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by
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A motor-vehicle with its springs and pneﬁmatic
tires forms a very complicated vibrationsl system. Alth&ugh
the direct mathematical solution may be obtained for
systems of one or two degrees of freedom, the problem
of the complete vehicle is best solved experimentally.

The purpose of this thesis was to design and
build a mechanical analogue for motor-vehicle vibration.
It consists of a body and two unsprung_ﬁasses. The body
is suspended by springs from the two masses which in
turn are suspended by stiff springs representing the
ﬁires. |

| In designing a model it is necessary to retain
certain dimensionless quantities which are determined
through the methods of dimensional analysis. The wheel-
base of the model was chosen to be approximately one
.fifth.of that of the average American car. The spring
and tire stiffness and the weight distribution may be

‘varied in large limits. For shock absorbers electro-



magnetic dampers were introduced. This type of damper
makes use of the fact that the force opposing the motion
of a conductor in a magnetic field is proportional to
the velocity of the conductor. By changing the exciting
current in the electromagnet which produces the mégnetic
field, the amount of damping may be controlled. With a
recording deviee the apparatus shows the motion of the

| body directly and can be-cenveniently used for study on
problems of motor-vehicle vibration as well as demons-

tration purposes.

" Thesis supervisor: C. Fayette Taylor

Title: Professor of Automotive
' BEngineering
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I. IRTRODUCTION

The purpose of a motor-vehicle suspension is
fo protect the vehicle and the passangers or load from
the road shocks. The suspension problem is very important
and it has been the subject of extensive research both
in this country and Burope (References l...10). Dr. Haleys
thesis on vibrational characteristics of automotive
suspensions which includes a large bibliography, may be
mentiom@d here as a study made previously at Massachusetts
Institute of Technology 1,

| Unfortunately, the motor-vehicle with its

springs and pneumatic tires forms a very complicated
system. Even when only vertical displacements are
considered and the effect of seat cushioning’'is neglected,
the system still has seven degrees of freedom.

Mr. P.E. Mercier proposed a solution for the
vibration problem of the complete vehicle in his article

12 He considered a system

on vehicle suspensions
consisting a body and four wheel masses. He assumed
also some kind of interaction betweén different wheels,
i.e. the load of the suspension member corresponding to
one wheel caused by the motion of another.

In order to simplify the mathematical proeedure

Mercier assumed complete symmetry of the vehicle. Further



for the sake of mathematical simplicity he did not take
damping farces into account. He justified this by claim-
ing that when elastic characteristics are rationally
determined the required degree of damping is low. It is
true that damping has very little effect on the freguency
of the vibration. However, it significantly affects the
amplitude, especially with steady-state disturbance at
resonance frequency when damping is essential.

In this thesis the problem of wvehicle vibration
is considered using a mechanical analogue..The problem
has been simplified by neglecting the rotations of the
body and the two axles sbout the longitudinal axis of
the vehicle. These motions may be studied separately.

In other words, motions are considered only in the
vertical plane parallel to the direction of travel of
the vehicle. The number of degrees of freedom is thus
reduced to four, namely the "bouncing" and "pitching"
of the body and the up-and-down motions of the two
axles.



IT: MATHEMATICAL CONSIDERATION

The Single Mass System
To start with the simplédst

kind of vibration problem let us

consider fiarst the single mass systém

as shown in Fig. 1. The motion is : -

determined by a second order linear

differential equation. By simple
calcuiatiops the complete solution
for free vibrations can always be ... .. = Fig.. 1.

found 12 and is of the form:

X, = A e'r'f+z42652£ (1)

and Al and A2 are arbitrary constants which depend on
the initial conditions.

The wvalues for s can be real or complex. In the
former case fhe motion is not vibration but an exponential
burve to the equilibrium position. The smallest amount of

damping for which this occurs is

c =2 {mk ()



This is called the critical damping. The damping
coefficient-is usually expressed in fractions of the
critical. walue. |

Using the fact that the natural undamped

frequency is
W, = \m (3)

the solution of the motion can be expressed in another,

more convenient form: -

' ~Swt '
x=Ae " sin(iI-Fat+r P

The coefficient A and the phase angle 95
depehd again on the initial conditions. The value

{1-(&) wn

is called the damped natural frequency. We see that a
reasonable amount of'damping has very small effect on
the natural frequency. A damping coefficient which_is
half of the critical value'reducés the natural frequency
only by 1l3.4 per cent.

The solution for a forced vibration is also
found if the forcing function (the form of the road
surface) and the initiasl conditions are known.A road

surface of sinusoidal form may be defined as a function



of time thus:

X, = a, (I-cos wt]{(tf (5)

The initial wvertical displacement and velocity
of the mass are assumed to be zero. The following

expression is then found for the motion of the mass as

a function of time:

X, (¢ - wpt .
Cgo) [~ A tinlwt+@)+A, € i //_ )w L+ @, (&)

where the coefficients Al and A2 and the phase angles ¢.

and ¢& are functions of damping ratio and frequency

ratio:
A L LU * 2% o)
v - V(?- C/C._ w/wﬂ}z + Lw/‘wn— U'L
w/wn

-
~
1)

- (e (2% Ao+ (o 1]

e (7
o, @ e (Ron-1)
¢ = fan 2%. (V)
. Fap! ‘{ b~ { Te Y zl"" (%"’n)l}
¢L = n thc [\ N \fuﬂgh}z*z

~b

The motion is described by three terms, namely

a constant, a sinusoidal term varying at the forcing

frequency and a damped sinusoid at the natural damped



frequency of the system. The third term decreases very
rapidly and some time after the disturbance has begun
the system is sald to be in steady-state vibration,
because the motion is purely periodic. Coefficient Ay
is the ratio of the amplitude of the motion to the
amplitude of the road surface. If it is plotted as
function of frequency ratio for different damping

ratios the well-kmown chart of Fig. 2 is obtained.

The Two Mass System

For the two mass system rn‘__ix\
-V
with the notations of Fig. 3 °
K c
the differential equations are: ' p
2
k2 = s
. .. ‘ Fig. 3.
m.x,*C(_X‘-'Xi) + k (X, "’xﬂ.) =0
mzx + CX=X) + k(X5 =x) + k(X=X )= O (8)

The natural undamped frequencies of the system

are rfound to be the roots of the egquation 14:

which are:

l » )
L. ==1.EEL+ £W+h“§i
[ 13 2

’
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Fig.2. Amplitude ratio vs. frequency ratio -
“and damping ratio fer the single
 mass system at forced vibration.
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For the motor-vehicle kﬁPbki and mfi'ma. Then
the natural frequencies are approximately:
L kl*'kz, T kmk;_

Ww, =
¢ . ‘ - v

- (10)

Assuming again a road surface of the form:

Ny = Qg [t cos W] (4

and that the initial displacements and velocities are
zero, the method of Laplace transform 15 can be applied
for solving the problem. The ILaplace transforms of Xy

and X, are found to be:

ke ke /€
- Ao e o (i P*1)

x ip—
{pJ= P(piw’]{p«fc(—-&lip-f(m. '““p ;',k'::. + Kk

mmnd
X (9)= a, w* 8 (P 5P* 5 |
2z f(f;l-f-w'jb) +c (’_" - P“"(&' k,+k/F Cka k«kz'g

"7c My MRy

(11)

For the inverse transform it is necessary to
find the roots of the fourth order polynomial in the
denominator. If the system is oscillatory the roots are

all complex and of the form:

—

= —= T A4
P o lj

Tt is possible to find these roots if the

numerical values of the coefficients are given. Dr. Haley

has done this for some single cases in his thesis 11.



The general solution as algebraic function
of the coefficients is not obtainable as in the case

of one degree of freedom.
The steady-state solution may be obtained

quite easily in terms of the parameters of the system
without evaluation of the roots of the fourth order
polynomial. This is accompllshed by assuming that the

solutlons are of the form:

%Y,
= IQ‘«Q
wt (12)

If these are substituted into (8) and the
eQuations are solved for <1 and x,, the amplitude

ratios are found to be-

[£.| - (:z.;; C::‘ S
V[“’q e +;;.-‘7‘.‘,ﬂ G (-« 57 s
Xl _ t:i) G” - E{ ;::L)

Qol B V[ + u-e,, A +:_;1:-1"— i:.:f:)?(l m.+m)

The first part of the denominator is the same
as the equation for determining the natural frequencies.
This is clear because without damping the amplitude goes
to infinity if the forcing frequency is the same as the

natural frequency of the system.



The Body with Distributed Mass
As next step let us consider a body with

distributed mass and two parallel springs. This is

also a system of two degrees of freedom.

Fig. 4.
With the notations of Fig. 4 the differential

equations of the system are:

£, =rv ..
+ m‘—'—!"z;_———— x,_=0

l +rt
-y L tre
rn-££%;£; . F QL%FT"—/ +GX, + kX = 0

The natural undaﬁped frequencies are the roots

of the equation:

=0

2
<y L.+r .,_1,"+r‘) T [ AN
LIJ (?‘1 rL ?ﬂ_ Py L - r'l. mt

A partidularly interesting case occurs when

the ratio
‘!cét-rl
l'l.

(14)



which is called the mass coupling, is zero. Then the
set of differential equations (14) reduces to two
separate equations and the motions of X, and x, are
independent df eaéh other. The natural frequencies
are then simply:

s (16)
6

om——

) :-_V"Czi.
= m,

Another exception is the case when

k.' f-‘ = kf‘l1

or spring constants are proportional to the wheel
loadings. This means that the static. deflections in
front and rear are equal. Then the natural motions are
pure up and down motions parallel to itself and rocking
about the center of gravity. The natural frequencies

of these motions are:

w‘ - u"’——-‘.l-k" '
m (17)

T I
oy = T
If mass coupling is also zero these frequencies
are equal.
Let us assume that the initial displacements
and velocities are zero and the exciting motion under the

wheel 1 has the same form as previously:

j[,5= a, ((— Uﬂw") i(t}

10



The Laplace transforms:of the motions are:

QWL P (agt oy pedLp + a4]

X\(p) = P (F‘-&wjﬁﬂ-r (d.-m;) f""‘ (ay+aq+ agiprra, P+ “7}

(18)
5(_()_‘_*-a°€up )) mf*m
2\P) = P(P‘*"‘“‘)If‘*("“*)l’:*'(ﬂ’?a“*a‘)P ra Pta;l

where the constants Byeee .a7 are:

a = & Litre _ ke e
' m I3 @r- m
- C2 5:4.',1. Cihrtg &k,
- CI C‘]_ kck-;
a.S - mt a? = mz
i, e r®
%= m T

For the inverse transform the roots of the
fourth order polynomial in the denominator are required.
The amplitudes for steady~state vibration are found
without evaluation of the roots through a method

used previously for the two mass system and they are:

PN PR A O,

@ VB erraransta] s o aran)s ""‘T (19)
}—x_t; _ ‘!j; [ C.) (Kc _J (

(Aol ‘{{_m -lagra repint *"’-v}t*w [@.*d.)w ae.ll



The Qomplete Vehicle

|

&
o

N J

Fig. 5.

The vibrational system of the complete wehicle
as chosen for this study is shown in Fig. 5. It is a
combination of the two previous cases and has four
degrees of freedom. The following coordinates are used:
X = rise of the body at center of gravity
B = rotation of the body about center of
gravity (positive counterclockwise)

X, = rise of the body at wheel 1

xz = " " 1" 2
X, = "  of the mass ny
t "
24 = 1 m.2
Xg = " of the ground under wheel 1
xg = 1t 44 e 2

' The coordinates x and < can be expressed in

termms of % and X5t
is L

X =7 X + T *a (20)

9_" "E(X‘ - X:L)

12



Let Fl and F2 be the algebraic sum of the
spring and damping forces at front and rear respectively.
From the balance of forces and moments acting on the body
we get:

-MX + F +F, =o

2

-Mr'-é + F‘L. -_ 2_11 =0 (21)

Substituting the values for x and © from (20)
and the wvalues for Fl and F2:

F.o=—c, (X =%, ) —k, Lx, = %)
' ® * (22)

we get the differential equations for the motion of the

body: ,
lz‘frl- .o L.‘ crl .o - .« .
2'— X+ M ;‘;- Xy +¢, (X =X3) + & (XmX5)= O
(23)
{tert..

L‘ "l e - . o .
T A X b M- k) + k(Ko mk)= ©

The differential equations for the unsprung

masses are found to be:

9
.. - ' (24)
My Xy = € (g —Ke) = ley - )+ kg (Xq =X}~ 0

13
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Let us consider a sinusoidal forcing function

which hits the rear wheel ‘l'/’v. later than the front

wheel:

Xg = Qo (l-cadg wt j 4
(25)
X = ,Li-mvaf'vh 1(¢-5,)

If all the velocities and displacements are

zero for t=0, the Laplace transforms of the equations

(23) and (24) are:

L]
+ - Lg-re - - . =
M!«—""'—-{;!-—Plx, + M ”!E; F‘x,_ TP =X iKX= X y= O

lz* rz -. n‘ r - - - ——

3.
(26)
z = = - - = - | -
MP Xy =G PX—Xy) - k\(x‘-xa) T kyX, = Rya, (’IS"'FE.E.,.:;)
-t P .
y - - - - - — v F - '
M P - o ply-Kyj = kaliy ~ Ky | + kg Ky = kya,e (‘é‘ +1;—‘E'“'":/
After elimination of 'x'Band it&:
lt.""r‘ stc k, kﬂ-

I-iq."-fr‘ a F G St e, ket ke
ot | -1 - 4
P g e o T PR SR e e B R

L’ILQ_““ L Cl k' ’g“ {"’( k' ik ‘ﬁ:c “a
plasrtoelen o kilg (S kijks
Zc m‘ P m‘j 2 \W,P ""’JJM F . P:. #+ WD

¢ . (27)
Ta+rt *1_?&1-4-&—‘}_.:"_’2_3 3 f’-"z+‘&_~t}‘_‘!. Lt Pt “*‘-‘P-.-*_*.-:ﬂ};
N r \Mm n, ¢t /F M Mg e / Mo, (4, "«
— -9u.

'{Ct Ho 42 & F
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These equations can be solved for :'z?.l anq 5'&2
by the use of determinants. The denominator will be:
[ T & 7 . 5
=p(pt+ )@y P +a,p'+ - +a, p+a.) (28)
where the coefficients are:

l.z-l-}"l 2,’“+r" f:(; —pele

T
a? = Ahﬁ/\ = it *

< + <
g = AU A 7+ PR Ar ¥ - A (5 )
SLE TR Sy
)\1(\)\ k:+‘!4 k;)+)\ {A&%' 3 }\7{‘}_*%1:\. )k/\‘"":, )
ikt Ky + K Tyl
-)\l( > Lv"'ﬂz_q T':‘T%i

ke ica k, kg ; Lol G ka
1y = Ay, * AR m Y Nemtain ™y
A Se, iy o mate e )/, Ratika , ke
e TR s —— X -
+ (A m MMt {\’\2. m. * M)x\/\\ = vy
kK, +ky o+
— A‘— — Y A.Y“&A
' a2
= jErka A D L2 S e kTR G
a3 = (Aa.'m ™M m,_ \ \m._’" fAaj ™M m, +~ (/\a. ™, -r-ﬁjM =
k;_*f s e <y lkea
+ kjk . * M ",
l""‘-s oy Ly %a : ok kg |, deg VK e ¢, i
A oo 2 e e et e T
2y = s M my, ©(ANTRT Y R o * A
_ =i %3k g L R s
Xy = Mz n, M, PAL
. kgg‘-‘g_ 11 Aeond
“e M* m, "
L bl (et L et
A= — A, == AL = 70

{* Y ¢ it 7 R ’ ey
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For inverse transform it is necessary to find
the roots of the eighth order polynomial in p. If the
numerical values of the coefficients are known, the roots
can be found using Graeffe’s method 1° , but it is quite
too laborous for any practical purposes. Therefore the
mathematical solution of the vibration problem of the
vehicle is not abtainable. The only way to find the

motions is the use of analogiles.
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III. SIMILITUDE OF VIBRATION SYSTEMS

Dimensional Anslysis

Dimensional analysis treats the general forms
of equations that describe natural phenomena. Applications
of dimensional analysis abound in nearly all fields of
engineering, particularly in fluid mechanics and heat-
transfer theory 17. It experimeﬁtal methods are to be
applied the scope of the results can frequently be
increased through the use of dimensional analysis.

In designing a model of a vibrating system it is newessary
to retain certain dimensionless quantities Jjust as in any
other model making.

The procedure in the application of dimensional.
analysis is first to list the wvarious fundamental physical
factors or dimensions which enter into the problem. These
quantities can be_determined by examining the differential
equations of the simpler problems. These and their

fundamental units are:

‘'l. Mass - m = W/g - FT2/L
2. Spring constant - k  F/L :
3. Damping constant - ¢ FT/L

4, Natural frequency - w, 1/T
5. Forced frequency - w /T
6. Displacement -~ x L



7. Wheelbase - { L

8. Moment of inertia - I FTEL

The time might be considered but it does not
seem necessary because it is the reciprocal of the
frequency. The force doeg not enter in because except
inertia, spring, and damping forces no external forces
are acting in the systemn.

The terms involve three fundamental units,
F, T, and L. The number of 7T functions that may be
determined is the number of factors (8) minus the number
of fundamental units (3), or five JT functions. Among
tha variables listed three are selected which contain
all three of the fundamental dimensions among them.
These are the mass, the wheelbase, and the natural
frequency. These are set down with one of the other
variables written after them. If o< , /5, and ¢
are arbitrary powers to be assigned to the three
quantities selected, then the dimensional equations

can be written as:

L .
ot 8, ¥ FT ) N I A ~
7T, e m oy = (T ) ()7 (F) L
X3 ¥ T
ﬁl = {f MJ,.C- = u “« - —‘-:-
- E .3 I 4 ]
JT, = m @ w, w = " - “ A
- T (29)
ﬁ’(;fb ' -
Ty = m ol = . " - L
.&'7?5 -~ 'hq él{a;u"y[ = U ! AT FTLb-

18
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The sum of the exponents for each of the

fundamental units must be zeroc. Therefore for 7T, :

X + | = 0 (Powers of force, F)
2o — ¥ = o (Powers of time, T)
- +—[5 —1= 0 (Powers of Length, I)

When these equations are solved simultanevusly

the values of the exponents are:

o = —]
o= e
$ = -2

50 that the first dimensionless function /%, is

T = &

| e
m Loy

The remeining functions may be evaluated in

a like manner:

—_ C A
(L= - ——
~ <O ~ A
/ 53 = — / (ﬁ. = 3
v,»c,)n » {

If these five dimensionless quantities for one
system are equal to the respective gquantities of another

system, then the two systems are similar.
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Use of Differential Equations

For the complete vehicle which has three
masses, four different spring constants, and two
damping constants, the dimensional analysis approach
is not sufficient. More definite method is changing
variables in the differential equations to dimension-
less form.

The differential equations for the complete
vehicle are, combining (23), (24), and (25):

i, ‘ert oL, G
M 2 x‘+M-—Z'-;~—-£x 4+ C X ~%y) +h X —x5]) = ¢
Lot"'rt b in r“' I s
M i Xe + M ”‘%L"_— X\ + C’.sz—XAj + k’-(K’L ‘X4j= o
) , (30)
mXy ~ < (X" S‘l‘j —k, Xt gty )xy =kyr, U-mw{')
oo <. . . ) ‘ ) [ T(_ 1‘,\&——‘\
MaXy = €Ky ] = ity %y ¢ (v wa) xq = o e > o
If a change of variables is made using
X =7 ,
1
o ot 31)

When the dimensionless terms are differentiated,

the results are:

aT
= A dé = —
dX L‘ X 5Dy
. j + ix . z
ko= 5 Ll TE = ien X
F3 &
X ni_t)" - o2 RE L
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These derivatives are substituted in the

original equations:

Ml;ﬂ' .'X"'M ""”‘ ”& +c\tw..(5 K)-f‘(i(z XU‘C

L.+r " L1 . .
M = Lw ..5( M-—s—-—zw,,rw,l nEX )t l&G-& )0

2
m, Loy X—ciw,&X, Xb) kA& 4 (kyrig JLX = fc..a.(l—w,qus )

. ml-iw'}jx.q -Czi‘_'dn (X.;.-&) 'sz'z‘-t+ (k'-"aj 1’& = 1‘3 a,{[-a-(wé‘-—éjf

Since X and T are dimensionless, their
derivatives are dimensionless. If each equation is
divided by the coefficient of the second derivative,
it makes all terms dimensionless:

l[. -f-V" .o Z I .. ' _ _
X, *”'"'L—-— &, ( 7’*1«450'—([: X)=0
((‘, r* = tf -rt '
: 'I.
T Mw*(‘z; dLi)=0
(33)
il Q;*ks k 72‘(
X.. ?n ..u,, (Z ‘EJJ mwl- £ m, W LT I- w"nTj’
v <z 7 i‘ j ke T g bt kg o~ 1‘4 w Z Vo
TS Yy pyeyy 26- 4]
Z'q 2 “n «/ Mg Yt 4. m, wn? T4 my o 7 z. /
The dimensionless quantities are then:
4, b2 rt St L2
i P i’  HMwon’ M,
..,.—55.—.— _.._.é.’-—-—- ’ . i' k&
Lot ! M o m,wr 7 my Wt
k, + &3 ﬁ'c.‘_ +“1 Lo Lo Yo
T—— — Y ~ 7 o
f}‘)' .~-'c)n" ,bl :‘”QL i ""‘,/\ ‘.4)" 4



If these gquantities are equal in two systems
also their ratios are equal. This way following quantities

may be determined:

kL

—d e

¢
" / P
kK, 4y Qi !

[

Sk

Ly
M

The final conditions that two vibration systems
are -similar, are that following dimensionless constants
in one system are equal to corresponding constants in

another sysbein:

1. Y - Weight distribution
2. f?ﬁfl - Mass coupling
3, —S~  _ TRelative damping
M 29,
4..7;%§ﬁ¢- - Static deflection
Kkl . .
R - Spring coupling
Ko dy
6. b - Damping coupling
2 iy
7. ;hll’, g—f - Relative weight of unsprung mass
8. 59, 2: - Relative tire stiffness
4
9, ?' - Amplitude/wheslbagse ratio
\ ) .
10. o - Fregquency ratio
11. a?? - The ratio of driving speed to
"

the product of natural freguency

and the wheelbase

22
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IV. DESCRIPTION OF THE ANAL.OGUE

General

The main purpose of the analogue was the use

for demonstration of vibrational characteristics of the

motor-vehicle. It was therefore quite natural to think

it first as a small-scale model of the actual vehicle

as shown in Fig. 7,
using compression
springs in the place
of springs and tires.
However, ﬁhe guidance
needed in this type
of analogue would

O

¥
£

Fig. 7. '

involve too much friction and the éﬁpiiéétion of road

disturbance would not be convenient.

For smaller friction and easier guidance the

whole system was turned upside down as shown in Fig. 8.

Although a little
more imagination is
needed in order to
understand that this
represent an auto-
mobile, it was found

very succesful.
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No guides are needed to prevent other than vertical
motions because the system is always stabile in the
field of gravity. The friction is thus reduced to a
ninimum. Further the road disturbance is easily rep-
resented by a single rotating cam which affects both

front and rear wheels through rocker arms.

Weight Distribution

| The wheelbase of the analogue was chosen tg
be 24 inches which is approximatelly one fifth of the
wheelbase of the average American car. The weight of
the analogue does not need to be proportional to the
third power of the linear ratio as fof some other models,
because the laws of similitude do not include any
relation between the mass and the legth in this case.

It was desired to have a large range of weight
distribution. Therefore the "chassis" was made of l"x%"
duralumium bar, 40" long, which weighed only 1.0l 1b.
Four movable steel weights were made weighing 1.10 1b
each. The heaviest part of the analogue are the electro-
magnetic dampers which will be described later. They
weigh 3.38 1b each. The weight of thé whole body is

Chassis 1 x1.01 1b = 1.01 1b
Weights 4 x lolo " = 4.40 "
Dampers 2x3.,38" =6.76"

12.17 1b



The moment of inertia of the chassis and the
dampers is:

L

mi .01 40"
I =7 = 55— = 125 lbm-in*

il

12 :
i) = 676212 = 975 lbm-in*

1110 Ibm-ia®

The variation in the moment of the inertia is
due to the change of position of the weights. The minimum
is obtained when all four weights are in the center of the

bar, and the maximum when they are at both ends of the bar:

lmfn = 4.4 % le = |0 lom-in®

L max 44 <185 = 1505 lomint

"

The minimum and the maximum radii of gyration

of the body are:

ito + o - TP
..,.. \j 12 = J.06 in.
luro+ 15708
v, " T
max v 2.7 ]4. § A.

The minimum and the maximum mass coupling at

symmetrical weight distribution are:

LR

rm.'n - 9-6" - on
L4 PG - o
Pmax . _14.38° _ 4

Ly 1%* o>
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The mass coupling can be varied in larger range
than in actual vehicle. In order to get zero mass coupling
(rzlljz. = 1) at symmetrical weight distribution the
moment of inertia must be equél to the mass multiplied
by square of the half of the wheelbase:

Blr—

T =m(3) = 12070125 < 1750 lbmin,

This may be obtained so that two weights are left
in the center and two are put 17.075" from the center. This
distance is marked on the bar as well as the center for

easier weight installation.

Springs :
Because of the large size of the damper it was
found more convenient to use a set of two parallel springs
between the body and the unspfung masses instead of a
single spring.
For different static deflectioﬁs and weight
distributions a large number of springs of different
rates was needed. The maximum and minimum spring loads
which were half of corresponding axle loads, were estim-
ated 4 1b and 2 1lb. The static deflections between 4 in.
and 8 in. were desired corresponding the frequencies
94...66 cycles per minute. The maximum and minimum spring

rates were then found:
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f

L . P

9 .
ma.x Jmh\ - z - l le/ om.
P <
ki’hl‘n = -3:.: = g = .25 |b/§n.

Extension type springs were ordered from
Hardware Products Company, Boston. These are made of
high quality spring steel and have initial tension
which makes the'actual static deflection smaller than
what is the effective deflection. A table of these
springs and their properties is given below.

Outside diameter in. 3/8 . 1/2 1
Wire diameter in. | OBl O47 062| O47 062 094 gL
Max. load 1b. | 4.2 15. 35.|11. 25. 85. |
Max. extension in. 3.4 1,2 7124 1.2 4
Initial tension 1b. .9 3.0 7.012.2 5.0 17.
Spring rate lb/in. 1.0 9.6 43,1} 3.7 16. 153

The figures for maximum extension and spring
rate are for springs one‘inch long. The maximum load
and initial tension remain constant for any length.

In order to keep the weight and the free length
of the springs as small as possible the suspension springs
were made 3/8" outside diameter .031™ wire diaméter.

The maximum load for this spring is Jjust above the

maximum reguired.



For "tire" spring the load varies between 4
and 8 1lb. Statie deflections from .8" to 4" were wanted
because the natural frequency of tires is approximately

ten times that of the suspension springs. Spring rates

are then:
Tiva 8 .
== el — = O 1b % .
Foui 4 .
kmin = E;M = -y = & lb/in.

A set of springs of seven different lengths
were ordered for both purposes. All springs were care-

fully tested and the actual spring rates are listed ' .

below:

Suspension springs Tire springs 1
| 3/8 x 031 3/8 x 047 %
i Length | Rate Length Rate ;
| 1" 1.26 15" 20.0 :
S R N 5% g | 138
; 2" L .605 | 1" i 10.0
| 25" ' 495 % VA % 8.48

3" . .410 % AL § 6.90
o omr L s w63
% P s | 2" | 5,25




Fig. 9. The analogue.

(S=A),

5

Fig. 10. Schematical

Chassis bar
Movable weight
Damper

Unsprung mass

Suspension springs
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7
8.
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10.
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Rocker arm

Cam

Speedometer for the cam
Ammeter for the dampers
Switchboard

Recording paper



The Driving Mechanism

For driving the cam which produces the road
shocks a variable speed electric motor is used. Through
a reduction gear the speed scale is C...400 rpm, but
30 rpm is practically the lowest speed possible.
| The relation between the cam rpm and the
vehicle speed in mph whish has to be represented, may
be found through following reasoning. During one half
of cam revolution the analogue "travels" a distance
equal to the wheelbase. At n rpm the distance traveled
in one hour is

60 ~n =21
If the wheelbase is measured in feet, rpm

scale must be multiplied by

1201 _ .
280 - 0227+(

in order to convert the speed into mph. For an average

car of 10 feet wheelbase this coefficient is .227.

The Recording Mechanisnm

For measuring the amplitude of the motion a
recording mechanism is provided which uses regular 5/"

wide adding machine tape. The tape is driven by an

electric motor through a three-speed gearbox. The speeds

for the tape are .3", 1.0", and 5.0" per sécond.

30
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V. ELECTROMAGNETIC DALMPER

General Theory

If a conductor moves in a magnetic field an
electromotive force is induced in the conductor. The
electromotive force causes a current which in tumrm
causes a force opposing the motion of the conductor.

The force is proportional to the magnetic flux density
and the relative velocity of the conductor with respect
to the field.

This phenominon occurs in so called eddy-
current brakes used in laboratories to measure the
mechanical output of a motor. It may be succesfully
applied to represent an automotive shock absorber. It
is ideal for this purpose because the damping is linear,
i.e. proportional to the first power of the velocity.

In a fluid dashpot there is always in addition to the
linear viscous damping more or less hydrodynamic damping
which is proportional to the sguare of the velocity.
Linear damping is ideal not only for the simplicity of
mathematigal treatment but also from comfort standpoint.

The control of an electromagnetic damper is
also easier than in a fluid damper. This is accomplished

by changing the exciting current in the electromagnet.

The only drawback is considerably heavier weight.
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It was figured, however, that even when one half of the
weight of the body would be concentrated at the places of
spring attachment in form of dampers, the desired range
of weight distribtuion would still be obtained by using
light aluminium bar for chassis and heavier movable weights,
This gave for each damper an approximate weight of three
pounds. |

In order to use the material most efficiently
a round magnet as shown in Fig. 11, was suggested.

A cylinder of non-nmagnetic

material of high conductivity

moves up and down in the

<

circular air gap. The magnet

has to be attached to the

N SOOI

body and the moving cylinder

to the axle mass. QOtherwise

the unsprung mass would
become too large. FMg. 11.
If the cylinder moves with a velocity v in
a magnetic fileld which has flux density B, the electro-

motive force induced in the cylinder is in volts:

3 e s ) , =%
E=l€.‘x"/lqu5/~/0 (34)



The resistance of the piece of the cylinder

in the air gap is in ohms:

R i (35)
where ¢ is the resistivity of the material ( for copper
Q = 6.79 x 10~ ’ohm in.) and b and § are the dimensions
of the cross section of the air gap. Zlectric current in
the cylinder is the electromotive force divided by the

resistance:

E Bedvy -8
=== === w0 (36)
R §
The force which opposes the motion of the
cylinder is proportional to the current, flux density,

and the legth of the conductor:

F=fL7md,B (37)

f is proportionality factor which das the value
one when force is measured in newtons, flux density in
Webers/ma, current in amperes, and the length in meters.
If the English system is used £ has to be calculated:

1 newton = 224 1b

1 weber/m® = 64500 lines/sqg.in.

1l meter = 39.37 in.

224

-3
)[ = m =8.85X10.



By substituting the expression for current (36)

into (37) and using the English units we get: ,
~-le
F = 88310 ¢ &bdd,? (39

. The damping coefficient is equal to the force

divided by the velocity:

o -le
C = g = 8.33x%10 é B"bd na,, (39)
Where: ¢ = damping coefficient (lb.sec/in.)

= resistivity of the material (ohm in.)
= flux density (lines/sq.in.)
height of the air gap (in.)

O o W oW
[}

= length of the air gap (in.)

dm? mean dismeter of the air gap (in.)

Design of the Magnet

If certain damping coefficient is desired, the

flux density required in the air gap is found from (39):

. ] C ' (40)
8.83x16 ' Sh 7T d,,

B =

If leakage is neglected the total flux in the

air gap is equal to the flux in the core
O = AB, = AB, (41)

from which: B, ___.;31:; B (42)
m
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In order to reduce the nurber of variables in

the expression for B, (40) the following step is made:

_ Ba_ dgc - (43)
E)a, E’; - s.ss_wolb 7T d d:z. 5‘_‘ ‘

Magnetic field intensity in the air gap is

Kq z/"’ Ba (44)

where Mo is the permeability of free space. If B, is
measured in liner/sq.in. and K, in amp.turns/in. then
if has the wvalue

R = 3.192

The magnetomotive force rétuired is

Fm = KA.J +'kc*lc (45)

where J)_ 1is the path of the lines in the core. In the
first approximation the path from the inner core to the
outer core may be neglected. If the height of the core
is h and the value for Ka is substituted:

4qc
= . h (46
F”' 8.93 210777 d;* B r2K )

 The cross sectional area available for the coil:

A=%h(ay-a4 -4) (47)
The number of ampere turns which can be safely

used is: NI=C,A=%)C,h(dy-4 -J) (48)

35
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CS is the safety carrying capasity of the wire.
For small size wire in confined spaces it is approximately:
Gs = 2000 amp/sg.in.
The magnetomotive force is equal to the number
of amperetumrns: |

4gc
§.83-10 ' °TC d;* B

+ 2K h =5 h{dm-di-3) (49)

from which h may solyed:

4 qc
= g g ~le, 7 2 S, ; SEP - (50)
L$3% 0 4 EgszLdm—d;—s)-lK‘}

For certain value of core diameter this
expression has a minimum. This is found by differentiating
(50) with respect to di and setting that equal to zero.

The optimum core diameter will be:

iy

(51)

3

d; =

The magnetizing curve for cold rolled steel is
shown in Fig. 12%81n order to use the material efficiently
rather high flux density is desired. Corresponding to the
assumed maximum flux density 120 kilolines/sq.in. the
maximum field intensity is found by interpolation:

Kc = 300 amp.tumms/in.

The length of the air gap was assumed 3/32"

and the mean diameter 2" because this size of copper tube

for the damper cylinder was available. The optimum core

diameter can then be calculated:
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300

d; = 2'%—4‘“" = 0.875 in.

Corresponding value for h is found from eq.(51)
h = 2.86 in.

Because in calculation of the length of the
path in the core the horizontal part was neglected the
total height of the magnet was designed Z4". The height
of the air gap was assumed %™.

The magnetizing curve for the magnet can be
plotted be means of Fig. 12 and equation (45) which is.
after necessary calculations:

Fp = 11.25 B, + 5.72 K, (52)

The damping coefficient ¢ may be determined
as function of magnetomotive force by using equation (39)
which is after calcula.tions:(Bc in kilolines/sq.in.)

¢ = .187 (B,/100)2 | (53)

‘The calculated values for F_ and ¢ ave in the
table below and the damping coefficient vs. magnetomotive

force is plotted in Fig. 13.

Bc Kc Fm c
kilolines[in2 amp.turns/in amp.turns lb.sec/in.

20 4 248 .0075
40 6 484 . 0300
60 9 727 . 0673
70 12 356 .0916
80 16 992 .1196
90 23 1145 .1514
100 40 1354 .1870
110 100 1810 2265

120 300 3066 .2650
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The critical damping coefficient for average

axle load (6 lb.) and spring rate (1 1b/in.) of the

analogue is : —Z—-—l- Y
C = 2 ,k — 2 ___f__ =, 25 b.' e
< "‘4 qugql in

The number of ampere turns which gives this

amount of damping is 2600 according to Fig. 13.

For coil it was suggested to use wire No 20,

which specifications are 19:

Diameter 31.96 mils

Area 1096 circ.mils

Resistance 0.672 ohm/in?
The volume of the

e /- 7%

coil is (Fig. 14):

Rt .
ve IR -@) ek -s0w L0

Resistance: & %
T K

_ Fig. 14.
When the coil was made there were 14 layers,
55 turns in each, which means 770 turns total. In order

to obtain critical damping coefficient the current must be:

2600
I--%ﬂ - 258 =338 4

The voltage required is:
E=z=RI=3.425 x 3.38 = 11.6 V
The maximum current isalittle high for safety

carrying capasity of the wire. The eross section of the
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wire is only 292 circular mils per ampere when at least
500 is recommended in Radio Engineers Handbook. Because
the maximum current is used only for short periods, this
considered satisfactory. It was found that it did not
cause any damage even when the maximum current was left
on for several minutes.

In order to keep friction as small as possible
only one wire was connected to each damper. The other
terminal is connected to "ground" where the current is
lead through the suspension springs. Two reostats are
used for controlling the current, one for the total
current and another for the ratioc between the dampers.

The wiring diagram of the damping system is shown in Fig.l5.
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VI. TEST RESULTS

For using the analogue it is necessary to find
“the relation between exciting current and damping coef-
ficient. The direct measuring of the damping force is
difficult but it can be conveniently determined by
examining free or steady-state vibrations.

Free Vibrations
The rate of diminishing of free vibrations

depends on the damping. The relation is shown in Fig. 16
where the ratio of successive half-cycle amplitudes is
plotted against relative damping coefficient 20.

It was found that after turning off the exciting
current the remaining magnetism in the magnet caused a
small amount of damping. To eliminate this the first run
was made withdut copper cylinder in the air gap. There
was still some dry friction left due to the recarder pens
but it is so small it can be neglected. The first two
runs were made at low recordei speed (.3 in./sec.) but
later only the intermediate speed (1.0 in./sec.) was
used, because this made dry friction even for up and
down stroke. The vibration curves, test data are given

in Fig. 17...25.
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47

Forced Vibrations

The damping coefficient can be determined also
by using forced vibrations. Some time after the forced
vibrat;lon has started the transient term dies out and
only the steady-state part is left. The test is best
done at resonance frequency because the amplitude
variation for different damping coefficients is then
largest. The ratio of steady-state amplitude to tThe
forcing ampli‘bude‘ is plotted against the relative
damping coefficient for w -w,in Fig. 26.

The forcing f'u.nétion was provideéd by a single
exentric cam which produced a bump 1/6" high. At the
end of the rocker arms the displacement will be twice
as mach, i.e. 1/3". A symmetric weight distribution
with zero mass coupling was used for these tests as
well as for free vibrations. The spring coefficients
for tires and suspension springs were 6.9 1b/in and
.82 1b/in respectively. The critical damping ratio
is then

,———— 269 « 12,17
C =21k 2+6 92 £/2¢322 .2/4

In Fig. 33 the relative damping ratio is
plotted against the exciting current. The test results
coinside reasonably well. The absolute damping
coefficient is shown in Fig. 34 as function of

the exciting current.
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VII. CONCLUSICN

If the experimental curve for damping
coefficient is compared to the theoretical one (Fig.lf)
iy-g§g be seen that the both curves have same shape.
Because of the remaining magnetism the actual curve
is moved a little to the left. Although the critical
damping was not obtained as calculated, the range of
damping is large enough for most purposes.

Vibzational systems may be represented also
by electrical analoghbes because the electrical and
the mechanical systehs have same form in their

differential eQuafions el

. However, an electrical
analogue would not be so clear and descriptive és
the analogue deéigned. With the recording device it
shows the motion of the body directly and can be
conveniently used for study on problems of motor-

vehicle vibration as well as demonstration purposes.
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