Reptile: A Distributed ILP Compiler

by

Ian Bratt

Submitted to the Department of Electrical Engineering and Computer Science on July 19, 2005, in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering and Computer Science

Abstract

The past few years witnessed a dramatic shift in computer microprocessor design. Rather than continue with the traditional pursuit of increased sequential program performance, industry and academia alike chose to focus on distributed, multi-core designs. If multi-core designs are to maintain the decades-long trend of increased single threaded performance, compiler technology capable of converting a single threaded program into multiple programs must be developed. In this thesis I present the Raw Explicitly Parallel Tile Compiler (Reptile), a compiler targeting the RAW computer architecture capable of converting a single threaded program into multiple threads communicating at the instruction operand granularity. On applications with sufficient amounts of parallelism Reptile has generated code which, on the Raw processor, achieves a speedup of as much as 2.3x (cycle to cycle) over an Athlon64.

Thesis Supervisor: Anant Agarwal
Title: Professor of Electrical Engineering and Computer Science
Acknowledgments

I would like to take this opportunity to thank several people that helped (in one way or another) with this thesis. I’d like to thank Dave Wentzlaff for being a terrific mentor and for all of those “indian buffet” lunches. I want to thank Rodric Rabbah for his invaluable compiler expertise and for being someone that I could talk to about my ideas. I’d like to thank Nate Schnidman for being a great officemate and helping ease my way into MIT. Mike Taylor and Walter Lee provided wonderful guidance for my project. I want to thank all of the people in the open space, Jim Sukha, Elizabeth Basha, etc. for putting up with me. I’d also like to thank Jim Sukha for help with the quadratic programming formulation of the placement problem. I’d, like to thank Bill Thies for giving me the StreamIt compiler results and Dan Connors for setting me on my current path. I’d like to thank Anant Agarwal for giving me the tremendous opportunity to join the Raw group, for keeping me focused when I got side-tracked, and for giving me the academic freedom to pursue what I find interesting. Most importantly, I’d like to thank Lisa for reminding me what is truly important.
5 Reptile: Phase 1 and 2

5.1 *Reptile* Phase 1 ... 31

5.2 *Reptile* Phase 2 ... 31

 5.2.1 Partitioning .. 31

 5.2.2 Register Allocation 34

 5.2.3 Scheduling ... 35

6 Reptile: Phase 3

6.1 Placement ... 37

 6.1.1 Placement: Simulated Annealing 38

 6.1.2 Placement: Integer Quadratic Programming 39

6.2 Routing and Switch Code Generation 40

 6.2.1 Deadlock ... 40

 6.2.2 Switch Code Generation 42

6.3 Back End Optimizations 44

 6.3.1 Bang Opti .. 44

 6.3.2 Use Opti ... 45

 6.3.3 Queue Allocation 45

6.4 *Reptile* ABI .. 45

 6.4.1 Function Calls 46

 6.4.2 Parameter Passing 46

 6.4.3 Stack Usage .. 46

 6.4.4 The Switch ... 46

7 Case Study: bzip2

7.1 Bzip2 C-code .. 49

7.2 Bzip2: *Reptile* phase 1 50

7.3 Bzip2: *Reptile* phase 2 51

7.4 Bzip2: *Reptile* phase 3 51
8 Results
8.1 Experimental Methodology .. 55
 8.1.1 Simulator Validation .. 56
8.2 Performance Results ... 56
 8.2.1 Complex FIR ... 56
 8.2.2 256.Bzip2 kernel ... 59
8.3 Placement Sensitivity ... 60
8.4 Peep-hole Optimizations ... 61

9 Summary
9.1 Conclusion ... 65
9.2 Future Work .. 65

A Simulated Annealing ... 67
List of Figures

2-1 (A) Sequential schedule without ILP. (B) Code exploiting ILP. . . . 17

2-2 Logical diagram of the bypass paths for a traditional, centralized architecture (Left). The diagram on the right depicts a distributed architecture using a point-to-point interconnect for register operands.
(Diagrams courtesy of Michael B. Taylor) 19

2-3 Example of Distributed Instruction Level Parallelism. 20

2-4 The different types of parallelism. 22

3-1 Example of a 2-tile Raw program. Dashed edges represent dependences between switch instructions, and solid edges represent dependences between a processor and switch. 24

3-2 The Raw Microprocessor. Die photo (left) and abstract view of one compute tile (switch and processor). 24

4-1 High level view of the Reptile compiler. 27

4-2 Phase 1 of the Reptile compiler. 28

4-3 Phase 2 of the Reptile compiler. 29

4-4 Phase 3 of the Reptile compiler. 30

5-1 High level view of partitioning. A single basic block is turned into 4 basic blocks, working together to execute the code of the original block. The blocks communicate instruction operands via an operand network. 32

5-2 C-code from Partitioning module in the Reptile compiler. 33
5-3 Dataflow graph for a 2-tap complex fir filter partitioned for two partitions. Each node represents one machine instruction. Nodes of similar color belong to the same partition.

6-1 The placement module takes a group of n virtual partitions (left) and maps them to n Raw tiles (right).

6-2 Switch Code and Switch input buffers with the corresponding waits and holds edges. The edges were drawn assuming the input buffers (cWi and cEi) each have one word of storage and that I1 and I5 have already executed.

6-3 Code from Figure 6-2 with additional waits edges.

6-4 (A) 3-Tile processor code. (B) The corresponding switch code assuming an all-to-all network. Note that the switch instructions have Partitions IDs as operands rather than routing directions.

6-5 Switch code after routing the first send/receive pair.

6-6 Switch code after routing the second send/receive pair.

6-7 Switch code after routing the final send/receive pair.

6-8 Example of code before the Bang opti (left), and after Bang opti (right).

6-9 Example of code before the Use opti (left), and after Use opti (right).

6-10 Version of the switch code shown in Figure 6-7 after Queue Allocation.

6-11 The Raw stack.

7-1 C-code taken from the sendMTFValues function in 256.bzip2.

7-2 lcode generated by the OpenImpact compiler.

7-3 Dataflow graph before partitioning (left) and after partitioning (right).
7-4 Raw assembly for a 4-tile version of the example code (tiles are numbered, starting in the upper left and proceeding clockwise, 0,1,5,4). Each quadrant corresponds to a Raw tile. The two pieces of assembly in the upper left are the processor and switch code for tile 0. Similarly, the assembly in the upper right is the processor and switch code for tile 1. The solid edges represent data dependences between the switch and the processor. The dashed arrows represent data dependences between switches.

8-1 Cycle counts for the various versions of cfr compiled with the Reptile compiler. The x-axis represents different numbers of Raw tiles. The bar on the left corresponds to cycle count running on the btl simulator with software icaching. The bar on the right corresponds to running on the Raw motherboard with software icaching.

8-2 Dataflow graph of a two tap cfr.

8-3 Dataflow graph of a 4-tap cfr.

8-4 Speedups relative to a single Raw tile for variously sized versions of cfr compiled with Reptile. The x-axis corresponds to different tile configurations. The numbers were generated via the btl simulator augmented with hardware icaching.

8-5 Performance of different machines/compilers for various cfr configurations. The Streamit and Reptile numbers were generated using the best tile-configuration for that particular tap size. Numbers are normalized to the Pentium 3.

8-6 Dataflow graph of the 256.bzip2 kernel

8-7 Speedup of different machines on the 256.bzip2 benchmark kernel relative to the Pentium 3.

8-8 Placement maximizing communication (bar on left), placement minimizing communication (bar on right) for 4 implementations of cfr.
The speedup obtained via various peep-hole optimizations on the *cfir* benchmark.
Chapter 1

Introduction

This thesis presents the Raw Explicitly Parallel Tile Compiler (Reptile), a compiler capable of compiling arbitrary sequential C-programs and parallelizing those programs at the instruction level, targeting the MIT Raw architecture. On applications with sufficient amounts of parallelism, Reptile has generated code which, on the Raw processor, achieves a speedup of as much as 2.3x (cycle to cycle) over an Athlon64. Reptile facilitates exploration of the issues surrounding compilation for Distributed Instruction Level Parallelism (DILP) and provides a stable framework for DILP research.

The past few years witnessed a dramatic shift in computer microprocessor design. Rather than continue with the traditional pursuit of increased single threaded performance via complex centralized mechanisms, deeper pipelines and higher clock frequencies, industry and academia alike chose to focus on distributed, multi-core designs. Multi-core designs consist of several simple processors, each with a program counter, connected via a network. Motivated by conservative energy budgets and an ever increasing transistor surplus, Intel [16], AMD, IBM, SUN [6] and ARM all opted in favor of multi-core designs. Current multi-core designs offer the benefits of increased throughput, better transistor utilization, and increased power efficiency. From an energy perspective, executing two threads in parallel at a frequency of f requires less energy than executing the threads sequentially at a frequency of $2f$. A lower frequency facilitates a lower frequency voltage, allowing parallel designs to reap the benefits of the quadratic relationship between energy and voltage.

Unfortunately, most industry implementations of multi-core designs do little to increase the performance of existing single threaded applications. Continuing the decades-long trend of increased single threaded performance will require novel research at both the compiler and programming language level. Shifting the burden to the programmer requires software engineers to write multi-threaded code or learn a new, thread-friendly language. Moving the burden to the compiler requires development of compilers capable of automatically converting a single threaded program into multiple programs working together to achieve the task of the original program.

The recent transition in industry from complex single-core designs to simpler, multi-core designs foreshadows a technology trend toward chips with tens, even hundreds of cores. Academia [17], [20] [21], and to a lesser extent, industry [18], have
both expressed interest in chips with tens/hundreds of cores. To successfully utilize the copious resources of future processors, development of compilation technologies exploiting parallelism *all* forms of parallelism must occur. Simply re-writing a sequential application into a multi-threaded application will not utilize the copious resources available in future processors. Exploitation of parallelism must occur at the loop level, the thread level, and the instruction level.

This thesis proposes Distributed Instruction Level Parallelism (DILP) as a means for fine grain automatic parallelization of sequential applications targeting multicore systems. Instruction Level Parallelism (ILP) [1], involves executing independent instructions in parallel to increase performance. Modern superscalars exploit ILP by dynamically executing independent instructions in parallel, often speculating across basic block boundaries to expose more parallelism at the instruction level. Similarly, modern Very Long Instruction Word (VLIW) architectures utilize advanced compiler technology to expose ILP within a program and convey that ILP to the processor through an ISA that explicitly expresses instruction independence. Distributed ILP, like ILP, involves executing independent instructions in parallel. However, in the case of ILP, all of the instructions execute on the same physical core. In DILP, the independent instructions need not execute on the same physical core.

The major contribution of this thesis is the Reptile compiler, a compiler infrastructure designed for DILP exploration. Reptile takes as input an ANSI-c program and outputs multiple assembly files targeting a distributed architecture (see the Raw architecture in Chapter 3). The assembly files communicate at the instruction operand level, and work together to perform the same task as the original c program.

Chapter 2 of this thesis presents the background and related work. Chapter 3 introduces the Raw Microprocessor. An in depth explanation of the Reptile compiler is presented in Chapter 4. Chapter 7 steps through the Reptile compilation of a simple piece of code. Performance results for code generated with Reptile is presented in Chapter 8. Chapter 9 presents the conclusion and future work sections.
Chapter 2

Background and Related Work

2.1 Instruction Level Parallelism

To increase the performance of single threaded applications, many modern computer architectures exploit Instruction Level Parallelism (ILP). By executing multiple independent instructions in parallel, architectures may achieve significant performance gains. Unlike other types of parallelism, ILP exists within all types of applications, from highly sequential integer applications to dense matrix, scientific programs. Figure 2-1 shows a simple example of ILP. Part A of the figure depicts assembly code for a loop that copies values from one array to another. On a single-issue machine, the loop takes 5 cycles to execute. On a two-issue machine, the first two instructions and last two instructions may execute in parallel, decreasing the loop cycle time from 5 cycles to 3 cycles (Figure 2-1, Part B).

Almost all modern computer architectures support some form of ILP. The detection and subsequent expression of ILP to the hardware has traditionally come in two different flavors, hardware or software. Superscalars, an example of the former approach, exploit ILP via complex hardware mechanisms capable of dynamically determining instruction independence, allowing the processor to execute independent instructions in parallel. Modern VLIW/EPIC architectures support an ISA that expresses instruction independence to the hardware, allowing the compiler to statically determine instructions that should execute in parallel. Compiler/Software based ap-
proaches to ILP have the advantage of shifting complexity from the hardware to the software. Decreasing hardware complexity helps to aid the verification process as well as cut down on design time. The trade-off, however, comes in the form of increased compiler complexity.

Compiling for increased levels of Instruction Level Parallelism was first proposed two decades ago \cite{1}. Since, compiling for ILP has proved a popular research topic, spawning several architectures and compilers. The majority of compilation related work involves compiler/architecture techniques for increasing the number of instructions seen when scheduling. In practice, the more instructions in a block, the more ILP in a block. Trace scheduling \cite{1} looks at traces of commonly occurring basic block patterns, scheduling code across basic block boundaries to increase the number of instructions “seen” when scheduling. Because a trace corresponds to a frequently occurring pattern of blocks, trace scheduling optimizes for the common case. Non-trace paths require patch-up code to undo incorrect speculative operations. A technique similar to traces, Superblocks \cite{8}, uses code-duplication to ensure that the “trace/superblock” contains a single entry point and multiple exit points, greatly simplifying the scheduling process. Extending the methods behind Superblock and Trace Scheduling to predicated machines, Hyperblock \cite{13} scheduling creates large predicated regions out of commonly occurring sections of code.

2.2 Distributed Architectures

To maintain the trend of increased single threaded performance, most modern computer architecture research utilizes the increasing transistor surplus to focus on elaborate mechanisms designed specifically for increasing performance of highly sequential, single threaded applications. Examples of such mechanisms include branch prediction, speculation, out of order execution, larger caches and memory prefetching. Because of this one sided approach, existing microprocessors fail to exploit the large amounts of parallelism that exist within scientific, signal processing, and multi-threaded applications.

The reason existing microprocessors cannot support large amounts of parallelism stems from the centralized design of current architectures. Adding additional functional units to a centralized design negatively impacts clock frequency. Because modern superscalars and VLIWs rely on a centralized architecture with a unified register file, adding additional ALUs greatly increases the complexity of the register bypass paths. The diagram on the left in Figure 2-2 shows the bypass paths for a 16-way superscalar. Because the bypass paths scale quadratically with the number of ALUs, adding additional functional units will have a quadratic effect on the area of the bypass paths.

The diagram on the right in Figure 2-2 shows the traditional bypass paths replaced with a routed, point to point network. The routed network allows the addition of more functional units without affecting frequency. Physical distance between ALUs determines the number of cycles required for an operand to travel from the output of one ALU to the input of another. By designing architectures in such a fashion,
adding additional functional units will not negatively effect the clock frequency. The MIT Raw architecture [22] embodies this principle by organizing resources in tiles, where each tile contains memory and a simple processor. To add additional compute power to the Raw design, simply add more tiles.

Both academia [17] [20] [21], and industry [18], have proposed similar distributed architecture designs. Clustered VLIWs (for example, the TI-C6000), often found in commercial DSPs, are an example of a distributed architecture. By using two or more simple VLIWs sharing a unified register file, Clustered VLIWs cut down the bypass path complexity by only having bypass paths for a particular cluster. Values move between clusters via explicit move instructions that access a unified register file.

2.3 Distributed Instruction Level Parallelism (DILP)

Motivated jointly by the advent of Distributed Architectures and the quest for greater amounts of ILP, Distributed Instruction Level Parallelism (DILP) involves exploiting ILP on a distributed architecture. In the case of ILP, independent instructions execute in parallel on a single, multi-issue processor core. DILP, however, involves executing independent machine instructions on physically distinct processor cores. Figure 2-3 illustrates a simple DILP example where one ALU executes the loop overhead while the other ALU does the actual vector copy. Values transfer between ALUs via an abstract network. Duplication of the branch instruction allows both processor cores to follow the same control flow. The network allows propagation of the branch condition between cores.

Compiling for DILP involves not only determining instruction independence, but also assigning a physical placement for each instruction as well as orchestrating the communication between instructions on physically disparate cores. Many methods for
compiling for DILP exist, with most approaching the problem in terms of partitioning and placement. Partitioning attempts to cut a dataflow graph into chunks (partitions) to minimize the schedule length through the graph. Placement, following partitioning, involves assigning each partition to a physical processor core.

A small number of research groups have studied DILP compilation. Leupers et al. view the compilation phase for clustered VLIWs in terms of partitioning and placement [12]. However, clustered VLIW compilation does not involve routing over an interconnect. Instead, values are transferred between clusters via intercluster move operations. The most related work done in the field, “Space-Time Scheduling”, done by Lee et al. [11], proposes and addresses the basic issues compiling for DILP. The first to view the problem in terms of partitioning, placement, and routing, Lee pioneered the area of DILP compilation. In many ways, the work presented in this thesis extends the work done by Lee. While Lee’s original work focused on computation heavy kernels, this work will extend his ideas to arbitrary programs. Other research groups have proposed architectures for DILP, yet few have investigated the issues surrounding DILP compilation.

2.4 Architectural Issues Regarding DILP

Obviously, not all distributed architectures efficiently support DILP. Three main architectural features determine the feasibility of DILP: Memory model, interconnect latency, and processor issue width.

2.4.1 Memory

Virtually all programming languages assume a unified memory model with sequential consistency. This means that the state of memory must always reflect the state which would have occurred had all memory operations executed in program order. Out of order superscalars provide sequential consistency by executing memory instructions out of order and storing the addresses in case two instructions went out of order that shouldn’t have (e.g., A load is promoted above a store and both instructions access the same address). Successful exploitation of DILP will require parallel execution of
memory operations on physically distinct cores. Therefore, support for maintaining sequential consistency as well as memory coherence across cores must exist.

2.4.2 Interconnect

To effectively schedule multiple instructions from the same block across different cores, a DILP processor must possess a low latency network for inter-core communication. If such a network exists, it can facilitate the communication of instruction operands between physically distinct cores. The latency of the network plays a key role in determining the amount of exploitable DILP. For example, if instruction A on core$_1$ uses a result generated by instruction B on core$_2$, the number of cycles before A can execute equals the latency of B plus the latency of the network (assuming zero cost to send and receive the operand). Because basic blocks in integer code often contain fewer than 10 instructions, a latency greater than 10 cycles would prove impractical. Otherwise, scheduling instructions on multiple-cores would yield a slower schedule than scheduling all instructions to just one core.

2.4.3 Processor Issue Width

In the context of a multi-core architecture, the number of independent instructions issued in parallel on a single core determines the processor issue width. For example, if a core issues at most three instructions in parallel, the issue width is three. The wider the core, the lower the benefit of distributing instructions from the same block across cores. This stems from the fact that only a finite amount of ILP exists within a segment of code. If a processor core contains architectural support for exploiting more ILP than exists within a block of code, few (if any) gains will result from distributing the instructions across multiple cores. Because of this, application type plays a significant role in which processor issue widths can effectively exploit DILP. For example, limit studies [25] have shown that most integer programs contain on average a realizable ILP of at most five parallel instructions per cycle. If an architecture contains two five-way cores, integer applications gain little by distributing ILP across both cores. Because this thesis attempts to exploit DILP for arbitrary applications, an ideal target architecture would have a very small processor issue width.

2.5 Why ILP?

Three main categories of parallelism exist within programs (Figure 2-1). Thread Level Parallelism (TLP) pertains to the parallelism obtained when executing two different sequential threads in parallel. This includes executing multiple threads of a multi-threaded application in parallel, as well as executing two completely independent threads in parallel. Loop Level Parallelism (LLP) consists of parallelism found across loop iterations. For example, if any portion of loop iteration i may execute in parallel with any portion of loop iteration $i + 1$, the loop contains LLP. LLP consists of two sub-classes, Full Iteration Parallelism and Partial Iteration Parallelism. Full
Iteration Parallelism occurs when two different iterations of a loop are completely independent and can execute in parallel. Often called Data Level Parallelism (DLP), Full Iteration Parallelism has historically been the target of vector machines. Partial Iteration Parallelism occurs when only a portion of one loop iteration may execute in parallel with a different portion of another iteration. This is commonly called Streaming parallelism, and corresponds to the type of parallelism exploited via Software Pipelining and by streaming machines [9, 5]. At the lowest level of granularity, Instruction Level Parallelism (ILP) consists of the parallelism found natively, within a basic block at the instruction level. Branch overhead, address calculation, etc. are examples of instructions that can often execute in parallel with the critical path of computation.

The question of what granularity of parallelism to efficiently exploit on a distributed architecture is currently a controversial topic in the research community. Many researchers advocate that distributed architectures should exploit coarser types of parallelism, leaving the single processor core to exploit ILP. However, these advocates overlook the fact that ALL forms of coarse parallelism can be converted into ILP. LLP can be converted into ILP via loop unrolling and software pipelining. Therefore, if a distributed architecture can support ILP, it can support all types of parallelism, facilitating a more general purpose architecture. Because of this, DILP is a promising type of parallelism and a good target for a parallelizing compiler.
Chapter 3

The Raw Microprocessor

3.1 Overview of Raw

Traditional single chip processors strictly adhere to what is known as the Von Neumann architecture. The Von Neumann architecture consists of centralized instruction and data memory, execution units and register files. Additionally, the Von Neumann architecture assumes a single flow of control (one program counter), providing a clear notion of sequential ordering and time. The elements of a Von Neumann machine communicate off chip through a single bus. As technology continues to scale and the number of functional units on a chip increases, large, centralized memory systems and register files will negatively impact clock frequency.

The Raw microprocessor [24] (Figure 3-2), developed at MIT, attempts to address this problem by spatially distributing the architectural resources of the processor. The Raw architecture consists of 16 identical tiles, each tile containing a simple compute processor, register file, and instruction and data memory. Raw tiles communicate via a register mapped point-to-point network optimized for word-sized operands. A programmable switch routes operands between tiles.

3.2 The Raw SoftNetwork

The register mapped ports allow an instruction to place a value on the network with no overhead. Similarly, instructions using values from the network simply read from the register mapped ports. The programmable switches bear the responsibility of routing operands through the network.

Figure 3-1 shows an example of a 2-tile raw program where the two tiles are located next to each other in a horizontal row. The code contains processor code and switch code for each tile. Both tiles and switches have the same control flow, with one tile calculating the branch condition and using the switches to propagate the condition to both switches and the other tile. Solid edges represent data dependences between a processor and the local switch. The dashed edges represent data dependences between the two switches. In the figure, instruction opcodes containing a ! symbol write to the register mapped network port (called $csto). Physically, $csto is implemented...
Figure 3-1: Example of a 2-tile Raw program. Dashed edges represent dependences between switch instructions, and solid edges represent dependences between a processor and switch.

Figure 3-2: The Raw Microprocessor. Die photo (left) and abstract view of one compute tile (switch and processor).

via a queue. The processor inserts words into the queue and the switch reads words from the queue. The switch may place values read from the $cst\text{o}$ queue onto the network or into a local switch register. The queue contains eight words of storage space allowing the processor to write up to eight words to the register mapped port before the switch reads any values.

The switch instructions may route operands already on the network (for example, reading from the north and sending south), inject operands from the processor into the network or drain operands from the network and send them to the processor or to a local register. The switch contains a 4-way crossbar, with each way corresponding to one of the cardinal directions. If the switch wants to pull the incoming value from the north and send it west, the instruction looks like $s_{cW}i\rightarrow s_{cW}o$, where the i and o represent input and output, and the N and W represent North and West, respectively (Note that in practice, the above instruction is prefixed with a route opcode. For
brevity and space, the route opcode was excluded from the example). The input ports ($cNi, $cWi, $cEi, $cSi), allow for four words of storage. To send a value from the network to the processor, the switch must read from one of the input ports or a local register and write to $csti. The $csti queue allows for the switch to write four words of data before the processor reads any values from $csti. To read a value from the switch, the processor simply reads from $csti.

3.3 Physical Implementation

The Raw microprocessor prototype was implemented in IBM’s 180 nm, 6-layer standard-cell ASIC process. The Raw group developed a Raw prototype motherboard for the Raw chip. Programs are run on the Raw board via a host machine. More details of the Raw microprocessor may be found in [22].
Chapter 4

The Reptile Compiler

4.1 Infrastructure

To successfully generate parallelized code at the instruction level and exploit DILP, Reptile leverages the OpenImpact [19] and Trimaran [23] compiler infrastructures. Both compilers target VLIW-like machines, therefore, they contain optimizations that increase the amount of ILP within a basic block of code (loop unrolling, speculation, etc.). Leveraging these two compilers, the Reptile compiler can take an arbitrary C-program and create multiple programs communicating at the operand level and map those programs to the Raw architecture. Reptile uses newlib for library calls and generates Raw assembly code compatible with the default Raw toolchain.

The Reptile compiler is composed of three main phases, as shown in Figure 4-1.

4.1.1 OpenImpact

Developed in Wen-mei Hwu’s Impact research group at the University of Illinois, the OpenImpact compiler helped to pave the way for ILP compilation research. Many of the techniques and mechanisms developed by the Impact group ended up in the Intel IA-64 architecture [15]. Currently, the OpenImpact compiler generates IA-64 code of higher quality than that generated by gcc.

The OpenImpact front-end supports ANSI-C C-programs. The first phase of compilation parses the C-code and performs inter-procedural alias analysis. For profiling,
OpenImpact generates an instrumented binary. Running the binary produces execution weights for all of the basic blocks in the program. Optimizations targeting traces/regions of code use the profile-generated weights to determine which basic blocks to merge into regions. Similarly, profile information helps identify the most frequently executed portions of code. OpenImpact converts the program into an Intermediate Representation (IR), called lcode. The lcode IR has many similarities to a RISC, 3-operands ISA. All classical optimizations operate on lcode. The lcode has a textual representation containing all of the information required to reconstruct the original lcode IR. Several code generator backends for OpenImpact exist which read in the lcode text files, perform register allocation, scheduling and peephole optimizations.

4.1.2 Trimaran

Developed jointly by HP labs, the University of Illinois and New York University, the Trimaran compiler extends the Impact compiler infrastructure to target the HP Playdoh architecture. Created for VLIW/EPIC architecture exploration, the Playdoh architecture supports software pipelining and rotating register files. Unfortunately, the Playdoh architecture never made it to silicon. However, many of the ideas explored with Playdoh made their way into the Itanium processor.

The version of Trimaran used for the Reptile research project originated from Scott Mahlke’s CCCP research group at the University of Michigan. Mahlke’s group modified Trimaran to target clustered VLIWs, making it quite useful for the Reptile project. The CCCP version of Trimaran contains support for distributed register files, limited bypass paths and arbitrary numbers of clusters.

4.2 Reptile Overview

The goals of developing the Reptile compiler include automatic parallelization of arbitrary C-programs as well as creation of a stable framework for DILP compilation research. The Reptile compiler currently targets the Raw architecture, generating code for up to 16 Raw tiles. The Reptile compiler contains three main phases.
1. The first phase of *Reptile* compilation involves use of the OpenImpact compiler. This phase of compilation supports input in the form of an arbitrary C-program. After parsing the C-program with the front-end, the compiler performs a suite of classical optimizations. The final output of the OpenImpact compiler, a slightly modified textual representation of the *lcode* IR, conveys all the information needed to begin phase two of the compilation. Figure 4-2 displays phase 1 of the *Reptile* compiler, where the front end parses the C-program, optimizes the code, and prints out a textual representation of the OpenImpact IR.

![Diagram](image)

Figure 4-3: Phase 2 of the *Reptile* compiler.

2. The second phase of compilation uses the *CCCP* version of the Trimaran compiler. This phase reads in the *lcode* text files and converts them to the Trimaran IR (*Rebel*). Once converted, *partitioning* assigns each instruction to a virtual “partition” with the intent of later assigning each partition to a physical Raw *tile*. After *partitioning*, register allocation takes place for each partition, assuming one register file per partition. Insertion of inter-partition moves allows instructions on differing partitions to access the same values. Instruction scheduling occurs after register allocation. The output of the second phase of compilation, a textual representation of the Trimaran IR, conveys instruction-to-partition assignments as well as register allocation information and basic block execution frequency. Figure 4-3 illustrates phase 2 of the *Reptile* compilation. Section 5.2 describes phase 2 in greater detail.

3. Phase three of the compilation, Figure 4-4, reads in the files representing the Trimaran IR and outputs assembly compatible with the Raw toolchain. A mapping between the Trimaran IR and the *Reptile* IR allows for generation of Raw assembly files. A placement phase assigns each virtual “partition” to a physical Raw tile. After placement, a routing phase generates dead-lock free switch code orchestrating operand communication between tiles. After routing, a peep-hole optimization pass performs Raw specific optimizations as well as post codegen scheduling. Section 6 discusses the specific modules of phase 3.

4.2.1 Memory

Because the Raw architecture does not contain any form of memory coherence, the compiler must statically place memory objects on different tiles and ensure that all
instructions accessing those objects are scheduled to the appropriate tile. Currently, the Reptile compiler memory alias analysis is not sophisticated enough to provide sufficient memory parallelism on the Raw architecture. Therefore, all memory operations generated by the Reptile compiler are scheduled to the same tile.
Chapter 5

Reptile: Phase 1 and 2

5.1 Reptile Phase 1

As seen in Figure 4-2, Phase 1 of the Reptile compilation process consists of three modules. This section will only briefly discuss Phase 1 of Reptile due to the fact that the OpenImpact compiler is well documented and prevalent in academia.

Front-End The Front end parses arbitrary C-programs turning them into a high level representation called pcode.

Lcode Conversion The pcode produced is later turned into the main impact IR, lcode, which corresponds loosely to a RISC ISA, supporting the standard load-store architecture and three operand instructions.

Classical Optimizations The standard suite of classical optimizations are performed, guided by profile data.

5.2 Reptile Phase 2

Figure 4-3 shows the three modules of the second phase of Reptile compilation; partitioning, register allocation and scheduling.

5.2.1 Partitioning

The partitioning module takes the assembly corresponding to an entire program and breaks it up into \(p \) partitions, where partitions communicate at the instruction operand level. At the lowest level, the partitioning phase consists of taking a basic block of code and assigning each machine instruction within the block to a partition. Therefore, one may view partitioning as taking a basic block of code and turning it into \(p \) basic blocks, one for each partition, with the control flow replicated across all new blocks (see Figure 5-1). Partitions communicate via an abstract, ideal network capable of routing operands (register values) back and forth between the partitions. In later phases of compilation, the “abstract network” in Figure 5-1 is replaced by
the Raw Scalar Operand Network. The placement module, described in Section 6.1, maps each partition to a physical processor.

Exploitation of DILP occurs by partitioning the code at the instruction level. The tradeoff, however, comes in the form of communication between partitions. If the code contains no ILP, then no gains will arise from partitioning. A good partitioning algorithm attempts to exploit parallelism and minimize communication. Not all programs contain enough parallelism to justify partitioning of instructions. Therefore, a good partitioning algorithm must not attempt to partition code when no parallelism exists and when a partitioned schedule would result in a longer schedule than had all instructions been scheduled to a single core.

In addition to binding instructions to partitions, the partitioning module binds operands to partitions as well. If an instruction accesses an operand on a different partition, the network communicates the operand value between partitions.

The complete Reptile partitioning module consists of the following steps:

1. For each function in the program, sort all basic blocks according to execution frequency.

2. Starting with the most frequently occurring block:

 (a) Partition the block via simulated annealing, adding inter partition moves for pre-bound operands. See Appendix A for a background on simulated annealing.

 (b) Bind all instructions to their corresponding partition.

 (c) Bind all unbound operands used in the block to a partition based upon which instructions in the partition access the operand.

 (d) Repeat the above for all remaining basic blocks.
for (i=0; i<stop_outer; i++){
 for(j=0; j<stop_inner; j++){
 //Randomly assign an instruction to a different partition
 perturb(T);
 //Schedule the Code and determine the schedule length
 cost=getCost();
 deltaC = cost-oldcost;
 //If the cost increased
 if(deltaC > 0){
 //reject if rand() > e^(-(cost-oldcost)/T)
 if((1.0/exp((deltaC)/T)) < rand()/RAND_MAX){
 //Reject the most recent perturbation
 reject(); cost=oldcost;
 }
 }
 oldcost=cost;
 }
 //Decrease the temperature one step
 T=nextT(T);
 //Break out if the Temp is really low
 if(T < .000000001) break;
}

Figure 5-2: C-code from Partitioning module in the Reptile compiler.

Partitioning blocks in order of most frequently occurring allows binding of operands to those partitions which access the operands most frequently. The OpenImpact compiler provides the execution frequency for each basic block via profiling.

The majority of execution time takes place in the simulated annealing partitioning module. Figure 5-2 shows the main loop for performing the simulated annealing algorithm to partition a basic block. The first step of the partitioning creates a random assignment from instructions to partitions. The code consists of two loops, with the inner loop repeatedly perturbing the system and updating the state accordingly, while the outer loop decreases the “temperature”.

The following subsections explain the simulated annealing parameters in terms of the partitioning problem.

Temperature

An initial heuristically determined temperature, T_0, provides the starting temperature for the algorithm. After completion of the inner loop in Figure 5-2, update of the temperature occurs according to $T[i+1] = \alpha T[i]$, where $\alpha < 1$ and chosen heuristically. Trial and error was used to determine values for α and T_0. T_0 was chosen to provide a large enough initial temperature for sufficient randomness to occur, while still maintaining a reasonable running time. Similarly, α was chosen to decrease the temperature at a slow enough rate to avoid quenching, yet still provide a manageable execution time.
Inner Loop Count (stop_inner)

The inner loop count, stop_inner, determines how many different perturbations occur at a given temperature. The choice of stop_inner greatly affects execution time. Increasing stop_inner will yield better results at the cost of execution time. Similarly, decreasing stop_inner will decrease execution time, however, it will also decrease the probability of the algorithm finding the global minimum. The Reptile compiler sets stop_inner = i * p, where i represents the number of instructions in the block and p represents the number of partitions. This was shown to work well in practice.

Perturbation (perturb())

Within the inner loop, the perturbation of the existing partition occurs by randomly choosing an instruction and mapping that instruction to a randomly chosen partition (excluding the partition the instruction was previously assigned to).

Cost (getCost())

The cost of a particular partitioning may correspond to several different metrics. For example, one approach schedules the partitioned code and reports the schedule length as the cost. Other approaches include defining a cost associated with inter-cluster moves, load balancing, and an estimate of register pressure. Many different approaches were tried with the Reptile compiler, and no approach proved a clear winner.

Figure 5-3 displays an instruction dataflow graph after partitioning. Each node in the graph corresponds to a single machine instruction. The graph represents the inner loop of a 2-tap complex fir filter. The different colored nodes correspond to different partitions. Edges between nodes represent data dependences. Notice that some edges travel between nodes on the same cluster while other edges connect nodes on different clusters. The cross cluster edges correspond to the dataflow that must utilize the network to send data between tiles.

5.2.2 Register Allocation

After partitioning, the Reptile compiler register allocates each virtual partition, assuming that each partition has access to a certain number of registers. One could argue that register allocation should take place at the same time as partitioning. However, adding a register pressure cost to the partitioning algorithm to drive the simulated annealing has a similar effect. This is something that could easily be added to Reptile. Reptile uses a graph coloring based register allocator developed by the CCCP research group at the University of Michigan.
Figure 5-3: Dataflow graph for a 2-tap complex fir filter partitioned for two partitions. Each node represents one machine instruction. Nodes of similar color belong to the same partition.

5.2.3 Scheduling

In the Reptile compiler, scheduling occurs after partitioning and register allocation. Scheduling takes place at the basic block level, assuming that all partitions enter a basic block at the same time. The scheduler assumes unified control flow in the sense that if one partition executes a branch, all partitions branch. The unified control flow model differs from the Raw model and is accounted for in the final phase of Reptile compilation, where a post-codegen scheduling pass cleans up the code and compensates for the fact that the original scheduling assumes a VLIW like model and global control flow.
Chapter 6

Reptile: Phase 3

As seen in Figure 4-3, Phase 3 of the Reptile compilation process consists of three main modules: placement, routing and peep-hole optimizations. The input to Phase 3 of the Reptile compiler, a textual representation of the Trimaran IR, conveys instruction-to-partition mappings. Additionally, register allocation for each partition has occurred. The register allocation assumes all instructions within a partition access the same register file. The instructions communicate between partitions via explicit register to register move instructions. These move instructions read from the local register file and write to any other register file.

6.1 Placement

The placement phase of compilation maps virtual partitions to physical processor cores (tiles) (see Figure 6-1). The complexity of the placement problem can be grasped by noticing that if there are 16 partitions and 16 tiles, there exists $16!$ possible mappings of partitions to tiles. In the figure, each node represents a partition. An edge between two nodes indicates communication between two partitions. The label on the edge, $c_{i,j}$ represents a metric for the communication between partitions i and j for the entire program. For example, if two nodes, i and j, communicate often and would benefit from being placed physically close to each other, then $c_{i,j}$ is large. If the two nodes rarely communicate, $c_{i,j}$ is small. Several different methods could be used to construct $c_{i,j}$, but for this thesis, we construct $c_{i,j}$ as defined in Equation 6.5. Reptile sets $c_{i,j}$ equal to the number of words sent from partition i to j. Another possible definition sets $c_{i,j}$ equal to the number of words sent from partition i to j that are on the critical path of computation.

The placement problem may be formalized as follows: Let P be the set of partitions and T the set of tiles. For simplicity, we will let $|T| = |P| = n$ (there are an equal number of tiles and partitions). The goal of the placement problem is to find a correspondence (a one-to-one, onto function), x, mapping P to T:

We define the function x as:

$$x : P \rightarrow T$$

(6.1)
And x has the following properties:

$$x(i) \neq x(j) \quad \forall \ i \neq j \quad (6.2)$$

$$\forall \ i \in P \ \exists \ k \in T \ s.t. \ x(i) = k \quad (6.3)$$

We define the latency l, between two tiles, k and q as:

$$l_{k,q} = \text{the number of cycles to transfer a word between tile } k \text{ and } q \ (k, q \in T) \quad (6.4)$$

And the communication metric between two partitions, i and j as:

$$c_{i,j} = \text{Number of words sent between partition } i \text{ and partition } j \ (i, j \in P) \quad (6.5)$$

A useful placement is one that minimizes communication. Therefore, we attempt to find the function x that minimizes the total number of cycles in which words are present on the network. This is equivalent to determining the x that minimizes the following function:

$$\min \sum_{i \in P} \sum_{j \in P} c_{i,j} l_{x(i),x(j)} \quad (6.6)$$

6.1.1 Placement: Simulated Annealing

The *Reptile* compiler uses simulated annealing to determine the above function, x, for placement. While the simulated annealing approach does not guarantee an optimal result to Equation 6.6, in practice the optimal is not needed. Additionally, it is not always the case that a placement minimizing the number of cycles in which data is sent on the network (Equation 6.6) yields the smallest execution time. For example, consider the case where partition i sends a large number of operands to partition j, but partition j does not send any values to partition i. Because the communication is one-sided, the communication may be pipelined, and the partitions placed physically far apart. To remedy this, future versions of *Reptile* will explore different definitions of the communication metric ($c_{i,j}$). The placement phase consists of the following two steps.
1. Examine the entire program and construct the communication parameters, c, where $c_{i,j}$ is defined in Equation 6.5.

2. Use simulated annealing to determine the function x as described in Equation 6.1.

The first step of the placement chooses a random assignment for the x variables, subject to the constraints described in equation 6.3. The following subsections describe the simulated annealing variables used for the placement module.

Temperature

The temperature is handled the same as for the partitioning. An initial heuristically determined temp provides the starting temperature. Temperature update occurs according to $T[i + 1] = \alpha T[i]$, where $\alpha < 1$ and chosen heuristically. Again, the starting temperature and α were chosen to provide a high enough starting temperature and slow enough cooling schedule to generate respectable results, without significantly impacting running time.

Inner Loop Count (inner_loop)

The inner loop count, L, determines how many different perturbations occur at a given temperature. Different values of L were tried, and it was found that setting $L = |T| * |P| = n^2$, where n is the number of tiles/partitions.

Perturbation (perturb())

The perturbation switches the assignment of two different partitions. For example, if current partitioning maps partition i to tile k and partition j to tile q, a valid perturbation maps i to q and j to k, where i and j were chosen randomly.

Cost (getCost())

The cost corresponds to the function described in Equation 6.6.

6.1.2 Placement: Integer Quadratic Programming

Another solution to the minimization in Equation 6.6 is Integer Quadratic Programming. Unlike Simulated Annealing, a quadratic programming approach is guaranteed to yield the optimal solution to Equation 6.6. Unfortunately, no reasonable bounds exist on the running time of current Integer Quadratic Programming algorithms.

A Quick formulation of the Integer Quadratic Programming solution follows: For simplicity, we will assume an equal number of processors and partitions (n), and that the processors and partitions are numbered consecutively from 0 to $n - 1$. One
may represent the function \(x \), as an \(nxn \) permutation matrix, \(X \in \{0,1\}^{(nxn)} \), with elements \(x_{i,j} \) defined below:

\[
x_{i,k} = \begin{cases}
1 & \text{if partition } i \in P \text{ is mapped to tile } k \in T \\
0 & \text{otherwise}
\end{cases}
\]

(6.7)

In order to ensure that \(X \) represents a one-to-one, onto mapping, \(X \) is subject to the following constraints:

\[
\sum_{k \in T} x_{i,k} = 1 \forall i \in P \text{ and } \sum_{i \in P} x_{i,k} = 1 \forall k \in T
\]

(6.8)

One may construct the vector \(\hat{x} \) such that the first \(n \) elements are \((x_{0,0}, x_{0,1}, \ldots, x_{0,n-1})\) and the last \(n \) elements are \((x_{n-1,0}, x_{n-1,1}, \ldots, x_{n-1,n-1})\). Obviously, \(\hat{x} \in \{0,1\}^{(n^2)} \).

Similarly, one may construct the matrix, \(A \in \mathbb{N}^{n^2 \times n^2} \), such that

\[
A_{i,j} = c_{(i \mod n)(j \mod n)}^{(i \mod n)(j \mod n)}
\]

(6.9)

Where \(c \) and \(I \) are the constants defined in Equations 6.4 and 6.5 and the division in the subscript of \(c \) is integer division. We can then rewrite Equation 6.5 in the following form:

\[
\min \sum_{i \in P} \sum_{j \in P} \sum_{k \in T} \sum_{q \in T} c_{i,j,k,q} x_{i,k} x_{j,q} = \min \hat{x}^T A \hat{x}
\]

(6.10)

Minimizing the above quadratic form subject to the constraints in Equation 6.8 will yield the optimal values of \(X \) (optimal placement) according to our cost function.

Matlab code implementing the above quadratic program was implemented, unfortunately, the excessive running time made it impractical for use in Reptile.

6.2 Routing and Switch Code Generation

After partitioning and placement, Reptile generates switch code to orchestrate communication between physical processors. Refer to Section 3.1 for a brief overview of the Raw architecture. On input to phase 3 of the Reptile compiler, the code contains no notion of network topology. The code assumes a perfect, all-to-all network, allowing code in any partition to send values to any other partition. Explicit send and receive instructions move operands from the network to the local register file. The Reptile compiler must not only generate switch code for the send/recv begin and end points of communication, but must also choose a route for the operand to travel between tiles as well as generate switch code for the route.

6.2.1 Deadlock

Before explaining the switch code generation step, the following section will first discuss how deadlock might occur in the Raw static network. To facilitate discussion
of deadlocks issues, this thesis will adopt the terminology first developed by Holt [7]. We will frame the deadlock problem in terms of an abstract graph composed of nodes (*agents* and *resources*) joined via *waits* and *holds* edges. In the context of the Raw static network, the switch instructions serve as agents and the switch input buffers represent the resources. Let $\text{waits}(A,R)$ represent a waits edge between agent A and resource R. This edge implies that before agent A can perform its specified action, it must first obtain resource R. The waits edge is also defined from agent to agent. For example, $\text{waits}(A_1,A_2)$ means that agent A_1 must wait for agent A_2 to complete before it may complete. In the context of the Raw static network where agents are instructions, $\text{waits}(I_1,I_2)$ implies that instruction I_1 cannot execute until instruction I_2 is complete. Similarly, let $\text{holds}(A,R)$ represent a holds edge between agent A and resource R. The holds edge implies that agent A is using resource R and preventing other agents from using the resource.

Figure 6-2 shows an example of Raw switch code with added waits and holds edges. In the figure, the initial send instructions on both switches (I_1 and I_5) have already executed, placing a word in each of the input buffers (C_{Wi} and C_{Ei}). The waits and holds edges were drawn assuming one word of storage for each input buffer. Because the Raw switch is an in order issue machine, each instruction must wait on the preceding instruction before issuing. Therefore, a waits edge connects each instruction to its preceding instruction (for example, $\text{waits}(I_3,I_2)$). The agents I_2 and I_6 are both waiting to place a word in the resources (C_{Wi} and C_{Ei}) respectively (the resources are currently holding the operands from instructions I_1 and I_5). The resources will not be released until instructions I_3 and I_7 have read the values from the input buffer. This is represented by the holds edges in Figure 6-2. The operand currently in resource C_{Wi} will not be removed (and the resource freed) until agent I_7 executes ($\text{holds}(I_7,C_{Wi})$).
A property of the holds and waits edges is that if agent A_1 is waiting on a resource R, and agent A_2 is holding resource R, then agent A_1 is waiting on agent A_2. Formally:

$$\text{waits}(A_1, R) \text{ and holds}(A_2, R) \implies \text{waits}(A_1, A_2)$$ (6.11)

For example, in Figure 6-2, the edges $\text{waits}(I_2, \$cWi)$ and $\text{holds}(I_7, \$cWi)$ implies that instruction I_2 is waiting on instruction I_7 ($\text{waits}(I_2, I_7)$). Similarly, the edges $\text{waits}(I_6, \$cEi)$ and $\text{holds}(I_3, \$cEi)$ implies that instruction I_6 is waiting on instruction I_3 ($\text{waits}(I_6, I_3)$). We can now add the additional waits edges to the graph (shown in Figure 6-3).

![Diagram]

Figure 6-3: Code from Figure 6-2 with additional waits edges.

Inspection of Figure 6-3 reveals a cycle in the graph constructed from the waits edges (I_3, I_2, I_7, I_6, I_3). Because a cycle exists in the waits graph, the schedule will result in deadlock. This can be grasped intuitively by inspecting the schedule. In the schedule, I_3 is waiting on I_2 to execute. I_2 is waiting for the resource $\$cWi$ to be freed, while $\$cWi$ is waiting on I_7 to execute before it can be freed. I_7 must wait on I_6 before it can execute, and I_6 is waiting on the resource $\$cEi$ which is waiting on I_3 to free it. The deadlock could be avoided by breaking the cycle in the waits graph. This is done by scheduling I_3 above I_2 or I_7 above I_6, removing either $\text{waits}(I_3, I_2)$ or $\text{waits}(I_7, I_6)$. Adding more storage to the network buffers also breaks the cycle, removing both $\text{waits}(I_2, I_7)$ and $\text{waits}(I_6, I_3)$ by removing the holds edges.

6.2.2 Switch Code Generation

To prevent the deadlock shown in Figure 6-3, phase 3 of the Reptile compiler generates switch code assuming only a single word of storage exists in the network. This can be done because Reptile starts with code containing no crossover patterns (i.e., no communication routes that require more than a single word of network storage for proper execution). A crossover pattern is defined as the following: Let partition i and partition j both send and receive a word from each other. If the send occurs in both
Figure 6-4: (A) 3-Tile processor code. (B) The corresponding switch code assuming an all-to-all network. Note that the switch instructions have Partitions IDs as operands rather than routing directions.

Figure 6-5: Switch code after routing the first send/receive pair.

partitions i and j before the receive, a crossover pattern occurs. The send/receive pairs in Figure 6-3 are all crossover routes.

Starting with code containing no crossover patterns, switch code generation occurs by first creating correct switch code for an all-to-all network. Figure 6-4 shows an example of processor code, (A), and corresponding switch code, (B), assuming an all to all network. Taking into account physical placement, the switch code generation portion of Reptile routes values by routing an entire send/receive pair at once (generating switch code for the end points as well as the code for the route the operand takes). The Reptile compiler uses dimension ordered routing to determine operands routes. Routing considers send/receive pairs for scheduling only if all preceding switch instructions for the send and receive have been scheduled. The constraint that the communication exhibit no crossover guarantees the existence of such a send/receive pair.

Figure 6-5 shows the switch code in Figure 6-4 after scheduling one send/receive pair (the first send on switch 1 and the first receive on switch 3). Note the addition of the added through route instruction on switch 2. Figure 6-6 shows the switch code after scheduling the second send/receive pair, and Figure 6-7 shows the switch code after scheduling all send/receive pairs.
The switch code schedule obtained in Figure 6-7 does not contain any crossover routes, and only requires a single word of network storage for proper execution. Inspection of the original processor code in Figure 6-4 reveals that the scheduler could move the second instruction on switch 3 above the first. Similarly, the scheduler could reorder the first two instructions on switch 2. Both of the above schedule modifications would yield a better schedule, hiding the latency of the network by buffering values between switches. However, both suggested modifications to the schedule result in crossover routes, possibly creating deadlock. The following section will explain Queue Allocation, a scheduling technique allowing the reordering of instructions reading and writing from the same queue/buffer (creating crossover routes) without creating the deadlock seen in Figure 6-3.

6.3 Back End Optimizations

The Reptile compiler contains three simple post codegen peep-hole optimizations: Bang opti, Use opti, and Queue Allocation (QA).

6.3.1 Bang Opti

The Bang optimization simply sets the bang bits on instructions. The bang bit allows the instruction to effectively write to multiple locations, writing the result to a local register as well as to the network mapped registers. Figure 6-8 illustrates a sequence of code before and after Bang optimization. Notice that two instructions were removed, setting the bang bit on the first two instructions. Bang optimization occurs at the basic block level.
addu $4, $4, 8
Id $5, 4($6)
or $csto, $0, $4
or $csto, $0, $5

Bang Opti

addu $4, $4, 8
Id $5, 4($6)

Figure 6-8: Example of code before the Bang opti (left), and after Bang opti (right).

6.3.2 Use Opti

The Use optimization modifies instructions to read directly from the network rather than first moving the value from the network into a register, then using the register. Figure 6-9 shows code before and after Use optimization.

or $4, $csti, $0
addu $4, $4, 8

Use Opti

addu $4, $csti, 8

Figure 6-9: Example of code before the Use opti (left), and after Use opti (right).

6.3.3 Queue Allocation

Queue allocation reschedules the processor and switch code for all tiles. The queues are modeled by the algorithm, allowing simultaneous scheduling of instructions that communicate via queues along with regular instructions. This allows the reordering of send and receive instructions on the switch and processor, allowing crossover routes and better schedules by utilizing the storage present in the network. An example of the code in Figure 6-7 after QA may be seen in Figure 6-10 (the Queue Allocation was performed assuming two words of storage in the input queues).

6.4 Reptile ABI

The Reptile compiler designates one tile as the critical tile. The critical tile is responsible for managing the stack as well as parameter passing.

Figure 6-10: Version of the switch code shown in Figure 6-7 after Queue Allocation.
6.4.1 Function Calls

Because of the parallel nature of code produced by Reptile, care must be taken when dealing with function calls. For example, consider the case of a 4-tile program. If a program running on all four tiles calls a function that was compiled with Reptile for 4-tiles, then all four tiles (and switches) must execute a function call. However, if the function was not compiled with Reptile (i.e. it is a library call like printf), or it was compiled for only one tile, then only one tile must execute the function call. This causes problems with function pointers, because the compiler cannot statically determine if a function call should be parallel or execute on just one tile. Currently, Reptile does not allow the use of function pointers.

6.4.2 Parameter Passing

Parameter passing is handled by the critical tile. The first four arguments are passed in registers 4-7, with the rest passed on the stack starting at address $sp + 16$ (see Figure 6-11). Reptile does not support 64 bit operands (longs or doubles), so the first four parameters are always passed in registers, regardless of type.

6.4.3 Stack Usage

The use of the stack (Figure 6-11) matches that of the MIPS ABI. Spatially, the stack memory is placed on the critical tile and stays on the critical tile for the entire execution of a program. This has several drawbacks, the first being the fact that no memory parallelism may exist. Additionally, when registers on other tiles need to be spilled, they are spilled on the critical tile. Future work will create a small stack for each tile, allowing local register spills.

6.4.4 The Switch

Control on the switch matches that of the processor. The local switch register, 2 is used to store the branch condition. Additionally, switch register 3 is used to store the switch return address. Both these registers are spilled upon entry to a function by storing them in the processors memory, and filled upon function return.
Figure 6-11: The Raw stack.
Chapter 7

Case Study: bzip2

7.1 Bzip2 C-code

To illustrate the Reptile compilation process, the following section will step through the compilation steps for a section of code taken from the benchmark 256.bzip2, found in the SPEC [2] benchmark suite.

```
for (i = gs; i <= ge; i++) {
    UInt16 icv = szptr[i];
    cost0 += len[0][icv];
    cost1 += len[1][icv];
    cost2 += len[2][icv];
    cost3 += len[3][icv];
    cost4 += len[4][icv];
    cost5 += len[5][icv];
}
```

Figure 7-1: C-code taken from the sendMTFValues function in 256.bzip2.

The C-code in Figure 7-1 was taken from the sendMTFValues function in 256.bzip2. According to profile data, if all basic blocks in the 256.bzip2 program were ranked by the amount of execution time spent in the blocks, the basic block represented by the C-code in Figure 7-1 would rank highest. Profile information shows the program enters the loop thousands of different times, each time executing approximately 50 iterations. The accumulator variables (costX) are 16 bit values. Because the 2D array within the loop lacks structure, the loop does not parallelize well. For each iteration of the loop, the index to the second subscript of the array is loaded from another array, making it impossible to statically analyze. Additionally, the six consecutive loads from the 2D array do not access memory sequentially. A distance the size of the second dimension of the array separates each load. Any parallelism that exists
be explored.

because of the noncontinuous nature of the 2D array access, no data parallelism may
within the loop is simply at the instruction level. No loop unrolling may occur and,
corresponds roughly to a RISC-like 3-operand ISA. Figure 7-2 shows the Impact lcode generated from the C-code seen in Figure 7-1. The lcode assumes an infinite number of registers. The operations in the code are numbered, with the first operation being op 254. There are 7 loads in the code, with the first load determining the value for the second index in the 2D array. Inspection of the code in figure Figure 7-2 reveals that register 670 contains the value of szptr+i. Every iteration of the loop, register 670 is increased by 2 because the array szptr is composed of half words. The other 6 loads in the code correspond to the 2D array accesses. The rest of the instructions in the block are needed to perform address computation overhead, and clear out the upper 16 bits of the half-word operands.

7.3 Bzip2: Reptile phase 2

Phase 2 of the Reptile compilation process reads in the lcode from the previous section, partitions the code, register allocates, and schedules. For brevity, the actual textual output of this phase of the compilation will not be included.

![Dataflow graph](image)

Figure 7-3: Dataflow graph before partitioning (left) and after partitioning (right).

Figure 7-3 displays the dataflow graph of the compiled code before partitioning (left), and after partitioning (right). The different colored nodes in the graph on the right represent different partitions. Each partition will eventually be placed on a single Raw tile. Dataflow edges between partitions must be routed via the static network. It is obvious from the graph that one partition contains more nodes than the others. This is a result of the fact that all memory instructions must be scheduled to the same partition. Because the example code contains 7 memory instructions, the partitions containing the memory instructions ends up larger than the rest. After partitioning, the code is scheduled assuming an all-to-all network. Register allocation occurs assuming each partition has access to a local register file.

7.4 Bzip2: Reptile phase 3

Phase three of the Reptile compiler takes in the partitioned code from the previous section, places the partitions to physical Raw tiles, generates switch code to route
operands between partitions and performs peep-hole optimizations on the generated assembly.

Figure 7-4 includes assembly code from the final output of the Reptile compiler for a 4-tile square configuration. The figure is divided into four quadrants, one for each tile. Each quadrant contains two assembly schedules, one for the processor (assembly on the outside), and one for the switch (assembly on the inside). Solid arrows denote reads and writes between the processor and the switch. Similarly, dashed arrows represent dependences between the switches. Note that no dashed arrows exist between tile 0 and tile 5. This is because tile 0 cannot communicate directly with tile 5; instead, values must be routed through tile 4 or tile 1 and then onto their final destination. Similarly, values may not travel directly from tile 4 to tile 1. Instead, they must be routed through either tile 0 or tile 5. Each tile executes its own control flow, with one tile computing the branch condition (in this case the fourth instruction of tile 0) and sending it to the other tiles. Additionally, the control flow on the switches mirrors that of the processors. When a branch condition is routed from one switch to the next, it is also stored in the local switch register ($2). At the end of the code on the switch, the switch executes a conditional branch based on the register containing the branch condition. Because Reptile currently does not support memory parallelism, all loads occur on the same tile (in this case, Tile 5).
Figure 7-4: Raw assembly for a 4-tile version of the example code (tiles are numbered, starting in the upper left and proceeding clockwise, 0,1,5,4). Each quadrant corresponds to a Raw tile. The two pieces of assembly in the upper left are the processor and switch code for tile 0. Similarly, the assembly in the upper right is the processor and switch code for tile 1. The solid edges represent data dependences between the switch and the processor. The dashed arrows represent data dependences between switches.
Chapter 8

Results

8.1 Experimental Methodology

To assess the Reptile compiler, two different applications were chosen. The first application, a complex finite impulse response filter (cfir), was chosen to see how well Reptile exploits applications with large amounts of parallelism. The cfir was modified for 2-tap, 4-tap, 8-tap and 16-tap filters. The second application, a kernel from the 256.bzip2 benchmark (see Section 7.1), was chosen to assess Reptile performance for unstructured code with low amounts of parallelism.

Performance numbers for the benchmarks compiled with Reptile were obtained from the Raw simulator (btl). To compare performance results for the Reptile generated programs several other architectures were evaluated. Both benchmarks were compiled and run on a Pentium 3, athlon64, and Itanium 2. However, simply comparing against other architectures does not only assess the Reptile compiler, but the Raw architecture as well. Therefore, to fully evaluate the quality of the code generated by Reptile, results were gathered for the cfir benchmark implemented in the Streamit language. The Streamit language is a language developed at MIT for targeting signal processing applications. Streamit explicitly expresses pipeline parallelism at the language level, allowing the Streamit compiler to generate high quality code targeting the Raw architecture. By comparing Reptile generated code to Streamit generated code, we may assess the extent to which Reptile can automatically find the parallelism that natively exists within a c-program.

A straight comparison of Raw to other architectures is complicated by the fact that the Raw hardware only supports software based icaching. Nothing intrinsic to the Raw design requires software based icaching, it was simply included in the Raw prototype to explore the issues around software icaching and to facilitate research. The Raw simulator (btl), however, does support hardware icaching. Before claiming that the results gathered from the simulator accurately represent the Raw hardware, the simulator must first be validated by the hardware. By experimentally showing that the simulator (when using software icaching), generates results faithful to those from the hardware, one can make the claim that the addition of an accurate hardware icaching scheme to the simulator would yield cycle counts representative of a Raw
architecture with hardware based icaching.

8.1.1 Simulator Validation

The various configurations of the cfir benchmark were compiled with Reptile and run under software icaching on both the simulator and the hardware. Figure 8-1 displays the results for all configurations. The four plots correspond to 2-tap, 4-tap, 8-tap and 16-tap versions of the filter. With the 2-tap version being in the upper left, the 4-tap in the upper right, etc. The x-axis on all plots represents the number of tiles used by the program. The bars on the left correspond to cycle counts received from the Raw simulator with software icaching, while the bar on the right corresponds to cycle counts taken from the actual Raw hardware. The difference between the two numbers is fairly negligible, with the hardware on average reporting a 3% larger execution time. Notice that as the benchmark size increases (from 1-16 taps), the error between hardware and simulator decreases, implying that longer running benchmarks show little performance variation between the hardware and the simulator. Because the btl simulator accurately reflects the Raw hardware when running in software icaching code, we will use a carefully augmented version of the simulator to generate results for a theoretical Raw machine supporting hardware icaching.

8.2 Performance Results

The following sections report performance results for code generated via the Reptile compiler. Numbers were gathered using the Raw btl simulator with hardware icaching.

8.2.1 Complex FIR

To explore how well Reptile parallelizes applications with large amounts of parallelism, a cfir benchmark was compiled with for tap sizes. Results were gathered from the Raw simulator with hardware icaching. Additionally, cycle counts for the cfir benchmark on a Pentium 3, athlon64 and Itanium 2 were included as well as results for Streamit generated code.

To understand the parallelism within the cfir benchmark exploited by the Reptile compiler, Figure 8-2 displays the dataflow graph for a 2-tap version of cfir. The different node colors correspond to different partitions. Nodes of the same color execute on the same physical Raw tile. Additionally, Figure 8-3 displays the dataflow graph for a 4-tap version of cfir. Note that increasing the number of taps in cfir resulted in a wider dataflow graph without increasing graph depth. The increase in width without lengthening the graph implies that increasing the number of taps in the filter increases the parallelism within the program, almost linearly.

Figure 8-4 shows performance results for the various cfir filters taken from the Raw simulator using hardware icaching. The y-axis reports speedup relative to a single tile version while the x-axis corresponds to the Raw configuration (2, 4, 8, and 16 tiles).
Figure 8-1: Cycle counts for the various versions of cfir compiled with the Reptile compiler. The x-axis represents different numbers of Raw tiles. The bar on the left corresponds to cycle count running on the btl simulator with software icaching. The bar on the right corresponds to running on the Raw motherboard with software icaching.

All versions were generated with the Reptile compiler. The graph in the upper left (a 2-tap cfir) shows a max speedup for the 4-tile Raw configuration. This is due to the fact that the 2-tap version only contains a finite amount of parallelism. Adding additional tiles yields no performance improvement. Additionally, the 8 and 16 tile versions of the program actually show a decrease in performance relative to the 4 tile version. This reflects the fact that the Reptile partitioning algorithm is imperfect, and will sometimes parallelize too aggressively, resulting in a worse schedule than had fewer tiles been used. In the case of the 2-tap cfir version (upper right in Figure 8-4), the 4-tile Raw configuration yields the largest speedup. Both the 8-tap and 16-tap versions achieve the largest speedup with 16-tile Raw configurations. This implies that the 8-tap and 16-tap cfir benchmarks have enough parallelism to utilize at least 16 Raw tiles. Notice that in the case of the 8-tap version, moving from 1-tile to 2-tiles shows very little performance improvement. This is an artifact of the way Reptile currently handles spill code. Because Reptile assumes only a single tile contains the stack, register values from other tiles are spilled into the single stack. This means
that register spill instructions generate communication on the static network. In the case of the 8-tap version of $cfir$, a four tile version provides enough registers that no values need to be spilled, avoiding the communication costs of register spills. Future versions of $Reptile$ will have a distributed stack model, allowing each tile to spill to their local memory space.

Figure 8-5 shows the performance results for the 2-tap, 4-tap, 8-tap and 16-tap versions of $cfir$ compared to other architectures. The best Raw configuration was used to represent performance for Raw (2x2 for 2-tap and 4-tap, 4x4 for 8-tap and 16-tap). The results for the Pentium 3, Athlon 64, and Itanium 2 were obtained by compiling the various versions of $cfir$ for each architecture, with the most aggressive optimizations supported by gcc (for the Pentium and athlon) and ecc (for the itanium) enabled. The numbers reported are processor cycle counts. The Streamit results were obtained by compiling a Streamit version of the program for the Raw architecture. Each cycle count was normalized to the Pentium 3 cycle count. The $Reptile$ compiler outperforms the Pentium 3 and athlon 64 for the 4-tap, 8-tap and 16-tap versions of
This implies that the Reptile compiler is capable of finding and exploiting ILP if the application contains enough parallelism. Reptile performs within a factor of 2-3x of the Streamit compiler, implying that Reptile does not find all of the parallelism within the benchmark, and significant work still needs to be done. The Streamit versions continually show the largest speedup over the Pentium 3, from 2.4x for the 2-tap case to 5.6x for the 16-tap version. Additionally, the Streamit numbers reported were generated with the "old" Streamit backend. It is believed that the "new" Streamit backend would have achieved significantly better results.

Figure 8-4: Speedups relative to a single Raw tile for variously sized versions of cfir compiled with Reptile. The x-axis corresponds to different tile configurations. The numbers were generated via the btl simulator augmented with hardware icaching.

8.2.2 256.Bzip2 kernel

The 256.bzip2 benchmark kernel was described thoroughly in Section 7.1. Figure 8-6 contains the dataflow graph for the kernel taken from 256.bzip2. The section of code contains significantly less parallelism than a 4-tap cfir (Figure 8-3). Results for the 256.bzip2 kernel were obtained by compiling the code with Reptile and choosing the tile configuration yielding the best performance (in this case, a 2x2). The Reptile generated code was run on the btl simulator with hardware icaching. The same code
was also compiled for a Pentium 3, athlon 64, and Itanium 2. Figure 8-7 shows the performance results for the various machines normalized to the Pentium 3. The Itanium 2 achieves nearly a 10x speedup over the Pentium 3. Inspection of the generated Itanium assembly reveals that this speedup is achieved via aggressive software pipelining. The Reptile code obtains a speedup of 2.1x over the Pentium 3, but only comes within a factor of 2 of the athlon 64.

8.3 Placement Sensitivity

In the Reptile compiler, after a program is partitioned into several virtual partitions, each partition must be mapped to a physical Raw tile. Section 6.1 described a method for placement based upon simulated annealing, as well as a method based upon integer quadratic programming. To understand how placement affects performance, the Reptile compiler generated two different versions of the various versions of cfr. One version places partitions for Raw in an effort to minimize the amount of communication (*good* placement), while the other version places partitions on Raw with the
intent of maximizing communication (bad placement). For example, if two partitions communicate quite often, the first good partitioning will place the partitions physically close to each other whereas the bad partitioning will place the partitions as far apart as possible.

Figure 8-8 shows the results of the good and bad placement algorithms. The simulated annealing algorithm was used, with the metric $c_{i,j}$ representing the number of words sent from virtual partition i to virtual partition j over the Raw static network. The benchmarks were run on the Raw simulator with hardware icaching. The cycles counts were normalized to the bad partitioning. Figure 8-8 illustrates that as the size of the benchmark increased, the sensitivity to placement also increased. For example, both the 8-tap and 16-tap versions of cfir use a 4x4 tile configuration. However, the 8-tap version achieves a 1.47x speedup by partitioning to minimize communication whereas the 16-tap version achieves a 1.56x speedup. An interesting observation is that the bad placement for the 2-tap version actually does better than the good placement. This is most likely due to the fact that the placement objective function is imperfect. While minimizing total communication on the network does well in most cases, it is not necessarily the best metric for all programs. For example, one could consider the case where partition i sends a large amount of words to partition j, but partition j does not send any words to partition i. In this case, placing the two partitions close together achieves no performance improvement over placing them far apart. This is because of the fact that there are no cycles (i to j, then j to i), the communication can be pipelined.

8.4 Peep-hole Optimizations

Section 6 described the three peep-hole optimizations implemented by Reptile. Figure 8-9 shows the effect of the different peep-hole optimizations on performance. The 2-tap, 4-tap, 8-tap and 16-tap versions of the cfir benchmark were compiled with Reptile with different peep hole optimizations turned on. The results show the in-
Figure 8-7: Speedup of different machines on the 256.bzip2 benchmark kernel relative to the Pentium 3.

decrease in performance as the Bang opt, Use optimizations, and Queue Allocation are performed. The results were generated from btl using hardware icaching. According to the results, the two larger versions of the cfir benchmark gain less from queue allocation than the smaller versions. The most likely explanation for this behavior is that for the larger versions of the benchmark the amount of computation relative to communication is larger than for the smaller versions of cfir, meaning that the 8-tap and 16-tap versions benefit less from reordering the communication.
Figure 8-8: Placement maximizing communication (bar on left), placement minimizing communication (bar on right) for 4 implementations of cfir
Figure 8-9: The speedup obtained via various peep-hole optimizations on the \textit{cfir} benchmark.
Chapter 9

Summary

9.1 Conclusion

The Reptile compiler parallelizes arbitrary ANSI-c programs at the instruction level and maps the parallel computation to the Raw architecture. Simulated Annealing is used to partition the instruction dataflow graph. After partitioning, simulated annealing is again used to determine a mapping from partition to physical Raw tile. Once each partition is placed to a Raw tile, switch code is generated to route operands across the network. The switch code contains no crossover routes and assumes an all-to-all network. Legal switch code is generated, using dimension ordered routing to determine the operand routes. After processor and switch code generation, a suite of peep-hole optimizations is performed to increase code quality. On applications with sufficient amounts of parallelism, Reptile is able of achieving significant performance increases, outperforming modern out of order superscalars. Reptile is able to come within a factor of 2-3x of code generated by the Streamit compiler, implying that Reptile is not capturing all of the parallelism inherent to the code. On an unstructured integer example, the Reptile compiler is capable of achieving a performance within 2x of a modern superscalar.

9.2 Future Work

Future work for the Reptile project includes increasing the robustness of the existing Reptile compiler as well as utilizing the Reptile infrastructure to explore new issues in DILP compilation.

The following projects will increase the stability and performance of Reptile:

- Implement an intelligent, post codegen scheduling pass that unifies switch and processor code scheduling.
- Implement a suite of post-codegen classical optimizations.
- Integrate the Suif equivalence class alias analysis into the Reptile compiler.
- Modify the Reptile stack model to handle multiple stacks, one for each tile.
The *Reptile* compiler can be used to explore the following DILP compilation issues:

- Explore the issues surrounding an ABI supporting parallel library calls and parallel indirect function calls.
- Use Trace scheduling to increase the performance of *Reptile* on integer applications.
- Investigate the issues surrounding code duplication. When can code be duplicated across tiles to avoid communication?
- Explore spatial software pipelining.
Appendix A

Simulated Annealing

This section gives a quick background on Simulated Annealing, a technique used extensively in the Reptile compiler.

Simulated Annealing belongs to the class of stochastic optimization algorithms. Stochastic optimization algorithms utilize randomness to obtain approximate solutions to difficult optimization problems.

The name “Annealing” applies to the process of heating up a solid until the atoms are in a sufficiently random state, then allowing the solid to cool such that the atoms within the solid reach a state of minimum energy at the final temperature. If the solid does not reach a high enough temperature initially, or if the cooling occurs too quickly (a process called quenching), the final state will not have minimal energy.

Simulated Annealing, first proposed by Metropolis [11], leverages computer simulation methods to “simulate” the annealing process. The simulation occurs in the following steps. Let Q_i represent the position of the atoms at step i. Similarly, let E_i represent the energy of the configuration Q_i. To simulate the randomness of the atoms, random perturbation of the atoms results in a new configuration, Q_j. After perturbation, a new energy, E_j, describes the energy of the perturbed system. If the new energy, E_j proves to be smaller than the previous energy, E_i, Q_j becomes the new state of the system. If the perturbed system has more energy than the previous system, ($E_j > E_i$), then the new state becomes the current state according to a probability given by:

$$e^{\frac{E_i - E_j}{k_B T}}$$ \hspace{1cm} (A.1)

Where T corresponds to the simulated “temperature” and k_B to Boltzmann’s constant. Notice that the probability of accepting a higher energy state decreases as the temperature decreases. By accepting changes that increase energy, the simulated annealing algorithm “escapes” from local minima. At very low temperatures, the simulation accepts only changes in configuration that decrease system energy (analogous to a hill climbing algorithm). Simulated Annealing consists of many repetitions of the above algorithm, decreasing the simulated “temperature” after a fixed number of repetitions. The process repeats, stopping the simulation when the temperature reaches a value sufficiently close to zero.

The above algorithm applies not only to literally simulated “annealing”, but also
to difficult combinatorial optimizations problems [10]. For example, consider the Traveling Salesman Problem (TSP), known to be NP-complete. The TSP problem attempts to find an optimal route for a traveling salesman that must visit many destinations. The "optimal" route minimizes travel time. To apply Simulated Annealing to the TSP problem, the energy becomes the travel time of the salesman, and the route the salesman takes becomes the configuration of particles. Random perturbations switch the ordering of visited cities, thereby changing the travel time (energy) of the system. Of course, simulated annealing provides no guarantee of optimality, however, many real world problems only require an approximate solution. The pseudo-code below implements the simulated annealing algorithm.

```
Q = random_initial_guess()
T = startT
Begin Outer Loop over T
  L = startL
  Begin Inner Loop over L
    Q' = perturb(Q)
    oldCost = getCost(Q)
    newCost = getCost(Q')
    if( (oldCost - newCost) > 0 )
      Q = Q'
    else
      if( exp( (oldCost - newCost) / T ) > rand[0 : 1] )
        Q = Q'
      endif
    endif
    L = getNextL()
  End Inner Loop
  T = getNextT()
End Outer Loop
```

For the case of the TSP, the state Q described in the above pseudo code corresponds to a particular route visiting all cities. The cost of the route, getCost(Q), corresponds to the traveling time required for that particular route, Q.

No "correct" values exist for the starting temperature startT and the bound on the inner loop. The choice for these parameters varies upon the problem as well as the desired running time. Therefore, common implementations of simulated annealing leverage a heuristics based approach for determining the values of startT and the inner loop bound. A good choice for the inner loop bound in the case of the TSP might be to iterate the inner loop as many times as there are cities to visit. The "cooling schedule", the function that determines the next temperature, is also chosen heuristically.
Bibliography

