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Abstract

Granular materials are an integral part of many engineering systems. Currently, a
popular tool for numerically investigating granular systems is the Discrete Element
Method (DEM). Nearly all implementations of the DEM, however, use spheres to
represent particles despite mounting evidence showing that shape at multiple scales
(sphericity, angularity, and friction) plays a role in granular material behavior.

This thesis contributes a new non-spherical representation to model particles as
ellipsoidal bodies. This is validated and benchmarked against current representations
and is shown to have attractive computational efficiency and numerical stability. A
numerical study of the formation of heaps using spheres and ellipsoids both validates
the ellipsoid representation and illustrates shape-induced behavioral differences.

Resolution of shape is extended by a new algorithm for a hierarchical, multi-scale
representation of convex particle surface characteristics. Two applications are offered:
(1) a micro-asperity model is used to demonstrate pair-wise interlocking, and (2) a
surface-based cohesive contact law is validated using a series of virtual numerical
pull-off tests, which agree well with experimental findings.

An explicit quadrature algorithm based on quaternion rotation is developed and
shown to more accurately determine rotational orientation with less computational
effort than other common algorithms for integrating finite rotations.

Finally, a contact resolution algorithm between discrete elements and a polyhedral
boundary is developed and shown to scale in O(M + N) versus common algorithms
with scaling of O(NM), where N is the number of discrete elements and M the
number of faces on the polyhedral boundary. These developments are illustrated
with numerical studies to simulate the blending kinetics of cohesive, micron-scale
pharmaceutical powders in V-shaped and cylindrical bench-scale blenders.

Thesis Supervisor: John R. Williams
Title: Associate Professor of Civil and Environmental Engineering and Associate
Professor of Engineering Systems
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Chapter 1

Introduction

Why do we care about granular materials? From both a practical and academic

persepctive granular materials hold a great deal of interest because of the perva-

siveness and continuing mystery of large particle system interactions. This thesis

attempts to provide a framework that can address problems that serve both the prac-

tical and academic dimensions.

In practical terms, there are over one trillion (1012) kilograms of granular mate-

rial produced each year in the U.S., and 61 billion kilograms are linked to granular

material technology in the chemical industry alone. U.S. pharmaceutical companies,

for instance, produced nearly US$220 billion in sales in 2002 [83]. The pharmaceu-

tical industry is one of the most heavily regulated in the United States. Moreover,

the industry is currently undergoing a regulatory transition, with guidelines for the

uniformity of finished products stipulated in the Current Good Manufacturing Prac-

tices (CGMP) set forth in 21 CFR 211 [1]. To comply with these regulations, quality

control departments dispose of an undisclosed value of pharmaceutical product ev-

ery year. Informal estimates of the waste in pharmaceutical manufacturing range

from 10-50% depending on the product line and product process maturity. This is

mainly due to an inability of quality assurance departments to adequately predict the

behavior of a new pharmaceutical during the manufacturing process, requiring the

use of empirical and trial-and-error methods to calibrate the manufacturing process

for each new pharmaceutical product. This set of regulations now not only requires
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manufacturers to ensure the quality of the outgoing product but to also explain why

a batch fails.

Where do we stand currently in the ability to model granular materials? Modeling

granular materials in general has seen maturation over the past decade, as computa-

tional methods for evaluating discontinuous systems have been developed and refined.

Coupled with tremendous leaps in the availability of computational resources, many

problems of industrial size (10' and greater numbers of particles) can now be ad-

dressed using particle methods such as the discrete element and related methods on

readily available cluster computers. However, the drive to simulate ever larger num-

bers of particles has come at a price in the form of less detailed contact resolution and

simplifications of the modeled geometry. The overwhelming majority of simulations

use spheres as the primitive approximation of the grain and use the simplest contact

laws possible to increase speed. This is the basis for the popular codes TRUBAL

[20], PFC3D [21], DMC [115], and the granular dynamics extension to LAMMPS

[98]. Despite mounting research suggesting the key role of particle shape, angularity,

and friction in determining granular behavior [12, 124, 93, 99, 91, 89, 76, 74, 68, 42],

sphere-based DEM remains, with a handful of exceptions, the dominant simulation

method. Using systems of spheres, even agglomerates of spheres, often do not ac-

curately capture the mechanisms operating in the modeled system. As Favier [28]

shows, it is difficult to capture even the behavior of real systems of ellipsoids using

the sphere cluster representation.

Though the fidelity of a sphere-based model is not ideal, few particle representa-

tions have been offered as an alternative. Arbitrary geometric representations, such

as the discrete function representation (DFR) of O'Connor [130] as well as dilated

sphere models [40, 56] and ellipsoidal models [66, 92, 127, 46] have been proposed. The

largest obstacle is the computational intensity required by the resolution of contact

for aspherical primitives. Until now, the number of particles that can be represented

by smooth ellipsoids, for instance, is orders of magnitude less than that for spheres.

Even for those formulations that can represent non-spherical primitives, there is little

practical ability to capture sub grain scale physics, excepting micro-scale frictional
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interactions through the use of Coulombic laws.

This practical need to model several resolution scales of the grain surface (e.g.,

asphericity, angularity, and friction) in DEM is addressed in this thesis through the

development of efficient algorithms for interacting ellipsoids and representation of

surface asperities on convex bodies. A physical parameter separation of not only the

scales of asphericity is given but also of the physical parameters influencing contact

(e.g., surface normals, deviations of surface height, and cohesive properties). Though

algorithms exist to address both of these issues (e.g., representations for analytical

ellipsoidal representations [66, 122, 127], superquadric representations [5, 131], star

convex/concave surface representations via DFR [130], or arbitrary polyhedral repre-

sentations [78]), only arbitrary polyhedra, which are limited to a low number of faces

per body (typically blocks of 6 faces), are in common use due to the computational

requirements of the algorithms.

The algorithms introduced in this thesis are shown to significantly reduce the com-

putational requirements, as demonstrated in Section 4.4, while presenting new ways

of modeling both the primitive used (ellipsoidal) as well as modeling sub grain-scale

physics over multiple scales using a simple hierarchical surface model. The practical

applications of the sub grain scale model are illustrated through the development of a

micro-asperity model for representing geometric interlocking and through the devel-

opment of an experimentally validated cohesion model for use in describing the forces

acting between a bonded pair of micron scale grains at the micro and meso length

scales.

Broadening the application domain from single particle interactions to whole sys-

tems, this thesis presents two numerical applications based on different parts of the

approach. These focus on two areas: the formation of granular heaps and pharmaceu-

tical powder blending. In the first set of simulations, conclusions are drawn for the

dynamics of heaps and how exclusion of asphericity can affect the validity of DEM re-

sults. The second set of experiments uses models to describe micro- and meso-length

scale bonding effects between powder grains with conclusions on the effect of cohesion

on the mixing behavior of pharmaceutical powders. This research study, conducted
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in cooperation with the experimental and computational facilities of collaborators in

the Department of Chemical Engineering at MIT, demonstrates how this research

fits into a larger coupled experimental and numerical approach for investigating the

multi-scale behaviors of cohesive powder systems.

Before investigating the physical and engineering aspects of this work, however,

the development of the software framework is discussed. Many academic software

applications suffer a common fate. They were designed as academic code to func-

tionally solve a particular problem for a particular researcher, so the resultant code

is often cryptically written and optimized for speed rather than maintainability or

extensibility. This thesis first attempts to show, through the analysis of an existing

particle code, that a focus on maintainability and extensibility can result in a lower

overall lifetime cost for a code and, in many cases, offer a faster time to solution. This

concept is demonstrated by the resulting DEM3D application, which focuses on the

abstraction of a particle method code, employing concepts of code organization and

modulization to make the code as usable as possible to researchers, code integrators,

and code developers.

In the pursuit of ever larger systems, a critical component of numerical analysis

is often forgotten: analysis of the resultant data. Without critical analysis tools,

much of the computational work performed during simulation results in unused data.

The literature is fraught with examples of large simulation runs over multiple nodes

and multiple days resulting only in macroscopic estimates of granular temperature or

density. Particle trajectory, force chain formation, and internal stress states are often

ignored for large-scale simulations. This thesis offers a platform for mining the data

in DEM data sets using knowledge of the problem domain to provide researchers with

meaningful statistics and visualizations. The usefulness of this capability is illustrated

through the work on stress formation in granular heaps, which would not have been

possible without such a facility.
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1.1 Motivation and Contributions

The main motivation of this thesis is to add greater resolution to the discrete element

method at the grain scale and to determine how this added resolution affects certain

systems of engineering interest, including pharmaceutical powder blending kinetics

and the development of stress chains in granular heaps during formation. A secondary

motivation is to develop a DEM software application that not only implements the

advancements detailed in this thesis but also is efficient, extensible, and maintainable

by several classes of external developer.

The resulting thesis has answered several outstanding questions and provided a

new way of probing systems composed of rough, aspherical particles. In particular,

it contributes the following:

Shape Resolution

1. Formulation, validation, and benchmarking of a new representation for ellip-

soidal particles including contact resolution is discussed in Chapter 4.

2. Formulation, validation, and benchmarking of a new contact detection algo-

rithm for determining contact between discrete elements and an arbitrary poly-

hedral boundary element is discussed in Chapter 8, which is illustrated through

the modeling of a V-mixer and a double helical ribbon blender in Section 9.2.2.

3. Development of a hierarchical, multi-scale surface representation for discrete

elements is discussed in Chapter 7. Applications are discussed for the modeling

of geometric interlocking between micro-scale surface asperities in Section 7.2

and of cohesive properties of individual surface points in Section 7.3.

Quadrature

1. Formulation, validation, and benchmarking of a new explicit integration algo-

rithm for integrating the finite rotations of bodies under external forcing is

discussed in Chapter 5.

Software

27



Figure 1-1: Contributions of this thesis in representing smooth, aspherical bodies.

Figure 1-2: Contributions of this thesis in representing arbitrary boundaries.
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Smooth Surfaces

Figure 1-3: Contributions of this thesis to representing surface features at the sub-
granular scale.

1. Development of a consistent, object-oriented framework for performing DEM

simulations is discussed in Chapter 3. This framework combines data analysis,

data archiving, simulation, visualization, and user interface into separate mod-

ules. It also provides well-abstracted interfaces and a dll manager to allow for

ease of extension and ease of maintenance.

2. Implementation of a class hierarchy to interface the DEM simulation with

database technologies and provide data analysis/visualization is discussed in

Chapter A.

3. Application of a testing (validation/verification) framework into a DEM simu-

lator is discussed in Section 3.2.

4. Case study of LAMMPS, an open source molecular/granular dynamics simula-

tor, is discussed in Section 3.1. This discussion illustrates the value proposition

for using level 2.5 languages ' and object-oriented design principles in the design

'The level of a programming language is a categorization of language abstraction. These loose

categories (levels) are often subdivided according to the average number of lines of code (LOCs)
required to define a function point (FP), or atomic function, as referenced in the tables of Jones
[47].
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of research code.

Applications

1. Simulation of the formation of stress dips in point source deposited granular

heaps is discussed in Chapter 6. The influence of parameters, such as source

height in Section 6.1, shape in Section 6.2, and poly-dispersity in Section 6.3,

are discussed with the identification of a correlative relationship between the

average age of contacts and the formation of a local stress minimum at the

center of the heap.

2. Experimental and numerical studies of pharmaceutical powder processing is

discussed in Chapter 9. These studies have been performed in collaboration with

the laboratory of Prof. Charles Cooney, Department of Chemical Engineering,

MIT, and have shown qualitative agreement between experimental results from

a bench-scale pharmaceutical powder blender and numerical results using a

stochastic cohesive contact law co-developed with Dr. Samuel Ngai.
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Chapter 2

Discrete Element Modeling

2.1 Discontinua versus Continua

In a continuum approach, such as the finite difference method or finite element method

(FEM), the microscopic behavior is effectively viewed as uncoupled from the macro-

scopic behavior. Representation element volumes (REV's) are used to define the

minimum scale below which the grain-scale behavior cannot be decoupled using con-

stitutive models. Empirically-based constitutive equations can then be used with a

mesh of elements of the scale of the REV to determine the behavior of a larger con-

tinuum. Using this approach, many problems in large-scale granular materials can be

addressed when careful attention is paid to the design of the consitutive equations.

A typical application of FEM in soil mechanics is for the prediction of pile stress as

illustrated in Figure 2.1.

The most popular continuum model is the finite element method (FEM). The

continuum assumption is quite valid for many materials, and the fields of mechani-

cal, material, and structural engineering have been fundamentally changed by FEM.

There are certain systems, though, for which the length scale of interest is not sig-

nificantly larger than the grain size or where the behavior of the system of interest

is significantly affected by discontinuous grains that compose the system. At this

point homogenization efforts break down with the REV becoming coincident with

the individual particles. For instance, sanding in oil wells is a multi-billion dollar
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Figure 2-1: Illustration of a continuum-based analysis of building piles interacting

with the underlying soil

Figure 2-2: Illustration of a discretely modeled powder blender

problem for energy companies, and much research has been dedicated to designing

new FEM models to predict the onset and severity of sanding. However, analytical

and FEM models have been unable to satisfactorily predict well-bore stability in ac-

tual oil wells [132]. Continuum methods also can offer little insight into the material

behavior of the bore hole, since the micromechanical behavior is smoothed into a

continuum instead of the discontinuous media (sand, soil, etc.) of which well-bores

consist.

Unlike continuum approaches, discrete approaches, such as discontinuous deforma-

tion analysis (DDA), the discrete element method (DEM), cellular automata (CA),

smoothed particle hydrodynamics (SPH), and molecular dynamics (MD), model a

statistically valid sample of discontinuous constituents of a physical system. The the-

ory is that by properly modeling the behavior of the individual constituents and their

interaction behavior at the microscale, the correct emergent behavior of the system
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Figure 2-3: Illustration of the near-borehole region modeled using the SandFlow2D
DEM code; simulation image courtesy of B. Cook, Sandia National Laboratories

at the mesoscale can be accurately captured. Using the example of well-bore stabil-

ity, DEM has been employed in studying the problem as illustrated in Figure 2.1.

Though DEM has also been unable to quantitatively predict the onset of sanding, its

microscopic resolution has been instrumental in uncovering several micromechanical

mechanisms responsible for sanding, as shown by O'Connor [90], Cook [17], and Boutt

[10]. The application focus of this thesis is on capturing the qualitative behaviors of

granular materials in two specific areas: modeling the behavior of granular materials

in mixers (see illustration in Figure 2.1) and investigating the stress fabric behavior

in granular heaps.

2.2 Theory of DEM

Discrete element modeling (DEM) was first proposed in 1979 by Cundall and Strack

[22], and the theoretical basis of the method was proven later by Williams, Hocking,

and Mustoe [128]. Because of its capability to model physics at the grain scale, DEM

has become an important computational method for modeling complex phenomena

exhibited by particulate systems. The applications for DEM have ranged across

several disciplines, including the simulation of the manufacture of pharmaceuticals,

33



modeling of bore hole flow for the petrochemical industry (e.g., work by O'Connor

[90] and by Cook and Boutt at Sandia National Laboratories [17, 19, 18, 10]), study

of flow and packing in applied mathematics [15], granular rheology in applied physics

[34], and prediction of pebble bed reactor residence time in nuclear engineering [50].

As computational resources have become more readily available to a wide range of

researchers, DEM and other particle methods have begun to play a greater role in

analyzing many engineering systems.

However, there remains a significant scale gap in the research of granular materials.

Soil mechanics, for instance, has traditionally focused on continuum modeling of

granular material, adapting microscale theory to the development of constitutive laws

for bulk materials. For the area of interest of most soil mechanics research, which is of

the order 100 - 103m, the continuum assumption has worked well. Because the valid

representative element volume (REV) of interest for many of these problems is of a

much coarser scale than the grain size, this research strategy has largely neglected

meso-scale modeling, where inherent variability of the systems they are analyzing

and the exceptional computational cost of modeling such systems have been barriers.

However, attempts have been made to model localized behavior of soils (such as the

local sand region around an oil well borehole) using continuum models with poor

results. The lack of focus on mesoscale modeling is understandable, since sand, one

of the largest particles of interest in soil mechanics, is on the order of 1mm 3 , and a

1m 3 sample would contain on the order of 109 particles. This number of particles,

even idealized as perfect spheres, which in many instances is unacceptable, would be

extremely costly to evaluate computationally. Also, the coupling between the scale

of interest and the grain length scale is often weak; i.e., the grain size << REV size.

Other researchers have focused on micromechanical response of the material at the

scale of a particle pair. This has generally been divided into analytical research and,

more recently, experimental work. Analytical studies of interparticle forces between

spheres have been performed, such as the groundbreaking work on physical contact

forces of Mindlin and Deresiewicz [72, 73]; adhesion and Van der Waals interaction

via the Johnson, Kendall, and Roberts (JKR) model [44]; and the well-studied liquid
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bridging work of Lian and Thornton [63]. These solutions are used in mathematical

dispersion models or continuum models to predict the behavior of particles under dif-

ferent conditions, such as chemical powder processing applications. However, there is

a lack of qualitative agreement between experimental observations and the continuum

model predictions based on the theoretical behavior of individual grains. The con-

stitutive models typically must be redefined for each model based on system-specific

experimental findings, which generally degrades their usefulness in investigating the

behavior of the system at the meso-scale or for predicting the behavior of other sys-

tems.

The analytical solutions of micron-scale particle-to-particle interaction were not

directly tested until recently with the invention of electron microscopy. Indeed, it

has only been since 1986 when atomic force microscopy (AFM) was introduced that

detailed force displacement curves could be generated. Because of the relative youth

of experimental methods to verify the force models, understanding of the sensitivity

of the different laws to the relaxation of their assumptions is still poorly understood.

For instance, the widely implemented JKR model for adhesive contact is based on

perfectly smooth spheres, yet it has been shown that the adhesion force is sensitive

to the presence of surface asperities, as shown by Jones [49].

Through this discussion, we have provided a motivation to view meso-scale model-

ing for use in granular systems where microstructural grain interactions substantially

influence behavior in the macroscale. The tool we use is discrete element modeling

(DEM), the background of which is discussed in the next section.

2.3 Background

In the middle of the domains of micro- and macro- scale modeling is the domain of

meso-scale modeling, which, compared to micro- and macro- scale modeling, is still in

its infancy. The meso-scale is any length scale where the microscopic grain-to-grain

interaction cannot be decoupled from the bulk behavior of the system to the desired

tolerance of the model. The question of how interparticle interactions effect different
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granular system behaviors is a mostly open question, the answer to which likely lies

in the meso-scale link. This must be qualified with the note that many macroscopic

granular behaviors have been modeled qualitatively successfully, such as, the demon-

stration of shear band formation via the circulation cell mechanism by Williams and

Rege [131] in triaxial tests, the characterization of the inner particle flow fields in

simple spherical particle hopper flow, and the modeling of energy requirements for

ball mill operations. Despite qualitative success, the discrete element method has yet

to predict the behavior of many real world applications.

The first attempts to handle microscopic properties emergent into larger meso-

scale systems came at the advent of the computer when massive systems of simul-

taneous equations could be evaluated. The idea of cellular automata, used for the

simulation of evolutionary computing and development of Turing machines, was first

developed by John Von Neumann [84]. Von Neumann postulated that one could gen-

erate a theoretical world populated by objects that responded to stimuli according

to certain rules. Taken in large numbers over a period of discretized timesteps, these

automata displayed not only some pedantic behavior (such as inactivity or constant

activity) but also strikingly complex emergent behavior. The idea of emergent be-

havior from a system of simple primitives became the basis for the lattice gas method

and molecular dynamics simulations.

The Lattice Gas method [36, 30, 23] is a specific type of cellular automata where

the behavior of the individual cells is governed by the continuity equation and Navier-

Stokes equation for fluids. Here, a grid in two dimensions or three dimensions is

generated and particles are exchanged between the different cells. These cellular gas

packets are constrained to move between adjacent or diagonal cells.

Cellular automata brought about a new way of thinking about the behavior of

systems. The approach of using cells on a spatially and temporally discretized grid

could simulate the atomistic level interactions of particles. This was the inspiration

for molecular dynamics [2] formulations, which were made possible by the develop-

ment of increased computing power. Explicit modeling of individual point potentials

were modeled in the computer alongside point-to-point spring contacts to simulate
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atomistic level bonding, attraction, and repulsion. Unlike cellular automata, point

potentials in molecular dynamics simulations extend in any direction for any computer

representable distance.

The point potentials used in the molecular dynamics formulation generate a spher-

ical potential field. For granular systems, however, geometry of the particle plays an

important role in determining the behavior of the system. Compounded with the fun-

damental importance of friction (a tangentially acting force), the molecular dynamics

formulation was inappropriate in its pure form for powder and grain modeling. A

different methodology had to be employed.

The role of molecular dynamics in fundamental material behavior was realized

soon after it was developed; however, it was viewed mainly as a means of investigating

the atomistic and molecular scale of materials, such as, silicon for transistors. The

emergent effects of single atoms (or even groups of atoms) on the bulk properties of

a material are considered negligible for many systems of engineering interest (e.g.,

steel beams). For granular materials, this assumption has been shown to be invalid

in a wide range of applications and engineering materials. Molecular dynamics and

its modeling philosophy, however, has led directly to the development of the discrete

element method.

2.3.1 2-D DEM

At the time of Cundall's and Strack's seminal work on DEM [22], analyzing problems

in more than two dimensions was too computationally costly to perform by many

researchers. The two-dimensional formulation was extended from discs to ellipses

by Ting [118] and to angular shapes represented by polygons by several researchers.

An innovative solution to representing arbitrary shapes was made by Williams and

O'Connor [130] with the introduction of the discrete function representation (DFR).

Three-dimensional discrete element modeling poses several problems that are not

encountered in two dimensional discrete element processing. Instead of 3 degrees

of freedom, one must handle 6 degrees of freedom. Rotation is no longer in one

dimension, instead one must integrate around an axis in three-dimensional space,
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adding additional complexity in integrating rotational motion. If Euler angles are

used, this becomes an involved integration process about 3 independent axes. A

quaternion-based integration scheme is introduced in Chapter 5 to solve this problem.

2.3.2 3-D DEM

Three-dimensional DEM simulation at scales on the order of typically performed field

tests requires computational resources (in terms of CPU time and memory) that are

far in excess of those available to most researchers. Again, the example of a 1m 3

sample of 1mm diameter sand grains typically contains on the order of 10 9 grains.

To mitigate the effect of modeling so many particles, spheres are typically used

in 3-D DEM formulations, since they are simple and compact and hence are fast

computationally. This is the basis for the popular codes TRUBAL [20] and PFC3D

[21] by Cundall and for DMC by Taylor and Preece at Sandia National Laborato-

ries [115, 100]. The granular dynamics extension to the molecular dynamics code

LAMMPS by Plimpton [98] also uses spherical potentials.

More recently, other geometric representations have been developed. Although

less common, implementations of DEM codes with polyhedral elements, such as the

combined finite-discrete element application described through a large body of work

by Munjiza [79], exist. Also, ellipsoidal elements can also be found in the ground-

breaking work of Lin and Ng [66]. Dilated shapes proposed in the works of Hopkins

and Kuhn [40, 55] are also an elegant solution to modeling asphericity. In general,

though, the research field for numerical investigation of particle shape on granular

system behavior has been sparse.

To address the need for a computationally efficient representation of non-spherical

geometries, this thesis proposes a prolate spheroid approximation intersection algo-

rithm in Section 4.2 and a general tri-axial ellipsoid intersection in Section 4.3. Com-

putational geometry at the sub-grain scale is addressed in Chapter 7.
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Chapter 3

Software Architecture

The goal of the software architecture is to produce a framework from which other

DEM extensions can be made simply, consistently, and by many different researchers.

In high-level software development terms, this means that the architecture should be

maintainable, extensible, and portable across platforms to as maximal an extent as

possible while maintaining acceptable performance. This philosophy of simulation

design is discussed by Perkins [94], which argues for the development of a more

extensible and abstracted framework for DEM, citing the need for explicit support

for core, extension, and application developers.

Using software development research, this chapter first provides a basis and base

parameters around which the use of an architecture optimized framework provides

the smallest total development time.

This chapter will then address the core developer's concerns in the context of

an object-oriented approach. This is the highest level of programming and affects

both the extension and application developers. Core development concerns the class

hierarchies used and the interfaces necessary for extension developers to add function-

ality to the DEM framework in a consistent manner. Core development must also be

concerned with cross-platform portability.

Next, the chapter will address several different common components and their

interfaces in the DEM framework. By rigidly defining what methods different classes

must implement, the interface can assure that certain methods will be available. It
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also exposes classes of the same type to the same battery of user and functional tests

via the test module, allowing quality standards to be built in to the framework. The

component "contract" defined by the class interface is described for each component

and illustrated through currently implemented components.

3.1 Architecture versus Performance

Both the software development community (e.g., widespread adoption of the Capabil-

ity Maturity Model (CMM)) and the computational mechanics community (e.g., the

United States national labs' guidelines on software development) have converged on

valuing software quality practices for improving the reliability of their codes. Code

verification in the national labs and unit testing for the general software develop-

ment community attempt to reduce the programmer-originating bugs in a code by

enforcing a policy of testing individual components against requirements governing

the intended operation. Code validation and functional testing are then used to test

whether the application produces the expected behavior. Combined, these practices

help to reduce many sources of error and, hence, uncertainty in the manufacturing of

software products.

Unlike testing, however, there is a more controversial debate on the usefulness

of architecture versus performance that is often neglected in the computational me-

chanics literature. As many software developers and some computational mechanics

researchers have been working toward improving the architecture of their software

at the expense of performance, many more insist on improving software performance

through the sacrifice of architectural consistency. This thesis will not attempt to

resolve this debate; however, this section will attempt to propose a coherent thought

experiment in support of the pursuit of maintainability and extensibility for research

DEM codes as well as to determine practical bounds on the usefulness of this approach

in reducing the overall time to solution (TTS) for general problems.

A prime example of a DEM simulator optimized for speed while sacrificing exten-

sibility and maintainability is the LAMMPS application available as an open source
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code from Sandia National Labs (http://www.cs.sandia.gov/ sjplimp/download.html)

and is one of the only scalable granular dynamics simulators available open source.

The application is written in the C language and uses a structure optimized for per-

forming molecular dynamics. The LAMMPS application has been extended to include

an implementation of granular dynamics, which is currently limited to modeling of

spheres with common material properties, bonds, and axis-aligned planar boundary

conditions and allows for two contact laws to be applied (simple spring dashpot and

Hertzian, both with Coulombic friction).

Analyzing the architecture of the LAMMPS application, the simulation pipeline

is hardwired into few procedures. That is, procedures are not logically separated

between performing neighbor-sorting, contact resolution, and force resolution. This is

optimal for speed; however, every time another contact law, particle shape primitive,

or neighbor-sorting algorithm is added, the code required is increased by a multiple of

the current lines of code (LOCs) involved in the sum of these operations, and 2 classes

are affected. If a testing framework is applied, the number of testing methods must

also be doubled, and the resolution of the testing methods is reduced (since parameters

may not be as easily isolated with procedures which lump multiple functionalities).

For the purposes of this example, only the direct costs of coding will be considered

without the consideration of testing.

Since developers have been observed to produce similar numbers of LOCs inde-

pendent of the language used [70], LOCs are often related linearly to the number of

man-hours required for coding. Estimates of function point (FP) productivity per

LOC are approximately 1/55 for a higher level language like C# versus 1/128 for a

level 2.5 language like C '.

By inspecting LAMMPS manually, approximately 150 LOCs are required for each

permutation of neighbor-sorting algorithm, contact law, and geometry, which is cur-

rently 2 neighbor-sorting algorithms, 1 force resolution algorithm, and 2 contact laws

resulting in 4 permutations, or approximately 600 LOCs. Using this as a basis of

'These numbers are adapted from "programming languages tables" [47, 119] which specify ranges
of expected function points per lines of code. The tables differ by approximately 10 LOCs/FP. Also,
it is notable that the variance is 51-66 LOCs/FP for C# versus 9-704 LOCs for C [119]
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Application LAMMPS DEM3D
Efficiency (LOC/FP) 150 55
Component (FP) 2 1
Component (LOC) 300 55
Productivity (LOC/person-day) 100 100
Effort (person-day) 3 0.55
Error Rate (LOC/error) 133 133
Errors (person-day/error) 0.63 0.63
Error Effort (person-day) 1.42 0.35
Total Effort (person-day) 4.42 0.9

Table 3.1: Summary of Time Cost to Implement Hertzian Contact in LAMMPS
versus DEM3D

comparison, implementing another contact law would require an extra 300 LOCs. As

a check for our estimates, it is notable that the estimate of 128 LOCs/FP is fairly

accurate here. In DEM3D, the number of LOCs required to add another contact

law is constant. In the case of Hertz-Mindlin contact [73], for instance, 55 additional

LOCs were required, which again agrees well with the estimate above.

Studies indicate that a developer is estimated to produce 10-100 LOCs/day [8, 33,

70]. If we assume that the programmer is "good" (produces 100 LOCs/day), then we

have an unadjusted 3 person-days in LAMMPS versus 55 LOCs (i.e., 1 FP estimated

for C#), or 0.55 person-days for DEM3D.

To acquire a good estimate, however, the effect of defects must be considered.

Assuming a constant error rate of 1 error per 133 LOCs [96] and that errors are

caught at different points in the project development with an average correction

cost of 6.3 hours/defect [33], the total time should be increased by 2.5 defects for

LAMMPS (14.2 hours or 1.5 person-days) and 0.4 defects for DEM3D (2.5 hours or

0.25 person-days).

This line of reasoning, tabulated in Table 3.1, leads to an adjusted cost of 0.9

person-days to implement the additional functionality in DEM3D versus 4.42 person-

days in LAMMPS. This estimate does not include the effort to augment a testing

framework, scale the code necessary to extend the LAMMPS application, and the

learning time for the developer, indicating that the costs are probably much higher.
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Application LAMMPS DEM3D
Size (LOC) 191000 82000
Effort (person-month) 370 125
Time (month) 20 14
Salary ($/person-month) 8300 8300
Cost ($) $3M $1M

Table 3.2: Summary of Cost to Implement Full 3D DEM Application

Benchmarks run on the two codes place the efficiency of LAMMPS in serial at ap-

proximately twofold that of DEM3D, which uses a memory-managed language. In

summary, we trade computational efficiency for a decrease in development time.

We showed earlier that the real LOCs for a function point in LAMMPS agreed

remarkably well with the estimates produced in the studies [47, 119]. Unfortunately,

there is no available source code for software that emulates the richness of the DEM3D

application. If we use the estimates [47, 119], we can compute the approximate

development time and team size necessary to complete each of the projects. DEM3D

is composed of 2,453,460 Bytes of source code with an average of 30B/LOC, which

yields approximately 82,000 LOC in managed code. Using a conversion of 128/55,

this leads to an estimate of 191,000 LOCs in C.

Using data from a nominal schedule estimate table [70] and assuming that the

project most closely resembles a "business product", the effort for an 82,000 LOC

project is approximately 125 person-months and that for a 191,000 LOC project is

370 person-months. Using the calculations of optimal team size in the same table, we

arrive at 14 months versus 20 months. If we agree with these estimates, the expected

cost of a C-type application would be approximately 250 person-months greater than

that for the C#-type application. This is a cost of 6 months of time and, assuming

an average developer cost of US$100,000 per year (fully loaded), a financial cost of

approximately US$2 million. This analysis is tabulated in Table 3.2. Assuming that

the performance metrics are still valid in parallel, this indicates that the financial

cost alone can justify the use of a C# type programming language to design a DEM
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simulator for problems requiring up to 5.7 teraflops 2, the price point of using an

additional server. In summary for the current environment of software development:

hardware is cheap, but developers and scientists are expensive.

This is a highly simplified analysis. In real situations, it may not be possible to

allocate a team of 19 developers for 20 months or the burden of usability may be

much lower than the effort estimation tables would indicate. For instance, a DEM

simulator is not typically a deployable system but rather a "research" system built

to operate for a limited user group (typically including the developer) and for a very

specific hardware configuration. This often drastically reduces the software effort

required. Also, developers for recent languages such as C# may not be available or

may be less productive than the C programmers that can be assigned. This may

restrict the team size and/or the average productivity of the team. Organizationally,

salaried employees are typically more justifiable than equipment costs or the budget

for employees is separate from that for equipment, which may alter the incentives for

one approach over the other. Finally, applications running in parallel often exhibit

non-linear scaling behavior versus problem size. This complex set of parameters

is only a small subset of the real parameters affecting the analysis that should be

performed in choosing a language for developing a system.

Though the issue is complex, the rough estimates indicate a good possibility that

financial costs are lower for developing a DEM application in a level 2.5 type language

(e.g., C++, Java, and C#) than a lower level language. Also, there are several issues

that were not considered which would benefit the architecture-centric, managed code

application, including:

" Less variance in development time given a similar set of function points

" Lower incremental time cost for extending the application

" Tighter coupling between experiment and numerical implementation during ex-

perimental validation of codes

2As of 9/16/05 the starting price of an IBM Blue Gene rack server rated at 5.7 teraflops was
US$1.5 million [9].
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* Greater flexibility to architectural change

* Low-level compiler optimizations from a supported and often updated compiler,

which will result in increasing performance over time as the JIT compiler is

upgraded by an external development entity

3.2 Testing: Verification and Validation Frame-

work

Testing is a way of assuring the quality of an application throughout its lifecycle.

Specifically, testing has two main roles in the software development process: to reduce

the risk of errors propagating through the development of the application and to serve

as a way of assuring the end user that the application will perform as specified. For an

application developed by a single developer, this may seem to be a significant source

of overhead. However, the resultant code comprises nearly 81,000 lines of C# code,

which is under constant change.

During the development of any computer program it is important to assure the

end user that it operates as specified. In the modeling and simulation (M&S) commu-

nity, applications are often subjected to a rigorous testing methodology for assurance

known as validation and verification. Distinctions have been made between testing

of the output of functions and methods (unit testing in the computer science lexicon

or verification in the parlance of the M&S community) as opposed to the accuracy

of the output (functional testing or validation as defined in the computer science

and M&S communities, respectively). This can be restated as a distinction between

modeling/programming process and output simulation results/product.

Testing need not be used merely for assuring output or testing components in post

development. It can become part of the software design methodology. This thesis has

embraced testing both in the design and in the framework of the application.

In the development of DEM3D, there was ambiguity about the final requirements

for the application. At the same time, there was pressure to provide evidence that
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the simulation was producing correct output within the assumptions of the DEM

model. Throughout the software design, the current build was required to be correct

and efficient. To cater to these pressures, a unique design methodology was adopted,

which was a hybrid of a classical evolutionary prototyping development model with

an adaptation of the test-driven development (TDD) methodology. The TDD com-

ponent was used to reduce risk within individual iterations as well as to help guide

requirements refinements and reduce coding errors. Though not explicitly part of the

TDD methodology, the effect of this approach also helped to assure the end function-

ality and to institutionalize software refactoring during the design process.

A standard evolutionary prototyping development model was adopted using my

own requirements as well as input from collaborators in the Department of Chemical

Engineering to guide the initial requirements. A prototype with a minimal set of

features was designed and deployed for user testing. The process was then restarted.

Iterations were initially closely spaced to help identify major issues early in the design

process; as the issues became fewer, iterations were allowed to be spread further and

the use of tests within each iteration was increased. Also, as the maturity of the

prototype increased the richness of the feature set also increased as did the number

of tests required to assure the operation of the simulation.

The application has been developed as an agglomeration of simpler modules, each

of which has a set of tests associated with it. Assemblies of modules are also assigned

tests. Finally, the application is given a series of tests. Layered onto this hierarchical

model of unit tests are benchmark tests. The hierarchical nature of the approach

provides a reasonable degree of assurance that problems will be identified early in

the development cycle and continue to be identified as the complexity of the software

increases.

The result of this approach has been the integration of a testing framework based

on the popular NUnit framework, a port for the .NET framework of the JUnit unit

testing library for Java. The framework has served a significant number of roles

throughout the project's lifecycle, providing a way to iterate through testing, opti-

mization, and refactoring while providing metrics to demonstrate whether improve-
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ment was gained on the individual modules, as is suggested in the TDD methodology

[32]. The resultant system has also yielded a self-validating code with built-in regres-

sion testing and built-in benchmarking capabilities. This provides not only rigorous

verification and validation of an application that is considered "research code" but

also provides a platform against which to test different algorithms that may be used

throughout the simulation pipeline. For instance, when the NUnit application is in-

voked to run a benchmark against neighbor-sorting algorithms, reflection is used to

automatically identify all existing algorithms and run a benchmark problem for which

their performance is compared and Excel readable files are generated to produce il-

lustrative graphics, several of which are included in this thesis.

3.3 Development Language Selection

From the preceding discussion, the order of effective computation per human-year

spent on development is sufficient to justify the use of an architecture-centric ap-

proach, which sets performance criteria as secondary. It is also a reasonable justifica-

tion after the fact for using a managed code framework versus an older unmanaged

code approach. Managed code provides several benefits over unmanaged code, in-

cluding:

" Optimized memory usage

" Garbage collection to prevent memory leaks

" Multi-level code optimization through CLR compilation and a secondary JIT

compilation step

The particular chosen managed code framework is Microsoft's .NET framework.

The .NET framework and the competing J2EE framework, an open source effort

supported principally by Sun Microsystems, share a set of common attributes. For

instance, both Java and C#, the main language of the .NET framework, have similar

syntax, use JIT compilation techniques, have open standards, and are supported by

freely available compilers. With the Mono project, the .NET framework (like J2EE)
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can also be used on the Linux operating system. The attractiveness of Java and

C# are similar, and the final choice was based on the author's familiarity with the

programming environment and language.

3.4 Visualization

Visualization is an important component in representing scientific information, espe-

cially from a simulation with several states recorded. In this work, visualization is

abstracted into a set of software visualizers which handle both post-simulation pro-

duction of graphics as well as real-time visualization. A mid-level API, DirectX9.OC

from Microsoft, is commonly used in the programming of high-performance games

and is used here to perform real-time visualization of DEM data as well as the ma-

trix and vector math to support simulation calculations. When run in batch mode,

visualization is typically handled as a post-processing activity to produce animations

and other static visualizations. To handle these activities, the open source ray tracer,

Persistence of Vision (POV-Ray), is wrapped using classes of abstraction to render

DEM data. This allows the application to render either real-time using POV-Ray or

DirectX or as a batch post-process using POV-Ray.

3.5 DEM3D Core

DEM3D is structured to function around a core kernel upon which other modules de-

pend to add functionality to the core. The core kernel is responsible for simulation on

the current application domain. This distinction is made, because in the anticipated

extension of the DEM3D application to a parallel version, there would be multiple

application domains not necessarily located on the same physical machine.

Several auxiliary packages are formed around the core kernel to provide additional

required capabilities, as illustrated in Figure 3-1. The functional division is shown in

Figure 3-2, indicating the different libraries that compose the full DEM3D application.

These libraries need not all be used, and for different applications, the feature set can
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Figure 3-1: High-level diagram of the module configuration in DEM3D, which details
the logical divisions between the kernel, visualization, data, and application testing
modules.

Figure 3-2: Diagram of the functional division of the application into assemblies
(libraries).
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be reduced to optimize the performance.

This separation of concepts is designed to allow a clean separation of modules

and functionality according to different use cases. For instance, the end user may

wish to run the simulation as a batch console application to reduce the overhead of

user interface event handling/rendering but still use the data archiving and analysis

module. It may also be the case that a user only wishes to use the application as an

illustrative tool for demonstrations, in which case the visualization and user interface

are important but data archiving and analysis is not. In practice, this division has

worked well with the external user group through which DEM3D is being tested.

3.5.1 User Customization through Method Servers

DEM3D makes use of a simple programming paradigm that couples singletons in

classes to access objects that inherit from that class. From first glance, this would

seem to be a strange use of the class definition; however, when used with the As-

semblyManager, it provides centralization of access to like objects and also allows for

automatic discovery of new objects.

The user can add his/her own custom classes to the application by compiling

classes and adding the resultant dynamically linked libraries (DLLs) to the user di-

rectory. At run-time, the AssemblyManager searches the user directory for relevant

DLL files and loads them. This process occurs first in the application, providing the

rest of the application with visibility of the custom user classes as soon as execution

begins.

As a quick example, let us look at the case of when a user adds a new neighbor-

sorting algorithm. The user would first compile the new algorithm, making sure it

references the DEM3D engine DLL, uses the DEM3D.NeighborSorting namespace,

and applies the INeighborSorter interface. The user would then place the resultant

library file in the user directory. When the user requests the application to consume

a simulation settings file, the file parser will come to the new user class under the

neighbor sorting entry in the file. The application will first try to instantiate a

class from its own library. If this fails, it will ask the AssemblyManager to provide
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string className tzz4z

Object of
requested type

LW1

currently loaded
assemblies

If the class is not found,
forward the request to the
AssemblyManager

Figure 3-3: Diagram of the interaction of a method server and the AssemblyManager
when a class of a certain type is requested for instantiation.
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it with the class by providing the string-based name of the class (as provided in

the simulation settings file). Using reflection, the AssemblyManager searches the

assemblies it had discovered at initialization, and returns an appropriate object. The

object is then referenced through a static variable in the NeighborSorter class as the

current neighbor-sorting algorithm. This object is then used during the simulation.

The process is shown in Figure 3-3.

This affords the user a great degree of transparency when adding functionality

to the DEM3D application. The NeighborSorter (the base class for all neighbor-

sorting algorithms), ContactLaw (the base class for all laws governing the physics of

contact), Shape (the base class for the geometric definition of all particle types), and

even specialized contact resolution algorithms for contact between pseudo-ellipsoid

pairs and between ellipsoid pairs are implemented using this design methodology.

This also highlights another benefit of the .NET framework, in that, users can

develop in any of the 25 currently supported languages and then compile that code

into a DLL and simply leave it in the user directory. There is no need to port the

code into another language; as long as the data abstractions that the code derives

from are maintained, the code can be used without change.

There is typically a computational cost that comes with maintainability. However,

this is not the case for this particular methodology. Since the overhead of instantiation

is accrued before the simulation begins, there is little if any performance hit for

this approach. In fact, the method server approach is often more computationally

expedient than even the invocation of overridden abstract methods, as shown in

Figure 3-4.

Figure 3-4 illustrates a benchmark problem of based on 100 trials of 106 iterations

each. The trials consist of an evaluation of the square root of the product of 2 double

precision numbers. The code used is as follows:

public class DelegateServer {
public static DelegateServer current = new DelegateServer(;

public delegate double SqrtProductFcn(double a, double b);

public SqrtProductFcn SqrtProduct;
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Figure 3-4: Comparison of the average run times for different object access strategies
as a percentage of the runtime for the evaluation of the method on a strongly typed
object.

public DelegateServer()

{
FunFunction fcn new FunFunctiono;

this.SqrtProduct new SqrtProductFen(fcn.SqrtProduct);

}
}
public abstract class FunctionServer {

public static FunctionServer current = new FunFunctionO;

public FunctionServer( {}

public abstract double SqrtProduct(double a, double b);

}
public class FunFunction : FunctionServer {

public FunFunction() {}

public override double SqrtProduct(double a, double b)

{

53



return Math.Sqrt(a*b);

}
}

The "Abstract Function" test used a FunctionServer object to evaluate Sqrt-

Product. The "Function Delegate" test evaluated a SqrtProductFcn delegate. The

"FunctionServer" test invoked the SqrtProduct method of a static variable of type

FunctionServer. The "DelegateServer" test invoked a static delegate variable of del-

egate type SqrtProductFcn.

3.6 Simulation Pipeline

The typical architecture of a simulation engine follows a particular execution pattern

(sometimes with recursion):

" Input

" Simulation

* Output

The simulation pipeline in this work is structured around a simulation-driven

environment. This idea emphasizes the centrality of the simulation in processing,

slaving processes like visualization to the simulation process. The design also allows

several custom interfaces for application developers to attach their own code and

assemblies to the application. For extension developers, the simulation pipeline is

considered inviolate outside of the custom interfaces provided.

Though constrained by the rigid nature of the simulation pipeline, extension de-

velopers are given access to a fairly extensive range of features to change, including:

implementation of new neighbor-sorting algorithms, creation of contact laws, inser-

tion of new geometric primitives for representing bodies, design of contact handling

designs, and application of parallelization components. These components will be

discussed in greater detail in the following sections of this chapter.
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Figure 3-5: Diagram of the simulation pipeline.
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Figure 3-6: Overview of the order of evaluation during time-stepping. External meth-
ods or actions can be attached to the timestep by attaching to the TimeIncremented
and SimulationStopped events.
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Figure 3-7: Description of the operations during the timestep update.
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Figure 3-8: Description of the operations during the main timestep method.

The design of the input protocol for the DEM3D application was designed to be

flexible to accommodate a wide range of common user needs; however, emphasis is

placed on the user-friendly Microsoft Excel spreadsheet input format. The list of

supported general system input formats include:

" Microsoft Excel (.xls)

" Matlab (via automation interface)

" Database (must adhere to specific DEM3D schema)

DEM3D also supports the importation of polyhedral boundary conditions, includ-

ing the following formats:

" 3D Studio Max (.3ds)

" Virtual Reality Markup Language - VRML (.wrl)
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* Proprietary text format: vertex number;vertex list [comma delimited];face num-

ber;face list [comma delimited]

The system inputs allow for the specification of geometric bodies, materials, and

simulation properties via a structured format. Currently, a Microsoft Excel spread-

sheet or an interface to the Mathworks Matlab application can provide system spec-

ification data. In Matlab, input must be specified in a structure with a particular

name.

The interface to external applications is extensible by the architecture developer.

The Converter class is designed to provide abstraction to inheriting classes to sup-

port new types of data-providing applications. The properties of the user interface

elements are also not hard-wired and can be specified at run-time; that is, the mapping

of particular members in the user interface to the internally represented elements can

be specified through meta-data files in eXtensible Markup Language (XML), which

adhere to a schema file (XSD).

Support is also provided to convert to and from the proprietary format used in

LAMMPS [98], an open source molecular dynamics (MD) application, which has been

modified to provide limited DEM simulation capabilities.

Data is returned from the simulation in 2 main ways:

" Database (discussed in a later chapter)

" Text-based format

The database support for output is highly desirable from an analysis perspective.

This thesis focuses on the contributions made to analysis of DEM data through cou-

pling with a database. The DEM3D architecture provides a rich set of abstraction to

allow access to a variety of data sources that are not typically thought of as databases.

The discussion of this part of the architecture is given in Appendix A.

The text-based formats include a flavor of XML developed for DEM as well as

proprietary tab-delimited formats. The tab-delimited formats are divide data files by

body ("ParticleBasedText") or by time slice ("TimeBasedText").
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3.7 Contact Detection

Finding contacts within an n-body system is an 0(n2 ) operation in the naive case.

Several improvements for geometrically based systems have been developed. This

section will investigate the different contact detection algorithms and then describe

the contact detection algorithm implemented in this software package. Here "contact

detection" is taken to mean the process of reducing the pairs checked for detailed in-

tersection. In other texts this is known alternately as "spatial reasoning" or "neighbor

sorting".

The first improvement to the most naive 0(n2 ) algorithm is to realize that for any

two objects 01 and 02, if 01 is on contact with 02 then 02 must conversely also be in

contact with 01. This is a simple observation but leads to the reduction of pair checks

by half (i.e., 0 (("21)). The more drastic improvements, however, have stemmed

from the reduction of the search space for any given object.

Many algorithms have focused on subdividing the model space into cells oriented

along the global Cartesian axes of the model space. Most simply this can be accom-

plished by using equal cells with dimensions equal to the largest dimension of any

object in the space. If objects are assigned to a cell (otherwise known as a bin) based

on the integer (floor operation) of the division of the geometric centroids by the

maximum dimension, then it is a simple proof ' to show that objects located more

than one cell away in any direction cannot contact an object in the cell.

Therefore, an object in a certain cell can only be in contact with objects that are

members of its own cell or its immediate neighbors. This results in a search of 9 cells

in R2 and 27 in R3. This operation is sensitive to object size, but for equally-sized

objects, the algorithm is of the order of O(n). In the extreme of polydispersity in

'Let a body oi be superscribed by a cubic box of side length 1; then each cell is, similarly, of side
length 1. For simplicity, let every body be in the space region Rpositive c R, where Rpositive(x, y, z)
defined on [x > 0, y > 0, z > 0]. Set the lower left corner of each bin as [EXower, ylower, Ziower] =
[I * i, 1 * j, 1 * k] for integer bins [i, j, k]. Taking the most conservative case where objects in non-
adjacent bins lie on the boundaries of the bin that lie closest to each other and have axis-aligned
dimensions of 1, such that, the closest points are at pi = 1 * (i + 1) - 6 and P2 = 1 * (i + 2 - 1),
respectively, where S -+ 0. The 6 infinitesimal offset is required to reflect that the floor operator
bins such that floor(l * x) = I for the open region x E [0,1). For the requirement of no contact

Pi < P2, or I * (i + 1) - S < I * (i + 2 - 0.5). This reduces to i - S < i, which is strictly true for all i.
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size distribution, the algorithm may degrade to O(n 2 ). This algorithm is known as

the Cell-Verlet algorithm and is commonly used in many molecular dynamics (MD)

implementations.

The NBS (no binary search) algorithm [80] expands on the Cell-Verlet algorithm

by introducing an efficient linked list approach, to avoid checking between empty cells,

and a reduced neighbor-checking mask, which results in a search of 5 cells in R2 and

16 in R 3 . The algorithm scales as O(n) with a coefficient of 16/27 ~ 0.59 that of the

Cell-Verlet. Unfortunately, the NBS algorithm also suffers from similar degradation

under polydispersity as the Cell-Verlet algorithm and may exhibit O(n 2 ) scaling in

the extreme.

To remove the size dependence of the contact detection algorithm's performance,

a further refinement was proposed with the algorithm CGRID [94], which uses bins

based on the smallest dimensions of a particle, calculates object bin based on the low-

est extent of the object in each dimension, and uses an intelligent marching algorithm

combined with a lowest ordinate starting point and a cataloging operation to retain

objects larger than the bin over multiple cells. The effect of this is to allow objects

to belong to multiple bins without the overhead associated with determining the ad-

dressable cells and storing the object in multiple bins. The bin length is adjustable to

optimize efficiency for specific systems. The CGRID algorithm reduces the mask size

to 4 cells in R2 and 8 cells in R3 , which improves the performance of the algorithm

at the boundaries and improves the scaling of the memory requirements as the algo-

rithm is applied to dimensionally increasing problems. The CGRID algorithm scales

as O(n) irrespective of poly-dispersity; however, the constant coefficient is necessarily

much greater than that of the NBS algorithm.

DEM3D allows for the implementation of arbitrary contact detection algorithms.

Currently, the contact detection algorithms implemented in the base application are

a naive 0(n(?21)) algorithm, DESS [95], NBS, and CGRID. In addition, the appli-

cation offers an interface, INeighborSorter, which allows for users to develop their

own algorithms. When classes are developed that implement INeighborSorter or that

inherit from the class DEM3D.NeighborSorter, they can be compiled into a library
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A)

C)

Figure 3-9: Illustration of masks and progression of algorithms along axis in the 2D

case for A) unmodified Cell-Verlet algorithm, B) NBS algorithm, and C) CGRID.

Note that in case C) the bins have a side length of the smallest body
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and placed in the user directory. At run-time, the AssemblyManager object is tasked

with discovering the user-created assemblies and exposing them to method servers in

the application through a reflection-based query interface. This is portrayed as C#

code as follows:

using System;

using System.Collections;

using DEM3D;

namespace DEM3D.NeighborSorting

{
/7/ (summary)

/// Summary description for INeighborSorter.

// ( summary)

public interface INeighborSorter

{
/7/ (summary)

/7/ Initialize method is called before the neighbor sorter is used and

/7/ is used to initialize the INeighborSorter class instance

/7/ (/summary)

/7/ ( param name="particleList") Current bodies(/param)

/7/ (param name="numdims")Dimensions to sort(/param)

void Initialize(ArrayList particleList, int numdims);

/7/ ( summary)

/7/ UpdateAndForm method is used to update particle extrema and then

/7/ populate the neighbor sorter object.

/7/ (/summary)

/7/ (param name="particleList")IContact objects(/param)

/7/ (param name="neighborList")Neighbor list to populate(/param)

void UpdateAndForm(ArrayList particleList, NeighborList neighborList);
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// ( summary)

/7/ UpdateParticleNumber is used to update the neighbor sorting object

/7/ if the number of particles in the system changes.

/7/ (/summary)

// ( param name="particleList")IContact objects(/param)

void UpdateParticleNumber(ArrayList particleList);

}
}

From the above declaration, it should be noted that there are facilities for memory-

based contact detection algorithms as well as initialization and updating methods.

Since the requirements vary between algorithms, not all of these methods must provide

functionality for every algorithm.

3.8 Particle Geometry

Representing computational geometry in a generic manner is a non-trivial task due to

the varied nature of representations. Geometry can be viewed from several different

perspectives, and it is the goal of the DEM3D shape definition to allow for the greatest

variety of representations without sacrificing the efficiency of the simulation pipeline.

To this end, a generic primitive base is allowed while an additional constructive

geometry approach is taken for the formation of especially complex assemblies.

All primitives in the DEM3D application adhere to several interfaces based on

requirements of different components in the simulation:

" INamed - for uniquely identifiable bodies

" IComparable - for determining a consistent ordering

" IFormattable - for string-based output formatting

" IWrite - for string-based output
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e IEnergy - for determining tenergy metrics for the body

" IExtrema - for axis-aligned bounding box determinations as needed by contact

detection algorithms and various contact resolution schemes

" IContact - for geometrically interacting bodies considered to be in physical

contact

Because the abstract Shape class implements the above-mentioned interfaces and

offers many of the methods required across general primitives, it is advantageous to

derive new primitives from this class.

3.9 Geometric Primitives

Several primitives have been developed for use in DEM3D and are available in the

release version:

" Sphere

" Ellipsoid: including contact resolution algorithms for ellipsoid-ellipsoid interac-

tion which are detailed in Chapter 4

" Pseudo-ellipsoid: a prolate spheroid approximation using the draftsman's 3-

arc approximation of an ellipse rotated about a central axis; this also includes

contact resolution algorithms which are detailed in Section 4.2

" HollowCylinder: a boundary element formed from the geometric difference of a

cylinder and R3

" HollowSphere: a boundary element formed from the geometric difference of a

cylinder and R3

" Plane

" Polyhedron: a boundary element of triangular facets with edge and vertex con-

nectedness, which is detailed in Chapter 8
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3.10 Contact Resolution

In this thesis "contact resolution" is taken to be the process of determining the de-

tailed contact condition between two primitives. This is also known as "intersection"

and "detailed contact" in other texts. For contact resolution, two methods are re-

quired by the IContact interface:

public bool InContact(< ClassName > otherBody)

public bool DetailedContact(< ClassName > otherBody)

As implied by the method names, these methods require that every IContact class

implementation provide answers for whether another IContact class implementation

is geometrically interfering (InContact) and what the detailed contact condition with

another IContact class implementation is (DetailedContact).

Unlike much of the DEM3D architecture, the contact resolution framework has

been significantly influenced by the choice of programming language. Because DEM3D

is written in C# and C# is a "type safe" language (i.e., it requires that every data

object be strongly typed), every shape pair interaction type must be defined for every

IContact implementing class. The minimum theoretical complexity of the definition

of contact resolution irrespective of programming language is 0(n2 ), where n is the

number of interacting body types (i.e., IContact implementing classes). The imple-

mentation in this application requires twice the number of methods as the minimum

theoretically required, though, this should be easily remedied with the forthcoming

release of Visual Studio 2005. The extra difference between the minimum theoretical

complexity is often very simply defined with a method of the following form, where

the shape variable is of a type that has a definition for the pairwise contact resolution

algorithm:

public bool DetailedContact(<IContact implementing type> shape)

{
return shape.DetailedContact (this);

}
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Figure 3-10: Contact handling protocol used in DEM3D

In the base Shape class, DetailedContact is implemented with a default contact

handling protocol that uses a ContactList class to manage the contact pairs "owned"

by the body. The ContactList object determines whether a contact detected at a

timestep has been detected previously, in which case it instructs the extant Contact

derived class instance to update based on the new contact information stored in a

ContactInstantiator class instance. If the contact is completely new, a new Contact

derived class instance is created and added into the ContactList instance's list of

contacts. This internal list may or may not be sorted depending on the length of the

owned contacts, which allows an internal algorithm to determine whether the cost of

sorting is offset by the benefit of binary search. Also, the Contact derived class used

to initialize new contacts can depend on the type of particle in the system; a smooth

particle hydrodynamics (SPH) point will, for instance, manage SPH contacts, which

are a fundamentally different type of "contact" than a physical contact between a

pair of solid bodies. The protocol for handling contacts on a per timestep basis is

shown in Figure 3-10.
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3.11 Contact Hierarchy

The design goal for contacts has been to represent not simply a spring-dashpot contact

between spheres but to provide a framework around which generalized interactions

between compactly supported entities could be created. This allows the framework

to approach general discrete (or particle) modeling approaches with little alteration

to the code in general and no alteration to the core of the framework. It is also

designed to assure backward compatibility to retain the efficiency and capabilities

present in previous builds. Accommodating these requirements, however, is non-

trivial, requiring an architecture that is extensible and efficient.

Realizing this design goal has centered to a large extent around the handling of

contacts. It is generally accepted that contacts control the scaling of the simula-

tion, since the number of contacts often far outnumbers the number of bodies. For

the simulations described later under the pharmaceutical modeling (Chapter 9) and

heap base stress distribution (Chapter 6) studies this is especially true, as both of

these types of systems often involve dense granular materials with non-unary average

coordination number.

Contacts are represented in DEM3D through a hierarchy of classes representing

the different layers of abstraction of interest for DEM analysis. The generic contact

types included currently in DEM3D are: point-to-point, multi-point, and potential

interactions. Each of these generic types must also support 1 or more contact laws

(e.g., a simple spring-dashpot interaction law for contacting solids).

3.12 Force Resolution

To resolve the forces present in an interaction (contact), a range of contact laws also

needs to be accommodated. For this thesis we take the contact law to mean the

algorithm used to accomplish force resolution. The contact laws currently include a

stochastic implementation of the JKR model [44] of cohesion (which will be discussed

in detail in Section 7.3), a simple spring-dashpot idealization for locally deforming

68



elasto-plastic physical contacts, Hertz-Mindlin physical contact [72], Hertz-Mindlin-

Deresewiecz [73] physical contact, and smoothed particle hydrodynamics (SPH) "con-

tact" (though, more technically this is a type of quadrature between integration points

evaluated for a compactly supported potential interaction).

The minimum information required to specify a contact are the two interacting

entities. There are several properties of a contact, however, that are commonly com-

puted to determine whether a contact should be created. These include the contact

normal, the contact point, and the geometric overlap. These quantities are often

required by a force resolution algorithm, and though these quantities are derivable

from the two interacting entities, they are are typically computationally costly to

determine and should not be calculated redundantly (i.e., both during contact reso-

lution and force resolution). Because of this, the contact normal, contact point, and

geometric overlap have been included in the contact law method signature.

Also, every degree of freedom must be captured in the contact law output of the

contact law method. Additionally, because the contact law is typically an anisotropic

response depending on the direction (tangential to the surface or normal), it is also

useful to separate the tangential force components from the normal force components.

Therefore, the output captures the normal force, tangent force, and moment vectors.

3.13 Contributions

This chapter offers an extensible, maintainable, user-configurable and verifiable frame-

work for addressing a broad range of numerical problems in granular mechanics. Ex-

amples in capturing behavior of powders in arbitrarily-shaped blenders, as well as

the representation of non-spherical elements are all equally possible in this frame-

work. The framework also represents more general particle methods in the form of a

smoothed particle hydrodynamics (SPH) extension to the original framework, which

was added as an integration point primitive just as a spherical body would have been

defined without alteration to the original framework. Finally, this thesis has offered

a flexible testing framework in Section 3.2 for providing both user and (limited) func-
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tional testing of the application as well as a platform for benchmarking both the full

application as well as components and algorithms within the application.
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Chapter 4

Ellipsoidal Geometry

This chapter and Chapter 7 on multi-resolution surface representation address issues

of representing particle geometry efficiently. This chapter provides two geometric

formulations to represent smooth non-spherical particles as quadratic surfaces. The

first is restricted to resolving contact between approximations of a prolate spheroid

(an ellipsoid where the minor axis lengths are equal), and the second addresses general

triaxial ellipsoids. These formulations are compared with other proposed formulations

in the literature. An order of magnitude decrease in the computation time is achieved

in resolving contact between both prolate spheroids and triaxial spheroids.

As indicated in the introduction, the main drawback to using non-sphere rep-

resentations for modeling particle geometry is the additional computational require-

ment. Accordingly, the formulations in this chapter are specifically designed to reduce

computational requirements as much as possible, both in terms of CPU cycles and

memory.

4.1 Overview

It was mentioned in the introduction that sphere-based methods are typically used as

a convenient idealization of particle shape. It is not certain, though, that discarding

topological features is valid in the context of the analysis performed with the sphere

assumption.
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The argument has been set forth that sphere systems can be used to simulate

geomechanical discontinua because it can capture the bulk density of the material.

Mitchell [75] notes that while the occupation of interstitial spaces creates a typically

higher density and lower void ratios, irregular particle shape tends to result in lower

density and greater void ratios, and that these two effects combine to present densi-

ties and void ratios that are close to those of an equivalent mono-sized sphere system.

Unfortunately, mono-sized sphere systems tend to organize into dense, ordered pack-

ings as the coefficient of friction decreases [35], which degenerates the validity of the

model in many ways. For instance, the stress-strain anisotropy of the material, a

fundamental property of soil, is lost, reducing the effectiveness of continuum methods

for analysis.

Even for sphere systems that follow a random distribution of sizes, this problem

can arise under dynamic excitation of the medium, such as in seismically excited soils

and in mixed particulate matter found in the pharmaceutical and mining industries. It

has been commonly observed that particles tend to segregate into mono-sized regions

due to free surface segregation (in surface cascades), interparticle percolation (in

failure zones), and particle migration (high strain rate regions) [11].

In general, spheres have several drawbacks that hinder their ability to capture key

behaviors of real particle systems that contain non-spherical particles. The constant

radial geometry constrains the center of curvature for every point on the surface of the

sphere to be collocated with the centroid, which constrains all normal forces to pass

through the centroid and precludes particle interlocking in the gross sense. Because of

the normal forces always passing through the centroid, spheres cannot exert resistive

couples, which can lead to excessive rolling when subjected to small perturbations.

Excessive rolling results in a proportionally higher transfer of energy to rotational

kinetic energy than would be observed in systems of aspherical particles. Some nu-

merical implementations address this shortfall by introducing couples artificially by

either perturbing the normal force direction so that it does not pass through the cen-

troid (random asphericity) or by adding a "rolling friction" factor [121] to dampen

pathological rolling.
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Some of these problems have been overcome by clustering a number spheres to-

gether to form a non-spherical shape, as adopted in studies by Jensen [43], Favier

[29], Vu-Quoc [122], and Mustoe [82]. Typically the discretization is coarse (7 spheres

or less) in order to achieve fast execution times. However, the clustering is only C'

continuous and, therefore, introduces discontinuous surface normals that lead to com-

putational problems especially in contact resolution with polyhedral elements. Favier

[28] also notes that resistive behavior induced by the C' continuity of the surface

can reach as high as 40% of the normal force between such clustered sphere parti-

cles, restricting the types of materials such particles can accurately represent. In this

manner, ellipsoids modeled are typically axi-symmetric, which creates an anisotropic

friction that acts along the axial direction of the surface (as opposed to the transverse

direction), adding further complications in adapting these shapes for use in modeling

physical particles. Experiments have also been conducted with shallow cylindrical

ellipsoidal metal punches in a narrow channel depth to compare the behavior of nu-

merically simulated 7 disc ellipsoid approximations with ellipsoidal shapes and found

poor agreement between the numerical and observed system behaviors [28].

This discussion is not meant to suggest that any use of spheres in modeling gran-

ular material is invalid. Sphere-based models have been used with great success by

Vu-Quoc [122] to validate contact laws between spherical glass beads. Also, in pow-

der angle of repose studies, disk elements have been used to accurately predict the

internal angle of friction for lactose. For materials where the cohesive/adhesive in-

teraction dominates the behavior (typically, this also indicates spheroidal material),

a sphere-based DEM formulation is often used [117], as it is in this thesis to probe

the behaviors of blended cohesive pharmaceutical powders.

The point of the previous discussion is to highlight the limitations of spheres in

capturing some behaviors, such as granular flow from hoppers and mixing in blenders.

It requires caution when assuming topological simplifications of a particle for use

in a granular model. The following discussion will make this point more clear by

developing a framework to determine the topological simplifications that are allowable

for a given application.
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Figure 4-1: Decomposition of the prolate spheroid approximation into its 3 constituent

parts (spherical caps and a clipped toroidal body).

4.2 Prolate Spheroids

The prolate spheroid approximation (PSA) is the rotation of the draftsmen's 3-arc

approximation of the ellipse rotated about a central axis. Using this primitive in

DEM was first proposed by Wang [127] and refined by Johnson [45, 46] and Kuhn

[56]. The primitive is composed of 2 spherical caps fit onto the top and bottom of

a clipped torus as illustrated in Figure 4-1. This thesis forwards a new method for

determining the contact condition between two such bodies; the method is both more

robust and more efficient than previously developed methods as shown in Section 4.4.

There are several lower level optimizations possible in refining the algorithm in

[127] that are fairly trivial and have been implemented in the code associated with

this thesis. For the benchmark comparisons in this thesis, the results are after the low-

level optimizations have been implemented for the previous algorithm [127] and will

not be discussed further here. The major difference, however, between the algorithms

proposed above is in the determination of contact between the middle sections of two

PSA's (as shown in the right hand part of Figure 4-2). Before addressing this point,

determining which contact case occurs and resolving the other contact cases will be
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Figure 4-2: Cases of contact between PSA primitives: ends (left), end-middle (center),
and middles (right).

reviewed.

To determine the contact case, the following equation is evaluated (note: this

equation instead of that given in [127] allows us to evaluate a simple dot product

instead of a transcendental function):

CoG - CG i  CGmiddlei
_4 -C, - Pi ;> Zmide (4.1)

|CoGs CoGi I radiusmiddlei - radiusend,i

where CoGi is the center of gravity of body i, P? is the directional vector for body

i, CGmiddlei is the distance of the vertex of the middle section are for body i from

the major axis, radiusmiddle,i is the radius of the middle section arc of body i, and

radiusend,i is the radius of the end cap of body i.

If the equation evaluates false, the end cap of body i is involved in any possible

contact; otherwise, the middle section is involved. Evaluating the equation for both

bodies in the contact pair determines which case in Figure 4-2 applies.

The contact cases may all be reduced to determining contact between 2 equivalent

spheres, as shown in the following discussions of the contact cases. Because of this,

the method offered here has been named the Equivalent Spheres Method.

If the contact involves the end cap for both bodies, then the problem reduces to the

trivial determination of intersection between two spheres. If the following evaluates

false, there is no contact; otherwise, contact occurs:
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radius radiusend,i + radiusendj (4.2)

CoGendj CoG + lEO, ±CGend, 01] (4.3)

distance = CoGendj - CoGend,i (4.4)

radius2 - distance -distance > 0 (4.5)

where k- is the rotation transform matrix for body i.

If the contact involves the end cap and middle section, then the problem also

reduces to the trivial evaluation of contact between spheres. That is, if the following

evaluates false, there is no contact; otherwise, contact occurs (note: the form of the

following equations are identical to the above equations for the last two equations;

that is, this is sphere contact):

radius = radiusend,i + radiusmiddlej (4.6)

COGend,i CoGi + AR[[0, ±CGendi, 0] (4.7)

CoGmiddlej CoGj + I?>(CGmiddlej -P) (4.8)

distance = COGniddlej - COGend,i (4.9)

radius2 - distance -distance > 0 (4.10)

Finally, the case of middle section contact must be considered; this is analogous

to the other cases in that two equivalent spheres are determined and then checked for

intersection. If the following evaluates false, there is no contact; otherwise, contact

occurs:
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radius = radiusmiddle,i + radiusmiddlej (4.11)

COGmiddlej= CoG + Ri(CGmiddlej - Pi) (4.12)

distance = CoGmiddlej - CoGmiddle,i (4.13)

radius2 - distance - distance > 0 (4.14)

All of the cases from Figure 4-2 have been detailed above; however, there is a

missing piece. We have all of the information we need except the value of the direc-

tional vector Fi. This vector is necessary for not only determining which contact case

candidate is possible but also for determining the position of the equivalent sphere

for the middle section (if the middle section is involved in contact).

Determining this directional vector is handled differently by the different algo-

rithms (i.e., [127, 45, 46, 56]). Wang [127] uses a simple sub-partitioning of the great

circle about the centroid of the PSA perpendicular to the major axis. The algorithm

then tries to determine the points at a maximal distance to determine the point of

smallest potential as being on the opposite side of the circle. This does not, how-

ever, necessarily achieve the desired result. Interestingly, the error is subtle and is

not exposed through the trivial cases of contact between co-planar and orthogonal

bodies.

Why is this? From first glance, the approach seems reasonable, but the method

does not guarantee that the contact vector pass through the axis of rotation, which

is a requirement of any surface of rotation. For co-planar and orthogonal bodies,

the method will coincidentally pass through the major axis of both bodies; however,

for other rotations, the result will diverge from the true solution. In this thesis, we

provide for guaranteeing that the contact vector pass through the major axis of both

bodies. The approach here not only guarantees correct contact but performs as well

as the previous algorithm, even though it evaluates a second constraint.

The general approach is illustrated in Figure 4-3. This same approach is used in

other iterative approaches, and has been abstracted as a general process in the code
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Figure 4-3: Flow diagram for determining the direction vectors Pi and P.
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Figure 4-4: Illustration of the iteratipn method for determining geometric intersection

of the middle sections for a pair of PSA's

using a concept of contact servers and contact objects, which can be stored for reuse

in successive timesteps. This can reduce the computational requirement considerably.

The initialization of the values is derived from the component of the centroid-

to-centroid vector orthogonal to the major axis as shown in Figure 4-4 and defined
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Figure 4-5: Illustration of the iteration method for determining geometric intersection
of the middle sections for a pair of PSA's

below:

d= CoGmiddie,j - CoGmddle,i

di = Rid x [1, 0, 0] x [1, 0, 0

dj = -Rd x [1, 0, 0] x [1, 0, 0]

di-
Pi -

|di|

d|

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Refinement is accomplished through a geometric iteration as shown in Figure 4-5

and defined below:

d = CoGmiddlej - CoGmiddle,i

di=Ri(d+ CGmiddle * RTEj) x ii x ii

dj = 4R(-d+ CGmiddle * ki7j x zjx

P-
Pi = --#|di|

d|

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

The simplicity and convergence properties of this algorithm help to bring the
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computational requirements down. The quantitative description of this reduction

will be covered in the last section of this chapter.

4.3 Triaxial Ellipsoids

Addressing the problem of resolving contact between general triaxial ellipsoids is a

more difficult problem. The contact must no longer necessarily pass through the

major axis of the body, which loses one of the constraints on our problem. However,

there are other techniques that become more attractive as constraints on the solution

space are removed. Before looking at a more appropriate algorithm, it is instructive

to analyze previous algorithms.

Ouadfel [92] uses a somewhat complicated approach to address general quadrics.

An example is given for triaxial ellipsoids where an initial constraint on the contact

is obtained through the projection of the intersection of the bounding spheres of the

ellipsoid pair onto the candidate ellipsoid. This is then used as a means of finding a

candidate set of curves for determining the contact area. This approach is used when

exact contact volumes are required and will not be reviewed further here.

Lin and Ng [65] rely on the minimization of the potential function to determine

the intersection of two ellipsoids. This minimization results in a 6 degree polynomial,

where the zeros of the polynomial are used to determine the point of contact. As

with any solution of multiple degree polynomials, there are issues here not only with

computational intensity but also with stability of the algorithm for pathological and

ill-conditioned polynomials resultant from the approach.

This thesis adopts the idea of using the potential function as a means for deter-

mining a contact point between two ellipsoids. Borrowing concepts from work on the

parameterization of the mapping of convex surfaces using a 2-variable parameteriza-

tion, this section introduces a new Directed Surface Walk method for iterating toward

a solution for the contact point.

The method is initialized by intersecting the centroid-to-centroid vector with the

host surface and then restricting the searchable surface to the hemi-ellipsoid created
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a

Figure 4-6: Initialization of the Directed Surface Walk algorithm for determining
contact between general triaxial ellipsoids; the red dot represents the true contact
point, the green dot indicates the initial guess, and the red shaded area is the part of
the surface excluded from searching.

by the cutting plane perpendicular to the centroid-to-centroid vector, as shown in

Figure 4-6.

The intersection with the surface determines an initial point from which to walk

along the surface. An appropriate parameterization is to use a simple spherical co-

ordinate system, setting the radius parameter as a function of the 0 and q angular

parameters, which are used as the orthogonal directions along the surface of the el-

lipsoid. The equations for the 0 and q intersection of the centroid-to-centroid vector

with the host surface is given in the following equation:

d = Ri(CoGj - CoGJ) (4.27)

0 = tan-1 ( _ . (4.28)
d*-

= cos--1 ( k (4.29)
1dj

Using the initial 0 and # parameter values, a search range is established over the

hemi-ellipsoid centered at the point. The search range extends 1 in each parameter

direction, such that, the range becomes [ao - 2, ao, ao + 2] where ao is the initial 0
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Figure 4-7: Flow diagram for determining the 0 and q location of the contact point
along the surface.

and # parameter value. The step is illustrated in Figure 4-8.

The flow diagram for the iteration is illustrated in Figure 4-7. The Directed Surface

Walk scheme follows a simple decision each iteration: walk or reduce range. The

algorithm walks along the surface in the direction of least potential energy where the

potential energy is calculated with respect to the potential of the non-host surface as

shown in Figure 4-10. If the direction of least potential is at the current position, then

the search range is reduced by half as illustrated in Figure 4-9. Through iteration,

this algorithm converges to the potential minimum. Though it is unclear whether

the potential minimum identifies the most appropriate point as the contact point,

since it is not guaranteed that surface normals will match at this point. In practice,

though, it has been found that the resultant point is nearly indistinguishable from

the position where the surface normals are parallel [65].

To evaluate the potential with respect to the non-host surface, the non-host surface

must first be represented as a polynomial form of 3 variables (Cartesian coordinates in

the convective frame of the host surface). This can be obtained through the following

procedure:
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Figure 4-10: The walk decision for the Directed Surface Walk algorithm.

t = AB ^A (4.30)

= RB(COGA - CoGB) (4.31)
__1

7 = r 2  (4.32)

ai = [ti t] li ] [i, 2], 24 (4.33)

di[i,j] = ai -aj (4.34)

= Z 4 ~i(4.35)

where ri is the radius of the ith coordinate (i.e., i direction is 0, etc.), i is the

rotational transform matrix to transform from the convective frame of body A to the

convective frame of body B, ' is the translational transform vector to transform from

the convective frame of body A to the convective frame of body B, 4i is the polynomial

matrix for the ith coordinate, and 4 is the polynomial matrix representation of body

B in the convective frame of body A. The polynomial matrix 4 is the matrix necessary

for the following to be true:
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Figure 4-10: The walk decision for the Directed Surface Walk algorithm.

t= BRA (4.30)

C= RB(CoGA - CoGB) (4-31)
1

7i = 2  (4.32)
7 r2 i

ai = [i[i, 0], i[i, 1], i[i, 2], 24 (4.33)

4i[i,j] = ai -aj (4.34)

4 = E7i4i (4.35)

where ri is the radius of the ith coordinate (i.e., i direction is 0, etc.), t is the

rotational transform matrix to transform from the convective frame of body A to the

convective frame of body B, ' is the translational transform vector to transform from

the convective frame of body A to the convective frame of body B, 4i is the polynomial

matrix for the ith coordinate, and 4 is the polynomial matrix representation of body

B in the convective frame of body A. The polynomial matrix 4 is the matrix necessary

for the following to be true:
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[x, y, z, 1]q[x, y, z, 1], = Il (

At each iteration, the [ao - ', ao, ao + f] range values are used to acquire the

corresponding radius parameter and then the full spherical coordinate set is trans-

formed to Cartesian coordinates [x, y, z] using Equations 4.37, 4.38, 4.39, and 4.40.

These coordinates are then used in Equation 4.36 to determine which of 4 orthogonal

directions, [±q, ±] or current position, [0, #], has the lowest value of the potential

function for the non-host body, Il.

_ cos2(o)sin2(0) sin2 ()sin 2 (g) cos 2 (!)
P = V r2 + 2 + 2 (4.37)

x = p - sin(#) - cos(0) (4.38)

y = p -sin() - sin(0) (4.39)

z = p -cos() (4.40)

4.4 Contributions

The suite of algorithms presented in the previous sections extend DEM to address

the resolution of contact from the traditional sphere-based formulation to resolving

contact between general quadratic surfaces. Figure 4-11 illustrates the relative per-

formance of these different algorithms, using a log scale for time. As expected, the

more general the shapes to intersect, the more computationally intensive the task.

However, the developments in this thesis have helped to reduce the computational

requirements by 1-2 orders of magnitude.

As illustrated in Figure 4-11, the resolution of contact between general triaxial

ellipsoids as proposed by this thesis is an order of magnitude more efficient than that

proposed previously [65]. If the quadratic surface is restricted to prolate spheroids

(i.e., ellipsoids with minor axes of equivalent length), an algorithm has been offered

that reduces the computational intensity by another order of magnitude. Figure 4-11
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Figure 4-11: Comparison of the run-time per iteration for algorithms for resolving
contact between quadratic surfaces aligned along the positive x-axis.
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Figure 4-12: Comparison of the run-time ratio per time step for prolate spheroids
versus spheres in a simulation of particle deposition from a point source.

also shows a four-fold performance gain by the prolate spheroid contact resolution

algorithm here over that in [127] for axially-aligned contact. It has also been shown

that [127] minimizes an incorrect energy function and will converge to increasingly

incorrect values as aspect ratio of the primitive is increased.

Because of the relative computational intensity of detailed contact resolution and

other parts of the simulation pipeline (e.g., results output, neighbor-sorting, etc.), in

practice the differences between spheres and prolate spheroids are relatively minor. A

simulation of the formation of granular heaps using spheres and prolate spheroids has

been performed using the DEM3D batch application, and the relative performance of

each simulation is shown in Figure 4-12, with a mean ratio of prolate spheroid system

to sphere system runtimes of 1.23.

This new capability to address problems using aspherical geometries in a compu-

tationally tractable manner is an important step toward capturing the effect of shape

on the behavior of granular systems. The first order effect of shape has been noted by

many researchers as noted in the introduction to this chapter, and this is reinforced in

the following section describing work performed analyzing the base stress of granular

heaps.
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Chapter 5

Integration of Body Rotation

Solving the underlying physical equations governing a system is a fundamental re-

quirement of any simulation architecture. Modeling the physical behavior of a granu-

lar material problem hinges on the ability to solve the ordinary differential equations

that govern the system.

In the case of discrete element modeling, for translational motion at each time step

a system of decoupled ODE's of the form of Newton's Second Law must be solved:

miu (t) + cin t(t) + ki ui(t) = fi(t) (5.1)

which can be written as:

-fi(t)

_ (t) = - 2(wiz (t) - w2U (t) (5.2)

where the subscript i indicates the particle index, m is the particle mass, c is a

damping coefficient, k is a stiffness, the fundamental frequency w = , and the

mass-proportional damping coefficient = 22v /k7m 2miw'

For rotational motion, the complication of maintaining consistency between local

and global reference frames is added. This will be discussed further in the subsection

on quadrature for rotational motion. Together, translational motion and rotational

motion define the 6 degrees of freedom extant for each particle in a DEM simulation.
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There is no constant definition of fi(t) given here, since the specific function is

determined by the contact law applied. Contact models are described in the next

section. Because of the assumption of Newtonian mechanics, there is also a scale (in

the range where quantum effects can no longer be assumed negligible) at which this

type of modeling will be invalid if not modified.

This second order ODE can be re-written in state space formulation as a set of

first order ODE's, where we let v = i:

+ "i (5.3)
L 1 0 JLUJ L 0

The analytical solution to the case where f(t) = 0, is:

u(t) = eCd XOcosWdt + (io -0no) sin(Wdt (5.4)

where Wd = Wn V/1 - (2.

Unfortunately, the equations that need to be solved in DEM are not as simple

as this. The forcing function f(t) may not be f = 0, Vt and may contain spring

and damping terms that are functions of time and/or other particle states. Also,

stiffness and damping only act when two bodies are in contact, requiring a nonlinear

stiffness and damping term (i.e., stiffness and damping terms for contact disappear

when bodies are not in contact).

There are several numerical tools available to integrate first order ordinary differ-

ential equations. These can be divided into implicit and explicit algorithms. Previous

research has shown that multistep algorithms (also known as implicit methods or, for

specific algorithms, predictor-corrector algorithms) offer little gain in accuracy for

discretized simulations and incur a substantial computational cost. These methods

will not be discussed further here. Instead, we will investigate Taylor series expansion

methods that belong to the set of explicit numerical methods, which include the com-

mon Euler and Runge-Kutta methods. These will be the focus of the discussion on

numerical methods. For further reading any number of elementary numerical analysis
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texts may be consulted, such as Fausett [26].

5.1 Overview of Quadrature

As discussed in the previous section, explicit time integration schemes are preferable

for a DEM system. This is due in large part to the large number of degrees of

freedom with highly dynamic nodal connectivity that are present in a DEM system,

which make implicit (multi-step or iterative) integration algorithms impractical to

use. Moreover, the discontinuous nature of the ODE's being solved may lead to less

accurate results using implicit schemes versus explicit.

The most common explicit time integration algorithms are of the Taylor series

expansion class. In the Taylor series expansion, the derivative of the function is

expanded into a summation of higher order derivatives. The general Taylor expansion

is of the form:

X(t + At) = (") (t) (tn$ (5.5)

where n > 0

Substituting, x(t) it(t), the equation becomes:

it(t +At) = u(n (t) (At)n (5.6)

where n > 0 and ii(t) f (u, it) = - w>(t) + 2(owii(t)

The corresponding approximation is then:

in(t + At) = it(t) + Atf (u(t), it(t)) + h.o.t. (5.7)

u(t + At) = u(t) + Ati(t + At) + h.o.t. (5.8)

There is some value r for u(r) such that 5.7 and 5.8 can be written exactly. Using

the Central Value Theorem, t < r < (t + At), and 5.7 and 5.8 can be rewritten
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without neglecting the higher order terms (h.o.t.) as:

At 2

it(t + At) = it(t) + Atf (u(t), it(t)) + 2f(U(T), it(T)) (5.9)
2

At 2

u(t + At) = u(t) + Atit(t + At) + 2 ii(T) (5.10)
2

This can now be used to design a numerical approach to solving ordinary differ-

ential equations (ODE's). Since we do not know T, we cannot know ii(T), and the

ii(T) term can be written as -O(At), the local truncation error.

As an illustration, rewrite 5.10 as:

i u(t + At) - u(t) ± E(At) (5.11)
At

This is the form of the Forward Euler algorithm. The order of the E term is 1,

indicating this as a first order algorithm.

5.1.1 Multiple Order

In the previous section, the Forward Euler algorithm (5.11) was developed as an

illustration of designing a numerical integration algorithm from the Taylor series

expansion. Because of the magnitude of the local truncation error, the first order

methods perform poorly over several timesteps and are rarely used in simulation. For

the DEM formulation, a higher order algorithm is needed. This section will investigate

higher order numerical integration (quadrature) methods.

Rewriting 5.10 using staggered half steps, yields a more useful approximation of

the derivative known as the central difference, or leapfrog, algorithm:

it(t + At) = U(t + 2) - (t - + O(At 2 ) (5.12)
At

or, rewritten for our purposes:

At At
u(t + ) = u(t - ) + At -it(t + At) (5.13)

2 2
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To achieve higher orders of accuracy requires a higher order algorithm. The

Runge-Kutta family of algorithms satisfies this requirement. Rewriting 5.10 using

an extra higher order term yields:

u(t + At) = u(t) + (A + B)Atit(t + At) + BPAt2 i(T) (5.14)

which imposes the restrictions that A + B = 1 and BP = 1. This can be rewritten2

to solve for it(t + At) in a 2nd Order Runge-Kutta algorithm as:

1 ut +At) - u(t)-
it(t + PAt) = u ± - Au(t) + (,At 2 ) (5.15)

B A t

Using the arbitrary coefficients A = B = 1 leads to the modified Euler algorithm:

it(t + At) 2 u(t + At) - u(t) it(t)At + -=2 2 (At 2 ) (5.16)At 2

These methods are of sufficient order for the numerical integration of motion in

DEM simulations. However, integrating rotational motion requires extra consider-

ation in the formulation and greater precision. To accomplish this, the 4th Order

Runge-Kutta algorithm will be introduced in the next section.

5.2 Quadrature for Rotational Motion

The integration of rigid body motion in 3-D space is a nontrivial task that is ag-

gravated by the discrete temporal nature of most multi-body simulation approaches.

Updating the rotation matrix over time through successive matrix multiplications

can lead to error accumulation. Error accumulation, in turn, can lead to a loss of

the orthogonality property of the rotation matrix. Matrix updates can also lead to

singular matrices or to "gimbal lock" which results from the alignment of two of the

three axes of rotation.

This is often solved through the use of quaternions, which offer a wealth of attrac-

tive attributes, including non-singularity under rotation, and ease of renormalization
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between timesteps to avoid orthogonality losses. Moreover, because there are only 4

degrees of freedom (instead of the 9 found in the rotation matrix), there are fewer

operations to carry out to update the rotation of a body. Indeed, the quaternion

requires only 26 flops to multiply, compared to 81 flops for matrix multiplication.

Conversion from quaternion to orthogonal rotation matrix requires only 24 flops.

Much of the work in integrating the 3D orientation equations for rigid body sys-

tems has been performed to address problems where there are large magnitude rota-

tions as in aerospace applications. For instance, a Hamiltonian formulation for the

equations of motion has been proposed that uses quaternions (Euler parameters) to

eliminate the problem of singularities [106],[114]. To take advantage of the attractive

properties of the quaternion, Simo [108] has formulated a quaternion-based approach

that utilizes an exponential map of the angle magnitude coupled with Newmark's

numerical integration method to calculate the quaternion angle produced during the

timestep. Utilization of the Newmark algorithm is also the basis for several other

approaches in aerospace rigid body dynamics integration (e.g., [52 and [61]).

For discrete element modeling (DEM), on the other hand, there are typically no

large angle displacements between time steps. The formulation of DEM typically uses

fixed timesteps that must be relatively small to accurately resolve inter-body contact.

Munjiza [81] introduces the assumptions of small angle displacement and small dura-

tion timestep into a 3D spatial orientation integration algorithm. These assumptions

allow for computational efficiency to be gained by simplifying the expressions for

trigonometric functions. However, matrix multiplication, not quaternions (or Euler

parameters), are used in [81]. Though a method of preventing gimbal lock is offered,

the operation is less efficient computationally and leads to stable, but incorrect, an-

swers, as shown in this chapter.

is not only less efficient computationally than quaternion operations, but it can

also lead to breach of the orthogonality constraint and the "gimbal lock" phenomenon.

This section unites the bodies of work in quaternion multiplication with the as-

sumptions of small angle disturbance by offering a quaternion-based rotation inte-

gration algorithm based on the 4th order Runge-Kutta algorithm that assumes small
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rotation. The algorithm is also compared to the current methods for speed and accu-

racy as well as to an analytical solution of the simple precession of a prolate spheroid

about its major axis.

5.3 Rigid Body Rotation Background

Let the body have a set of coordinates fixed to a particular orientation of that body

called the convective frame with the coordinates:

( Ei E 2 E 3 ) (5.17)

Let another frame of reference fixed to a constantly translating point in space be

called the inertial frame with the coordinates:

( el e2 e3 ) (5.18)

As the body rotates and translates with respect to the inertial frame, the con-

vective frame and inertial frame can be related by a transformation matrix, A, such

that:

e=AE + (5.19)

where p is the location of the origin of the convective frame relative to the inertial

frame. If we take the convective and inertial frame origins to be collocated, O

(0 0 0 ), and:

e = AE (5.20)

The transformation matrix, A, is typically referred to as the rotation matrix. It is

an orthogonal matrix, such that, ATA =1. This necessarily implies that AT = A-'.

The problem of determining the rotation matrix as a function of time, A(t), is the

subject of this chapter.

Angular and linear momentum are conserved in a physical system. This postulate

forms the basis for determining the rotation and translation of a body.

95



Angular momentum is expressed by:

f(t) = 5(t) x 9(t) + (t) (5.21)

where Y(t) is the center of gravity in the inertial frame, #(t) is the total linear

momentum, and 71T(t) is the total spatial angular momentum relative to the center of

mass.

If the inertial frame is chosen such that the center of mass is at the origin of the

inertial frame, then we can assume that #(t) = 0, and the equation can be reduced

to:

J(t) = W(t)

I~) (t)G3(t)

(5.22)

(5.23)

where i(t) is the moment of inertia dyadic 1 in the inertial frame, and Wi(t) is the

rotational velocity in the inertial frame.

-(t) A(t)JAT (t) (5.24)

where j is the moment of inertia dyadic in the convective frame.

If we express the externally applied moments as M, then the conservation of

angular momentum principle can be expressed as:

(5.25)d,M -7 =r 7
dt

Taking the derivative of rotational momentum with respect to time, we have:

I(t)3(t) +- (t) x I(t)3(t) (5.26)

'The dyadic is a somewhat archaic term; such constructs are typically referred to by the general
class to which they belong, the tensor. In the case of a dyadic, it can be represented by a tensor
of type (1, 1). The dyadic, in its defense, leaves little room for ambiguity, as it denotes a linear
polynomial of dyads consisting of 9 components, that can be represented as a 3x3 matrix.
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If we express the externally applied forces as f, then the conservation of linear

momentum can be expressed as:

-- d
d =(5.27)dt

N= dt M-4(t) M ,(t) (.8

From this development, we can see that the angular momentum about the center

of inertia can resolve the rotational component of motion about the center of inertia

while the linear momentum equation describes the translational motion of the center

of inertia.

5.4 Notation

To reduce the verbosity of the mathematics in the rest of the chapter, this section

introduces symbols and operators. The convective frame of reference refers to the

so-called "body" frame of reference; whereas, the inertial frame is the global frame of

reference.

Rotational velocity in the convective frame:

W= AT5W(t) (5.29)

Rotational acceleration in the inertial frame:

d,
at = G(t) (5.30)

Rotational acceleration in the convective frame:

A(t) = A T d(t) (5.31)
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Vector-to-Skew Symmetric Matrix Operator:

0

--X2

Vector-to-Quaternion Operator:

q 0 = cos ( 1 )

2sin 2

2

(if 11 -1 << 1, then one must employ the Taylor series expansion):

x 2 X4 X6

+120 5040

Note: ( qg (MiI) 2 so this is a unit quaternion.

Quaternion-to-Rotation Matrix Operator:

R(( q0 q )) = A

q 0
2 + q 1

2

A = 2 q1q2 + q3q 0

qiq 3 + q2qo

qjq 2 - q3q0

2 2 1

q0 ±q2 2 2

q2q3 - qlqo

q1q 3 + q2qo

q2 q3 - q1 q0

2 2 1q0 + q3 2~

Quaternion Product Operator:

(ro - ) q= 0 q- 0) ( po P )

-X3 X2

0 -x1

X1 0

(5.32)

(5.33)

(5.34)

(5.35)

sin(x) = 1
a;

. 2N

(N+1)!
(5.36)

(5.37)

(5.38)I
ro = p0q0 - p- q

r=po±q + o-+ x q0

(5.39)

(5.40)

(5.41)
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5.5 Overview of Current Approaches

The approach first used in DEM [22] and is adopted in other implementations [56] is

a second order central difference algorithm of the form:

Wt+1 = Wt-I + At (5.42)

t+I = Ot + Atwt± (5.43)

Perkins [94] mentions using quaternions for DEM in resolving rotation and pro-

vides a definition of quaternions but provides no quadrature algorithm. A quadrature

algorithm based on another rotational formula [38] is also used [66]:

(wX)t+i = (WX)-i + At E 2 -.j (5.44)

(wy)t= (- Iz + 2twx At (5.45)

(z) = _ - Itw 2At (5.46)

where

It = Ix - Iz, Iz = ly (5.47)

= Iz(wy)t-- + (It(WX)tIAt/2)(Lz)t_; + My At (5.48)

= Iz(wz)t_ i - (It(b )-1-At/2)(bz)t_1 + M2At (5.49)

Q = Iz2 + (It(wx)±I At/2) 2  (5.50)

Unfortunately, none of the aforementioned algorithms has been shown to preserve

either energy or momentum. In aerospace applications, the quaternion-based Hamil-

tonian approach is common for the integration of motion. To illustrate, ALGOC1 [108]

is an explicit integration scheme based on the Newmark Method. The algorithm is

shown to preserve both the norm of angular momentum and energy.

The approach for the primary iteration is fairly straightforward. A second-order

approximation of the rotation due to the rotational acceleration and a first-order

99



approximation of the rotation due to the rotational velocity are calculated. The re-

sultant rotation matrix is calculated along with a value for the rotational momentum,

where we let h be the duration of the timestep:

Wn+l =n + (1 -y)hln (5.51)

0= hWn + ( - ph2 A (5.52)

qo q =E[(] (5.53)

/-. K KoR4 q (5.54)
\ /n+j \o /n q

An+1 = R - K sol (5.55)

7nF+ 1 =An+ij n+1 (5.56)

Using the calculated value for the rotational momentum and the applied moment,

a value for the residual of the estimate can be calculated. If the residual lies beneath

a certain threshold, the estimate is used and time is progressed by re-entering the

primary iteration. Otherwise, the estimate is refined via a correction step.

Rn+= hfni,+f + iK - i+1 (5.57)

where,

n+a= (1 - a)n + amn+1  (5.58)

and

a = 'Y, oh <1 (5.59)
1, otherwise

if Rn+1 < tol,

An+i = + 1 - - An (5.60)
-yh + 1Y

and begin a new timestep at n+1 with the "Primary Iteration".

else,

Go on to the "Correction Step"

100



The correction step uses a tangent matrix to apply a direction to the residual and

adjusts the rotation matrix accordingly.

Let the tangent matrix be:

Kn+1 = An+ 1 [7jT (E)m
h matrix]

(5.61)

where the matrix subscript indicates that the parenthetical expression has the

"Vector-to-Skew Symmetric Matrix Operator" applied to it.

To calculate the linearization matrix, T (6), we do the following:

T 2

0 tan [1 - 0

where we use the following Taylor series expansion:

tan(x) x2
= 1 + -

x 3
2x 4

+±15
17x 6

315
62x 8

2835

The incremented rotation vector is given by:

A9 =R+,

KAq0 Aq ) = E [A6]

Now update the values calculated for timestep n+1 as:

K K Ag
/ +

q0 q 1q0

-i+1 -

oK
\

o Aq

[Ke
+ fh(i+)

An+1 = R (K
7n+1 An+1 Wn+1
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(5.62)

(5.63)

(5.64)

(5.65)

Aq0

0

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

A q

Aq)

Aq

( ))

Wn+1 = n+1



Finally, begin a new timestep at n+1 with the "Primary Iteration".

It is instructive to observe that the handling of orientation is performed through

the operator Ax(t)AT . Momentum transfer is explicitly handled through the r terms.

The similarity of the problem of rotational integration in aerospace applications and

in DEM is apparent in the formulation discussed next for use in DEM.

5.5.1 Small Angle Assumption

The small angles explicit integration scheme [81] based on the 4th order Runge-Kutta

Method. The method is materially similar in formulation of the physics of the problem

as in [108], except here the authors make three additional assumptions:

1. The rotations are small

2. The timestep is small

3. Since the timestep is small, the moment applied during the timestep can be as-

sumed to be an impulse (delta) loading applied at the beginning of the timestep.

If we let h be the duration of the timestep, then:

O= h' = (91 62 (3 (5.72)

and the incremental rotation matrix is such that:

(5.73)Zt+h = oit

If we take the vector notation in [81] and convert it into a matrix notation, we have:

6 = (5.74)

6i8i ± COS(Ic5) - T

jej (+ - o( s) in(IeI) 63
161

aL (1 - cos(II) ) - in(1 1)'

e9(1 +cos (1) +e)

(- cos(6)) + i 2

2 ( - cos )) - in(I),1

+e COS(061) 101I2)
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It is interesting to compare this formulation to the commonly accepted incremental

rotation matrix formulation extracted from the angle vector as given by [108]:

S= R [E(e)] (5.75)

If we go through the exercise of expanding this expression, and we use the more

common quaternion to matrix conversion found in [107] rather than that identified

in [108] (which is a scale of I that of the former), it gives the equivalent matrix2

representation:

/2
+_ 1

c I2± 2 2

(9301 S +e(D 2 4)4
IV £ ) 1,II1

~I2 2

( 2 ()()
0 3e2  01) _____161 161

(5.76)

(93e 2 + ___c41_4

e e 2 8(4193~i(

(e )2 + - 2

where c = cos() and s = sino

By using the following (Pythagorean, half-angle, and double-angle) trigonometric

identities:

cos(0) 2 = 1 - sin(0)2

sin(o) =sin -
2 2 2

02 1-cos(0)
sin 2 -1

2 2

(0)2 1 + cos(0)

2 2

(5.77)

(5.78)

(5.79)

(5.80)

The incremental rotation matrix becomes:

(5.81)
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-L + ±co(51 ) 1 _ Ii)2

0'6 1 (1 - cas(I16I)) + 0

~1 1 - COS (161)) + 9

(1e - - ( 1 E)3el el(61

ie8i61 16 162 (1 - cos(16I)) + 921!~(.~U 1 -
1( (1 "~ -90 OAJaA

16129 (1 - C08(115 )) - 1 i -(161) +~\ ( \(161
I'~~I 161 KT216302 I~j (1~ K J

Comparing this to 5.74, we note that the quaternion form is identical to that used

in this paper.

Unlike the approach in [108], [81] takes the approach of assuming small rotations,

approximating the trigonometric functions as:

0 1
sin(0) = 02 cos(0) =

I/1+ 02 V/1 + 02
(5.82)

This derives from the first term in the power series expansion of the cosine and

sine functions combined with the normalization/trigonometric identity 5.77. The

normalization step is necessary, in this case, to enforce orthogonality as the integration

proceeds. This assumption yields the following rotation matrix:

(5.83)

(l (+ 1 - - )
\,51 1+1612 \ 1|151 }

021( ()±(22

-231(1 1 +
1(512 7 61 2 ) + \s2

e-3e-11 1 ) + e2
. 1|512 1+71 62 V1+1612

-2e--1( 1 - - )_ e-
1&12 - 1+1612) 1+1.512

(2)2 + 1 (1 -(2)2)

e3e2.(1- ) ey )

T61+1§12 1+|2

01(1 _ 171l + V1+62 1+I 2

41 e2 +- 1 - -2 V 1 2 1'11I12

(5.84)7n+1 = 7a + r-h

Because of the assumption that an impulse is instantaneously applied at the be-

ginning of the timestep and that this is applied as an impulse loading implies that:

?n+1 = n= (A,+1jA+ I) Wn+1 (5.85)

When inverted, this yields the formula for 'n+ 1 as:

Wn+l = (An+ 1 -A+ Tn (5.86)
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4th Order Runge-Kutta Method:

To integrate the rotation, [81] uses the standard 4th order Runge-Kutta algorithm.

For the first approximation, assume that:

(1) (9t+h/2 = -Wn (5.87)

Evaluating 5.83 with 5.87 yields the first approximation of 0, noted as (1)), where:

(5.88)

The approximation of the angular velocity, W', is updated as (2 )':

j-' ( (1) t+h/2 At )T) x (AtiAt wt + nih) (5.89)

The second approximation becomes:

h
(2) (Ft+h/2 2(2)Ut+h/2 (5.90)

Evaluating 5.83 with 5.90 yields (2) bt+h/2, and the W' is updated as:

- (2) Ot+h/2 At x (AtiAt wt + rih) (5.91)

The third approximation becomes:

(3))t+h/2= h(3)Wt+h/2 (5.92)

Evaluating 5.83 with 5.92 yields (3)Ot+h/2, and the W' is updated as:

(4)Wt+h/2 (((3) Ot+h/2At ) i-i (3) t+h/2A )T) x (AtiAt + Tih)
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(2)UWt+h/2

(3)Wt+h/2

(5.93)

(1)t+h/2 =(I) $)t+h/2it

(((2) Ot+h/2A )

(((1) Ot+h/2At )



We calculate the average angular velocity as:

. = ( + 2(2 /w + 2(w + (4)W) (5.94)

The incremental rotation matrix approximation becomes:

0 = hw' (5.95)

This sets the rotation matrix's new orientations as:

At+h -- (4)OAt (5.96)

5.6 Improved Method

Using the renormalization of quaternions in conjunction with a 4th Order RK method

yields a more robust method for determining angles. Because we are using quaternions

where the renormalization between timesteps is trivial, we are not constrained to

defining the cosine and sine approximations as being implicitly normalized. Instead,

we can use appropriate Taylor Series expansions of the trigonometric functions (which

do not guarantee orthogonality or that the resultant approximation will satisfy 5.77)

and then renormalize the quaternion.

First, we assume small angular displacements and give a modified vector-to-

quaternion operator to be defined as: E [ q0  , such that

q0  1 (5.97)
2 1+ I 2 / 4

and

= ( (5.98)

wr2ew h+ X /4 X

where we have assumed that a reasonable approximation (though not the only
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approximation we could use) for the sine and cosine functions of small angles are:

cos (0) 1 -gsin (6) = 0 - (5.99)

First, define the angular velocity as a quaternion:

WO c (5.100)

To integrate the rotation, we use the standard 4th order Runge-Kutta algorithm.

For the first approximation, assume that:

h
2(1)(1) K (5.101)K WO

The approximation of the angular velocity, w0

q )o(

is updated as:

(2) K WO

To r?) j-iR (M

((R (

The second approximation becomes:

(2) K qO
h
2 (2)Kwo

The approximation of the angular

Z((R ( (2) K q )o

velocity,

(3)

i?))

wo § ), is updated as:

wo

j-fR ((2) K

r )jR roR (ro

oK

S))T)
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(5.102)

(5.103)

))T) X

(5.104)

qO

E -( (R (1) ( gO qO

cGt+mah) )jr R ((r r

c2t + fh) )



The third approximation becomes:

(3) q0

The approximation of the angular

E( R ((3) Kq0 ro

velocity, K

(4) Wo W)

,r J-l ((3)

), is updated as:

K OK

((R ( ro r) JR ( ro

The fourth approximation becomes:

(4) K q = h(
4) ( WO

This sets the rotation matrix's new orientations as:

K K

Or, in matrix notation:

+ 2(2) Kq0

/ t+h \K

Ath= R (K

+ 2(3)

OK
+(4) q0

p )

X )th

)

(5.108)

(5.109)

(5.110)

5.6.1 Comparisons

To determine the effectiveness of the proposed algorithm, the algorithm was compared

to that found in Munjiza ([81]) with the test problem given in that paper. The results

of the test problem are compared using the angular rotation of the local major axis.

The test problem used is as follows:

2

A body with a convective inertia dyadic of = 0

0

0 0

1 0

0 1

and initial rotational

108

h
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))T)X
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J&) (5.107)

, ) I )



transformation matrix of

reference frame of C=

major body axis, =

1 0 0

N= 0 1 0

0 0 1

100

I . Give

0

0,in the inerl

is given a rotational velocity in the inertial

n this problem, the angular rotation of the

tial frame is given by the following equations:

Let the axes in the inertial frame of reference be given by: =

and N [0

0,
o1

[1

Let the vector perpendicular to the rotational velocity vector be given by:

W xk (5.111)

Let the projection of the major body unit vector onto the rotational velocity unit

vector be given by:

Worigin = (5.112)-I)-

Let the radius of rotation of the axis be given by the distance from the unit vector

along the major body axis to the unit vector along the principal inertial axis as:

(5.113)

Then the analytically derived equations of rotational motion can be expressed in
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Figure 5-1: Translational position error (Algorithm-Exact)/MAX(Exact) of principal
body axis in the inertial frame with h = 0.0005 s along the major x-axis. Note that
units of time are seconds.

inertial coordinates as:

F(t) = o,.gn+rcos (||w||t) i- ( ) 3+ Gb.])) +r -sin(|w|t)I (5.114)

Comparing the analytical solution to algorithms proposed by Cundall [22] and

Ng [65], the quaternion-based approaches exhibit superior performance, and shown

in Figure5-1, Figure5-2, and Figure5-3. Comparing the computational time for the 3

algorithms evaluated over 10000 timesteps, as shown in Figure5-4 and Figure5-5, we

see that though the quaternion-based algorithms significantly outperform the method

of finite rotations and are only moderately more computationally intensive than the

method described in [65].

If the finite rotations algorithm [81] is renormalized after each time step, as is

suggested in the article, then comparing the analytical solution to the results of the

proposed algorithm yields the following for the time step h = 0.005 s:

The abbreviations in the legends above indicate the following:
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Figure 5-2: Translational position error (Algorithm-Exact)/MAX(Exact) of principal
body axis in the inertial frame with h = 0.0005 s along the minor y-axis. Note that
units of time are seconds.
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Figure 5-3: Translational position error (Algorithm-Exact)/MAX(Exact) of principal
body axis in the inertial frame with h = 0.0005 s along the minor z-axis. Note that
units of time are seconds.
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Time Comparison of Rotation Quadrature
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Figure 5-4: Comparison of times for evaluation of 10e4 timesteps. Values in the
y-axis indicate the percentage greater evaluation time over the least time-intensive
algorithm (Central Difference)
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Time Comparison of Rotation Quadrature
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= 0.005 along the principal inertial axis (x-axis).
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Figure 5-7: Translational position of principal body axis in the inertial frame with h
= 0.005 along the first minor inertial axis (y-axis).
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Figure 5-8: Translational position of principal body axis in the inertial frame with h
= 0.005 along the second minor inertial axis (z-axis).
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" RK4-M1 Munjiza - 4th Order Runge-Kutta numerical integration algorithm

using matrix multiplication for updates of the rotation transformation matrix

and using the Munjiza approximations for the sine and cosine of small angles.

" E-Q Order2 - Euler (1st order) numerical integration algorithm using quaternion

multiplication for updates of the rotation transformation matrix (through the

underlying rotation quaternion) and using the first two terms of the power series

expansion as approximations for the sine and cosine of small angles.

" RK4-Q Munjiza - 4th Order Runge-Kutta numerical integration algorithm us-

ing quaternion multiplication for updates of the rotation transformation matrix

(through the underlying rotation quaternion) and using the Munjiza approxi-

mations for the sine and cosine of small angles.

" RK4-Q Order2 - 4th Order Runge-Kutta numerical integration algorithm using

quaternion multiplication for updates of the rotation transformation matrix

(through the underlying rotation quaternion) and using the first two terms of

the power series expansion as approximations for the sine and cosine of small

angles.

" RK4-Q Exact - 4th Order Runge-Kutta numerical integration algorithm us-

ing quaternion multiplication for updates of the rotation transformation matrix

(through the underlying rotation quaternion) and using the FDLIBM algorithm

(a 13-degree polynomial) as implemented in Matlab to determine sine and co-

sine.

The results above show four interesting results.

The first is that the use of quaternions coupled with a Runge-Kutta algorithm out-

performs a similar implementation using matrix multiplication. Moreover, because

there are fewer operations involved in multiplying quaternions (28 floating point op-

erations) versus multiplying dyadics (45 floating point operations), the computational

efficiency is also greater. Quaternions implicitly guarantee orthogonality and reduce
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numerical errors through ease of periodic renormalization and reduced operations per

time step.

The second is that approximating the cosine and sine through the first two terms

of their power series expansion significantly reduces the error of the algorithm over

the approximation introduced in [81]. Moreover, using the two-term approximation is

significantly more computationally efficient than the Munjiza approximation (4 flops

versus 2 flops and 1 square root evaluation).

The third is that by using an Euler-based first order integration algorithm, it was

shown that the increased accuracy of the quaternion based algorithm coupled with a

two-term approximation of the sine and cosine compensates for the low order of the

numerical algorithm. This algorithm is shown to yield comparable accuracy to [81]

algorithm.

Finally, the timing benchmark for the algorithm shows relatively attractive behav-

ior for the quaternion-based algorithms versus the finite rotations algorithm. Com-

pared with the finite difference method of Ng [65], the quaternion-based method

yields a significantly more accurate result with only a moderate relative increase in

the computational effort required.

5.7 Contributions

The preceding chapter has demonstrated a new quadrature algorithm based on quater-

nion arithmetic for reducing the errors inherent in multiplying rotation dyadics. The

method is shown to not only more accurately capture the rotational motion of a rigid

body but to also do so with fewer computational cycles than a common algorithm in

DEM. Results to determine accuracy were performed against the exact solution to a

test problem.
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Chapter 6

Application: Granular Heap Base

Stress

The problem of determining the stress distribution at the base of a static heap has

been a well-studied phenomenon. Since at least the 18th Century, the emergence of

a local stress minimum at the middle of granular heaps had been noted but was first

studied formally with the work of Hummel and Finnan [41]. Until the experiments

of Novosad, the phenomenon had been a controversial topic of granular materials

researchers, who had been divided on whether the local stress minimum at the middle

of the heap was caused by arching mechanisms resultant from deflection of the center

of the base plate on which the pile rested or whether it was a fundamental property

of the granular material that was independent of the boundary conditions. The

experiments of Smid and Novosad [110] used a stiff base plate with embedded stress

sensors to show conclusively that the stress dip seen in a granular heap often cannot

be accounted for solely by the deflection of the base plate. Several experiments, such

as those of Vanel [120], have since verified the initial findings of Smid and Novosad.

Researchers have attempted (e.g., Cates [13] and Vanel [120] as shown in Figure 6),

through a variety of techniques (including analytical, experimental, and numerical),

to uncover the reasons for the stress distribution beneath heaps. The occurrence of a

local stress minimum at the middle of a heap is dependent on several factors. Some

of the observations the have endured the scrutiny of experimentation indicate that
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Figure 6-1: Graphs of non-dimensional stress (vertical) and normalized radius (hori-
zontal) from researchers Gates [13](left) and Vanel [120](right).

the formation of a local stress minimum and the relative magnitude of this minimum

depends on the asphericity of the constituent particles [69, 681; the poly-dispersity

[64]; and the technique used to create the pile [120, 69], which is generally divided

between a distributed source (aka "raining method") or a point source.

Explanations for this phenomenon have come from several studies. Cates [13] uses

an analytical model based on local rules of stress propagation with the assumptions

that (1) force chains within the granular material support the geometric structure

and (2) this network is "fragile" based on a metric that they define. Mattutis [68]

alludes to a possible mechanism for a flattened stress distribution that emerges from

the high impact velocity and re-ordering of contacts near the impact vicinity. Vanel

[120] concludes that preferential grain orientations when a heap is built from a point

are locked in at construction time and lead to the local stress minimum (presumably

from an arching effect). Interestingly, this conclusion is presented along with data

suggesting that the local stress minimum magnitude is directly proportional to the

height of the point source, which is counter-intuitive, since height increases the average

energy of the particles leading to greater dispersion of the particles upon striking

the base or the pile and, accordingly, increased rearrangement of orientation. An

explanation for the mechanism'behind this seeming paradox will be proposed later in

this section.
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From the perspective of analyzing stress chains, there has also been a large body of

work performed. Ng performed numerical investigations of fabric stresses in uniaxial

compression of ellipsoids of different aspect ratios [85] as well as fabric stresses for

ellipsoids of two sizes in triaxial drained and undrained tests [86]. In 2-D, studies have

been performed to specifically investigate the role of particle geometry (polygonal

geometry) in the stress distribution beneath granular heaps [69] with the conclusion

that geometry (angularity) does not significantly influence the form of the stress

distribution at the base.

The 3-D studies detailed in this chapter have been performed using the DEM3D

framework, the development of which has been detailed in previous chapters. All trials

have been performed in serial on a Pentium 4 3.0GHz Xeon (dual-threaded) processor

with 1GB memory. The numerical experiments are set up as a deposition of particles

from a point source at a height of 10 particle diameters (12 particle diameters for the

higher deposition trials) onto a plate of fixed mono-disperse spheres configured in a

regular grid pattern. Each simulation is run for 4.5e5 timesteps (approximately 90

seconds of real time) and allowed to settle.

The particle properties are held constant across trials and are given in Table 6.1.

The contact model used is a simple linear spring-dashpot model. As noted by Mat-

tutis [69], the choice of contact model (linear or Hertzian) and friction coefficient

(tested by Mattutis for coefficients of friction of 0, 0.3, and 0.6, respectively) have

negligible effect on the emergence of a local minimum of the base stress at the cen-

ter of the heap. It should be noted that this same statement does not hold for the

determination of the angle of repose, where friction is a first order effect, as noted

by Zhou [133]. The parameters in Table 6.1 have been selected arbitrarily here for

computational expediency and do not reflect properties for real materials. All simu-

lations for granular heaps have been conducted on "dry" materials, or materials with

no cohesive potential.
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Stiffness (linear) 1e4
Density (constant) le-1
Cohesion 0
Friction Coefficient 0.3
Contact Damping 0.3

Table 6.1: Material Properties for 3-D Numerical Experiments Analyzing the Occur-
rence of Local Stress Minima at the Center of Granular Heaps

6.1 Effects of Source Height

As the relative height of the particle source above the free surface of the heap, it has

been observed by several experiments that the magnitude of the stress dip at the base

of the heap also increases.

To determine whether the method could reproduce this phenomenon, a numerical

system was designed to deposit spherical particles at a height of 10 particle diameters

above the base. Particles were created using a uniform random distribution of radii

in the range [0.5, 0.6]. Approximately 1e3 particles are deposited on a base plate

constituted of fixed spherical elements for a model time of 90 seconds. The source is

then removed, and the heap is then allowed to reach steady state (6 seconds model

time). To vary the source height, a second set of trials is conducted with the same

setup as just discussed except with the height of the deposition source at 12 particle

diameters. In both sets of trials, the resultant number of unconstrained particles is

1.2e3.

The normalized stress results of the trials are derived using a series of operations

on the database used to store the data from the simulations. The forces on the

base are first binned along the radial direction from the center of the heap, summed,

and then divided by the area of the containing annulus of the base to determine the

resultant stress state. These values are normalized by the density, gravity, and heap

height (stress,,rm = "e's).

For the lower point source, the results are charted in Figure 6-2. The normalized

stress has a local normalized stress minimum at the center of the heap of 48.85,

which extends for a length of 15.5 radially to a maximum normalized stress of 77.08.
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Figure 6-2: Chart of the stress in the annulus of the base with the inner boundary
lying at the radial position in the abscissa for a poly-disperse spherical body source
at a height of 10 particle diameters.

Using the end of the monotonically increasing curve as the extent of the local stress

minimum shows a magnitude of the stress dip as 28.23 in normalized stress units.

For the 20% higher point source, the results are charted in Figure 6-3. The

normalized stress has a local normalized stress minimum at the center of the heap of

52.1, which extends for a length of 10.3 radially to a maximum normalized stress of

84.44. Using the end of the monotonically increasing curve as the extent of the local

stress minimum shows a magnitude of the stress dip as 32.34 in normalized stress

units.

It is worth noting that, as predicted by other experiments, the stress dip magnitude

is greater for the increased height point source. That is, the stress dip in the higher

source is 14.6% greater than that in the lower source.

Another interesting result that can be derived from the data is the profile of the

average age of the contacts as radial distance from the center of the heap is increased.

In this thesis, the average contact age is named the contact residence, as it is a

metric for the percentage of the total time that a particular contact pair stays in

contact. Binning the contacts according to radial distance from the center of the

heap, it can be seen from Figure 6-5 that the profile of the average residence time for
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Figure 6-3: Chart of the stress in the annulus of the base with the inner boundary
lying at the radial position in the abscissa for a poly-disperse spherical body source
at a height of 12 particle diameters.

contacts increases approximately linearly with radial distance from 52.25 (11.6%) to

394 (87.6%) out of a total of 450 samples for the higher source. The profile of the

average residence time for the lower source is shown in Figure 6-4, where the average

residence time for contacts increases approximately linearly with radial distance, as

well, but only increases from 75 (16.7%) to 400 (88.9%) out of a total of 450 samples.

These results suggest that the contacts in the center of the heap are younger for

the heap formed from the higher source than for that formed from the lower source.

Charting the contacts and coloring them according to the normalized residence (in-

creasing residence with increasing color wavelength) , Figure 6.1 illustrates that a

region of younger contacts indeed forms in the center of the heap, eliciting a correla-

tive relationship between the age of the contacts and the formation of a local stress

minimum at the center of a heap.

The age of the contacts along the "crater" edge and beyond are older (87.6%-

88.9% of the simulation duration) on average and correlate well with the locations

of the stability points seen in Figure 6.1. At the edge of the heap are the oldest

average contacts, corresponding to the initial impact curtain. The correlative rela-

tionship between contact age and formation of a local stress minimum will be revisited
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Figure 6-6: Illustration of fabric damage observed during the initial phase of heap cre-
ation during deposition of poly-disperse, spherical discrete elements from a localized
source at a fixed height.

throughout the chapter, as it is exhibited in all of the studies.

6.2 Effects of Particle Geometry

The geometry of individual grains is known to have an important influence on, for

instance, the angle of repose of dry granular heaps. Numerical experiments have

shown a strong dependence of the flow behavior on particle shape. In dynamic angle

of repose tests, several regimes of granular behavior and angle of repose in excess of

31-degrees are shown to require non-spherical primitives [124].

From previous experiments by the author, as shown in Figure 6-8 and Figure 6-10,

morphology has a pronounced effect on the behavior of a granular heap created by

deposition in a silo then later removal of the silo sides. In Figure 6-9, there is emergent

organization of the granular material when allowed to slump after removal of the

containment walls constraining the pile. Because of the low energy of the individual

grains in the pile as well as the intrinsic tendency for organization of mono-disperse
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Figure 6-7: Illustration of base stress; bin numbers indicate the resolution of the
homogenization technique used to convert point contacts to effective base stress.
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f= 0.25 f = 0.35

f = 0.50 f= 0.75

Figure 6-8: Trials for angle of repose of 2-D disk discrete elements under a friction
coefficient (from left to right, top to bottom): 0.1, 0.25, 0.35, 0.5.

disks into a highly stable packing configuration (hexagonal), stable structures occur

in the middle of the heap. This organization is also noted in work by Mattutis [69]

where the packing is essentially ordered at initialization and allowed to sag under its

own weight.

Under the same numerical experimentation conditions, a granular material con-

sisting of angular, mono-dispense 2-D ellipses with an aspect ratio of 1.5 will not

exhibit these stable structures. In fact, very little self-organization is seen in these

marginally aspherical systems, as can be seen in Figure 6-10.

In this study, geometry is introduced through the use of prolate spheroid primitives

to represent particles. The prolate spheroids are given a constant aspect ratio of 1.2.

The major axis length is a uniform random distribution of values in the range [1, 1.2].

The deposition source is the same as that for the poly-disperse trials discussed in the

previous section.

The average stress distribution as the point of observation is moved radially out-

ward from the center of the heap displays a homogeneous normalized stress distribu-

tion (33.6) up to a radial distance of 15.5 with a monotonic stress decrease as radial

distance increases. That is, the stress distribution displays a flattened stress distri-

bution at the center instead of a local minimum. The resultant stress distribution

is shown in Figure 6-11. Contrasting this with the stress distribution for the case of
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Figure 6-9: Detail of organization of 2-D disk discrete elements deposited using a
raining technique into a silo with the walls removed after deposition to allow slump
of the pile.

f = 0.25 f = 0.35

f = 0.50 f = 0.75

Figure 6-10: Trials for angle of repose of 2-D elliptical discrete elements with a con-
stant aspect ratio of 1.5 under a friction coefficient (from left to right, top to bottom):
0.1, 0.25, 0.35, 0.5.
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residence time (of 450 samples) as radial distance from the

spherical bodies, it can be observed that the stress dip decreases in magnitude with

asphericity from 28.2 for poly-disperse spherical bodies to no dip for poly-disperse

prolate spheroidal bodies.

As shown in Figure 6-12, the average residence is homogeneous across the center

of the pile at an average age of 100 (22.2%) up to a radius of 13.75, correlating well

with the radial distance along which the base stress is homogeneous.

6.3 Effects of Poly-Dispersity

It is also interesting to investigate the effect of particle size distribution on the stress

distribution at the base. A similar numerical procedure to that discussed in previous

130



-- 50
-= X
4 40
= '30
E 20
0 In 10

0 20 40 60
Mean: 17.7 RadiUS Dip mag: 0.94
Range: 0.06-42.4

Figure 6-13: Stress at the base of a granular heap as radial distance from the center
is increased.

sections is adopted such that the only variable is the size distribution. Approximately

1e3 prolate spheroids of a constant aspect ratio of 1.2 and a uniform major axis length

of 1.2 are deposited from an aggregate point source (i.e., 5 point sources clustered

together) at a height of 10 particle diameters onto a rough base plate consisting of

fixed spheres.

The average stress distribution as the point of observation is moved radially out-

ward from the center of the heap displays a monotonically decreasing stress distri-

bution with a maximum normalized stress (41.5) at the center. That is, the stress

distribution is parabolic as would be expected The resultant stress distribution is

shown in Figure 6-13. This can be contrasted with the case of poly-dispersity where

the stress distribution at the center is flat for a radial distance of 15.5.

As shown in Figure 6-14, the average residence is homogeneous across the center

of the pile at an average age of 92.5 (20.6%) up to a radius of 18.5 (contrasted with

an average age of 100 up to a radius of 15.5 in the poly-disperse case), indicating

a relatively homogeneous contact age across the cross-section of the heap. That is,

the residence implies the same contact age as a "raining" deposition pattern, and

the effect of the deposition method is irrelevent. Again, we see a correlation between

contact age and stress homogeneity.
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Figure 6-14: Average residence time (of 450 samples) as radial distance from the
center is increased.

Figure 6-15: The stress at the base of a heap composed of mono-disperse prolate
spheroids of aspect ratio 1.2 and deposited from a point source located above the
origin onto a base of fixed spheres configured in a regular grid pattern.

From Figure 6-15 it can be seen from inspection that the base stress distribution

is also qualitatively different from that observed in poly-disperse sphere systems. The

distribution of stress, for instance, is not focused into 2-4 major support chains as

seen in the case of poly-disperse spheres.

As a contribution over previous studies, this work suggests a mechanism for the

lack of formation of a local stress minimum, as shown through the contact ages, which

remain homogeneous across a range of radial distances from the heap center. This

suggests that the contacts remain relatively stable (that is, a contact pair remains

in contact longer) even near the point of impact of the deposited particles, and that

energy dissipation through non-frictional mechanisms (e.g., contact damping) is an

important mechanism in the formation or lack of formation of a local stress minimum.

This further suggests that impact and energy transmission between high energy par-

ticles and stationary (or low-energy) particles drives the formation of the local stress
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minimum at the center by damaging the stress fabric and preventing the formation of

stable arches in the center of the heap. Instead, stable arches are formed from bases

at the edge of the "crater" region, as suggested by the contour plots of base stress.

6.4 Contributions

Numerical studies have been performed, which reproduce the stress distribution be-

havior of granular heaps deposited by a point source. A series of discrete element

analyses have been performed on point source deposited systems of poly-disperse

spheres, poly-disperse prolate spheroids, and mono-disperse prolate spheroids. The

results for the trials are in agreement with analytical and experimental work [120, 69]

in predicting the emergence of or lack of a local stress minimum at the center of the

heap.

A correlative relationship has been demonstrated between the contact residence

profile and the stress distribution beneath a granular heap. The hypothesis that

this implies is that damage to the stress fabric occurs during deposition into the

center of the pile, preventing stable configurations from forming in center. Geometric

connectivity therefore becomes more stable outside of the "crater" region. Particles

that become trapped in the "crater" fill this region and become stably supported by

the older structures that lie radially distant from the heap center. That is, an effective

arching mechanism is created via the older "crater" region.

Interestingly, this theory offers an explanation for the observation that the mag-

nitude of the local stress minimum is proportional with the height of the point source

used to deposit granular material [120], as was reproduced in the first section of this

chapter. As the average kinetic energy of the particles impacting the heap increases,

the rearrangement of the particles increases and the stability of the heap is moved

more radially distant from the point of impact. The stability of the heap is enabled

through localized support areas, where large relative magnitude stress chains appear

and remain resident throughout the simulation. These supports provide the arching

behavior which emerges in the center.
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As point source height is increased for poly-disperse spheres, an increase in the

magnitude of the stress dip is observed in agreement with experiment. The slope

of the curve of residence versus radial distance increases with point source height,

indicating that stable contact chains form first at radially more distant points before

forming at the heap center as the point source increases.

A local stress minimum also develops at the middle of a heap constructed from

poly-disperse prolate spheroids with a corresponding monotonically increasing con-

tact age with radial distance, which again is indicative of a significant cratering phe-

nomenon. No local stress minimum develops at the center of the heap for a system

of mono-disperse prolate spheroids, which also correlates well with a homogeneous

average contact age with radial distance (up to the initial crater skirt) and implies

a layered deposition construction history. The characteristics of the deposition his-

tory suggest that cratering plays a critical role in determining the appearance and

magnitude of the local stress minimum at the center of a granular heap.
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Chapter 7

Development of Multi-physics and

Multi-resolution Contact

Soil mechanics oftens uses terms of sphericity, angularity, and roughness to describe

the surface geometry of granular material, and gravel, sand, silt, and clay to describe

the total particle size [75]. A very deep literature base exists that elucidates the

subject. Sphericity refers to the general shape of the particle; most soils range from

roughly spherical to highly elongated or plate-like; this is a mainly qualitative distinc-

tion based on silhouette figures. Angularity refers to the deviations from the general

shape; for instance many particles have protrusions from the surface of a fraction

of the smallest gross dimension. Finally, roughness refers to the asperities on the

surface that are considerably smaller than the angularity deviations, and which can

be captured by replacing with a Coulombic friction term (or alternate constitutive

contact law).

These calculated quantities are then used to model the material with laws that are

a function of the sphericity, angularity, and roughness. However, the boundaries be-

tween sphericity, angularity, and roughness are not standardized. The determination

of when an angular deviation should be considered as part of the general topology

(sphericity term) or when a small asperity should be included in the angularity term

is currently subjective, though, objective measures have been established to try to

address this. Moreover, even with objective metrics, the classifications are depen-
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Figure 7-1: RMS Measurement for a random rough surface.

dent on the application. It can be readily seen that an asperity of 1% the height

of the smallest dimension of the particle may be included in the friction parameters

(roughness) for a compressed dense fabric analysis, but that same asperity may need

to be explicitly modeled if the particle is being measured for angle of incidence after

collision.

Chemical powder processing researchers have been interested in particle topol-

ogy, as well and have developed a systematic method to characterize material shape

quantitatively. Generally a coarse convex geometry is assumed and asperities are

then characterized by statistical relations based on the deviation of the surface from

the coarse approximation. Commonly used metrics are the root mean square (RMS)

deviations of the surface [71] based on the finest observed resolution data. This is

the first moment of the distribution (the variance) of the asperities. The mean as

well as higher order moments (skewness and kurtosis) are also sometimes used to

characterize a surface [71]. The drawback to this type of analysis is the loss of po-
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Figure 7-2: RMS Measurement for a random smoother surface with a single high
asperity.
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tentially important information. For instance, as Figures 7-1 and 7-2 show, the most

common measure, RMS, will yield a metric that has the same result for a smooth

surface with a few large asperities and a rougher surface of smaller asperities. For

contact mechanics and interaction force theories, these two types of surfaces yield

drastically different behavior. A similar effect was theorized [102], and it was shown

that stochastic surface profiles are sensitive to the scanning length (analysis window)

and the frequency.

The previous discussion highlights that there is a lack of a common framework

to measure particle topology and differing resolution requirements between different

applications, which has generally led to the adoption of the coarsest model. For

instance Katsuaki [53] uses uniformly sized hemispherical asperities to model surface

angularity, which disregards the multi-scale nature of surfaces. The confounding

problem seems to be that geometric features are not separable into distinct categories

but are continuous across scale. A proper framework would integrate the property of

continuity across scale. From this logic, it would be preferable to have a hierarchical

method for describing particle geometry, allowing the researcher to only include shape

resolution to the depth necessary for the problem.

The ability to model object resolution in a hierarchical framework is not a new

idea. Demand from game designers, recent interest from the agent-based comput-

ing/visualization community, and scientific visualization researchers have advanced

the study of hierarchical geometry representation over the past decade. These have

included voxelizatioh [111], spherical harmonics, radial basis functions [62], and sur-

face wavelets. For roughly spherical particles, for instance, spherical wavelets [103]

can be used to capture hierarchically more detailed resolutions of a general topology.

Schroeder and Sweldens further refined the spherical wavelet to explicitly represent

graphical texture mapping [104].

Though excellent at representing geometries efficiently for graphics rendering, this

work had generally been poor at capturing surface normals and edge features that

are fundamental to accurately resolving contact in discrete element modeling. As

an extension of the work in computer graphics, researchers adapted some of these
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methods for characterizing real-world granular materials. The idea of using spherical

harmonics for capturing particle shape in a hierarchical manner was forwarded [31].

A more general method of capturing surface morphology using surface wavelets was

formulated in the context of discrete element modeling [129] and further developed

for general surface integral evaluations [3], [4].

These approaches are excellent for categorization of particles and provide a more

precise characterization of granular materials over the classic categories of sphericity,

angularity, and roughness. They also have the flexibility of capturing surface normals

required for resolving contact. However, the hierarchical approaches have a drawback

for application in DEM, in that the generality of the methods disregards the existence

of an implicit convex hull for the geometry. Simple convex hulls are necessary for a

contact detection algorithm in DEM to work efficiently. By applying destructive

geometry to a simple gross topology, wavelets or simple surface maps can be used

to characterize the angularity and roughness that describes the difference between a

particle and the simple primitive used to approximate it.

The leap to hierarchical asperity mapping from graphics mapping is very small.

The characteristics of each level of resolution can be captured and characterized

independently of other resolution levels. Statistics and assumptions of fractal behavior

can further be exploited via such a representation to reduce the memory requirements.

The energy, for instance, of each level could be used as a more appropriate metric,

showing the ratio of different sizes of asperities. In this thesis, the theory will not be

extended into wavelets, though, it might be an interesting extension of the research.

Instead, the idea of using a simple hierarchical, regular grid for layering data will be

explored and demonstrated.

7.1 Development

The ability to layer information on the surface of a body can be useful from several

different viewpoints. Layering of data for surface properties is achieved through a

procedure akin to texture mapping in computer graphics. A 2-dimensional patch is
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Figure 7-3: Illustration of data layering for a 1-D map and 2-D primitive: an unsigned
1-D function is used to map multi-physics information (e.g., asperity depth data) onto
the surface.

mapped over the surface of a convex body using U-V coordinates corresponding to

local latitudes and longitudes on the particle surface. If the data being layered is,

for instance, asperity height data, it can be represented in the map much like digital

elevation map data on a regular grid, except the baseline is the geometric boundary of

the primitive and the height data represents the depth of indentations on the surface,

allowing the primitive to become a convex hull.

As long as the topology being modeled is convex and relatively spherical, layering

information on a surface via a 2-D mapping works well. Roughness can be defined in

terms of the unsigned deviation of the true radius from the gross geometry assumed.

The deviation will be taken as unsigned so as to enforce the constraint that the

gross geometry be a convex hull of the particle, which is amenable to use in contact

resolution schemes.

In Figure 7-3, the data layering approach that will be described in this section is

used to capture asperities.

The example in Figure 7-3 is in 2-D to illustrate the details of applying the method;
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Figure 7-4: Illustration of data layering for a 2-D map and 3-D primitive: an unsigned
2-D function is used to map asperity depth data onto the surface.

however, the extension to 3-D naturally follows as shown in Figure 7-4.

The map is created using an array of dimension 3, where the dimensional dis-

cretization is of size [nums, num,, num,]. numu indicates the discretization along

the latitudinal direction, num, the discretization along the longitudinal direction,

and nump indicates the number of layers of information (extra parameters) being

modeled. For instance, a map containing normal skews and asperity height data

would be nump = 3 for Uskew, Vskew, and asperity height.

To map a point in the global reference frame to the map, which is based in the

local reference frame of the particle of interest, follow the following procedure.

Cglobal = cp - cog (7.1)

Clocal = R - Cglobat (7.2)

-. Clocalc _,._a C= _, (7.3)
Cnormal - I Clocal(

o= c- 1 (Cnormal - k) (7.4)

where c'p is the global coordinate of the point and cog is the centroid of the particle.

If sin() = 0, then 0 = 0. Otherwise, the 9 angle is determined through the
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following procedure:

Cnormai * 0 + (5normai 3)3 75)Cnormatijg-
|(cmi normai - )i + (Cnorma-

V= sign Cnormal,ij (7.6)
sin(#)

V2 = sig (norma "(7.7)
( sin(O)

01 = Cos- Cnormaij (7.8)
sin(qf)J

02 =0, vi> 0, v2 20 (7.9)

37r

02 =-) 1 <0 V2 >O0 (7.10)
2'

02 = -- , vi 0, v2 < 0 (7.12)
2

0 = 01 + 02 (7.13)

Note that the variables 0 and # are constrained to be in:

0 < 0 < 27 (7.14)

0 < < 7r (7.15)

For a map of size [numu, num,], the bins corresponding to the point cp can then be

found as:

binu = floor num4 (7.16)

bin, = floor numv - (7.17)
7r

If the data layer, for example, holds asperity height data, simply scale the value in

map[binu, binv] appropriately and subtract it from the calculated normal at point cP.

Note that map[bin., bin,] denotes the value of the data layer array corresponding to
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Figure 7-5: Illustration of the conical model of micro asperities used in modeling the
perturbation of surface normals.

(bin,,, bin,). This general procedure can be used for any scalar data:

rperturbed = runperturbed -0 map[birtu, bin,] (7.18)

where /0 is the scaling factor at level 0.

7.2 Geometric Interlocking

A useful application of this concept of capturing surface resolution is in the application

to modeling microscopic asperities on the surface of the particle. If the asperities are

assumed to be relatively small compared to the dimensions of the primitive onto

which they are superimposed, then their effect on the detection of contact between

2 primitives is considered negligible. Thus, the problem of determining whether two

rough primitives interfere can be reduced to the problem of whether two smooth

primitives interfere, and the computational intensity of determining detailed contact

resolution can be reduced accordingly.

To model the surface angularity, this section presents a conical representation of

the micro asperities on the particle surface. To achieve this, the data layers are used

to hold the normal perturbation data. The perturbation data must be appropriately
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projected orthogonal to the plane defined by the normal at the contact point, c>.

Because there are an infinite number of unit vectors orthogonal to the unit normal

vector, it is advantageous, in the case of modeling geometric interlocking, to set the u

direction as lying parallel to the tangential velocity vector of the contact point. This

allows us to explicitly model the asperity as a conical asperity, as shown in Figure

7-5, where the direction of normal perturbation necessarily opposes the direction of

velocity.

V2 + W2 X 2-V1-W Xr
n. =- _ - # - - _# -# (7.19)

|V2+ U2 xT2 - VI - w, x ril

Clocal X t1
-2 = _, > (7.20)

cocal x nil

P= 13O (hlpINI + h2Pv) (7.21)

where p,, is the skew associated with bin, and p, is the skew associated with binv.

This makes the adjusted normal:

Clocal,new = (7.22)

To validate this approach to modeling geometric interlocking, a simple numerical

experiment is used. A pair of spherical particles of the same radius (r = 1) are

brought into geometric contact such that the contact deformation is 1% of the radius

(i.e., a = 0.01. Both particles are fixed in every degree of freedom except for the

rotational degree of freedom about the x-axis in the convective frame of reference.

The first particle is specified to rotate at a constant rate of 1 (rad/s) whereas the other

particle is allowed to rotate freely. The contact is idealized by a simple linear contact

law (spring contact) with no friction applied; therefore, rotational motion of the

freely rotating particle will be initiated only through the mechanism of interlocking

microasperities. The setup of this numerical experiment is illustrated in Figure 7-6.

The results shown in Figure 7-7 indicate that after an initial slip phase of contact,

the rotational contacts stick. The counter rotation of the two spheres shows that the
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Figure 7-6: Illustration of a simple numerical validation of the conical asperity model.

Rotation Angle

C
.2

iF

6

4

2

0
-- Free
-- Fixed

-2

-4

Timestep

Figure 7-7: Illustration of a simple numerical validation of the conical asperity model.
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Figure 7-8: Illustration of a simple numerical validation of the conical asperity model.

shapes are rotating as expected of a cog-tooth type system. From Figure 7-8 one

can see that the magnitudes of the rotations are exactly matched after an initial slip

region and that this remains valid throughout the simulation. Together, these results

show that the model operates as expected for a simple pair of spheres. Also, since

this captures the important mechanisms to be captured by this model, the results

can be extrapolated as validations for all systems of interest.

7.3 Adhesion/Cohesion

To demonstrate the use of the multi-physics framework on non-geometric data, the

case of cohesion is considered. For the pharmaceutical manufacturing industry, un-

derstanding and controlling the surface cohesion properties of particles is extremely

important. From the design of dispersive powder inhalers (DPI's) [14] to the selection

and development of powder blenders and the selection of blending excipients, surface

cohesion plays a key role in the industrial production of micron-scale powders.

Several researchers have noted the correlation between relative humidity and pow-

der adhesion (e.g., see a small survey in [16]), noting that one of the dominant mech-

anisms in adhesion is the formation of liquid bridges at relative humidities similar to

146



those found in the typical operating environment of pharmaceutical powder blenders.

In relatively dry environments, an electrostatic potential may develop at the surface

of micron-sized particles, providing a different high magnitude adhesive force. In

both cases the cases of electrostatic potential [113] and surface geometry [24, 88], the

surface roughness of the particle has a significant correlation with the magnitude of

force developed in the interaction.

For blended cohesive pharmaceutical powders, the crushing and surface deforma-

tion of individual powder grains is low and the surface morphology relatively constant;

therefore, surface chemistry remains relatively invariant during the process of blend-

ing. This invariance can be exploited to create a new model of cohesion that is tied

to the microscopic surface of the powder grains.

Capturing cohesion in DEM models is not new. Several researchers have inves-

tigated cementatious material bonds using simple spring elements and more compli-

cated beam elements such as Timoshenko beams. These elements have also been tied

to specific surface points to add contact moments. In the 2D DEM simulations de-

scribed in [88] cohesion was simulated in this manner; particles in contact were given

point-to-point spring contacts with a failure force at a particular constant force.

Approaches to modeling adhesion/cohesion are numerous and mainly depend on

the interactions of interest. Contact models capturing only Van der Waals forces

[77] or only the explicit modeling of liquid bridge formation [116] have been used

in combination with discrete element modeling. Others have used a contact model

which explicitly treats the JKR model of adhesion [44] for perfectly smooth spheres

using self-consistent micro-mechanical contact models coupled with a Hertzian contact

condition for normal contact forces and a Hertz-Mindlin model for tangential tractions

[126]. There has been other work on the representation of cohesive contacts [51] as

well as the modeling a torque-bearing sintering necks for capturing moment-resisting

contacts between particles [6].

In this thesis, however, cohesion is modeled as a stochastic process. The model is

developed first as an independent stochastic process and then refined as a location-

dependent stochastically distributed value across the surface of a convex body. That
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Figure 7-9: Illustration of surface level cohesion model for interacting cohesive pow-
ders.

is, a size-independent cohesion factor is applied at each point on the surface. Each

value on the surface remains constant throughout the simulation, providing consis-

tency between theory and model.

Several AFM cohesion maps and corresponding surface asperity maps were recorded

by Ngai [88] for characteristic samples of micro-crystalline cellulose (MCC), lactose,

and caffeine, and a log-normal distribution of adhesion pull-off forces were obtained.

Using the model of adhesion developed by Johnson [44] (see the following equation),

we were able to reconstruct a stochastic surface energy parameter that fits the log-

normal distribution found from experiment.

The JKR model yields a maximum force before failure (pull-off) of:

3 /R 1 R 2 \
F = gR IR (7.23)

2 R1 +R 2 )

2F(Ri + R 2 ) (7.24)
37rRjR 2

Using the results of Ngai [88], the cohesion model can be rewritten as:

Y(X) = -2F(R + R 2 ) (7.25)
37rRIR 2

where -y(X) is a random variable that fits the experimentally determined log-normal

distribution in [88].
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This is effectively a constitutive law that helps to avoid modeling the complexity of

particle surfaces while capturing the force distribution between particles. For caffeine

powder grains, the distribution of surface energies was derived to be the a log normal

distribution characterized by the standard log normal parameters IL = 42-3 and

- = 21. In code, this is implemented as two matrices of values: one of log normal

means and one of log normal standard deviations which are then queried based on the

element at the row corresponding to the material of the first particle and the column

corresponding to the material of the second particle. It can immediately be seen that

this constitutive relation avoids describing individual surfaces and instead describes

the average pull-off force between pairs.

Experimental evidence suggests that the cohesive interaction is based on where

on the surface a cohesive contact occurs, so it would be preferable to decouple the

pair-wise cohesive parameter into parameters tied to each surface in contact. That

is, if we decouple this stochastic law, we can get closer to the theoretical mechanisms

of contact by connecting surface energy to specific surface points. This mirrors the

effective properties of other surface parameters and improves of the lumped stochastic

cohesion model that we developed (detailed in [88]). The model used here is shown

in Figure 7-9, where the interaction is taken to be a series effect of the contributions

of the two surfaces in contact. This is common for most effective parameters of

interacting surfaces and is dimensionally consistent. The model can be specified as:

-Yeff(X) = (X)Y2 (X) (7.26)
71 (X) + -Y2(X)

The first problem with decoupling the effect is to determine 71(X) and -y2 (X).

Determining the constituent distributions that, after operation, form a log normal

distribution is not a trivial task and determining the mean and variance of sums of

log-normally distributed variables is an active research area [39, 97, 105, 109]. Using

the assumption in [105] that the resultant distribution of the sum of two log-normally

distributed variables can be approximated to the first order by another log-normally

distributed variable and that the distribution of the surface energies for two variables
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Figure 7-10: Constituent distribution of caffeine surface energies for yj from the model
in 7.27.

are equal (i.e., from 7.26 -y1(X) = 72(X)) for particles 1 and 2 composed of the same

material, a model can be formulated.

It is first postulated that the model will result in a log-normally distributed -Y1(X)

given that 7 1(X) and y2 (X) are also log-normally distributed, where the variables are

related as described in 7.26. This will be verified later. Because of the underlying

complexity of the model, research into power sums is of limited use here. It would

be advantageous to identify a simpler relationship to estimate the parameters of the

constituent distributions. Using a brute force approach fitted with experimental data

from caffeine cohesion experiments, a relationship between the statistics of YeYff (X)

and those of 'y1(X) and -y2(X) is developed:

Pi = log(2.15) + / (7.27)

o-j = V.95 -o- (7.28)

Evaluating 7.27 using the parameters of the experimentally determined caffeine-

caffeine cohesion surface energy distribution yields the log-normal distribution illus-
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Figure 7-11: Comparison of the distribution of surface energies of interacting caffeine
grains for those determined from the experiments of [88] (blue) and those predicted
by the model presented here (red). Note that the prediction passes the Pearson
goodness-of-fit test.

trated in Figure 7-10. Using this distribution in the model 7.26, the distribution

shown in Figure 7-11 emerges and compares well with the distribution of the ex-

perimental data. The emergent distribution of caffeine surface energies passes the

Pearson goodness-of-fit test, a test which indicates how close a sample is to a theo-

retical statistical distribution.

The model was calibrated by fitting data to the model, so it is not valid to claim

success based on the results agreeing well with the results from which it is calibrated.

To verify that this works for other materials the same procedure is performed on

MCC using the model and coefficients specified in 7.27. The emergent distribution

for MCC also compares well with experiment as shown in Figure 7-12, and it likewise

passes the Pearson goodness-of-fit test.

This development shows that the model is valid across materials, but it does

not indicate whether the model is unique or whether the model is even sensitive

to the values of the coefficients. In other words, how is this formulation unique or

innovative? To test this, it is useful to perturb the values of 7.27 and see whether the

resultant distribution is similar to the experimentally determined distribution using

the coefficients described in 7.29. The results illustrated in Figure 7-13 show that
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Figure 7-12: Comparison of the distribution of surface energies of interacting MCC
grains for those determined from the experiments of [88] (blue) and those predicted
by the model presented here (red). Note that the prediction passes the Pearson
goodness-of-fit test.

this small perturbation creates a distribution that does not fit the experimental data

to the degree necessary to pass the Pearson goodness-of-fit test.

pi = log(2) + /- (7.29)

aj = v/2- - (7.30)

Figure 7-13 illustrates the sensitivity to coefficients; however, the emergent distri-

butions are also sensitive to the model adopted. If a different model is contrived and

the coefficients of the model are fit to the caffeine experimental data, the equation

in 7.31 can be derived. The results of using this model to determine the statistics of

the constituent distributions is reasonable for caffeine; however, extension to MCC

results in a very poor fit (qualitatively or quantitatively), as shown in Figure 7-14.

Ai = I(2 - IL (7.31)

o-, = log(2) + a- (7.32)
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Distribution of surface energies for
Caffeine as fitted by Ngai (2005)
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Figure 7-13: Effect of perturbing the model coefficients.

Figure 7-14: Effect of perturbing the form of the model.

Through the previous discussion both the model and the coefficients adopted

for the model have been shown to be unique. This model has performed well in

predicting the constituent distributions necessary to create an emergent surface energy

distribution that agrees well with experimental data. With the theoretical work

completed, it is attractive to try to use these constituent distributions to define the

cohesive properties of specific points on the surfaces of bodies. This is accomplished

here by using the multi-scale surface characterization approach that is the subject of

this chapter. The graphical result of a typical mapping with surface energy values

shown as height difference from the particle surface is shown in Figure 7-15.
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Figure 7-15: Shown by a height/color map, the surface energy map (left) and resultant
visualization of a spherical particle (right) are illustrated.

Figure 7-16: Procedure for performing numerical pull-off tests: (top) particles are
brought together (middle) once particles bond, they are pulled apart (bottom) bond
breaks and max force recorded
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Figure 7-17: Comparison of the distribution of surface energies of interacting caffeine
grains for those determined from the experiments of [88] (left) and those that emerge
from numerical pull-of tests implementing a surface map of distributed surface energy
values (right).

The results described in the previous paragraph indicate that the model presented

in 7.27 produces similar distributions to those observed experimentally. It does not,

however, indicate that by applying this distribution to the discretized multi-physics

surface map described in this chapter that the distributions will be the same.

To test this hypothesis, a numerical experiment was structured in the DEM3D

framework. First, a set of maps are assigned to each particle in a pair of particles; the

distribution of values on each map is drawn from the derived log normal distributions

of values. Second, 50000 trials are run where a random rotational orientation is

assigned to each particle and the particles are pulled apart as illustrated in Figure

7-16. The maximum force is determined by the model in 7.27. The maximum force

is recorded for each trial, the surface energy recorded, and the resulting distribution

of surface energies plotted. The results, illustrated in Figure 7-17, show that the

experimentally-derived distribution and the emergent distribution from the numerical

pull-off tests agree well.

With the determination of the surface energy and maximum pull-off force specified,

the force-displacement relationship for the JKR model can be written as follows, where

a is the radius of the contact area, F(a) is the adhesive force as a function of contact
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area radius, and a is the separation (displacement) of the particles:

4E*a 3(R1 + R2)3
F(a) = - 87rYeff (X)E*a3  (7.33)

3R 1R2

(1 V1
2 )(1 _ /2

2 )
= E1(1 - v2

2 ) + E2 (1 - V12) (7.34)

= a2 (Ri + R2 ) _ 27reff(X)a (7.35)
R1R 2  E

As fluidization of particle flow increases, the transmission of stress waves becomes a

secondary effect to inertial effects. Similar behavior has been observed in gas-fluidized

beds using cohesive particulate matter [77]. Tests were performed on 2-D rotating

cylinders of cohesive particles using identical initial conditions but with the stiffness

parameter an order of magnitude different between trials. For the variation of blend

homogeneity as a function of time, there is little difference observed between the trials,

indicating the relative insensitivity of time-varying blend homogeneity to the contact

stiffness model used. A thorough sensitivity analysis for the stiffness parameter in

particle-particle interactions for a DEM simulation of a V-mixer was conducted by

Kuo [57]; their findings corroborate ours with a conclusion that "no difference could be

distinguished" between simulations with different stiffnesses. Because of the second

order nature of this parameter, a simple linearization of the Hertzian contact model

can be used, which is designed to minimize the error in the stored energy over the

range [0, 5% * radius].

From the work of Hertz [37], a force-displacement relationship for spherical bodies

was derived:

F, = kna (7.36)

kn = 4E* (7.37)
3

E* E1E2  (7.38)
E1(1 - v2

2 ) + E2 (1 - V12)

(7.40)
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Figure 7-18: Force-displacement comparison over the range of the separation, a=
[0, 2% radius]. Red (dashed) is the linearized case and blue (solid) is the Hertzian
case.

F, = k a (7.41)

Taking the values for MCC from [25] and using the mean particle diameter for

our material sample as 100pm, we can determine that k. = 8.3e7E. If the error

is minimized for the stored energy over the range a = [0, 5% * radius], k, the lin-

earized stiffness, can be specified as I- ~- 0.00085. The resultant force-displacement

kt

relationship compared with Hertzian model is shown in Figure 7-18, and the energy-

displacement relationship is shown in Figure 7-19, which demonstrates the accuracy

of the approximation with respect to energy.

Finally, the stochastic model of cohesion can be coupled with a model to resist

shear, moment, and torque. One self-consistent method of treating frictional resis-

tance is by taking the combined approach of [125, 126], which assumes a dependence

of Coulombic friction on the contact normal force only (that is, without the compo-

nent of tensile cohesion). The self-consistency of this formulation can be seen when
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Figure 7-19: Energy-displacement comparison over the range
[0, 2% * radius]. Red (dashed) is the linearized case and blue
case.
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Figure 7-20: Illustration of constraints for degrees of freedom for multipoint contact
based on a quadrant division of the contact area circumference.

one takes the limit case of static equilibrium between normal contact compressive

force and cohesive tensile force (i.e., tensile cohesive force and contact compressive

force are equal in magnitude and opposite in direction). From this, it is simple to

see by inspection that the shear resistance is not zero and that frictional resistance

would remain proportional to contact area, which is related to the contact traction.

A model for moment and torque resistance based on plastic yielding of the grains

about the contact area has been proposed by [126]. In this work, moment and torque

resistance are enforced by dividing the cohesive contact into quadrants spaced at equal

intervals about the periphery of the initial contact area. Though not as theoretically

accurate, the resultant behavior captures the important 6 degrees of resistance as

shown in Figure 7-20.

7.4 Extension to Multi-resolution

The further power of this method comes from its extension across multiple scales.

The easiest way of extension is by subdividing each grid cell into a new grid of
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Contact Point

Subdivide grid cell Into a new grid

Figure 7-21: Illustration of grid subdivision for a 3-D primitive.

numu x num, cells. The part of the contact point c'p resolved at level n - 1 is

removed for the analysis at level n and the remainder is mapped onto the data layer

and scaled by 3i where i = [0, n]. The general concept is illustrated in Figure 7-21

The component of 0 and 0 at level n - 1 can be determined by the following

equations:

Oi = 27r biri (7.42)

F= z( bin" (7.43)
num,+ J

(7.44)

Note that if i < 0, 9i = #i = 0.

The mapped bins corresponding to these values can then be determined by:

binu,j = floor numui+1 0 -Oi-1 (7.45)
2,7r

binv,j = floor numvi+1 i-- (7.46)

The scaled vector skew is then calculated:

p = #A * (^ipu,i + h2pv,i) (7.47)
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where pu ,i is the skew associated with binm,i and pv,i is the skew associated with

bin,,. And the final normal vector is determined by the following:

Clocal + ZP-i
Clocalnew =- *Iocal + Z 5( 4

As an example of the application of the multiscale procedure, assume that the

map is a 2x2 map along 0 = [0, 27r) and # [0, 7r), the point to be mapped lies in

the local reference frame at 0 = 1 + 0.1 and q=i + 0.2, and the map is a 2 level

hierarchy with the scaling factor #i = 0.5 -#3 -i. The 2x2 map is specified as:

map [ -1

-1

ii
iJ

The procedure would be applied as follows:

First level:
1ir- + 0.1 - 0)bin,,,O = floor (2 2 2F - 1

E + 0.2 - 0
bin, 0 = floor (2 2 )

0 27r ( r

00=7r =

Second level:

bin,, I= floor

bin,,1 = floor

42+ 0. -
4 2

27r

( + 0.2 --
4 2 2

01 = 2w 1 ( +

(2 4)

q1#1 7r -
(2

=0

3 r
2

2r

2

Note that at level 1, 1 =1 = 0 - R where the residual R = 0.1 and #1 =
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- R where the residual R = 0.2.

To acquire the multiscale reconstruction of the map value, take:

(0i - mnapi) =_ #0 - mnap[1, 1] + ), - map[1, 0]

=1 - + 0.5 - 1 = 1.5

Because the subdivision can result in a self-similar grid (i.e., a fractal material),

the memory required to capture an infinite number of details for a fractally self-similar

material for all of the particles in a system can be as little as O(Unum * Vnum). This is

possible because a reference to the map can be applied to each particle in the system

and only one data structure needs to be stored.

7.5 Contributions

The research into a multi-physics and multi-resolution framework for specifying sur-

face properties of granular materials allows a wider range of microscopic parameters

to be probed when modeling a granular material. The types of information are myr-

iad, and it has been shown that the model can capture several parameters of interest

to researchers.

It has been shown that when the framework can be used to represent microscopic

asperities on a smooth particle's surface. The model introduced here assumes that

the asperities are conical and are much smaller than the dimensions of the smooth

particle on which they are applied. This model has been shown to correctly reproduce

geometric interlocking of two particles during a rotation test where the particles are

given no friction.

Relating cohesive properties to surface characterizations is an important part of

the research into powder production. This thesis has demonstrated that the multi-

physics framework can be used to localize cohesive surface energy to specific locations

on the powder grain. Numerical pull-off tests of randomly oriented particles confirm

that the distribution of surface energies agrees well with that determined from exper-
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iment.

Finally, an extension of the framework has been proposed that allows for multi-

resolution representation of the desired surface parameter. Optimizations such as an

assumption of fractal similarity between scales can be exploited to limit the memory

resources required.
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Chapter 8

Polyhedral Boundaries

Developing polyhedral boundary elements is necessary to efficiently analyze granular

behavior in blenders and mixing devices of arbitrary geometries. For instance, v and

y- shaped blenders, as well as, double helical ribbon blenders are difficult to represent

efficiently using non-polyhedral elements. From a user viewpoint, most computer

aided design applications export 3-D machine representations to some type of poly-

hedral mesh format. For usability, DEM3D supports VRML and 3DS formatted files

as inputs for defining polyhedral meshes.

There have been several approaches that attempt to create simple polyhedron-

polyhedron and polyhedron-primitive contact algorithms. These usually assume that

the facets are much smaller than the contacting primitive. In the case of boundary

elements for DEM, the facets are often much larger than the grains contacting them.

Representation of boundaries as polyhedral elements has been studied by Favier [27]
for use in a sphere-based DEM code. Their approach attempts to transform the

contact problem from sphere-face to point-prism.

8.1 Contact Resolution

The procedure illustrated in 8.1 and 8.1 functions through a series of constraining

checks. First, the buffered surface contact check is performed to determine whether

the contact lies completely in a face. If so, the contact normal is set as the normal
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Figure 8-1: Favier pre-check approach: sphere-triangle contact (left), create buffer
region based on sphere radius (center), and reduce the problem to a 3-D point to

prism contact problem (right).

4

Figure 8-2: Author's pre-check approach: sphere-triangle contact (left), then create

buffer region based on the intersection of the sphere with the plane containing the face

(center), and finally reduce the problem to a 2-D point to triangle contact problem

(right).
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Figure 8-3: Contact can be divided into 3 regions: point in the face-only contact
region (left), point in the computationally-rounded area (center), point in the edge-
or vertex-only contact region (right).

to the face. Second, a complete surface check is performed to determine whether

the contact lies in a buffered region of curvature. If so, the contact normal is set as

passing orthogonal to a line segment which lies a distance of the buffer size along the

angle bisector of the closest edge. Third, a check is performed to find whether contact

lies at a vertex, and if so the contact normal is set as the vertex normal (typically, a

weighted averaged of the normals of the faces to which the vertex belongs). Finally,

an edge check is performed to determine if contact lies on an edge to the face. If so,

the contact normal is set as the vector from the edge to the body's centroid. The

decision tree for the algorithm is illustrated in 8.1

Energy conservation during single particle contact has been verified over multiple

contact instances. Testing of the individual contact cases has shown agreement with

hypothesized results

* Face contact

* Face-Edge contact

e Edge contact

* Vertex contact

From figures 8.1, 8.1, and 8.1, it can immediately be seen that the contact profiles

for 3 consecutive contacts conserves momentum. Moreover, the contact profiles are
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Figure 8-4: Procedure for detailed contact check between triangular polyhedron face
and a sphere.
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Figure 8-5: 1 of 3 consecutive contacts
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Figure 8-7: 3 of 3 consecutive contacts
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Figure 8-8: Case of contact on a face interior region with initial overlap

identical across the contacts with a max force of 78 N and a contact duration of 0.08

S.

As expected, cases 1, 2, and 3 produce identical contact force profiles. From the

above discussion, it can be seen that the polyhedral contact resolution algorithm

conserves momentum and energy over multiple similar contacts. Contacts on similar

topology are resolved identically numerically for the case of flat surface contact.

8.2 Contact Detection

Despite the dimensional reduction of the polyhedral boundaries just discussed, there

remains a scalability issue in that determining which contacts to check is a O(MN)

operation where M is the number of polyhedral faces and N is the number of discrete

elements contained within the blender. From the experience of simulating pharma-

ceutical powder systems, this scaling makes it difficult to simulate systems where the

number of polyhedral facets are above 0(102).

It would be preferable to have an algorithmic method of reducing the compu-

tational complexity of the contact problem. This section will introduce a method

to achieve a reduced scaling to O(M + N), where N is the number of discrete ele-

ments. Two common methods of reducing the complexity of intersection checking are
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Figure 8-9: Case of contact along an edge region with initial overlap

Figure 8-10: Illustration of common techniques for reducing the complexity of neigh-
bor checks involving polyhedra.
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Figure 8-11: Illustration of coupled technique for reducing the complexity of neighbor
checks involving polyhedra.

No Ray Test Ray Test

Figure 8-12: Illustration
the pre-filtering strategy

of 75% reduction in computation time by implementing a
illustrated in Figure 8-10.
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through bounding boxes and containment planes, as illustrated in Figure 8-10. By

coupling these two techniques, we have the decision tree shown in Figure 8-11. The

computational gains over the case of no filtering can be seen in a graph of the test

problem shown in Figure 8-12.

Though these techniques help to reduce the computational intensity, the scaling

remains O(NM), though with a smaller constant coefficient. However, by adding in

a neighbor-sorting algorithm to reduce the number of facets against which a discrete

element must be checked, the desired scaling properties can be achieved.

The binning algorithm bins based on largest discrete element grain (as opposed

to largest facet). Facets are binned into all bins in which they lie. This results in a

greater density of voxels (and greater memory requirements); however, it reduces the

possible matches between grain and boundary where detailed contact resolution can

be costly. This is deemed acceptable if N >> M, where N is the number of discrete

elements, and M is the number of faces. Bins are defined by minimum coordinate,

and an object is assigned to a bin based on the centroid of its bounding box:

=i (floor (extremumiIupper + extremumi iower mini /biri (8.1)
2

where extremumilupper is the upper extremum of the body along dimension i, extremumlower

is the lower extremum of the body along dimension i, mini is the minimum coordinate

for any body along dimension i, and binsi is the number of bins used to discretize the

dimension i.

The algorithm uses a sparse matrix representation of the 3-D space occupied by

the model. The sparse matrix representation is a regressive data structure that has

been generalized to represent any N-dimensional space of bins. In common terms,

the data structure is a linked list that is linked N - 1 times. Each list is maintained

ordered such that a binary find operation can be performed on each dimension to find

the requested bin on that dimension. Since a bin is defined by a tuple of 3 integers (in

3-D space), which represent bin addresses along each dimension, the failure to locate
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Figure 8-13: Illustration of data structure for storing the contents of bins.
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Figure 8-14: Illustration of the efficiency of the binning algorithm and simple O(NM)
algorithm for 1 boundary facet and N grains, where N is varied along the horizontal
and computation time is represented on the vertical axis.

a portion of the bin address automatically results in an empty bin for the requested

tuple and a reduction of the search time. A graphical representation of the data

structure as an example in 2-D is shown in Figure 8-13.

To increase the efficiency of finding neighboring bins, index of the bin in the

linked list can be queried and used to find the right and left side bin indices. If

the bin indices are +/-1 of the current bin index, then the adjacent bins cannot be

eliminated as candidates for neighbors.

The algorithm has been tested against two limit cases and a mean case. Figure 8-

14, 8-15, and 8-16 show the difference between using filters with an O(NM) algorithm
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Figure 8-15: Illustration of the efficiency of the binning algorithm and simple O(NM)
algorithm for N boundary facets and 1 grain, where N is varied along the horizontal
and computation time is represented on the vertical axis.
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Figure 8-16: Illustration of the efficiency of the binning algorithm and simple O(NM)
algorithm for N boundary facets and N grains, where N is varied along the horizontal
and computation time is represented on the vertical axis.
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Figure 8-17: Illustration of the efficiency of the binning algorithm over a simple
O(NM) algorithm for y boundary facets (y-axis) and x grains (x-axis), where the
height indicates (indicates time of the binning algorithm-time of the filter with
O(NM) algorithm)/(time of the filter with O(NM) algorithm).

and using the binning algorithm just described. Figure 8-15 illustrates that it is more

effective to avoid the binning algorithm as the ratio of boundary facets to grains

increases. Because of the significant overhead of this approach in initially binning

the facets, the computational efficiency is only realized past a certain ratio of grains

to boundary facets. That is, the initial overhead is high, but the cost of lookup is

low and is effective at reducing the search space, so as the number of grains increases

the efficiency of the algorithm becomes more noticeable. As Figure 8-14 indicates,

for instance, when there is only 1 boundary facet, the initial cost of binning and

the incremental cost of lookup are marginally outweighed by the cost of an O(NM)

search. When the number of bodies increases at approximately the same rate as

the number of boundary panels, Figure 8-16 shows that significant computational

intensity can be avoided by using the binning algorithm.

Using a regular grid of data points representing numbers of polyhedral facets and

numbers of grains, a contour plot can be created to find the efficiency frontier for
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Figure 8-18: Illustration of the efficiency of the binning algorithm over a simple
O(NM) algorithm for y boundary facets (y-axis) and x grains (x-axis), where the
contour (indicates time of the binning algorithm-time of the filter with O(NM) algo-
rithm)/(time of the filter with O(NM) algorithm).

deciding whether to use the binning algorithm or whether to use a simple O(NM)

algorithm in combination with a prefilter (e.g., bounding box or containing plane).

These are shown in Figure 8-17 and 8-18.

8.3 Contributions

Two contributions to the representation of polyhedral boundaries have been offered

here.

First, this thesis provides less computationally intensive method of determining

detailed contact between discrete elements and polyhedral boundary facets with a

specific formulation for sphere primitives. This contact resolution algorithm offers

a theoretical basis for interpolating C' continuity of contact with a C0 continuous

boundary and provides numerical validation.

Second, a contact detection algorithm is offered for boundary elements that re-

duces the computational complexity for O(NM) to O(M + N) through a binning
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algorithm, where N is the number of discrete elements and M is the number of poly-

hedral facets in the boundary representation. The contact detection algorithm also

offers further optimizations to reduce the O(M + N) scaling coefficient through a

streamlined binary space division data structure that offers quick neighbor checks to

bins neighboring the candidate discrete element. Scaling graphs have been given to

demonstrate the properties of the algorithm.
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Chapter 9

Application: Modeling Blending of

Pharmaceutical Powders

Pharmaceutical powder manufacturing is a key component in the $200+ billion phar-

maceutical industry. The production of pharmaceuticals is a highly profitable busi-

ness; however, the profitability of most products developed is highly sensitive to time

and supply. Both of these variables are impacted by the quality and productivity

pharmaceutical manufacturing facilities. Because of rigid regulation set in place by

the United State Food and Drug Administration (USFDA), pharmaceuticals sold in

the United States or by companies chartered in the United States must pass a series

of quality control regulations before they can be released to the public for sale.

The loss from batches that fail to pass quality control typically ranges from 10-

50% per product based on the maturity of the product (higher yields for products

that have been in manufacture longer) as well as nature of the material (certain

products have proven difficult to work with) and unidentified failures along the process

line (recurrent operator caused failures, etc.). These ranges are typically proprietary

knowledge to the pharmaceutical companies and are offered here as anecdotal evidence

gathered from informal meeting with pharmaceutical company researchers.

Coupled with this high loss rate is a newer threat to production offered by the

gradual phasing in of the USFDA 2001 CGMP regulations. This new initiative aims

to push the pharmaceutical manufacturing industry (among others) to be able to not
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Figure 9-1: Illustration of the coupled numerical/experimental approach adopted here
for refining and validating numerical models and DEM.

only detect failed batches but to also state why the batches failed and how that will be

prevented in the future. This approach is commonly known as process improvement.

The penalties for being unable to satisfactorily identify a process failure and offer a

plan of remediation can include fines as well as a shut-down of production.

Lost revenues from disposed product and an inactive line as well as the cost of fines

are imminent threats to the profitability of many pharmaceutical products. Solving

process problems can offer immediate and significant profit gains for pharmaceutical

manufacturers. A particular problem faced is in the homogeneous mixing of powders

consisting of active pharmaceutical ingredients (API's) with inactive ingredients (ex-

cipients). Because of the dearth of basic understanding of the behavior of granular

materials, tracing process failures and offering remediation plans in powder process-

ing is often difficult. This chapter focuses on a particular process step of the powder

manufacturing process where powders are blended.

A coupled numerical and experimental approach has been implemented between

the author and researchers in Prof. Charles Cooney's laboratory affiliated with the

Department of Chemical Engineering at MIT. The approach has been referred to in

related theses by Domike [24] and Ngai [88]. This approach bridges micro-mechanical

experiments with models of micro-mechanical behavior. These models are then im-
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plemented in the DEM3D framework and simulations are run. The results of the

simulations can then be compared with experiment to determine the accuracy of the

numerical approach in determining meso- and macro-scale material behavior. The

process is illustrated in Figure 9-1.

Previous numerical studies have compared blending kinetics in a mixer from mag-

netic resonance imaging (MRI) [87] and positron emission particle tracking (PEPT)

[112] data with discrete element models. Hopper kinetics for pharmaceuticals have

also been performed, comparing experimental results against DEM results [7]. This

section concentrates on the modeling of granular mixing in a "v" and "y" type bench-

scale blender using the discrete element method with a new stochastic version of the

classic JKR model of cohesion and polyhedral boundary conditions as discussed in

the previous chapters.

9.1 Experimental Methods

Two types of experiments were conducted on the powder systems to determine the

properties at the macro-scale and the micro-scale. To determine the properties of

pair-wise interactions in both normal and shear directions, atomic force microscopy

(AFM) was used. The AFM measurements determine a matrix of cohesive pull-off

forces and inter-particle friction coefficients. In the macroscopic system, the homo-

geneity of the sample was measured using a light induced fluorescence (LIF) technique

developed in our collaborators' laboratory [88, 58, 59, 60]. Together, the two tech-

niques offer experimental measurements at both the micro-scale and macro-scale and

provide validation data for the upscaling of inter-particle interactions to powder sys-

tem behavior via discrete element modeling.

9.1.1 Atomic Force Microscopy

Atomic force microscopy (AFM) is a technique for measuring the forces that develop

between surfaces at the micron scale order. For this particular research, AFM has

been used to measure the friction, cohesion, and adhesion forces for pharmaceutical
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Figure 9-2: Model of the atomic force microscope experiment setup

powders. Because AFM can resolve weak forces in the nN range, the technique is ideal

for the studies detailed here. These measurements are then used to calibrate force-

displacement models used in the discrete element model to represent inter-particle

attraction/repulsion. Similar work in characterizing powders has been performed

[16, 49, 48, 54, 93] as has research in adapting AFM data for use in DEM [67].

The AFM apparatus is arranged as shown in Figure 9-2. A laser beam is sent

from a light-emitting diode toward the microscopically flat surface of the AFM tip.

This beam is reflected off of the Silicone Nitride surface to light-sensing CCD diode.

The relative position of the beam on the sensor is determined from the relative mag-

nitude of light sensed on individual matrix elements and resolved into a single point,

which is again converted into a deflection of the AFM tip. Realizing that the force-

displacement relationship is non-Hookean, an effective interpolation of the force can

be acquired.

In a typical cohesive/adhesive force experiment, the particle adhered to the tip

is slowly brought into contact with the other particle, which is adhered to a cleaved

mica base. This can be determined by a deflection of the AFM tip. The tip is then

slowly raised until the force on the tip is relieved (i.e., the cohesive/adhesive pull-off

force is reached).
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9.1.2 Light-Induced Fluorescence

The mesoscopic experimental validation of the numerical models is performed us-

ing a bench-scale blender and a sensor for determining the powder composition of

the boundary layer of pharmaceutical powder grains at the apex of the bench-scale

blender. This sensor is based on light-induced fluorescence (LIF) technology devel-

oped at MIT.

Light-induced fluorescence [59, 60, 58] exploits the fluorescing property of phar-

maceutical ingredients when exposed to a light source in the ultraviolet band. The

illuminated material is excited into a higher energy state and releases photons of a

higher wavelength when no longer illuminated, resulting in a strong signal over several

wavelengths corresponding to the fluorescing of the different constituent materials.

By filtering this signal, the strength of different components can be isolated. Because

the material fluoresced in restricted to a finite window of material, the signal strength

is directly related to the amount of a particular material in the sampled window. This

fluoresced light is captured by a light sensor, which converts the signal into a measure

of the homogeneity of the pharmaceutical product.

LIF is used in this study to determine the homogeneity of a mixed pharmaceu-

tical material during each rotation of the material in a variety of bench-scale pow-

der mixers. Fluorescent properties of lactose, microcrystalline cellulose, and caffeine

have been determined and are used to determine the homogeneity. Each bench-scale

blender is composed of stainless steel with a polycarbonate window to allow for LIF

measurements. Two types of blenders are used: a simple cylindrical blender with no

baffles and a V-mixer.

9.2 Simulation

This section details the numerical experiments performed to determine the blending

kinetics of pharmaceutical blenders. Both 2-D and 3-D studies have been performed

and validated for this approach.
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Figure 9-3: Numerical experiment setup for simulating blending experiments

9.2.1 2-D Modeling

The first part of the strategy required validation of DEM as a technique for investi-

gating particle blending kinetics. Blending experiments using two different mixtures:

(1) lactose and caffeine and (2) MCC and caffeine were conducted using the LIF tech-

nique, which was discussed in the previous section. Lactose and MCC are inactive

ingredients in a pharmaceutical blend and will be referred to generically as excipi-

ents. Conversely, the caffeine particles are the active ingredient and will be referred

to generically by the acronym for active pharmaceutical ingredient (API).

Using the MIMES framework described in [101], a system of 3280 lactose and

MCC particles are added to a circular blender comprised of a rigid body assembly of

constituent particles about the circular blender circumference, as illustrated in Figure

9-3. This rigid body assembly of boundary particles is comprised of 40pm disk-shaped

particles, yielding an effective friction to the blender surface.

MCC (microcrystalline cellulose) particles are modeled as a polydisperse system

of disk-shaped elements with specific density of 1.78. The radii of these particles have

a mean of 75pm and follow a log normal distribution. Lactose and caffeine particles

are also modeled as poly-disperse disk-shaped elements with specific densities of 1.27

and 1.23, respectively, and mean radii of 70pm and 50pm respectively, both following

a log-normal size distribution.

Parameter studies of stiffness and friction helped to constrain the choices for these

parameters in the 2-D simulations. From parameter sensitivity studies of similar sys-

tems [77, 57], stiffness is not explicitly considered and has been selected to maximize
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the time step while not allowing particles to interpenetrate more than 10% of their

respective radii, as recommended by Walton [123]. Interpenetration constraints are

necessary to satisfy the assumptions of local deformation implicit in the DEM for-

mulation. This results in a constant stiffness of 2.4e4N/m across all particles. For

friction coefficient, [24] determined that friction coefficients in excess of 0.2 did not

affect the flow properties of the material for disk-shaped simulations, as is corrobo-

rated by Walton in his discussion of the limitations of circular elements in DEM [124],

and a constant friction coefficient of 0.3 is applied to all materials in the simulation.

A cohesive model of particle interaction was formulated using simple point-to-

point spring bond elements. The average cohesive force derived from experiments

detailed in [88] was used to determine the yield strength of the bond as shown in

Figure 9-4. Though AFM cohesion measurements found a log-normal distribution of

cohesive pull-off forces for each pair of interacting particles and the interaction forces

between excipient, API, and API-excipient are different, the pull-off force is modeled

as a constant, using the average lactose-lactose pull-off force of 90nN and the average

MCC-MCC pull-off force of 280nN to characterize all cohesive interactions within the

lactose-caffeine and MCC-caffeine simulations, respectively. This choice is somewhat

valid, considering the systems investigated are 90% excipient content. Extrapolating

from the insensitivity of the models to contact stiffness, the same assumption is used

in determining the cohesive force-displacement law, with the linearized stiffness set

to the stiffness of the individual particles - 24, 000N/m.

Simulations were monitored using a similar procedure to that used in the actual

LIF experiments. That is, a small "window" was used to filter the DEM particles

at time steps corresponding to the acquisition frequency of the LIF sensor (1 acqui-

sition per second). Using this filter and time step, the summation of the resultant

caffeine particle masses was divided by the summation of the total mass of the re-

sultant particles and compared to the corresponding LIF measurements in the actual

experiment.

The parameter space was also expanded to compare simulation results with LIF

experiments over a range of blender rotation rates: 10, 20, 30 RPM.
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Pull-off force

Particle separation

Figure 9-4: Cohesive contact law implemented for 2-D circular blender studies

Figure 9-5: Figure from [88] showing the
(left) and MCC-caffeine (right) simulation

simulated LIF signals for lactose-caffeine
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The assumptions of 2-D planar motion, simple cohesion, and disk-shape were

shown to prevent the method from achieving comparable quantitative results; how-

ever, there was good qualitative agreement between simulation and experiment.

As expected from experiment, the lactose-caffeine powder system required a shorter

period than the MCC-caffeine system (70 s versus 79 s) to achieve a steady-state

homogeneity. Also, the periodic trend for the simulation shown in Figure 9-5 is qual-

itatively similar to that of the experiments, as shown in Figure 9-6 with decreasing

amplitude of homogeneity variation about a monotonically increasing slope as time

progresses. The red dotted slope shown in Figure 9-5 represents a moving average

of the homogeneity to illustrate the increasing percentage of API in the recorded

window as the API diffuses into the static excipient core. This phenomenon is more

pronounced in the MCC simulations, which also correlates well with the observations

of the experimental system and agrees with theory, which would assume that the

more cohesive MCC matrix would require more time for API particles to permeate.

From visualizations of the powder flow with colors discriminating excipient from API,

the avalanching action of the cylindrical blender can be discerned as the cause of the

periodic signal. As the avalanching action leads to diffusion of the API into the rigid

body rotation core composed mostly of excipient particles, the homogeneity signal

begins to stabilize. Figure 9-7 illustrates that as rotation rate is increased, the time

to achieve steady state homogeneity is decreased.

9.2.2 3-D Modeling

The success of the coarse 2-D simulations in validating the DEM approach encouraged

further study of blending kinetics and the design of a 3-D DEM simulation framework

to capture not only a 3-D spatial representation of particles but to also increase

the fidelity of the cohesion model and to implement the highly irregular boundary

conditions extant in most production blenders, especially the ubiquitous V-mixer and

the double helical ribbon blender under development and testing at MIT.

Using particle properties for glass beads, a simulation has been carried out to

validate the use of arbitrary boundary conditions in the DEM simulation. As shown
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Figure 9-8: Illustration of the validation of the arbitrary boundary conditions for a
V-mixer

in Figure 9-8, particles are allowed to flow down the blender walls and settle at the

apex of the V-mixer. The particles are modeled as dry granular matter, and cohesion

is neglected.

With a reasonable assurance of appropriate behavior of the simulation, full-scale

tests have been implemented using an independently validated cohesion law. The

cohesive model is based on a cohesive surface energy matrix designed to add stochastic

variability to the standard JKR model of adhesion [44], as repeated here from the

earlier section on cohesion:

(X) 2F(R R 2) (9.1)
37rR 1 R2

A matrix of values for the mean and standard deviation of the surface energy

was extracted from experimental data. The surface energy, instead of the pull-off

force, was used in order to remove the size dependence of the cohesive force. A

similar procedure is used to extract the mean and standard deviation for the friction

coefficient from experimental data. These matrices are used during the simulation

to determine the cohesion force and Coulombic friction force. Coulombic friction is

implemented with a cumulative shear formulation to accurately capture the stick-slip

phenomenon.
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Figure 9-9: Deposition of cohesive powders into the Y-mixer colored by material with
red as the API

Particles are deposited via the extruded end of a Y-mixer oriented perpendicular

to the axis of rotation as shown in Figure 9-9 and 9-10. Initially, the particles are

unmixed with the API in a layer in the plane of the illustration closest to the camera

with the excipients along the back of this layer. As noted from experiment, the

settling of the powder exhibits the characteristic curling flow as it reflects from the

inner sides of the Y and dissipates energy quickly.

Using the visualization capabilities discussed in the architecture, particles are

filtered by material type and only API particles rendered. As can be seen in Figure

9-11, the particles remain relatively unmixed in the static core of the system with the

majority of permeation of API particles at the free surfaces of the system (surfaces

unconstrained by the mixer wall). Diffusion occurs parallel to the axis of rotation,

catalyzed by the interaction of the system with the blender wall during the separation

phase.

The system was run for 3 complete rotations to study the evolution of the homo-

geneity of the system over time. The system exhibited flow characteristics observed

in experiment such as sudden slump of the granular matter under gravity, as shown
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Figure 9-10: Deposition of cohesive powders into the Y-mixer colored by velocity with
red indicating higher magnitude

Figure 9-11: Rotation of the Y-blender with only API particles rendered
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Figure 9-12: Sudden rearrangement of the cohesion matrix under gravity

Figure 9-13: API homogeneity/content at the measurement window for the 3D Y-
mixer for rotation 1 (left) and rotation 2 (right)

in Figure 9-12.

Observing the system across revolutions, the API content at the measurement

position (facing the mixer axis that is perpendicular to the axis of rotation) is observed

to increase in time as the free surface composition changes during the separation and

aggregation phases of the mixing cycle. The average decrease in the number of same

material neighbors for particles can be discerned between the two rendered images.

Diffusion of API particles away from the core results in greater mixing throughout

the blend with de-aggregation occurring faster at the free surfaces. The diffusion of

API particles away from the core does not act to separate API particles from cohesive

clusters as shown in Figure 9-14 and Figure 9-15.

9.3 Contributions

Using the DEM framework described in the beginning of this thesis, we have been

able to successfully validate the 2-D DEM formulation using a simple point-to-point
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Figure 9-14: Diffusion of API particles over time from the core of the system

Figure 9-15: Diffusion of API particles over time from the core of the system

beam element with no shear or moment capacity. Building on the 2-D formulation a

new cohesion model has been proposed to capture the stochastic nature of cohesive

and frictional interactions between powder particles. This model has qualitatively

captured the behavior of experimentally observed granular mixes.
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Chapter 10

Conclusion

The thesis has first set out both a framework and design for a DEM simulator in

Chapter 3, in combination with an abstraction framework based around SQL Server

for database storage and analysis (as shown in Appendix A). Visualization is built

into the application via a wrapper for POV-Ray application for visualization and

Matlab for additional analysis and visualization as described in Sections 3.4 and 3.6.

However, this is not a thesis primarily about aggregating commercial off-the-shelf

technology, it is about using this technology in a way that elucidates the under-

standing of granular materials in new and novel ways with specific application to

investigating the resolution of grain-scale interactions.

Specifically, this thesis has contributed to the representation of shape and surface

properties and the effects of this representation on granular system behavior. The

contributions lie in five main areas: computational geometry, cohesion modeling,

quadrature, DEM data analysis, and understanding of the phenomenon of stress dips

forming in the center of granular heaps.

1. In computational geometry, this thesis offers a new contact resolution algorithm

for general triaxial ellipsoids in Section 4.3, which performs an order of magni-

tude faster in resolving contact than the previous algorithm, as shown in Sec-

tion 4.4. This thesis develops a multi-scale representation of a particle surface

in Chapter 7 with applications shown in resolving both surface-varying cohesive
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interactions in Section 7.3 as well as micro-asperity geometric interlocking in

Section 7.2. This thesis extends the use of arbitrary polyhedral boundary con-

ditions in Chapter 8 through the development of a contact resolution algorithm

in Section 8.1 and a contact detection algorithm in Section 8.2.

2. This thesis has developed a method for modeling cohesive contact between

micron scale powders. By defining a lognormally distributed cohesion parameter

across the surface of a particle, good agreement has been shown in comparison

to experimental results using AFM pull-off tests, as shown in Section 7.3.

3. A new quadrature algorithm for accurately resolving rotational motion is de-

veloped in Chapter 5 and shown to exhibit superior accuracy and performance

to existing methods for resolving finite rotational motion in Section 5.6.1.

4. This thesis has introduces a data analysis framework for sifting through the

data produced by a DEM simulation in Appendix A, including performance

statistics and contact analysis.

5. Through the analysis of DEM data in a DBMS, a correlative relationship be-

tween average stress in successive annuli centered about the heap center and the

average age (residence) of the contacts in that region has been uncovered, as

discussed in Chapter 6. This relationship is interpreted as an indication of stress

fabric damage at the center of the heap during construction as a mechanism for

the development of a local stress minimum at the heap center.

In combination, these contributions have enabled a better understanding of gran-

ular materials through the lens of discrete element modeling by providing enhanced

resolution of particle geometry and improved data analysis capabilities. The effective-

ness of these contributions are illustrated through the studies of formation of stress

dips in granular heaps and in the numerical experiments simulating powder blending.
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Chapter 11

Future Work

One of the largest sources of excitement in a PhD is to see how one's research opens

doors to whole new avenues of research. For instance, both the analysis of heap

formation and stress network formation in general as well as the modeling of pharma-

ceutical blending are relatively immature research fields and could benefit from this

type of research. Some of the specific extensions are:

" Application of the multiscale, multiphysics surface mapping algorithm to nu-

merical simulation of powders

" Coupling of micromechanical laws of particle interactions currently being re-

searched into the DEM framework to increase the fidelity of the approach

" Parallelization of the code for extension to the solution of larger problems or

faster solution of current scale problems

" Extension of the visualization capabilities to provide new illustrations of gran-

ular behavior as well as more detailed animations of real systems.

" Investigation of new ways of analyzing data from DEM simulations to extract

important mechanisms for different particle behaviors.

" Further work on modeling continuous blending production of pharmaceuticals

in a double helical ribbon blender
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" Sensitivity analysis of the simulations to different parameters, such as particle

shape, contact law, etc. and refining these findings for applications to particular

types of systems. For instance, blended systems are relatively insensitive to

material stiffness; however, stress wave propagation experiments are controlled

by the material stiffness and contact damping models.

" Research into the validity of downscaling the bench-scale systems to smaller

systems of particles and answering the question of how few particles are required

to capture the essential behavior in blended powder systems

" Analysis of other blended aggregate systems, such as concrete, where the blend-

ing kinetics are different due to drastically different force scales and particle

distributions compared with pharmaceutical powder systems

" Finishing the validation of the smoothed particle hydrodynamics (SPH) com-

ponent of the DEM framework to allow for computational fluid dynamics cal-

culations to provide coupled fluid-solid flow

" Implementation of a Lattice-Boltzmann cell-based integration algorithm for cou-

pling fluid-flow and solid-fluid interaction into the model

An issue with the use of light induced fluorescence for studying blended systems is

that resolution is restricted to a few microns into the window of a bench-scale blender,

so only the wall layer of the powder is measured for homogeneity. Using DEM, it

would be a valuable study to show whether the window layer is a characteristic rep-

resentation of the whole system in terms of homogeneity or whether wall interactions

reduce the usefulness of this measurement.

As demonstrated by this thesis and [88], the possibilities for using DEM in under-

standing blending kinetics and extending this understanding to the design and testing

of blender designs before the production of the blender itself could be of enormous

value to the pharmaceutical manufacturing industry.Eventually in pharmaceutical

blender modeling, the goal is to be able not only to predict the behavior inside an

existing blender and determine the parameters that affect the effective mixing of
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different types of powders but to also provide a design tool for effectively testing

and validating new blender designs before they go into production. The continuous

blender mentioned above is an example of this; validation and analysis of the blending

kinetics of this blender design numerically could provide a degree of pre-production

assurance that the blender will provide sufficient homogeneity.

Upscaling is another issue in discrete element modeling. In performing numerical

simulations to reproduce the behavior of powders in a bench-scale blender, it is not

currently possible to simulate every grain. Instead, it is assumed that the blending

kinetics of a scaled blender will approximate those of the bench-scale blender, as,

similarly, the kinetics in a bench-scale blender are assumed to approximate those in

the production size blender. The validity of this assumption is currently untested,

and it is necessary to identify the proper number of particle necessary to capture the

characteristics of interest in the production scale system.

An existing and unanswered question is how do we know when we have achieved

enough resolution (i.e., enough parameters are being modeled) to accurately capture

a particular system's behavior? What weight should be given to each parameter?

Extension of the work on granular heaps to a parameter study of the effects of different

variables on the behavior of the system would possibly shed new light on the important

variables in emergent behavior in these systems as well as possibly offering insight

into a more general method for determining a priori the important parameters to

consider. As an avenue for exploring this field, extension of the studies on granular

heaps could be extended to provide a deeper micro-mechanistic view on the stress

state of these systems as the evolve under different conditions.

Finally, as touched on in the section on data, storage and analysis of data can

yield surprising and interesting results. DEM simulations, unlike experiments, have

the capacity to give us a perfect knowledge of the states of each grain at a microscopic

temporal resolution. This is currently not being exploited in many studies with focus

instead on simulating ever greater numbers of particles. Data analysis considering

both temporal and spatial components concurrently can be executed on a number of

problems and should be investigated in greater detail.
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Though much research has been performed to elucidate the mechanisms involved

in granular behavior in fluids, it is still an open question as to how particle geometry

affects the flow of fluid through granular media. Coupling the Lattice-Boltzmann

algorithm for resolving fluid flow and solid-fluid interaction could allow us to inves-

tigate the role of particle geometry and other parameters on the behavior of grains

in fluids, as, for instance, in the problem of modeling sand production in the near

well-bore region of oil wells.
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Appendix A

Data Management

Efficient and fast computation of a simulation is only half of the effort involved in a

successful numerical modeling approach. Often overlooked is the importance of ana-

lyzing the data resultant from an analysis. For particle methods, this is an important

consideration. As simulations involve more particles over more timesteps, the amount

of data generated from the typical simulation increases accordingly. For illustration,

a 106 particle system simulated over 106 timesteps produces 1.2e13 bits, or 1.5 ter-

abytes, of location data if assuming 3-D spatial coordinates stored using 4-bit floating

point precision. Storing and analyzing this magnitude of data is non-trivial. It is also

often necessary to query a variety of parameters concurrently, making it difficult to

logically divide data into separate data repositories (e.g., by particle or by time slice).

This chapter provides a method for piping data from a DEM simulation into

a commercial off-the-shelf (COTS) database system coupled with a framework for

filtering, rolling up, and visualizing phenomena of interest.

A.1 Data Archiving

One of the key principles of development adopted for DEM3D, as stated in the previ-

ous chapter, is to provide a framework that is agile to change. One way of providing

less sensitivity to change is through well-defined functionality both vertically (in co-

herent class hierarchy) and horizontally (in design of interfaces). In the data storage
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Contains data

Figure A-1: Process of piping data from the simulation to the backend data source.

Figure A-2: Illustration of abstracting the semantics of data in a general database.

component, this was retained with a general class-hierarchy to adapt to changing

database schemas throughout product design. Because of the flexibility of the ap-

proach, it has been extended to allow runtime specification of the data schema through

the DataSource class hierarchy.

Figure A-1 illustrates the desired process for bringing data from the simulation

application and pushing it into the data source of choice. Figure A-2 shows the class

hierarchy for adapting data without data or process semantics (stored in a database)

into a data object which has not only well-defined data in the context of the simulation

but also optimized processes for storing and accessing the data.

The DataSource class serves to adapt the data held in a database, spreadsheet,

or other structured format to adhere to an in-memory dataset schema as well as

providing interfaces for reflecting changes back to the original data source. The
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DataSource class also provides methods to cache and batch-update the original source

file depending on the user's needs. The DataSource class also has inheriting classes

for each of the data source types that must be interfaced (e.g., SQL Server, Excel,

XML, etc.), which may override the some of the core methods of the DataSource class.

The attractive part of this is that the base class provides the necessary abstraction

to prevent calling classes from handling the details of individual data source types.

Caching and batch-updating are both a subset of the business logic of the data

flow. From tests with sample DEM systems, caching could reduce the time for output

by approximately 65%. Referential integrity is guaranteed by the DEM simulator

itself, so there is no need to check relationships during the updating of the database;

however, it would be advantageous to have relationships defined when querying the

data. These behaviors are defined in the DataModeler class, which holds an instance

of the DataSource class (which may be an inheriting class instance).

Finally, the abstraction of data must be constrained to only represent a particular

data schema and to give rules about which data table and data columns should be

created in the in-memory data schema. This is handled by inheriting classes of the

DataModeler class such as the SimpleDataModeler class, as illustrated in Figure A-2.

The result of this architecture is a decoupling of the functional steps in storing

data. A simple illustration of this is that if one were to change the way a shape is

represented in the database or how timesteps are captured, the only change in the

code for data storage would be in the SimpleDataModeler class. Methods also allow

some simple changes to the underlying data schema to be handled through an XSD

input file.

In the SimpleDataModeler class, data archiving in discrete element modeling is

modeled as a strictly non-transactional data flow. That is, data is fed into data storage

with no feedback to the simulation. Data is only withdrawn to perform analyses on

the results of the simulation and to create visualizations of the output. This yields a

model that is well-conditioned for fast updating given that an appropriate design is

used for the representation of data.

In this work, the class structure of the DEM3D simulation application is amenable
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d MATERIALUID LONG NT MJLL
u NAME VARCHAR2(0) NOT NULL

ST4FftSSCOMPRESSIW NUMBER
STIFFNESSTENSILE NUMBER
STMWSSHEAR NUMBER
CONTACTDAMPINGCOMPRESSIvE NUMBER
CONTACTDAPINGTENSE NUMBER
CONTACTDAMPINGSHEAR NUMBER
FRICTIONCOEFFICIENT NUMBER
MODULUSOFRIGIDITY NUMBER
POISSONSRATIO NUMBER
YOUNGSMODULUS NUMBER

SHAPE(MATERIALU D) = MATERIAL(MATERIALUID)
.......... .....

SHAPEUID
NAME
TYPE

i' MATERIALUID

LONG NOT NULL
VARCHAR2(0) NOT NULL
VARCiAR2(O) NOT NUU.
LONG NOT NULL

SHAPETIME(SHAPEUID) = SMA

& CONTACTUID LONG NOT NULL
s PARENTUID LONG NOT NULL
u SLAVEUXD LONG NOT NULL
u In LONG NOT ILL = SHAPETI

POTNT NUMBER
POINTY SP01W? NUMBER
NORMALX NUMBER
NORCALY NUMBER
NORMALZ NUMBER
FORCEX LMER
FORCEY NUMBER
FORCEZ NU16WER

t, TiM LONG NOT NULL
COMPUTATIONTIME LONG
RECORDTIME DATE

SHAPETIME(TIME) = TIMECTIME)

Figure A-3: Data model for archiving data in DEM3D (sans independent simulation
settings table).
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SENMYUID LONG NOT NULL
" SHAPEUAD LONG NOT NULL
" TIME LONG NOT NULL

COGX NUBER
COGY NM*ER
COGZ NUMBER
VELOCrYX NLM4ER
vEOCr NUMBER
VELOCfTYZ NUMBER
FORME NLS4t
FORCEY NUMBER
FORCEZ NUMBER
ROTATIONW NUMBER
ROTATIONX NUMBER
ROTATTONY NUM*BER
ROTATIONZ NUMBER
ROTVELX NUMBER
ROTVELY NUMBER
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to the relational data model that serves as the foundation of most modern enterprise

database systems. The class design of bodies, boundaries, contacts, and simulation

settings in DEM3D have intuitive analogues in a relational model. The final model

is illustrated in Figure A-3.

As described in the introduction to the chapter, a large amount of data can result

from trying to capture even a small subset of the data. It is often desirable to

prefilter the information being archived to avoid large amounts of data being sent to

the database. Prefiltering can take on the form of a reduced number of parameters for

each particle, or it may be to sample timesteps at a lower rate or select only certain

particles for tracking. With the 106 particles over 106 timesteps, we may only need to

capture behavior of the simulation at a certain resolution (e.g., every 103 timesteps),

over a limited interval (e.g., 103 timesteps after a certain stress state is detected),

or over limited particles (e.g., a set of 103 tracer particles). All of these cases would

result in a reduction of the stored information to 1.5 gigabytes, an easily addressed

data size on a modern personal computer. It would be advantageous to build this

pre-filtering into the system.

Pre-filtering of timesteps is handled in the simulation application itself as a pa-

rameter in the simulation settings. Individual particles can be pre-filtered based on

filter objects, which determine, during the simulation time-stepping, which particle

data to send to the DataModeler instance. In the DataModeler instance, the param-

eters are filtered based on the business logic of the class. For the SimpleDataModeler

class, filtering can be specified by the user at runtime either through a programmatic

interface. This programmatic interface is structured in a wizard format, making it

easily adapted to a form-based specification of parameters.

A.2 Data Mining

Extracting data requires a series of steps to transform the raw data into a flat data

structure. A flat data structure is advantageous in several ways:

1. It can be easily delimited by separator characters and imported into popular
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Excel (2- or 3-D)

Mat ab (N-0)

ARD (matrix form)

Figure A-4: Consumption of flat data table data into a visualization engine.

ARD (matrix form)

Figure A-5: Process for rolling up queried data into a flat data table via operations

and filters.

statistical analysis programs, such as Minitab, SAS, and SPSS, as well as pop-

ular spreadsheets, such as Excel, for further processing.

2. Plotting of temporally-based states is naturally enabled by a flat data structure

where time is captured along the row dimension and state, such as location,

velocity, or force, along the column dimension.

3. Database queries produce flat data table results.
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