```
AN APPLICATION OF THE MALLIAVIN CALCULUS
        TO INFINITE DIMENSIONAL DIFFUSIONS
            by
            Laura E. Clemens
        B.A., University of Colorado
            (1977)
SUBMITTED TO THE DEPARTMENT OF MATHEMATICS
    IN PARTIAL FULFULLMENT OF THE
            REQUIREMENTS FOR THE
            DEGREE OF
            DOCTOR OF PHILOSOPHY IN
            MATHEMATICS
            at the
    MASSACHUSETTS .INSTITUTE OF TECHNOLOGY
            (C)Laura E. Clemens
            1984
            |
```

Signature of Author..

Accepted by

## AN APPLICATION OF THE MALLIAVIN CALCULUS

TO INFINITE DIMENSIONAL DIFFUSIONS
by
LAURA E. CLEMENS
Submitted to the Department of Mathematics on Angust 10, 1984
in partial fulfillment of the requirements for the Degree
of Doctor of Philosophy in Mathematics

## ABSTRACT

Diffusions on the infinite product of a compact manifold are defined, and their finite dimensional marginals studied. It is shown that under reasonable hypotheses, the marginals possess smooth densities. An estimate on the densities is obtained which is independent of the number of dimensions with respect to which the marginals are taken. An application to statistical mechanics is discussed.

## I Introdnction

The study of the regularity of infinite dimensional diffusions presents certain difficulties. One cannot expect the transition probability functions to admit densities, even in the independent context. It is clear, however, in this context, that the finite dimensional marginals will, under reasonable hypotheses, admit densities. Equally clear is the fact that the aniform norms of the densities become unbounded as the number of dimensions with respect to which the marginal is taken goes to infinity. For certain applications it is necessary to have an estimate on the marginals which remains bounded as the number of dimensions increases. To see what sort of estimate may work, we will look at the independent case in more detail.

Let $M$ be a compact Riemannian manifold, and $\sigma$ its Riemannian measure, which we may assume is a probabilitty measure. Suppose that $x_{k}(t), k \quad Z$ are independent diffusions on $M$ whose transition probability functions $\mathbf{P}_{\mathbf{k}}(\mathrm{t}, *)$ admit densities $\mathbf{p}_{\mathbf{k}}(\mathrm{t}, *)$ with respect to $\sigma$. Then. the transition probability function for the diffusion $\left\{x_{k}\right\}_{k} Z$ is $P(t, *)=\prod_{k \in Z} P_{k}(t, *)$, and if $p_{(N)}(t, *)$ denotes the density for the marginal of $P(t, *)$ with respect to $\sigma^{\{k:|k| \leq N\}}$, then $p_{(N)}(t, *)=\prod_{-N \leq 1} p_{k}(t, *)$. Although $\sup _{\eta}\left(p_{(N)}(t, \eta)\right) \rightarrow \infty$ as $N \longrightarrow \infty$, the ratio
$\operatorname{grad}_{\eta_{k}} p_{(N)}(t, \eta) / p_{(N)}(t, \eta)=\operatorname{grad} \eta_{p_{k}}\left(t, \eta_{k}\right) / p_{k}\left(t, \eta_{k}\right)$ remains bounded as $N \infty$. The dimension independent estimate which we obtain in a more general setting involves this ratio.

The method of proof for all the results is the Malliavin calculus. Techniques of partial differential equations do not lend themselves to the infinite dimensional setting, because, as we have seen, we have to take
marginal distributions, and these marginals do not, in general, satisfy any autonomous equation. On the other hand, Malliavin's calculus is well suited to the study of marginal distributions. Furthermore, ratios like the one in the preceding paragraph occur naturally when integrating by parts, on $R$, if $\mu(d x)=p(x) d x$ then $\int f^{\prime}(x) \mu(d x)=-\int f(x) p^{\prime}(x) / p(x) \mu(d x)$ for $f \in$ $C_{0}{ }^{\infty}(R)$. The Malliavin calculus allows us to integrate by parts on Wiener space. The main ideas for the proofs are derived from [A], where the same results are proved on the infinite dimensional torus.

Section II is devoted to a discussion of diffusions on M, section III to the Malliavin calculus on $M$, and section IV to the regularity of diffusions on M. (Sections II - IV result from private commnication with D. Stroock.) The regularity of finite dimensional marginals of diffasions on $M^{Z}$ is covered in section $V$, and the dimension - independent estimate on these marginals is covered in the following section. Finally, an application to statistical mechanics is discussed in the last section.

## II. Diffusions on Manifolds

Let $M$ be a compact manifold and $V_{j}, 0 \leq j \leq d$ be vector fields on $M$. Set

$$
\begin{equation*}
L=\sum_{j=1}^{d}\left(v_{j}\right)^{2}+V_{0} \tag{1}
\end{equation*}
$$

In this section, we will describe what is meant by 'the diffusion on $M$ generated by L'.

Denote by m the dimension of $M$, and for some $D \geq m$ let $i: M \rightarrow R^{D}$ be an imbedding. Then there are smooth functions $\mathbb{F}_{j}: R^{D} \rightarrow R^{D}$, $j=0, \ldots, d$ satisfying
i) For $x \in i(M), W_{j}(x)=i_{i}\left(V_{j}\left(i^{-1}(x)\right)\right)$
ii) $W_{j}^{i}$ and each of its derivatives is bounded on $R^{D}$ for $0 \leq \mathbf{j} \leq \mathrm{d}$ and $1 \leq i \leq D$.

Set $\theta=\left\{\theta \in C\left([0, \infty), R^{d}\right): \theta(0)=0\right\}$ and let $\theta(t)=\left\{\theta^{j}(t): 1 \leq j \leq d\right\}$ be the position of $\theta$ at time $t \geq 0$. Set $B_{t}=\sigma(\theta(s): 0 \leq s \leq t)$ and $B=\sigma(\theta(s): 0 \leq s)$. Let $W$ be Wiener measure on $(\Theta, B)$. For $x \in \mathbb{R}^{D}$, let $x(*, x)$ be the unique solution to the equation

$$
\begin{equation*}
x(T, x)=x+\sum_{j=1}^{d} \int_{0}^{T} W_{j}(x(t, x))^{0} d \theta^{j}(t)+\int_{0}^{T} W_{0}(x(t, x)) d t \tag{3}
\end{equation*}
$$

Lemma(4) If $x \in i(M)$ then $x(t, x) \in i(M)$ for all $t \geq 0$.
Proof. The following set up will be useful in this proof and elsewhere. For $i \geq 1$, let $\mathrm{J}_{\mathrm{i}}, \mathrm{J}_{\mathrm{i}}{ }^{\prime}$, and $\tilde{\mathrm{U}}_{\mathrm{i}} 1 \leq \mathrm{i} \leq \mathrm{r}$ be precompact open subsets
of $R^{D}$ so that
i) $\quad \overline{\nabla_{i}} \ll \sigma_{i}^{\prime} \cdot{\overline{\sigma^{\prime}}}_{i} \ll \tilde{\mathrm{U}}_{i}$
(5) ii )

$$
\bigcup_{i=1}^{\infty} \sigma_{i} \supseteq R^{D} \text { and } \exists r<\infty \bigcup_{i=1}^{I} \tilde{\mathrm{U}}_{i} \supseteq i(M)
$$

iii) For each $i \quad \pi_{i} \in C_{b}^{\infty}\left(\overline{\tilde{U}_{i}}\right)$ so that $\left(\tilde{\mathrm{U}}_{i}, \pi_{i}\right)$ is a coordinate chart in $R^{D}$ and

$$
M \cap \overline{\tilde{\mathrm{~J}}}_{i}=\left\{\pi_{i}{ }^{m+1}=\ldots=\pi_{i}^{D}=0\right\} \cap \overline{\tilde{U}}_{i}
$$

For $x \in \mathbb{R}^{D}$ let $n(x)=\min \left\{n \geq 1: x \in \tilde{U}_{n}\right\}$. Define $\tau_{0}=0$ and for
$i \geq 1, \tau_{i}=\inf \left\{t \geq \tau_{i-1}: x(t, x) \neq \tilde{U}_{n\left(x\left(\tau_{i-1}, x\right)\right)}\right\}$.
By the strong Markov property, it will suffice to show that if $x \in M$ then $x\left(t \wedge \tau_{1}\right) \in i(M)$ for $t \geq 0$. Set $z=\pi_{n(x)}$. Then, by Ito's formula,
$z(T, z)=z+\sum_{j=1}^{d} \int_{0}^{T} \tilde{w}_{j}(z(t, z))^{0} d \theta^{j}(t)+\int_{0}^{T} \tilde{W}_{0}(z(t, z)) d t$,
$T \leq \tau_{1}$, where $\tilde{W}_{j}=(\partial \pi / \partial x) W_{j}$. Since
$\tilde{W}_{j}{ }^{n}\left(z\left(t \wedge \tau_{1}, z\right)\right)=0$ for $z \in M, 0 \leq j \leq d$ and $m+1 \leq n \leq D$, the
proof is complete.

Now, set $\Omega=C([0, \infty), M)$ and for $\omega \leqslant \Omega$ let $\eta(t, \omega) \in M$ be the position of $\omega$ at time $\mathrm{t} \geq 0$. Set $M_{t}=\sigma(\eta(s): 0 \leq s \leq t)$ and $M=\sigma(\eta(s): 0 \leq s)$. For $\eta \in M$ we can define the measure $P_{\eta}$ on $(\Omega, M)$ as the distribution of $i^{-1} 0^{\prime}(*, i(\eta))$ under $W$.

Theorem(6) For all $\eta \in M, P_{\eta}$ described above is the unique probability measure on ( $\Omega, M$ ) such that $P_{\eta}(\eta(0)=\eta)=1$ and $\left(f(\eta(t))-\int_{0}^{t} L f(\eta(s)) d s, M_{t}, P_{\eta}\right)$ is a martingale for every $f$ in $C^{\infty}(M)$. Finally, the family $\left\{P_{\eta}: \eta \in M\right\}$ is Feller continuous and strong Markov.

Proof. That $P_{\eta}$ satisfies the desired conditions is clear. The rest of the proof can be taken from chapter 6 of [3].

Remark(7) We can define diffusions on non - compact $M$ in the same way if we assume that there are $W_{j}, 0 \leq j \leq d$ satisfying (2).

Remark(8) From now on we will assume, for notational convenience, that $M \leq \mathbb{R}^{D}$ and $i$ is the identity.

## III. The Malliavin Calculus on Manifolds

In sections IV - VI we will prove certain regnlarity results about the transition probability functions for diffusions on manifolds. We first need some results about the Malliavin calculus.

Let $W_{j}: R^{D} \rightarrow R^{D}, j=0, \ldots, d$ satisfy $\left.i i\right)$ of (2) and let $x(t, x)$
be the solution to the system (3). Let
$A(t, x)=\left(\left(\left\langle\mathbf{x}^{k}(t, x), x^{n}(t, x)\right\rangle\right)\right)_{1 \leq k \leq D, 1 \leq n \leq D}$ be the
Malliavin covariance matrix. (For $\dot{\Phi}, \psi \in \mathcal{E}($ see [1]), $\langle\downarrow, \psi\rangle=f(\psi \psi)-$ $\psi f p-p f \psi$, where $f$ is the Ornstein - Uhlenbeck operator.) Then, for $\pi \in C_{b}{ }^{\infty}\left(R^{D}, R^{D}\right)$
$\left(\left(\left\langle\pi^{k}(x(t, x)), \pi^{n}(x(t, x))\right\rangle\right)\right)_{1 \leq k \leq D, 1 \leq n \leq D}=$

$$
\partial \pi / \partial x(x(t, x)) A(t, x) \partial \pi^{*} / \partial x(x(t, x)) .
$$

Hence, $A(t, x) \in T_{z(t, x)}\left(R^{D}\right) \mathcal{U}^{2} . \quad(I f N$ is a manifold and $p \in N$, $T_{p}(N)$ means the tangent space to $N$ at $p$, and $T_{p}(N)$ means the cotangent space.) We will show, when $x \in M$ and $W_{j}$ is an extension to $R^{D}$ of a vector field $V_{j}$ on $M, 0 \leq j \leq d$, that $A(t, x) \in T_{x(t, x)}(M)^{Q^{2}}$.

We can make a selection of the map $x \mapsto x(*, x)$ so that for $T>0$,
$(t, x) \in[0, T] \times R^{D} \longrightarrow x(t, x) \in C^{0, \infty}\left([0, \infty] \quad R^{D}\right)$. Then, setting $X(t, x)=\left(\left(\left(\partial x^{i} / \partial x^{j}\right)(t, x)\right)\right)_{1 \leq i, j \leq D^{\prime}}$ we have
(9) $X(T, x)=I+\sum_{j=1}^{d} \int_{0}^{T}\left(\partial W_{j} / \partial x\right)(x(t, x)) X(t, x)^{\circ} d \theta^{j}(t)$

$$
+\int_{0}^{T}\left(\partial W_{0} / \partial x\right)(x(t, x)) X(t, x) d t
$$

Thus, $X$ is invertible. Furthermore, (see [1])

$$
\begin{equation*}
A(T, x)=\sum_{j=1}^{d} \int_{0}^{T}\left[X(t, T, x) W_{j}(x(t, x))\right]^{\hat{凶 禸}^{2}} d t \tag{10}
\end{equation*}
$$

where $X(t, T, x)=X(T, x) X^{-1}(t, x)$. Since $X(T, x): T_{x}(M) \rightarrow T_{x(t, x)}(M)$ and $W_{j}(x(t, x)) \in T_{x(t, x)}(M), A(T, x) \in\left(T_{x(T, x)}(M)\right)^{\ominus^{2}}$.

## IV. Regnlarity

Suppose that $M$ is a compact Riemannian manifold and that its Riemannian metric, $g_{M}$ is the same as the metric it inherits from $\mathbb{R}^{D}$. Let $\sigma$ be the positive measure on $M$ associated with the Riemannian structure. We may as well assume that $\sigma$ is a probability measure.

Let $\left\{V_{k, j}\right\}_{0} \leq j \leq d$ be a collection of vector fields on $M$ so that
for all $x$ in $M,\left\{V_{j}(x)\right\} 1 \leq j \leq d$ spans the tangent space
to $M$ at $x$.

Let $P\left(t, \eta_{0}, \Gamma\right)=P_{\eta_{0}}(\eta(t) \in \Gamma)$ for $\eta_{0} \in M$ and $\Gamma \subseteq M$.
The goal of this section is to show that, for $t>0, P\left(t, \eta_{0}, d \eta\right)$ admits a density $p\left(t, \eta_{0}, \eta\right)$ with respect to $\sigma$ which is smooth in $\eta$.

Fix $1 \leq i \leq x$ and set $U=U_{i}, U^{\prime}=\sigma_{i}{ }^{\prime}$ and $\pi=\pi_{i}$, where $\delta_{i}, J_{i}{ }^{\prime}$, and $\pi_{i}$ are defined in (5). We will show that $P\left(t, \eta_{0}, *\right)$ admits a density on M $\mathrm{MO}_{\mathrm{U}}$.

Choose a smooth function $\rho$ on $R^{D}$ so that $0 \leq \rho \leq 1$ and $\overline{\mathrm{U}}<\subset\{\rho=1\} \subset \in \operatorname{supp}(\rho) \subset \subset \mathbb{U}^{\prime}$. Define the measure $\mu$ on $\mathbb{R}^{\mathrm{m}}$ by $\mu\left(t, \eta_{0}, \Gamma\right)=E^{W}\left[\rho\left(x\left(t, \eta_{0}\right) z_{(m)}\right) \Gamma\right]$, where $z=\pi x$ and $z_{(m)}=\left\{z^{1}, \ldots, z^{m}\right\}$. C1early we will be
finished once we show that $\mu$ admits a smooth density. In order to do so, it suffices to show that for all $f \in C_{0}\left(R^{m}\right)$ and all malti-indices $a \in N^{m}$,

$$
\begin{aligned}
& \left|\int D^{\alpha} f(\xi) \mu\left(t, \eta_{0}, d \xi\right)\right| \leq c_{\alpha}(t)\|f\|_{\infty} \text {, where } \\
& D^{\alpha}=\partial^{|\alpha|} /\left(\partial z^{\alpha_{1}} \ldots z^{\alpha}\right)
\end{aligned}
$$

Fix $1 \leq k \leq m$, and set $F(z)=f\left(z_{(m)}\right)$. Then, for $1 \leq p \leq D$ and $x\left(t, \eta_{0}\right)$ е́ U', $\left\langle F\left(z\left(t, \eta_{0}\right)\right), z^{p}\left(t, \eta_{0}\right)\right\rangle=$ $\left(\partial F / \partial z^{q}\right)\left(z\left(t, \eta_{0}\right)\right) \tilde{A}^{q, p}\left(t, \eta_{0}\right)$ where $\tilde{A}\left(t, \eta_{0}\right)=$

D
$\sum \partial \pi / \partial x\left(x\left(t, \eta_{0}\right)\right) A\left(t, \eta_{0}\right) \partial \pi / \partial x^{*}\left(x\left(t, \eta_{0}\right)\right)$. (So, by $\mathrm{q}=1$
section III, $\tilde{A}^{p, q}\left(t, \eta_{0}\right)=\left\langle z^{p}\left(t, \eta_{0}\right), z^{q}\left(t, \eta_{0}\right)\right\rangle$ and $\tilde{A}^{p, q}\left(t, \eta_{0}\right)=0$ if $m+1 \leq p \vee q \leq D$ and $\left.x\left(t, \eta_{0}\right) \in \delta^{\prime}.\right)$ Thus, if $x\left(t, \eta_{0}\right) \in \sigma^{\prime},\left(\partial F / \partial z^{q}\right)\left(z\left(t, \eta_{0}\right)\right)=$
$\sum_{p=1}^{m}\left(\tilde{A}_{(m)}\right)_{p, q}\left\langle F\left(z\left(t, \eta_{0}\right)\right), z^{p}\left(t, \eta_{0}\right)\right\rangle$
Where $\left.\left(\left(\tilde{A}_{(m)}\right)_{p, q}\right)\right)_{1 \leq p, q \leq m}=\left(\tilde{\mathrm{A}}_{(m)}\right)^{-1}$, and $\tilde{\mathrm{A}}_{(m)}$
is the upper left hand $m$ by $m$ submatrix of $\tilde{A}$.
Assume, for the moment, that
$(12) \chi_{U^{\prime}}\left(x\left(t, \dot{\eta}_{0}\right)\right) / \operatorname{det}\left(\tilde{A}_{(m)}\left(t, \eta_{0}\right)\right) \in \bigcap_{p=1}^{\infty} L^{p}(W)$
Then, (see Lemma 3.4 in [2]), $\rho^{\prime}\left(x\left(t, \eta_{0}\right)\right)\left(\tilde{A}_{(m)}\right)_{q, p}$ for $1 \leq q, p \leq m$ and any $\rho^{\prime} \in C_{0}^{\infty}\left(0^{\prime}\right)$. If $\Phi \in \mathcal{E}$, setting $\Psi=$ $\rho^{\prime}\left(x\left(t, \eta_{0}\right)\right) \Phi$, we may define $H_{k}(\bar{\Psi})=$
m
$-\sum \quad\left[\left\langle z^{q}\left(t, \eta_{0}\right),\left(\tilde{A}_{(m)}\right)_{q, k}\left(t, \eta_{0}\right) \Psi\right\rangle\right.$
$q=1$

$$
\left.+2\left(\tilde{A}_{(m)}\right)_{q, k}\left(t, \eta_{0}\right) \Psi \mathcal{L}_{z}^{q}\left(t, \eta_{0}\right)\right]
$$

Then, choosing $\rho^{\prime} \in C_{0}{ }^{\infty}\left(U^{\prime}\right)$ with $0 \leq \rho^{\prime} \leq 1$ and $\operatorname{supp}(\rho) \lessdot く\left\{\rho^{\prime}=1\right\}$,
$E^{W}\left[\left(\partial F / \partial z^{k}\right\}\left(z\left(t, \eta_{0}\right)\right) \rho\left(t, \eta_{0}\right)\right]=$
$E^{W}\left[\left\{\partial\left(F\left(\rho^{\prime 0} \pi^{-1}\right)\right) / \partial z^{k}\right\}\left(z\left(t, \eta_{0}\right)\right) \rho\left(t, \eta_{0}\right)\right]=$
$E^{W}\left[F\left(z\left(t, \eta_{0}\right)\right) \rho^{\prime}\left(x\left(t, \eta_{0}\right)\right) H_{k}\left(\rho\left(t, \eta_{0}\right)\right)\right]$
We thas have the desired bound on $\left|\int D^{\alpha} f(\xi) \mu(t, \eta, \xi)\right|$ for $|\alpha| \leq 1$.
For general $a$, the bound can be obtained by induction.
It remains to show (12). By (11), there is a positive $\varepsilon$ with

$$
\begin{aligned}
& \sum_{j=1}^{d}\left(X_{M}\left(t, T, \eta_{0}\right) V_{j}\left(x\left(t, \eta_{0}\right)\right)\right)^{2} \geq \\
& \varepsilon X_{M}\left(t, T, \eta_{0}\right) g_{M}^{-1}\left(x\left(t, \eta_{0}\right)\right) X_{M}\left(t, T, \eta_{0}\right) *
\end{aligned}
$$

Hence, if $x(T, x) \in U^{\prime},\left(A_{(m)}\right)^{-1}\left(T, \eta_{0}\right) \leq$
$\left(1 /\left(\varepsilon T^{2}\right)\right) \int_{0}^{T}\left[\left(\partial \pi^{-1} / \partial x\right)\left(x\left(t, \eta_{0}\right)\right) * X^{-1}\left(t, T, \eta_{0}\right) *\right.$

$$
\left.X^{-1}\left(t, T, \eta_{0}\right)\left(\partial \pi^{-1} / \partial x\right)\left(x\left(t, \eta_{0}\right)\right)\right]_{(m)} d t
$$

Setting $Y\left(t, T, \eta_{0}\right)=X^{-1}\left(t, T, \eta_{0}\right) * X^{-1}\left(t, T, \eta_{0}\right)$,
$1 / \operatorname{det}\left(A_{(m)}(T, x)\right) \leq$
$\left.\left[\left(1 /\left(\varepsilon T^{2} m\right)\right) \int_{0}^{T} \operatorname{Tr}_{0}^{T}\left[\left(\partial \pi^{-1} / \partial x\right)\left(x\left(t, \eta_{0}\right)\right) * Y\left(t, T, \eta_{0}\right)\left(\partial \pi^{-1} / \partial x\right)\left(x\left(t, \eta_{0}\right)\right)\right\}(m)\right] d t\right]^{m}$
But, $\operatorname{Tr}\left(\left[\left(\partial \pi^{-1} / \partial x\right)\left(x\left(t, \eta_{0}\right)\right) * Y\left(t, T, \eta_{0}\right)\left(\partial \pi^{-1} / \partial x\right)\left(x\left(t, \eta_{0}\right)\right)\right](m)\right)$
$\leq C T r\left(Y\left(t, T, \eta_{0}\right)\right)$ if $x\left(t, \eta_{0}\right) \in J^{\prime}$, and $\operatorname{Tr}\left(Y\left(t, T, \eta_{0}\right)\right)$ can
easily be estimated in $L^{p}(W)$.

We have now completed the proof of the following theorem.

Theorem (13) Let $\lambda>1$ and $t>0 . P\left(t, \eta_{0}, d \eta\right)$ admits a density

## $p\left(t, \eta_{0}, \eta\right)$ which is smooth in $\eta$. The uniform norms on $p$ and <br> its derivatives can be bounded independent of $1 / \lambda \leq t \leq \lambda$ and $\eta_{0} \in M$.

## V. Infinite Dimensional Diffusions

We want to extend the results of section IV to diffusions on $M^{Z}$.
However, to avoid certain technicalities, we will prove results about $M^{[-K, K]}$, where $K$ is a large integer, and $[-\mathbb{K}, K]=\{k:|k| \leq K\}$. This will suffice if we show that the results so obtained do not depend on $K$.

In this context, let $\Omega=C\left([0, \infty), M^{[-K, K]}\right)$ and $\mathcal{O}=$ $C\left([0, \infty),\left(R^{d}\right)[-K, K]\right)$. Define $\eta=\{\eta:|k| \leq K\}, M M_{t}, M$, $\theta=\left\{\theta_{k}^{j}:|k| \leq K, 1 \leq j \leq d\right\}, ~ B, \mathcal{B}_{t}$, and $W$ as before.

Let $R \in Z^{+}$. Suppose that for $|k| \leq K$ and $0 \leq j \leq d$, $V_{k, j}: M^{[-K, K]} \rightarrow T_{M}$ satisfies
i) $\quad V_{k, j}(\eta) \in T_{M}\left(\eta_{k}\right)$ for $\eta \in M^{[-K, K]}$
ii) $V_{k, j}$ is smooth and $V_{k, j}$ and each of its derivatives is bounded independent of $k$ and $j$
iii) $V_{k, j}$ depends only on $\left\{\eta_{n}\right\}_{k-R} \leq n \leq k+R$

Then there are functions $W_{k, j}:\left(R^{D}\right)^{[-K, K]} \rightarrow R^{D}$ satisfying
i) $\quad W_{k, j}$ is smooth and $W_{k, j}$ and each derivative is bounded independent of $k$ and $j$
(15)
ii) $W_{k, j}$ depends only on $\left\{y_{n}\right\}_{k-R} \leq n \leq k+R$ for $y \in$ $\left(R^{D}\right)[-K, K]$
iii) For $\eta \in M^{[-K, K]}, W_{k, j}(I(\eta))=i_{*} V_{k, j}(\eta)$ where $I=i^{\otimes[-K, K]}$
For $y\left(R^{D}\right)[-K, K]$, let $y(t, y)=\left\{y_{k}(t, y):|k| \leq K\right\}$ denote the unique solution to the system of equations

$$
\begin{equation*}
y_{k}(T)=y_{k}+\sum_{j=1}^{d} \int_{0}^{T} W_{k, j}(y(t))^{0} d \theta_{k}^{j}(t)+\int_{0}^{T} W_{k, 0}(y(t)) d t \tag{16}
\end{equation*}
$$

Theorem (6) yields the following.

Corollary(17) Let $V_{k, j},|k| \leq K, 0 \leq j \leq d$ satisfy (14). For f $C^{\infty}\left(M^{[-K, K]}\right)$, define

$$
L f(\eta)=\sum_{|k| \leq K}\left\{1 / 2 \sum_{j=1}^{d}\left(V_{k, j}\right)^{2} f(\eta)+V_{k, 0} f(\eta)\right\}
$$

$\left(V_{k, j} f\right.$ is formed by firing $\eta_{n}, n \neq k$ and acting $V_{k, j}$ on $f$ as a function of $\eta_{k}$.) For $\eta \in M^{[-K, K]}$ and $y=I(\eta)$ let $y(*, y)$ be the solution to (16) with $\left\{W_{k, j}\right\}|k| \leq \mathbb{K}, 1 \leq j \leq d$ satisfying (15). Let $P_{\eta}$ on ( $\Omega, M$ ) be the distribution of $I^{-1}{ }^{\circ} y^{(*}, I(y)$ ) under $W$. Then $P_{\eta}$ is the unique probability measure on ( $\Omega, m$ ) such that
$P_{\eta}(\eta(0)=\eta)=1$ and $\left(f(\eta(t))-\int_{0}^{t} L f(\eta(s)) d s, M_{t}, P_{\eta}\right)$ is a
martingale for every $f$ in $C^{\infty}\left(M^{[-K, K]}\right)$.
Finally, the family $\left\{P_{\eta}: \eta M^{Z}\right\}$ is Feller continuous and strong Markov.

Assume that we are given $V_{k, j}$ for which (14) holds and so that $(\forall \varepsilon>0)(\forall|k| \leq K)\left(\forall \eta \in M^{[-K, K]}\right)\left(\forall \gamma \leqslant T_{M}^{*}\left(\eta_{k}\right)\right.$,

$$
\begin{equation*}
\sum_{j=1}^{d}\left\langle\gamma, v_{k, j}\left(\eta_{k}\right)\right\rangle^{2} \geq \varepsilon|\gamma|^{2} \tag{18}
\end{equation*}
$$

Let $P_{(N)}\left(t, \eta_{0}, \Gamma\right)$
$=P_{\eta_{0}}\left(\eta_{(N)}(t) \in \Gamma\right)$ for $\eta_{0} \leqslant M^{[-K, K]}$ and $\Gamma \subseteq M^{[-N, N]}$.

Theorem (19) Let $\lambda>1$ and $t>0 . P_{(N)}\left(t, \eta_{0}, \eta\right)$ admits a density $P_{(N)}\left(t, \eta_{0}, \eta\right)$ which is smooth in $\eta$. The uniform norms of $p_{(N)}$ and its derivatives $c a n$ be bounded independent of $1 / \lambda \leq t \leq \lambda$ and $\eta_{0}=M^{[-K, K]}$.

Proof. For $y \in\left(R^{D}\right)^{[-K, K]}$ let $x \in R^{[-K D+1,(K+1) D]}$ be defined by $\mathrm{x}^{\mathrm{kD}+\mathrm{n}}=\left(\mathrm{y}_{\mathrm{k}}\right)^{\mathrm{n}},|\mathrm{k}| \leq \mathrm{K}, 1 \leq \mathrm{n} \leq \mathrm{D}$. Let $\mathrm{I}_{(\mathrm{m})} \mathrm{f}^{\mathrm{c}}$ $\mathrm{R}^{[-K D+1,(\mathrm{~K}+1) \mathrm{D}]}$ be defined by $\mathrm{x}^{\mathrm{km+n}}=\mathrm{x}^{\mathrm{kD}+\mathrm{n}},|\mathrm{k}| \leq \mathrm{K}$ and $1 \leq \mathrm{n} \leq m$.
Set $y_{(N)}=\left(y_{-N}, \ldots, y_{N}\right)$ and $x_{(m, N)}=$
$\left.{ }^{( }{\left(x_{(m)}\right)}^{(N m+1} \ldots\left(x_{(m)}\right)(N+1)_{m}\right)$. Similarly, for a matrix
$B=\left(\left(B^{i, j}\right)\right)_{-K D+1 \leq i, j \leq(K+1) D}$ define $B_{(m)}=$

$B^{p D+p^{\prime}, q D+q^{\prime}}$ for $-K \leq p, q \leq K$ and $1 \leq p^{\prime}, q^{\prime} \leq m$. Define $B_{(m, N)}=$
$\left(\left(\left(_{(m)}\right)^{i, j}\right)\right)_{-m N+1 \leq i, j \leq(N+1) m . ~}^{m}$
Let $U_{i}, U_{i}{ }^{\prime}$, and $\pi_{i}, 1 \leq i \leq I$ be as in (5) and let
$\left\{i_{k}\right\}-N \leq k \leq N$ be a sequence of integers between 1 and $r$. Set
$\pi=\prod_{i_{k}}$ and $U^{\prime}=\prod_{|k| \leq N} J_{i_{k}}{ }^{\prime}$. Define
$|k| \leq N$
$\pi(y)_{k}= \begin{cases}\pi_{i_{k}}\left(y_{k}\right) & -N \leq k \leq N \\ y_{k} & \text { otherwise }\end{cases}$
for $y \in R^{D[-\mathbb{K}, \mathbb{K}]}$ with $y_{k} \leqslant \tilde{\mathrm{U}}_{i_{k}}$. Choose $\rho \leqslant C_{0}{ }^{\infty}\left(\mathbb{U}^{\prime}\right)$ so
that $\mathbb{J} \subset\{\rho=1\}$ and $0 \leq \rho \leq 1$. Define $\mu\left(t, \eta_{0}, \Gamma\right)=$
$E^{W}\left[\rho\left(y_{(N)}\left(t, \eta_{0}\right)\right) X_{\Gamma}\left((\pi x)_{(m, N)}\left(t, \eta_{0}\right)\right)\right]$ for
$\uparrow \leq R^{[-N m+1,(N+1) m]}$. Since, by section 6 of $[2], x^{i}\left(t, \eta_{0}\right)$ is bounded (in the sense of Malliavin's calculus) independent of $K$ and $-\mathbb{K D}+1 \leq i \leq(\mathbb{X}+1) \mathrm{D}$, the proof in section IV will work here to show that $\mu$ admits a smooth density if we can show that
(20) $\left.\chi_{U^{\prime}\left(y_{(N)}\right.}\left(t, \eta_{0}\right)\right) / \operatorname{det}\left(\tilde{A}_{(m, N)}\left(t, \eta_{0}\right)\right) \in \bigcap_{p=1}^{\infty} L^{P}(W)$,
where $\tilde{A}\left(t, \eta_{0}\right)=(\partial \pi / \partial x)\left(x\left(t, \eta_{0}\right)\right) A\left(t, \eta_{0}\right)\left(\partial \pi / \partial x^{*}\right)\left(x\left(t, \eta_{0}\right)\right)$
and $A\left(t, \eta_{0}\right)=\left(\left(\left\langle x^{p}\left(t, \eta_{0}\right), x^{q}\left(t, \eta_{0}\right)\right\rangle\right)\right)_{-K D+1 \leq p, q \leq(K+1) D .}$.

Define $\tilde{W}_{k, j} \in R^{Z}$ for $|k| \leq K, 0 \leq j \leq d$ by

$$
\left(\tilde{w}_{k, j}\right)^{n D+n^{\prime}}= \begin{cases}\left(W_{k, j}\right)^{n^{\prime}} & n=k \text { and } 1 \leq n^{\prime} \leq D \\ 0 & \text { otherwise }\end{cases}
$$

Set $R_{k, j}=\partial \tilde{W}_{k, j} / \partial x$ and let $X$ be the unique solution to
$X(t, T, y)=I+\sum_{|k| \leq K} \sum_{j=1}^{d} \int_{t}^{T} R_{k, j}(y(s, y)) X(t, s, y)^{0} d \theta_{k}^{j}(s)+$

$$
\sum_{|k| \leq K} \int_{t}^{T} R_{k, 0}(y(s, y)) X(t, s, y) d s
$$

Then $A(T, y)=\sum \sum_{0}^{d} \int_{0}^{T}\left(X(t, T, y) W_{k, j}(y(t, y))\right)^{2} d t$.

$$
|k| \leq \mathbb{K}=1
$$

Suppose that $\left\{i_{k}\right\}|k| \leq K$ is an extension of the given sequence $\left\{i_{k}\right\}|k| \leq N{ }^{\text {with }} 1 \leq i_{k} \leq r$ for $|k| \leq K$. Then, as in Theorem (13), using Lemma (2.18) from [A], if $x-\prod_{k=-K}^{K} U_{i_{k}}$, then $\left(1 / \operatorname{det}\left(\tilde{A}_{(m, N)}\left(t, \eta_{0}\right)\right)\right)^{1 /(2 N+1)} \leq$
$1 /\left(\varepsilon(2 N+1) m T^{2}\right) \int_{0}^{T} T r\left[\left((\partial \pi / \partial x)\left(x\left(t, \eta_{0}\right)\right) Y\left(t, T, \eta_{0}\right)\left(\partial \pi / \partial x^{*}\right)\left(x\left(t, \eta_{0}\right)\right)\right)_{(m, N)}\right] d t$
where $Y\left(t, T, \eta_{0}\right)=X^{-1}\left(t, T, \eta_{0}\right) * X^{-1}\left(t, T, \eta_{0}\right)$. The
integrand is bounded by a constant times the trace of ( $\left.\mathrm{Y}\left(\mathrm{t}, \mathrm{T}, \eta_{0}\right)^{\prime}\right)(\mathrm{N})$.
where the constant depends only on $\left\{i_{k}\right\}|k| \leq N$ and
$\operatorname{Tr}\left(\mathrm{Y}\left(\mathrm{t}, \mathrm{T}, \eta_{0}\right)(\mathrm{N})\right.$ ) is estimated as in section 6 of [2].

## VI A Dimension - Independent Estimate

The estimates on the marginals obtained in the preceding section are dependent on the number of dimensions for which we are taking the marginal. In this section we obtain, under an additional hypothesis, an estimate which does not have this dependence. Specifically, for $|\mathbf{k}| \leq \mathbb{K}$, define $G_{t}(\eta, k)=\int\left|\operatorname{lgad} \mathbf{k}^{p}(t, \eta, \xi) / p(t, \eta, \xi)\right|^{2} p(t, \eta, \xi) \sigma^{[-\mathbb{Z}, \mathbb{K}]}(d \xi)$

Theorem (21) Suppose that $V_{k, j}|k| \leq K, 0 \leq j \leq d$ satisfy (14) and (18). Assume in addition that for $j=1, \ldots d$ and $n \neq k, V_{k, j}$ is independent of $\eta_{n}$. Then $\lambda>1$
$\sup \sup \sup \quad G_{t}(\eta, k) \leq C<\infty$
$|\mathbf{K}| \leq \mathbf{K} \quad 1 / \lambda \leq t \leq \lambda \quad \eta \in \mathbb{M}^{[-\mathbb{K}, \mathbb{R}]}$
where $C$ does not depend on $K$.
Proof. First we need two lemmas.

Lemma (22) Fix $|k| \leq K$. Suppose that for every $0 \leq j \leq d$ and $n \neq k$,
$V_{k, j}$ is independent of $\eta_{n}$ and that for all $n \neq k$, and $0 \leq j \leq d$ $\nabla_{n, k}$ does not depend on $\eta_{k}$. Let $y$ be the solntion to (16) for $\left\{W_{k, j}\right\}_{k} \mid \leq K, 0 \leq j \leq d^{\text {satisfying (15). Then }}$
$\left\langle y_{\mathbf{k}}{ }^{\mathbf{p}}(\mathrm{t}, \eta), \mathrm{y}_{\mathbf{n}}{ }^{\mathrm{q}}(\mathrm{t}, \eta)\right\rangle=0$ for $\mathrm{n} \neq \mathrm{k}, \mathrm{t} \geq 0, \eta \in$ $\left(\mathbb{R}^{\mathrm{D}}\right)^{[-K, K]}$ and $1 \leq \mathrm{p}, \mathrm{q} \leq \mathrm{D}$.

Proof. See the proof of Lemma (3.8) in [1].

Lemma (23) Let $F$ be a finite subset of the integers and set $\mathbb{W}_{k, 0}=$ $X_{F^{c}}{ }^{(k)} W_{k, 0}$ for $|k| \leq K$, where $\left\{W_{k, j}\right\}|k| \leq K, 0 \leq j \leq d$ satisfies (15). Let $z$ be the solution to the system (16) with $\tilde{w}_{k, 0}$
replacing $W_{k, 0}$. Set $a_{k}=\sum_{j=1}^{\dot{d}} W_{k, j}{ }^{2}$. Then for $k \in F$,
there is $c_{k} \in C_{b}^{\infty}\left(R^{D}\right)[-\mathbb{Z}, \mathbb{K}] \rightarrow R^{D}$ so that $a_{k} c_{k}$

$$
\begin{aligned}
& =b=W_{0}+(1 / 2) \sum_{j=1}^{d} W_{k, j}\left(W_{k, j}\right) \text {. } \\
& \left(W_{k, j}\left(W_{k, j}\right):\left(R^{D}\right)^{[-K, K]} \quad R^{D}\right. \text { is defined by } \\
& \left.\left[W_{k, j}\left(W_{k, j}\right)\right]^{n}=\sum_{p=1}^{D} W_{k, j}^{p}\left(\partial / \partial \eta_{k}^{p}\right)\left(W_{k, j}^{n}\right) .\right) \\
& \text { If } S(t)=\exp \left[\sum \sum \int_{0}^{t}\left\langle c, W_{k, j}\right\rangle(z(s, \eta)) d \theta_{k}^{j}(s)\right. \\
& \left.+\int_{0}^{t}\langle c, b\rangle(z(s, \eta)) d s\right] \text {, then }\left(S(t), B_{t}, W\right) \text { is } a
\end{aligned}
$$

martingale and so there is a probability measure $P$ on with $P(A)=$ $E^{W}[R(t), A]$. Finally, if $y(*, \eta)$ is the solution to the system (16) then $E^{P}[f(z(t, \eta))]=E^{W}[f(y(t, \eta))]$ for all bounded measurable $f$ on ( $\left.\mathbb{R}^{D}\right)^{[-\mathbb{K}, \mathrm{K}]}$.

Proof. Let $\mathrm{U}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{r}$ be as described in (5) and let $\rho_{i}$ be a
partition of unity subordinate to $\boldsymbol{U}_{\mathbf{i}}$. Choose $\mathbf{c}_{\mathbf{k}_{i}}$ so that for $y_{k} \in \sigma_{i}, a_{k}(\eta) c_{\mathbf{k}_{i}}(\eta)=b_{k}(\eta) . \quad$ Set $c_{k}(\eta)=$
$\sum \rho_{i}\left(\eta_{k}\right) c_{k_{i}}(\eta)$. Then $c_{k}$ is smooth and $a_{k} c_{k}=$ $b_{k}$. The rest of the lemma follows from Cameron - Martin - Girsanov theory.
(See [2].)

Fix $|k| \leq K$ and $1 \leq i \leq r$, and define $U_{i}, J_{i}{ }^{\prime}$, and $\pi_{i}$ as in (5). Set $\mathbb{J}=\left\{\xi \leqslant M^{[-\mathbb{K}, \mathbb{K}]}: \xi_{\mathbf{k}} \in \mathrm{U}_{\mathrm{i}}\right\}$, and $\mathrm{U}^{\prime}=$ $\left\{\xi \in M^{[-K, K]}: \xi_{k} \in U_{i}{ }^{\prime}\right\}$. Define $\pi$ on $U^{\prime}$ by
$(\pi(\xi))_{n}= \begin{cases}\pi_{i}\left(\xi_{k}\right) & n=k \\ \xi_{n} & \text { otherwise }\end{cases}$
We will show

$$
\int X_{0}(\xi) \operatorname{lgrad}_{k} p(t, \eta, \xi) /\left.p(t, \eta, \xi)\right|^{2} p(t, \eta, \xi) \sigma^{[-K, K]}(d \xi)
$$

is bounded in the required manner.
Choose $\left.\left\{W_{r, j}\right\}\right|_{r} \mid \leq K, 0 \leq j \leq d$ so that (15) holds and set
$\tilde{W}_{k, j}= \begin{cases}W_{r, j} & j \neq 0 \text { or }|r-k|>R \\ 0 & \text { otherwise }\end{cases}$
Denote by $y(t, y)$ the solution th the system (16) and by $w(t, y)$ the solution with $\tilde{W}_{r, j}$ replacing $W_{r, j}$. Let $S$ and $P$ be as in Lemma (23) witth $F=$ $\{r:|r-k| \leq R\}$.

$$
\begin{aligned}
& \text { Define } a_{k}(t, \eta)= \\
& \left(\left(\left\langle w_{k}^{p}(t, \eta), w_{k}^{q}(t, \eta)\right\rangle\right)\right)_{1} \leq p, q \leq D . \quad \text { Then }
\end{aligned}
$$

$$
a_{k}(t, \eta)=\sum_{j=1}^{d} \int_{0}^{t}\left(e_{k}(s, t, \eta) V_{k, j}(w(t, \eta))\right)^{2} d t
$$

where $e_{k}(t, T, \eta)=I+$

$$
\sum_{j=1}^{d} \int_{0}^{T}\left(\partial w_{k, j} / \partial w_{k}\right)(w(s, \eta)) e_{k}(s, T, \eta)^{0} d \theta_{k}^{j}
$$

For $w(t, x) \in U^{\prime}$, set $\tilde{a}_{k}(t, \eta)=$

$$
\left(\partial \pi / \partial w_{k}\right)\left(w_{k}(t, \eta)\right) a_{k}(t, \eta)\left(\partial \pi^{*} / \partial w_{k}\right)\left(w_{k}(t, \eta)\right)
$$

$$
\text { and }\left(\left(\left(\tilde{a}_{k}\right)_{(m)}\right)_{p, q}\right)_{1} \leq p, q \leq m=
$$

$$
\left(\left(\tilde{a}_{k}\right)_{(m)}\right)^{-1}
$$

$$
\text { If } F \in C_{0}^{\infty}\left(U^{\prime}\right) \text { and } \rho \leqslant C_{0}^{\infty}\left(U^{\prime}\right) \text { then }
$$

$$
\rho\left(w_{k}(t, \eta)\right)\left(\left(\tilde{\alpha}_{k}\right)(m)\right)_{p, q} \in \mathcal{E} \text { for } 1 \leq p, q \leq m, \text { and for } \Psi \in \mathcal{L},
$$

$$
E^{W}\left[\left(\partial / \partial z_{k}^{n}\right)\left(F^{0} \pi^{-1}\right)(z(t, \eta)) \rho\left(w_{k}(t, \eta)\right) \Psi\right]
$$

$=-E^{W}\left[F^{0} \pi^{-1}(z(t, \eta)) H_{k}^{n}\left(\rho\left(w_{k}(t, \eta)\right) \Psi\right.\right.$
where $H_{k}^{n}(\Phi)=$

$$
\sum_{q=1}^{m}\left[\left\langlez^{q}(t, \eta),\left(\left(\tilde{a}_{\underline{k}}\right)(m)_{q, n}(t, \eta) \Phi\right\rangle+\right.\right.
$$

$$
\left.2\left(\left(\tilde{\alpha}_{k}\right)_{(m)}\right)_{q, n}(t, \eta) \Phi f_{z}^{q}(t, \eta)\right]
$$

and $z=\pi w$.
Choose $\rho \in C_{0}{ }^{\infty}\left(U_{i}{ }^{\prime}\right)$ with $0 \leq \rho \leq 1$ and $~_{i} \subset \subset\{\rho=1\}$.
Define the measure $U$ on $M^{[-K, K]}$ by
$U(d w)=\rho(w)\left(\pi^{-1}\right),\left(\partial / z_{k}^{n}\right) p(t, \eta, w) \sigma^{[-N, N]}(d w)$.
Then by Lemma (3.6) in [1] the theorem will be proved once we find a function $\Psi \in$ $L^{2}(P)$ with the $L^{2}(P)$ norm of $\Psi$ bounded independent of the desired quantities and with $E^{\nu}[f]=E^{P}[f(w(t, \eta)) \Psi]$ for every $\mathrm{f} \in \mathrm{C}^{\infty}\left(\mathrm{M}^{[-\mathrm{K}, \mathrm{K}]}\right)$

$$
\begin{aligned}
& \text { Integrating by parts, } E[f]= \\
& -E^{P}\left[\partial / \partial z_{k}\left((f \rho){ }^{\circ} \pi^{-1} h\right)(z(t, \eta))(1 / h(z(t, \eta)))\right] \text {, where } h(z) \\
& =\left(\lg \left(z_{k}\right)\right)^{1 / 2} \text {. (Here } g(*) \text { is the Riemannian metric expressed in the } \\
& \text { coordinates } \pi_{i} . \text { ) Thus, } E^{\prime}[f]= \\
& -E^{W T}\left[\partial / \partial z_{k}\left((f \rho){ }^{0} \pi^{-1} h\right)(z(t, \eta))(S(t) / h(z(t, \eta)))\right]= \\
& E^{W}\left[\left(f \rho^{0} \pi^{-1} h\right)(z(t, \eta)) H_{k}^{n}\left((S(t) / h(z(t, \eta))) \rho_{1}\left(W_{k}(t, \eta)\right)\right)\right] \\
& \text { where } \rho_{1} \in C_{0}{ }^{\infty}\left(U_{i}{ }^{\prime}\right) \text { is chosen so that } 0 \leq \rho_{1} \leq 1 \text { and } \\
& \left\{\rho_{1}=1\right\}<C \operatorname{supp}(\rho) \text {. } \\
& \text { So, } E[f]=E^{P}[f(w(t, \eta)) \underline{\Psi}] \text { with } \Psi= \\
& (\rho(w(t, \eta)) h(z(t, \eta)) / S(t)) H_{k}^{n}\left((S(t) / h(z(t, \eta))) \rho_{1}(w(t, \eta))\right)
\end{aligned}
$$

and $\Psi$ can be estimated in $L^{2}(P)$.

Remark (24) For $|k| \leq N \leq K$, set $G_{t}(\eta, k, N)=$

$$
\int \quad \operatorname{lgrad}_{\mathbf{k}^{p}(N)}(t, \eta, \xi) /\left.p_{(N)}(t, \eta, \xi)\right|^{2} p_{(N)}(t, \eta, \xi) \sigma^{[-N, N]}(d \xi)
$$

Then $G_{t}(\eta, k, N) \leq G_{t}(\eta, k)$.
Remark (25) The obvious analogues to the preceding results hold on $M^{[-K, Z]^{\beta}}$ for $\beta$ any positive integer, and with the same proofs.

## VII Application

In section 4 of [A], results are proved about the ergodic properties of a certain class of diffusions on the infinite dimensional torus. There, the specific energy function is introduced and shown to be a Liapunov function. That is, denoting by $h(\mu)$ the specific energy of a measure $\mu$ on $T^{Z^{\beta}}$, $\beta \in Z^{+}$, and by $P_{t}$ the Markov semigroup associated with the diffusion, $h\left(P_{t}{ }^{*} \mu\right)$ is nondecreasing for $t>0$, where $P_{t} *$ is the adjoint of $P_{t}$. The analogous results hold for a class of diffusions on $M^{Z^{\beta}}$, and with the same proofs, once we show that the specific energy function is finite.

A collection of smooth functions $\mathcal{X}=\left\{J_{F}: M^{Z^{\beta}} \rightarrow R: F \subseteq Z^{\beta}\right.$,
$|F|=$ cardinality $(F)<\infty\}$ is called a potential if $J_{F}(\eta)$ depends only on $\eta_{k}, k \in F$, and $J_{F}$ is invariant under permutations of the indices of F. $\gamma$ is called finite range if there is an $R \in Z^{\beta+}$ so that if $k, n \in F$ and $|k-n|>R$ then $J_{F}=0 . \&$ is shift invariant if for any $F \leq Z^{\beta}$ and $k \in$ $Z^{\beta}, J_{F+k}(\eta)=J_{F}\left(S^{-k} \eta\right)$ where $\left(S^{-k} \eta\right)_{n}=\eta_{n-k}$.

Assume that $\ell$ is a shift invariant and finite range potential. For $k \in$ $z^{\beta}$, define the energy at site $k, H_{k}(\eta)$ by

$$
H_{k}(\eta)=\sum_{F k} J_{F}(\eta)
$$

For $\mu$ a probability measure on $\mathrm{M}^{\mathrm{Z}^{\beta}}$, define the specific free energy $h(\mu)$ as follows. Set $L_{k}=\{n:|n| \leq R k\}$. If the marginal density of $\mu$ on $M^{\Delta_{n}}$ has a density with respect to $\sigma^{\Delta_{n}}$, denote it by $\mu^{(n)}\left(\eta_{\Delta_{n}}\right)$ and set $h_{n}(\mu)=$
$\int_{M_{n}} \sum_{F S_{\Delta_{n}}} J_{F}\left(\eta_{\Delta_{n}}\right) \mu^{(n)}\left(\eta_{\Delta_{n}}\right) \sigma^{\Delta_{n}}\left(d \eta_{\Delta_{n}}\right)+$
$\int_{M_{n}} \mu^{(n)}\left(\eta_{\Delta_{n}}\right) \log \left(\mu^{(n)}\left(\eta_{\Delta_{n}}\right)\right) \sigma^{\Delta_{n}}\left(d \eta_{\Delta_{n}}\right)$

If not, set $h_{n}(\mu)=\infty$. Let $h(\mu)=\overline{\lim _{n}}(2 n R+1)^{-\beta_{n}}(m)$.
Let $c: M^{Z^{\beta}} \rightarrow(0, \infty)$ be a smooth function depending only on
coordinates $\eta_{k}$ for $|k| \leq R$ and define $c_{k}(\eta)=c\left(S^{-k} \eta\right)$.
Suppose that $e^{H_{0}(\eta)} c_{k}(\eta)$ depends only on $\eta_{0}$. Set
$L f=\sum e^{H_{k}(\eta)} \operatorname{div}_{k}\left(c_{k}(\eta) \operatorname{grad}_{k} f(\eta)\right)$
$k \in Z^{\beta}$
for $f \in C^{\infty}\left(M^{Z^{\beta}}\right)$ which depend only on finitely many coordinates.
Denote by $P(t, \eta, *)$ the transition probability function for the diffusion associated with $L$. For $\mu$ a probability measure on $M^{Z^{\beta}}$, set $\mu_{t}(*)=$ $\int_{p}(t, \eta, *) \mu(d \eta)$.

Theorem(26) $h\left(\mu_{t}\right)<c(t)<\infty$.
Proof. For $f \in C^{1}\left(M^{n}\right), \int f^{2}(\eta) \log (f(\eta)) \sigma^{\Delta}(d \eta)$
$\leq C \int|\operatorname{grad}(f(\eta))|^{2} \sigma^{\Delta_{n}}(d \eta)+$
$\int f^{2}(\eta) \sigma^{\Delta_{n}}(d \eta) \log \left(\int f^{2}(\eta) \sigma^{\Delta_{n}}(d \eta)\right)$
where $C$ does not depend on $n$. (This is the logarithmic Sobolev inequality on $M^{\Delta_{n}}$.) Thas, setting $f\left(\eta_{\Delta_{n}}\right)=$ $\left(\mu_{t}(n)\left(\eta_{\Delta_{n}}\right)\right)^{1 / 2}$,

$\leq\left.\mathrm{c} \int_{\Delta_{n}} \sum_{F=\Delta_{n}} \operatorname{lgrad}_{k} \mu_{t}^{(n)}\left(\eta_{\Delta_{n}}\right)\right|^{2 / \mu_{t}}{ }^{(n)}\left(\eta_{\Delta_{n}}\right) \sigma^{\Delta_{n}}\left(d \eta_{\Delta_{n}}\right)$
since $\int_{f^{2}\left(\eta_{\Delta_{n}}\right) \sigma^{\Delta_{n}}\left(\eta_{\Delta_{n}}\right)=1 . \text { Furthermore }, ~}^{\text {, }}$
by Lemma (3.3) in [1], and Theorem (21),
$\int_{M^{\Delta_{n}}} \sum_{F \leqslant \Delta_{n}} \operatorname{lgrad}_{k_{t} \mu_{t}}{ }^{(n)}\left(\eta_{\Delta_{n}}\right) / 2 / \mu^{(n)}\left(\eta_{\Delta_{n}}\right) \sigma^{\Delta_{n}}\left(d \eta_{\Delta_{n}}\right)$
can be bounded independent of $n$. Since $x \log x$ is convex, $0 \leq$
$\int_{M_{n}} \mu_{t}{ }^{(n)}\left(\eta_{\Delta_{n}}\right) \log \left(\mu_{t}{ }^{(n)}\left(\eta_{\Delta_{n}}\right)\right) \Delta_{n} \Delta_{n}\left(\eta_{\Delta_{n}}\right)$
$\leq \mathrm{C}(2 \mathrm{nR}+1)^{\beta}$. Also,
$\left|\int_{M^{n}} \sum_{F S \Delta_{n}} J_{F}\left(\eta_{\Delta_{0}}\right) \mu^{(n)}\left(\eta_{\Delta_{n}}\right) \sigma_{n}^{\Delta}\left(d \eta_{\Delta_{n}}\right)\right|$
$\leq\left[\sup _{\beta} \sum J_{F}(\eta)\right](2 n R+1)^{d}$.
$\eta \mathrm{H}^{z^{\beta}} \mathrm{F} 0$

Combining the preceding two statements, we obtain the desired bound on $h\left(\mu_{t}\right)$. The following theorems are proved as in section (4) of [1].

Theorem (27) For $0<t_{1} \leq t_{2}, h\left(\mu_{t_{1}}\right) \leq h\left(\mu_{t_{1}}\right)$.
Theorem(28) If $\mu$ is shift invariant (in terms of the shift on $Z^{\beta}$ ) and stationary for the diffusion generated by $L$ then $\mu$ is reversible for this diffusion.

## REFERENCES

1 Holley, R., and Stroock, D., "Diffusions on an Infinite Dimensional Torus," J. Fnal. Anal. 42, no. l, (1981) pp. 29-63.

2 Stroock, Daniel W., "The Malliavin Calculus and its Application to Second Order Parabolic Differential Equations, parts I \& II," Math. Systems Theory 14, (1981)pp. 25-65 \& 141-171.

3 Stroock, D., and Varadhan, S.R.S., Multidimensional Diffusion Processes, Grundlehren 233, Springer-Verlag (Berlin, Heidelberg, New York), 1979.

