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Abstract

' '-:hnique for measurement of capacitor differences has been developed that has
its origins in charge redistribution analog-to-digital converters. Effects of parasitic
capacitance and MOS switch charge injection are canceled. The capacitance differ-
ence can be obtained as a voltage in both digital and analog form with no additional
circuitry needed. This makes it ideally suited for digital signal processing. Since
the technique can be made relatively insensitive to parasitic capacitance, differences
in small capacitances such as capacitive integrated sensors can be measured.

It is shown that measurements on 20 to 100 femtofarad capacitors are possible
using this method. Effects of junction leakage, capacitor and transistor hysteresis,
comparator offset, MOS switch charge injection, and voltage and temperature co-
efficients are taken into account. Noise from the comparator, MOS switch, power
supplies and clock feedthrough are considered as sources of error and dictate the
minimum resolution.

Extensive measurements are made from test chips fabricated in 3 im CMOS
technology. Detection of percent differences of less than 0.5% on 20 to 100 femto-
farad capacitors has been successfully demonstrated.
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Chapter 1

Introduction

Since the introduction of the first microprocessor early 1970's, the increased demand

for faster and smaller digital processing elements has spurred the rapid growth

of digital technology. Large thrusts were made to make these components both

innovative and economical. Today, there are hosts of devices that operate in the

digital domain: static and dynamic memories, EPROM's, PAL's, microprocessors

and controllers as well as gate-arrays and ASIC's (Application Specific Integrated

Circuits). The cost and turn-around time for producing some of these chips is very

small. For example, turn-around times for some gate-arrays used for prototyping

logic designs can be as little as one day.

There still remains a constant demand for faster and smaller digital chips, but

the focus is being shifted to interface and sensing technologies. Since large memories

and powerful microprocessors are available at low cost, efforts are being made to

update interface technology. Analog signals must be converted to digital form, hence

the need for fast and efficient analog-to-digital converters as well as digital-to-analog

13



CHAPTER 1. INTRODUCTION

converters. These comprise the information interface to the real analog world. In

addition to the digital processing and data conversion elements, there is a need for

more efficient and innovative sensors which convert physical or chemical parameters

into electrical signals. Just as the digital industry sought for more creative, cheaper

designs, the analog and sensor designers did also. The explosive demand for IC's

made possible the complex silicon fabrication technology economically attractive.

This industry has dictated the direction of both analog circuit and sensor designers.

If a design can be implemented using conventional digital IC technology (or by a

slight modification), then it is economically advantageous to do so.

This trend can be observed in the frequent use of CMOS technology in analog

circuit design, though its origins are in digital design [1]. In this decade, sensor

designers have taken advantage of some of the unique processing aspects of silicon

[2]. The ability to precisely etch silicon into diaphragms and other structures makes

possible total integration of sensor, interface, and information processing on one

chip. The economic advantages of system integration are potentially enormous.

There are many research groups working on the development of interface tech-

nology (A/D and D/A converters) and sensor technology. Unfortunately, they have

tended to be isolated from each other, resulting in sub-optimal sensing systems.

Sensor performance depends heavily on the specific data read-out scheme [3]. For

example, a circuit may be able to overcome a sensor design problem, and vice versa.

The goals of this thesis project are to approach the sensor read-out problem from

a circuit design standpoint. The criteria for such a read-out have been established

in the literature [41. Specifically, the goals of this report are

1. Exploration of sense phenomena (mainly piezoresistive and capacitive)

14
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2. Investigation of the capacitive read-out technique

3. Theory behind the charge redistribution technique used as the sense circuitry

4. Study of the system design issues that employ such circuitry

5. Evaluation of prototype performance

There are many macroscopic variables that are detectable as a change in capac-

itance. For convenience, this thesis concentrates on primarily those that manifest

themselves as a force on a movable diaphragm, e.g. pressure or acceleration.

Many mechanical measurements made today involve sensing pressure. Its precise

detection is important to the automotive, aerospace, biomedical and microphone

industries as well as to acoustical research. Due to the rapid development of the

microprocessor, the transducer has become the focus of similar development. There

is a growing need to make transducers robust and compatible with microprocessors

because of the increased power and decreased cost of the control unit within a

measurement system. The micromachining of silicon makes this possible and ideally

suited to pressure-sensing applications [21. Compliant structures can be machined

on silicon substrates that sense pressure by deformation or deflection. This relatively

new technology bridges the interface between sensor and control, making possible

monolithic sensor systems, or so called "smart sensors" [5].

A variety of methods are employed to detect pressure. The major types employ

Bourdon tubes, capsules, bellows and diaphragms 16]. The latter is extensively

used in silicon pressure sensors. Sensing techniques cover a wide area, including

piezoelectric elements, metallic and semiconductor strain gages, potentiometers,

variable inductance and capacitance devices, and differential transformers [6]. Most
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commonly used in silicon diaphragms are piezoelectric elements, strain gages, and

variable capacitance devices [7].

Variable capacitance sensors incorporate microstructures that respond to pres-

sure variations by deformation or deflection. This causes a change in the gap of a

capacitor that has one fixed plate and another movable plate or diaphragm. The gap

change caused by deformation causes a capacitance change that can be detected and

later translated into a corresponding pressure. Advantages of this method over its

piezoresistive counterparts are higher sensitivity to pressure and lower sensitivity to

temperature variations [31. Unfortunately, sophisticated read-out circuitry must be

employed to detect small capacitance changes in small capacitors in the presence of

large parasitic capacitances. The challenge is to design circuitry that is compatible

with regular MOS fabrication and silicon micromachining processes, and that can

overcome the problems of parasitics and noise. Present systems employ both ac and

dc techniques to sense capacitance change. However, the sense capacitors employed

in these techniques are usually much greater than the stray parasitics encountered

in practice. As silicon diaphragms are scaled, new circuitry must be developed to

handle smaller sense capacitors. This is due to the ability of semiconductor pro-

cesses to scale horizontally across a wafer. If an operational structure can be built

smaller, then it is more economical to do so since the processing cost depends on

area.

Another key use of the variable capacitance method is measuring deflections of

cantilever beams due to acceleration. This has been pursued and is ideally suited to

the capacitance read-out scheme [81,[9]. Since the detection is due to a deformation,

the cause of the deformation can be sensed. This could be air pressure, tactile

pressure [101,[11], or accelerations. All that is needed is the manifestation of the

16
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parameter of interest as a deflection of a structure. Due to the rapid advancement

of silicon micromachining, a variety of sensing structures can be built with precision

[2,[12I,[131.

Capacitance change in a capacitor is not limited to only deflection changes in its

plates. The dielectric media can change in reaction to some external stimuli causing

a corresponding capacitance change. This idea has been implemented commercially

to monitor epoxy cure cycles [14].

This thesis deals with using a charge redistribution technique in detecting ex-

tremely small capacitive differences in fixed value capacitors caused by semicon-

ductor processing. A chip is designed and sent to MOSIS (MOS Implementation

System) for fabrication using a 3 gtm p-well CMOS process. The test chip is used

to determine the effectiveness of the charge redistribution technique in measuring

capacitive differences in metal-to-poly capacitors on the order of 20 to 100 femto-

farads. This is approximately the size of sense capacitors that would be fabricated

on silicon. The effects of MOS switch charge injection and comparator offset are

canceled. Other second-order effects are also considered.

The thesis consists of six chapters. Chapter 2 gives the theoretical and histori-

cal background on the charge redistribution technique and the calibration scheme.

Chapter 3 and 4 deal with the theory and circuit implementation of the technique.

Associated problems with noise and fundamental limitations are discussed. Chapter

5 presents experimental results that are correlated with theory. Lastly, Chapter 6

concludes with system issues concerning the mating of this read-out scheme with

silicon sensors. Comparisons to other read-out schemes as well as physical lim-

itations of sensitivity and size are given. The Appendix includes sections on the

generality of the charge redistribution technique, alternate switching sequences, and
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fundamental limitations.



Chapter 2

Theoretical Background

2.1 Force Detection Methods

There are several ways to detect force. In the development stages are optical tech-

niques using interferometry to sense distance changes caused by deflections of struc-

tures. These may offer the highest pressure sensitivity and noise immunity. In

widespread use today are pressure transducers that exploit piezoresistivity. They

employ piezoresistors that convert the strain of a given structure into a voltage that

can be detected. Piezo-junction devices, on the other hand, utilize differences in

reverse junction leakage current as a measure of the pressure on the material [3].

The latter, however, suffers from instability mechanisms and is effective only at

high strain levels that approach the fracture level in silicon. Piezoresistive readout

is much more sensitive and stable under normal operating conditions. Capacitive

transducers are also widely employed. These detect a change in force by a change

in capacitance of a deformable structure. Both the piezoresistive and capacitive

19



CHAPTER 2. THEORETICAL BACKGROUND

techniques can be adapted to silicon microstructures. Each has its advantages and

disadvantages.

2.1.1 Piezoresistive Technique

The phenomena of piezoresistance involves a change in resistance of a material due

to an applied stress. For a diffused resistor subjected to parallel and perpendicular

stress components all and a, respectively, the resistance change is

R

where rll and r are the piezoresistive coefficients parallel and perpendicular to

the resistor length [3]. The theory of piezoresistivity is not given here. The lattice

strain caused by the applied pressure changes carrier scattering behavior and hence

affects resistivity. By orienting resistors in a bridge topology, changes in resistance

due to an induced strain can be detected as an output voltage. This output voltage

can be related to a pressure exerted on a diaphragm. It can be proven that the r

coefficients are nearly equal and opposite for orientation of the resistors in the (110)

direction 13]. Resistors oriented parallel and perpendicular to a diaphragm edge will

experience a resistance change nearly equal and opposite. By use of a full-bridge

topology, common-mode errors due to temperature variations can be canceled to

first order. However, sensitivity to resistor doping level and temperature is high

and cannot be completely ignored.

Placement of piezoresistive elements near the diaphragm or test structure is

critical to sensor performance. Sensitivity increases as the resistors are placed near

the edges due to increased stress there. Tradeoffs include resistor reproducibility

(using large resistors) versus pressure sensitivity (using smaller resistors for higher

20
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REFERENCE PRESSURE

DIFFUSED PIE ZORESISTORS
ONDING PADS

.LLOY OR
C TROSTATIC

SEAL

ACCSS FOR LXTERNAL PRLSSURE

Figure 2.1: Piezoresistive silicon pressure diaphragms (from [3])

average stress), diaphragm size and thickness. All of these factors contribute to a

potential decrease in sensitivity and a larger error in the measurement.

This technique is popular as a read-out scheme applied to silicon pressure sensors

in spite of large non-linearity for higher-order piezoresistive coefficients and process

dependent effects. Temperature coefficients for zero-pressure offset have been re-

ported between 1 and 5 mmHg/°C depending on doping levels [151. Temperature

compensation is used to reduce these effects despite increased costs. This may be

due to the lack of alternate methods of pressure detection besides the capacitive

method, which until recently required extensive circuitry [15].

Shown in Figure 1 (2-1) is a typical piezoresistive configuration applied to a

silicon diaphragm. In recent years, several novel structures have incorporated this

method for pressure and acceleration detection [161-[20J. There have been few im-

provements in the reduction of temperature sensitivity due to the inherent mecha-

nisms that cause piezoresistivity. This has led others to explore the use of capacitive

readout for sensing pressure.

21



CHAPTER 2. THEORETICAL BACKGROUND

2.1.2 Capacitive Technique

Capacitive pressure sensors detect pressure by a change in capacitance in a de-

formable structure. There are no less than six temperature mechanisms in piezore-

sistive sensors, three of which appear in the capacitive sensor: plate deflection

temperature sensitivity, packaging stress and gas temperature between capacitor

plates. These can be easily reduced and controlled so that capacitive sensors fea-

ture low temperature sensitivity [15j. For a capacitive sensor shown in Figure 2

(2-2), the capacitance between the plates is

C =i S- w(xy dxdy (2.2)

where Eo is the free-space dieiectric constant, S is the zero-pressure plate separa-

tion, and w(x,y) is the deflection response to the applied pressure [3]. Studies have

shown that with a diaphragm of the same thickness, the intrinsic unloaded pres-

sure sensitivity of the capacitive technique is an order of magnitude greater than

the piezoresistive technique [31. However for silicon diaphragms, the zero-pressure

capacitance may be quite small (on the order of tenths of a picofarad) which com-

plicates the capacitance detection circuitry. For particular readout circuits, para-

sitic capacitances cause an error in the measurement. The detection circuitry is of

paramount importance to the feasibility of such a scheme.

Because of the increased pressure sensitivity and decreased temperature sensi-

tivity, the capacitive sensor has become a viable alternative to the piezoresistive

sensor. A popular detection method utilizes an oscillator which drives a capacitive

bridge circuit. A change in capacitance relative to a reference capacitance causes

an output voltage (depending on the output scheme) or shift in frequency which

can be detected by an external circuit [21]-[26]. The main cause of error is the

22
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Figure 2.2: Capacitive silicon pressure sensor (from [491)
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existence of stray parasitic capacitance. In most of the literature, the sense and

reference capacitors are often an order of magnitude larger than the parasitics so

that errors due to parasitics are either ignored entirely, or are calculated but usually

deemed insignificant [22],[24],[261-[29]. It is unclear what the effect of large para-

sitic capacitances (when compared to the sense and reference capacitors) will have

on these measurement techniques. Major areas of research involve modeling and

fabrication of the silicon diaphragms [2],[301-[321 (for better reproducibility), and

the development of capacitance detection methods using oscillator-drive techniques

[23],[25],[26],[33]. Recently, the advent of switched-capacitive ideas have led to new

and innovative methods of capacitance detection [281,[291,[34]. However, problems

appear that are inherent to all switched-capacitive circuits. MOS switch charge

injection, clock feedthrough, and circuit noise become a major limiting factor in cir-

cuit performance. These problems are not new to the MOS analog circuit designer.

Switched-capacitive circuits have been applied to filter design and analog-to-digital

converters with great success. A majority of problems have been circumvented or

solved using novel circuit methods. Such methods are discussed in the next section.

2.2 Calibration Technique: Historical Origins

As mentioned earlier, the capacitive technique offers substantial gains over the

piezoresistive method. Common to most capacitive detection schemes is an oscillator-

driven detection circuit. Most information processing is accomplished by a micro-

processor so that frequently the analog data from the detection circuitry must be

converted externally by a data acquisition system. This system is usually not in-

cluded as part of the detection scheme, though it plays a key role in sensor sys-

24



2.2. CALIBRATION TECHNIQUE: HISTORICAL ORIGINS

tern performance. The calibration technique addresses problems associated with

switched-capacitive circuits while being an integral part of a data acquisition sys-

tem. Digital and analog data are available as a consequence of the technique so

that external data conversion is not necessary. The idea was first utilized in mak-

ing capacitor mismatch measurements 351, then later extended to analog-to-digital

converters employing binary-weighted capacitor arrays [361. Since its origins lie in

and charge-redistribution A/D converters, a brief overview of the relevant topics is

given.

As demand increased for precision analog circuits, the switched-capacitive idea

emerged in analog-to-digital converter designs 371. For high-precision A/D con-

verters, individual trimming and component matching are needed. Though this is

still the case for extremely high-precision circuits, designers have developed ideas

that avoid this costly procedure through clever circuit design. In 1975, a method

was presented that measured capacitive mismatches on an IC [35J. It was developed

for measuring capacitive mismatches in binary-weighted capacitor arrays because

capacitance measurements were inadequate at that time. These arrays were used

in a new charge redistribution A/D conversion method [37],[38].

2.2.1 Charge Redistribution A/D Conversion

In Figure 3 (2-3) is a conceptual example of the operation of a five-bit A/D conver-

sion using the charge redistribution technique. The components consist of a binary

weighted capacitor array, MOS switches, and a comparator. A/D conversion is

achieved in three steps:

25
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J /f;O · -2cv,.

/," Vo,

2 4 8 16 16

VmI a. - V

Figure 2.3: Simulation of 5-bit charge redistribution A/D converter (from [37])

1. Ground the top node so that V is ground. Set the bottom plates of the

capacitors in the array to the input voltage to be converted.

2. Open the top switch so that the top node floats. Connect the bottom plates

of the capacitors to ground. These two steps have stored a charge on the top

node that is proportional to the binary-weighted sum of the input voltage.

3. Apply a reference voltage Vrf! to the largest capacitor in the array. The output

of the comparator will be the most significant bit of the A/D conversion. If

the bit is zero, then return the bottom plate to ground, else continue to the

next largest capacitor (C/2) until all N bits have been determined.

To see how these steps are mathematically equivalent to an A/D conversion, consider

the charge stored due to the first step. The charge stored is

Q1 = -i. + + - + - + i + 6 = -2VnC
2 4 8 16 16

26



2.2. CALIBRATION TECHNIQUE: HISTORICAL ORIGINS 27

After the top node is isolated, voltages are applied to the bottom plates of the

capacitors which will redistribute the charge on the top node. If we apply a voltage

Vre/ to the largest capacitor (C), the voltage V. can be found due to charge conser-

vation, i.e. Q must be equal to any expression of the charge after the top switch

is opened. With Vrei applied to the largest capacitor C, the expression for charge

becomes

Q2 = 2V.C - Vref C

Setting Q1 = Q2 and solving for V- yields

C Vz = -vi. + v,,r CNotice the extra lc capacitor in the array. This is used so that the total capacitance

on the node is 2C and hence the capacitive divider ratio will always be a power of

2. Thus

V, = -Vin +
2

The comparator senses V,.

If V > 0 then Vi <

If V <0 then V,,> 

More generally, for testing the ith bit in an N-bit conversion, where the LSB is bo

and the MSB is bN-1, the algorithm is

If V > 0 then Vin < EN-i so set bN i = 1 (2.3)

If V < 0 then V,,n > N-i so set bN-, = 0 (2.4)

where EN-i is given by
N-i Vref

N-i = bN- (2.5)
j=l
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and in actuality, bN-i is set to one (our initial guess), and the comparator will tell

us whether to change it to zero or not. This is the key to the A/D conversion. By

applying Vref to different binary-weighted values of C, we can either add or subtract

these terms to V. The comparator will tell us which terms to keep and which to

discard. This is exactly the process of successive approximation A/D conversion.

For N-bit resolution, N redistributions are necessary. After conversion, all the

charge will remain on the capacitors representing terms that are kept while others

are discharged. The digital code can either be stored sequentially from the compara-

tor or can be obtained by looking at the state of the MOS switches after conversion.

There are numerous interesting characteristics of this technique. For example, the

initial charge sampled on the top node was dependent only on Vn. This need not

be the case. If additional charge is added by applying V,,f to the largest capacitor,

then essentially this shifts the value of V. so that A/D conversion can accommodate

negative inputs, where negative inputs are represented by 1's complement [37].

Parasitic capacitance sensitivity is minimized since it normally is not time-

varying. It contributes a charge term in all the steps and therefore cancels out.

The accuracy of this technique depends on the control of capacitive ratios. This

led to the consideration of new and accurate methods of measuring capacitive mis-

matches since ratio matching determined the resolution.
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Figure 2.4: Capacitive mismatch system (from [351)

2.2.2 Capacitance Mismatch Measurement in A/D Con-

verters

In 1979, McCreary and Sealer published a paper that demonstrated the use of the

charge redistribution technique as applied to capacitive mismatch measurement [35].

Capacitance bridges were initially used to measure the arrays but were inadequate

due to large-scale non-linearities of the bridge. An algorithm was developed that

allowed calculation of ratio errors. Figure 4 (2-4) shows a typical implementation

of the algorithm. In the following discussion, the notation for the capacitors is the
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following:

Ck = 2kC, k = Oa,Ob, 1,2,, N - 1 (2.6)

Ck denotes a capacitance that is 2 times larger than the unit capacitance C, and

k will take on values from 0 to N - 1, where N is the number of bits of the A/D

converter that uses this binary array. The unit capacitance C is defined such that

the total capacitance is exactly equal to 2NC. Notice that there are two capacitors

with a value C: C and Co. For the C9 capacitor, the ratio of C9 to the total

capacitance should be one-half. C is the termination capacitor needed to make the

capacitive divider ratio always a power of two. In general, the difference between

the capacitor Ck and the rest of the array is

k-I
Ck- E C,

This can be calculated for the kth capacitor in two steps:

1. V node is grounded and a voltage V,,f is applied to Ck while grounding all

others.

2. The top node is isolated, and the voltages on the capacitors are switched.

The voltage at the top node is, after step 2,

V= , .Ck - E] Ci (2.7)
Vt=otal i=lb

Thus the errors due to capacitive mismatches can be found since both V, and V,,F

are known.

This technique was implemented to study capacitor mismatch errors that cause

linearity errors in charge redistribution A/D converters. Elimination of charge in-

jection sources is crucial in obtaining higher resolution and smaller errors in these
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A/D converters. In 1984, Lee extended error-correcting ideas to the above tech-

nique in achieving a 15-bit A/D converter [36j. The idea of self-calibration allowed

higher resolution by eliminating errors caused by component matching and charge

injection. It is a powerful concept, and the next chapter is devoted to understanding

it. It can be applied to determine precise mismatches of very small capacitors. This

is exactly what is needed in capacitive sensor design.
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Chapter 3

Self-Calibration Technique:

Theory

3.1 Application to A/D Converters

Successive approximation A/D converters require precise component matching to

achieve high resolution and good linearity. Their performance is limited by errors

in ratio matching. Higher performance converters usually employ a hybrid tech-

nology in order to achieve good component matching. Usually thin and thick film

technologies in conjunction with laser-trimming can achieve the small tolerances

needed in 16-bit converters. This is a costly procedure since each converter must

be specially trimmed.

The self-calibration technique avoids this process by calibrating out errors in

component matching. Errors are stored in memory, then recalled when a correction
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Figure 3.1: Block diagram of self-calibrating A/D converter (from [361)

is needed. Calibration can be done at any time, eliminating long-term drift effects.

The technique can be implemented in standard CMOS or NMOS technology.

Figure 1 (3-1) shows the block diagram of the self-calibrating A/D converter. It

consists of an N-bit capacitor array main DAC (Digital-to-Analog Converter), an

M-bit resistor string sub DAC, and a resistor string calibration DAC. The main

DAC and the sub DAC are used as the successive approximation A/D converter,

while the calibration DAC is used to find and supply the error-correcting voltages

to the main DAC. Since the sub and calibration DAC's have errors, two additional

bits of resolution are needed to overcome errors in a 16-bit A/D converter [36]. The

total resolution for this A/D converter is N + M. The resistor sub DAC is used as

the coarse DAC, and the capacitive main DAC is used as the fine-tune DAC. The

following discussion focuses on the capacitive main DAC only so that any reference

to an A/D conversion refers to the main DAC and not the sub DAC.
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The calibration cycle computes errors in the mismatch ratio of the capacitor

array. In the following discussion, the notation for capacitances is consistent with

Section 2.2.3 on capacitive mismatch measurements. It differs somewhat from the

original paper by Lee 361. Assume that each binary-weighted capacitor Ck has an

error such that

Ck = 2kC(1 + ek), k = Oa,Ob, 1,2, ,N - 1 (3.1)

where C has been defined as an average unit capacitance. In the charge redistribu-

tion A/D conversion cycle, the kth capacitor corresponding to the kth bit determi-

nation has a voltage residue on the top node of

V. -V. + Vreif (3.2)

Substituting Ck from equation (3.1) into equation (3.2) yields

V = -V. + Vref [ 2C(l + ek) (3.3)

The term added to -V,, reduces to

Vr, [ 2C + Ek= 2 ) ] (3.4)

The total sum of errors ENl 2'Cei is zero since C is defined such that 2 NC is the

total capacitance. Thus equation (3.4) reduces to

re2 - + Vref2 k- N Ek (3.5)

The error due to the capacitive mismatch is the last term. Let this be the error

voltage

V = Vref2k-N k, k = Ob, 1, 2, --, N - 1 (3.6)

The subscript k refers to the kth capacitor that is 2k times larger than the unit

capacitor C. It also refers to the kth bit being determined in the A/D conversion,
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where N is the number of bits. Total linearity error is
N-I

t%,,o, = Z bV(, (3.7)
=0Oh

where b, represents the i h bit of the digital output code bN-IbN-2 .. bo. During

the calibration cycle, these errors are measured by a calibration DAC and stored

in a RAM. During the conversion cycle, when the ith bit is being determined, the

calibration DAC subtracts out the error voltage by applying a voltage to a coupling

capacitor connected to the capacitor array.

The self-calibrating technique was developed to reduce the errors due to compo-

nent matching in A/D converters. It was used to calibrate out non-linearity errors.

Notice that the idea can be equally applied to measuring capacitive differences and

random or controlled sources of charge injection. This technique can measure offset

errors due to capacitive mismatch, comparator offsets and charge injection and can

compensate and/or calibrate a system that has these errors. The technique is ideal

for measuring capacitive differences (as in capacitive sensors) and reducing inherent

circuit errors. The next section describes in detail the application of this idea to

the measurement of capacitive differences.

3.2 Application to Measurement of Capacitive Dif-

ferences

The basic circuit is shown in Figure 2 (3-2). It consists of the sense and reference

capacitors (Cs and CR), the coupling capacitor (Cc), three MOS switches, a voltage

comparator, a digital-to-analog converter (DAC), a successive approximation regis-

ter (SAR), and a memory register with associated logic capable of signal inversion.
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The non-idealities of the circuit appear as the offset of the comparator (Vo,) and its

finite gain (A), parasitic capacitance to ground (Cp), and switch charge injection

(Qs3). To better understand how these non-idealities are taken into account, the

ideal system in Figure 2 is first analyzed, then second-order effects are added later.

In the assumption of an ideal circuit, VO, = 0, Cp = 0, Qs3 = 0, A = oo, and DAC

quantization error is negligible. The measurement technique proceeds in two steps.
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Step 1

* Set S3 to closed position so that Vz is at ground potential.

* Set S to Vref.

* Set S2 to ground.

* Set VDAC to ground.

The charge at the top node is just Q1 = -V,feCR. The comparator is implemented

with an op-amp so that when the feedback loop is closed with switch S3. V, is at

ground potential.

Step 2

* Set S3 to open position.

* Set S1 to ground.

* Set S2 to V,,e.

* Initialize SAR/DAC.

When the successive approximation register is initiated, it outputs a voltage that is

one-half the full-scale voltage. V responds by either becoming positive or negative

relative to ground. The comparator senses this change and output either a one or

zero to the SAR. If the output of the comparator is a one, then the SAR keeps that

voltage, adds half of the previous voltage, and applies this voltage to Cc. If the

output is a zero, then instead of adding half the previous voltage, it subtracts it and
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applies it to Cc. This continues until the SAR reaches its quantization limit and

stops. If the SAR, DAC, and voltage comparator are ideal, then the voltage from

the DAC (VDAC) precisely forces the top node voltage (V,) to zero. The charge at

the top node is thus

Q2 = -V,,fCS - VDACCC

By charge conservation, Ql = Q2 so that

-Vref CR = -V CS - VDACCC

VDAC - Vref(CR - Cs) (3.8)
Cc

The output of the DAC produces a voltage proportional to the capacitive dif-

ference of Cs and CR. Appropriate choices of V,,! and Cc can be made so that the

maximum dynamic range of the DAC can be utilized. The parameter C can be

found by multiplying the numerator and denominator by CR or Cs and rearranging

so that
AC _ VDAC [ CC] (3.9)
C [Vrei] [C

where C is a normalizing capacitance and typically is either CR or Cs. Notice that

the result is a product of two ratios: a voltage ratio that can be measured easily,

and a capacitive ratio that is equal to the area ratio of the capacitors, given that

the dielectric and gap thickness are the same for both capacitors.

3.3 Non-Ideal Effects

In principle, the technique outlined in Section 3.2 should give the difference between

two capacitors. However, there are errors introduced when the algorithm is imple-

mented in any practical technology. Limitations due to component design, noise,
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and physical phenomena cause errors in the measurement. This section deals with

these limitations and determines their effect on practical circuit performance of the

algorithm.

Possible causes of error in the practical implementation of the algorithm are:

1. Circuit Non-Idealities

(a) MOS switch charge injection

(b) Comparator offset with finite gain

(c) Parasitic capacitance

(d) SAR/DAC quantization error

2. Component Non-Idealities

(a) Capacitor hysteresis

(b) Transistor hysteresis

(c) Junction leakage

(d) Temperature coefficient of the capacitors

(e) Voltage coefficient of the capacitors

3. Noise Sources

(a) Switch noise

(b) Circuit noise

(c) Clock feedthrough

4. Other sources of charge injection or depletion
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3.3. NON-IDEAL EFFECTS

Item 1 is modeled by a modified ideal circuit block diagram, and the offset calibra-

tion algorithm can be applied to eliminate some of these effects. Item 2 represents

physical phenomena and their presence is evaluated. Item 3 represents limitations

on the practical implementation of the algorithm. Elimination of some but not

all of these effects is possible. Finally, Item 4 denotes a random unknown charge

generation or recombination factor which could disturb the measurement.

3.3.1 Circuit Non-Idealities

A modified block diagram of the circuit implementation is shown in Figure 3 (3-3).

The comparator has an offset V,, and a finite gain A while the switch S3 injects

a charge Qs3 when opened. A parasitic capacitance Cp exists as well as a DAC

quantization error of ±LSB. It is found that the algorithm can be implemented

in either a closed-loop or open-loop topology. In the closed-loop topology, it is

important to note that if the feedback path due to switch S3 must cause V = V,,

the comparator must operate as an op-amp and cannot be a regenerative latch

comparator with only high or low digital outputs. When the SAR/DAC feedback

loop is initiated, the operation of the comparator can be limited to digital outputs

since the SAR/DAC generate the appropriate analog signal to the coupling capacitor

as feedback. Usually the comparator can be designed as a high-gain op-amp that can

act as a voltage comparator when its output saturates. In the open-loop topology,

the feedback loop through S3 is never used so that the comparator may always

have digital outputs. Since the analog signal for measurement of small capacitors is

usually small, a monolithic preamplifier can be used to buffer the data to an off-chip

comparator in this configuration. In the analysis, the closed-loop is considered first,

then the open-loop.
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Closed-Loop Topology

Assuming that VDAC is in error, the amount of error transferred to V. can be easily

calculated. Refer to Figure 3 (3-3). A real DAC can typically resolve to i1LSB.

Since it has finite resolution, it cannot exactly force Vz to ground. Assuming that

Vz is at some voltage V0, and all the capacitors are grounded, the initial charge is

Qi = Vo,(CP + CR + CS + CC)

If VDAC = ±ILSB and the node is isolated, the final charge is

Qf = VZ(Cp + CR + CS) + (V, 1+ LSB)Cc

By charge conservation, Qi = Q so that

Vo,(Cp + CR + CS + CC) = [r2(Cp + CR + CS) + (Vz ± -LSB)Cc

Solving for Vz yields

= V ,,, Cp +LSB C + CS + CC]= 6(LSB) (3.10)

where 6 is the capacitive divider ratio

Cc (3.11)
6= CP +CR + CS + CC + C + C Ctotl (3.11)

Thus any change in voltage AV at VDAC results in a change in voltage 6AV at

V. This is just a simple capacitive divider as seen from a charge conservation

derivation. This introduces an error in the measurement.

Charge injection can be measured using the offset calibration technique. This is

called the calibration cycle while the capacitive mismatch measurement is denoted as

the measurement cycle. The calibration and measurement cycle inherently eliminate
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the comparator offset in the closed-loop topology. In the open-loop topology, the

offset is measured, then eliminated.

Consider the finite gain of the comparator. In the closed-loop topology, it must

behave as a high-gain op-amp in Step 1. The output of the op-amp is

Vout = A(Vo, - Vot)

Vou = [1 A]v

If A is large such that A 1 then Vo,t - V0,. For small input signals, there should

be a preamplifier to buffer the chip to another comparator off-chip. The gain of

the preamplifier must be large enough to overcome the hysteresis of the off-chip

comparator. This is a small and feasible requirement.

The calibration procedure begins by measuring the charge injection. For gener-

ality, assume that the limitation of the DAC may be quantization errors or thermal

noise such that the effective resolution of the DAC is ±AV.

Step OA

* Set S3 to closed position. V becomes V,,.

* Set S1 to ground.

* Set S2 to V,,I.

* Set VDAC to ground.

Assuming that the DAC cannot be a ground but is at ±AV, the charge on the top

node is

QOA = Vo,(CP + CR + CS + CC) - refCS AVCc
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Step OB

* Set S3 to open position.

* Initialize SAR/DAC.

The SAR/DAC forces Vx to Vo, ± 6AV. The charge on the top node becomes

QOA + QS3 due to switch injection. After the SAR has finished, the charge can be

calculated as

QoB = (V, + 6AV)(C + CR + CS + CC) - VrcfCS - VDACCC

By charge conservation, QOA + QS3 = QOB. The offset terms and the VrcfCs terms

cancel. Replacing 6 by equation (3.11) and assuming that in worst case the ±AV

terms add, VDAC becomes

-QS3
VDAC,.,, - ± 2ŽAV (3.12)

Cc

Charge injection must be measured since it upsets the charge conservation as-

sumption made in the earlier ideal circuit analysis. If it is taken into account,

charge due to the capacitors can be accurately determined and hence the capacitive

difference. Once the switch injection voltage is measured, it can be stored in a

RAM. When the negative of VDAC.,, is applied to the coupling capacitor, a voltage

at Vz is created that cancels out the error voltage generated by the switch injection

charge. Alternatively, one can think of the DAC as creating a positive charge on the

coupling capacitor that is just large enough to cancel the negative switch injection

(assuming an NMOS switch) and hence the only charge available for measurement

is due to the voltage on the capacitors. The sequence for measurement is
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Step 1

* Set S3 to closed position. V becomes V0,.

* Set VDAC to -VDAC,.,,i

* Set S1 to Vrf.

* Set S2 to ground.

Assuming that when we apply -VDAC,,,,, it introduces another error tAV, the charge

at the top node is

Q1 = Vo,(CP + CR + CS + CC) - VrefCR + VDAC,..,CC ± AVCC

Step 2

* Set S3 to open position.

* Set S1 to ground.

* Set S2 to Vrf/.

* Initialize SAR/DAC. This forces V, = V0, ± 6AV.

The charge on the top node becomes Ql + Qs3 due to switch injection. After the

SAR finishes, the charge expression can be written as

Q2 = (V,, ± 6AV)(Cp + CR + CS + CC) - VefCS - VDACCC

By charge conservation, Ql + Qs3 = Q2. Replacing VDAC, dI with equation (3.12)

and 6 by equation (3.11) yields similar terms on both sides: the charge injection
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terms and the offset terms. The ± AV terms do not necessarily cancel and in worst

case they add. Solving for VDAC yields

VDACm,, = V,(CR - Cs) ± 4AV (3.13)

In the calibration and measurement sequences, the errors due to the DAC when

-VDAC.., and ground are applied are taken into account. From the calculations

made, one can easily deduce that the DAC is used four times, each time introducing

an error of ±AV. Thus the worst case error occurs when all the error terms either

add or subtract, ±4AV.

The offset does not effect the technique because it shifts the voltage at Vz to V,,

and does not change during the calibration and measurement cycles. Time-varying

offsets are considered in a later section.

Effects of parasitic capacitance are canceled. It does impose a constraint on

the system. A larger Cp causes a reduction in 6. If 6 becomes too small, Vs

becomes pinned by the large Cp and the DAC is not able to adjust V. The ±AV

error becomes limited by the capacitive divider ratio and not the quantization error

because the minimum amount of control the DAC has is (± 4LSB) which may be

less than the comparator resolution. A smaller Cp reduces 6 but increases the kT/C

noise so that a trade-off is introduced. This is examined in a later chapter.

Open-Loop Topology

When the measurement technique is done in an open loop configuration as in Fig-

ure 4 (3-4), the offset of the comparator is not canceled. This is because the final

value of Vz in one step is not the same as the final value of Vz in the other. It
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can be measured and eliminated in the measurement. In this configuration, the

comparator does not need to have analog output capability and can act strictly as

a voltage comparator with digital outputs. The calibration sequence is

Step OA

* Set S3 to ground. V is zero, not Vo,.

* Set VDAC to ground.

* Set S1 to ground.

* Set S2 to V,,/.

The charge on the top plates of the capacitors is

QOA = -VrcICS ± AVCc

Step OB

* Set S3 to open position.

* Initialize SAR/DAC.

After the switch S3 is opened, the charge on the top node becomes QOA + Qs3. The

SAR/DAC forces V. to V, ± 6AV since this means a zero voltage at the input of

an ideal comparator. The charge at the top node can be written as

QoB = (Vo, ± 6AV)(Cp + CR + CS + CC) - Vrf CS - VDACCC
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By charge conservation, QOA + Qs3 = QOB. Solving for VDAC,

VDAC
(Vo, ± 6AV)(Cp + CR + CS + CC)

Cc
+ -Qs3

Cc

= CP + CR + CS + cc]

Substituting 6 from equation (3.11) into the above yields,

1 - f ICP
VUAC;I - 's [

+ CR + CS +

Cc
CC , -QS3 , A 

J Cc

This calibration cycle includes the comparator offset voltage because the top node

is not returned to ground but rather to Vo,. The offset can be calibrated out along

with the switch injection.

In measurement, the cycle is similar to the closed-loop sequence:

Step 1

* Set S3 to ground. V is zero.

* Set VDAC = -VDAC,.,.

* Set S1 to Vr,,.

* Set S2 to ground.

The charge on the top node is

Q1 = -VrefCR + VDAC,,ICC ± AVCC

VDAC 6 AV [ P + CR + C +C
cc

-QS3
Cc

(3.14)
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Step 2

* Set S3 to open position.

* Set S1 to ground.

* Set S2 to V,tf.

* Initialize DAC/SAR. V2 becomes Vo,, ± 6AV

After the switch S3 opens, the charge on the top node becomes Ql + Qss. After

the SAR finishes, the charge on the top node is

Q2 = (Vo, ± 6AV)(Cp + CR + CS + CC) - VreCS - VDACCC

By charge conservation, Ql + Qss = Q2. Substituting equation (3.14) for VDAC,.I,

and noticing that the offset terms and the charge injection terms cancel while the

±AV terms add in worst case, VDAC becomes

VDAC,, Vtef(CR - Cs) ± 4AV (3.15)
Cc

The open-loop measurement yields the same result as the closed-loop. Tile disadl-

vantage is that a large comparator offset may yield a calibration voltage larger than

the DAC maximum and calibration becomes impossible. The closed-loop is pre-

ferred if large variations in offset voltage occur in an IC fabrication process. This is

normally the case since offsets are almost impossible to control because of random

transistor mismatches.
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Summary of Important Equations

For open-loop topology,

VDAC,,i Vo [Cp C R+Cs + CC ] + 'QS ! 2AV
Cc Cc

t VDACma - Vref(CR - CS) ± 4AV
Cc

For closed-loop topology,

-QS3
VDAC,4 = C + 2AV

VDAC,.... = Vef (CR - CS) ± 4AV
Cc

Capacitive mismatch ratio for both topologies becomes

AC [VDAC, V] CC] (3.16)

where C is either CR or CS. It is the same as equation (3.9) in the ideal circuit case

except for the error term,

±[V4]A [C (3.17)
This error term determines the minimum resolvable capacitance change. The effect

of the parasitic capacitance appears as a constraint on the comparator resolution,

p CRp+CCS + Cc

It should be emphasized that the expression for QS3 is negative since it represents

electrons from the channel of an NMOS switch. A PMOS switch injects holes so

that the expression for QS3 is positive.
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In the analysis, the charge injection from the switches S1 and S2 is ignored.

These switches cannot inject charge onto the top node, and therefore have no effect

on V;. For increased switching speed, the on-resistance of the MOSFET channels

should be low, requiring the W/L ratios to be large. Consequently, S1 and S2 can

be made as large as desired. S3 cannot be made too large since Qs3 is proportional

to W/L. Too large a W/L results in QS greater than the DAC range, making

calibration impossible. Proper design can balance the tradeoffs involved in choosing

the components needed in meeting a specific requirement. These design issues are

discussed in Chapter 5.

3.3.2 Component Non-Idealities

In the analysis of Section 3.3.1, the components are treated as ideal elements. A

voltage across a capacitor induces a charge on its plates, and when discharged,

leaves no residual charge on the plates. Similarly, a MOSFET is assumed to have a

constant threshold voltage and thus the comparator offset should not vary with time

or input signal. This section discusses the non-ideality of the circuit components

and their effect on circuit performance.

Capacitor Hysteresis

Capacitor hysteresis occurs because residual charge remains on a capacitor after it

is discharged. Charging the capacitor in the forward direction and returning it to

zero results in non-zero charge on the plates. Similarly, charging the capacitor in

the reverse direction and returning it to zero yields a non-zero charge which may

be different than the forward case. The curve is highly time dependent. If enough
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time is allowed, the charge may relax to the zero-charge state. Studies have been

made on this phenomena in MOS capacitors, and it appears that it is a function

of the voltage applied and the stress time at that voltage [391. Longer times and

larger voltages cause the relaxation time of the residual charge to increase. This

may be the result of charge-trapping states at typical Si/SiO 2 interfaces.

The hysteresis can be measured using the same charge redistribution technique,

and has been used to measure the residual polarization in MOS capacitors [391.

The analysis is an extension of the analysis in Section 3.2. It is assumed that

the capacitors have some residual polarization QR with zero voltage applied in

the time frame of interest. Since the calibration cycle does not involve switching

and discharging, the charge measured is only the switch injection. During the

measurement when Cs is discharged, the charge at the top node due to Cs is not

zero, but QR. Similarly, when CR is discharged, the charge at the top node is QR

assuming the capacitors share the same process qualities. If we make the analogy

that the measurement step for the capacitors is a calibration step involving residual

charges, then the measurement voltage becomes

VDAC,.+ Vf(CR - Cs) ± 4V + 2 QR (3.18)
Cc Cc

where the plus subscript indicates a positive reference measurement (assuming that

CR is greater than Cs). Performing the calibration and measurement cycles again,

but with the roles of CR and Cs reversed. VDAC, ... becomes

VDACm, Vref(CS - CR) 4V - 2 QR (3.19)
Cc Cc

where the minus subscript denotes a negative reference measurement. Adding the

two equations yields

VDACn..+ + VDAC,n..,- = ±8AV + QR (3.20)
Cc
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Since the residual polarization is common-mode to both positive and negative cycles

but the capacitive difference is not, the residual polarization can be measured. If

desired, it can be subtracted out of equation (3.18) or (3.19) to obtain an accurate

capacitive difference measurement.

The above analysis is applicable to both negative and positive Vre, so that QR

may be determined for both negative and positive biases on the capacitors. Reports

show that in MOS capacitors with polysilicon top plates and phosphorus-doped bot-

tom plates, the residual polarization is less than 4 ppm [391. There are no published

results for metal-to-poly capacitors used in this thesis, but results compare favorably

with [39].

It is important to note that there are two different switching sequences that can

be used to measure differences in capacitance. The analysis has concentrated on only

one sequence since the other reverses the role of CR and Cs. However, in an actual

sensor system application, the choice of switching sequence is not arbitrary, and one

is preferred over the other. The state of the system while A/D conversion is taking

place is crucial. If the switching sequence is chosen such that the sense capacitor

has a reference voltage across it while the SAR is operating, then any changes in the

sense capacitor during conversion may cause errors. The magnitude of error depends

on when the change in sense capacitance occurs. The preferred switching sequence

is when the sense capacitor is grounded while the SAR is operating. Any changes in

Cs result in almost no change in Vz since the the voltage across the sense capacitor is

nearly zero during the entire conversion period. The difference in capacitance that

is measured is the difference between the reference capacitor (which we assume is

not time-varying) and the value of the sense capacitance just prior to the point

where the voltage on the sense capacitor is switched to ground. Any changes in

55



CHAPTER 3. SELF-CALIBRATION TECHNIQUE: THEORY

capacitance after this point in time do not affect the A/D conversion. For sensor

applications where the sense capacitor is time-varying, the negative measurement

(as defined in this section) is always preferred. In this thesis, neither capacitor is

time-varying so that this is not an issue.

Transistor Hysteresis

When the gate of a MOSFET in a differential input pair is excited with a narrow

pulse, a brief change in threshold voltage may result. This is due to charge carriers

trapped and released in the oxide, causing a threshold shift. This shift results in

a temporary change in offset voltage. If the offset changes in a cycle less than the

calibration or measurement cycle, the assumed constancy of the offset is incorrect

and the measurement will include an error term that is proportional to the difference

in offset voltages. This can be seen by analogy to the non-ideal open-loop case.

The virtual grounds are different in the calibration step, introducing an error a

in the calibration. This is due to the difference in offsets in the two steps. The

measurement introduces another difference in offsets so that the measurement will

have a term that includes the offsets in all four steps,

VDVref(CR - Cs) ± 4AV + -(V,. - Vob + V2 (3.2)

If the offsets are all equal, then the error term cancels. If

V113o.. = Vo
VOS.P1 = VOb

then there is no error which is exactly the non-ideal open-loop case. The effective

offset in steps Oa and 1 is zero since the top node is grounded. Steps Ob and 2 return

V 2 to Vo,.
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Data from recent measurements 40j show that transistor hysteresis is not ap-

parent if stress times of less than a microsecond are encountered. The data in this

thesis are obtained in a cycle time such that glitches at the input of the CMOS

op-amp are no more than 100 nanoseconds in width. Thus transistor hysteresis is

neglected.

Junction Leakage

A MOSFET has inherently in its structure two pn junctions. These junctions lie in

the region between the source and body and drain and body. In normal operation,

the body voltage is set so that both pn junctions are always reverse-biased. In an

NMOS transistor, the body is set at the most negative potential and in a PMOS

transistor, the body is set at the most positive potential. An MOS switch that

is turned off can inject charge from the channel and from the reverse-biased pn

junction. The channel charge is significant and is estimated in the next chapter.

Normal reverse saturation current from a pn junction is typically 10 nA/cm 2 in MOS

processes at room temperature. If the area of the MOS switch source region is 100

/m 2, the reverse leakage current is approximately 10 fA. If the switch is open for

100 microseconds, the charge transferred is approximately 6 electrons. This effect

becomes significant only at low clock frequencies and at elevated temperatures.

The leakage current approximately doubles for every 10°C rise in temperature [41].

Leakage current introduces an extra charge source in the measurement and can be

measured using this technique if the clock frequency is low enough.
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Voltage Coefficient of Capacitance

The voltage coefficient of capacitance is defined as the rate of fractional change in

C per unit voltage at some dc voltage V:

1 dC

C dV

In MOS capacitors, Vcc is a decreasing function of doping [42]. Typical values are

+20 to +100 ppm/V while poly-to-poly capacitors exhibit +10 to +20 ppm/V [43].

It is much lower for metal-to-poly capacitors [41]. Only two dc voltages are applied

across the capacitors in the capacitive measurement scheme. Both capacitors are

subjected to the same sequence of voltages so that any capacitance change due to

the different applied voltages will track and therefore cancel. Electro-constriction

may occur if the dc reference voltage is large and the capacitor gap is small. This

causes an error if the sense capacitor structure is compliant but the reference is

not. In this thesis, the capacitors are located in the same location and are nearly

identical. Electro-constriction is neglected as well as voltage coefficient.

Temperature Coefficient of Capacitance

The temperature coefficient is defined as the fractional change of total capacitance

per unit temperature:

=T[C AC d (ACt)

where Ct is the total MOS capacitance per unit area and A is the plate area. In

MOS capacitors, Tee can be resolved into three components: thermal expansion

of plates, space charge width, and dielectric constant change. The details of these

components are complicated. For Al-to-Si capacitors, Tcc increases with increasing
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doping and is about 21 ppm/°C at doping levels of 1010 cm- 3 [42J. Typically for

MOS and double-poly capacitors, the coefficients are in the range of +20 to +50

ppm/°C [43J. To first order, if the sense and reference capacitors are located close

to each other, the effect of Tcc is eliminated because the two capacitors track each

other in temperature.

3.3,3 Noise

Thermal Noise

In an MOS switch that has a channel, the thermal noise power caused by the

resistive channel is given by

(Vn)rm.. = 4kTR(Af), (3.22)

where k is Boltzmann's constant, R is the on-resistance of the channel, and (Af)n

is the noise-power bandwidth of the RC circuit formed by the MOS switch and the

total capacitance. In the measurement circuit, C is the total capacitance on the

node Vz. For a single-pole low-pass circuit,

( f)n Hz (3.23)

Substituting (3.23) into (3.22) yields

kT
(Vn)m = (3.24)

This noise is sampled on the capacitors when the switch is turned off. It can be

shown that an MOS channel can be treated as a noiseless open circuit when turned

off [41J. Increasing C can reduce this noise, but increases the parasitic capacitance if

the sense and reference capacitors are already determined to be small. This tradeoff

was m'-ntioned earlier in Section 3.3.1 and is addressed later in Chapter 5.
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Circuit Noise

The noise due to the operational amplifier or comparator is input-referred noise and

1/f noise. The 1/f noise is not appreciable at the high frequencies of interest so it

can be neglected. Typically, the corner frequency for the transition from dominant

1/f noise to thermal noise is 10 kHz [41]. It can be shown that the input referred

noise of the comparator is on the order of the thermal noise in closed or open-loop

[441. Shot noise is not appreciable since there is no forward-biased pn junction

current flowing anywhere in the circuit.

Clock Feedthrough Noise

Overlap capacitances can cause capacitive coupling of input signals to the output.

Capacitive coupling of clock noise from S1 and S2 to V_ is attenuated by a capacitive

divider so that noise from the clock is minimal. S3, however, contains a gate-to-

drain overlap capacitance that couples directly to the sensitive node, but any noise

at the gate is attenuated by another capacitive divider and is small at V. Since the

overlap capacitances are smaller than the total capacitance on the node by factors

of 100 or more, any noise on the clock lines can be ignored. The overlap capacitance

also stores channel charge that must be taken into account when estimating Q3.

Proper care in separating the digital and analog supply and data lines is neces-

sary to insure no extraneous introduction of noise to the sensitive node. Substrate

and packaging coupling can cause noise if not attended to. These important design

considerations are discussed in more detail in Chapter 4.

60



3.4. OTHER CHARGE INJECTION SOURCES

3.4 Other Charge Injection Sources

In the event of severe radiation or particle bombardment, the charge injection in-

troduced may be random and unpredictable. Shifts in threshold may be permanent

or temporary. The offset calibration scheme can be used to calibrate out long-term

drift effects or sudden permanent changes in offset. This makes it useful in space

applications where cosmic radiation is abundant. If the frequency of change is high,

the technique will not eliminate the errors since they are changing at too fast a rate.

If the changes are slow, on the order of seconds, frequent calibration can be done

to eliminate offset and charge injection errors.
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Chapter 4

Capacitive Measurement System

Design

4.1 Test Chip Design

To test the theory of the charge redistribution technique on capacitive difference

measurements, a test chip is designed and fabricated at MOSIS (MOS Implementation

System) using a 3 am p-well CMOS technology. Its main purpose is to demonstrate

difference measurements of femtofarad capacitance that can only he obtained us-

ing IC technology. The technique has already been demonstrated at much higher

capacitances [351. An open-loop topology is used.

Silicon structures suitable as capacitive structures can vary from a few femto-

farads to several picofarads in capacitance. Structures in use today usually have

capacitances on the order of a picofarad or higher. The lower range of capacitance
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has not been explored, therefore test capacitances are chosen in the 100 femto-

farad range. Two sets of sense and measurement capacitors are considered. Their

sizes are determined by unit capacitors Cunil, and Cw, 2 that are 100 ,um2 and 400

Am2 in area respectively. The MOSIS process specifies a metal-to-poly capacitance

(Co,,mp) between 0.035 and 0.05 fF/Im 2 so that the unit capacitors are 4 and 16

fF respectively if we assume a value of 0.04 for convenience. This value is used

throughout the chapter. Exact areas differ slightly from the numbers given, but

for calculational convenience, are used in the following analyses. The smaller set of

sense and reference capacitors consist of 5 small unit capacitors while the larger set

use the larger unit capacitor. The notation for these are

Camall = CR".,, = Cs.,,.I = 5Cuntl . 20 fF

Clarge = CR1 ,,e, = CS1,,,, = 5Cun. 2 ~ 80 fF

Three coupling capacitors are used on-chip. When one is not used, it is grounded

and therefore contributes to the parasitic capacitance. These capacitors are deter-

mined by careful analysis of the charge injection and worst case offsets.

4.2 Charge Injection Estimation

Switch S3 on the test chip is implemented with n-channel MOSFETs. Switches SI

and S2 are a combination of n-channel and p-channel devices. The expression for

the channel charge in an n-channel MOSFET is given by [44]:

2
Qchannel = WLff(Vgq - VT)CZ - C0qOW Vg (4.1)

3

W = gate length
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Lf = Ldrn. - 2LD, LD = lateral diffusion

V,, = gate-to-source voltage

Vr = threshold voltage

C0 z = gate oxide capacitance per unit area

Cg,O = gate-to-source overlap capacitance per unit length

The first term represents channel charge due to the inversion layer and the second

term represents the charge stored under the overlap of gate and source due to

the capacitance there. The drain overlap capacitance is ignored since the drain is

connected to a low impedance node (ground) and therefore does not contribute any

charge to the source. For a given process, SPICE parameters are usually extracted

and can be used to find Qchonnel. In worst case, all of the charge in the channel

is injected to the sensitive node. For fast gate turn-off, the charge splits equally

between source and drain [451,[46],[471. The charge pumping phenomena due to the

capture of channel charges by interface traps is neglected [48]. W/L ratios of 4/3

and 6/5 are used for switch S3 to minimize charge injection. The on-resistance can

be calculated from the equation

Ron = 
(. oC' ) () (Vg' - VT)

In SPICE , the parameter 0OC=o is called the intrinsic transconductance parameter,

Kp and contains the parameter 0o, (surface mobility) and Con (gate oxide capaci-

tance per unit area). This parameter varies from vendor to vendor, but is usually

in the range 2x 10-5 to 5 x 10-5. Kp is given in A/V 2 and 0o in cm 2/V-sec. Cs can

either be obtained from the above information or from knowing the oxide thickness,

to. The MOSFET SPICE parameters show that the on-resistance of the NMOS

switch S3 is well below 10 k-fl for both W/L ratios used in this study. If the switch

is used to ground a node with capacitance of 5 pF, then the minimum switching
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time allowed assuming a four-time-constant wait is approximately 200 ns or a max-

imum switching speed of 5 MHz. This is sufficient for most purposes. Switches S1

and S2 are made large to reduce on-resistance. They do not contribute any injected

charge to the isolated node so their size can be made arbitrarily large.

The charge in the channel can be calculated from equation (4.1). The SPICE

parameter Cg,o is normally given in F/m and is approximately 5x 10-1. Threshold

voltages normally range from 0.7 to 0.8 V, and LD is typically 0.3 Am for a 3 Am

CMOS process. V, is 5 V. This yields a charge injection of approximately -65 fC

for the 6/5 switch and -28 fC for the 4/3 switch.

Total Capacitance Requirement

Since in open-loop the calibration voltage is based on charge injection and compara-

tor offset, both must be considered when choosing a coupling capacitor that can

keep the DAC within its range. Two different intentionally placed on-chip parasitic

capacitances are chosen at lpF and 4 pF. They are used to test the insensitivity of

the technique to parasitic capacitances one to two orders of magnitude larger than

the test capacitors. In addition to the intentional parasitic, there is the uninten-

tional but unavoidable parasitic due to the input of a buffer amplifier that connects

the sensitive node on-chip to a comparator off-chip. This adds 1 pF so that the

total capacitance is either 2 pF or 5 pF, depending on which parasitic is used.

The design parameter becomes Cc since the total capacitance is determined.

Three are chosen: 8 fF, 32 fF, and 64 fF. They are chosen based on the following

assumptions:
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1. QS3 is either -65 fC or -28 fC worst case.

2. V of the comparator is ±20 mV worst case.

The comparator is a CMOS differential op-amp. Typical random offsets range from

±1-20 mV. Given the total capacitance on the node as 5 pF, the comparator offset as

±20 mV, and the charge injection as -65 fC, the open-loop calibration measurement

from equation (3.14) is

VDACa.. = ±12.5 + 8.13 V Cc = 8 fF

= ±3.13+2.03 V C2= 32fF

= ±1.56+ 1.02V Cc =64fF

It is found that nearly all circuits tested can be calibrated with the 32 fF capacitor.

Five independent circuits are placed on one chip. The circuits tested the effect of

parasitic capacitance and switch size on the measurement. The sense and reference

capacitors are located as close to each other as possible to avoid errors due to voltage

and temperature coefficients of capacitance. The exact absolute values of all the

capacitors are unknown since C_,,p could be not obtained from the vendor. Layout

of the capacitors causes CRI,,,r to differ in area from Csl,..,... This difference is a

convenience since a known geometric mismatch is introduced and can be compared

with experimental data. A CMOS differential op-amp is used as the comparator.

Gain/bandwidth is not an issue so that an optimized design is not needed.

Figure 1 (4-1) and Figure 2 (4-2) show the layout and die photograph of the test

chip respectively. The test chips are packaged in a 28 pin ceramic DIP format.
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Figure 4.1: Layout of test chip
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Figure 4.2: Die photograph of test chip
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4.3 System Test Equipment

Several digital and analog boards are built to test the test chips. An analog board

with copper ground plane is built that houses DIP switches, comparator, and op-

toisolators. Physical size is kept at a minimum to reduce path lengths and oscil-

lations from the comparator and optoisolators. Power for the analog components

is. shielded entirely from supply to pin input. Optoisolator power comes from the

motherboard which houses the digital control components. The digital supplies are

kept isolated from the analog supplies by shielding and distance. For the reference

voltage, precision supplies are used at 5.00000 V. All chips are bypassed at the

pin input with 0.1 pF ceramic capacitors in parallel with 10 1/F electrolytics for

the digital logic chips and 1000 F electrolytics for the analog test chip. A 12 bit

successive approximation register (SAR) and D/A converter (DAC) are used in the

experiment.

All unused pins on the test chip are grounded. Ground loops are avoided when

possible, although the copper plane provides excellent conduction paths to ground.

The metal tops of the 28 pin DIPs are grounded to prevent external capacitive

coupling.

Switching is accomplished using buffered data from an EPROM connected to

optoisolators on the analog board. Control comes from an IBM PC XT. An external

clock operating at 100 kHz is used in all the measurements. Operating at this

frequency minimizes certain errors discussed in Chapter 3. It is possible to control

both the reference voltage Vref and the gate voltage V., on S3 so that several different

types of measurements besides capacitive difference can be made.
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Chapter 5

Experimental Results

5.1 Capacitive Difference Measurement Data

Three runs using MOSIS are made. Table 1 (5.1) shows the MOSIS information for

each run. Test chip Newalpha differs from Delta in switch size in circuit 5. Test

chip Xanadu is identical to Delta except it uses different output pads which yield no

difference in performance at 100 kHz. Five chips per run are obtained. Since there

are 5 circuits on each chip with two sets of sense and reference capacitors for each

circuit, a large amount of data is obtained. A positive and negative measurement is

also made for each set of sense and reference capacitor to test for positive residual

polarization (see Section 3.3).

The exact areas and estimated range of capacitance values for all capacitors on

chip are shown in Table 2 (5.2). Figure 1 (5.1) shows the positions of the circuits

on the test chip while Table 3 (5.3) shows the differences from circuit to circuit and
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MOSIS Test Chip Information
Chip name Newalpha Delta Xanadu
ID number 20843 21293 21722

Project name cap meas cap meas cap meas
Technology CBPM2 CBPM2 CBPM2

Lambda 1.5 m 1.5 /sm 1.5 Jim
Fabrication ID M68BKAI (Bette) M68BKA1 (Bette) M68CMB1 (Carl)
Mask Vendor Rockwell Rockwell Master Images
Wafer Vendor Orbit Orbit VTI

Packaging Vendor Pantronix Pantronix Halcyon

Table 5.1: MOSIS chip information

Capacitance Areas and Values
C Area (m 2) Capacitance Range (fF)

CR14 ,. 2132 74.6-106.6
Cs14 g. 2120 74.2-106.0

CRmall 620 21.7-31.0
CS.moll 620 21.7-31.0

Ccl 1696 59.4-84.8
Cc2 848 29.7-42.4
CC3 248 8.7-12.4
CP1 31744 1111-1587
CP2 108544 3800-5427

Table 5.2: Range of capacitor values
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Figure 5.1: Circuit placement on chip

from chip to chip.

The data is organized and presented in tables and graphs. The first set presents

data on the effectiveness of the calibration in graph form. The second set of data is

classified by chip name and includes measured differences of both large and small

capacitor sets and positive and negative measurements. Included in these tables

are the resolution, standard deviation of all measurements and residual polarization

data. This data typifies a chip from each MOSIS run.

The following graphs show the results of the calibration test. Figure 2 (5.2),

Figure 3 (5.3) and Figure 4 (5.4) are graphs of calibration voltage output after

cancellation. To measure the success of the calibration technique in eliminating

charge injection, a calibration test is used. The calibration voltage is measured 100

times, then averaged. The negative of this value is then applied to the coupling

capacitor and the calibration cycle is repeated. Cancellation of the charge injection

should result in a DAC output voltage near 0 V. The data for all the chips shows

CKT1 CKT3
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Calibration Test (Delta chin)
Circles represent discrete data boints

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Measurement #
Figure 5.2: Graph of calibration test on Delta chip
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Callbratlon Test (Newalpha chip)
Circles reoresent discrete data DOmts

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Measurement #
Figure 5.3: Graph of calibration test on Newalpha chip
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Calibration Tort (Xanadu chlq)
Circles represent dscrete data tdoints

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100

Measurement #
Figure 5.4: Graph of calibration test on Xanadu chip
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Test Chip Circuits _
Delta Test Chip 11 CKT1 CKT2 CKT3 CKT4 J CKT5]

Intentional parasitic Cp2 Cp 2 Cp1 Cpj 0
Buffer amplifier input capacitance .7 pF .7 pF .7 pF .7 pF .7 pF

S3 switch size ratio W/L 4/3 6/5 4/3 6/5 6/5
Newalpha Test Chip || CKT1 CKT2 CKT3 CKT4 CKT5
Intentional parasitic Cp2 Cp 2 Cpl Cp1 0

Buffer amplifier input capacitance .7 pF .7 pF .7 pF .7 pF .7 pF
S3 switch size ratio W/L 4/3 6/5 4/3 6/5 4/3

Xanadu Test Chip t CKT1 CKT2 CKT3 CKT4 {CKT5]
Intentional parasitic Cp2 Cp 2 Cl 1 Cp1 0

Buffer amplifier input capacitance .7 pF .7 pF .7 pF .7 pF .7 pF
S3 switch size ratio W/L 4/3 6/5 4/3 6/5 6/5

Total capacitance 5.6 pF 5.6 pF 2.3 pF 2.3 pF 1 pF
(All chips)

Table 5.3: Circuit and chip information

that on average, the DAC calibration voltage is less than 1 LSB.

In Table 4 (5.4), Table 5 (5.5) and Table 6 (5.6), the measurement data is

presented. Each table summarizes the results for each test chip. For these mea-

surements, the calibration voltage is measured 16 times, then averaged. The mea-

surement cycle uses this value and is run 16 times, then averaged. The results in

the tables show averaged values and their standard deviations. From the positive

and negative measurements, nearly zero residual polarization is observed. Capacitor

hysteresis measurements in the tables are based on the large capacitor measurements

in circuit 5. This is due to the low standard deviations in these measurements. Ten

positive measurements and ten negative measurements (each averaged 16 times)

are used to determine the capacitor hysteresis. Results are added, divided by 20

to determine the average, then divided by 2 to determine the percent hysteresis
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contributed by each switching step.

The small capacitors differ by very little, on the order of 0.1-1%. This reaches

the limit of minimum resolution. The large capacitors have an average difference

of nearly 3% for all chips and runs. Overlap and fringing capacitance causes this

difference.

Since the measurements are digitally averaged, system noise effects are reduced.

The tables summarize the approximate noise of the system and effects due to the

mechanisms described in Chapter 3. Measurement system characteristics are sum-

marized in Table 7 (5.7).
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5.2 Charge Injection and Offset Data

Figure 5 (5.5) and Figure 6 (5.6) show the relationship between the DAC calibration

voltage and the applied voltage at the gate of S3. It is linear over much of the range.

This confirms the form of Qss as given by equation (4.1). In addition, from these

graphs both the offset and the approximate percentage of channel charge injected

are roughly determined. In Table 8 (5.8), the computed offset and approximate

percentage of channel charge injected are given for each graph. The results agree

with reported data [46],[451,[47] on charge splitting for fast gate turn-off. Notice

that for both graphs, there is a deviation from linearity from 3 to 3.5 V. This is

expected since the channel charge is not linear in gate voltage for lower gate drives.

If the method is implemented in the closed-loop topology, an exact measurement of

charge can be made. This method of measurement differs from present methods of

charge measurement [47],[46] and may be useful in more in-depth studies on channel

charge behavior under varying conditions.

5.3 Discussion

In all the data taken (approximately 1 Mbyte), the general trend observed is that the

larger parasitic circuits displayed larger standard deviations. This can be explained.

A circuit with large parasitic capacitance has a large capacitive divider attenuation

factor 4. This increases the error in the DAC since the last few bits may have too

small an effect on V= to switch the comparator. A larger Cp causes the sampled

thermal noise to decrease, but digital averaging can reduce this by a factor of four (if

averaged 16 times). Thus we would expect larger standard deviations with circuits
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5.3. DISCUSSION

Switching speed 100 kHz
Sucessive Approximation Register 12-bit

Digitial-to-Analog Converter 12-bit
1 LSB 2.44 mV

Conversion speed 120 sec
Positive analog supply 5 V

Negative analog supply -5 V
Reference Voltage Vre, +5.00000 V

Temperature , 300°K

Table 5.7: System measurement parameters

Table 5.8: Offset and channel charge constants

I Measurement System Characteristics

Extracted constants from Figs 5.6 and 5.7
Parameter Offset (mV) % Channel charge injected

Fig. 5.6 data 2.08 76.0
Fig. 5.7 data -14.28 55.6
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Gate Voltage versus Offset (Delta #4 ckt 1)
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Gate Voltage versus Offset (Delta #4 ckt 2)
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CHAPTER 5. EXPERIMENTAL RESULTS

that have a small 6. Recall from equation (3.11) that

Cc6=-
Ctotal

where Ctotal is the total capacitance on the sensitive node Vz. One way to increase

6 is to increase Cc. In the measurement, several chips are calibrated with a 64

fF coupling capacitor rather than with a 32 fF coupling capacitor. All the voltage

measurements decrease by a factor of two as expected. The standard deviation also

decreases by a factor of two. However, the percent mismatch error is proportional

to Cc and to the standard deviation (or quantization error of the DAC, whichever

is larger). Thus the one-half reduction cancels out. The coupling capacitor should

be chosen such that the calibration is within the dynamic range of the DAC, and to

increase the dynamic range of the final measurement while keeping the capacitive

attenuation factor from becoming too large.

There is an inherent error in the DAC so that the average rms error in the final

measurement is ±1 LSB, assuming that in the previous analysis, ±AV is ±LSB.

This error occurs regardless of the value of 6. If 6 is so small that the quantization

error of the DAC reflects a change at Vz that is smaller than the resolution of the on-

chip comparator, then the effective quantization error is larger than ±ILSB. In this

study, the kT/C noise is not sufficiently large enough at small capacitances to effect

the resolution of the comparator. Thus the main source of error is due to a small

6 and incomplete cancellation of the sampled noise. The standard deviation for

AC/C is obtained by multiplication of the standard deviation of the measurement

by the ratio
1 cc

The standard deviation is approximately the same for the measurement of the small

and large capacitors. This agrees with the above argument on the 6 dependence
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5.3. DISCUSSION 87

only. But since the ratio of the capacitors in the above equation is different for the

two measurements, the relative error in the measurement of the smaller capacitors

is larger. The total number of electrons represented by either measurement error,

however, is the same as we would expect since the measurement system is the same.

Digital averaging can substantially reduce noise errors and DAC quantization errors

but at a cost of increased time.
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Chapter 6

Conclusions

The charge redistribution technique is highly suitable for sensor applications. Within

the method is a powerful way of reducing circuit errors: the offset calibration tech-

nique. The charge redistribution technique measures capacitive differences which

can be applied directly to sensor design. The capacitive sensor is preferable to

the piezoresistive sensor in many aspects so that the scheme is ideally suited for

ultrasensitive and ultraminiature silicon sensor designs. Pressure resolution and

sensitivity for a capacitive sensor is directly proportional to AC/C so that the sen-

sor becomes heavily read-out dependent. The scaling limit for capacitive pressure

sensors appears to be determined by circuit resolution whereas the piezoresistive

sensor is determined by offsets and stress averaging. [49].
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CHAPTER 6. CONCLUSIONS

6.1 Circuitry & Sensor Interfacing Issues

The pressure sensitivity of a capacitive sensor is given by 101,

Scap C = 0.0625-1 - hy a4
COP E [3d

Co = zero-pressure capacitance

P = applied pressure

v = Poisson's ratio

E = Young'modulus

a,h,d = diaphragm radius, thickness, plate separation

The resolution depends on noise in the sensor and read-out circuitry. Several ex-

pressions have been reported but all are dependent on read-out circuitry [101,[501.

For circuit resolution [101,

h3d2

Resolution oc AC,m,, a6
a6

The main sources of noise in capacitive sensors are circuit dominated. Brownian

noise caused by gas molecules impinging on the diaphragm surface has been cal-

culated at below 10- 3 MmHg for most practical cases and is considered negligible

compared with other noise sources [491. Electrostatic pressure variations due to the

measurement system also cause measurement errors. If the applied voltage is large,

electrostatic forces can change the plate separation and change the capacitance.

For practical voltages and plate separations, the pressure is less than 1 mmHg for

frequencies remote from the diaphragm resonance frequency [49]. From the avail-

able data on capacitive silicon sensors, it appears that pressure sensors capable of

1 /tmHg pressure resolution are possible assuming a minimum resolvable input of

0.1 fF and a nminimum resolvable voltage of 0.5 /iV [49].
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6.2. COMPARISON OF CAPACITANCE MEASUREMENT TECHNIQUES 91

6.2 Comparison of Capacitance Measurement Tech-

niques

In [10], Wise states that the theoretical limit in measuring capacitance difference

is 0.1 fF with a 3 V reference voltage (equivalent to a detection of 1875 electrons).

The data in Chapter 5 shows that the minimum resolvable difference for the 90 fF

capacitors is nearly 0.045 fF in the presence of parasitic capacitances an order of

magnitude larger. It becomes increasingly difficult to achieve this precision with

smaller sense and reference capacitors as is shown in Tables 5.5-5.7. The error in

the measurement becomes as large as the measured difference. The detection of

1000 or less electrons is certainly possible with this technique.

For a comparison, Table 1 (6.1) and Table 2 (6.2) repeat results presented in

[49]. An example of an ultraminiature and ultrasensitive capacitive pressure sensor

are presented. Following these tables is another table (Table 3 (6.3)) similar to that

presented in [501. A comparison of minimum resolvable input is made based on the

sample data given in [491. Added to that table are the results of this work as a

comparison.

This thesis demonstrates a technique that can measure capacitive differences

within a resolution of 0.05 fF on capacitors in the 20 to 100 fF range in the presence

of parasitic capacitances nearly 100 times larger. Digital averaging can increase

resolution, but increases measurement time. The technique is robust and compatible

with IC integration and microprocessor interfacing. This makes it ideally suited for

readout in sensor systems.
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1. 100 Hz bandwidth, 760 mmHg on both sides of diaphragm.

2. Capacitor voltage is 5 V dc, stray parasitic capacitance is 0.1 pF in all cases.

3. Minimum resolvable capacitance is 0.1 fF.

Table 6.1: Theoretical performance of the ultraminiature capacitive sensor (from

[491)

Ultraminiature Capacitive Sensor
Al A2 A3 A4

Diaphragm Length, 300 200 100 50
2a (m)

Diaphragm Thickness 3 2 1 0.5

h (m)
Plate Separation 1.5 1.0 0.5 0.5

d (m)
Zero-pressure Capacitance 0.53 0.35 0.18 0.044

Co (pF)
Pressure Sensitivity 770 770 770 390

(ppm/mmHg)
Pressure Range 440 440 440 570

(mmHg)
Brownian Noise' < 10- 6 < 10- 6 < 10-6 < 10-6

(mmHg)
Broadband kT/C Noise2 0.025 0.032 0.049 0.29

(mmHg)
Circuit Noise 3 0.24 0.36 0.73 5.8

(mmHg)
Electrostatic Pressure 0.37 0.83 3.3 3.3

Offset 2 (mmHg)
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1. 100 Hz bandwidth, 50 mHg on both sides of diaphragm.

2. Capacitor voltage is 5 V dc, stray parasitic capacitance is 0.1 pF in all cases.

3. Minimum resolvable capacitance is 0.1 fF.

Table 6.2: Theoretical performance of the ultrasensitive capacitive sensor (from
[49])

Ultrasensitive Capacitive Sensor I
C1 C2 C3 C4

Diaphragm Length, 1000 1000 1000 1000
2a (m)

Diaphragm Thickness 1 1 0.5 0.5

h (m)
Plate Separation 10 5 5 2

d (m)
Zero-pressure Capacitance 0.89 1.8 1.8 4.4

Co {no!
Pressure Sensitivity 390 770 6200 15000

(ppm/mmHg)
Pressure Range 12000 4200 2000 140

(mmHg)
Brownian Noise1 < 3 x 10-6 < 3 x 10- 6 < 3 x 10 - 6 < 3 x 10- 6

(mmlIg)
Broadband kT/C Noise2 0.037 0.013 0.0016 0.0015

(mmHg)
Circuit Noise3 0.29 0.073 0.0091 0.0015

(mmHg)
Electrostatic Pressure 8.3 33 33 210

Offset2 (mmHg) I 
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fI Minimum Resolvable Input' (mmHg)
Sensing Method Ultraminiature Ultrasensitive

Cap (Al) Cap (B1)
RC Oscillator 0.125 0.190
Current Controlled Oscillator 2 0.638 0.973
Charge Technique3 0.122 0.144

1. 5 V dc bias is used.

2. Depends on circuit configuration (calculation based on [491 and [501).

3. ACi. assumed to be 0.05 fF. Averaging can reduce the noise significantly.
Minimum resolution of hundreds of electrons is possible so that ACi, may
be much lower.

Table 6.3: Comparison of sensing techniques (adapted from [50j)
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Appendix A

Generality of Charge

Redistribution

A.1 General Applications

The charge redistribution technique is completely general and need not be associated

with a particular switching scheme or set of reference voltages. Its application is

also completely general in the sense that the difference in capacitance measured

could be attributed to a change in three variables rather than only one. A change

in dielectric constant, area of capacitor, or capacitor gap, or any combination of

the three can cause a capacitance change. This is seen in the experiments. A

ten percent mismatch is detected in one of the circuits that had no apparent area

difference in the sense and reference capacitors. Since they are spaced close to each

other, oxide thickness change is ruled out. Therefore the only reasonable cause for

this large difference is variation in oxide composition which would yield a change in
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dielectric constant and hence a change in capacitance.

This thesis focuses on the charge redistribution technique and its application

to sensing pressure. Pressure detection is an immediate and obvious vehicle for

this technique because of its importance and economic significance. It should be

stressed that other parameters other than pressure can be measured, as long as they

manifest themselves as a change in capacitance.

A change in capacitance can manifest itself as a charge difference if an appro-

priate sequence of voltages are applied to the capacitors of interest. This charge

difference can be detected as a voltage and measured. This is the essence of the

charge redistribution technique. If this charge can be made such that it is propor-

tional to the difference of two capacitances, then a change in capacitance between

two capacitors can be detected. In this thesis, two switching sequences are pre-

sented, one of which is preferable due to a particular application. It is possible to

construct alternate sequences consisting of different voltages and different switching

steps. All that is required is that the final charge at Vz is proportional to the ca-

pacitance difference of CR and Cs. Thus the voltage measured at Vz is proportional

to the capacitive difference.

The offset calibration technique is also very general. Any voltage can be thought

of as an offset voltage depending entirely on the meaning of the voltage in a certain

application. Since the charge injection from switch S3 results in a charge at V

that is not proportional to the capacitance difference, the voltage it generates at

V. is considered an offset voltage. This voltage can be measured and subtracted

from subsequent measurements either within the system (by applying the negative

of the offset voltage to the coupling capacitor as is done in the previous analysis)

or by subtraction of the digital readout by a microprocessor. Errors caused by
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other charge sources can be separately measured and taken into account in the

final measurement. Any voltage measured can be thought of as an offset voltage,

depending on the application.

As an example, suppose that the parameter of interest happens to be the mis-

match of capacitors on a chip. One of the errors involved is the charge from S3

that is not proportional to the difference in capacitance of the sense and reference

capacitors. To independently measure this error, a switching sequence is devised

such that the charge contribution from the difference of the two capacitors is zero.

This can be accomplished by not changing the switching sequence before and after

S3 is opened. Once this error is measured, it can be subtracted out of the measure-

ment cycle. Furthermore, assume that with the same system, an external stimulus

is applied such that the change in capacitance is also due to a dielectric change.

Also assume that the change caused only by the external stimulus is to be detected.

There are now three sources of charge: the charge injection, the charge due to the

initial mismatch of the capacitors (with stimulus absent), and the charge due to the

change in dielectric constant with stimulus applied. The first two can be indepen-

dently measured. The two voltages can be subtracted out of the final measurement,

yielding only the voltage due to the dielectric change. Thus the first two voltage

measurements can be thought of as an offset voltage, and the remaining voltage

as the measurement voltage. As long as the error sources can be independently

isolated and measured, the offset calibration technique can eliminate their effect in

subsequent calculations.
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A.2 Alternate Switching Sequences

The switching sequence can be generalized by considering different voltages applied

to the capacitors. In the analysis, the switching sequence has been completely

generalized. Referring to Figure 1 (A.1) and Figure 2 (A.2), the voltages are

VP

VRn

Vsn

VDAC .,u

V+

Vz

V 8

voltage at bottom plate of Cp

voltage at bottom plate of CR in Step n

voltage at bottom plate of Cs in Step n

voltage applied to Cc

voltage reference at positive input terminal

voltage at the sensitive node

offset voltage of the amplifier

In step 1, S3 is closed and the specified voltages are applied. It is assumed that V+

and Vp never change. With the feedback loop closed, V is forced to V+ + V,,. In

this analysis, the quantization error of the DAC can be easily handled as noted in

the previous analyses. It is neglected here, and can be added later with no loss of

generality. In step 1, the charge on the top node becomes

Q1 = (V+ + Vo, - VP)CP + (V+ + Vo, - VR)CR +

(V+ + V - VSI)Cs + (V+ + Vo0 - VDAC.,)CC

In step 2 the switch is opened and the SAR/DAC feedback loop forces V back to

V+ V,,. The expression for the charge at the top node becomes

Q2 = (V+ + V, - VP)CP + (V+ + Vo. - VR2)CR +

(V+ + Vo, - Vs2)Cs + (v+ + V,, - VDAC,,,)CC

98



A.2. ALTERNATE SWITCHING SEQUENCES 99

vz = V,, + V+

Vs 1

VDAC = VDAC.., 

(analog output)

digital output

Figure A.1: Generalized Switching Step 1
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4- Qother

V = V,, + V+

T
VP

VR2
VR2 Vs2

S3

Vo0

F

VDAC

(analog output)

digital output

Figure A.2: Generalized Switching Step 2
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If additional charge Qother other than from the capacitors is to be taken into account

(such as MOS switch charge injection or residual polarization), then by charge

conservation,

QI + Qother = Q2

It is easily seen that all terms involving Cp, V,,, and V+ cancel. Solving for VDAC,,,.

yields

(VR1 - VR2)CR + (VS1 - VS2 )CS -Qother
VDAC .VAC.,,, + (A.1)

Cc Cc

This is the general form of the measurement. If DAC error is to be included, then

the worst case measurement is

(VRI - VR2)CR + (VS1 - VS2)CS -Qother
VDAC .... -+ VDA,,.,, q + 4AV (A.2)Cc Cc

as noted in the previous analyses. If the difference in capacitance between CR and

Cs is desired, then appropriate choices of voltages can be chosen. To eliminate

the effect of Qothe7 , VDAC..I must be chosen to equal Qother/CC. But a priori we

do not know Qother. But from equation (A.1), if VDAC..a i set to zero, VR1 = VR2,

and Vsl = Vs2, then we can measure the value -Qothr/Cc. Setting VDAC,., to

the negative of this value and choosing appropriate values of VR1,VR 2 ,VSl, and Vs2,

equation (A.1) yields a voltage proportional to the difference of CR and Cs. In fact,

VDACa.i can be set to any value. If it is set equal to the negative of the value obtained

by measuring the charge injection plus the capacitive mismatch, then cancellation

can result, and the measured voltage will he zero! This result is obvious from the

equation. If we can independently measure the terms in equation (A.1), then they

can each be canceled by adjusting the value of VDAC.,,,. All or some of the terms

can be canceled by changing VDAC,..,.

Equations (3.18) and (3.19) can easily be derived from the general form of equa-

tion (A.1). For the measured DAC voltage to be proportional to the difference in
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Table A.1: Alternate switching sequences

CR and Cs, the following relation between the applied voltages must be true:

(VR1 - VR2) = -(VS 1 - VS2) $ 0 (A.3)

Given that the only voltages available are ±Vref and 0, the total possible number of

switching sequences is ten. Table 1 (A.1) shows different values of VR1,2 and Vs1,2

so that a difference in capacitance can be measured. Notice that sequences 1-8

yield the same form as equations (3.18) and (3.19). Sequences 9 and 10 have an

extra constant of 2 since both Vrf are used throughout the steps. Each sequence

has a dual so that residual polarization can be measured. In Table A.1, the dual

sequences are (1,5), (2,6), (3,7), (4,8) and (9,10).

A.3 Fundamental Limitations

In the present algorithm, the fundamental limitation is the sampled noise from the

switch S3. This noise manifests itself as a random variation in charge injection

Switching Sequences

Sequence number VRI Vs1 VR 2 VS 2

1 0 v,, v,., 0
2 0 0 vr.f -V,.
3 0 0 - Vr Vrcf

4 0 - Vrf -Vf 0
5 Vref 0 0 Vref

6 Vref -v,,r 0 0
7 - Vref Vref 0 0

8 - r,, 0 0 -vr

9 Vf -Vref - Vre Vref
10 - Vref Vref Vref - Vref
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to the sensitive node. The calibration test proved that this noise is random in

nature since averaging nearly eliminates it. In the algorithm, the charge injection

is measured, then canceled assuming that it is the same in the next sampling. Due

to noise, it is not identical, so that some error is introduced. However, since the

noise is random in nature, on average the error caused by the statistical variation

of charge injection is zero. Comparator noise is a factor, but with sufficient power,

a large g, can yield very low noise and not be the dominant factor.

A slight modification of the algorithm can yield similar results without averag-

ing. Averaging is required because the exact value of the injected charge is unknown

during the measurement cycle. For each calibration cycle, the charge injection mea-

sured is exact, however. It includes the sampled kT/C noise of the system. There

is no error in the measurement if the calibration step is accomplished during the

measurement cycle because the charge measured is exactly the charge caused by the

injection in the measurement. Referring again to Figures A.1 and A.2, the modified

sequence is

Step 1

* Close switch S3 so that V, = Vo,

* Set S1 to VR1

* Set S2 to Vsl

* Set VDAC to GND

In all the analyses done so far, we assume that the charge injected when S3 is

opened is the same every time the switch is opened. The kT/C noise prevents
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this assumption from being true, and there is an error since the charge cannot be

exactly determined during the measurement cycle. But during the calibration cycle,

the charge is exactly known. Thus if the two steps are merged, then the charge can

be exactly canceled. The next steps are

Step 2

* Open switch S3

* initialize SAR/DAC

These steps are identical to the calibration cycle steps OA and OB mentioned pre-

viously. The offset is measured and stored in memory as before.

Step 3

* Set S1 to VR2

* Set S2 to Vs2

* Initialize SAR/DAC again

Instead of closing S3, opening it and canceling the charge injection by applying an

offset voltage to the coupling capacitor Cc, similar to the previous algorithm, the

switch S3 is never closed and the measurement cycle is merged into the calibration

cycle. The DAC measures a voltage VDAcm... identical to equation (A.2). This

includes a voltage due to the capacitive difference and a voltage due to other injected
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charge sources (kT/C noise included). But Qother has already been measured in step

2, and it is exactly this same charge that gives rise to the term in equation (A.2).

The offset voltage measured earlier can be subtracted out digitally from the final

measurement rather than subtracted in the analog domain. This modification in

the algorithm cancels out the error due to noise. The disadvantage is that it has

doubled the time for a measurement. But it is still much shorter than averaging and

still short enough to avoid junction leakage errors. The number of electrons that

can be detected is limited by the noise of the comparator, the parasitic capacitance,

the accuracy of the reference voltages, the DAC quantization error, and the speed of

the measurement. For realistic values of these parameters, the minimum resolution

is on the order of tens of electrons or less without averaging. Since all charge sources

and sinks must be taken into account for an accurate measurement, the practical

resolution of this technique is limited by the effects of unknown sources or sinks of

charge and DAC quantization error.
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