) is not linear in time, contrary to GTDS

assumptions. Second, the implementation of (A-18) requires

the computation of the position and velocity partials; these

partials can be expanded by the chain rule using the

osculating equinoctial elements as intermediate variables as

done in (2-34). Only the two body partials are used; the

B1 matrix of short peridic partials are neglected.
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Appendix B

SOFTWARE OVERVIEW

The SKF and ESKF were implemented in the testbed

provided by the version of RD GTDS resident at CSDL. The

Semianalytical Satellite Theory developed at CSDL has been

implemented in this version of RD GTDS. This version of RD

GTDS also contains an LKF and EKF capability, implemented by

the FILTER program. Many of the FILTER subroutines are also

used by the SKF and ESKF. The program development of the

SKF and ESKF is summarized below as well as the set up for

execution.

B.1 Software Description

Four new subroutines were written and forty-four exist-

ing subroutines were modified in this thesis work. Twenty-

one of these routines were written or modified for SKF and

ESKF implementation, nine for test case support, and

eighteen for bug correction and code clarification.

B.l.1 SKF and ESKF Subroutine Descriptions

Short descriptions of the subroutines written and

modified for filter implementation follow:

COREST: Updates the integration nominal trajectory with

the current filtered correction; modified to allow

SKF and ESKF updates and CDRAG and CSOLAR solve.
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ESTSET: Sets switches for APG and SPPG model selection;

modified to set SKF and ESKF options.

GVCVL: Sets output titles; modified to include mean equi-

noctial variable names.

KF: The Kalman Filter executive routine; modified to

eliminate unnecessary computations to allow effi-

ciency tests.

KFEND: Does end of filtering processing by making the

final nominal trajectory update and propagating

the estimate and covariance to the report time;

modified for SKF and ESKF operation.

KFHIST: A new routine that generates filter state and

covariance histories at observation times in car-

tesian, Keplerian, and mean equinoctial

coordinates.

KFOBS: Controls acceptance of the next observation,

propagation of the nominal trajectory, and compu-

tation of the predicted observation for Kalman

Filter operation; modified to accumulate statis-

tics on edited observations and observation

residuals.

KFPRED: Implements the Kalman Filter state and covariance

propagation equations; modified to interact with

ORBITV for semianalytical state transition matrix

computation and ESKF state prediction.
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KFSTRT: Initializes the filter correction vectors and

observation statistics; modified to initialize

observation residual statistics.

KFUPDT: Implements the Kalman Filter state and covariance

update equations; modified to accumulate observa-

tion residual statistics and to control state and

covariance history output.

OBSPRT: Controls the computation of observation partials;

modified for SKF and ESKF computations to account

for the mean equinoctial to osculating position

and velocity transformation partials (partials

computation is controlled by ORBITV).

ORBITV: The executive for the Semianalytical Satellite

Theory equations of motion and variational equa-

tions. Controls AOG and SPG computations (SPORB)

and APG and SPPG computations (SKFPRT); modified

to control SKF and ESKF nominal trajectory updates

and ESKF state correction prediction and updated

state computation.

OUTSLV: Prints the filter estimate and covariance at the

initial report time; modified to allow mean equi-

noctial variables.

RESINV: Performs initialization tasks for the Semianaly-

tical integrator by initializing the state and the

partials; modified to initialize the mean equinoc-

tial state transition matrix.
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RKINTG: The variable order Runge Kutta integrator for the

Semianalytical equations of motion and variational

equations, written by A. Bobick [20]; modified to

integrate the inverse of the state transition

matrix.

RPTEST: Prints the filter estimate and covariance at the

final report time; modified to allow mean equinoc-

tial variables.

SKFMAT: A new routine that computes the transformation

partials from the mean equinoctial plus dynamic

parameters solve vector to the corresponding oscu-

lating equinoctial variables (i.e., implements the

SPPG).

SKFPRT: A new routine that controls computation of the

Semianalytical state transition matrix (uses the

transition matrix inverse interpolator set up by

RKINTG) and the computation of the Semianalytical

solve vector to osculating position and velocity

transformation partials (implements a local inter-

polator) required by OBSPRT.

SKFUDT: A new routine that updates the Semianalytical

nominal trajectory and reinitializes the integra-

tor at the end of an integration grid.

SNGSTP: Generates the first integration grid and short

periodic coefficient interpolators for Semianaly-

tical Runge Kutta integrator; modified to set up

the state transition matrix interpolator.
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SPORB: Controls calculation of the osculating position

and velocity and mean equinoctial elements for the

Semianalytical integrator at output times within

the current integration grid. Implements the

local position and velocity interpolator and uses

the short periodic coefficient interpolators;

modified to make ESKF updated state computations

more efficient.

B.1.2 Test Case Support Subroutine Descriptions

Modifications to- nine subroutines were required to

support three aspects of the SKF and ESKF testing; summaries

of the requirements and the subroutine descriptions follow.

The coefficient of drag was estimated in two test cases

to improve estimation performance; one subroutine was modi-

fied to support this capability for the LKF and EKF.

AERO: Computes atmospheric drag forces and partial

derivatives; modified to calculate CDRAG partials

for CDRAG estimation by the LKF and EKF.

Two of the test cases required the capability to have

station-specific observation statistics for C-Band tracking

stations. Four subroutines were modified for this

capability:

DSPEXC: This routine is the executive for the DATASIM

capability in RD GTDS; it was modified to allow

the simulation of observations of the same type

with different error statistics.
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OUTDSl: Prints the observation statistics summary for the

DATASIM program; modified to account for station-

specific statistics.

SETDC: One of the RD GTDS control card processors; modi-

fied to read in station-specific observation

statistics.

WEIGHT: Computes the weight assigned to each observation

residual by differential corrections and filter

programs; modified to account for station-specific

observation statistics.

Implementation of the process noise transformation

between mean equinoctial and osculating position and velo-

city frames required modifying three routines. One routine

was modified to support the real data process noise

computation.

AVRAGE: Computes the Semianalytical mean element rates;

modified to print the rate history for gravita-

tional and drag perturbations for the real data

process noise calculation.

ANOISE: Computes the process noise covariance contribution

to the Kalman Filter prediction equations; modi-

fied to include the equinoctial to cartesian

process noise transformations.

SETAPC: Initializes the Kalman Filter a priori and process

noise covariances; modified to account for process

noise transformation initialization.
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SETFIL: The control card rocessor for the RD GTDS FILTER

program; modified to allow control card input of

the process noise transformation option.

B.1.3 Software Bug Removal

Eighteen subroutines were modified to remove errors or

clarify the code. Since the corrections are specific to the

particular subroutine implementations, only the subroutine

names are given here. The modified routines are EDITOR,

ELERD, EO, KFINIT, OBEDIT, OBS, OBSWF, OBSWT, OUTPAR,

RPTIME, RSETRK, SETRUN, SPCOTO, SPJ2PR, VARSP, VRSPAN,

VRSPFD, and WFCONT.

B.1.4 Interaction Diagrams

Software interaction diagrams for key routines of Sec-

tion B.1.1 and .1.2 are shown in Figure B-1. See reference

[3] for additional information.

B.2 Program Execution

This section describes the setun of the JCL, RD GTDS

control cards, and software flags in subroutines ESTSET and

HWIRE as required for SKF and ESKF program runs.

B.2.1 JCL Setup

Up to three data sets may be required for an SKF or

ESKF run.

The Linkage Loader control cards describing the overlay

structure are currently in
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SPT1 2 4 4. SKF .GTDS .OVERLAY. OBJ

The source code, INCLUDE statements, and load modules

for the updated routines of Section B.1 are in

FORT

SPT1244. GTDS.UPDATE. OBJ

LOAD

respectively.

The state and covariance histories may be generated on

output data sets for plotting by setting the flags (dis-

cussed below) IWUPD, IWPRD, and IPRFIL. Data sets of the

required format can be generated by the ALLDS command.

B.2.2 RD GTDS Control Cards

The RD GTDS control cards directly impacting the SKF

and ESKF operation as well as the new control card imple-

mented for station-specific observation statistics are

described here.

The selection of an extended-type Kalman Filter versus

a linearized-type filter remains unchanged from the previous

FILTER implementation but is repeated here for emphasis.

The pertinent control card is

col 1-8 9-11 12-14

FILTER I J
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The variable I=l selects either the LKF or SKF, while I=2

selects the EKF or ESKF. The variable J=l indicates that

process noise covariances should be computed.

Selection between semianalytical and Cowell filters

(e.g., LKF vs. SKF or EKF vs. ESKF) for the same FILTER card

is accomplished by the ORBTYPE card. This card selects the

orbit generator type; it has the format

col 1-8 9-11 12-14 15-17 18-28 39-59

ORBTYPE I J K S T

The pertinent variables are I, S, and T. Setting I=5

selects the Semianalytical Filter while I=10 selects the

Cowell version. The variable S sets the integrator step-

size; typical values are S=10 for Cowell and S=21600 for

Semianalytical integrations. The variable T=1 is required

for semianalytical runs.

The process noise transformation from the equinoctial

frame to the cartesian frame for making a LKF or EKF run

analogous to a SKF or ESKF run is set by the INPUT card; the

format of this card is

col 1-8 9-11

INPUT I

The variable I=l selects inertial cartesian process noise,

while I=2 triggers the transformation. The process noise

strength is input by SPNOISE cards as described in [31; when

I=2 the input strength is taken to be in equinoctial

coordinates.
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The new control card implementing the station-specific

observation statistics is called the "station card zero"

card by analogy with GTDS terminology for the control cards

describing other properties of the tracking station

network. The new card has the form

col 1 2-8 9 10-11,12-14,15-17 18-38,39-59,60-80

/ statname 0 II 12 13 R1 R 2 R 3

where

statname = a legal RD GTDS station name

I1,I2,I 3 = RD GTDS observation type

R!,R 2 ,R 3 = the corresponding observation standard

deviation

The appropriate units are meters, centimeters per second,

and arc seconds for range, range rate, and angle measure-

ments, respectively.

B.2.3 Software Switches

The software switches required for SKF and ESKF opera-

tion are set in the subroutine ESTSET, but interaction of

the ESKF with the position and velocity interpolator

requires the discussion of the subroutine HWIRE. Before the

implementation of SKF software, these subroutines selected

the semianalytical variational equations (APG + SPPG) and

equations of motion (AOG + SPG) force model options,

respectively.
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The flags added to ESTSET affect filter operation and

intermediate output. The output flags are summarized in

Table B-1. There are three flaqs that determine SKF and

ESKF operation and one flag that enables the LKF to emulate

SKF operation by relinearization of the nominal trajectory.

The flag IUPD=l causes relinearization of the Semi-

analytical nominal trajectory for the SKF and ESKF at the

end of an integration grid by adding the filter correction

to the final grid state; when IUPD=2 the semianalytical

linearization is global over the observation span.

The flag INTINV=l turns on the state transition matrix

inverse interpolator; otherwise, the required inverse is

computed explicitly.

The flag ILKFUP=l causes LKF relinearization at inter-

vals specified by DTLKF. Otherwise, the linearization is

global.

The selection of the ESKF versus the SKF is controlled

by the flag IESKF. When IESKF=2, the SKF is selected. The

choice of the ESKF observation prediction equations changes

according to whether or not the local position and velocity

interpolator is being used. The different equations

employed in the two cases are discussed in Chapter 3. The

position and velocity interpolator is switched on and off in

the routine HWIRE; INTPOS=l turns the interpolator on,

INTPOS=2 turns it off. The corresponding settings of the

flag IESKF are IESKF=3 and IESKF=1. Both ESKF implementa-

tions assume that the short periodic coefficient interpo-

lator is on.
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Table B-I
Print Flag Settings
(1 = ON; 2 = OFF)

ISLVPT orint the nominal trajectory elements
before and after adding in the filter
correction

IWPRD nrint the filter state and covariance
in cartesian, keplerian, and mean
equinoctial (for SKF/ESKF) elements as
oredicted at the current observation
time

I'UPD print the corresponding state and
covariances after the measurement
update

IPRFIL this set the outout FRN for the filter
history (e.g., =43 implies output on
FT43FOO1)
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