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ABSTRACT

Diffusions on the infinite product of a compact manifold are defined, and their
finite dimensional marginals studied. It is shown that under reasonable
hypotheses, the marginals possess smooth densities. An estimate on the
densities is obtained which is independent of the number of dimemsions with
respect to which the marginals are taken. An application to statistical
mechanics is discussed. '



I Introduction

The study of the regularity of infinite dimensional diffusions presents
certain difficulties. One cannot expect the transition probability functioms
to admit densities, even in the independent context. It is clear, however, in
this context, that the finite dimensional marginals will, under reasonable
hypotheses, admit densities. Equally clear is the fact that the uniform norms
of the densities become unbounded as the number of dimensions with respect to
which the marginal is taken goes to infinity. For certain applications it is
necessary to have an estimate on the marginals which remains bounded as the
number of dimemsions increases. To see what sort of estimate may work, we will
look at the independent case in more detail.

Let M be a compact Riemannian manifold, and o its Riemannian measure,
which we may assume is a probabilitty measure. Suppose that xk(t). k 2
are independent diffusions on M whose transition probability functions
Pk(t.*) admit densities pk(t.*) with respect to o. Then the
transition probability fuaction for the éiffusion {xk}k z is

P(t,*) =TT'P (t,*), and if p (t,*) denotes the demsity for the
xeZ k (N)

{k: lxl < N}

marginal of P(t,*) with respect to o , then
r~
p(N)(t,*) = \\p,.(t,*). Although snp(p(N)(t.n))-—>ﬂ as N—o,
NCkSN n
the ratio

gradﬂkp(N)(t,n)/p(N)(t,n) =gradnpk(t.nk)/pk(t.nk)
remains bounded as N ®. The dimension independent estimate which we obtain
in a more general setting involves this ratio.

The method of proof for all the results ‘is the Malliavin calculus.
Techniques of partial differential equations do not lend themselves to the

infinite dimensional setting, because, as we have seen, we have to take



marginal distributions, and these marginals do not, in genmeral, satisfy any
autonomous equation. On the other hand, Malliavin’s qalculus is well suited to
the study of marginal distributions. Furthermore, ratios like the ome in the
preceding paragraph occur naturally when integrating by parts, on R, if

u(dx) = p(x)dx then [f'(x)u(dx) = -£(x)p’ (x)/p(x)p(dx) for f €

Coé(R). The Malliavin calculus allows us to jntegrate by parts on

VWiener space. The main ideas for the proofs are derived from [A], where the
same results are proved on the infinite dimensiomal torus.

Section II is devoted to a discussion of.diffnsions on M, section III to
the Malliavin calculus on M, and section IV to the regularity of diffusions on
M. (Sections II - IV result from private communication with D. Stroock.)

The regularity of finite dimensional marginals of diffusions on Mz is
covered in section V, and the dimension-— independent estimate on these
marginals is covered in the following section. Finally, an applicatiomn to

statistical mechanics is discussed in the last section,



IT. Diffusions on Manifolds

Let M be a compact manifold and Vj, 0 (j £dbe vector fields on M.

Set
d

(1) L = } AALERA
j=1

In this section, we will describe what is meant by ’'the diffusion on M
generated by L'.

Denote by m the dimension of M, and for some D ) m let i: M-—QRD be an
imbedding. Ihen there are smooth fnnctio;s Wj: RP——?RP,
j=0,...,d4 satisfying
i) For x€iM), W,(x) = 1,(V,(i" (0))

(2)

ii) w ' and each of its derivatives is bounded on RP for

i
0<{j<dand1 < i(D.

Set @ = {0€C([0,=),R%): 6(0) = 0] and let
8(t) = (89(t): 1 ¢ j < d} be the position of © at time t ) O.
Set Q3t = g(0(s): 0 { s {t) and ®= oco0s):0 € s). Let W be Wiener

measure on (63,63). For x¢ RD, let x(*,x) be the unique solution to the

equation
d r . T
(3) x(T,z) = x +§j W, (x(t,x))oaed (£)+ _[ Wy (x(t.x))dt.
o J 0
=1

Lemma (4) If x€ i(M) them x(t,x)& i(M) for all t > O.

Proof. The following set up will be useful in this proof and elsewhere.

~

For i 2 1, 1let Ui' Ui', and Ui 1 (i { r be precompact open subsets



of RD so that

i) U, Cepr, U’ .e<l,
1 1 - 1 1

@ T
(5) ii) U U, 28 anddr <o U 7,20
i=1

i=1

iii) For each i n.&€C a(ﬁ.) so that
i b i .

(ﬁi,ni) is a coordinate chart in R and

_ wtl . _ D _ =
= {ni = ... =m O}r\Ui

For xéRD let n(x) = min{n ) 1: xeﬁn]. Define T = 0 and for

i21, v, = daflt 2 v, _ : x(t.x)$Un(,(,i_1,x))}-

By the strong Markov property, it will suffice to show that if x & M then

x(t/\tl) €i(M) for t > 0. Set z = ()X Then, by Ito’'s formula,

. d -~ 3 T~
2(T.z) = z +§ W (2(t,2))0007 (£)+ _[ Wy (2(t,2))at,
0 0
j=1

'1‘_(_1:1

i'vj“(z(t/\cl,z)) =0 for z€M, 0 { j < d and m*1 { n < D, the

, where Wj = (an/ax)WJ.. Since

proof is complete.

Now, set @ = C([0,=),M) and for w<Q let n(t,w) €M be the position

of w at time t > 0. Set "Wlt = g(n(s): 0 { s < t) and
m - o(n(s): 0 { s). For n&€M we can define the measure PT\ on

(2,M) as the distribution of i-1°y("‘,i(n)) under W.



Theorem(6) For all n€ M, Pn described above is the unique

probability measure on (Q,”) such that Pn(n(0)=n)=1'and
(f(n(t))-f;Lf(n(s))dsﬁm;,Pn) is a martingale for every f in

con. Finally, the family [Pﬂ: néM} is Feller continuous and

strong Markov.

Proof. That Pn satisfies the desired conditioms is clear. The

rest of the proof can be taken from chapter 6 of [3].

Remark(7) We can define diffusions on non — compact M in the same way if we

assume that there are Wj.‘0 £ j £ d satisfying (2).

Remark(8) From now on we will assume, for notational conveniemce, that

MER® and i is the identity.



11T, The Malliavin Calculus on Manifolds

In sections IV - VI we will prove certain regularity results about the
transition probability functions for diffusions on manifolds. We first need

some results about the Malliavin calculus.

Let Wj : RD—->RD. j=0,...,d satisfy ii) of (2) and let x(t,x)

-

be the solution to the system (3). Let
- k n

A(t,x) = (( <x"(t,x),x (t,x)> ))1 (k<D ¢nD be the
Malliavin covariance matrixz. (For @,¥e& (see [11), <, P> = f(@'l‘) -
"Pf’-? - PS“P , where I is the Oranstein — Uhlenbeck operator.) Then, for
. c—cb"’(xD.RD)

(C < 2¥x(t,x)), 7®(x(t,x))> ) =

dn/dx(x(t,x))A(t,x)an*/dx(x(t,x)).

Hence, A(i:.x)é'l‘x (RD)®3. (If N is a manifold and p€ N,

(t,x)
TP(N) means the tangent space to N at p, and T‘p(N) means the
cotangent space.) We will show, when xéM.and Wj is an extension to RD

. . &2
of a vector field VJ. on M, 0 ¢ j {d, that A(t,x)€ Tx(t.x)(M) .

We can make a selection of the map xr¥x(*,x) so that for T > O,

(t.x)& [O.T]XRD\—é x(t,x)€ CO'Q(IO.“’] RD). Then, setting

X(t,x) = (( (axilax‘i)(t.x) ))1 <ij <D we have
d
T .
(9) X(T,x) =I+) j' (awj/ax)(x(t.x))xct.x)odeJ(t)
=1°
T
N j (aW,/33) (x(t,x))X(t, 2)at
0

Thus, X is invertible. Furthermore, (see [1])

d
T &
(10) A(T,z) = }f (X(e,T, 0¥, (x(t.2) 1P at
0
=1



rwhere X(t,T,x) = X(T.x)X-l(t.x). Since X(T,x): Tx(M)—éT (M)

x(t,x)

¢ L
and Wy(x(t,x))€ T (o, 0, AT, 0 & (T (p 00
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IV. Regularity
Suppose that M is a compact Riemannian manifold and that its Riemannian
metric, By is the same as the metric it inherits from Rp. Let o be
the positive measure on M associated with the Riemannian structure. We may as
well assume that o is a probability measure.
Let [Vi.j}o <jca be a collection of vector fields on M so that

(11) for all x in M, {V.(x)}1 ¢
to M at x. J -

j¢d spans the tangent space

Let P(t.no,r‘) = Pno(n(t)e (1) for nO&M and | 'S M.
The goal of this sectiom is to show that, for t>0, P(t.no,dn) admits a
density p(t.no.n) with respect to o which is smooth ia 7.
Fix 1 { i { r and set U = Ui' U’ = Ui' and 1 = LFD where
Ui‘ Ui', and n, arte defined in (5). We will show that
P(t,ny,*) admits a demsity on MN\u.
Choose a smooth function p on Rp so that 0 { p 1 and
U<Clp = 1}C%supp(p)<< U’. Define the measure pu on R by
p(t.no.r\) = Ew[p(x(t,no) z(m)ei1 1, where z = nx and
-z(m) = {zl.....zm]. Clearly we will be
finished once we show that p admits a smooth demsity. In order to do so, it

suffices to show that for all fé& Co(Rm) and all

multi-indices a £ N*,

[/D% (& uct.ng.a8) | < c () I1£ll, where

lal | %n

p2 =3'%/(8z " ... 9z ™.

Fix 1 { k { m, and set F(z) = f(z ). Then, for 1 { p £ D and

(m)
x(t,ng)€ U, <F(z(t,no)).zp(t.no)> =

(aF/azq)(z(t.no))zq'p(t.ﬂo) where K(t,no) =



11

D
} an/ax(x(t,no))A(t,no)an/ax‘(x(t,no)). (So, by

q=1

section III, Kp'q(t.no) = <zp(t.n0),zq(t.n0)> and
Kp’q(t.no) =0 if m+1 < pvq £ D aad x(t,ny)&U'.) Thus, if

x(t,n )€U, (aF/azq)(z(t.nO)) =

m
e P
} R (gy) 5, Fl2(tm)) 2P (£,

p=1

where (( (A ) )) = (A ) 1, and A

(m)’p,qg "'1 {p,qg&m (m) (m)

is the upper left hand m by m submatrix of A.

Assume, for the moment, that

: e P
(12)7K.U,(x(t.no))/det(A(m)(t,no))e g;l LP (W)

Then, (see Lemma 3.4 in [2]), p’(x(t.no))(x for

(m))q.p

1 <q,p {mand any p'& C . 1f §€£ , setting Y =

0
p'(x(t.no))é- , we may define Hk(g) =
m
- q Y ¥
} [ alieng), &) () ¥
q=1
~ 3 q
+ 2(A(m))q’k(t.no)\fiz (t.no)]

Then, choosing p’ € C. (U’) with 0 < p’ < 1 and

0
supp(p)C< {p’ = 1},

Ew[{aF/azk](z(t.no))p(t.no)] =

Ew[{a(F(p'°n_1))/azk}(z(t.no))p(t,no)] =



W .
E [F(z(t.no))p (x(t.no))ﬂk(p(t.no))]
We thus have the desired bound on lfDaf(E)u(t.n,ﬁ)l for lel < 1.
For general a, the bound can be obtained by induction.
It remains to show (12). By (11), there is a positive & with

d

- . 2
321 (B (£.T,ngIV, (x(timg))) * 2

st(t.T.no)gM-l(x(t.no))XM(t,T.no)‘

Hence, if x(T,x)€ U’', (A )-I(T.no) £

(m)

T
(1/(sr=))j [(an t/a2) (x(tmg))ax e, Tin ) ®
0

x‘l(t.r.no)<an‘1/ax>(x(t.n°>)](m)dt

Setting Y(t.T.ﬂo) = x_l(t.T.ﬂo)'x-l(t.T.ﬂo).

1/det(A, . (T,x)) £

(m)

’ T -1 -1 m
[(1/(er=m)>jrz[{(an /93) (x(t,n))*7(L,T,n ) (3 /ax)(x(t.no))}(m)]dt] :
; t

But, Tr([(an‘l/ax)(x(t.no))ty<t.r,no)(an‘l/ax)(x(t.no))] )

(m)
£ CTz(¥(t,T,n,)) if x(t.no)é U’', and Tr(Y(t,T.no)) can

easily be estimated in L.

We have now completed the proof of the following theorem.

Theorem (13) Let A>1 and t)>O0. P(t,no,dn) admits a density

12



p(t.no.n) which is smooth in n. The uniform norms on p and

its derivatives can be bounded independent of 1/A £t £ A and noé M.

13



V. Infinite Dimensional Diffusions

We want to extend the results of section IV to diffusions on Mz.
However, to avoid certain technicalities, we will prove results abeut
M[—K'K]. where K is a large integer, and [-K,K] = {k : |kl < K}. This will
suffice if we show that the results so obtained do not depend on K.

In this context, let @ = C([O.a),M[_K'Kl) and @ =
ccto,=), ®EE) - petine n = Ikl <1, W, M,

8 = {ekj : lxl <K, 1< ¢4}, 6}6%, and W as before,.
Let R62+. Suppose that for |kl ( K and 0 ¢ j < d,

v .:M[—K'xl—bT satisfies

k,j M
. [-KIK]
2

i) vk,j(“)CTM(nk) for neM

ii) V., . is smooth and V, ., and each of its derivatives is
bounded independent of k and j

iii) vk.j depends only on {nn}k—R <n < k4R

Then there are functions Wk ; : (Rp)[-K,Kl_a'RD satisfying
i) Wk j is smooth and Wk ] and each derivative is bounded

independent of k and j

(15) ii) wk,j depends only on {yn}k—R Cn ¢ kR for ye
(RD)[-K.K]
. [-K,K] _ .
iii) For néM , Wk'j(I('q)) = 1.Vk'j(n) where
For y (RD)[-K'K?, let y(t,y) = {yk(t.y) : |kl < K} denote the

unique solution to the system of equations

. T
= J
(16) yk(T) = ¥t 2 jWk’j(y(t))°d9k (t)+Jgk,0(y(t))dt

Theorem (6) yields the following.

14



Corollary(17) Let V, i Ikl <K, 0 ¢ j <d satisfy (14). For

£ C (M , define
d
= 2
Li()= ) (1/2 }(vk'j) E()+V, ().
Ikl <k j=1
(vk.jf is formed by f1x1ng_nn, n+k and acting Vk,j on f as a
function of nk.) For néM[—K'K] and y = I(n) let y(*,y) be the

solution to (16) with {Wk

ikl < K. ¢ j ¢ g satisfying (15). Let

Pﬂ on (2, M) be the distribution of I—1°y(‘,I(y)) under W. Then

P“ is the unique probability measure on (2,#) such that

P (n(0)=n)=1 and (f(n(t))-f;Lfm(s))ds,%{.pn) is a

martingale for every f in c

[—K.K])

Finally, the family {Pn:n Mz} is Feller continuous and strong

Markov.
Assume that we are given Vk j for which (14) holds and so
that (¥e>0) (VIkl < &) (Vne v%El) (yye Ty* ().
d
N 2 2
(18) 2 <7'Vk,j("k)> > elyls.

j=1

Let P (t.no.ﬂ )

=P

n

(N)

(M, (£)€ 1) for n KRl g Mg yNNT
0 (N) 0

Theorem (19) Let A>1 and t>0. P(N)(t,no.n) admits a density

PNy

PNy

-

n0<

(t.no,n) which is smooth in n. The uniform norms of

and its derivatives can be bounded independent of 1/A { t < A and

M[—K’K].

15
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Proof. For yé(RD)[_K’K] let xéR[_KD+1'(K+1)D] be defined by
kD+n _ n
x = (v Ikl <K, 1 < n <D. Let X €
-KD+1, (K+ .
R[ (K+1)D] be defined by ka+n = ka+n’ Ikl LKand 1 {(n<m

Set YNy T (y_N....,yN) and X(a.N) =

((x ) .o (x )

(m) " =Nm+1""" (m)

=((ri’d . -
B=((B ))_KD+1 < i,j < (R+1)D define B(m) =

i,j
(m)’ 1) _km+1 <i,j < K(me1) 9Y Brpy

-+ ’ + ’
BpD ', aD*q for -K { p,q { Kand 1  p’',q" { m. Define

(N+1)m)' Similarly, for a matrix

(( (B yPOtp’qmtq’
B(m,N)

yied oy

(C(Bg) -mN+1 < i,j < (N+1)m.

Let Ui' Ui', and P 1 {i<{rbeas in (5) and let
{1k}—N <k <N be a sequence of integers between 1 and r. Set

o
U= TT’Uik and U’ = || Uik . Define
Ikl <N Ikl <N

n(y)k =
otherwise

for yéRD[_K'K] with y. €T, . Choose peC @) so
k i 0

that UC<{p = 1} and 0 { p ( 1. Define u(t.no,f‘) =

\ .
E'[p(y ) (£img)) X ((mx) (o (£, )] for

T\S; R[-Nm+1,(N+1)m]. Since, by section 6 of [21, xl(t.no) is

bounded (in the sense of Malliavin’s calculus) independent of K and
-KD+1 < i  (K+1)D, the proof in section IV will work here to show that p

admits a smooth demsity if we can show that

20) X ))/det (A

(t.agne N\ L,

o T (g A
p=1

(m,N)

where X(t.no) = (an/ax)(x(t.ﬂo))A(t.ﬂo)(Bﬂ/ax*)(x(t,no))



- P .9
and A(t,ng) = (€ <xPleangdxdang)> M g o gy,

Defineﬁkjenzfor bl <K, 0<j<dby

1
aD+n’ (Wk e n=k and 1 { n' (D

W, ) = &
+J 0 otherwise

Set Rk.j=awk.j/ax and‘let X be the unique solutiom to

d T .
X(t,T,y) =1+ } 2 I Rk,j(y("y))X(t”'Y)°d9kJ(s) +
Ikl i K j=1
T
} J‘ H o(y(er))X(tpS,y)ds
Ikl <x °©
d

T 3
Then A(T,y) = ) 2 J'(x(t.r.y)wk ;@) Tt
o 1

Ikl < K j=1

Suppose that {ik}lkl ¢ K is an extemsion of the givem sequence

G gl N with 1 ¢ i, K ¢ for x|l < K. .Then. as in Theorem (13),

using Lemma (2.18) from [A]l, if

K .
~ 1/ (2N+1)
!é-TT U. , then (I/det(A(m,N)<t'"0)))

k=K 'k

£

T
1/(8(2N+1)mT3)I§r{((aﬂ/ax)(x(t.no))Y(t.T.ﬂo)(aﬂ/ax‘)(X(t-no)))(m'N)]dt
where Y(t,T,ny) = X_l(t.T.no)‘X-l(t.T.'qo). The
integrand is bounded by a conmstant times the trace of (Y(t.T.no))(N).

where the constant depends only on {lk}lkl <N and



Tr(Y(t,T.no)(N)) is estimated as in section"6 of [2].

18
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VI A Dimension - Independent Estimate
The estimates on the marginals obtained in the preceding section are
dependent on the number of dimensions for which we are taking the marginal. In
this section we obtain, under an additional hypothesis, an estimate which does
not have this dependence. Specifically, for |kl ¢ K, define

["'K.K]

6, (n.k) = jlgradkpu.n,g)/p(t.n.a)|=p<t.n.g>a (de)

Theorem (21) Suppose that V. . |kl <K, 0 ¢ j<d satisfy (14) and

k,j
(18). Assume in addition that for j = 1,...d and n # k, Vk ; is

indepenéent of L Then A>1

sup sup sup Gt(n.k) C(=

el <8 1/a¢tr qeul ™K

where C does not depend on K.

Proof. First we need two lemmas.

Lemma (22) Fix |kl ¢ K. Suppose that for every 0 { j < d and n # k,

Vk ; is independent of L and that for all n# k, and 0  j < d

Vn X does not depend on - Let y be the solution to (16)

for {Wk satisfying (15). Then

.j}lkl <K,0

I~

jLd

(ykp(t.n).ynq(t,n)) 0 forn #k, t >0, né€

(RP)I—K'K] and 1  p,q £ D.

Proof. See the proof of Lemma (3.8) in [1].

Lemma (23) Let F be a finite subset of the integers and set Wk 0=

)(Fc(k)wk,o for |kl < K, where {Wk.j}lkl (R0 € <d

satisfies (15). Let z be the solution to the system (16) with ﬁk 0



d
2
replacing wk,O' Set a, = E ¥. . . Then for keF,

k,j
j=1
there is ckG Cba(RD) [—K.K]_} RD so that a ¢
d
=b =W+ (1/2)} L) SRR
j=1
W O (82 KKl gD o defined by
D
n _ P P n
v (0 )] } v Peam o BHo

p=1

If S(t) = exp[ } } j: <c,Wk,j>(z(s.n))d9kj(s)

t

+I <c,b>(z(s.n))ds], then (S(t), @, .W) is a
0 t

martingale and so there is a probability measure P on with P(A) =
Ew[R(t).A]. Finally, if y(®,n) is the solution to the system (16) then

EP[f(z(t.n))] = Ew[f(y(t.n))] for all bounded measurable f on
(g) [-x'x] L]

Proof. Let U,, 1 (i { r be as described in (5) and let p.
i i be a

partition of unity subordinate to Ui' Choose ¢y SO that for
i
7, € Ui' ak(n)cki(n) = bk(n). Set ck(n) =

E pi(nk)ck‘(n). Then ¢y is smooth and ac, =

bk. The rést of the lemma follows from Cameron - Martin - Girsanov theory.

(See [2].)

Fix |kl ¢ K and 1 { i { r, and define Ui' Ui’. and m, as in

(5). set U = (z¢ mIE-Kl,

{é GM[-K'K] .

€ ' o=
&k Ui}’ and U

gké Ui }. Define m on U' by



n. (&) n=k
(n(&))_ = i’k

& otherwise

We will show

ETK'U(E)lsradkp(t.n.§)/p(t.n,§)l*p(t.n,é)a[-K'K](dE)

is bounded in the required manner.

Choose {wt,j}irl CE0<j<d so that (15) holds and set

v o j #0or |-kl >R
W = £
k,j 0 otherwise

Denote by y(t,y) the solution th the system (16) and by w(t,y) the solutiomn

with ﬁr ; replacing Wr i Let S and P be as in Lemma (23) witth F =

»

{r: le-x| < R}.

Define ak(t.n) =

P q
(( <wk (t.n),wk (t,n)> ))1 ( p.q {D. Then

- -—

d t
a (t,n) = j(ek(s,t.n>vk Sn(e,m)) *at
0 1 4

j=1

where ek(t.T,n) =1+

T

Jo<awk'j/awk) (w(s,m))e (s,T,n)0d0 7.

LU g I =

j=1

For w(t,x)eU', set ;k(t,n) =

(Bnlawk)(wk(t,n))ak(t.n)(an‘lawk)(wk(t,n))

and (( ((ak)(m))p,q ))1 <{p.qg<m =
~ -1
((ak)(m))
If Fé co“’(U') and p & c0°°<U') then
p é Yel,
p(wk(t.n))((ak)(m))p'q- 5 for 1 { p,q { m, and for

Ewt(a)azkn)<yon'1)(z(t.n>>p<wk<t,n>>%’]
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- —Ew[F°n-1(z(t.n))Bkn(p(wk(t.n))‘I)]

where Bkn( @) =

m
> z(t,n), ((a)
q=1 |

(m))q.n(t.n)9> +

20@) (n) .0t tW TS 2 e ],
and z = nw.
Choose p€ co°(ui') with 0 ¢ p < 1 and U CClp = 1).

Define the measureY on M[—K'x] by

[_NpN] (dw) .

U (aw) = p(m (x 1) (a2, M)p(t,m,ma
Then by Lemma (3.6) in [1] the theorem will be proved once we find a functiom Qé
L2(P) with the Lz(P) norm of fbonnded independent of the desired

quantities and with Eu[f] = Ep[f(w(t.n)) F1 for every

e Cﬂ(M[-K.K])

. v
Integrating by parts, E [f] =
~E' /92, ((£p) %% "h)(z(t,n)) (1/h(z(t,n)))], where h(z)

- (lg(zk)l)llz.

(Here g(*) is the Riemannian metric expressed in the

J.
coordinates ni.) Thus, E [f] =
v -1 -
-E [alazk((fp)%r h)(z(t,n))(S(t)/h(z(t,n)))] =

E'[(£p0n "h) (z(t,m))E, P ((S(t)/B(z(t,n)))p (w (t,m)))]
where ple Cow(Ui') is chosen so that 0 ¢ Py €1 and
{pl = 1}C<C supp(p).

So, Eu[f] = Ep[f(w(t.n)) "Z 1 with E.E=

(p(w(t.n))h(z(t.n))/S(t))Hkn((S(t)/h(z(t.n)))pl(wﬁt.n)))



and \f can be estimated in LZ(P).

Remark (24) For |kl < N ( K, set G, (n,k,N) =

[-N,N]

Jf lszad,p ) (81,87 1y, (£:.8) 12D ) (Eim. )0 (dE)

Then Gt(n,k.N) < Gt(n,k).

Remark (25) The obvious analogues to the preceding results hold om

- B
M[ K.kl for B any positive integer, and with the same proofs.
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VII Application

In section 4 of [A]l, results are proved about the ergodic properties of a

certain class of diffusions on the infinite dimensional torus. There, the
specific energy function is introduced and shown to be a Liapunov function.
That is, denoting by h(p) the specific energy of a measure p on TZB.
B€Z+, and by Pt the Markov semigroup associated with the diffusion,

h(Pt‘p) is nondecreasing for t > 0, where Pt' is the adjoint of Pt'

The analogous results hold for a class of diffusions on Mzﬂ, and with

the same proofs, once we show that the specific energy function is finite.
A collection of smooth functions 9— = {J'F: MZB"" R: FS.ZB.

IF|l = cardinality(F) < ® } is called a potential if JF(n) depends only

on T, k€F, and J_, is invariant under permutations of the indices of

F
F. 9- is called finite range if there is an RGZB+ so that if k,n€ F

and |k-nl > R then J'F = 0.3 is shift invariant if for any F EZB and k€

Za. J (n) = JF(S_kn) where (S-k'n)n =1

F+k n-k’

Assume that8 is a shift invariant and finite range potential. For k€

ZB. define the energy at site k, Hk(n) by
B(n) = ) Jg(n)
F k
B
For y a probability measure on Mz , define the specific free energy

h(u) as follows. Set Ak = {n: Inl ( Rk}. If the marginal demsity of p

A A
on M P has a density with respect to o n' denote it by
(n) =
i (nAn) and set hn(p) =
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A

[ s w™ g re Btany ) +
MAn e n n n
’n
A
j u(n)(nA )log(u(n)(nA ))eo n(dnA )
An n n n
M

If not, set b (u) = =. Let h(n) = IEE(an+1)'Bhn(m).
n «

B
Let c:Mz—-)(O,m) be a smooth function depending only on
coordinates Ny for |kl < R and define ck(n) = c(S-kn).

H_ (n)
Suppose that e ck(n) depends only on N, Set

H (n)
Lf = E e divk(ck(n)gradkf(n))

xezP
- 7P
for f£C (MZ ) which depend only on finitely many coordinates.
Denote by P(t,n,*) the transition probability function for the diffusion
B
associated with L. For p a probability measure on MZ , set pt(‘) =

/p(t,n,*)uldn).

Theorem(26) h(ut) < e(t) ¢ =,
A

Proof. For fé'Cl(Mn). J£2(n)log(f(n))e n(dn)

A
< Cflgrad(£(n)) l2¢ ®(dn) +

A A
[f2(q)o n(dn)log(ffz(n)a n(dn))

where C does not depend on n. (This is the logarithmic Sobolev inequality on

A
M ™) Thas, setting f(nA ) =
n

(n) 1/2
¢ (nA )) ,
n

(n



An
(nA ))o (d'nA )
n n

A

(n)(“A lo n(dnA )
n n

£cC j Elgradkpt(n)(nA )|’/ut
A n
M * Fs

FFA
n

A

since ff’(nA Jo n(nA ) =1, Furthermore,
n n

by Lemma (3.3) in [1], and Theorem (21),

An
(nA o (dnA )
n n

(n) )

J } |grad i}
A kt

M 2 FsA
n

(nA )l’/u(n
n

can be ‘bounded independent of n. Since xlogx is comvex, 0

J ut(n)(nA )log(ut(n)(nA ))aAn(dnA )
A n n n
Mn
< c2ar+1)B.  Also,
A

J 2 .TF(nA )u(n)(nA Jo n(dnA )

A n n n

M " FsA

n

< [sup } IF(n)](ZnR+1)d.

. Mzﬁ F 0
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Combining the preceding two statements, we obtain the desired bound on
h(ut). The following theorems are proved as in section (4) of [1].
Theorem (27) For 0<t1 < t,, h(ut ) £ h(ut ).

1 1
Theorem(28) If p is shift invariant (in terms of the shift on ZB) and
stationary for the diffusion generated by L then p is reversible for this

diffusion.
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