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Abstract
In many aquatic systems, from tidal creeks with fringing mangroves to rivers and
associated floodplains, there exists an interface between dense vegetation and a high
conveyance channel. A shear flow develops across this interface and its dynamics
influences the exchange of mass and momentum between the vegetation and the
channel. This thesis describes an experimental study in a shallow laboratory channel
with 1/3 of its width filled with circular cylinders, a model for emergent vegetation.
The experiments reveal the formation of a shear layer with nearly periodic vortex
structures. The vortices are documented with respect to their physical characteristics
and their effect on mass and momentum exchange.

Distributions of mean velocity and turbulent Reynolds stress show a two layer
structure in the shear flow. An inner layer exists near the interface, with a width that
establishes the penetration of momentum into the vegetation; an outer boundary
layer exists in the main channel, where the vortices reside, with a width independent
of the vegetation. In each layer the mean velocity distributions are self-similar.

Results of a linear stability analysis suggest that channels with differential drag
are conducive to the growth of Kelvin-Helmoltz shear instabilities. Indeed vortices
are observed for all experimental conditions, and their passage frequency matches
the most unstable frequency from linear theory. A typical vortex structure is educed
by conditional sampling, and reveals strong crossflows consisting of sweeps from the
main channel and ejections from the vegetation, leading to high Reynolds stress at
the interface. The sweeps also maintain the coherent structures by increasing the
shear at the interface and enhancing energy production.

Finally, a model is developed for exchange between the vegetation and the channel
in terms of the vortex size and passage frequency. The semi-empirical model describes
both mass transfer coefficients and interfacial friction coefficients in data from a range
of vegetated flows, and suggests that a constant proportion of the vortex volume is
exchanged over each cycle. The exchange coefficient is used to quantify the flushing
timescale of a vegetated layer, and is applied to the problem of overbank transport
of suspended sediment between a river and its floodplain.
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Chapter 1

Introduction

1.1 Motivation

Many aquatic systems, such as tidal creeks with fringing mangroves, rivers and asso-

ciated floodplains, and salt marshes and tidal channels, exhibit an interface between

dense vegetation and a high conveyance channel. The differential in hydrodynamic

drag between the vegetated plain and the main channel results in a shear flow often

characterized by the formation of coherent turbulent structures, which influence the

exchange of mass and momentum between the two zones. This material exchange

is important for the hydrologic, morphodynamic, and ecological processes in these

systems. The faster flowing channels carry much of the sediment and nutrient load,

but within the vegetation lies a great deal of ecological diversity and physical capac-

ity for sediment retention. The following examples illustrate the range of processes

affected by this exchange process. The accretion of a salt marsh, and thus its ability

to keep pace with rising sea level is in part dictated by sediment supply from the

main channel (Stumpf, 1983). Heavy metals and other contaminants are preferen-

tially associated with fine grain sediments and their transport to a river floodplain

depends on overbank exchange with the main channel (Macklin, 1996). The exchange

of freshwater between a tidal creek and fringing mangrove is necessary to prevent hy-

persaline conditions adverse to the health of the mangroves (Wolanski et a., 2001).

Finally, external nutrient supply is necessary to maintain rates of primary production
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in coastal macrophyte stands (Buzzelli et al., 1999).

While a variety of factors will influence exchange in natural systems, including

tidal flows and severe storm-driven flows, a description of the basic hydrodynamics

of the shear layer at the interface is important for a system-level understanding. To

this end, experiments have been carried out in a laboratory channel partially filled

with model emergent vegetation, in the form of circular cylinders. The dynamics of

exchange between the vegetated region and the main channel is studied by detailed

measurements of velocity and turbulent stress. The most striking feature of the shear

flow are the periodic coherent vortices that form at the vegetation interface. These

structures result in large momentum fluxes, which are due to strong lateral motions

consisting of sweeps toward the vegetation and ejections away from the vegetation.

Figure 1-la shows a typical velocity time series with the periodic vortex signal and

the high-stress-producing sweeps and ejections. Figure -lb shows an ejection visu-

alized by reflective tracer sprinkled on the water surface. Throughout the thesis, the

coherent structures are a consistent theme, and the physical measurements are often

interpreted in light of their structure. Ultimately, the thesis documents the physi-

cal characteristics of the structures, explains their dynamic cycle of generation and

maintenance, and quantifies their impact on the flux of both momentum and mass

across the vegetation-main channel interface.

1.2 Outline

The outline of the thesis is as follows. In chapter 2, the mean velocity and turbulent

Reynolds stress are discussed. The mean distributions reveal a two layer structure to

the shear flow. An inner layer, near the interface, limits the penetration of momentum

into the vegetation, with a decreasing length scale for higher stem density. In the main

channel, there is an outer boundary layer, with a width independent of the vegetation

characteristics, but which correlates with the water depth, indicative of influence by

bed friction. In each of these two distinct layers the mean velocity distributions are

self-similar. The inner layer distributions collapse to a hyperbolic tangent profile

12
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Figure 1-1: Sweeps and Ejections from Coherent Structures. (a) shows a time series of
streamwise velocity, u, transverse velocity, v, and instantaneous Reynolds stress, u'v', mea-
sured near the interface. The time series is marked by nearly periodic fluctuations corre-
sponding to traveling vortices. Sweeps and Ejections are noted. (b) shows a visualization
of an ejection event, a strong outflow from the vegetation (flow is from left to right).
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characteristic of a mixing layer, while the outer flow collapses very nearly to a Blasius

boundary layer profile. There exists a logarithmic region in the outer layer, and,

analogous to the special case of "d-type" boundary layers, the roughness length scale,

ko, for the outer flow is independent of the vegetation density.

In chapter 3, a hydrodynamic stability analysis is described for channels with

differential hydrodynamic drag. It is shown that for uniform drag, typical of open

channels with bed friction, instabilities are damped, but differential drag, typical of

the experimental channel, is more conducive to instability. Moreover, the frequency

predicted by linear theory for the most unstable disturbance closely matches the

frequency of the vortices from experiments.

In chapter 4, the structure of the coherent vortices is described. Though initiated

by the inflection point in the inner layer, their size scales with the outer boundary

layer width. The characteristic vortex was educed using a method of conditional

sampling which gives a composite picture of the streamlines and vorticity. From these

observations, the spatial distribution of stress-producing events, and the turbulent

kinetic energy budget associated with the structures is described. Conclusions are

then drawn about the mechanisms of vortex generation, maintenance, and spatial

development. Results suggest that sweeps are the most important mechanism or

maintaining the vortices.

In chapter 5, a model is developed for momentum and material exchange between

the vegetation and the channel in terms of the vortex size and passage frequency. The

model relies on a parameter, a, which describes the proportion of the vortex volume

that is exchanged over each period of its passage. Data for scalar and momentum

fluxes in canopy flows and momentum fluxes in the present experiments suggest a is

a constant for a wide range of vegetated flows. Good agreement is shown between

the model for interfacial flux and the friction coefficient from different data sets. The

timescale for flushing from the vegetated layer is then predicted by solving a simpli-

fied form of the advection-diffusion equation with the interfacial mass transfer as a

boundary condition. Finally, this method is applied to the problem of overbank trans-

port of suspended sediment between a river and its floodplain, which demonstrates
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patterns of deposition for different channel flow conditions.
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Chapter 2

Experimental Results: Mean

Velocity and Shear Stress

2.1 Introduction: Flow in a Partially Vegetated

Channel

2.1.1 Problem Description

The problem of interest is that of flow in an open channel that is partially filled with

emergent vegetation. The vegetation is assumed to consist of individual shoots with

a cylindrical morphology. We thus model the vegetation as an array of circular cylin-

ders. The rigid cylinder array is ideal for modeling the flow-vegetation interaction be-

cause it is both simple and provides a reasonable morphological approximation of the

stem region of emergent vegetation like reeds and rushes, which exhibit very limited

bending when exposed to currents (Leonard & Luther, 1995). The simple geometry

also places the problem in the context of a large class of well-studied boundary-flow

interaction problems, such as rough-wall boundary layers that form in grooved chan-

nels (Ghaddar et al., 1986; Djenidi et al., 1999), channels with cylindrical span-wise

roughness (Schatz et al., 1995), and terrestrial canopies (Finnigan, 2000), as well as

the problem of open flows adjacent to a porous medium (Beavers & Joseph, 1967;
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Jimenez et al., 2001; James & Davis, 2001).

A schematic of the problem is shown in figure 2-1. The cylinder array is described

by the following properties: the mean cylinder diameter, d, the solid volume fraction

of the array, , and the average center-to-center distance between cylinders, s. In

addition, if the areal number density of cylinders is n [cylinders area-l], the average

solid frontal area per unit volume in the plane perpendicular to the flow is a = nd.

The schematic depicts the staggered, equilateral arrangement of rods used in the

present experiments (also considered by James & Davis, 2001). For this geometry, the

solid fraction is related to the spacing and diameter by = 7. Other geometries

commonly studied are square arrays (James & Davis, 2001; Prinos et al., 2003), for

which = d2, and random arrays (White & Nepf, 2003), for which the spacing

scale is less clear, but in analogy to square arrays, a characteristic mean value, s =

Ad can be defined. Also shown is the velocity distribution across the vegetation

interface. The velocity approaches a constant value of U1 inside the vegetation, when

a spatial average is taken over the flow heterogeneity around the individual stems,

and approaches a constant U2 in the channel. The velocity in each zone results

from the balance between the driving pressure gradient and the frictional resistance,

applied by the individual obstructions in the vegetation, and bed drag in the channel.

Also shown is the the slip velocity, Us, defined in the schematic as the difference

between the velocity at the interface and U1. The interface is taken as the center-line

of the outermost row of cylinders, and is defined as y = 0. Some researchers have

defined Us at this centerline (Larson & Higdon, 1986), while others have defined it

at the line tangent to the outermost edge (James & Davis, 2001; Beavers & Joseph,

1967). This disparity in the definition of Us illustrates the complexity of the problem

and the lack of consensus around what the important metric is. Ideally, U should

measure the degree of penetration of channel momentum into the array. It is shown

in this chapter that this is best accomplished by defining Us at the inflection point

of the velocity profile, which is very close to, but not necessarily equal to y = 0.

The penetration of momentum from the main channel, and hence the slip velocity, is

controlled in general by the resistance of the medium. Differences in array geometry

18
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Figure 2-1: A schematic of the partially vegetated channel. The velocity distribution is u(y)
(down the page), the cylinder spacing is s, the slip velocity is U, and the velocity difference
across the layer is AU = U2 - U1. The horizontal, transverse, and vertical coordinates and
velocity components are, respectively, x, u; y, v; z, w.

are expected to influence the degree of penetration and the slip velocity by altering

the local resistance near the interface. Previous studies of low Reynolds number flow

at the edge of fibrous media suggest that array geometry is important, particulary at

the interface, and that the outer row of cylinders contributes disproportionately more

than inner rows to limiting the penetration depth (James & Davis, 2001). Significant

differences in the slip velocity were found by Sahraoui & Kaviany (1992) depending

on whether or not the cylinders in the outermost row are aligned. Just as in low

Reynolds number flows, the degree of penetration and the slip velocity are expected

to depend both on the bulk properties of the medium, and s, and properties of the

individual obstructions, like d and the specifics of the arrangement.

For this study we varied only the bulk continuum properties of the medium, I, and

thereby s, but kept the staggered equilateral array pattern and the cylinder diameter

identical for all experiments. This was done both due to the inherent experimental

difficulty in studying a large set of geometries, as well as to isolate the dependence

of experimental variables on bulk properties. Thus, while absolute magnitudes of

19
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experimental variables are restricted to this array geometry, general trends showing

their variation with 0 and s should extend to a wide range of configurations. Natural

vegetation is likely to have a heterogeneous local distribution, rather than the regular

distribution studied here. However, the dependence of the flow characteristics on 0

is expected to have the same general trends in a heterogeneous distribution as in the

regular distribution. Moreover, the dominant length scales of the shear flow, both in

natural vegetated channels and in the laboratory experiments, scale with the shear

layer width, which is much larger than the spacing of the stems, s, and hence much

larger than the details of the cylinder distribution.

2.1.2 Results from Low Reynolds Number Shear Flows Ad-

jacent to Porous Media

In classic work by Beavers & Joseph (1967), experiments were done to determine the

velocity slip at the interface between a clear channel and a variety of porous media at

low Reynolds number. The goal was to ascertain both the degree of flow penetration,

and shear-induced flux in the media, as well as the appropriate boundary conditions

for the open channel. They modeled the flow within the medium according to Darcy's

law, with

u=- P (2.1)

where k is the permeability of the medium, P is the applied pressure gradient, and

/i is the fluid viscosity, and U is the Darcy velocity. They found that the slip velocity

was related to the permeability and the shear at the interface as

y y= a = (2.2)
The resulting coefficient 0 was found to vary substantially for media of different type

and geometry, suggesting that the bulk continuum properties, expressed through the

permeability, do not sufficiently describe the interfacial flow. This result may be

anticipated by closer inspection of (2.2). This equation predicts that the length scale
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for penetration, as expressed through the interfacial shear, is proportional to sqrtk,

which is of the order of the pore scale in the medium, e.g., the spacing scale, s, in a

cylinder array. The permeability, however, is a bulk property of the medium, and as

such is well-defined only in a spatially-averaged sense, over a length scale L > vk.

Thus the permeability alone cannot be expected to describe the flow over scales

smaller than this averaging scale, such as the thin region of sharp flow variation at

the interface for dense media. Hence the large variation in observations of 3, implying

a strong dependence on geometry at the interface.

Although P is highly dependent on geometry across the broad spectrum of porous

media types and configurations, recent results on interfacial flow in cylinder arrays

suggest a weaker dependence on cylinder geometry. In a theoretical description of

flow in two different array types, square and staggered equilateral, James & Davis

(2001) found. a weak dependence of 3 on the solid volume fraction, but little difference

between the two array types. Experimental work by Tachie et al. (2003) supported

the theory, finding weak reduction in i/ with volume fraction, but little difference

between square-, circular-, and triangular-shaped rods. Thus, while not universal

across different types of media, the low Reynolds number Beavers & Joseph scaling

relationship for the slip velocity in terms of the array permeability appears to be

sound for similar array configurations.

2.1.3 Results from High Reynolds Number Canopy Flow

While work in porous media reveals some general relationships between interfacial

flow and the properties of the solid medium, the results have been predominantly

restricted to low Reynolds number flows in the Darcy limit. Hence the instabilities

and coherent turbulent structures that arise in higher-Reynolds number flows, and

significantly affect momentum transport between the array and the open region have

been neglected. However a significant body of literature covering rough-wall boundary

layers and flow over terrestrial and aquatic canopies, explores these topics.

An extensive review of the turbulent characteristics of canopy shear layers is given

in Finnigan (2000). The review is focused on terrestrial canopies, found above forests
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Figure 2-2: A schematic of a submerged aquatic canopy flow. The velocity distribution,
U(z) varies with vertical distance above the bed, and the velocity difference is AU = U2- U1 .
The canopy height is h, and the water depth is H. Terrestrial canopies are not bounded by
a free surface and transition to the atmospheric boundary layer with increasing height.

or grasses, which transition to the atmospheric boundary layer far above the canopy.

The concepts have also been applied to aquatic canopies, which are bounded by a free

surface (Ghisalberti & Nepf, 2002; Nepf & Vivoni, 2000). A schematic of an aquatic

canopy flow is shown in figure 2-2. Note the similarity to the shallow vegetated

flow (figure 2-1), with only a change of orientation from the vertical to horizontal

plane. As discussed in the review by Finnigan, an understanding of canopy flows has

emerged that compares them to plane mixing layers. Strong shear across the top of

the canopy gives rise to Kelvin-Helmholtz instabilities which form regular coherent

vortices. These coherent structures control exchange of momentum and scalars across

the canopy edge, with most of the turbulent transport linked to sweeps, which bring

high momentum fluid from the faster flowing free stream down into the canopy (see

Ghisalberti & Nepf, 2002, figure 9). The characteristic length scale of the structures is

related to the maximum shear, which occurs at or near the top of the canopy, z = h,

U
Ls aU (2.3)

AZ z=h

where U denotes the time-averaged velocity, i.e., averaged over turbulent fluctuations.
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The mean (time-averaged) velocity across the canopy shear layer, as in plane

mixing layers, is often well-approximated by a antisymmetric hyperbolic tangent or

error function profile, similar to that shown in figure 2-2 (Raupach et al., 1996),

so that Ls, I w, where w = AU/ max is the vorticity thickness. The inflection

point characteristic to these profiles, gives rise to a Kelvin-Helmholtz instability, in

accordance with Rayleigh's inviscid instability theorem. The slip velocity appears in

(2.3), through (UIz=h), making its form analogous to (2.2).

Unlike the Beavers and Joseph condition (2.2), the dependence of L, on canopy

characteristics is not suggested by (2.3). As the penetration is linked to the resistance,

and thus momentum absorption, of the canopy, a resistance equation is needed. The

consensus in the canopy literature (see, e.g., Finnigan, 2000) is that when the flow

is averaged over the details of the leaf and stem heterogeneity, the mean drag force

created by the canopy opposing the flow can be written as a quadratic drag law,

1
FD = -CDa {Ui} I{Ui}l (2.4)

2

with the density a (canopy solid area projected to the flow per volume) as defined ear-

lier, and CD the effective drag coefficient. The velocity, {Ui}, is volume-averaged over

the fluid-filled space. From here forward the brackets will be dropped for simplicity

and to coincide with the terminology used in figure 2-2. Note that 2.4 is analogous

to the Darcy resistance, U/k, but has a quadratic, rather than linear, dependence

on U, due to the high Reynolds number flow.

Using the canopy drag and an integral momentum balance over the top of the

canopy, Poggi et al. (2003) give an estimate for L, in terms of the Reynolds shear

stress at the top of the canopy, u2 = (u'w')z=h,

s CDa U(h)2) (2.5)

A different formulation was employed by Ghisalberti & Nepf (2004) based on

energy arguments that the production of coherent structure kinetic energy by mean

shear should balance dissipation by canopy drag. A universal constant was obtained
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that related the characteristic length scale for canopy penetration, Lp, to the canopy

drag,
1 (U) (26)

QCDa (U(h)2 ) (2.6)

where Lz is the distance between the top of the canopy and the point at which U = U1

(in the terminology of Ghisalberti & Nepf (2004), L, = h - zl) and Q = 8.7 ± 0.5.

Finally, for canopy flows in the limit where U1 < U2, White, Ghisalberti & Nepf

(2004) also used energy arguments to show that the characteristic shear layer width

and the penetration length scale are both proportional to the inverse of canopy drag,

Ls a(2.7a)
CODa

L =CDa (2.7b)

where L = AU/ Z=O and Lp is the distance from the canopy edge to the point at

which the Reynolds stress decays to 0. lu,. These scaling relationships were supported

by a wide range of compiled canopy flow data, which consistently showed a 0.25

and p - 0.1.

Equations (2.5), (2.6), and (2.7) all have in common the fact that the dependence

of the characteristic penetration scale is inversely related to the canopy resistance,

making these formulations analogous to the Beavers and Joseph condition (2.2). All

of these interfacial conditions relate the shear, and its length scale, at the edge of

the solid medium, to the bulk continuum resistance of the medium through a single

length scale, vk for porous media in the Darcy limit, and (CDa)- 1 for turbulent

canopy flow.

2.2 Flows on Vegetated Floodplains

Several workers have studied the flow in composite channels with a vegetated flood-

plain, primarily in laboratory settings. Vionnet et al. (2004) proposed an eddy vis-

cosity model to describe the momentum exchange between the main channel and the
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floodplain, and used results from a laboratory model to calibrate it. Helmi6 (2004)

also used a one-dimensional model, with a calibrated Darcy-Weisbach friction factor

at the vegetation interface, to describe the flow conveyance of two lowland rivers.

Each of these studies used a simplified one-dimensional model to estimate resistance,

without describing the lateral distribution of velocity, or the turbulence structure.

Pasche & Rouv6 (1985) developed a more advanced model which divides the chan-

nel into three zones: the main channel, the vegetated plain, and a communication

zone between them. A Darcy-Weisbach-like friction law is proposed and calibrated

by laboratory measurements in a composite channel with emergent cylinders. An ad

hoc cubic velocity distribution is used in the main channel, which, along with the

friction factor, describes the experimental velocity profile well. Ikeda et al. (1991)

use an eddy viscosity model to predict the lateral distribution of velocity, and further

apply the model to sediment transport into the vegetation.

While these latter two studies attempt to capture lateral variability and commu-

nication between the main channel and floodplain, they do not capture the effect of

the shear layer vortices that are know to form at the interface. These have been

recognized in laboratory studies by Tamai et al. (1986); Nezu & Onitsuka (2000).

The measurements of Tamai et al. demonstrated the coherent vortices were driven

by a Kelvin-Helmholtz instability similar to that found in a free shear layer. Nezu &

Onitsuka measured the spatial distribution of turbulent shear stresses and turbulent

production and also noted secondary circulations that were initiated by the unstable

inflection point at the vegetation interface. Finally, Large Eddy Simulation (LES)

models by Nadaoka & Yagi (1998); Xiaohui & Li (2002) have attempted to simulate

the unsteady flow at the vegetation interface that is driven by the shear instability.

However, due to computational limitations, the LES models treat the vegetation only

as a distributed drag body force. Nonetheless, the simulations appear to reproduce

the large vortices seen in the laboratory experiments. To date, none of the studies

in channels with vegetated floodplains has established the dynamics of the cycle that

forms and maintains the vortices, the effect of the large vortices on the communi-

cation between the main channel and the vegetation, or their effect on the spatial
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distribution of velocity and turbulent stress. The present study attempts to fill these

gaps.

2.3 Shallow Vegetated Shear Layers

In the following section, we describe experiments undertaken on shallow shear flows,

at moderate to high Reynolds number, in a partially vegetated laboratory channel.

Objectives are the description of the distributions and scales of velocity and shear

stress, penetration of momentum into the vegetated layer, and interfacial slip velocity.

The results demonstrate that unlike previous results from canopy flows and interfa-

cial porous layers, the shear layer in a shallow vegetated shear layer (SVSL) is not

characterized by a single length scale related to the properties of porous medium.

Rather, results will be presented which show two distinct regions and thus two dis-

tinct length scales exist in these flows: a thin, inner region near the interface, which

establishes the penetration length scale, and which depends on the properties of the

solid medium, and a larger outer region which depends on the characteristics of the

open channel. It will be shown that for a wide range of Reynolds number and cylinder

volume fraction there is good collapse of the velocity distributions in each of the two

layers, indicative of similarity. Results also show that the slip velocity is a function

of the ratio of the two scales.

Before proceeding, it is useful to describe the balance of momentum for a shallow

vegetated flow. The reader may make reference to 2-2 for a definition of coordinate

system. The equations of motion for flow in the vegetated channel can be simplified

because it is shallow, h < B, where h is the mean depth and B the characteristic

horizontal length scale. In addition, there exists a scale separation between the large

scale coherent structures, which are intrinsic to vegetated shear flows, and the smaller

length and shorter time scales of the turbulence generated by friction at the bed and

by wake turbulence behind vegetation. As a result, the equations can be averaged

over depth and time-averaged over an intermediate time scale that is short compared

with the fluctuations due to the coherent structures, but long compared with small-
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scale turbulence. Moreover, within the vegetated layer, a spatial averaged is taken

over the characteristic scale of the heterogeneity. In the experimental array this scale

is the mean cylinder spacing. Spatial- and depth-average quantities are expressed

with an overbar. The short time average is denoted with a tilde. The result of the

averaging are the shallow water equations, which govern the two-dimensional flow in

the horizontal plane.

longitudinal momentum:

h + h u = Ohu gh Zb+ 1 + Ohy hFD
at Odx Oy Ox p [dx y

(2.8a)

transverse momentum:

Ohv Ohu hT = ghO(h + Zb)+ Ox + y gh

continuity:
Oh Ohu
St x +

where u and v are the mean pore velocities

terms are given by

= I- -

oa

Tyx = -

A9x

+ _ + F_ - hFDy
p Ox Oy

ahv
- 0.

Oy

(2.8b)

(2.8c)

within the vegetation. The shear stress

pi v/ -

pu'v' -

PU'V' -

(2.9a)

(2.9b)

(2.9c)

7yy =/ ,, - pv'v' - p(iU - ) (- ). (2.9d)

Each stress term consists of contributions from, respectively, viscous stress, Oaxjui,

turbulent Reynolds stress, vj, where the primes represent turbulent deviations from
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the time average, and spatial correlations in the temporally-averaged velocity com-

ponents, (i - ui)(ij - Tj). These latter contributions typically come about from

secondary circulations (Shiono & Knight, 1991). The pressure forcing term is dic-

tated by the surface slope, and contains the local bed elevation, Zb. The body force,

FDi, in (2.8) results from the spatial averaging and is the net effect of drag from

the vegetation and from bottom friction. This can be taken to be a piecewise func-

tion from within the vegetation into the open channel, by using the expression for

vegetative drag (2.4) to write

(CDa + cf h) < (2.1)FDX 2(2.1Oa)

-(cf/h) U p, y > 0

f (CDa+f/h) v¥ , y<0 (, v<0
FDy = ( (2.10b)

(cf/h) ~,/ + v , > 0,

where cf is the bed friction coefficient due to the bed stress. The vegetative drag

applies only within the vegetated portion of the channel, y < 0, bottom friction

supplying the only resistance in the open region. It will be shown in the following

sections that the length scale associated with the flow near the vegetation interface

depends on the vegetative resistance, while the outer length scale depends primarily

on the balance between shear stress and bottom friction in the open channel.

When the flow is fully-developed, and it is desired to describe the mean flow on

time scales much longer than the coherent structure fluctuations, a long time-average

applied to (2.8)-(2.10) yields

0yo = gS- a [(u'V') + (U - U)(V- V))] - (FD) (2.11)

where S = -dh/dx is the free surface slope, the angle brackets represent the long-

time average, the overbar represents the depth-and-spatial average, and U _ (U) is

the long time-averaged velocity (but not depth-averaged). Equation (2.11) is used in

section 2.5.11 in describing a method for predicting the lateral velocity distribution
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in natural vegetated channels.

Finally, a note about nomenclature. In the remainder of this chapter, unless oth-

erwise defined, capitalization, e.g., U, is meant to denote experimental quantities that

are long-time averaged, but measured at mid-depth, and thus assumed to approxi-

mately represent a depth average, U U. Instantaneous time measurements, e.g.,

u(t), are denoted in lower case, while temporal deviations are denoted with a prime,

e.g., u'(t). In addition, angle brackets will represent a long-time average, i.e., over all

temporal fluctuations.

2.4 Experimental Methods

Experiments were carried out in a 1.2 m wide, 13 m long laboratory flume partially

filled with a model layer of vegetation. A schematic of the laboratory setup is shown

in 2-3. The vegetated layer was approximately 40 cm wide (1/3 of the flume width)

and consisted of an array of wooden circular cylinders, 6 mm in diameter held by 0.25

inch perforated PVC base boards (Ametco Manufacturing Corporation). The dowels

swelled when submerged, increasing the diameter to 6.5 ± 0.2 mm and holding the

dowels rigidly in the base boards. By filling different percentages of the base holes,

solid volume fractions of 0 = 0.02, = 0.045, = 0.10 were studied. Experimental

configurations and results are summarized in table 2.1.

The initial section of the array, 1.2 m, was separated from the main channel by

a splitter plate. This allowed the flow to develop separately within the array and

the main channel, minimizing transverse motions due to flow adjustment at the array

onset (see Bousmar et al., 2005). The flow depth, h, was varied between 5.5 cm and

15 cm, with most experiments carried out for depth to width ratios of h/B << 0.1

in order to preserve shallow flow conditions. A recirculating pump provided flows of

between approximately 2 - 50 Ls-'.

Simultaneous two-component velocity measurements were taken in the horizontal

plane with a Laser Doppler Velocimetry (LDV) system in backscatter mode (Dantec

Dynamics). The LDV system was mounted on a positioning system driven by a
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Figure 2-3: A schematic of the laboratory setup. Photograph of the flume channel with
model vegetation (a) and illustration of the model array with splitter plate and representa-
tive longitudinal spacing of the LDV transects (b).
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stepper motor, with accuracy better than 0.1 mm. Lateral velocity transects were

made at mid-depth, and at various longitudinal positions downstream of the splitter

plate. Each transect spanned approximately y = -20 to y = 60 cm, and consisted of

approximately 70 separate lateral positions, spaced between 0.5 and 3 cm, with greater

spatial resolution in regions of higher lateral shear. Note that y = 0 is taken to be the

array interface, defined as the centerline of the first row of cylinders. The outermost 20

cm of the 120 cm width flume were not sampled as this was outside the shear layer, and

the velocity was approximately constant. Each individual LDV position record was

sampled sufficiently long to reach convergence of the mean velocity, Reynolds stress,

and velocity triple correlations. This required between 4 and 10 minutes depending

upon the flow conditions. To ensure a clear optical path for the LDV beams, 1/2"

wide, cast acrylic spacers were placed between adjacent PVC base boards. The open

space introduced into the array by the spacers never exceeded s, the cylinder spacing.

2.5 Experimental Results

2.5.1 General Features of the Flow

Before detailing the experimental results, it is useful to give a general introduction

to the structure of the shear layer. Characteristic LDV transects are shown in figure

2-4. Velocity profiles are shown in 2-4a, measured at different longitudinal positions

downstream of the splitter plate. The region from y = -15 to y = 35 cm is shown

here. The flume is wider, extending from -40 cm < y < 80 cm, but the section

shown includes the entire region of shear, outside of which the velocity approaches

constant values of U U2 in the open region for y > 35 cm, and U U1 in the

array for y < -15. After the fast and slow streams merge following the splitter plate,

the velocity undergoes adjustment and eventually reaches an equilibrium distribution

(shown in the x = 3.86 m profile). The adjustment is characterized by an initial

growth in the shear layer width, measured by the momentum thickness, 0, which

eventually reaches a constant (figure 2-4b).
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The most striking feature of the shear layer is the regular periodic nature of the

velocity time series (figure 2-4c). This is a signature of the regular coherent structures

formed by the shear layer instability, which forms a traveling vortex street. At the

position shown in 2-4c (y = 2 cm), just outside the array, the u and v components

of the velocity are in-phase, producing periodic large peaks in the correlation, u'v'.

These peaks are, referred to as sweeps (u > 0, v < 0) and ejections (u < 0, v > 0) and

make the dominant contributions to the time-averaged Reynolds stress, (u'v'). The

shear layer growth and equilibrium, and the regular coherent structures are common

to all experimental configurations studied. The various metrics used to characterize

the shear layer will be interpreted in light of the regular coherent structures. That is,

they will be viewed as a leading order structure of the flow, rather than as a random

turbulent signature.
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Figure 2-4: Characteristic measurements of shear layer behavior in the laboratory exper-
iments. (a) shows three streamwise velocity profiles at various stages of development,
x = 0.33 m (-), x = 1.32 m (A - .), and x = 3.86 m (o - -), measured from the
splitter plate. Recall that the total flume width varies from -40 cm < y < 80 cm, but the
shear is approximately zero outside the limits shown in the plot. (b) shows the longitudinal
growth of the momentum thickness, 0, a measure of the shear layer width. A constant width
is reached asymptotically, as the equilibrium velocity profile is approached (see the x = 3.86
m profile in (a)). (c) shows a time series of streamwise velocity u, transverse velocity v, and
the cross correlation, u'v', measured at y = 2 cm, x = 3.86 m. The time series is marked
by strongly periodic fluctuations corresponding to traveling Kelvin-Helmholtz vortices.
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2.5.2 Mean Velocity and Shear Stress Distributions

First, time-averaged streamwise velocity, U(y), and Reynolds stress, -(u'v'), dis-

tributions across the shear layer for various cylinder volume fractions are shown in

figure 2-5. Each transect is the ensemble mean of at least five individual transects

at different x- coordinates within the fully-developed region. The average removes

fluctuations due to the heterogeneity within the array. Characteristic velocity profiles

are shown in figure 2-5a-c. These are measured at three different array densities, ,

but under similar open channel conditions, with a Reynolds number based on the

free stream velocity and the water depth of Reh = U2h/v 104. The profiles ap-

pear similar in the open region for each value of 0, but exhibit varying velocities, U1 ,

within the cylinder array, y < 0. In all profiles a point of inflection exists within 1 to

2 cm of the edge, corresponding very nearly to the point of maximum Reynolds stress

(2-5d-f). From the Reynolds stress maximum an effective interfacial shear stress, i

and friction velocity, u,, can be defined,

Ti = U* = -(U v)max. (2.12)

The correspondence of the points of maximum shear and maximum Reynolds stress

make the interface a point of high turbulent energy production, Pt = (u'v') . The

high production rate is linked to the strong presence of coherent structures, and

the strong correlation between u'(t) and v'(t) during inflows (sweeps) and outflows

(ejections) across the sharp interface (see figure 2-4c).

In the open region, the velocity distributions are broad, whereas within the array

they decay sharply, with little penetration. Because the array provides a frictional

resistance at the interface, the the open region is analogous to a boundary layer

adjacent to a wall, in this case a porous one. Following this analogy, the structure of

the vegetation influences the boundary conditions, namely the shear stress and slip

velocity at the edge, through the dynamics in a thin layer near the interface. Results

presented hereafter bear out this two layer structure.
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Figure 2--5: Transverse distributions of mean streamwise velocity, U, and Reynolds
stress, -(u'v') for various cylinder volume fractions. Distributions represent the
mean of approximately five profiles taken at different x- positions in the equilibrium
region. Reynolds number based on depth for each case is Reh = 1 x 104.
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Figure 2-6: Velocity profiles for various volume fractions (a) (see figure 2-5 for
details), with close-up view of the interface near y = 0 (b). Cases shown are = 0.02
(A), q = 0.045 (), and & = 0.1 (o).

2.5.3 Inner-Layer Scaling

The velocity profiles for Reh = U2h/v - 104 and for three different values of the

cylinder volume fraction, , are shown in figure 2-6 with an expanded view of the

interfacial region. The velocity in the open channel region is nearly identical across the

three solid fractions (2-6a), resembling a boundary layer profile. In 2-6b, the velocity

profiles all exhibit an inflection point within approximately 1 cm of the interface,

y = 0. However, the shear at the point of inflection varies, with the highest array

density ( = 0.10) case exhibiting the steepest gradient, and less penetration into

the array. All profiles asymptotically approach an array-average velocity, U1, which

decreases with increasing . The high density ( = 0.1) case exhibits a spatial

fluctuation near the interface due to the wake behind the first row of cylinders. The

spatial fluctuations in the flow on the scale of the cylinders is most pronounced at

high array densities (see, e.g., White & Nepf, 2003). Near the interface, the velocity

resembles a free shear layer in each profile, but transitions to the boundary layer

shape in the open channel region, suggesting that the flow possesses two distinct

length scales.

In the inner, interfacial region the velocity was treated as distinct from the outer
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channel region. For each velocity transect, nonlinear regression was used to determine

the best profile of the form

= U + Us l+tanh YO)), (2.13)

where y = Yo is the inflection point of the hyperbolic tangent profile, and the 'I'

subscript denotes the inner layer. The slip velocity is defined at the inflection point,

Us = U(yo) - U1, as in figure 2-1, and 6I is the width of the inner layer. The offset

Yo, is a virtual origin for the outer flow, identical to the "error in origin" in boundary

layers above surface roughness (Antonia & Krogstad, 2001; Bandyopadhyay, 1987).

For all experimental profiles yo 0, i.e., the inflection point effectively coincides with

the interface. It appears that this is a universal behavior, which has been noted as

well by Nezu & Onitsuka (2000), and is due to the fact that the sharpest transition in

the flow must lie at the vegetation edge, where the step change in hydraulic resistance

occurs. Having measured U1 from the LDV transect, it is then possible to find Us, 6I,

and yo from the experimental velocity profiles using nonlinear regression. The Matlab

function NLINFIT was used for all regression analysis. In addition, for comparison,

the velocity profiles near the interface were spatially-averaged to remove fluctuations

within the cylinder array. This was done with a moving average filter, with a window

length of approximately s, the mean cylinder spacing.

The velocity distributions in the inner layer from two representative cases (Re =

1 x 104; ( = 0.02) and (5 = 0.045)) are shown along with the hyperbolic tangent

profile in figure 2-7a. The fit is reasonable in the inner region, but diverges as the

outer region is approached, consistent with the notion of two regions controlled by

two distinct length scales.

To assess whether there existed a self-similar velocity distribution, the data from

all transects across the full range of Re and were normalized with the hyperbolic

tangent scaling,
1 u(77I ) - U1 Y - You_ = __ I -5 o (2.14)

where the star denotes non-dimensionalization. Figure 2-8a shows the normalized
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Figure 2-7: Inner layer velocity profiles for Reh = 1 x 104, = 0.02 (case I) and
5 = 0.045 (case IV). For each case, raw LDV data is shown in open circles, and the

hyperbolic tangent profile which best fits the inner layer is shown as a solid line.

inner layer velocity profiles from all experimental cases (see table 2.1), while 2-8b

shows the spatially-averaged data. The spatially-averaged data for each experimental

case, averaged using the moving average filter described above, are normalized with

the same length and velocity scales as the raw data for that particular case, 5 I and

Us. The collapse of the velocity profiles within the inner region is quite good for

the raw data and even better for the spatial average. Despite fluctuations within

the array in the unfiltered data, owing to heterogeneity of the porous medium, the

collapse of the data suggests a self-similar inner-layer form. Within the vegetation

and across the interface, the data all lie along an anti-symmetric curve that closely

resembles the hyperbolic tangent profile of a plane mixing layer. This inner layer

velocity profile is in accord with observations from canopy shear layers which show a

plane mixing layer velocity structure at the canopy edge (Finnigan, 2000; Ghisalberti

& Nepf, 2002). This mixing layer structure, with the inflection point at 77 = 0 is

responsible for the instability that leads to the formation of coherent structures.

At a distance of approximately rI = 1.5, i.e., outside the interface, the data from

different experimental cases begin to diverge. This demonstrates that self-similarity

does not exist throughout the flow, and that the shear layer possesses at minimum

two different length and/or velocity scales. The next section demonstrates that there
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Figure 2-8: Normalized inner layer velocity distributions for the range of experi-
mental conditions: raw data (a), and spatially-averaged to remove cylinder-scale
fluctuations (b). Experimental cases corresponding to data are (from table 2.1): 0
(I), (II), + (III), x (IV), * (V), * (VI), o (VII), A (VIII), (IX), < (X), (XI).

are indeed two velocity and length scales that universally describe the flow: one pair

for the inner layer and one pair for the outer region.

Finally, because the outer flow resembles a boundary layer, it is useful to compare

the width of the inner layer to the viscous sublayer for a wall-bounded flow. In

commonly used "wall units", the width of the inner layer is, 6+ = iu,*/l. The

Reynolds shear stress at the interface, u, is used to calculate and the results

are shown in table 2.1. It can be seen that the values of 6+ are exceedingly large,

demonstrating that the inner layer is between one to three orders of magnitude larger

than the viscous sublayer for all cases studied. Thus for these moderate Reynolds-

numbers, the width of the inner layer should be relatively independent of viscous

effects.

2.5.4 Drag Within the Vegetation

The array resistance both controls the velocity within the array, U1, and balances the

velocity shear at the interface, influencing the momentum penetration length. The

mean array resistance, FD, the product of the cylinder number density and the mean

drag per unit length along each cylinder, balances the mean pressure gradient due to
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Table 2.1: Details of experimental parameters and results for all cases.

I II III IV V VI VII VIII IX X XI

o 0.020 0.020 0.020 0.045 0.045 0.045 0.10 0.10 0.10 0.10 0.10
CDn c,r'

1
0.092 0.092 0.092 0.285 0.242 0.255 2.4:3 2.74 2.04 1.77 2.43

s cm 4.38 4.38 4.38 2.92 2.92 2.92 1.96 1.96 1.96 1.96 1.96
Reo 8.15E+03 1.24E+04 1 35E+04 7.56E+03 1.57E+03 6.04E+03 6.88E+03 2.35E+03 3.62E+03 1.18E+04 1.1OE+04
Re,, 2.04E+04 3.00E+04 1.04E+04 1.84E+03 6.73E+03 1.OOE+04 2.91E+03 5.57E+03 2.10E+04 2.78E+04 1.09E+04

l, (cr)o
-

) 2.21 1.74 1.89 1.25 0.25 0.84 0.43 0.15 0.25 0.89 0.41
U2 (cnms ) 17.68 21.69 2:3.97 17.37 3.82 12.32 16.82 5.85 9.05 29.59 22.02
I/, ((lS- ) 1.81 2.27 2.67 2.06 0.35 1.48 1.93 ().44 0.84 3.44 2.51
, (cmrs

- l
) 0.94 1.41 1.72 0.95 0.21 0.66 0.92 0.32 0.39 0.50 1.68

, (cms
-

) 3.68 5.12 5.59 3.72 0.80 2.52 :3.41 1.03 1.79 6.11 4.51
Yo 1.34 1.91 1.41 -0.65 -0.24 -0.71 0.48 0.81 0.51 0.35 0.81

61 (cm) :3.71 6.03 6.20 2.61 2.19 1.89 1.24 0.89 1.06 1.34 1.35
R
+

625 1250 1515 500 69 256 217 36 83 417 31:3
5o (cm) 15.95 19.07 19.86 16.69 16.90 18.20 16.50 15.53 15.20 17.84 21.54

LT (c'ms
-

) 7.41 10.20 12.(12 7.87 1.62 5.57 6.71 2.11 3.64 12.03 9.00
., (cm) 4.12 5.12 4.64 1.54 1.71 1.15 2.21 2.09 2.01 2.24 2.84

e 0.34 0.27 0.31 0.72 0.45 1.09 1.32 0.73 0.96 1.29 1.47
f, 0.027 0.026 0.029 0.03:3 0.019 0.033 0.028 0.012 0.018 0.029 0.027

0 (cm) 5.07 6.:30 6.22 4.79 4.52 5.39 4.50 4.43 4.39 4.40 5.49
symbol 0 + x * * o < 

the surface slope,

aFD = -(1
d

dh
dx,

(2.15)

where the factor (1 - ) is the array porosity. The drag force can be written in

terms of a mean drag coefficient so that the total resistance is

ICDaU = -(1 - )g d
2 dx-

(2.16)

It is important to note that in this equation, and throughout this work, U1 is

defined as the mean velocity averaged over the fluid-filled space, often denoted the

interstitial velocity.

Experiments were undertaken to measure the mean drag coefficient for various

cylinder volume fractions and Reynolds numbers. These measurements pose experi-

mental problems as they require the accurate measurement of the exceedingly small

surface slopes. Surface displacement gauges, with an accuracy of ±0.05 mm were used

to measure the difference in the surface height across the approximately 7 m long ar-

ray test section. However, despite the fine resolution of the displacement gauges, it

was not possible to accurately measure the drag when either the volume fraction or

the Reynolds number were small.
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Figure 2-9: Bulk resistance within the array. (a) shows the experimental results for
the increase in the normalized mean drag, FD/,U1 with the cylinder Reynolds number,
Red = Uld/v, comparable with plots in Koch & Ladd (1997). (b) shows the mean drag
coefficient, CD with stem Reynolds number. Symbols represent X = 0.02 (A), b = 0.045
(o), and X = 0.10 ().

The results for the total drag are shown in figure 2-9. In 2-9a the mean drag is nor-

malized as, FD/IpU1 and plotted with the stem Reynolds number, Red = Uld/v. This

normalization illustrates the viscous contribution to the drag, the value for Red = 0,

which is too small to be accurately measured directly, but can be inferred from the

intercept value of FD/1iU1 at Red = 0 in 2-9a. This plot can be compared to those

presented in Koch & Ladd (1997), who found numerically the drag in square, stag-

gered, and random cylinder arrays for a range of solid volume fractions. For the two

largest volume fractions, d = 0.045 and 0.1, the mean drag increases in proportion

to Red, consistent with results from Koch & Ladd for staggered and random arrays.

If the slope of FD/IIU vs. Red is constant, CD will approach a constant asymptot-

ically as Re 1 increases, and as form drag begins to dominate the viscous (Red = 0)

contribution. From 2-9b, for A = 0.045 the CD is approximately constant with Red,

but for = 0.1, CD decreases slightly with Red, suggesting lingering viscous drag.

In general, the higher the array density, the greater the viscous drag contribution,

due to the larger proportion of solid surfaces, and decrease in the fluid space between

them.
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While the mean array drag establishes the mean array velocity, U1, its influence on

the dynamics near the interface are less clear. The expressions presented in section

2.1.3 (equations (2.5), (2.6), and (2.7)) relate the penetration length to the mean

canopy resistance. This may not always be appropriate, as the mean resistance is

well-defined only in an averaged sense over a spacial scale of many cylinders. If the

penetration length is comparable to the scale of the spatial fluctuations in the array,

it may be disproportionately influenced by flow effects around individual cylinders

near the edge. This is discussed in the next section.

2.5.5 Dependence of 6I on Vegetation Characteristics

The self-similarity within the inner region, and divergence in the open region suggests

that 6I is a function of the vegetation characteristics alone. From the discussion

in sections 2.1.2 and 2.1.3 it is expected that 6 I will depend on the length scale

characterizing the bulk canopy resistance, which is related to the cylinder spacing, s.

For the present experiments in cylinder arrays at medium to high Reynolds number,

the drag within the array is FD = -1/2CDaU 2 , following the canopy literature, and

also Koch & Ladd (1997), who verified the quadratic drag law for moderate to high

Reynolds number in random cylinder arrays. From this drag law, the length scale

associated with the resistance is (CDa)- 1. It is simple to see how this penetration

length scale arises by noting that the inner layer is the region of maximum shear, and

thus, in the thin transition layer, the dominant momentum balance is between the

lateral shear stress and array drag. Balancing these two terms in the inner layer gives

OdT
= FD (2.17)dy

and taking = u, the value at the interface, and the penetration length scale as I,

the inner layer thickness scales as

'a2

51 r* (2.18)
CDaU(y0 ) 2 '
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where U(yo) = U1 + Us is the velocity evaluated at the interface. Note the similarity

between (2.18) and the prediction from Poggi et al. (2003) (2.5), as both derive from

a momentum balance in the region of maximum shear.

Figure 2-10 shows the dependence of 5I on CDa for all experimental conditions.

The dependence suggests two distinct regions of behavior. For lower values of CDa

(sparser array configuration), there is a decrease in 6i with increasing CDa. For

these data, there is good agreement with the expected behavior, 6 i oc (CDa)- 1. The

experimental result is

6 = 0.5(CDa) -1 (2.19)

However, for the highest cylinder volume fraction ( = 0.10), 5 i appears to approach

a constant value, 5i z 1.8d. For this highest packing density, the cylinder spacing is

of the order of the diameter, s ~ 3d. Moreover, for 0 = 0.1, the penetration length

predicted by the (CDa)-1 scaling would be less than the cylinder diameter, d. A

physical argument can be made that the inner layer cannot be less than d because,

at minimum, the transition of the velocity must occur over the first row of cylinders.

This suggests a dual scaling for the inner layer width of the form

5i ~max C Da d) (2.20)

Thus, when the array is sufficiently sparse that there is scale separation between the

cylinder spacing and the diameter, 6, should be set by the length scale associated

with the bulk array resistance, (CDa)-1. As the array becomes denser, and (CDa)-1

approaches d, I becomes limited by the cylinder diameter. Thus from figure 2-10, 6,

approaches a constant, 1.8d.

The dual scaling for 6 I is expected to be a general property of all flows adjacent to a

porous medium for the following reason. The resistance of the medium, whether given

by Darcy's law for low Reynolds number, or the quadratic drag law for high Reynolds

number, relies on a spatial average over the characteristic scale of heterogeneity,

which is O(s), the spacing between elements in the medium. When the scale for flow

transition, i.e., 6I, is much smaller than s, the effective medium scaling will cease to
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Figure 2-10: Inner layer width, 6i vs. bulk resistance length scale, CDa.
Also shown are best-fit line to the sparse array behavior, 6 = a(CDa) - 1,
where a = 0.50 0.12 and the asymptotic value in the dense array limit,
d = 1.18 ± 0.17 cm = 1.81d ± 0.26d. Error bars show uncertainty in
both CDa, predominantly due to uncertainty in measured CD, and in
3I.
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Figure 2-11: A schematic of the dual dependence of the inner layer width, 61 on the array
characteristics. In the s-regime (a), s » d, and 61 is set by the length scale associated with
the bulk array resistance. In the d-regime (b), sand d are comparable, and 61 is controlled
by local geometry at the interface, and scales with the diameter d.

hold and the transition will be set by the small-scale array geometry, in this case the

width of the outermost row of cylinders. The transition is approached when s becomes

comparable to d. Thus, one may define two regimes, the s-regime, in which the the

penetration width is controlled by the properties of the bulk medium, particularly

interstitial spacing, and the d-regime, in which it is controlled by the geometry at

the edge, particularly the element size, d. A graphical depiction of the two regimes

is shown in figure 2-11.

2.5.6 Outer-Layer Scaling

Outer Layer Width

The flow in the open region, y > 0, termed the "outer layer", closely resembles a

wall-bounded flow (see figure 2-6). Because there appears to be a clear separation of

scales between the inner layer and this outer flow, a characterization of the velocity

in the outer region is sought in terms of a length scale, 80. The length scale for this

outer layer flow is suggested by analogy with flat plate boundary layers. In such flows,

the velocity profile in the wall- normal direction is expressed as

u
U

o
= f(1]), 1] = yj8, (2.21)
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where U and 6 are characteristic scales for the free stream velocity and boundary

layer width. The famous Blasius solution gives the velocity profile, f(r/), but is a com-

plicated series solution (Kundu & Cohen, 2004). A simpler quadratic or cubic shape

function is often assumed when obtaining solutions for boundary layer quantities us-

ing the Von Kdrmn-Pohlhausen integral method (Schlichting, 1979). To determine

the width of the outer layer, a nonlinear regression fit was performed on the open

channel region of each measured velocity profile to find the best fit to the quadratic

profile
2f(r) = rlo - (2.22)

4

This profile was chosen because it satisfies the appropriate boundary conditions

f(0) = 0, f(1) = 1, f'(1) = 0. (2.23)

However, because of the slip condition at the interface, the function, f(rlo) must be

defined relative to some, as yet undetermined, origin, , and velocity, U, as

f(0o)= U - U (2.24a)

where
Y - Y (2.24b)

and U = U(ym). To ensure continuity of the velocity profile, the inner layer and the

outer layer must match in a transition region outside the interface. This matching

point defines y,:

u I(ym) uO(ym) (2.25a)

and
dui(ym) dUO(Ym) (2.25b

dy dy

where uI(y) is the velocity in the inner layer and uo(y) is the velocity in the outer

layer. Note that the continuity of the velocity gradient in condition (2.25b), which

is required, does not presuppose continuity of the shear stress at the interface. To
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illustrate, the Beavers and Joseph condition at the edge of a laminar porous medium

(2.2) maintains stress continuity, but, e.g., Goyeau et al. (2003) proposed a stress

jump condition at the edge of a porous medium. This can occur if the effective

viscosity within the medium is different from that in the main channel. From (2.13)

and (2.24)

I = U1 + U (1 + tanh (Y Y)) (2.26a)

and

- . (2.%b3)Uo = Um + (U2 U) [Y0m 4 (4 )]0 (2.26b)

An iterative process is used to determine Ur, ym, and 60 from the experimental data,

and is demonstrated graphically in figure 2-12. First an initial guess is made for the

matching point and velocity, Um(ym) = U1 + 2U, the upper limit of the hyperbolic

tangent profile (2.26a). Then, o is determined by nonlinear regression in the outer

region, according to (2.26b). Given 60, the the slope at the matching point, y, is

determined from (2.26b) as

mO= d (2.27)

This outer layer slope matches the slope of the inner layer profile (2.26a) at y, to

give

ym = 6i tanh - 1 - + yo. (2.28)

In theory, the quadratic fit should then be performed on the data with ym as the

outer layer origin and the process repeated. In practice, this was unnecessary, and

the first iteration was sufficient to determine mo and thus Ym. The velocity at the

matching point is then determined from (2.26a) as

U = I(Ym) = U + Us (1 + tanh (Ym )) (2.29)
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Figure 2-12: Graphical depiction of method to determine o60 from experimental velocity
profile. Starting at the nearest point to U = U1 + 2U, quadratic regression is used to fit
the outer layer data to (2.26b). This gives the outer layer width, 5o, and initial slope, mo,
and the regression line (- -). The slope mo is matched to the inner layer profile, u(y)
(dotted line) to yield Ym and Urn. The outer layer profile, uo(y) (-) is then determined.
The line (- ) illustrates the initial slope mo and the definition of the outer layer width,
Jo = (U2 - U)/mo
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Figure 2-13: Rescaled outer layer velocity profiles with (a) and without (b) error bars.
Symbols are! as in Table 2.1. Blasius boundary layer solution shown for reference (solid
line).

Self-Similarity of Outer Layer Profiles

Given 60, Ur and for each experimental case, the outer layer profiles can be

rescaled according to (2.24) and plotted together. The results are shown in fig-

ure 2-13. There is good collapse of the data from all experimental profiles along

a line resembling the Blasius boundary layer solution, which is shown for reference

(Schlichting, 1979). The collapse is particularly good in the initial, approximately

linear region. Small deviations are observed as f () = (u - Um)/(U2 - Um) -+ 1. This

is mainly due to uncertainty in the free stream velocity U2, which approaches, but

fluctuates around a constant value for most experimental profiles. The collapse of

the profiles suggests self-similar outer-layer behavior, and as a result, independence

from the inner layer flow. Outer layer similarity is characteristic of laminar boundary

layers described by the Blasius profile, but whether it is characteristic of rough-wall

turbulent boundary layers is still a subject of active debate (Krogstad et al., 1992;

Akinlade et al., 2004; Jimenez, 2004). Krogstad et al. (1992) found that the effects

of surface roughness extend outside the inner wall-layer and into the outer region,

challenging the hypothesis of outer and inner-layer independence originally proposed

by Townsend (1976). Recently, Akinlade et al. (2004) demonstrated that outer layer
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velocity profiles over different roughness surfaces could be made self-similar by scal-

ing with a mixed outer-inner velocity scale, which also suggests a link between the

outer and inner layers. However, it has also been proposed that certain types of wall

roughness exist for which the outer layer flow is independent of the roughness height,

k, and scales only with the outer layer thickness. These are termed "d-type" (for the

outer scale, d) roughness, in contrast to "k-type" roughness for which the outer flow

depends on the roughness characteristics (Jimenez, 2004). In the review by Jimenez

(2004), it is suggested that the independence of the outer layer scaling may occur

because, rather than acting individually, multiple roughness elements eject vorticity

simultaneously, and that this process is driven by large-scale sweeps controlled by

the outer flow. If the ejection frequency depends on outer layer scales, the flow will

be independent of inner layer details. Ghaddar et al. (1986) has found such behav-

ior in grooved walls, wherein the grooves eject fluid by an instability that originates

at the grooves but occurs at a frequency dictated by the channel length scale. The

shear instability and coherent structures in the present shallow vegetated flow, which

originates at the velocity inflection point, but has a frequency that scales with the

outer flow, are remarkably similar to Ghaddar et al.'s observations. The details of

the instability are discussed in detail in chapter 4, but it is interesting to note that

these dynamics seem be a mark of the outer layer similarity.

The outer layer independence from the array details, and hence the inner layer,

is demonstrated definitively in figure 2-14, which plots 60 versus CDad, a measure of

the array density. There is no significant correlation, as r = -0.13, with a P-value

of 0.70. However, there is a strong correlation of o60 with the water depth, h, 99%

confidence. This is consistent with the open channel drag, presented in section 2.3,

which has the form FD = (cf/2h)U 2 . The characteristic length scale for the resistance

is thus h/cf. To see that this length scale should establish 6o, we assume that the

outer boundary layer width is established by a balance between lateral shear stress

and bed drag. This simple scaling argument, analogous to the balance (2.17) at the

array interface, gives
(u'v') _ l Cf U2. (2.30)
ay h
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Figure 2-14: Outer layer width, 60, for all experimental profiles plotted with array
resistance length scale (Cda) - l (a) and the water depth, h (b). There is no signif-
icant correlation between o and array resistance (P-value 0.5), but a significant
correlation exists with h (P-value 0.0005).

Taking u2 as the scale for (u'v'), 60o as the length scale over which the lateral shear

stress decays (see figure 2-5d-f for visual reference), and U2 as the velocity scale, it

follows from (2.30) that

h U22 (2.31)
Cf U*

which explains the observed dependence of the outer layer width on h.

2.5.7 Slip Velocity

The slip velocity, U, like the width, SI, is a property of the inner layer velocity

profile, given by (2.26a). However, unlike SI, which appears to be a property of the

cylinder array properties alone, U is a mixed property of the inner and outer layer

flow. It also acts as a boundary condition for the outer layer flow. This can be seen

by differentiating (2.13) to obtain the relation

_u =-Us. (2.32)
Dy y=Yo

Equation (2.32), analogous to the Beavers & Joseph condition (2.2), relates the

slip velocity to the shear at the interface through a single length scale that is a function

of the array characteristics, 5i. A boundary condition for the outer layer flow can be
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constructed by rearranging 2.32,

au - <- ( Udj - U1) = 0. (2.33)
oy Yy Yo

Although 2.32 relates Us to dU(y)/y through properties of the inner layer alone,

both are indeterminate, and the equations cannot be closed, without considering the

outer layer. Physically, this must be the case, as the total shear across the shear layer

depends both on the flow in the channel and in the vegetation. The slip velocity,

and through it the interfacial shear, may be determined from outer layer variables by

considering the flow in the transition layer, where the inner and outer layers match.

By continuity of the inner and outer layer velocities and derivatives at the matching

point (2.25), we find that

Us = 6, U2 - U1
0 = (1- 2) + ( + )6 (2.34a)

where

a = tanh (Ym YO) (2.34b)

defines the matching point. Physical intuition would suggest that a must be related

to the relative steepness of the inner and outer layer profiles, suggesting a = f(6/6o).

For each experimental profile, a is measured by matching the inner and outer profiles

as described in section 2.5.6. Figure 2-15 shows a and tanh- 1 a = (ym - yo)/S6

plotted against 6/5o. From figure 2-15a, the normalized matching point, (m-Yo)/6I,

increases as the inner layer width decreases. This implies that for denser arrays the

matching point is pushed further from the center of the inner layer profile. This occurs

because as the inner layer becomes thinner relative to the outer layer, the point at

which the slopes match is pushed to the fringes of the hyperbolic tangent profile. The

data in 2-15a show good agreement with the exponential fit y = 1.89 exp (-4.036),

which implies

= tanh [1.89 exp -4.03 o) ] (2.35)
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Measured values of Ca are shown along with this empirical fit in 2-15b. The empirical

fit is extended beyond the data to demonstrate the limits c - 0 and -- 1. As

5i/60o 0, i.e., a solid wall, oa - 1, which it cannot exceed because of the tanh

form (2.34b). The matching point thus approaches the flat part of the tanh curve

(see figure 2-12). In the sparse array limit, 6i/ 5 o - 1, a - 0, i.e., the matching

point approaches the inflection point, and the overall shear-layer profile becomes

symmetric, with the two distinct scales having merged into a single shear layer width.

This is the free shear layer limit. The dependence of (y, - y,)/Si on array density

is shown in figure 2-16 for reference. For sparse arrays, (y, - yo)/Si increases with

increasing density, corresponding to a decrease in the inner layer width relative to

the outer layer. However the data asymptote to (m - yo)/Ji ; 1.4 at higher density,

as the inner layer width becomes constant in the d-regime (see section 2.5.5). This

asymptotic value of (ym - yo)/i is not universal, as it depends on the inner layer

width in the d-regime, which, as discussed in 2.5.5, is sensitive to the geometry of the

cylinders near the array edge.

The empirical fit for a(56/5o) can be combined with the theoretical expression

(2.34) to yield a semi-empirical prediction for the slip velocity,

U -6 U2 - U1

o (1 - (6/o)2) + (1 + a(6I/6o))6 (2.36)

Experimental values for the slip velocity are shown in figure 2-17 along with the

semi-empirical prediction. Across the range of array densities in the present ex-

periments, US/(U2 - U1 ) increases weakly with 61/6o and are well-predicted by the

theory. The data from the submerged canopy experiments of Ghisalberti (2005) are

also shown for comparison. These data lie only slightly above the prediction and

shown the same weakly increasing trend with 6 /60. For more dense arrays than

those for which data are available (small i/6o), the theoretical prediction shows a

precipitous decline, while a slow approach to U/(U 2 - U1) = 0.5 is predicted in the

sparse array limit (/So - 1). Outside the range of data, the theory predicts the

limits U5/(U! - U1 ) 0 as /o - 0 and U/(U 2 - U1) -* 0.5 as 61/60 -* 1, which
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Figure 2-15: Dependence of the normalized matching point on 5I/o for all experiments.
(a) shows tanh-la = -Yo along with the best exponential fit, y = clexp(2 6

where cl = 1.89 ± 0.03, c2 = 4.03 + 0.08. (b) shows ca along with the best fit,

tanh [clexp (C2do)]0

follow simply from the form of (2.34). In the dense array limit, b/6o - 0, the flow

approaches that of a solid wall boundary layer, with no penetration, and zero slip

velocity. In the sparse array limit, the flow approaches that of a classical plane mix-

ing layer, with significant penetration and an antisymmetric velocity profile. In this

case Us is the center-line velocity, equal to the arithmetic mean of the slow and fast

streams. The structure predicted by (2.36) is consistent with these two limits.
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Figure 2-17: Normalized slip velocity, U/(U 2 - U1) plotted with the
semi-empirical expression (2.36). Results from all experimental veloc-
ity profiles in the present experiments shown in squares; results from
Ghisalberti (2005) shown in circles.
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2.5.8 Virtual Origin

The offset between the point of inflection in the velocity profile and the edge of

the array, y , as defined in (2.13), may be viewed as a virtual origin for the outer

layer flow, analogous to the zero plane displacement, Zm, in a logarithmic boundary

layer profile, u = ulog((z - m,)/Zo) (Nepf & Vivoni, 2000). It is also the origin

of the inflectional instability which leads to coherent structure formation. For each

experimental velocity profile, the value of y, was obtained from the hyperbolic tangent

fit to the inner layer. These values are plotted in 2-18 as a function of array density,

measured by CDad. All values are within 2 cm of y = 0, with a mean of 0.66 cm,

approximately equal to one diameter. However, there is no trend with density, as

the correlation is well below 50% significance. There is considerable scatter, likely

due to uncertainty in experimentally locating the true edge of the array as well as

fluctuations of the array edge over the length of the array. Together, these account

for uncertainty of approximately 1 cm, larger than the mean value of Yo. Because y,

is very close to the true edge of the array, and is very small compared with the outer

layer width, 60 (yo/6 o < 0.07 for all experimental cases), the approximation yo 0

is a good one for the outer layer boundary condition (2.33). That is, the outer layer

flow sees the origin, and the source of instability, as occurring at the array interface.

2.5.9 Reynolds Stress and Interfacial Friction Laws

Reynolds Stress and Interfacial Shear

The transverse distributions of Reynolds stress, (u'v') for all experimental profiles are

shown in figure 2-19. There is a distinct maximum that coincides very nearly with

the edge of the array, and defines the interfacial shear stress, as in (2.12). To within

measurement resolution, the maximum always occurs at the point of inflection, yo.

The Reynolds stress profiles shown in 2-19 are normalized by u2, which is estimated

for each data set by smoothing the Reynolds stress profiles with a moving average

filter and taking the maximum. The smoothing eliminated a bias toward strong

fluctuations. As a result, in the normalized (unfiltered) Reynolds stress profiles in

56



,5.0

3

2.5

2

1.5

1

0.5

0

-0.5

1

0 0.5 1 1.5 2

CDad
Figure 2-18: Virtual origin, yo, for all experimental profiles
plotted with Cdad, a measure of array density.

figure 2-19, the peak often slightly exceeds unity.

In figure 2-19a, the normalized Reynolds stress is plotted versus the outer layer

coordinate. While the Reynolds stress profiles do not uniformly collapse onto a single

curve, it is clear that 60 is the appropriate length scale to describe the transverse

dependence. All profiles decay to nearly zero around y/So - 2, suggesting that this

is the transverse extent of the shear layer. In the following chapter, it is shown that

the primary component of the Reynolds stress is the momentum exchange created by

the transverse motions of the coherent shear layer vortices. This dependence of (u'v')

implies that that the transverse extent of the vortices is also set by 0o.

In figure 2-19b, the Reynolds stress is plotted in inner layer coordinates. From its

peak value at the edge, there is a is a very steep decline in Reynolds stress moving into

the array. The length scale over which the decay occurs is 0(6). It is clear from this

scaling that the length scale for the penetration of main channel momentum into the

array is set by the inner layer thickness. Moving into the main channel the Reynolds

stress profiles begin to diverge. By rI 2, there is significant spread, demonstrating

that inner layer scaling does not hold in the open region.
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Figure 2-19: Distributions of normalized Reynolds stress, -(u'v) for all experiments in

outer layer (a) and inner layer (b) coordinates.

Interfacial Friction Coefficient

The effective absorption of channel momentum by the vegetated layer can be described

by defining an interfacial friction coefficient, fi,

2

fi = AU2-. (2.37)

Figure 2-20 shows fi computed for all profiles, as a function of the outer layer

Reynolds number, Re6o = A\U6o/v. Also shown are the friction coefficient for tur-

bulent solid walls, from Pope (2000, p. 278). For the turbulent wall, the Reynolds

number is Re = U2c1v, with a the channel width. The shallow vegetated layer exerts

much greater drag on the channel momentum, by an order magnitude, than would

a solid wall. This observation is important for flow conveyance in compound chan-

nels, as it demonstrates the large increase in drag created by floodplain vegetation as

compared with a solid bank. There is a slight increase in fi with increasing Reynolds

number, but a constant value, fi 0.03, is reached for high Re. For comparison,

the LES simulations of Nadaoka & Yagi (1998) for a shallow vegetated channel flow

show an interfacial friction coefficient of approximately 0.02 for comparable vegetation

density and Reynolds number.
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The increase of fi with Re3 o is in contrast to the decline in Cf with Re for solid

walls. This difference is due to the fundamentally different nature of drag production

in the two cases. For the turbulent wall, drag is created by the turbulent energy

cascade near the wall and maintained by viscous dissipation, which becomes less im-

portant as the Reynolds number increases. In contrast, in the partially vegetated

channel, drag is created by the exchange of low momentum fluid from the vegetated

layer with high momentum fluid from the channel by large scale coherent sweeps and

ejections. These coherent motions are less efficient at low Reynolds number, where

viscosity is still appreciable, but become more efficient at higher Reynolds number,

such that the interfacial shear stress appears to be proportional to the velocity dif-

ference,

u 2 = fiAU2. (2.38)
2

Also, from figure 2-20, fi is not strongly dependent on array density. In chapter

5 it is demonstrated that there is a weak dependence of fi on density over a wider

range of vegetated flows. However, the dependence on density is weak, and the present

experiments are taken from too narrow a range of array density (on the high packing

density side) for the trend to be apparent.

Logarithmic Scaling

In rough boundary layers a logarithmic region is typically observed of the form

-= - log l (2.39)

where 0.41 is the von KArmdn constant and k is known as the roughness length

(Jimenez, 2004). Further insight into the absorption of channel momentum at the

vegetated interface can be gained by plotting the experimental velocity distributions

from the open region on a semi-logarithmic scale, to examine whether there exists

a logarithmic region near the interface. The results are shown in figure 2-21. The

velocity in the open region is normalized by the interfacial friction velocity, u,, and

plotted against distance from the edge in the rescaled coordinates (y - y)/ko. Note
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Figure 2-20: Interfacial friction coefficient, fi = u2/(\U 2 ) vs the chan-
nel Reynolds number, Re6o = 26oAU/v for all experimental profiles:

= 0.02 (), = 0.045 (0), and = 0.1 (o). Also shown is the
theoretical prediction for the friction coefficient, cf = u2/(U 2 ) for a
turbulent solid wall given by Pope (2000, p.278).

that yo, the inflection point, and point of maximum shear stress, is used as the origin

here. In a smooth wall boundary layer, the choice of the origin is straightforward,

but in rough walls the origin is typically taken as roughness height plus some offset

to be optimally determined by fitting (Jimenez, 2004). Here the choice of yo is made

because it is the location of the boundary shear stress for the outer flow. The results

shown in figure 2-21 support this choice. There is a region in the outer layer where all

of the profiles collapse to the semi-logarithmic scaling of the form u/u, = l/b log((y -

yo)/ko). However, b 0.318, different from the usual Von Kirman constant, n - 0.41.

The discrepancy is likely due to the effect of bed friction in the open region, which

limits the region of logarithmic scaling. From figure 2-21, the profiles diverge from the

log scaling and asymptote to u = U2, apparently when bed friction begins to dominate

shear stress in the momentum balance. In the inner region, which extends between

y = 0 and approximately (y - y)/ko = 5, the profiles do not collapse, verifying the

separate inner layer scaling discussed in section 2.5.3.
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Figure 2-21:: Mean velocity distributions in the open region for all cases plotted on a
semi-log scale. The velocity is normalized by the shear velocity, u, and plotted against
(y - y)/ko, where k is the roughness length. The solid line is the logarithmic profile of
the form U/lu = log((y - y)/ko), where b = 0.318 i 0.025.

While the self-similar form of the outer layer velocity has already been established

in section 2.5.6, the U/u* logarithmic dependence is important because it demon-

strates that there is a region of the outer flow that is controlled exclusively by the

interfacial shear stress. This is a transition region between the inner layer, where the

velocity is highly influenced by the vegetation, and the region outside the shear layer

where the flow is entirely controlled by bed friction.

The results for the behavior of the roughness length scale, ko, are shown in figure

2.5.9. It appears that the roughness is of the unusual "d-type", in contrast to the

more common "k-type" roughness (Jimenez, 2004). There is no significant correlation

between ko and the array density, measured by (CDa)-, a proxy for the length scale

associated with the array. However, a significant correlation (99% confidence) exists

between ko and the outer layer width, 5o. This demonstrates, in accordance with
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Figure 2-22: Dependence of the roughness length on (CDa)- 1 (a) and 60 (b). In (a),
there is no significant correlation between ko and the array length resistance length scale
(CDa)- (P-value is 0.62). In (b), the correlation between ko and the outer layer width,
60, is significant (99% confidence). This is the mark of "d-type" roughness.

the discussion in section 2.5.6 that the outer layer flow is independent of the inner

layer details and hence the geometry and density of the array. Similarly, in boundary

layers with "d-type" roughness, the outer flow is independent of the roughness element

size, and ko scales with the boundary layer width. These "d-type" boundary layers

are uncommon and not yet understood. Jimenez (2004) suggests that the outer

layer scaling may arise from a channel-scale instability whose scale is independent of

the roughness. Indeed, this well-describes the shear flow studied here, as coherent

structures whose frequency scales with 60 dominate the momentum transport. Their

dynamics will be discussed at length in the next chapter. Finally, note that the

independence of ko of the array density is consistent with the same independence of

the friction coefficient, from figure 2-20.

2.5.10 Eddy Viscosity and Mixing Length

Insight into the structure of turbulence and coherent vortices across the shear layer

can be gained from profiles of the effective eddy viscosity,

aU
Ut = /y'1 (2.40)

ay)
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and mixing length,

Lm =-(u v ) / ( auy ) (2.41)

The eddy viscosity quantifies the strength of lateral momentum transfer across the

shear layer, while the mixing length quantifies the length scale associated with the

transfer.

To obtain profiles of vt and L, (u'v') and u(y) were both smoothed with a

moving-average filter. Estimates of dU/Oy were then obtained by the central differ-

ence method. The results for all experimental profiles are shown in figures 2-23 and

2-24. The eddy viscosity is normalized by 260o/(U2 - Urn) and the mixing length by

u*,0/(U2 - U). These scales are required by the similarity of the outer layer veloc-

ity, whose gradient scales as (U2 - U,)/ 0o, and the Reynolds stress profiles which

scale as u. Indeed, both vt and Lm approach 1 in the central region of the shear

layer, suggesting that the scaling is appropriate. It is common is free shear flows to

assume the scaling t - AUo (see, e.g., Schlichting, 1979), but it was found to be

inappropriate for these data.

The eddy viscosity is small within the array (y < 0), with a sharp decline from the

array edge. This demonstrates the inability of momentum to penetrate the layer of

obstructions. The peak lies just outside the interface at y/So 0.2, beyond the point

of maximum shear (y Yo). This suggests the most efficient transverse momentum

transfer occurs further to the open side than the point of peak energy production.

This maximum efficiency likely corresponds to the region where coherent structures

are most intense. There is a decline beyond this region, with momentum exchange

less efficient as the edge of the shear layer is reached and the coherent vortices weaken.

Values beyond ro ~ 1.3 are omitted as they show significant fluctuations, a numerical

error due to division by very small values of OU/0y.

The mixing length declines sharply moving into the array from the edge. At the

array edge, the length scale for turbulent motion sharply transitions from that of

the coherent shear layer structures, to that of the cylinder wakes. The individual

obstructions dissipate and redirect large-scale vorticity into the wake-scale vorticity
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through the interaction with the solid obstructions. This process has been observed

in a canopy flow by Poggi et al. (2003), and Nepf (1999) gives the scaling for the

dissipation of large-scale energy by the obstructions.

Beyond the array edge, the mixing length approaches a constant value of Lrn 1.

There is a slight local maximum near the point of maximum t, but L, remains

approximately constant across the mixing layer, until small values of dU/dy begin to

give spurious results (not shown in plot).

The mixing length has also been normalized by the outer layer width and plotted

in outer layer coordinates in figure 2-25. As expected, the scaling Lm/O6 does not

collapse the data as well, but is a simpler formulation to apply in practice than

Lm(U 2 - Um)/u,5o when Um, may not be available.

While physically tenuous in principle (Tennekes & Lumley, 1972), constant eddy

viscosity and mixing length models are often used for engineering purposes and for

modeling natural flows. The constant eddy viscosity model is based on the flux-

gradient approximation, which is physically incorrect for shear flows because the large

scale structures are of the order of the shear layer width (Broadwell & Breidenthal,

1982). Figure 2-23 demonstrates the inaccuracy of a constant vt- model. However,

based on the experimental results presented here, a constant mixing length model

with Lm . 6ou,/(U 2 - Un) could be used to reasonably model the flow in the open

region. In fact, Ghisalberti & Nepf (2004) used a mixing length model to successfully

model the shear layer above a submerged aquatic canopy.
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Figure 2-23: Profiles of normalized eddy viscosity for all experimen-
tal profiles plotted in outer layer coordinates. The uncertainty is due
primarily to division by the local velocity gradient, prone to strong fluc-
tuations.
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Figure 2-24: Profiles of normalized mixing length for all experimental
profiles plotted in outer layer coordinates. As with vt, significant uncer-
tainty is due to division by the local velocity gradient.
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Figure 2-25: Profiles of mixing length normalized with the outer layer
width, Lm/6 0 , for all experimental profiles.

2.5.11 Conclusions and Extension to Natural Systems

Results have been presented for mean velocity and turbulent stresses in a channel

partially filled with an array of cylinders to model vegetation. The flow is shown

to consist of two distinct regions, an inner region near the array interface, and an

outer region in the open channel, with self-similar velocity distributions in each. In

the inner layer, the experimental velocity distributions all collapse to a hyperbolic

tangent profile with a width, and array penetration scale, that is dependent upon

array characteristics alone. In a sparse array limit, the s-regime, the penetration

depends on the effective resistance of the array, set by the cylinder spacing; in the

dense array limit, the d-regime, the cylinder diameter becomes the dominant length

scale, limiting the penetration to the outermost row of cylinders. In the outer layer,

the velocity profiles collapse to a distribution resembling the Blasius boundary layer

solution. The outer layer width, 60, is found to be independent of the vegetation

density, and thus of the inner layer. However 60 is highly correlated with the water

depth, h, suggesting that it is established, by a balance between shear stress and bed

friction in the open channel. Moreover, there is a region of the outer flow that exhibits
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logarithmic scaling of the form U/u. = log((y - y,)/k), with k, the characteristic

roughness height, independent of array density, but correlated with the outer layer

width, 0o. This makes the outer layer flow analogous to the uncommon "d-type"

boundary layers, for which the effective roughness scales with the boundary layer

width. Finally, The drag exerted on the main channel by the interfacial shear stress

is found to be substantially greater than that for a solid wall and is found to approach

a constant, independent of volume fraction, for high Reynolds number.

The results of this chapter can be extended to efforts to model the mean flow

in shallow vegetated channels, e.g., for the purposes of predicting sediment trans-

port or flood conveyance in river-floodplain systems. Given the characteristics of the

vegetated region, expressed through CDa, the water depth, h, and the bed friction

coefficient, Cf, the velocity distribution across the shear layer may be modeled. First,

the momentum equations presented in section 2.3 may be simplified for steady, fully-

developed flow, i.e., d/&x = 0 and &/t = 0 for all quantities. To calculate the free

stream velocity, U2, note that at some point in the open region, outside the shear

layer, the shear stress vanishes and U2 is given by a balance between pressure forcing

and bed drag,

= g 1S- ic2, (2.42)

where S is the (constant) free surface gradient, -0 (h + Zb) /x. Similarly, sufficiently

far into the vegetated layer, the shear stress vanishes, and the constant velocity, U1,

is determined by a balance between pressure forcing and vegetative drag,

1o = gS - CDaU. (2.43)
2

Next, the inner layer width, 6I can be calculated from the results of section 2.5.5 as

6, = max (cl(CDa) - , c2d) (2.44)

where the empirical results cl = 0.5, c2 = 1.8 were obtained from the present experi-

ments.
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Having obtained U1, U2, and 6I, what remains is to calculate the outer layer

velocity scale, o, necessary to link the inner layer and outer layer velocity profiles.

This can be done by an iterative method detailed below. The method of Ghisalberti

& Nepf (2004), which was used to calculate the fully-developed velocity profile above

a submerged canopy, can be adapted to the present case of shallow channels with

bottom friction. Ghisalberti & Nepf found that in the shear layer above a canopy, the

mixing length, Lm, is approximately constant. Similarly, in the present experiments,

Lm was approximately constant for each profile throughout the outer layer (see their

figure 6 and our figure 2-24 for comparison). Thus, a constant mixing length model

is reasonable for the transverse Reynolds shear stress term (2.9a),

-2
Fy -p(u'v') = Lm (y (2.45)

Note that the viscous stress has been neglected on the grounds that the Reynolds

number is large, certainly true for field conditions. In addition, the secondary stress

term, (U - U) (V - V) has also been neglected. Shiono & Knight (1991), among

others, have shown that this term is significant, particularly for two stage channels

with depth variation across the floodplain interface. In the present experiments, no

depth variation existed, although there still existed a secondary circulation near the

interface (see section 5.8 in chapter 5). Nonetheless, it was shown in that section

that the circulation contributes little stress in the laboratory flume. Thus the stress

from secondary circulations is neglected here, but see Shiono & Knight (1991) for a

complete discussion for typical magnitudes in depth-varying channels.

Using the constant mixing length model, the momentum balance in the open

channel is

0 = gS + L 0 (0U) 2cf (2.46)

In section 2.5.10, the mixing length was found experimentally to be

L 6ou, (2.47)
68U2 - U
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The matching velocity, Um is a function of 5i/5o and the interfacial shear velocity,

u, is a function only of U1 and U2 (see section 5.4 in chapter 5). The boundary

conditions for U(y) come from the matching conditions with the inner layer,

U(y) = U, y = (2.48a)

and

au = aU-(1 _ 2), y = Ym (2.48b)
y

where

Ym = tanh -1 a, (2.48c)

U, = U1 + U(1 + U ), (2.48d)

and

a = tanh(1.89exp(-4.035i/5o)) (2.48e)

derive from the matching relationships in sections 2.5.6 and 2.5.7 and the empirical

fit for a. In addition, the slip velocity, Us = f(S6 i/o) can be evaluated from (2.36).

Thus it can be seen that the system (2.46-2.48) can be written in terms of only two

unknowns, U(y) and 6o. Following Ghisalberti & Nepf (2004), an iterative method is

needed to determine 60 and thus the outer layer velocity profile, U(y). Starting with

an initial guess, (o)i, (2.8) is solved for U(y). The actual boundary layer width of

the solution, U(y) is then evaluated. If this width, (o)a, does not match the initial

guess, ()i, then the process is repeated with (60)a as the guess. When the process

converges, both 6o and U(y) are determined. Since 6o is related to the open channel

bed friction, a reasonable first guess, following the arguments in section 2.5.6, would

be
h u2

(60)i= U (2.49)

Once o is obtained from the iterative method, Us = f( 6 1/6 o) can be evaluated
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from (2.36), yielding the inner layer velocity profile,

U = U1 + Us (1 + tanh (I)), (2.50)

where y , the inflection point, is taken as the vegetated layer edge, consistent with

experimental results. Combining the inner layer and outer layer velocity distributions

the solution for U(y) may then be used for studies of floodplain erosion and deposition,

material transport, and channel conveyance.
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Chapter 3

Hydrodynamic Stability Analysis

3.1 Introduction

In chapter 2, the scaling of the mean velocity distribution in the experimental veg-

etated channel was discussed, and the effects of coherent turbulent structures was

suggested. In chapter 4 experimental measurements of the coherent structures are

discussed in terms of their frequency, length scale, and effects on momentum trans-

port. In this short chapter, the focus is on the initiation of the coherent structures,

which is studied using linear hydrodynamic stability analysis (see, e.g., Drazin &

Reid, 1981).

It is known that the coherent structures are related to the Kelvin-Helmholtz insta-

bility initiated by the inflectional velocity profile of the shear layer. The structures

are observed experimentally to consist of a traveling periodic vortex street, as de-

scribed in chapter 4. Based on these observations, a linear stability analysis is carried

out, by viewing the structures as having originated from some initial wave-like distur-

bance superimposed on the shear flow. The theory assumes that a spectrum of wave,

or disturbance, frequencies exists in the initial flow due to background turbulence.

Of these, the coherent structures result from the wave or spectrum of waves that

is most amplified by the shear flow. The disturbance begins with an infinitesimally

small amplitude, but becomes amplified by the background shear flow and eventually

grows to the finite scale observed in the laboratory. When first initiated, the small
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amplitude disturbance is viewed as a small perturbation on the shear flow, and thus

the equations of motion may be linearized, and hydrodynamic stability theory used.

However, as the amplitude of the disturbance grows, it interacts in a nonlinear way

both with itself and with the background shear flow, transporting momentum and

energy (for a good discussion, see Stuart, 1958). In the shallow vegetated layer this

results in the attainment of a finite amplitude equilibrium with a constant frequency,

the experimental observations of which are discussed in chapter 4. The growth and

equilibration is a nonlinear process, and cannot be described by linear theory. Given

these constraints, hydrodynamic stability theory will be used in this chapter to pre-

dict the frequencies which are most prone to amplification and their corresponding

initial rates of growth in the downstream direction.

3.2 Linear Stability and the Modified Orr-Sommerfeld

Equation

The stability problem begins with the equations of motion for a two-dimensional

shallow flow with vegetation and bottom friction, given in section 2.3. Additionally,

the turbulent Reynolds stresses are parameterized with a constant eddy viscosity,

-p(uiuJ) = t * (3.1)

Although experimental data, as shown in section 2.5.10, are better described by a

constant mixing length model, the constant eddy viscosity formulation is adopted for

computational simplicity. This is has precedent in previous work on shallow channels

(Chu et al., 1991; Shiono & Knight, 1991). In addition, a rigid lid approximation is

made which assumes the variation in water depth, h, contributes only to a pressure

gradient, and does not support support free surface waves. The result momentum

equations are a form of the Saint-Vnant equations,

a+ -+ a a Vt + a2) FDx (3.2a)
At AX 09Y P a aX2 Y2
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t + + Yt -A + - FD (3.2b)
+ + v

a - =0, (3.2c)
Ox ay

where p is the dynamic pressure, and the drag terms are

2(CDa + f/h) U + , y < O
1 (c hf/u2 2, y > 0,FDXz -{± 2 -2 (3.3a)

Fu 1 (CDa + cf/h)7 + y< 0
FDy={2( acf)U/w < (3.3b)

2(c f/h)v-+ y > .

To review, the overbar represents a quantity that has been depth-averaged, spatially-

averaged over the heterogeneity within the vegetation, and time-averaged over the

time scale of the small-scale turbulence. The small scale turbulence can be defined as

that due to the bed, with length scales up to h, and that due to the wake turbulence

by the vegetation, with scales of order of the plant diameter (d) or spacing (s).

Equations (3.2-3.3) thus represent the equations for the evolution of the mean flow

plus the coherent structures.

The evolution of the small amplitude disturbance leading to coherent structures

is described by writing all quantities as the sum of their mean values (long-time

averaged) plus the disturbance,

Ui = U(y) + '(x, , t)

i- = V(y) + v'(x, y, t) (3.4)

= P(y) + p'(x, y, t).

Substituting these quantities into (3.2-3.3), linearizing to remove terms that are

quadratic in the small-amplitude disturbance, and subtracting the mean yields the

disturbance evolution equations,

atu' aU' ,aU 1 ap' + y f 2UU' (3.52\
at ax ay paxv ax2 ay2
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Oat +Ud - I +±t(9 - fDUV' (3.5b)

Ou' dv'
- + = o, (3.5c)

dox y

with

(CDa+cf/h), y<O (3.6)
lcf/h, y > .

It is assumed that the basic shear flow, U(y) is parallel, and that the large scale

motion balances the mean pressure gradient, dP/dx. Following classic hydrodynamic

stability theory (see,e.g., Drazin & Reid, 1981), the velocity and pressure disturbances

are assumed sinusoidal,

U = cu(y)ei(kx-wt)

V = v(y)ei(kx- wt) (3.7)

p = p(y)ei(kx-wt).

Further, the following non-dimensionalizations are made,

U = UoU*, c = Uoc*, = U*, y = by*, k = k*/b (3.8)

where Uo and b are velocity and length scales to be determined. The star subscripts are

subsequently dropped, and 3.7 and 3.8 are substituted into the disturbance equation

(3.5-3.6). Manipulation to remove Ou and p yields the modified Orr-Sommerfeld

equation for for shallow water,

(c- U)y + (-Uy + k (UU -c)) q

SD(y)u (A + _O 20 1I (2k _ -i) + - k 4 ) (3.9)ik j ± 2+ J i-kRe

where now / 0 , and c = w/k is the wave speed, and the "y" subscripts denote dif-

ferentiation with respect to y. In addition the Reynolds number and the dimensionless

drag have been introduced,

Re = Ub (3.10a)
lt
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SD(y) = 2fDb

where, the drag has been written as the product of a dimensionless number, S,

and a spatially-varying function D, for reasons to be discussed. The modified Orr-

Sommerfeld equation (3.9) and the assumptions leading to it have been previously

derived and used in numerous studies of hydrodynamic stability of jets, wakes, and

shear flows in shallow layers (Chu et al., 1991; Chen & Jirka, 1997, 1998; Socolofsky &

Jirka, 2004). However, in previous applications, a single value of cf/h has been used

throughout the shear flow and thus a constant friction number, Sf = cfb/h is defined

to characterize the effect of the bed (Socolofsky & Jirka, 2004). For the shallow veg-

etated layer, the discontinuous drag condition (3.10b) was added in order to model

the dominance of vegetative drag within the vegetated layer and bed friction outside.

As such, the number S from (3.10b) must be defined in a way that characterizes the

effects of both bottom friction and vegetative drag. This will be addressed shortly.

Equation (3.9) is a eigenvalue problem for the wavenumber k and frequency w.

The eigenfunction, satisfies the boundary conditions,

O0, y -+ ±o, (3.11)

and has solutions only for particular relationships between k and w, that is, if a

dispersion relation,

F(w, k, S, Re) = 0 (3.12)

is satisfied. For the the vegetated shear layer problem, the disturbance frequency,

w will be specified for given Re and S and the eigenvalue problem will be solved

to find the complex wave number, k = kr + iki. From equations (3.7), it can be

seen that if the imaginary part, ki, is negative, then the disturbance, with will grow

exponentially with downstream distance, in proportion to ekin . This is the mark of

an unstable frequency. Solving the eigenvalue problem for ki, the downstream growth

rate, is known as the spatial instability problem (see, e.g., Monkewitz & Huerre,

1982). In contrast, the growth in time of a given wavenumber, k, can be determined
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from the complex frequency, w, i.e., if wi is positive, the disturbance grows in time like

ewit. This is termed the temporal instability problem. The spatial problem is more

relevant to the experimental vegetated shear layer in which the instability develops

downstream of a splitter plate.

3.3 Kinetic Energy Analysis

Before proceeding with the solution to the eigenvalue problem, a simplified analysis

can be carried out to predict the effect of friction on the growth of the instability.

Using the method of Chu et al. (1991), an energy balance for the small perturbation

can be derived from the linearized equations (3.5), by multiplying (3.5a) by u' and

(3.5b) by v' and summing to obtain

Ok Ok OU'OPI 10 I a-'- t' g- - \ (u'v') -fDU (2(U'2) + y2)). (3.13)
at ax ay ·ay

III
I II

where k = 1/2(u '2 + v'2) is the kinetic energy associated of the two-dimensional

disturbance. Term I is the rate of work done by the fluctuating pressure, term II is

the rate of energy production by the mean shear in combination with the Reynolds

stress, and term III is the dissipation of disturbance energy due to vegetative drag

and bottom friction. Due to the negative sign, it can be seen that the drag term will

tend to reduce the growth of disturbance energy, i.e., will have a stabilizing effect on

the shear flow.

In the laboratory experiments described in this thesis, as well as in the canopy flow

studied by Ghisalberti & Nepf (2004), the coherent structures that form in the shear

layer eventually reach an equilibrium after which they no longer grow. The energy

equation for the disturbance (3.13) suggests that if the dissipation term (III) balances

the shear production term (II), then the disturbance can reach an equilibrium. If these

terms are in balance, the following relationship should hold

_ 2(u2) -+ (U ) 1 (3.14)
- Ku'v') UV ~ 1.
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This is identical to the flux bed-friction number, Sf, introduced by Chu et al. (1991),

save for the spatial dependence of fD caused by the drag discontinuity. In White,

Ghisalberti & Nepf (2004), an equilibrium condition for canopy flows was derived by

applying the condition (3.14) at the vegetation interface. At the interface, but still

within the -vegetation, it was assumed that CDa > cf/h (Typical field conditions

are CD = 0(1), a = 0.01-1 cm -1 , Cf = O(0.01), and h = 10-100 cm). It was

thus suggested that the growth of the instability would become suppressed when the

vegetation stability number, S, attains a critical value

CSaU _ 2(u'v')
(U y)max 2(U' 2 ) + (v, 2 ) (3.15)

where (Uy),,ax represents the maximum shear, assumed to occur at the interface.

Experimental results from shear flows (see, e.g., Townsend, 1976) have shown that

typically,
2(u'v')
2(uV.) 0.3 (3.16)

and this is confirmed by measurements near the interface of the experimental channel

(see figure 4--17c of chapter 4). Assuming (' 2 ) - (v'2) gives an equilibrium condition

at the interface
CDaU

S- CDaU 0.2. (3.17)

As the initial instability grows downstream of the splitter plate, the shear layer width

also grows, decreasing U and hence reducing the production relative to the drag

dissipation. The theory assumes that when the shear layer width is such that the

critical value, S, 0.2, is attained, the instability will cease to grow. For comparison,

experimental values of Sv can be obtained From the inner layer scaling in chapter 2,

yielding
CDaU,

S UaS----- 0.5 (3.18)

where U U is assumed as the velocity scale at the interface and the experimental re-

sult 6j = 0.5(CDa)- ' is used. The comparison between the prediction (Sv = 0.2) and

experiments are not quantitatively identical, but are of the same order of magnitude.
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Thus the condition (3.17) appears to reasonably predict the inner layer equilibrium.

However, the shortcoming of (3.17) is that, by assuming the velocity shear possesses

only one length scale, it does not predict the separate outer layer equilibrium. In chap-

ter 4 it is shown that the coherent structures reside predominantly in the outer layer

and that the instability is influenced by both the inner and outer layers. The results

from the solution of the Orr-Sommerfeld equation, presented below, will demonstrate

that regardless of the value of CDa, and hence the magnitude of the inner layer shear,

the instability will always grow if there is no bed friction in the outer region.

3.4 Solution of the Eigenvalue Stability Problem

The modified Orr-Sommerfeld eigenvalue problem (3.9) was solved with a pseudo-

spectral collocation method using Chebyshev polynomials. This method is employed

in a the MATLAB program suite SWESC-M (Shallow Water Eigenvalue Stability

Calculator - Matlab) developed by Scott A. Socolofsky. Details of the method are

given in Socolofsky & Jirka (2004). As a baseline, the temporal amplification of a

hyperbolic tangent free shear layer, without friction, was computed and compared to

the well-known solution given in Betchov & Criminale (1967). The comparison was

very good, lending credibility to the numerical method.

By solving the eigenvalue problem, the stability of parallel shear velocity profiles of

a hyperbolic tangent form is tested for various vegetative drag conditions. Specifically,

mean velocity profiles of the form

U(y) = Uo(1 + Rtanh(y/b + )) (3.19)

were studied, where U is the centerline velocity, is a small offset allowing the

inflection point of the velocity profile to be displaced into or out of the vegetation,

and R is the velocity difference between the streams far outside the shear layer,

U2 -U 1R= U- (3.20)
U2 + U1
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Note that for this velocity profile, the momentum thickness is 0 = b/2. The dimen-

sionless drag, from (3.10b), is given by

(Coa+cfyh) b, y<O
SD(y) = { a hbb/h, y< 0 (3.21)

cf b/h, y > O.

To avoid discontinuities, this discontinuous drag profile was smoothed numerically

using a very thin hyperbolic tangent profile, with a width, A << 1,

SD(y) D(1 - ytanh(y/Ab)) (3.22)

where
bD= (Ca + 2cf/h) (3.23a)
2

is the mean drag, and
Coab
CDa (3.23b)
2D

is a measure of the drag differential. Note that (3.22) and (3.21) are equivalent for

A - 0. In the numerical method, A = 0.02. Finally, (3.22) suggests the appropriate

definition of the stability parameter, S, to be

S - D = (CDa + 2cf/h). (3.24)

The velocity profiles and corresponding drag distributions studied are shown in figure

3-1. The effect of varying the offsets, , relative to the vegetation interface is shown.

As discussed in chapter 2, the experimental profiles do not match a hyperbolic tangent

profile exactly, instead exhibiting two separate length scales. However, the hyperbolic

tangent is expected to reasonably capture the effect of drag on inhibiting stability. As

the mean velocity is displaced toward the free stream in the experimental profiles (see,

e.g., figure 2-4 of chapter 2), they are best approximated by the hyperbolic tangent

profiles with negative values of (3-1 b and c).
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3.5 Results of Stability Analysis

The first case studied was the spatial growth rate for a velocity ratio R = 1 and

uniform friction (the y = 0 condition). This represents an initial shear flow in either

a layer with uniform vegetation, or the unvegetated channel with uniform bed friction.

The growth rate for increasing values of the friction number, S are shown in figure

3-2. The S = 0 (free shear layer) case is comparable to the results of Monkewitz &

Huerre (1982). The most unstable frequency occurs at wJ/27rUo, 0.032, the natural

frequency for a free shear layer. As the drag is increased, by increasing S, the growth

rate decreases for all frequencies. The reduction is nearly uniform across frequency

space, suggesting friction does not preferentially affect any particular range. When

S 0.25, even the most unstable frequency becomes stabilized (ki 0), and for

higher values of S all modes are damped.

When the drag is allowed to vary spatially (y = 1), the case of partial vegetation,

the results are quite different. The growth rates are shown for various values of the

friction number S, and center offset, , in figures 3-3-3-7. For e = 0, i.e., the inflection

point coinciding with the vegetation edge, the effect of drag is to reduce the growth

rate (figure 3-3). However, high frequency modes are preferentially damped, with

the most unstable mode shifting to a lower frequency with increasing values of S. In

addition, the damping is much less pronounced than in the uniform friction case, as

there are still frequencies with significant growth rates for S = 1, at which all modes

are damped in the case of uniform drag. In fact, over the entire frequency range

studied, -ki never becomes negative (stable), but asymptotically approaches zero for

large S. This is illustrated in figure 3-4, which shows the decrease in growth rate

of the most unstable mode, w/2rUo = 0.032, for both the uniform and nonuniform

drag cases. The difference is significant, as ki declines almost linearly with S in the

uniform drag case (see figure 3-2), crossing zero to become significantly stable for

S 0.25. The nonuniform drag case ( = 0, y = 1), declines almost linearly for

small S, but then asymptotically approaches zero for large S, never crossing ki = 0

to become stable. This is consistent with experimental results in shallow channels
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with uniform drag, which suggest coherent structures can be completely damped and

ultimately annihilated by bottom friction. However, it suggests that in flows with

drag discontinuity, such as canopy flows, there will always be modes that are at least

neutrally stable, implying that coherent structures existing in the flow will not be

strongly damped.

Figure 3-3 shows the results when the hyperbolic tangent profile is shifted into the

free stream a distance equal to the momentum thickness, = -0.5. The disturbance

growth is even less inhibited by drag in this case, as the entire frequency range is

still unstable at S = 5. This is not surprising, as the source of the instability, the

inflection point, is now in the open region, unaffected by vegetative drag. Moreover,

the preferential damping of the = 0 case is not observed, as the most unstable

frequency remains approximately constant (O/27rUo 0.032) as S is increased. The

= -1 case, shown in figure 3-6 is even less affected by drag. For this case, only the

outer edge of the shear layer lies within the vegetation (see figure 3-1), and thus very

little reduction in the growth rate is seen as S is increased. Finally, figure 3-7 shows

the disturbance growth rate when the velocity profile is shifted into the vegetative

region. For this case, high frequencies, (wO/27rU - 0 0.04) are damped linearly

with increasing S, as in the uniform drag case. This is expected since the inflection

point is now well within the vegetated layer, and thus the higher frequency (shorter

wavelength) disturbances exist solely within the drag-dominated region. However,

lower frequency waves are asymptotically damped, remaining unstable as - 0.

The e = 1 case does not resemble the experimental profiles, for which the shear layer

centroid (point of mean velocity) lies outside the vegetation, and thus is simply shown

for completeness.

There are two significant results from the linear stability analysis. The first is

the determination of the most unstable wavelength, Aw/2irUo 0.32. This frequency

remains approximately constant with increasing vegetative drag if the shear layer

is slightly displaced into the free stream, as in the experimental velocity profiles.

This frequency corresponds to the dominant frequency of the coherent structures

measured experimentally, as described in chapter 4. The second result is the flows
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Figure 3-2: Spatial growth rate for uniform drag and various values of the friction number.
Growth rate, ki normalized by the momentum thickness, 0, and plotted versus the frequency,
w, normalized by 0 and UO.

with uniform drag become uniformly stabilized (dissipated) for large S, but flows with

a drag discontinuity do not. This suggests that drag from partial vegetative coverage

alone is insufficient to completely damp coherent structures, and thus conditions in

vegetated flows with a drag discontinuity should be more conducive to the persistence

of coherent structures than flows with uniform bed friction. This is confirmed in the

present experimental study, in which the friction number based on array drag ranged

from S 0.3 to S z 30, but coherent structures were observed without fail and

always persisted. In contrast, studies in shallow mixing layers with uniform bed drag

find that coherent structures rapidly dissipate when their horizontal length scales

(and thus, S) reach a critical scale (van Prooijen & Uijttewaal, 2002), consistent with

the uniform drag prediction from the linear stability theory shown here.
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Chapter 4

Experimental Results: Instability

and Coherent Structures

4.1 Introduction

In shear layers possessing an inflection point, linear stability theory predicts the onset

and growth of the Kelvin-Helmoltz instability (Drazin & Reid, 1981). The instability

begins as a linear wave and quickly grows to a nonlinear state, characterized by a

row of coherent turbulent structures with a length scale comparable to the shear

layer width (Brown & Roshko, 1974). Linear stability theory successfully predicts

the natural frequency of the passing structures,

fnO/U = 0.032, (4.1)

where U = 1/2(U 1 + U2) (see figure 2-1 of chapter 2) and

0 = I[ 4- U )dy (4.2)

0 4 ~AU

is the momentum thickness, a measure of shear layer width (Ho & Huerre, 1984).

The coherent structures are responsible for shear layer growth, by the process of

vortex merging, whereby two or more adjacent traveling vortices enjoin, engulfing
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irrotational fluid in the process (Winant & Browand, 1974). The pairing is a result

of a subharmonic instability, which has also been demonstrated by linear theory (Ho

& Huerre, 1984; Pierrehumbert & Widnall, 1982).

In reality, shear flows are often affected by the presence of solid boundaries, which

constrain growth. In shallow mixing layers, present in river-floodplain systems, com-

posite channels, and shallow coastal regions, large, nearly two-dimensional coherent

structures, with a length scale much greater than the depth, are often observed (Chu

& Babarutsi, 1988; Tamai et al., 1986). However, in contrast to free shear layers, the

friction imparted by the shallow bed acts to diminish the shear-layer growth rate,

and can inhibit the growth of the coherent structures (Uijttewaal & Booij, 2000; Chu

et al., 1991).

Coherent structures are also formed in the shear layer at the top of a submerged

canopy (Raupach et al., 1996; Ghisalberti & Nepf, 2002). Ghisalberti & Nepf found

experimentally that the natural frequency of the shear layer above an aquatic canopy

was very close to the value for free shear layers from linear stability theory, fO/U =

0.032. In contrast to the continual growth of a free shear layer, however, the canopy

flow reaches an equilibrium, with 0 0 eq, a constant, and locks into the corresponding

f,. However, although linear theory predicts the dimensionless frequency, fO/U =

0.032, it explicitly predicts neither f nor 0. In fact 0 is determined predominantly

by the balance between drag and Reynolds stress across the shear layer (see, e.g.,

Ghisalberti & Nepf, 2002), a nonlinear process.

Partially-vegetated channels occupy the median on the spectrum between canopy

shear layers and shallow mixing layers. The latter are formed downstream of a splitter

plate in a uniform, shallow bed and have been studied extensively (van Prooijen &

Uijttewaal, 2002; Chu & Babarutsi, 1988; Uijttewaal & Tukker, 1998; Uijttewaal &

Booij, 2000). In these flows, the shear layer vortices are restricted in the vertical

but grow in horizontal dimension, becoming effectively two-dimensional. However,

bottom friction constrains the growth of the shear layer downstream of the splitter

plate, limiting the size of the vortices (Uijttewaal & Booij, 2000). This is due first

to a direct damping of the vortex instability, which has been shown by van Prooijen
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& Uijttewaal (2002) using linear stability theory, and secondly, to a reduction in the

velocity difference,

R U2 -U 1 (4.3)
U1 ± U2 '

between the fast and slow streams, which is eventually erased as the slow stream

accelerates and the fast stream decelerates due to bed friction. Like bed friction in

shallow layers, the drag from the vegetation in a partially vegetated channel limits the

growth of the vortices into the vegetated layer. However, in contrast to shallow mixing

layers, the shear is maintained by the drag discontinuity between the vegetation and

the main channel and the velocity difference, R, reaches a constant. For this reason,

as in submerged and terrestrial canopy flows, the shear layer reaches an equilibrium.

4.2 Periodic Fluctuations and Instability

4.2.1 Periodic Fluctuations

Laboratory experiments carried out in the partially vegetated channel described in

section 2.4 reveal that coherent structures play a dominant role in the shear layer

dynamics. The presence of the structures is indicated by coherent, nearly periodic

fluctuations in velocity and surface displacement records, the signature of a traveling

wave train of vortices. Figure 4-1 shows representative time series of the streamwise

velocity, u(t), the transverse velocity, v(t), and the free surface variation relative

to the temporal mean, h(t), for a point just outside the vegetation interface, y =

3 cm. Fromn here forward the instantaneous velocity components will be written

u(y, t) = U(y, t) + u'(y, t), with U(y, t) the temporally-averaged velocity and u'(y, t)

the temporal fluctuation (similarly, v = V + v'). The temporally-averaged turbulent

quantities will be denoted with angle brackets, for example the Reynolds stress, (u'v').

Each of the time series exhibits nearly periodic fluctuations of considerable amplitude.

The fluctuations in the streamwise velocity are of the same order as the mean flow,

with a local turbulence intensity (u' 2)2 /U = 0.5 and regular oscillations between 0.1U2

and 0.7U2. Also, a significant periodic oscillation of the free surface accompanies the
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Figure 4-1: Temporal oscillations of the velocity and free surface. Time series of the longitu-
dinal (u(t)) and transverse (v(t)) velocity components and the surface displacement (h(t))
for case X. Simultaneous time series shown in (a); streamwise velocity normalized by free
stream velocity shown in (b) (case VII).

passage of the vortex structures, with (h'2 ) ~ 0.5 mm due to a free surface depression

at the vortex center. For reference, the mean water depth is h = 6.6 cm.

4.2.2 Development of Instability

Frequency spectra reveal that the regular oscillations are a result of the fundamental

shear layer instability. Velocity transects have been made across the shear layer at

various longitudinal positions (see figure 2-3). For each transect, the power spectral

density of the transverse fluctuations at a position, y ~ 3 cm, just outside the array

interface, has been computed. The downstream development is shown in figure 4-

2. For comparison, the development of the shear layer width is shown in figure

4-3. Profiles of longitudinal development were carried out for three experimental

conditions, (a - c), with all cases exhibiting qualitatively similar behavior. At x = 0,

immediately following the splitter plate, the frequency spectrum is broad-banded.

As the flow develops downstream, a finite number of frequencies begin to take

shape, typically with bimodal structure (see, e.g., (b), x = 33 cm; (c), x = 64 cm),

but sometimes exhibiting three or more modes ((b), x = 95 cm; (c), x = 189 cm).

Eventually, nearly all energy is transferred to a single dominant frequency, which

becomes progressively more peaked, while the higher modes decay. The flow reaches
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Magnitude of the PSD curves is not shown, but each is scaled to be energy-preserving, i.e.,
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Figure 4-3: Development of the shear layer momentum thickness, 0 and the outer layer
momentum thickness, OBL for case IV.

an equilibrium with the saturation of this frequency, after which there is no further

growth of lower modes. For each case, this equilibrium frequency, feq, is nearly equal

to the natural harmonic for a free shear layer (4.1), feqOeq/U = 0.032, where Oeq is the

equilibrium momentum thickness. This is consistent with the flow equilibrium and

frequency lock-in observed by Ghisalberti & Nepf in a submerged canopy shear layer.

The transfer of energy from higher to lower frequency is consistent with the sub-

harmonic instability in a free mixing layer. In these flows the mode which is initially

most unstable eventually saturates and begins transferring energy to its subharmonic

(Pierrehumbert & Widnall, 1982; Ho & Huerre, 1984). Physically, this subharmonic

instability manifests itself as a process of merging between adjacent vortices, which

is the primary mechanism behind mixing layer growth (Winant & Browand, 1974).

A similar mechanism appears to be occurring here. A portion of the high frequency

energy present in the spectra at x = 0 and x = 33 cm, immediately downstream of

the splitter plate, is due to entrance conditions and upstream turbulence, not a result

of shear layer development. However, further downstream (see, e.g., (a)) most of this

energy is no longer present, and two dominant frequencies have emerged, the natural

frequency, fn, and a second higher mode at approximately 2fn. The higher mode

progressively loses energy to the natural frequency downstream and at equilibrium

is nearly completely erased. This subharmonic transfer suggests vortex merging may

play a role in shear layer growth here, as in free mixing layers.
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The total power spectra, Pt, at equilibrium is shown in figure 4-4 for each of the

experimental cases. These spectra are calculated by averaging the spectral density

for each velocity component over the shear layer width

1 rh0
Pt = l (P+ P,)dy, (4.4)

where 60 is the outer layer width. Thus they express the total energy density across

the shear layer. That is, for the mean kinetic energy associated with temporal fluc-

tuations, averaged over the shear layer width, given by

Q- I J ((u'(t, y)2) + (v'(t, y)2))dy, (4.5)

it follows that

Ptdf = Q. (4.6)

The frequency peaks for each case line up very well with the most unstable frequency,

f,O/U, predicted by linear theory. The mean value across all experimental cases is

fd = 0.032 ± 0.003. Consider that the linear theory result was obtained under inviscid

assumptions for an idealized hyperbolic tangent velocity profile (Ho & Huerre, 1984).

Its ability to predict the fundamental frequency for a shear flow formed in a partially-

obstructed channel with a highly asymmetric velocity profile is a remarkable success

for linear theory. This agreement suggests that the natural frequency of a shear layer

is shape-independent, predictable from only the integral measure of the width and

the mean velocity. This is a significant and powerful result indeed.

It can be demonstrated that the fundamental frequency scales predominantly with

the outer layer width, associated with the main channel. To demonstrate, consider the

outer layer to be analogous to a boundary layer originating at the inner layer origin,

y. It is possible to rewrite the momentum thickness, 0, for the entire shear layer

(4.2) in a form that more closely resembles the momentum thickness for a boundary

layer,

0 j= Uu-Ul (1 - U1) dy. (4.7)
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The contribution to the momentum thickness from the outer (boundary layer) region

is

OBL U U1 ( U d, (4.8)

and the inner layer contribution is

OIL j au (l U u)dy. (4.9)

The total is their sum,

0 = OBL + 0 IL- (4.10)

In figure 4-5, the ratio OBL/O is plotted for all experimental cases. The outer layer

accounts for the majority of the shear layer width across all cases (also see figure

4-3). The contribution of the inner layer, as expected, increases with 65/6o, but

even for the largest ratio (sparsest cylinder fraction), OBL - 0.80. This is a significant

result because the fundamental frequency, fn, scales with 0, and thus the frequency of

instability is set predominantly by the outer layer scale. Interestingly, the instability

originates at the inflection point within the inner layer, but it appears that the inner

layer width wields little influence over the frequency once the instability is established.

Channel-scale oscillations have also been observed by Ghaddar et al. (1986) in a

grooved-wall channel and Schatz et al. (1995) in rod-roughened Poisseuille flow. Both

found self-sustained oscillations leading to a two-dimensional flow which resembled

Tollmien-Schlichting waves. Ghaddar et al. discovered that the grooved-wall oscilla-

tion was formed by a Kelvin-Helmoltz instability at the velocity inflection point in a

thin layer near groove, but had a wavelength set by the Tollmien-Schlichting bound-

ary layer instability mode corresponding to the channel scale. Both the partially

obstructed channel considered here and boundary layers with an inflection point near

roughness elements have in common the existence of two length scales: a thin layer

with an inflection point, where the instability is initiated, and a larger channel scale

which sets the frequency of the oscillation. In contrast, traditional free shear layers

possess only a single length scale characterizing the width, which grows downstream
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Figure 4-4: Power spectral density (PSD) plots for each experimental case at equilibrium.
The PSD scale is such that the integral gives the total kinetic energy across the layer
normalized by u2 (see text). The most unstable free shear layer frequency from linear
theory, f/U = 0.032 is shown by the vertical line. The mean frequency peak from all cases
is f /U = 0.032 ± 0.003, in nearly perfect agreement with linear theory.

in a self-similar manner. Thus they continually evolve rather than locking into a fixed

frequency.

4.2.3 Vortex/Pressure Wave Characteristics of the Instabil-

ity

The coherent oscillations suggest the initial instability evolves into coherent flow

structures in the form of a traveling wave. Here evidence is given that the wave

train has a dual form consisting of both a concentrated vortex and a far-field pressure

wave response. Velocity and free surface fluctuations are shown in figure 4-6 for three

positions across the shear layer, y = 10 cm (a) and y = 3 cm (b), both in the free

stream, and y = -10 cm (c), within the array (see (d) for channel position). In

addition, the lateral variation of the phase shift, , in radians, of the v(t) and h(t)
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Figure 4-5: Ratio of the outer layer thickness to the total shear layer thickness, OBL/O

plotted as a function of the ratio of the inner layer to outer layer thickness, 5i/5o for all
experimental cases.

signals relative to the reference u(t) signal is shown in (e). The phase shift is computed

from the cross-correlation sequences, u'(t)v'(t + -) and u'(t)h'(t + T), with the phase

shift defined as corresponding to the cross-correlation maximum, = 2 rnmaxfd.

At y = 10 cm 4-6a, well into the free stream, the oscillations are pronounced, and

v(t) and h(t) are nearly in phase. However, both are nearly antiphase with respect

to the streamwise velocity, u(t). In fact, from 4 - 6e, v(t) is approximately 37r/4 out

of phase with u(t). This is characteristic of a vorticity wave, as discussed in Betchov

& Criminale (1967). This is expected, as y = 10 cm is near the core of the coherent

vortices, to be shown in section 4.4.

In 4-G6b, at y = 3 cm, closer to the interface, the same phase relations hold, but the

oscillations are significantly greater in magnitude and more coherent in phase. The

u(t) and v(t) signals are strongly anti-correlated ( 37r/4). It will be demonstrated

that these anti-correlated fluctuations correspond to strong momentum transport

events by the coherent structures. In general, the vortex is marked by the region in

which u'(t) and v'(t) are strongly anti-correlated. Thus the point at which the phase

shift, A), is reduced to r/2 is a measure of the vortex penetration into the array. From

4 - 6e this occurs near y -3 cm for this case, but in general this penetration is

approximately equal to the inner layer width, 6 I.
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Beyond the penetration distance, the oscillations within the array are significantly

different in form 4 - 6c. First, the strength of the oscillations is considerably less

than near the interface. In addition, h(t) and v(t) are no longer correlated, but are

approximately 7r/2 out of phase, while the u(t) and v(t) signals are now close to 7r/2

out of phase. These relative phase relationships are consistent with a pressure wave

Betchov & (Criminale (1967) or, e.g., a free surface gravity wave. Because the velocity

components are out of phase they transport no net momentum. The structure of the

oscillations inside and outside the array thus suggests that the coherent structures

possess a central core that acts as a traveling vortex wave, and a more diffuse region,

with lower fluctuation strength, within the array that acts as a traveling pressure

wave. The oscillatory flow is observed as far into the array as measurements would

allow, and presumably extends to the channel wall. However, in natural flows, the

drag from vegetation will tend to damp wave energy (see, e.g., Massel et al., 1999)

and there will be some attenuation length for the wave motion. The pressure wave

response also occurs in the free stream beyond the vortex core (see figure 4-7c and

d for extent) and is observable in frequency spectra as far toward the outer wall as

measurements were made. In both the array and the free stream, the pressure wave

response is due to the streamline curvature around the vortex core, which induces

pressure oscillations in the far field as the wave train passes. This streamline structure

is measured experimentally and will be shown in section 4.4.

More information about the characteristics of the fluctuations across experimental

scenarios may be gained from the root mean square velocity fluctuations, (u'2) 1/2 and

(v'2)1/2. These are shown in figure 4-7 for array volume fractions in the range 0 = 0.02

to 0 = 0.10. From 4-7(a), the mean velocity varies within the array, decreasing with

increasing 0. Outside the array, the distributions are nearly self-similar when scaled

with the free channel velocity, U2, a sign of the inner layer and outer layer separation.

The relative local turbulence intensity, defined as the ratio between the fluctuation

strength and the local velocity, I = (u'2)1/2 /U is shown in 4-7(b). In regions with

large I, temporal fluctuations are large relative to the local mean velocity. Thus

where I > 0, only within the array and only for the highest density cases, there
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is flow reversal during a significant portion of the oscillation period. From 4-7(b),

the distributions of I(y) collapse in the open region, but are highly dependent upon

volume fraction within the array, y < 0. For the lowest density cases, = 0.02

and = 0.045, I never exceeds unity, suggesting very little, if any, flow reversal in

the array. This is confirmed by many u(t) time series observed within the canopy.

However, for = 0.1, the highest density, I is in the range between 1 - 2 throughout

the array, suggesting significant flow reversal. This is borne out by flow visualizations

as well as by time series (see, e.g. figure 4-6(c)).

The increase in I with increased packing density is due primarily to the decrease

in the mean velocity, U(y), within the array, seen in (a). From (b) and (c), there also

appears to be a slight reduction in u,,rms and vrms within the array. However, for all

cases, the fluctuations are still significantly nonzero as far into the array as measure-

ments were made (generally within 10 cm of the wall), illustrating the far-reaching

effects of the pressure-induced oscillations, and demonstrating that U decreases faster

than ,,rms with increasing . Outside the array, there is a less marked change with X

in the strength of the fluctuations, the distributions of both (u'2)1/2 and (v' 2 )'/2 be-

ing comparable throughout the outer region. In particular, the (v'2)1/2 distributions

collapse throughout much of the outer region. They also exhibit a distinct peak at

the array interface, the magnitude of which is constant across the range of Q. The

large value of (v'2 ) 1/2 at the interface coincides with the region of maximum velocity

shear, &U/&y, suggesting that the interface is a region of very strong Reynolds shear

stress production.

4.2.4 Phase-Dependence of the Oscillatory Motion

While the power spectra give information about the dominant frequencies of the

velocity fluctuations, they do not contain information about their relative phases. To

measure the phase variations across the shear layer, an Acoustic Doppler Velocimeter

(ADV) (SonTek, Inc.) was held fixed at a point near the array interface, y = 0

and simultaneous LDV measurements were taken at various points across the shear

layer. The two point cross-correlation was then used to infer the velocity phase
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Figure 4-6: Time series of velocity and free surface fluctuations measured at various posi-
tions across the shear layer. u(t), v(t) (solid lines), and h(t) (broken line) are shown for
y = 10 cm (a), y = 3 cm (b), y = -10 cm (c) for case X; for reference these points are
marked in (d) relative to the mean velocity distribution, U(y): y = -10 cm (), y = 3 cm
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to the phase of u(t) (solid line at q = 0).
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difference between the reference position and the other points. In one additional

experiment, simultaneous measurements of surface displacement were made between

the fixed reference position, and a set of positions across the shear layer. The cross-

correlation of these measurements yielded the phase variation of the wave-like free

surface oscillation.

Figure 4-8 shows the phase results for v(t) for several experimental cases, and

h(t) for one particular case. The phase difference is measured in radians, relative to

the mean period of the dominant oscillation found from spectral analysis, Td = 1/fd.

The transverse velocity component is nearly in-phase across the entire shear layer for

all cases. As described in the next section, taking advantage of the zero-phase-lag

of v(t) allows the vortex structure to be educed from individual velocity records by

conditional sampling.
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4.3 Coherent Structure Eduction

While the spectral distribution shows the characteristic time scales of the coherent

structures, and the phase information gives some indication of their spatial extent,

it is desirable to have quantitative details of the spatial velocity field. To accom-

plish this, and overcome the lack of spatial detail available from the single-point LDV

measurements, techniques of coherent structure eduction were used. Eduction refers

to the process of identifying coherent structures embedded in a turbulent time series

measured at one or more discrete points in an experimental shear flow. Conditional

sampling techniques are used to identify structures in the time series, with instan-

taneous flow properties such as vorticity (requires multi-point sampling) (Hussain

& Hayakawa, 1987; Bisset et al., 1990) or lateral velocity fluctuations (Bisset et al.,

1990) used as triggers for sampling. An extensive review and evaluation of structure

eduction techniques is given in (Bonnet et al., 1998).

The regularity of the nearly-periodic coherent structures in the present experi-

ments made coherent structure identification a much simpler task than in many tur-

bulent shear flows. The conditional sampling was done using the transverse velocity,

v(t), as the trigger, with a single structure identified as lying between two successive

zero-crossings of the v'(t) signal. In order to eliminate high frequency fluctuations,

v(t) was first band-pass filtered using a notch filter (Press et al., 1992) centered around

fd. The results of the filtering and the identified zero-crossings are shown for a sam-

ple time series in figure 4-9. Between 10 < N < 20 structures were identified for

each individual position record, higher numbers corresponding to faster flows with a

higher frequency of structure passage. In general, N = 10 was found to be sufficient

number of samples to converge to the conditional average within a logistically rea-

sonable sampling duration. The conditionally-averaged velocity at each position was

obtained by an ensemble average over the N structures, following Hussain (1983):

'i(t) = t + t) (4.11)
u~()=i=1
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Figure 4-9: Representative time series of the transverse velocity, v(t) with zero-crossings.
Raw time series (gray), band-pass filtered (black), with zero crossings (.) used as the trigger
for conditional sampling.

where u(y, t) is the instantaneous two-component velocity vector, tzi is the absolute

time at which the ith zero crossing occurs, t is the time relative to the mean coherent

structure period, t E [0,Td], and the factor Ti/Td stretches the ith structure such that it

has the same period as the mean. That is, the structures are phase-aligned, stretched

onto the [0,Td] grid, and then averaged. This removes small scale fluctuations and

phase jitter, but retains the large-scale structure. Note that the unfiltered velocity is

used in the ensemble average, the filtered velocity being used only to identify zero-

crossings.

The structure eduction and conditional averaging procedure is carried out for each

position in each lateral transect. Then, in light of the zero-phase-Iag of v(t), the zero-

crossings of v(t) for all transverse position-records are aligned. Note that this is the

same as writing (4.11) as

N (T,. )il(y, t + cp(y)) = lim L Ui y, tT
l + tzi(Y)

N-oo d
i=l

(4.12)

with cp(y) = O. The result yields u(y, t) and v(y, t), the conditionally averaged

spatially-dependent velocity components over a single period of the coherent struc-
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ture. These are shown in figure 4-10 for a representative case. The same conditional

averaging scheme is used for turbulence quantities, such as the Reynolds stress. To

gain yet more information about spatial velocity structure from figure 4-10, it is

possible to make an approximation to convert the time coordinate to the stream-

wise (x-coordinate). This can be done using the Taylor hypothesis, often called the

"frozen turbulence" hypothesis, which states that time record of flow at a fixed point

can be regarded as due to the convection of a spatial pattern passing the point at a

fixed velocity. Using the hypothesis, the coherent structure, with a passage speed of

Uv, can be converted to a spatial frame of reference moving with the structure by the

following transformation,

(4.13a)

(4.13b)

where xp is the streamwise coordinate of the fixed measurement point and i and u
are the transformed spatial coordinate, and streamwise velocity.

Zaman & Hussain (1981) tested the accuracy of the Taylor hypothesis for coherent

structure eduction from fixed point measurements in a shear flow. They determined
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that the spatial features of the coherent structure, such as vorticity and turbulence

intensity, are accurately reproduced with the Taylor hypothesis provided (i) a single

convective velocity equal to the structure passage speed is used for the transformation

everywhere across the shear flow and (ii) structures are not undergoing rapid evolution

or interaction between neighbors. The first condition has been strictly adhered to in

all data analysis. The second condition holds when the flow has reached equilibrium

and the dominant frequency, fd, has locked in and is no longer evolving (see figure

4-4).

The structure passage speed was measured for a range of experimental conditions

using simultaneous two-point surface displacement gauge measurements. Two gauges

were separated by a fixed distance, D, in the streamwise direction, and time series

were measured at each point, h(t) and h2(t). The time necessary for the structure

to travel between the probes is the time lag, , corresponding to the maximum of the

cross-correlation sequence max(hl(t)h 2(t + T)). The structure passage speed is then

U = -. (4.14)
T

In the next section, the structure of the velocity field in the frame of reference of the

passing structures is discussed. From the structure, conclusions will be drawn about

the dynamic role of the coherent vortices and their contributions to the overall energy

and momentum balances in the shear layer.

4.4 Conditionally-Averaged Vortex Structure

The conditionally-averaged structure for a representative experimental condition (case

I) is shown in figure 4-11. The structure is shown in a reference frame moving with

the vortex passage speed, U, and the time axis has been converted to longitudinal

coordinates using the Taylor hypothesis. Based on the observation that the vortex

passage frequency scales with the outer layer width (section 4.2.2), the spatial co-

ordinates are normalized by JO. The conditional average yields the structure over
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only a single cycle, and therefore, does not reveal the way two successive vortices are

connected in a wave train. However, the continuity is demonstrated in the figure by

repeating the structure over slightly longer than one period, demonstrating the head

(the front) of the trailing vortex and the tail of the preceding vortex.

The structure shown in figure 4-11 is representative of those obtained across all

experimental cases. Because of the transformation to the traveling vortex frame, the

flow in the array, y < 0, and the flow in the open region are in opposite directions.

Moreover, there exists a region of circular vortex motion, primarily in the open flow

region (y > 0) with a width of approximately 260. The vortex is elongated in the

streamwise direction, with a wavelength of approximately 1060o.

Figure 4-11(b) shows the sectional streamlines, the lines that are tangent to the

velocity vectors at every point. These are not streamlines in the strict sense, as the di-

vergence in the horizontal plane, being a two-dimensional slice of a three-dimensional

flow, is not everywhere zero. However, the flow is predominantly two dimensional,

with the water depth, h 5 cm, much less than the flume width, B 120 cm. The

sectional streamlines delineate critical points in the flow, or points where the veloc-

ity, in the chosen reference frame, is zero. The topology around a critical point is

determined by the eigenvalues of the local velocity gradient tensor, and reveals flow

trajectories within the given frame of reference (see Perry & Chong, 1987).

The sectional streamlines in (b) demonstrate the existence of a vortex center and

two saddle points, characteristic of the Kelvin cats eyes vortex train observed in free

shear flows (Drazin & Reid, 1981). Interestingly, the topology around the vortex

is that of an unstable focus, with trajectories spiralling outwards from the vortex

center, in contrast to the more common stable focus (inward spiral). This is due to the

presence of secondary circulations associated with shallowness, which will be discussed

in section 5.8. Because of the viscous boundary layer, the vortex rotation is slower

near the bed and pressure gradient draws fluid toward the center and up through

the core. In the upper depths, the rotation rate is slightly faster, and the pressure

gradient drives flow outward. This phenomenon has observed in other shallow flows,

e.g., in the shallow wake study of (Fu & Rockwell, 2005). The sectional streamlines
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Figure 4-11: Structure of the conditionally-averaged flow for case I, in a frame moving
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also demonstrate that while the core of the vortex resides almost entirely within the

open region, there are oscillating streamlines much further into the array, and in the

free steam outside the core. This illustrates the far field pressure wave discussed in

section 4.2.3.

Figure 4-11(c) shows the distribution of conditionally-averaged vorticity,

W A= (4.15)

which gives insight into the dynamics of the coherent structures. The vorticity is

normalized by the maximum shear in the mean velocity profile, U/S6I. The region of

peak vorticity lies in the inner layer near the interface, y = 0, in the front of the vortex,

between x/ 6 o - 7 and x/ 6o 11. The shear in this layer is enhanced by sweeps

of high momentum, open region fluid carried by the vortex toward the interface. In

contrast, at the tail of the vortex, between x/6o 0 and x/6o ~ 4 there are strong

ejections of low-momentum fluid originating in the array. The maximum cross-flow

of the ejection occurs just ahead of the saddle. From 4-11(c) the ejections demarcate

a region of strong vorticity that takes the form of a tongue ejected into the open

region from the array interface, between x/6o 1 and x/So 5- 6. A tongue of nearly

irrotational fluid, from x/6o 4 and x/6o . 9, exists between the high-vorticity

fluid and the array interface.

The existence of low-vorticity fluid within the vortex core region can be explained

as follows. The high vorticity fluid originating in the inner layer and ejected into the

free stream has a high degree of rotation. The rotation allows high momentum fluid

from the free stream to be entrained into the vortex, resulting in a sweep toward

the array. The high momentum fluid possesses lower vorticity because it originates

in a region of the flow with lower shear (U/cdy). The disparity between the high-

vorticity ejection (tail) region of the vortex and the low-vorticity sweep (front) is

thus primarily due to the asymmetry in the streamwise velocity gradient between the

inner layer (high shear) and outer layer (low shear). This disparity is not present,

for example, in free shear layers for which the velocity profile is antisymmetric and
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the shear possesses only one length scale. The asymmetry also suggests a feedback

mechanism which contributes to the maintenance of the vortices. By bringing high

momentum fluid toward the array interface, the sweeps reinforce the high shear in

the inner layer. This enhances the vorticity of the fluid ejected into the free stream,

engendering a greater degree of rotation to the vortex. The result is more efficient

entrainment of free stream fluid, and a more energetic sweep, thus maintaining the

cycle.

Although the vorticity distribution illustrates vortex dynamics, it is not effective

for demarcating the boundaries of the vortex core. This is because vorticity exists

not only in the core, but in all regions of strong shear. While there is still some

debate as to the precise definition of a vortex, Kline & Robinson (1989) give the

following definition: "A vortex exists when instantaneous streamlines mapped onto

a plane normal to the core exhibit a roughly circular or spiral pattern, when viewed

in a reference frame moving with the center of the vortex core." Perhaps the best

quantitative tool for identifying such regions uses the critical point concepts of Perry

& Chong (1987) to define regions of "swirl". At any point in a two-dimensional flow,

the deformation, or velocity gradient, tensor is

a a(
Dv av

If the determinant of this 2 x 2 matrix is negative, D will have two complex conjugate

eigenvalues, Ar, iAi. In this case, the trajectories defined by D will exhibit a spiral

motion, around a central focus, with the Ai representing the strength of the swirl

(Adrian et al., 2000). Note that Ai has the same units as vorticity, [time-1].

The distribution of swirl is shown in Figure 4-11(d), along with the velocity vec-

tors. The central core of the vortex is delineated by the swirl distribution. The region

of positive Ai extends up to 250 into the outer region, and coincides with the region in

which the velocity vectors in 4-11(a) appear circular. The maximum of Ai occurs in

the ejection region, with lower values in the sweep region. This suggests that the most

intense rotation is associated with the low-momentum ejections. This is consistent
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with the preceding discussion of the vorticity dynamics. However, because it does

not reflect regions of strong shear outside the central core, Ai is a more effective met-

ric than vorticity for making comparisons of vortex size and relative strength across

different experimental cases. This will be done in the following section.

4.4.1 Comparison of Velocity Structure across Experimental

Configurations

Sectional Streamlines

In figures (4-12)-(4-13) the structure of the conditionally-averaged vortex field is com-

pared across different experimental cases. Cases I (Re = 5.1 x 104, 0 = 0.02), VII

(Re = 5.1 x 10 4 , X = 0.10), and V (Re = 1.2 x 10 4 , = 0.045) are chosen for compar-

ison as they are representative of the span of the parameter range in both Reynolds

number and cylinder volume fraction. Figure 4-12 shows the sectional streamlines

over one wavelength of the coherent motion in a frame moving with the vortex pas-

sage speed. The wavelength, L, is seen to be comparable across all three cases, with

an approximate value L,/6o 0 10. In each case, the vortices exist almost entirely in

the open region, extending between 1 to 2 o into the free stream. The consistency

across experimental conditions, suggests the scaling of the wavelength and width with

6o is sound.

Vortex Dimensions

The size of the vortex central region can be obtained from the swirl eigenvalue, Ai,

shown in figure 4-13(a - c). The Ai > 0 contours are shown in grayscale, denoting

the vortex core for each experimental case. For cases I (4 - 13a) and VII (4 - 13b),

which represent identical Re and main channel conditions, but, respectively, sparse

(5 = 0.02) and dense ( = 0.1) arrays, Ai > 0 is similar in magnitude and extent of

the distribution. However, the lower Re case (V) exhibits a more disorganized core

and more elliptical structure. Results from section 2.5.9 showed that the interfacial

friction coefficient, a measure of the momentum transport effectiveness of the coherent
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structures, was diminished for the low Re experimental cases. This is likely due to

a greater role in viscous stresses from the bed at low Re, which contributes to a less

organized vortex core.

From the distribution of Ai, the vortex aspect ratio, the ratio of width to wave-

length, can be compared across experimental cases. The width, b, for each case was

determined by plotting the transect of Ai on the line intersecting the vortex center,

demonstrated in figure 4-14(a), and plotted for each case in 4-14(b). The distribution

of Ai shows considerable variability across cases within the array (y > 0). This due

predominantly to the spatial heterogeneity on the cylinder scale. However, each case

shows a peak in Ai at the interface, y = 0, and a broad distribution in the open re-

gion, where the vortex predominantly resides. The width of the vortex core for each

case was measured as the distance between the interface and the position in the open

region at which Ai decays to zero (the first zero-crossing). The width is generally

consistent across experimental cases, and the mean result is b/6o = 2.2 ± 0.2. The

wavelength, also consistent across cases is L,/6o = 9.1 ± 1.1. Taken together, these

give an aspect ratio of b/Lv = 0.24 ± 0.05.

It is interesting to compare this result with vortices typically observed in free

(unbounded) shear flows. Several authors (Browand & Weidman, 1976; Pierrehum-

bert & Widnall, 1982) have found that the organized vortices that form in a mixing

layer downstream of a splitter plate are well-described by Stuart vortices, a family of

solutions to the steady-state Euler equations, which have a streamfunction,

1
fC/ = ln(cosh 2y-p cos 2x). (4.17)

2

The best comparison with observations of shear layer vortices in terms of the vor-

ticity distribution is obtained for p = 0.25 (Pierrehumbert & Widnall, 1982). It is

straightforward to compute the deformation matrix and thus find the distribution of

Ai for the Stuart vortex. Defining the width, b, as the point along the vortex center

transect at which Ai is reduced to 10% of its value at center, the aspect ratio for a

Stuart vortex with p = 0.25 is b/Lv = 0.54 (if the width criterion is changed from
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Ai to vorticity decay, the aspect ratio is nearly identical, b/L = 0.52). The decay

length scale is used instead of a zero-crossing, as with the experimental data, because

the analytical solution for the Stuart vortex decays asymptotically to zero.

Returning to the present experiments, the vortices, with aspect ratio b/Lv = 0.24,

are more elongated by at least a factor of two than those observed in free shear flows.

It appears that this disparity is due to a difference in the natural frequency. In

section 4.2.2 the frequency of oscillation from experiments, fd, was shown to equal

the natural frequency of a free shear layer from linear stability theory, f = 0.032U/0.

The frequency can be written in terms of the passage speed and wavelength,

fd = 0.032 a- U (4.18)
0 L,

and it follows that the aspect ratio is constrained by

b Ub
= 0.032- . (4.19)

L, U, o

The mean passage speed from experiments is Uv/U = 1.1 ± 0.1, while the ratio

b/O 7.7. A rough estimate from (4.19) yields b/L 0.22 consistent within error

with the directly measured value, b/Lv u 0.24.

The Stuart vortex, with aspect ratio b/L, = 0.54, b/O = 6.5, and U, = U by

necessity has a dimensionless frequency

fd = U, b 0 = 0.080, (4.20)
U L b

which is approximately 2.5x the value, 0.032, from linear theory, and thus accounts

for the larger aspect ratio, b/L,. Similarly, Browand & Troutt (1985) in a high

Reynolds number (Reo = 0(104 - 105) mixing layer found a dimensionless frequency

approximately twice the value from linear theory. However lower values of the di-

mensionless frequency were found experimentally by Winant & Browand (1974) in a

low Reynolds number (Re = 50 - 1000) mixing layer (fdO/U = 0.044) and by Hus-

sain & Zaman (1985) in a mixing layer originating from a fully turbulent boundary

114



3 -------------~----------------------------~----------------------------~---------------
2 ----------.-

x/hO

(a)

2.5

2

1.5
..:{--..:{

0.5

0_2 -1 0 1 2 3 4
y/60

(b)

Figure 4-14: Comparison of the vortex width across experimental cases. The width is
measured by the transect of /\ on the line intersecting the vortex center (demonstrated in
(a)). Transects for each available experimental case (VII, X, I, II, III, IV, V) are plotted
together in (b), normalized by the value at the vortex center, Aic, The vortex width is taken
as the first zero-crossing of Ai.

layer (fdB /V = 0.024). Thus it appears that unforced free shear layers exhibit signif-

icant variance in the fluctuation frequency. This variance for free shear layers lends

even greater relevance to the excellent agreement with linear theory observed in the

present experiments in the shallow vegetated shear layer and those of Ghisalberti &

Nepf (2002) in a submerged canopy. While the results from free shear layers are too

numerous and varied to suggest specific reasons for their disagreement with linear

theory, they all have in common continuous downstream development and absence of

an equilibrium frequency. It is suggested that the equilibrium in the present case is

one possibility for the excellent agreement with linear theory, i.e., if conditions favor

an equilibrium frequency, it is most natural for that frequency to be the most unstable

mode from linear theory.

4.5 Influence of the Coherent Structures on Mo-

mentum Transport

Having established the presence and characteristics of the coherent structures, their

influence on the dynamics of the shear layer can be examined. Results will show

that the coherent vortices are the dominant contributors to the transport of momen-
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tum across the shear layer, shaping both its spatial development and its equilibrium

structure.

4.5.1 Quadrant Contributions to the Reynolds Stress

As a first step, time series of both velocity components, u(t) and v(t) along with

the instantaneous momentum flux, u'v'(t) are shown in figure 4-15 at three different

positions across a representative experimental shear layer transect. In each of the time

series, the regularity of the velocity fluctuations make the presence of the coherent

structures readily apparent. It is customary to divide the contributions to u'v' into

quadrants in the (u', v') plane (Raupach, 1981; Nakagawa & Nezu, 1977; Grass, 1971).

Instantaneous contributions from quadrant II (u' < 0, v' > 0), outward fluxes of low

momentum fluid originating in the array, are termed ejections; contributions from

quadrant IV (u' > 0, v' < 0), inward fluxes of high momentum fluid originating in the

outer region, are termed sweeps. Together, contributions from quadrants I and III

represent counter-gradient transport, or fluxes in the direction of the mean velocity

gradient. In each plot sweep events are labeled "Sw", ejections "Ej", and counter-

gradient fluxes "CG".

Shown in 4-15(b) are time series for the position y = 3 cm, lying just outside

the array edge, within the central vortex region. The fluctuations u'(t) and v'(t) are

antiphase, with sweep and ejection events leading to strong correlations (negative

u'v'(t)) and strong fluxes of momentum. At the interface, y = 0, shown in 4-15(d),

ejections and sweeps are still the predominant dynamic events (u'v' < 0), but small

counter-gradient fluxes (u'v' > 0) regularly appear in the latter half of the ejection

phase. The fluctuations deep within the array, shown in 4-15(c), are of a funda-

mentally different nature. Here the u- and v- components are close to 7r/2 out of

phase. As a result the u'v' < 0 events approximately cancel the u'v' > 0 events,

and the net momentum transport is exceedingly small. The difference between the

momentum transport inside and outside the array can be understood in terms of the

vortex/wave properties of the coherent structures discussed in section 4.2.3. In the

vortex central region the velocity fluctuations are phase correlated, while in the far
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Figure 4-15: 'rime series of velocity components, u(t) and v(t), and instantaneous Reynolds
stress, u'v'(t) for three different positions in the shear layer (case I). (a) shows the mean
velocity profile, U(y), with the positions marked for reference. (b) is taken from a position
just outside the array, y = 3 cm; (c) is from deep in the array, y = -20 cm, and (d) is from
the array edge, y = 0. Velocity fluctuation events and corresponding correlations, u'v'(t)
are labeled according to quadrant; "Ej" denoting quadrant II, "Sw" quadrant IV and "CG"
quadrant I and III events.
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field pressure-wave region outside the core, the fluctuations are uncorrelated.

4.5.2 Spatial Structure of the Reynolds Stress

Insight into the contribution of the coherent structures to the overall momentum

transport can be gained by examining the conditionally-averaged Reynolds stress.

The conditional average, u'v'(`, y), is defined as in (4.11), in contrast to the tempo-

ral mean, (u'v'(y)). Figure 4-16 shows the spatial dependence of the conditionally-

averaged Reynolds stress, normalized with u2. The three plots, representing a range

of packing densities and Reynolds numbers, exhibit qualitatively identical structure.

As a representative, consider the : = 0.02 case shown in 4-16(a). The Reynolds

stress maxima are located in regions of strong crossflow, the inflow region near the

vortex front and the outflow region near the tail, and are located just outside the

array interface. These regions correspond to the sweep and ejection phases of the

conditionally-averaged structure and are responsible for the instantaneous momen-

tum fluxes observed in figure 4-15. The ejection region makes a greater contribution

to the net momentum transport (higher u'v' maximum) than the sweep region. The

fraction of stress carried by the ejections relative to the sweeps is quantified by the

quadrant analysis of section 4.6.2.

The maxima of (u'v'), just outside the array interface, coincide with regions of high

velocity shear, aU/y. This is indicative of gradient driven momentum flux. More

importantly, it implies a high rate of turbulent energy production at the interface,

(P) = -(u'v')DU/Oy. As discussed in section 4.4, the vortex sweep enhances the

velocity gradient at the interface by bringing high momentum fluid into contact with

low momentum fluid. This results in large local value of (u'v'), leading to enhanced

energy production. It is proposed that through this mechanism the vortex is able to

feed its own energy production.

Both within the array, and beyond the vortex core in the open region, there

exist alternating regions of co-gradient and counter-gradient momentum flux. These

regions alternate along the streamwise axis, but are antisymmetric about the array

interface. Within the array, the countergradient fluxes correspond to the " CG" events
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identified in figure 4-15(d). However, the magnitude of (u'v') in these regions is small

relative to the co-gradient sweeps and ejections.
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Figure 4-16: Spatial contours of the conditionally-averaged Reynolds stress over one co-
herent structure cycle for cases I (a), VII (b), and V (c). The magnitude of -u'v' /u;
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-u'v' < 0, or regions of counter-gradient momentum transport. Velocity vectors are shown
for reference
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4.6 Influence of Coherent Structures on Turbu-

lence Characteristics

Prior sections have established the spatial structure of the coherent vortices and re-

lated the sweep and ejection cycles of the Reynolds stress to that structure. In this

section, experimental results for several common turbulence parameters are presented

and interpreted in light of the coherent structures. Measurement of these parame-

ters facilitates comparison with results from other shear flows, particularly rough

boundary layers and free mixing layers.

4.6.1 Momentum Transport Efficiency

For reference, distributions of the time-averaged Reynolds stress, (u'v') and the tur-

bulent kinetic energy (TKE), k = (0 2 + U2 ) are shown in figure 4-17(a) and (b)

for cases spanning the range of packing density studied. Each distribution collapses

reasonably well within the outer region, in accordance with the outer layer similarity

discussed in section 2.5.6. Moreover, both (u'v') and k peak near the interface, y = 0,

near the shear and TKE production maximum. The Reynolds stress decays to zero

at the outer shear layer edge (o z 2) and within a very short distance into the array.

However, k persists, due to the wave-like oscillatory flow induced outside the vortex

core (see section 4.2.3).

A common measure of the efficiency of turbulent momentum transport is the ratio

of Reynolds stress to the TKE,

al 1 - v (4.21)( = 1( 2- 2)' (4.21)

Boundary lavers exhibit a nearly universal distribution (Bradshaw, 1967; Bandyopad-

hyay & Watson, 1988), with a constant al 0.3 throughout the boundary layer. In

mixing layers, Townsend (1976) gives a value that is slightly higher, approximately

0.34, but does not specify anything about the distribution. From figure 4-17(c), al

peaks immediately outside the interface with a value very close to 0.3, consistent
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with the boundary layer and mixing layer results. Bandyopadhyay & Watson (1988)

reported that a was slightly lower for rough walls compared with smooth walls, and

suggested that small-scale turbulence generated by roughness elements contributes

proportionally less to to the total shear stress than the large structures which scale

with the boundary layer width. Similarly, the present results are slightly lower for

the highest density ( = 0.10) cases, reduced from about 0.32 to 0.24, very similar

to Bandyopadhyay & Watson, figure 3 ( al 0.30, smooth; al 0.25, rough). The

higher cylinder density produces more wake-scale turbulence, but the reduction in al

suggests that the wake turbulence increases the TKE, without appreciably increasing

momentum transport, i.e., k increases, but (u'v') does not increase proportionally.

This is reasonable because the turbulent length scale associated with the element

wakes is much less than that of the coherent structures. Also note that the large

scatter in a within the array, y < 0, is due to the cylinder-scale heterogeneity in

turbulence structure. When a spatial average is taken over cylinder spacing scale, the

mean of al becomes zero within the array. This is consistent with the pressure-wave

nature of the oscillations in the array, which produce fluctuations, and thus contribute

to the measured value of k, but produce very little Reynolds stress.

Another measure of the momentum transport efficiency of the coherent structures

is the correlation coefficient, defined as

R = -(u'v')/u,. (4.22)

The distribution of R, shown in figure 4-17(d), is qualitatively similar in structure

to that of al, not surprising since they both measure momentum flux relative to

fluctuation strength. These results can be compared with the rough boundary layer

data of Raupach (1981); Nakagawa & Nezu (1977), in which R 0.4 over much of the

boundary layer width. In contrast, in 4-17(d) R peaks just outside the array interface,

and declines almost linearly to its value of zero outside the boundary layer. The decay

is due, as the decay of al, to the persistence of the vortex-induced oscillations well

beyond the region in which they generate Reynolds stress.
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Figure 4-17: Efficiency of momentum transport. Reynolds stress (a), turbulent kinetic
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The peak value of the correlation is R f 0.7, significantly higher than the peak

of R - 0.4 observed in boundary layers, and the value of R 0.5 from mixing layers

(Townsend, 1976, Table 4.1). This suggests the Reynolds stress generation near the

interface is more efficient than the production either near a solid boundary or in a

free shear layer. However, this result is in apparent conflict with the good agreement

of the a peak with boundary layer and mixing layer results. While al and R both

measure efficiency, their dependence on a, and a, is different. Comparing (4.22) with

(4.21) it can be seen that differences between R and al are related to the degree of

isotropy between ou and a,. For isotropic turbulence, i.e., au = a, it follows that

al = R, but for anisotropy, R > a. The higher value of R in the present experiments

thus suggests a greater degree of anisotropy than in either boundary layers or mixing

layers. This can be confirmed by inspection of figure 4-7c and d, which shows that

a, = (u'2) /2 is larger than o = (v'2) 1/2 throughout the shear layer. Specifically, the

ratio Rl/a is
ft 2 _(cu ) v (4.23)

al o uCv

From figure 4-7c and d the peak of ou/u* is approximately 2 and the peak of av/u* is

approximately 1.2, while from figure 4-17b, the peak of ( 2+a 2)/2 is approximately 5.

Thus from (4.23), R/al is approximately 2, and this is what is observed (Rmax 0.7

and al,max 0.3).

4.6.2 Stress Fractions Through Quadrant Analysis

The fractional contributions of sweeps and ejections to the net momentum transport

can be measured by quadrant analysis. As previously defined, the sweep contribution

is (u'v')liv and the ejection contribution is (u'v')lII, where angle brackets repre-

sent the long-time averaging procedure and the subscripts represent the quadrant-

dependent conditional sampling,

(u'v')i = lim u'(t)v'(t)Iidt (4.24a)
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1, if (u', v') is in quadrant i(4.24b)

0, otherwise.

One measure of the relative importance of sweeps and ejections is the stress dif-

ferential, the difference between the net contributions from quadrants II (ejections)

and IV (sweeps),

AS= (V,) , (4.25)

where the normalization is by the peak Reynolds stress, (u'v')Yo = -u2. Figure

4-18(a) shows the relative contributions of (u'v')/I/u2 and (u'v')Iv/u 2 for several

experimental cases. The distribution of sweeps and ejections are similar, both peaking

near the interface, but, importantly, sweeps are more prevalent. This is more clearly

demonstrated by the stress differential, AS, shown in 4-18(b). In general, there is

a thin region within the array near the interface in which sweeps are the dominant

stress producing events, while a broader region exists outside the array in which stress

from ejections is more prominent.

The relative contributions of these two modes of momentum transport are con-

sistent with the picture of the coherent structures. The vortices create strong bi-

directional flows normal to the interface. Because the velocity inflection point is near

the interface, the maximum gradient, au/ay, is to the channel side of points within

the array, but to the array side of points outside the array. As a result, sweeps from

the channel side constitute the largest momentum flux for the array, and ejections

from the array constitute the largest flux in the open region. However, there is an

asymmetry, because the penetration of sweeps is limited by array drag. By compar-

ison, ejections, opposed only by the small effect of bed friction, extend further into

the main channel, leading to a broader distribution of AS outside the array.

A second metric of interest is the ratio of sweeps to ejections, defined

S = (u'V') (4.26)

The distribution of Sr is shown in figure 4-18(c). The dominance of sweeps, S >
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Figure 4-18: Quadrant distribution of the Reynolds stress. Shown in (a) are (u'v')ii/(u'v')yo
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V (I). In (d) is the array-averaged stress ratio, (Sr)a plotted vs. the array volume fraction,
q. The array edge is demarcated by a dotted line for reference.
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1, is apparent within the array, and ejections dominate, S < 1, just outside the

interface. Within the array, there appears to be some dependence on array density,

with the maximum of Sr varying between about 1.5 for = 0.02 and nearly 3 or

= 0.10. The array-averaged value of S, denoted (Sr)a is plotted against a in 4-

18(d), demonstrating an increasing relationship (96% confidence). However, outside

the array, where ejections dominate, the distributions of S, collapse reasonably well,

with all profiles reaching a minimum of about 0.7. This gives further support for the

theory that the inner layer at the interface is highly dependent on the array density,

but the outer layer is relatively independent of array density.

It is instructive to compare the quadrant results to those from rough-wall boundary

layers and canopy flows. It is well-established that in a wall-bounded flow, there exists

a quasi-cyclic, self-sustaining turbulent production sequence resulting in ejections

of low momentum fluid from near the wall (Grass, 1971; Robinson, 1991). These

motions, often termed bursts, are associated with coherent structures, which lift up

near wall vorticity and eject it into the outer flow. Raupach (1981), Grass (1971),

and Nakagawa & Nezu (1977), among others, have found that ejections contribute

the majority of Reynolds stress in the outer flow, but sweeps become dominant in

the roughness sublayer, a thin O(ks) region near the wall, where k is the roughness

height. Moreover, the quadrant-based measurements of Nakagawa & Nezu near a

rough wall suggested that sweeps are more important than ejections in maintaining

the near-wall Reynolds stress and hence the burst cycle.

The stress contributions of the present case, shown in figure 4-18(b) and (c),

particularly the sweep dominance in the array, can be compared with figure 14 of

Nakagawa & Nezu and figure 9 of Raupach. Values of Sr in figure 14 of Nakagawa &

Nezu are very similar to those in 4-18(c), with Sr , 0.7 - 1.0 (ejection dominance)

in the outer region and S, = 1 - 2 (sweep dominance) in the roughness sublayer.

In addition, figure 9 of Raupach shows that the predominance of sweeps within the

roughness sublayer increases with roughness concentration, just as S, increases with

q in the present case.

The array interface, separating regions of sweep and ejection dominance, appears

127



to be analogous to the roughness sublayer in a rough boundary layer. A parameter

can be defined that places the partially vegetated channel, canopy flows, and rough

boundary layers on a continuous spectrum. Define the dimensionless obstructed layer

width,

= CDaB (4.27)

where a is the projected frontal area of the roughness per unit volume, B is the width

of the obstructed layer, and CD is mean drag coefficient of the individual elements. In

boundary layer terminology B = k, the roughness height, and in canopy terminology

B = h, the canopy height. The density a is commonly used in both canopy and

rough wall literature. The dimensionless parameter measures the ability of sweeps

to penetrate the obstructed layer. In section 2.5.5 it was shown that the inner layer

width is 61 - (CDa)- 1 for the vegetated channel, and similar results are observed for

canopy flows (White et al., 2004), implying that is a proxy for the ratio B/6I. Thus

when < 1, i.e., a sparse array of obstructions, or a thin obstructed layer, as for

rough walls, sweeps will penetrate the entire obstructed layer. However, for > 1,

characteristic of most canopies and vegetated channels, and the present experiments

(ranging from 4 < < 100), sweeps will be confined to a thin region near the edge of

the obstructed layer.

The analogy between the array and the roughness sublayer suggests that the cycle

by which the Reynolds stress is maintained may also be similar, and the parameter 

can illustrate the similarities and differences. The discussion in sections 4.4 and 4.5.2

suggested that the coherent vortices feed their own production by the sweeps which

steepen the velocity gradient, DU/Oy, near the interface. From an energy framework,

the combination of high shear and Reynolds stress creates a turbulent energy pro-

duction maximum. This is similar to the conclusion of Nakagawa & Nezu (1977)

that the sweeps are more important for driving the Reynolds stress production in a

rough boundary layer. In addition, for denser arrays, with larger , the penetration

length of the sweeps into the array is reduced, leading to a steeper velocity gradient

at the interface (smaller 6I). Because the velocity gradient is higher, the net Reynolds
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stress contributed by the sweeps, though confined to a thinner region, is also higher,

explaining the increase in Sr with b in figure 4-18(d) (where Sr is averaged only over

the penetration width 6i), and the same trend seen in the experiments of Raupach

(1981). Ghisalberti & Nepf (2005b) have also compiled data which show S, increases

consistently with array density in canopy flows. Moreover, higher values of ~ will lead

to the inflectional velocity profile necessary for the regular Kelvin-Helmholtz vortices.

Some boundary layers, e.g., the grooved wall of (Ghaddar et al., 1986) exhibit an in-

flection point with regular oscillations, but most do not and their cycle of coherent

structures is irregular. Data from Poggi et al. (2003) shows that the inflection point

at the top of the canopy is erased for CDah < 0.01. Thus, obstructed arrays with

larger values of 6, can be expected to be more efficient at feeding the production of

coherent structures through a combination of increased shear and Reynolds stress,

and the formation of an inflection point necessary to sustain regular oscillations.

4.6.3 Velocity Triple Correlations

Further insight into the momentum transport can be gained from the triple correla-

tions of the velocity distribution, (u'3), (v'3), (u!2v'), and (u'v' 2 ). As noted by Antonia

& Krogstad (2001), in boundary layers the triple correlations are particularly sensi-

tive to the surface roughness and reveal information about the direction of turbulent

fluxes of shear stress and kinetic energy at the wall. Moreover, they are closely related

to the sweep and ejection cycles of the coherent structures. To demonstrate, consider

(v'3 ), the transverse flux of the Reynolds normal stress, v'2. Because v'(t)2 is positive

definite, the sign of (v' 3) is determined by whether ejections (v' > 0, (v'3) > 0) or

sweeps (v' < 0, (v'3 ) < 0) are the predominant dynamic events. The significance of

the signs of ,(u'2v') and (v' 2 ) can be inferred by similar reasoning.

The experimental results for the triple correlations are shown in figure 4-19 for the

high Reynolds number cases from each cylinder volume fraction. Triple correlations

are normalized by u13 and plotted with outer layer coordinates. It is instructive to

compare each of the triple correlations to results for rough-wall boundary layers which

have been presented by, among others, Bandyopadhyay & Watson (1988); Raupach
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(1981), and Antonia & Krogstad (2001). These results will be discussed along with

the present ones. Beginning with the distribution of (u'3 ), 4-19(a), there is reasonable

collapse of the curves from different volume fractions. The most striking feature is

the very sharp peak directly at the interface, ro = 0. This peak can be attributed to

the positive u' component from sweeps, which carry high momentum fluid with high

u'2 toward the interface. The sweeps, and thus the fluctuations, u', and their energy,

u'2, decay quickly into the array, leading to the precipitous drop in u' 3 seen in 4-19(a).

Outside the array, there is first a region in which (u'3) is positive and then a crossover

after which it is briefly negative, before becoming zero outside the boundary layer.

The rough boundary layer results of Bandyopadhyay & Watson (1988) and Raupach

(1981) also show a change in sign in the outer region, but it occurs closer to the wall,

so that (u' 3 ) is negative throughout a greater portion of the boundary layer than in

the present cases. Moreover, the boundary layer results, for which << 1, do not

exhibit a sharp peak at the wall like the one observed here at the interface, evidence

that sweeps play a greater role in the vegetated channel for which >> 1.

The distribution of (v'3 ) also exhibits the sharp peak just inside the array edge,

but here it is negative, signifying a strong flux of v'2, the energy associated with the

transverse fluctuations, into the array. This flux is due to the negative v' component

from coherent sweeps. Interestingly, immediately outside the array, rO, there is a

sharp positive peak in (v'3), corresponding to the dominance of ejections, and the

transport of v'2 away from the array. This sharp discontinuity and the change from

ejection to sweep dominance over such an exceedingly thin width demonstrates just

how steep the gradients are in the inner layer. The distribution of (v'3 ) bears a

strong resemblance, both qualitatively and quantitatively, to the results presented

in Bandyopadhyay & Watson (1988) near rough walls. The dip and subsequent rise

from their figure 6 as the wall is approached is apparent in the present results as the

interface is approached from the open region. The distributions of ('v' 2) and (u'2v')

(4-19(c) and (d)) are similar to that of v'3, with a peak and change of sign near the

interface due to the crossover from ejection to sweep dominance.

Bandyopadhyay & Watson's results indicate a difference between smooth, sand-
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grain-roughened, and grooved walls, for which (v'3 ) > 0 near the wall as compared

with plant canopies of Raupach et al. (1986); Seginer et al. (1976), for which (v'3 ) < 0

near the top of the canopy. However, negative values of (v'3 ) were observed both in

canopy-like rod-roughened walls by Raupach and Nakagawa & Nezu near a grain-

roughened wall, so it appears both types may support strong sweeps. A possible

explanation is that because the sweep-dominated region near a rough solid wall lies

in the exceedingly thin roughness layer, the crossover from positive to negative (v'3 ) is

difficult to resolve experimentally for walls with small roughness height. Based on the

results of Raupach; Nakagawa & Nezu; Grass and others, as well as the present results,

it appears that sweep-dominated regions are intrinsic to rough walls, and should result

in a change in sign of the triple products within the roughness sublayer. However, for

canopies, and the present experiments, the presence of sweeps is unmistakable due to

the coherent shear layer vortices. The result is a much more distinct peak in (v'3),

(u'v'2), and (u'2v') in figure 4-19(b)- (d) than in the boundary layer results.

4.7 Kinetic Energy Dynamics

In this section, the terms contributing to the balance of kinetic energy across the shear

layer are described. From the velocity measurements, it is possible to estimate the

kinetic energy budget and show the dominant contributions. It will be demonstrated

that the sweep and ejection nature of the shear layer plays a prominent role in the

balance, and in maintaining the coherent structures.

The turbulent kinetic energy (TKE) for the purposes of this section is defined as

the energy associated with the two-dimensional fluctuating velocity field, u'(x, y, t)

and v'(x,y,t), including the total contributions from the coherent structures and

incoherent turbulence,
1

k ((u'2) + (V'2)). (4.28)
2

The TKE is assumed to be depth-averaged, but experimental LDA results presented in

this section have all been taken at mid-depth and the flow assumed two-dimensional.

The ratio of depth to channel width is h/B = 0.06, making a two-dimensional as-
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sumption a good one. Moreover, most of the energy is contained in the horizontal

coherent structures, and the vertical component of the total TKE, (w'2), is associ-

ated predominantly with the incoherent depth-scale turbulence. From experiments,

the incoherent turbulence intensity is (0.2 - 0.3) of the coherent turbulence inten-

sity. This is calculated by high-pass filtering the turbulent velocity time series for

frequencies above the coherent structure frequency and finding urms and Vrms of the

filtered signal. On the basis of the strength of the small scale turbulence (assuming

Wrms L Urms --t Vrms) it is expected that

(w/2 (w' 2

( = ) 0(0.1) (4.29)

or smaller and thus the two-dimensional budget is acceptable.

Assuming the mean flow, U(y), is fully-developed and there is no net transverse

current, V == 0, the depth-averaged TKE budget is given by

Dk = & [v'p) - [(vvI2) + vu2) -(u'v') + Dd + DC - <v
Dt ay p j y 2 2 dy

Tpy Tty Pty

(4.30)

The term Pty is the production of TKE from the mean transverse and shear by the

Reynolds stress. The term Tty describes the transport of TKE by the fluctuating

velocity. Inspection shows that the triple correlations play a prominent role. The

sum of ~l(v'v'2) and 1 (v'u'2) is the transverse flux of k. The gradients of the flux

terms give rise to net transport.

The term Tpy is the correlation between the fluctuating velocity and pressure.

Using continuity, it can be rewritten as -(v'ap'/Dy), from which it can be seen that

it comprises the mean rate of work done by the fluctuating pressure gradient, and

constitutes either a source or a sink for k depending on the sign.

The term Dd is of particular importance. It represents the work done by mean

flow against the array drag. As is well-documented in the canopy literature (see,

e.g., Katul & Albertson, 1998), when the momentum equation for the mean flow is
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averaged over the cylinder spacing scale, the drag from the cylinders appears as a

constant body force within the vegetation,

FD = (Ui+ V)/U 2+ V2 , y < 0. (4.31)2

The work done against this drag force extracts energy from the largest scales of

the flow and redistributes it to the smaller scales through the interaction with the

individual cylinder elements. Specifically, this occurs through vortex shedding and

wake turbulence. As a result, the work done against drag, Dd, is a source of TKE.

However, in the canopy literature, the kinetic energy budget is often divided into

coherent and incoherent scales, or in LES simulations, resolved and unresolved scales

(see Dwyer et al., 1987). In this formulation, Dd constitutes a sink for large-scale TKE

and a source for small-scale TKE. In the present experiments, the turbulence is not

partitioned into scales, so Dd is a source of (wake-scale) TKE within the vegetation,

and is given by

Dd = UFD + VFDy = CDa(U2 + V2)U 2 + V2), y < 0 (4.32)
2

Similar to the wake production within the vegetation, the term Dc is the production

of TKE by depth-scale turbulence in the open channel. In analogy to (4.32), the

depth scale production, acting in the open region, is given by

D~ cf/h(U2+v2) U2 +V2), Y>O (4.33)
DC- f2h (U2 + V2)v/U2 + 2 ) ' Y > 0 (4 33)

2

The final term in (4.30), , is the viscous dissipation of TKE. Due to its dependence

on the instantaneous velocity gradient tensor, it is the most difficult term to measure

experimentally, and its magnitude could not be estimated in this experimental study.

Nonetheless viscous dissipation is essential as the final sink for all turbulent kinetic

energy.

The total kinetic energy budget was computed from experimental results for case

X (Re = 9.59 x 104, ¢ = 0.10). It is straightforward to estimate the production and
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transport terms from measurements of the mean velocity, Reynolds stress, and triple

correlations, available throughout the shear layer. The pressure correlation term was

obtained from simultaneous measurements of the free surface variation, using dis-

placement gauges, and the fluctuating velocity, using the LDV, at approximately

43 positions across the shear layer. These measurements were time consuming and

were only carried out for a single experimental configuration (case X). The instanta-

neous pressure was then calculated from the surface displacement by the hydrostatic

approximation, p(t) = pg(ho + h'(t)).

The accurate measurement of the wake scale production term, Dd, requires the

spatially- and temporally-fluctuating drag force, which is prohibitively complex. How-

ever, an estimate may be made from the array-averaged drag, computed from the total

force balance over the array,

- 1 -2
FD = gS = -CDaU (4.34)

2

where the overbar represents an average over the entire vegetated layer and S =

-dh/dx is the water surface slope. The measurements of CoD using surface displace-

ment gauges were detailed in section 2.5.4. The wake production term, Dd was then

estimated from 4.32 using the array-averaged value of CD.

Finally, the depth-scale turbulent production term, Dd, was measured in the chan-

nel by finding the bed friction velocity, Ub*ed from the best logarithmic fit to the vertical

velocity profile,

U() = bed log (Ubed+ B. (4.35)

Shown in figure 4-20 is the experimental TKE budget measured for case X. Each of

the terms is normalized by u/61. That 6I is the appropriate length scale is apparent

from the plot, which shows that the dominant contributions to the budget come from

within a few inner layer thicknesses of the array interface. The dominant production

mechanism is the mean shear, Pt,, which peaks very close to the interface and decays

quickly into the array, while decaying more slowly in the open region. In the open

region, the shear, while still appreciable, is smaller than the interfacial shear, and
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Figure 4-20: Turbulent kinetic energy budget across the shear layer, measured for case
X. Shear production terms, Pty (-x), turbulent transport, Tty (-*), Pressure transport,
Tpv (-*), production by array drag (indirect measurement), Dd (-o), production by bed
turbulence, Dc (-), and net imbalance (- -), each normalized by u3/6i.

(u'v') is much smaller, so the production is small compared with the peak at the

interface. This is consistent with the picture of the coherent structures originating in

the inner layer where the shear and Reynolds stress is most intense. It is instructive

to compare the results for the TKE budget with those from measurements in canopy

flows. Results from the LES simulations Dwyer et al. (1987) and the data from natural

forest canopies presented in Finnigan (2000) also show that the peak in production

occurs near the top of the canopy, with rapidly decreasing production within the

canopy.
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The transport term, Tt,: is zero except within a few 61 of the interface. It is a

source of TKE within the array and a sink outside the array. This demonstrates a

transfer of energy to the array from the open region, which occurs within only a very

short penetration distance into the array. The transport can be explained in light of

the sweep/ejection structure discussed in the previous section. The sweeps transport

high energy fluid into the array, while ejections transport lower energy fluid out of the

array. The result is a net gain of k within the array and a net loss of k in the open

region. These results are in good agreement with the canopy layer results of Dwyer

et al. and Finnigan and agree qualitatively with the near-wall rough boundary layer

results of Nakagawa & Nezu (1977) and Raupach (1981). As the transport term is

tied to the sweep and ejection cycles near a roughness layer, it appears that a net

energy gain within the roughness and a loss outside may be intrinsic to solid- and

porous- wall-bounded flows.

The pressure correlation term, Tpy, is a net loss throughout the inner region. The

coherent structures create a free surface fluctuation, a depression near their center

necessary to balance rotation. The structures must do work against the resulting

pressure gradient in order to maintain the rotation, hence Tpy = -(v'ap'/0y) is a

net loss. Similarly, Dwyer et al.'s LES results show the pressure correlation to be a

net sink for TKE near the top of the canopy. However, because they partition the

TKE into large and small scales, they find that deep within the canopy the pressure

correlation is the primary source of TKE, balancing the dissipation of large scale TKE

by canopy drag. Essentially, the pressure fluctuations do work against the canopy

drag. In our experiments, the TKE is not partitioned, so drag within the array does

not extract energy, but simply transfers it from the large scale fluctuations to the

wake scale. Moreover, while the vortices create regular fluctuations within the array

(see section 4.2.3), the oscillations are radiated away, resulting in zero net transport

of energy, so from figure 4-20, Tpy 0 within the array. Note that figure 4-20 shows

only the region near the interface; the flume extends as much as 20 to 80 inner layer

units to either side of y = 0.

The indirect measurement of the wake production term, Dd, is also shown in figure
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4-20. The production is greatest near the array interface, where the mean velocity

is elevated, and decays over a short distance into the array as the velocity decays to

its array-averaged value, U1. By necessity, Dd = 0 outside the array. However, small

scale turbulence is produced in the open region as well, due to the interactions with

the bed. This is shown in the plot by the contribution from Dd. Near the interface, the

contribution of the bed generated turbulence is much smaller than that associated

with the lateral shear production, Pty. However, by approximately y/S6 = 3 the

bed generation has become comparable to the lateral production, demonstrating an

increasing contribution of the bottom drag to the turbulence structure in the main

channel.

The net imbalance, also shown in figure 4-20, is composed of the sum of the

errors from all measured terms and viscous dissipation, I4. This term peaks near the

interface, presumably due to a viscous dissipation maximum. This is to be expected

due to the high shear stress in this region. In general the imbalance is negative,

consistent with viscous dissipation, which has not been measured and is thus included

in the imbalance.

While the net TKE budget is useful for illustrating the mean turbulent quantities,

more insight into the dynamics of the coherent structures can be gained from the

conditionally-averaged energy production and fluxes in the vortex frame of reference.

These are defined from the coherent structure conditional average (see 4.11),

aU
Pty = u'v'-- (4.36a)

ay

is the energy production,

I ('3 + (v'u'2) 436b)

the transverse flux of kinetic energy, and

1 (Wu v/2 + u' 3 ) (4.36c)

the longitudinal flux of kinetic energy. Note that the flux terms contribute to the
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transport terms Tty and Tt, of kinetic energy in the budget (4.30). Figures 4-21(a)-(c)

show the spatial distribution of the energy and production. Also shown for reference

are the temporal averages for each, which are a proxy for the average over the vortex

wavelength, L. From figure 4-20(a) it is apparent that nearly all TKE production

occurs near the interface. This is to be expected as both the velocity gradient and

Reynolds stress peak in this region. In the sweep region of the vortex (the front), the

production occurs along an exceedingly thin line near the interface, y = 0, ranging

from /60o : 3.5 to x/6o 6.5. The ejection-phase production extends slightly

into the main channel, but exists over a shorter streamwise extent, from £;/6o 

0.75 to x/0So 2. The accompanying plot of the temporally-averaged production,

(Py), also demonstrates the sharp interfacial peak. It can be inferred, both from the

spatial plot and from the peak in the temporal average, that the sweep region of the

vortex contributes more to this high production than the ejection region, attaining

a maximum of Pty 8 vs. a maximum of Pty 4 for ejections, and extending

over a longer streamwise extent. This is particularly interesting because figure 4-16

in section 4.5.2 showed that the maximum Reynolds stress derives from ejections.

Thus, from the definition of production (4.36), the steep gradient, U/y, in the

sweep region overcomes the slight Reynolds stress deficiency to create the production

maximum. This is consistent with the notion that the sweeps play the biggest role in

maintaining the coherent structures.

The conditionally-averaged fluxes of kinetic energy in 4-21(b) also demonstrate the

transport by sweeps and ejections. From figure 4-21(b), there is an influx of kinetic

energy toward the array during the sweep phase and a flux toward the open region on

the ejection phase. The temporal average of the transverse flux, shown adjacent to

the contour plot for reference, demonstrates the large negative peak of (3 + vu2),

which demonstrates that the instantaneous flux due to sweeps (-v') is greater than

that due to ejections. The time-averaged flux is composed of the triple products

discussed in section 4.6.3 and the conclusions drawn there about the dominance of

sweeps can be observed here in the spatial contour plots.

Figure 4-22 shows the spatial distribution of Pty along with the directional vectors
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of the kinetic energy flux,

1 21
(UVw U'3)i + -(v' 3 + V'U'2). (4.37)

It can be seen that the regions of maximum production coincide with regions of

maximum transport. At the sweep, the flux of kinetic energy is toward the line of

peak production and with a positive (downstream) longitudinal component. At the

ejection, the outward flux is toward the tail (upstream). The fluxes decay to zero at

the edge of the shear layer (y/ 6o 2). It is interesting to compare the results for

the kinetic energy budget to those from free shear flows. The experimental results

of Wygnanski & Fiedler (1970) for a developing mixing layer have several features in

common with the partially-obstructed shear flow studied here. The energy production

peaks near the inflection point of the velocity profile, but there is significant produc-

tion throughout the mixing layer. In contrast, in the partially-vegetated channel, the

intense shear at the interface confines the maximum production to the thin interfacial

region. This disparity is strongly related to the fact that free shear layers possess only

a single length scale, while the partially-obstructed shear layer possesses two distinct

length scales: the inner layer, where production peaks, and the outer layer where the

vortices predominantly reside. In addition, the results of Wygnanski & Fiedler show

that the transport of kinetic energy in the mixing layer is significant at the edge of

the layer, resulting in a net energy gain at the fringes. They suggest that the flux

at the edge is significant in determining the layer growth. In the partially-obstructed

channel, the transport of energy is confined to the interfacial region, with no net gain

at the lateral fringes, consistent with the equilibrium of the shear layer.

4.8 Spatial Development

Experiments were undertaken to study the longitudinal development of the shear

layer downstream of the splitter plate. Initially separated by the splitter plate, the

slow flow in the array merges with the faster flow in the open region, and the width
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of the layer between them grows as momentum is mixed between the streams. This

scenario is like a free mixing layer but for the presence of the solid obstructions. As in

a mixing layer, as the flow develops a portion of the momentum from the free stream

is transferred to the flow in the array, raising its velocity. However, similar to a wall-

bounded flow, the array is a sink for momentum, thus acting as a partially-absorbing

porous wall. This sink is not present in a free shear flow. Essential to the initial shear

layer growth is the development of the coherent structures. As the structures grow

they are responsible for the transport of energy and momentum across the shear layer

from the free stream to the array. As previously discussed (see figure 4-2) the onset

of the coherent structures is marked by a distinct frequency peak, which moves to

lower frequencies before locking into the fundamental shear layer harmonic, In. This

accompanies a dynamic equilibrium in which the momentum absorption by the array

balances the transport of momentum by the coherent structures.

Detailed transects of velocity and Reynolds stress at increasing longitudinal posi-

tions demonstrate the growth of the shear layer and the approach to an equilibrium

velocity distribution and turbulence structure. Before discussing the spatial develop-

ment it is important to be clear about the initial conditions. At x = 0, immediately
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following the splitter plate, the spectral distribution is relatively broad-banded, but

a few peaks are discernible (see figure 4-2(a) and (b) in particular). This initial

turbulence is due to (i) the remnants of the turbulence created by the upstream ad-

justment of the flow upon first encountering the array and (ii) turbulence associated

with the twin boundary layers created on either side of the splitter plate. Ideally,

for purposes of generalization, the qualitative details of the spatial development and

certainly the final equilibrium state should be independent of the initial turbulence

intensity and structure. Fortunately, the development of the spectral distributions

in figure 4-2 strongly support this independence. Not only is the final spectral peak,

f, uncorrelated with the initial peaks, but there is significantly greater turbulent

energy contained in the flow at the final stage than the initial level. This suggests en-

ergy inputs from the mean flow during the development stage are responsible for the

equilibrium mode, rather than energy transfers from the initial spectral components.

However, it is important to note that the initial turbulence structure is dependent

upon upstream conditions before eventually being shaped by the developing coherent

structures. From figure 4-2, this transition seems to occur within the first three to four

stations following the splitter plate (by around x = 99 cm), when the fundamental

instability frequency, fd = 0.032U/0 first can be observed and begins to grow.

The development of case IV, with Re = 5.3 x 104 and X = 0.045, was studied in

detail. The velocity distributions, shown in figure 4-23(a), undergo initial spreading

downstream of the splitter plate, but eventually reach an equilibrium. From figure

4-24(a), the shear layer width, measured by the momentum thickness, 0, increases

from an initial value of 2 cm before asymptotically reaching a constant value of ap-

proximately 5 cm. Moreover, the velocity distributions from the final three locations

(x = 386, x == 513, and x = 577 cm) all collapse well.

In the outer region (beyond y 5 cm) the profiles resemble a developing mixing

layer. In fact, if the profiles were anti-symmetric about y 5 cm, the flow would be

unmistakably a mixing layer. However, because of the asymmetry of the channel, and

the momentum absorption by the array, there is a sharp change in slope between the

inner and outer layers. The transport of main-channel momentum toward the array
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Figure 4-24: Longitudinal development of the shear layer width (a) and inner layer prop-
erties (b) for a typical experimental case (IV). In (a), shear layer momentumn thickness,
0 (o) and outer layer momentum thickness, BL (A). In (b), inner layer width, rI (o),
dimensionless slip velocity, US/(U2 - U1 ) (), and virtual origin, Yo (A).

increases the velocity near the interface, but the drag from the array elements absorbs

a portion of that momentum, limiting its penetration. Nonetheless, as the inner layer

develops with the influx of channel momentum, the velocity distribution, and its

inflection point, penetrates further into the array. The migration with downstream

distance, of the virtual origin, yo, the location of the inflection point, is shown in figure

4-24(b). Note the gradient at the inflection point remains approximately constant,

even as the inflection point shifts toward the array. From section 2.5.3, the gradient

is given by

u Us (4.38)

From figure 4-24(b) it can be seen that the ratio between Us and dI remains rela-

tively unchanged with downstream distance. In fact, from figure 4-24(b), neither Us

nor dI grow significantly as the mixing layer develops, both fluctuating slightly, but

remaining relatively unchanged between the initial and equilibrium values. These

observations are consistent with the theory for the inner layer (2.5.5), which states

that is set by the array conditions, particularly near the interface. Thus an equi-

librium in the inner region of the shear layer appears to be established rather quickly

by the array. The equilibrium shear is maintained as the outer layer develops and

the momentum flux from the channel raises the velocity in the inner layer and shifts
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the inner layer profile toward the array. Note that because Us is defined at y, the

velocity at y = 0 may increase even while Us does not. This demonstrates that it is

more useful to define the slip velocity at Yo, the inflection point, than at the geometric

edge of the array.

The development of the Reynolds stress profiles, figure 4-23(b), sheds greater light

on the development process. Immediately following the splitter plate, the distribution

of (u'v') is rather broad, with the peak lying well into the open region. Initially, both

the Reynolds stress peak and the velocity inflection point lie in the open region,

suggesting this is the initial origin of the instability leading to coherent structures.

Indeed, from the profiles of the developing TKE production, figure 4-25, production

maximum initially occurs in the open region. Moreover, per previous discussion, the

velocity profiles resemble a spreading mixing layer in the open region beyond y 5

cm. Interestingly, this approximate origin of the right half-plane mixing layer roughly

corresponds to the initial production maximum. But while the coherent structures

appear to originate well into the open region, the Reynolds stress peak, the point

of maximum stress moves increasingly toward the array interface with increasing

downstream distance. By x = 132 cm the peak has shifted approximately to the

interface, and the distribution has become much more peaked, with a sharp decay

into the array from the maximum at the interface. From this point until equilibrium

is reached, the distribution changes very little except for a rise in the interfacial stress,

2

The downstream drift of the Reynolds stress peak towards the array interface

coincides with the drift of the velocity inflection point, yo, shown in figure 4-24(b),

which shifts the production maximum toward the array. As the shear layer develops,

the sweeps associated with the coherent structures drive the Reynolds stress maximum

toward the array until the obstructions prevent further migration (by about x 

132 cm from figure 4-23(b)). After that point, the sweeps continue to increase the

interfacial stress which in turn increases the production of kinetic energy and shifts

the velocity inflection point further into the array. When the vortices can penetrate

no further, an equilibrium is attained, in which a constant rate of energy production
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and Reynolds stress is maintained by the coherent structures, resulting in a constant

velocity distribution.
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Chapter 5

The Impact of Coherent Structures

on Exchange between the

Vegetation and Main Channel

It has been established that coherent vortex structures form at the interface between

an open channel and a vegetated region. Such scenarios are often found in shallow

coastal environments, where networks of tidal creeks intersect fringing mangroves or

salt marshes, and in overbank flow between rivers and their associated vegetated

floodplains. The coherent structures create strong crossbows across the interface,

transporting both momentum and mass between the main channel and the vegetation.

In section 5.1, a unified framework is presented for relating both momentum and

scalar fluxes between the main channel and the vegetation to the characteristics of

the coherent structures. The flux is related to a mass transfer coefficient, k, and

a parameter, a, which characterizes the volume of fluid exchanged by each vortex.

The model successfully describes the shear stress at the vegetation interface across

a range of vegetation conditions. It also shows good agreement with the results

of experiments by Ghisalberti & Nepf (2005a) measuring the scalar flux across the

interface of a submerged aquatic canopy.

In section 5.2 the structure of the coherent vortices, demonstrated in chapter 4,

is used as a basis for numerical particle transport experiments which illustrate the
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modes of material transport and demonstrate the validity of the proposed model.

It is shown that the particle tracking experiments very nearly reproduce the vortex

exchange parameter o from the laboratory experiments. It appears that the results

for mass and momentum exchange can be generalized to a range of flow and vegetation

conditions, from emergent vegetation in shallow channels to submerged vegetation,

such as eelgrass meadows.

In section 5.7 the model for material transport is applied to the problem of over-

bank transport of suspended sediment in a channel-floodplain system. A form of the

advection-diffusion equation with a term to account for settling is used in conjunc-

tion with the mass flux condition at the vegetation interface. The solution yields

suspended sediment concentrations and rates of deposition on the floodplain for typ-

ical systems.

In section 5.8, experimental results are presented which demonstrate the existence

of secondary circulations induced by the coherent structures. These currents, outward

flows from the canopy near the bottom and return flows near the surface may enhance

material transport near the vegetation interface.

5.1 Material Flux at the Vegetation-Main Channel

Interface

The impact of coherent structures on momentum fluxes at the vegetation interface

was discussed in detail in section 4.5. The shear instability both creates and is

reinforced by strong lateral motions that transport high momentum fluid from the

main channel into the vegetation via sweeps, and low momentum fluid out of the

vegetation by ejections. The result is a strong momentum flux at the interface,

observable in a high shear stress between the two regions. Like momentum, dissolved

and suspended materials will also be transported by the sweeps and ejections across

the interface. The interface separates two very distinct regions of flow, quiescent with

low turbulent diffusivity within the vegetation and high flow with large diffusivity in
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the main channel. It also separates two regions with significantly distinct chemical

and biological characteristics, and many of the complex biogeochemical and ecological

processes within the vegetation rely on the exchange of fluid with the main channel. A

fairly good understanding of flow within vegetated stands has been achieved, in terms

of the turbulence structure (Nepf, 1999) and turbulent diffusion (Nepf et al., 1997;

Ackerman & Okubo, 1993). In the main channel, classic open channel hydraulics

prevail, so the flow and transport are easily described. It is the exchange of material

between these two regions, the rate of transport across the interface, that is needed

in order to obtain a system-level understanding.

5.1.1 A Model for the Interfacial Flux

The structure of the coherent vortices suggests a model for the interfacial flux. The

vortices exist as a traveling wave train with frequency fd and wavelength L. In chapter

4 it was established that the structures primarily occupy the main channel region,

with a width of the order of the channel boundary layer scale, 6o, and penetrate into

the vegetation a distance on the order of the inner layer width, 5I. To quantify the

exchange between the main channel and the vegetation, the entire vegetated channel

is divided into three zones: the main channel, with a characteristic width, B 2, and

velocity, U2; the vegetated layer, with width B 1 and velocity, U1; and the region at the

vegetation interface that undergoes active exchange with the main channel, having a

characteristic width, 5i. A schematic is shown in figure 5-1.

The vortices can be viewed as a turnstile that allows material to pass between

the vegetation and the main channel. Because the coherent structures are periodic,

the interfacial flux can be expressed in terms of the volume of fluid, V, exchanged

between the vegetation and the main channel in one wavelength, L, over one pe-

riod, Td = l/fd, of the vortex. As discussed in chapter 4, the vortex structure is

a traveling wave that induces strong crossbows: ejections out of the vegetation and

sweeps into the vegetation. Thus it is argued that the following scenario describes

the exchange mechanism. As a vortex passes, the pressure perturbation it induces

drives an ejection, which results in the entrainment into the vortex of fluid originat-

151



ing in the vegetation. The total volume of fluid entrained in time Td, the duration of

the vortex passage, is Ve. To satisfy conservation of mass, an equal volume of fluid

must be transported from the free stream into the vegetation by a sweep. Further,

because the fluid entrained from the vegetation, along with fluid entrained from the

free stream, make up the total volume of the vortex at any instant, it is reasonable

to argue that Ve scales with the total fluid volume contained in a single vortex,

V, = a6oLh (5.1)

where h is the fluid depth and a is the factor of proportionality that describes the

efficiency of exchange. Normalizing 5.1 by the interfacial area per wavelength, hL,

and the period of each vortex cycle, Td yields the rate of volumetric flux of fluid per

unit interfacial area,

k- Ve' = a60 (5.2)hLTd Td

The units of k are of velocity, representing a mass transfer, or exchange, coefficient.

Using the expression for the natural period of the vortices (4.1),

0
Td = 0.032U' (5.3)

the mass transfer coefficient can be written

0.032U (5.4)
k= a8o0 (5.4)

If a is a constant, the mass transfer coefficient, then the normalized mass transfer

coefficient, k/U depends only on the dimensionless vortex passage frequency,

k (60ofd (5.5)

There is no a priori reason to expect this is the case, as k/U, and thereby a, may

additionally depend on the velocity difference, AU/U which is often used as a scale

for vortex rotation rate in free shear flows (see, e.g., Schlichting, 1979), or the array
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Figure 5-1: A schematic of the exchange zone. The vortices extend a width, 60 into the
open channel and penetrate (1 into the vegetation. There are three zones: layer, with
characteristic width B 2 and velocity U2, the vegetated layer, with width B1 and velocity
U1, and zone of active exchange with characteristic width 3 i.

drag acting on the vortex, which can be described by CDa6o, which also characterizes

the degree of penetration of the vortex. However the experimental results presented

will demonstrate that a is approximately constant, and nearly independent of AU/U

and CDa0. In the next section, a is determined from experimental values and this

will shed light on the contributions of both vortex passage frequency and rotation

rate to the total mass exchange.

5.1.2 Dependence of a on Vegetation and Flow Conditions

In this section, a, the proportion of vortex volume exchanging over each cycle, is

obtained both from the momentum exchange results in the experimental shallow

vegetated channel, and from the scalar transport results of Ghisalberti & Nepf (2005a)

in a submerged aquatic canopy. It is found that a is approximately the same for both

the submerged and emergent vegetated channels, across a range of flow and canopy

conditions.

The tracer experiments by Ghisalberti & Nepf were conducted in a submerged
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layer of model vegetation, an array of circular cylinders with volume fractions between

0.008 < < 0.026. Dye was injected continuously at the top of the canopy and

the flux of dye between the canopy and the overlying fluid was measured. In the

experiments, the width of the exchange zone normalized by the canopy depth ranged

from, 0.48 < /IIB1 < 0.63. This suggests that a the majority of canopy width is

involved in active exchange with the overlying flow. Consistent with this, Ghisalberti

& Nepf proposed a two-layer model, consisting of the canopy, with velocity U1, and

concentration C1 (in our nomenclature), and the overlying fluid with velocity U2, and

concentration, C2 (see figure 5-1). The concentration in each layer downstream of the

dye injection is described by the following equations,

OC1 k
x BU(C2 - C1) (5.6a)

Ox B1U1

within the canopy, and
O02_ k

(CI - C2) (5.6b)
dJX B 2U2

within the main channel, where k is the mass transfer coefficient, as defined in (5.2).

The results obtained by Ghisalberti & Nepf demonstrated that the dependence,

k = U' (5.7)40

held over the entire range of cylinder volume fraction and Reynolds number studied.

From these results, we can determine the exchange ratio a according to (5.2),

C do (5.8)
60

where o is found for Ghisalberti & Nepf's velocity distributions by the method

described in section 2.5.6. The results for a derived from the data of Ghisalberti

& Nepf are shown in figure 5-2 (open circles) as a function of the depth Reynolds

number. The exchange ratio is approximately constant across these experimental

cases, a = 0.31 ± 0.03.
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Figure 5-2: Values of the the vortex exchange ratio, a plotted with Reha = AUh/v. Values
are obtained from the tracer experiments of Ghisalberti & Nepf (2005a) (o), calculated from
the u2 in the shallow vegetated layer experiments () and at low Reh (A).

The exchange ratio, a can also be calculated from the present experiments in the

shallow vegetated channel from the measurements of momentum exchange. In Ghisal-

berti & Nepf's two-layer model (5.6), the mass (or scalar) flux across the interface

is

5oJ = -kAC =- --a AC (5.9)
Td

where AC == C2 - C1 is the concentration difference between the layers. The mo-

mentum flux is analogous to the mass flux. In each vortex cycle, the volume of fluid,

Ve, exchanged between the vegetated layer and the main channel carries with it a

momentum flux proportional to the velocity difference between the layers, AU. The

momentum flux across the vegetation interface can be thus be written

J = -kAU = -ya- AU (5.10)
Td

where AU = U2 - U1 is the velocity difference between the layers, and y is an unknown

parameter that describes the difference in the rates of mass and momentum transport.

The turbulent momentum flux is typically less by some factor than the mass flux as

a result of pressure fluctuations (see Hinze, 1975). By comparing the mass fluxes
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to the momentum fluxes in the submerged canopy results of Ghisalberti & Nepf, the

parameter y was determined. Specifically, the momentum flux (5.10) can be rewritten

in terms of the Reynolds shear stress at the top of the canopy,

J4= U'v')Iy=0 -u . (5.11)

which yields

= ya ou. (5.12)

Since u is available from the velocity measurements of Ghisalberti & Nepf and ac

from the scalar flux measurements, y can be determined from (5.12). The results give

a value of y = 0.8 0.1.

The value of y obtained from the data of Ghisalberti & Nepf can be used to

determine the mass transfer coefficient, k, and the exchange ratio, a for the present

experiments in the shallow vegetated channel. From (5.12),

da\U *d (5.13)60 AU '

The experimental LDV data yield the interfacial shear stress, u, the velocity dif-

ference between the vegetation and the free stream, \U, and the vortex oscillation

period, Td. Thus a can be determined from 5.13. The results for a obtained are

shown in figure 5-2 along with those from the scalar transport experiments of Ghisal-

berti & Nepf (2005a). The data are plotted as a function of the Reynolds number

based on spanwise width, which is h, the water depth, for the present cases, and the

flume width, 38 cm, for the submerged canopy data of Ghisalberti & Nepf). The

exchange ratio is approximately constant at high Reynolds number for the present

study, and nearly equal to the values obtained from the scalar transport experiments.

However, the three low Re data are lower by at least a factor of two than the high

Re data and the low Re data from the scalar transport experiments. It is likely that

in the shallow channel, bottom friction and bed confinement affects the character-

istics of the vortices, weakening their transport efficiency. This is most pronounced

156



at low Reynolds number, when viscous effects are most significant. These effects are

less pronounced in the submerged canopy experiments because in the wide flume the

shear layer is relatively unaffected by the side walls. Because the high Reynolds cases

are more representative of field conditions, the high Re data for both the shallow

and submerged experiments have been averaged to obtain a mean exchange ratio of

a = 0.30 ± 0.04.

That a is nearly constant across a wide range of experimental conditions suggests

that the mass transport by the vortices is described quite well by the vortex size and

passage frequency, according to (5.2). In the following section this result is explored

in greater detail by simulating transport by numerical particle tracking.

5.2 Numerical Particle Transport Experiments

The semi-empirical theory that describes the material flux at the vegetation interface

(5.18) relies upon the fluid exchange by the coherent structures, expressed through

the exchange parameter a. The constant value of a ~ 0.3 obtained from experimental

data suggests that a constant proportion of the coherent vortex volume exchanges in

each period of its oscillation. To demonstrate the exchange mechanism more clearly,

numerical particle tracking experiments were performed using the velocity field of the

coherent structures found from experiments. This allowed the flux of tracer particles

across the vegetation interface to be measured and compared with the experimental

results.

Shown in figure 5-3 is the conditionally-averaged velocity field in the vortex frame

of reference, obtained from the eduction scheme described in chapter 4. The vortices

are periodic with wavelength L and move with a wave speed, Uv = L/Td. Here the

velocity field is repeated over three structures to demonstrate how successive vortices

are joined in a wavetrain. In a moving frame of reference of speed U, the conditionally-

averaged velocity field is steady and the flow within the vegetation, y < 0, appears

to move in reverse because it is slower than U,, while the faster flow in the free

stream appears to move forward. The vortex centers, which are displaced into the
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free stream, are fixed points in the moving frame of reference, or points with zero

velocity; the saddles connecting vortices are also fixed points.

Also shown are the limiting streamlines, known as manifolds. The manifolds em-

anate from each of the fixed points, the vortex centers at x* = -- r, w, 3w, and the

saddles between vortices at x* = -2r, 0, 27r, 4wr, where x* = kx = 27x/L. By tracing

flow paths, one can observe that these lines separate particle trajectories. Particles

that begin between the same two lines, in the same "alleyway", will travel similar

paths, while particles that begin in different alleyways can undergo significantly dif-

ferent trajectories, separating quickly in time. Treating tracer trajectories as steady in

the vortex frame of reference is only an approximation. Turbulence at scales smaller

than the coherent structures, as well as the inevitable unsteady motion of the vor-

tices as they travel, act to perturb these steady streamlines and allow tracer transport

across them. However, the vortex velocity field, which appears steady in the mov-

ing frame, but oscillates at a point fixed in the laboratory frame, is the dominant

temporal frequency present in the flow. In chapter 4, it was demonstrated that this

structure is the dominant contributor to the transport of momentum through sweeps

and ejections, and in the previous section it was shown that the momentum and scalar

flux can be expressed in terms of its large-scale properties. For this reason, we study

the transport of passive tracer particles in the conditionally-averaged flowfield in an

attempt to understand the transport induced by the coherent structures.

In the simulations the numerical velocity field is seeded with particles at a grid of

initial conditions, Xo, Yo at an initial time, t = 0. The particles are passively advected

by the velocity field. Thus the trajectories x(x, y, t) and y(x,, y,, t) are described

by the initial value problem
dx
t = u(x, , t) (5.14a)

dy
- = v(x, , t). (5.14b)

Here u and v are the velocity components in the frame of reference of the moving

vortex. The initial value problem can easily be solved using the fourth order Runge-

Kutte "ode45" algorithm in MATLAB.
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Figure 5-3: Velocity vectors and streamlines of the conditionally-averaged coherent struc-
tures. The velocity field is shown in a frame of reference traveling with the vortex center, at
speed Uv. The streamwise and transverse axes are normalized by the vortex wavenumber,
x* = 27rx/L, y* = 2ry/L. The the x* and y* axes are distorted in (a) for the purpose of
visual clarity; in reality the vortices are highly elongated in the streamwise direction, as
shown in (b) with undistorted axes.
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The model for exchange outlined in section 5.1 relates the material flux across the

interface to the temporal period, Td, and the the area of vortices in the horizontal

plane, o6L through the exchange ratio a. To measure the interfacial flux, and obtain

a measure of Oc for comparison with the experimental result, numerical particle tra-

jectories were integrated in time over one vortex period, and the total particle flux

across the line y = 0 was noted. Figure 5-4(a) - (e) shows the results of one such

simulation (case I). The results for cases IV and VII are shown in figures 5-6 and 5-7.

A region within the vegetation, y* < 0, is initially dyed over a steamwise distance

of two vortex wavelengths, 0 < x < 47r. Over the duration of a single period, a

portion of the particles are drawn across the interface, y = 0,and entrained into the

passing vortex, while a portion travel backwards in the moving frame. It is easy to

translate this reverse motion in the moving frame to the stationary laboratory frame:

a stationary point moves to the left with a velocity L/T, so the initial dyed region at

t = is the same physical space as the region -27r < x < 27r at t = T. Thus it can

be seen from figure 5-4 that over one period, between (a) and (e), the particles have

moved slightly downstream in the laboratory frame, albeit more slowly than those

particles drawn into the vortex, which have effectively moved downstream one wave-

length relative to their starting positions. This is made more clear in figure 5-5, which

shows the same simulation, but in the fixed reference frame. The passing vortices are

numbered for reference, demonstrating that they move to the right at a speed, U,

that is much faster than the speed of the particles within the vegetation. Moreover,

the simulation is run for a duration of At = 3Td, demonstrating the separation in

space between the particles entrained into the vortices and those that remain in the

vegetation.

The particle trajectories also demonstrate the effect of the periodic flow within the

vegetation induced by the pressure wave behavior of the passing vortices. The parti-

cles trajectories are oscillatory in both space and time, making the tracer distribution

appear sinusoidal in figures 5-4-5-7. In figure 5-5 particle trajectories originating at

five different transverse positions are shown in markers to demonstrate the oscillatory

particle paths. Note that the excursion amplitude appears greater for case IV (figure
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5-6) because the vortex wavelength, L, and thus the normalization length scale, is

slightly lower for this case (and the aspect ratio, L/20o, larger). In table 5.1, the

vortex wavelength is given for each case.

The pressure wave characteristics of the vortex directly influence the exchange

rate, as the pressure perturbation induced by the vortex drives the cross flows that

lead to exchange. An important parameter characterizing the potential for exchange

is the communication length, c1, which is defined as the length into the vegetation

over which particles can be entrained into the vortex in one passage cycle. Particles

residing beyond l, from the vegetation edge will remain within the vegetation for

the current cycle. This length scale is determined from the transport simulations and

shown in table 5.1. Also shown for reference is the inner layer width, 6I. Notice that c

declines much less with increasing density than the inner layer width. This is because

even for dense arrays, the crossflows, or ejections, driven by the vortex pressure

fluctuation are able to carry out some particles beyond the inner layer width. It is

suggested that this is one reason the the vortex exchange ratio, a does not appear to

strongly depend on the cylinder density.

The particles trajectories in each simulation adhere very closely to the separating

streamlines. Those particles that are drawn into a vortex follow the outer stream-

line of the central core and are ejected into the free stream by the rotation of the

vortex, appearing as an arcing filament of dyed fluid. These filament structures

closely resemble those observed in experimental particle visualization experiments in

the flume, shown in figure 5-8. In these experiments, a fine powder consisting of

reflective glass microspheres are sprinkled onto the water surface within the cylinder

array and their transport into the free stream is imaged with a CCD camera. The

good qualitative comparison of the particle distribution with those of the numerical

simulations suggests that the gross characteristics of the particle flux is captured by

the conditionally-averaged velocity field.

However, to see the importance of the unresolved small scale turbulence, consider

the particles that are not drawn into a vortex. In the simulations, these particles,

which begin outside the innermost separating streamline, are forever confined to the
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vegetated layer, unable to cross the steady streamline to enter the vortex. In reality,

there exists a range of turbulence scales smaller than the coherent structures which

perturb the streamlines and allow turbulent diffusion of mass across them. However, it

is postulated that the rate of rotation and the length scale associated with the coherent

structures, as the dominant scales of the flow, are also the dominant contributors to

the rate of flux across the interface. The good qualitative comparison between the

particle flux in the numerical simulations and in the experiments seems to bear this

out. However, as a quantitative measure, the particle flux, and particularly the

exchange ratio, a, in the simulations will now be compared with the experimental

results discussed in section 5.1.

The exchange ratio, a for the transport process can be estimated by calculating

the net particle flux across y = 0 over one period within one wavelength. First, the

total volume of fluid crossing the interface into the vegetation over the duration of

the simulation, At = Td, is Ve. Initially the dyed region has a particle concentration

of C, and thus, in terms of (5.1), the volume (per unit depth) exchanged is

¼e - Ntt- Nj, (5.15)
= Co

where Nout and Nout are the number of particles leaving and returning to the vegetated

layer over the cycle and C, is the initial particle concentration [particles/area] of the

dyed region. The exchange ratio, a is then determined from (5.1) as the ratio of the

volume exchanged to the vortex volume,

a = Ve (5.16)

The values of a obtained for the steady streamline cases are shown in Table

5.1 under the heading ( = 0). The comparison is reasonable, but the values of a

obtained numerically are 20% - 50% below the experimental value a - 0.3. This is

to be expected due to the neglect of small scale turbulent diffusion.

To evaluate the contribution of small-scale turbulence, separate simulations were

performed with a time-perturbed velocity field. A periodic temporal perturbation
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with strength characterized by the small parameter, , was added to the conditionally-

averaged velocity field. There is an exhaustive body of work on the enhancement

of mixing caused by periodic perturbations of an otherwise steady two-dimensional

velocity field. Work by Weiss & Knobloch (1989); Pierrehumbert (1991) studied

the mixing induced by perturbations to traveling Rossby waves, which like the basic

coherent structures studied here are steady in the traveling frame of reference. They

found that the structure of the basic flow largely controls the rate of transport, but

the perturbations enhance the diffusion of tracer across the basic streamlines. This

effect is captured by the perturbation.

In our simulations, perturbations in the form of traveling waves were superimposed

on the conditionally-averaged streamline structure to obtain the total time-varying

velocity field

u* = + esin(y*) [cos(x* - wit*) + cos(x* - w2t*) + cos(x* - W3t*)] (5.17a)
Uv

V
v* = - + cos(y*) [sin(x* - wit*) + sin(x* - 2t*) + sin(x* - w3t*)] · (5.17b)

Uv

where the velocity components are normalized by the vortex wave speed, Uv. The

choice of three traveling waves and their frequencies is somewhat arbitrary, but a su-

perposition of multiple frequencies was expected to be, while still a gross approxima-

tion, a better representation of a turbulent field than a single frequency. Additionally,

it can be verified that the two-dimensional perturbations are non-divergent and thus

satisfy conservation of mass.

In the simulations the perturbation frequencies were taken as w1 = 1, 2 = 2,

and W3 = 5 in the frame of reference of the coherent structures, which correspond

to oscillations of, respectively, 2x, 4x, and 10x the coherent structure frequency in

the laboratory frame. The results for = 0.2 are shown in figure 5-9. The results in

the stationary frame of reference are shown in figure 5-10. It can be seen that the

addition of the perturbations enables the transport of particles across the limiting

streamlines, creating, in essence, leaky vortices. This enhances the flux of particles

across the interface, and leads to higher values of a (table 5.1). In fact with the
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addition of the perturbation, particularly for = 0.2, the values of oa are very close to

the experimental value, a = 0.3. Also shown in table 5.1 are the magnitudes of the

small-scale turbulent fluctuations, ums (normalized by Uv) from experimental data.

These are obtained from the the experimental LDA data for each velocity record

by high pass-filtering the velocity fluctuations above the frequency of the coherent

structures. The value of u*ms shown in the table is the maximum value across the shear

layer, which occurs at the array interface. The magnitudes of u*ms, between 0.1- 0.2,

are comparable to the parameter range of e used in the numerical experiments. While

e is not a direct proxy for u*ms, both measure the approximate strength of the small

scale fluctuations compared with the velocity of the coherent structures.

Although a increases with increasing , it is apparent from figure 5-9 that large-

scale transport is still controlled by the rotation of the coherent structures, and the

filaments of ejected tracer appear qualitatively similar to the basic case (figure 5-6).

This suggests that together the coherent structures and small scale turbulence can

account for the mass and momentum fluxes observed in the shallow and submerged

vegetated layers presented in section 5.1.

Table 5.1: Vortex exchange ratio, a, from numerical tracer simulations.

case = 0 E = 0.1 = 0.2 Urms L (cm) IC (cm) 61 (cm)

I 0.21 0.31 0.41 0.14 164 7.7 3.7
IV 0.24 0.29 0.34 0.18 116 8.8 2.6

VII 0.14 0.20 0.28 0.17 152 5.7 1.2
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Figure 5-4: Results of numerical tracer experiments for case 1. Particle positions are shown
at various times: t = 0 (a), t = Td/4 (b), t = Td/2 (c), t = 3Td/4 (d), t = Td (e). The
flow is initially seeded with the rectangle of particles shown in (a). Because of the moving
reference frame, the initial seeded area, 0 < x* < 41f at t = 0, corresponds to final area
-27r < x* < 21f at t = Td. Streamlines and velocity vectors are shown for reference.
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Figure 5-5: Results of numerical tracer experiments for case I in the stationary reference
frame over a longer duration of 3Td. The entire ensemble is shown in gray and individual
particles beginning at five different initial transverse positions (see (a)) are shown with
markers. Snapshots of the trajectories are shown at t = 0 (a), t = Td/2 (b), t = Td (c),
t = 3Td/2 (d), t = 2Td (e), and t = 3Td (f). The vortex streamlines, shown for reference,
move to the right with speed Uv, and individual vortices are numbered to aid the reader in
following the time evolution.
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Figure 5-6: Results of numerical tracer experiments for case IV. Particle positions are shown
at various times: t = 0 (a), t = Td/4 (b), t = Td/2 (c), t = 3Td/4 (d), t = Td (e). The
excursion amplitude within the array appears larger for this case because the wavelength,
L = 116 is less, and the aspect ratio, L/200 smaller than the other two cases shown (see
table 5.1 for details).
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Figure 5-7: Results of numerical tracer experiments for case VII. Particle positions are
shown at various times: t = 0 (a), t = Td/4 (b), t = Td/2 (c), t = 3Td/4 (d), t = Td (e).
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Figure 5-8: Time sequence of images from flow visualization of reflective tracer particles on
the free surface. Particles are initially sprinkled over the cylinder array and are transported
into the free stream by ejection motions associated with the coherent vortices. The vortex
wavelength, L, and width scale, 2()o are shown for reference and snapshots are taken at
t = 0 (a), t = O.2Td (b), t = OATd (c), and t = O.6Td (c).
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Figure 5-9: Results of numerical tracer experiments for case IV with imposed temporal
perturbation of strength E = 0.2. Particle positions are shown at various times: t = 0 (a),
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Figure 5-10: Results of numerical tracer experiments for case IV with imposed temporal
perturbation of strength E = 0.2 over a longer duration of 3Td. The entire ensemble is shown
in gray and individual particles beginning at five different initial transverse positions (see
(a)) are shown with markers. Snapshots of the trajectories are shown at t = 0 (a), t = Td/2
(b), t = Td (c), t = 3Td/2 (d), t = 2Td (e), and t = 5Td/2 (f). The vortex streamlines,
shown for reference, move to the right with speed Uv, and individual vortices are numbered
to aid the reader in following the time evolution.

171



\r 0

U.0

0.28

0.26

0.24

0.22

0.2

0.18

0.16

1.5 1.6 1.7 1.8 1.9 2
AU
U

Figure 5-11: Vortex exchange ratio, a plotted against the normalized velocity difference,
AU/U. There does not exist a statistically significant correlation (p-value = 0.16).

5.3 Higher Order Dependence of a on Vortex Ro-

tation and Array Drag

The fact that a is approximately constant across experimental conditions suggests

that the vortex volume turnover is approximately self-similar when normalized by the

vortex size and passage frequency. However, as discussed in section 5.1.1, a, may also

depend on the vortex rotation rate and the vortex penetration width. However, a

appears to be nearly constant, and indeed there does not exist a significant correlation

between a and AU/U, as shown in figure 5-11.

It was also suggested that the exchange ratio may depend on the array drag,

expressed through CDa6 o. In figure 5-12 this relationship is plotted, from which it

can be seen that oa does depend weakly on the array drag, with a highly significant

correlation (p-value = 0.013). This dependence is further illuminated by the relation-

ship between the strength of the vortex crossflows and the array drag. It has been
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found that increasing array drag leads to a decrease in the strength of the crossflows,

measured by V,,s, the root mean square transverse velocity averaged over the vortex

period. Figure 5-12 shows the decline of Vrs/AU with CDado. The normalization

by the velocity difference, AU, is significant because it demonstrates that for a given

AU, the strength of the crossflows, which may also be considered a measure of the

vortex rotation strength, declines with increasing density. This clarifies a result of

Ghisalberti & Nepf (2005a) which concluded that the mass transfer coefficient was

proportional to the velocity difference, k oc AU. In fact, over a wider range of array

drag than that used in the experiments of Ghisalberti & Nepf, the strength of the vor-

tex crossflows, and thus the potential for exchange, decreases with increasing density.

In contrast to the k cx AU conclusion of Ghisalberti & Nepf, the model presented

for vortex exchange in this chapter (5.4), with a constant value of c, predicts that

k c U. In the next section the behavior of the interfacial friction coefficient, fi, a

measure of momentum exchange, over a wide range of canopy densities, suggests that

the present model better captures this decline in exchange efficiency with increasing

density.
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Figure 5-12: Values of the the vortex exchange ratio, oa plotted with the array drag para-
meter, CDad6o. There is a statistically significant (p-value = 0.013) trend, demonstrating
a weak inverse relationship.
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5.4 A Predictive Framework for the Interfacial Mass

and Momentum Fluxes

It appears that the vortex volume turnover is self-similar across a wide range of

vegetation and flow conditions, leading to a nearly constant value of a. This provides

a fairly simple means of predicting the mass transfer coefficient, k, for a wide range of

flows near the interface of aquatic vegetation. From the relationship between k and

ao (5.2),

k = 0.032a U,0' (5.18)

where the fundamental shear layer frequency,

I U
fd = = 0.032-

Td 
(5.19)
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has been used. Thus the mass transfer coefficient can be related simply to the mean

velocity, U, across the channel, and a measure of the shear layer width, 60o0. This

latter ratio is determined by the shape of the velocity profile and has been found from

both the present data and from that of Ghisalberti & Nepf (2005a) to be approxi-

mately constant and equal to 6o/0 3.

While the mass transfer coefficient, k, may be of the ultimate interest, often only

the momentum flux, or the interfacial shear stress, will be available for a particular

system, and the mass flux can be obtained by analogy. Relationships relating the

mass flux to the momentum flux are desirable for natural systems, in which the

momentum flux typically easier to measure, requiring only velocity measurements

of the Reynolds shear stress, (u'v') at carefully-chosen points in the flow. In some

instances, for instance for bank stability, the interfacial shear stress may be of interest

in its own right. From (5.10) and (5.12) the interfacial shear stress, or momentum

flux, is given in terms of c as

- 2= kYAU = Ya 60 A-U. (5.20)
Td

It can be seen from (5.20) that given a measurement of u, in a natural channel, k

can be determined and applied to mass transfer calculations. It is useful to defined a

friction coefficient to describe the interfacial shear, which is given by

f 2= 0.32-o. (5.21)The factor R = U/2U is commonly referred to as the dimensionless velocity ra-U'
The factor R = AU/2U is commonly referred to as the dimensionless velocity ra-

tio in free shear layer literature (Ho & Huerre, 1984). The friction coefficient is

thus inversely proportional to R. Figure 5-14 shows the interfacial shear stress,

u2/AU2 = fi/2, as a function of the dimensionless velocity ratio, R, for data taken

from submerged aquatic canopies, terrestrial canopies, and the present experiments.

The curve represents the semi-empirical prediction from (5.21) using a = 0.3, y = 0.8,

and o/0 taken as the average value across all of the velocity distributions from the
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Figure 5-14: Interfacial shear stress, u2/AZU2 = fi/2 plotted vs. the dimensionless ve-
locity ratio, R = AU/2U. Experimental data collected from the present shallow channel
experiments (, A-low Reo) and submerged canopies; Ghisalberti & Nepf (2005a) (o),
?: rigid cylinders (V), flexible strips (*), Nepf & Vivoni (2000) (*). The solid line is the
semi-empirical prediction from (5.21).

present experiments and those from Ghisalberti & Nepf (2005a), (o/O ~ 3.29±0.38).

The semi-empirical fit from (5.21) describes the data quite well, capturing the decline

in friction coefficient with increasing velocity ratio. In general, denser canopies result

in higher R, and thus a lower friction coefficient.

The relationship (5.21) appears to be applicable to a wide range of vegetated flows.

However, to provide true predictive capability for field conditions, the velocity ratio, R

must be determined for the system of interest. For shallow channels with vegetated

floodplains, this is relatively straightforward. From Ikeda et al. (1991); Pasche &

Rouv6 (1985), among others, the flow far outside the interfacial shear region can be

partitioned into two zones: the vegetated zone, with resistance by the vegetative drag,

and the main channel zone, with resistance by the channel bed drag. For an applied

forcing, given in terms of a free surface slope, S = -dh/dx, the velocity in each zone

follows

gS= CDaU2 (5.22a)
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in the vegetation, and

gS = 2U2 (5.22b)
2h

in the main channel.

Rearranging yields the velocity difference in terms of the drag in each zone,

U2 - U1 CDa cfh - cf/h 2CD3a
R = - (5.23)

U2 + U1 CDa cf/I7h + cf/h C a(523

For submerged vegetated flows, it is more difficult to determine the velocity differ-

ence because the flow in the overlying layer is restricted only by the vegetative drag,

and thus U2 depends on the interfacial shear stress, u,. From, e.g., Nepf & Vivoni

(2000), the velocity distribution above the canopy can be described by a logarithmic

profile,

U(z) = Ulog (Z ) (5.24)
UK Zo

where d is the zero-plain displacement and z, the roughness height (for details, see

Nepf & Vivoni, 2000). Thus, if U2 is to be defined at some height, h, above the

canopy, then

U2 = log (hd) (5.25)

and the velocity difference is

U2- U, U2 - / s
2 1 s = (5.26)

U2 + U g S.
CDa

Since R depends upon u, through U2, and from (5.21), u, depends on R, an iterative

method must be used to solve the interfacial shear stress for the system. This makes

submerged canopies more complex than shallow vegetated channels.

5.5 Transport Equation Across the Interface

The majority of this chapter to this point has been devoted to determining the fluxes

across the interface separating the vegetated and unvegetated regions. In addition

178



to this exchange, the spatial variability of the material concentration field is often

of interest. Using the turnstile model for exchange at the interface, the evolution

of the full concentration field may be modeled by the advection-diffusion equation.

Returning to the three zone model shown in figure 5-1, we wish to capture the spatial

variation in concentration, particularly within the vegetation, where the bulk of the

biological and chemical processes of interest occur, and where there is significant

spatial heterogeneity due to the vegetation. Diffusion within aquatic vegetation is

slow due to the reduced turbulent length scales (Nepf, 1999). Thus for wide layers,

B1 > 61, the exchange with the main channel may be limited by the rate at which

transverse diffusion can supply material to the exchange zone. Within the framework

of the three zone model, the spatial variation in concentration can be captured by

writing a separate advection-diffusion equation within each zone, and treating the

interfacial flux (5.2) as a boundary condition between them. Specifically, within the

vegetated zone,

a+ U D 2C1 + D 01 (5.27a)
t - 1Dx yly 2 Dx 2

and within the main channel,

at + U2 ax = Da 2Dy2 Dx 2 (5.27b)-t ax U ay 2 d2 -

where Dl1 and Dy1 are the diffusivities (turbulent or molecular) within the vegetation,

and Dx2 and. Dy2 those within the main channel. The flux between the layers, J, is

controlled by the rate of mass transfer by the vortices, which establishes a boundary

condition along the interface,

J= = -Dy aC(x,O,t) _ klAC. (5.28)
Dy

where AC == C2(x, 0, t) - C (x, 0, t), thus linking the concentration field in the veg-

etation to that in the main channel. This mass transfer boundary condition allows

a discrete jump in the concentration in the main channel just outside the inter-

face, C2 (x, 0, t), and the concentration within the vegetation just inside the interface,
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C1(x, 0, t). This jump condition is physically justified by the fact that the exchange

zone width, 5i, is expected, from the results of section 2.5.5, to be small compared

with either the main channel scale or the width of the vegetated layer (see figure

5-1). Thus, for sufficiently wide vegetated layers, B1 > 6I, the interfacial flux can be

viewed as confined to a vanishingly thin layer near y = 0.

5.6 Flushing Timescale for Vegetated Layer

The flushing timescale for the vegetated layer is of primary importance for biological

processes in coastal marshes and riverine systems. It can affect, for example, the fre-

quency at which hypersaline water in a mangrove stand is replenished by freshwater,

or the residence time of nutrient spikes in a floodplain following a storm surge. The

flushing time scale can be determined from the the transport equations (5.27) and

(5.28) with some simplifying assumptions. First assume that the vegetated layer is

long, such that streamwise gradients are negligible. Second, assume that mass mixes

much faster over the main channel than the time required for flushing of the vege-

tated layer, as we are generally interested in systems for which exchange with the

vegetation is the slowest step. Thus the concentration within the main channel can

be taken as constant and equal to C2. Since we are interested in the problem of the

flushing of some material of interest from the vegetated layer, we can take C2 = 0.

Given these constraints, (5.27) and (5.28) reduce to

aC D2C
= Dy 2 (5.29a)at ay

oC(x, O, t)
Dy C( = -kC(x, O, t) (5.29b)

and
aC(x, -B, t) C(x,-B t) = 0, (5.29c)

Dy

where the subscripts have been dropped since we are now interested only in the

concentration within the vegetated layer. The second boundary condition (5.29c) is
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the no flux condition at the interior edge of the vegetated layer (y = -B). For the

flushing problem, assume that at the initial time, t = 0, there is uniform concen-

tration Co within the vegetation. Before proceeding, it is useful to first define three

dimensionless numbers that are important for the flushing problem. The ratio of the

rate of mass transfer at the interface to the rate of diffusive mass transfer within the

vegetation is the mass transfer Biot number,

kB
Bi = D (5.30)

and determines whether the rate of interfacial flux is limited by the rate of diffusion

from within the vegetated layer. If Bim > 1, the exchange by the coherent structures

at the interface is much faster than the rate of diffusion. The dimensionless exchange

zone width,

e = SI/B (5.31)

describes the proportion of the vegetated layer undergoing active exchange with the

main channel (see figure 5-1). The mass transfer Fourier number,

Fo,= B2 (5.32)

is a dimesionless time, scaled by the diffusive timescale. Using Bim and FOm (5.29)

can be rescaled as
OC* 02C*

~= a~c~(5.33a)
aFom Oy*

C*(x, 1, FOm) = -BC*(x, 1, FOm) (5.33b)
ay*

and
&C*(x, O, Fo,) = 0

== 0 (5.33c)9y*

where
* y + B (5.34a)

B
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and

C* = C (5.34b)
Co

Solutions to the system 5.33 are well-studied in the heat transfer literature (see, e.g.,

Incropera & DeWitt, 1981). There are two regimes based on the values of Bim. For

Bi, < 1, the flux of material at the interface is not limited by the rate of diffusion

within the vegetated layer and the concentration is uniform across the vegetated layer.

In this limiting regime, the solution is

C kC = exp(-BimFom) = exp(--t). (5.35)
Co B

The flushing timescale can be defined as the inverse of the exponential rate of decay,

the e-folding time scale,

Tf = B/k T B (5.36)
6o

The solution (5.35) prevails if either Bim << I or 6e, is 0(1), regardless of Bim. In this

case the active exchange zone occupies the entire vegetated layer and the interfacial

flux is not limited by diffusion.

However, in the regime 6,e < 1 and Bim > 0(1), the interfacial flux is diffusion-

limited, and concentration gradients develop within the vegetated layer. In this

regime, (5.33) is an eigenvalue problem with a fairly complex series solution (see

Incropera & DeWitt, 1981, section 5.4.1). However, the behavior is well-studied and

results are tabulated for various values of Bim. For sufficiently large dimensionless

time, Fo, > 0.2, the solution is well-approximated by the first term in the series,

C* = 1 exp(-1 Fom) cos((ly*) (5.37a)

where the eigenvalue, (1 satisfies

(I tan((1) = Bim. (5.37b)
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and
4 sin(e1)

131 2 1 + sin(2 1) (5.37c)

A highly accurate approximation for ( is given by Stevens & Luck (1999),

-G + v'G2+ 4H 
(1 1+ 2 (5.38a)

2

where

G = (Bim + 1) tan(zl) + zi, (5.38b)

H = Bim - z1 tan(zl), (5.38c)

and

7r Bim - r/4hZ1 = 1 + - /4) (5.38d)

It is straightforward to evaluate the flushing timescale, by setting FOm = 1/ 2 to

yield
B2

T = 2 (5.39)

It can be verified that in the regime where diffusion is not limiting, termed the

exchange-dominated regime, Bim < 1 (or e6, = 0(1)), the solution (5.37) and the

eigenvalue approximation (5.38) reduce to the uniform layer solution (5.35). In this

case the flux across the exchange zone, driven by the coherent structures, controls the

rate of flushing and the timescale is (5.36). In the diffusion-limited regime, Bim > 1,

the rate of flushing is controlled almost exclusively by the rate of transverse diffusion

within the vegetation, which limits the supply of mass to the exchange zone. In this

limit, the solution (5.37) reduces to

C 2= 4exp( 2 )Cos( Y*) (5.40)
Co 4 4( B2 2

and the flushing timescale is
4 B2

Tf - 2 (5.41)

To illustrate the diffusion-limited and exchange-dominated regimes, it is useful to
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normalize Tf by the rate of interfacial exchange,

T1: Tfk (5.42)
T; B1

In figure 5-15(a), T; is plotted as a function of Bi, along with the limiting Bi, < 1

and Bi, >> 1 solutions. For Bi < 1, T is independent of diffusion, and hence

independent of Bim. For Bi, >> 1, the flushing timescale is independent of the

interfacial flux, hence, T (4/7r2)Bim, the dimensional flushing time increasing in

proportion to the diffusive time scale, B2/D. With the small diffusivities observed

deep within aquatic vegetation (Nepf, 1999), this time scale could be quite long.

In figure 5-15(b) is shown the transverse dependence of concentration within the

vegetated layer for different values of Bi, at time t = Tf. For Bi, = 0.01, the

exchange-dominated regime, the concentration is nearly constant, as the entire layer

actively exchanges with the main channel. For Bi, = 3 transverse diffusion is be-

coming important, creating a concentration gradient across the layer and limiting the

concentration near the vegetation interface at y* = 1. Finally, for Bim = 100, trans-

verse diffusion is entirely limiting, and the concentration at the interface approaches

zero, the mass flux carried by the coherent structures being limited completely by the

supply of mass by transverse diffusion.

5.7 Application to a Natural System: Overbank

Transport of Suspended Sediment in a River-

Floodplain System

In section 5.1 a framework was outlined for predicting material flux across the main

channel-vegetation interface. The flux was related to the properties of the flow in

the main channel through (5.18) and a solution to the advection-diffusion equation

with a prescribed first order interfacial flux was given in section 5.6. In this section,

the framework is applied to problems of overbank transport of suspended sediment

184



0.5

10l

10 "

1 -

0.4

0.3

0.2

0.1

1(
- 2

1 l -
10") 10' 10' 0 0.2 0.4 0.6 (.8

B i,,, - B,

(a) (b)

Figure 5-15: Graphical representations of the solutions to the flushing problem (5.37). In
(a), the dimensionless flushing time, T*, is plotted as a function of the Biot number, Bim.
Also shown are the behavior in the exchange-dominated regime, Bim < 1, and the diffusion-
limited regime, Bim > 1 (broken lines). In (b) is shown the transverse concentration
distribution, C* = C(y*)/Co at t = Tf for various values of Bim.

in river-floodplain or channel-marsh systems by including a term in the diffusion

equation to account for particle settling and deposition on the floodplain. A dimen-

sionless number is introduced which expresses the relative rates of floodplain flushing

and particle settling, and which influences patterns of deposition.

The problem of overbank sediment transport has implications both for the geo-

morphology and contaminant fate in riverine and estuarine environments. In many

low energy rivers the evolution of floodplains is primarily due to deposition of sus-

pended sediments from the main channel during times of flood (Lecce & Pavlowsky,

2004). In coastal salt marshes or mangrove forests, sediment supply from tidal creeks

is an important process in the sediment balance that dictates, for example, whether

marsh accretion can keep pace with sea level rise (Stumpf, 1983). Further, Allen

(1992) suggested the best framework for sediment fluxes in salt marshes is from the

perspective of overbank transport, in analogy to floodplains.

Suspended sediments also can carry significant concentrations of adsorbed conta-

minants, such as heavy metals (Macklin, 1996), and when deposited in the floodplain

or marsh, can affect the health of ecosystems and the quality of water intended for

human use. Several workers have noted the importance of the channel vegetation

interface for fluxes of suspended sediments, and many have noted the existence of
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coherent vortices between the floodplain and the main channel (Allen, 1992; Pizzuto,

1987) (though most are laboratory studies, with very few, if any, field observations).

In general, observations of sediment deposits over floodplains reveal a decrease in

total deposition and a progressive fining on the floodplain with increasing lateral

distance away from the main channel (Allen, 1992; Lecce & Pavlowsky, 2004). Piz-

zuto (1987) proposed a model to account for this which relied on turbulent diffusion

from the main channel to carry sediment to the floodplain. He solved a form of

the advection-diffusion equation with a first order settling term to yield sediment

deposition patterns away from the channel.

Here, an alternative formulation of the diffusion equation is presented that ex-

plicitly accounts for the interfacial flux of material driven by the coherent structures.

This can be done by making the boundary condition at the channel-vegetation in-

terface a flux-driven boundary condition, with the mass transport rate equal to that

associated with the coherent structures. Then a first-order decay term is simply added

to the diffusion equation presented in section 5.6 to account for sediment deposition.

Equation (5.29a) then becomes

OC 02C
at = Dy 2 -rC (5.43)

where where C is the depth-integrated concentration,

= C(y, z, t)dz (5.44)

and r is the settling rate (the tilde notation will be dropped from here forward). If

there is not significant sediment resuspension, a simple characterization of the settling

rate is

r= 1I (5.45)
h

where V, is the grain-size dependent settling velocity.

Because the governing equation and the boundary conditions of (5.43) are identical

to the original problem without settling (5.29) except for the first order decay term,
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the well-known method of Danckwerts (1951) can be applied to find the solution

to the settling problem. According to the method, if C'(y, t) is the solution to the

original flushing problem, the solution to the problem with settling is

t _2
C(y, t) = k e -t' C(y, t')dt' + C'(y, t)e z t. (5.46)

In section 5.6 the flushing problem was solved with the interfacial flux boundary

condition (5.5b) and an initial material concentration, C, in the vegetated layer at

t = 0. In the deposition problem, it is desired to know the transient deposition from

the main channel onto the floodplain with time from the onset of flood stage. Hence

the initial conditions are a constant main channel concentration, Cc, and zero initial

concentration on the floodplain. The boundary and initial conditions for (5.43) are

thus
DC(0, t)

Do = k(C, - C(x, 0, t)), (5.47a)

OC(B, t) () =O (5.47b)
Oy

and

C(y, 0) = 0. (5.47c)

The solution is obtained by the same method as in section 5.6 with the substitution

(5.46). The full solution is in the form of a Fourier series,

4 sin (5n- ForeC = Cc -i 2 + sin (2) ) Cos(C ( *)-FOm(+SC ) + 1

(5.48)

where the dimensionless time and lateral coordinate, Fo, and y*, and the eigenvalues,

(,, are identical to those of the flushing problem, presented in section 5.6. The

dimensionless number S, termed the settling number, is the ratio of the flushing to

settling time scales,
s B2 (5.49)

S = rT = h 2· (5.49)
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For wide vegetated plains for which flushing is limited by transverse diffusion, Bi, >

1, the settling number reduces to

V B 2

S VSB (5.50)
h Dy

while for narrower floodplains controlled by vortex-induced mass transfer, Bim < 1,

the settling number becomes

S V, B (5.51)
h k

In section 5.6 only the first term in the series solution for concentration was

necessary to approximate the solution without settling for FOm > 0.2. Thus, in the

limit of slow settling, S -+ 0, the first term in (5.48) will also be sufficient for the

settling problem. However, for large values of S, i.e., larger grain sizes, it has been

found that several terms in the series are necessary. For these cases, the simple method

of Stevens & Luck (1999) yields the eigenvalues, , the same method described for

calculating (1 in section 5.6. As in the flushing problem, the eignevalues, (n are

functions of the Biot number, Bim = kB/Dy, the ratio of the timescales for flushing

by interfacial mass transfer and by turbulent diffusion.

When (5.48) is compared with the asymptotic (Fom > 0.2) solution in the absence

of settling,

C(y*, t)= Cc (1- ie 1FOm cos((ly*)), (5.52)

it can be seen that settling has two effects. For higher rates of settling (higher S),

the system will reach a steady-state concentration distribution faster, as the product

Fo ( + SC() in the exponential of (5.48) increases with S. In addition, the steady

state suspended sediment concentration distribution,

[ E 4 sin (2) SC=C _ 1- sin() cos((.Y*) S 2 (5.53)

is reduced by due to the factor
S (5.54)

18+ 8
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To illustrate, without settling, i.e., S = 0, the factor in (5.54), and hence the total

Fourier sum in (5.53), tends to zero. In this case so the steady state concentration on

the floodplain is equal to that in the main channel concentration, Cc. However with

increased settling, this factor becomes nonzero, and the Fourier sum in (5.53) takes

on a value between 0 and 1. The floodplain concentration is thus reduced from that

in the main channel. The reduced suspended sediment concentration for increasing

S implies an increased rate of deposition. The dependence on S can be explained as

follows. When the rate of flushing is much faster than the rate of settling, parcels

of fluid tend to complete a circuit from main channel to floodplain and back again

before the sediment they contain can deposit on the floodplain. However, when the

settling rate is faster (high S) significant deposition is possible within the time a given

fluid parcel spends on a floodplain excursion. This results in the reduced suspended

sediment concentration, i.e., greater deposition.

The rate of deposition is simply the loss term from (5.43),

V2
R(y, t) = s C(y, t), (5.55)

from which a normalized rate of deposition can be defined

R(yt)T 5 C(y,t)(R = C T = S C (5.56)

It can be seen that the deposition rate is proportional to the settling number.

Also of interest is the total mass deposited per unit area, A, for example, over the

duration of a flood. This is easily computed by the integral of the settling rate,

A*= A -1 VC(y*, t')dt'

) O 4 sin x) -ox(- i e((+S(12)) 2Co,- C o (Z2 S'oC\
(; Fo m-E. 25( + sin (2( ) s(y) -- [ + n=1 S2 + I + S~

(5.57)

where A is normalized by the main channel concentration and the settling number.
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The normalization demonstrates that the total deposition is also proportional to the

settling number, S.

Note that several assumptions are inherent in the model for sediment transport

used in this section. First, a constant transverse eddy diffusivity, Dy is assumed over

the floodplain. In fact, spatial variations are likely to exist due to variations in water

depth, topography, and density of floodplain vegetation. A second assumption is that

suspended sediments are deposited only by gravitational settling. In fact Allen (1992)

found that sediment capture by salt marsh vegetation can account for as much as 50%

of the sediment loss from the water column. This capture is likely to be reasonably

captured by a first order loss term like that in (5.43), but with a different form than

(5.45).

To characterize sediment deposition in natural systems, typical length and velocity

scales in channel-floodplain systems will now be given. The width of a characteristic

floodplain valley, B, like that studied by Lecce & Pavlowsky (2004) is of the order of

10-100 m, and the water depth on the floodplain, h, is of order 10-100 cm (Nicholas

& Walling, 1998). Typical values of the vegetation density, in terms of a the frontal

plant area per unit fluid volume, are 0.01- 0.1 cm -1 both for salt marsh grass (Nepf,

1999) and also, for example, for agricultural crops such as corn (Aylor, 2005), which

may occupy a river floodplain. From the vegetation density, the characteristic width

of the exchange zone, the penetration of the coherent structures onto the vegetated

plain, is

I = C(CDa)- 1, (5.58)

where c is a constant found empirically, as in section 2.5.5 figure 2-10. Taking the

drag coefficient to be CD = 0(1), and with the range of a given above, the exchange

zone width is 0(10 - 100) cm. Clearly, the typical exchange zone width is small

compared with the valley width, such that e,, = 61 /B < 1. Thus, the interfacial

material flux driven by the coherent structures is well-approximated by the interfacial

boundary condition at y = 0, (5.47a).

Typical velocities in the main channel are of order 0.5 - 1.0 ms- 1. Thus the
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interfacial exchange coefficient, k 0.03U, from (5.18) is of the order 1 cms - 1.

From k, the mass transfer Biot number, may be computed, Bim = kB/Dy, which

determines the predominance of either turbulent diffusion or interfacial mass transfer

and thus requires an estimate of Dy within the vegetated floodplain. Nepf (1999)

gives an expression for turbulent diffusion within emergent vegetation,

Dv 0.8 (CDad) 1 /3 Uvd, (5.59)

where d is the characteristic stem diameter and Uv the mean velocity in the vegetation.

Rough values for d and U, are 1 cm and 1 - 10 cms-l, yielding a diffusivity of the

order, Dy ; 1 cm 2 s- 1 . The Biot number is then estimated to be of order 103 - 104.

Thus floodplain flushing is limited by turbulent diffusion from within the vegetation.

The importance of settling relative to flushing is determined by the settling number

S, defined in (5.51). The settling rate is determined by the sediment grain size, d,

which can be divided into three ranges from largest to smallest: course silt (16/zm <

d < 62.5/m), fine silt, (4gm < d < 16gm), and clay (d < 4um) (Stumpf, 1983).

For each size class, the settling velocity, V, can be calculated from the well-known

Dietrich curve (Dietrich, 1982). For course silt (d = 62.5gm) Vs = 3 x 10-1 cms-';

for fine silt (d = 16/m) V, = 2 x 10-2 cms-l1; for clay (d = 4m) V, = 1 x 10 - 3

cms- 1. Further, the settling rate depends on the water depth, h, which can be taken,

as above, to be h m 50 cm. The settling number is then calculated as

[ [1000 cm]2 ) (5.60)

and yields a range of settling numbers from S = 0(1) for clay, S = 0(102) for fine

silt and S = 0(105) for course silt. Thus, it can be concluded that, for the typical

floodplains characterized here, all particle fractions of silt, which have a settling

rate much greater than the rate of flushing (S > 1), will deposit substantially on

the floodplain. Only a portion of the largest clay fractions, with settling timescales

comparable to the flushing time scale (S = 0(1)), will be deposited. However, smaller

clay fractions, with S < 0(1), will settle too slowly in comparison to the flushing time
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scale, and will not be appreciably deposited on the floodplain.

Solutions for suspended sediment concentration and deposition rate are shown in

figure 5-16 for various values of S and Bim. In (a) and (b) are shown profiles for

Bi,, = 1000, corresponding to the parameter regime calculated above for natural

floodplains, and indicative of the diffusion-limited regime. Consistent with this, sig-

nificant concentration gradients develop across the floodplain (a). The normalized

concentration, C/Cc for each value of S attains a maximum value equal to 1 at the

vegetation interface (y* = 1). However strong particle size fractionation can be ob-

served, as the concentrations of silt particles (S = 100 and S = 1000 based on the

calculations above) decay rapidly with distance onto the floodplain, due to strong

settling. Finer particles, particularly clays (S < 1 based on the above calculations)

tend to remain in suspension and still have appreciable concentration at the inner

floodplain extent (y* = 0). Consistent with these results, the deposition rate (b) for

larger size fractions (higher S) is very high near the vegetation interface, but decays

quickly with distance onto the floodplain. Fines have a much lower relative deposition

rate near the interface, but, as their concentration is still appreciable, constitute the

only sediment deposition further onto the floodplain. Thus the commonly-observed

fining with increasing distance onto the floodplain (Allen, 1992; Lecce & Pavlowsky,

2004) is described by the present model.

The results for the interfacial mass transfer-limited regime, Bi = 0.01, are shown

in figure 5-16(c) and (d). In this regime, the entire floodplain is in the zone of active

exchange with the main channel, and thus the suspended sediment concentration (c)

is approximately constant across the floodplain for each value of S. As expected, the

floodplain concentration declines steadily with an increase in the settling number.

The rate of deposition (d) is dominated by course material near the interface, and

finer material further onto the floodplain. However, the progressive fining is not as

marked as in the diffusion-limited regime. The concentration of course material does

not decay as rapidly onto the floodplain as in the diffusion-limited case, and thus an

appreciable amount of course material is still deposited at the inner floodplain extent,

y* = 0.
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Figure 5-16: Suspended sediment concentrations and rates of deposition for various val-
ues of the settling number, S and the Biot number, Bim at steady state. Bim = 1000
(diffusion-limited regime): (a), normalized concentration and (b), normalized deposition
rate. Deposition is plotted on a semilog scale. Bim = 0.01 (mass-transfer-limited regime):
(c), concentration and (d), deposition rate. Bim = 1000 typifies most natural floodplains,
with S > 100 for silt and S < 1 for clay sediments.
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5.8 Secondary Circulations

It is well known that the shear layer vortices that form between the main channel and

the floodplain in compound channels create secondary circulations that contribute to

the overall shear stress (Shiono & Knight, 1991). The same effect may be expected

of shallow partially vegetated channels. For fully-developed flow, the depth-averaged

momentum equation for a composite channel with a free surface is

0 = o x + O (-Ui'v') + UV - (T- + T) (5.61)

where the tilde represents a depth-average, and (u'v') is the turbulent Reynolds stress.

1 rh
f = I fdz. (5.62)

1oh

In addition, the height of the free surface above a datum is introduced, ( = h +

Zd, where Zd is the height of the bed above the datum. The quantities b and v

denote the stress due to bottom friction and vegetative drag, which, when allowed

to vary with transverse position, make the form (5.61) applicable both inside and

outside the vegetated layer. It can be seen that the time-averaged Reynolds stress,

-(u'v') is augmented by an additional shear stress due to secondary currents, UV.

Experiments by Shiono & Knight (1991) in a compound channel demonstrated that

the shear stress due to secondary circulations can be of comparable magnitude with

the Reynolds stress. The secondary currents are enhanced by the transverse depth

variation characteristic of compound channels.

In addition to directly affecting momentum and material transport across the

interface by the sweep and ejection cycle, the coherent structures in the present

experiments contribute to secondary currents, by inducing a near-bed flow. This is

is illustrated by the conditionally-averaged velocity vectors and streamlines in the

horizontal plane, shown in figure 5-17 at two different depths, z = 0.5 cm (a) and

z = 4.0 cm (b). At z = 4.0 cm the velocity structure is the same as the mid-depth

measurements presented throughout chapter 4. The streamlines spiral outward from
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Figure 5-17: Sectional streamline plots in the horizontal plane at two different vertical
depths (case X). In (a) z = 0.50 em; in (b) z = 4.0 em. In (a), the circulation spirals toward
the center (stable focus); in (b) it spirals away from the center (unstable focus).

the vortex center, in the pattern of an unstable focus (Visbal & Gordnier, 1994),

suggesting fluid is drawn away from the center. However, near the bed, the streamlines

spiral toward the center, a stable focus pattern, suggesting fluid is drawn toward

the center. It would appear that fluid is drawn toward the center of the coherent

vortex structure near the bed and directed outward through the bulk of the water

column, thus creating the secondary circulation. To assess the effect of these currents,

transverse velocity distributions were measured at several depths. These are shown in

figure 5-18 for case X. First consider the dependence outside the vegetation, y > O. In

the transects measured closest to the bed (z = 1.25 em and below) V > 0, suggesting

net flow directed away from the vegetation, consistent with flow toward the vortex

center in the boundary layer. In those measured further above the bed (z = 2.33 em

and above) V < 0, suggesting a net current toward the vegetation, consistent with

the outward spiral of the vortex near the surface. The current associated with the

secondary circulation is weak (at its strongest V = O.02~U near the bed), but it may

be important for some near-bed processes.

Note from figure 5-18 that inside the vegetation, the profiles nearly collapse, re-

vealing a uniform current directed out of the vegetation. Because the cylinder array

exerts drag uniformly over depth, the velocity also tends to be uniform over depth.

However, note that the flow leaving the vegetation, by conservation of mass, im-
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plies that there is a compensating flow downstream, and hence, /Oy # O. This is

explained by the spatial nonuniformity on the scale of the cylinder spacing, which cre-

ates streamwise velocity gradients. When a spatial average is taken over the cylinder

spacing scale, and the flow is fully-developed, the gradient vanishes 0/&y = 0.

The net shear stress due to the secondary circulation, UV has also been computed,

and its transverse dependence is shown in figure 5-19. The shear stress, normalized

by the velocity difference AU, can be compared with the interfacial friction due to

the Reynolds stress, which was shown in figure 5-14. The stress contribution from

secondary circulations is small compared with the Reynolds stress. From figure 5-14,

typical values of the normalized Reynolds stress are of the order 10-2 , while the stress

due to secondary circulations is at most of order 10- 4 . This is a much more modest

contribution to the overall stress balance than that made by secondary circulations in

compound channels, which is comparable to the Reynolds stress (Shiono & Knight,

1991). This is due to the depth variability in compound channels which accentuates

three-dimensional motions, as compared with the constant, shallow, depth in these

experiments which makes the flow nearly two-dimensional.
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shear stress due to the secondary circulation.
difference AU, rendering it in the form of a
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Chapter 6

Conclusions and Remaining

Questions

The structure of the shear layer in a partially vegetated channel is dominated by the

signature of coherent vortices. These structures derive from the instability associated

with the velocity inflection point and their frequency is well-predicted by linear stabil-

ity theory. Through strong lateral sweeps and ejections, they dominate the turbulent

Reynolds stress and increase the friction coefficient at the vegetation interface. More-

over, they contribute to the maintenance of a two layer velocity structure, with a thin

rapidly changing region near the interface, and a wider outer boundary layer region

in the main channel. The vortices are maintained by the high shear at the interface

which is accentuated by the sweeps, and feeds further turbulent energy production.

Further, the structures facilitate material exchange between the main channel and

the vegetated region in proportion to their size and frequency. This exchange rate

has been quantified and applied to the flushing from a vegetated stand and transport

of suspended sediments from a river channel to its floodplain.

The results of this study give the first quantitative linkage between the shear layer

vortices in a partially vegetated channel and the momentum and mass exchange be-

tween the main channel and the vegetation. In previous studies of channel-floodplain

flow, the shear region has been modeled with either an eddy viscosity model, or a

one-dimensional Darcy-Weisbach friction factor. While some studies have previously
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observed the coherent vortices at the vegetation interface, this study is the first to

relate the shear stress at the vegetation interface and the mass exchange to the phys-

ical characteristics of these vortices, namely their size, vorticity, and contribution to

the turbulent stresses.

The study also establishes for the first time the mechanism by which the vortices

are created and maintained. The inflection point created by the intense shear across

the vegetation interface gives rise to the instability that forms the vortices. In this

regard the vegetated channel resembles a free shear layer. However, this study demon-

strates that the partially vegetated channel has a unique mechanism of reinforcing

and maintaining this instability. The sweeps generated by the vortices in conjunc-

tion with the strong hydrodynamic drag by the vegetation maintains a high velocity

gradient at the interface. As a result, the vortices are able to feed their own energy

production, and an equilibrium cycle is achieved, marked by a self-sustaining oscilla-

tion. In this regard, the vegetated flow is very different from free shear layers, which

have been exhaustively studied for decades in the fluid mechanics literature. Free

shear layers do not exhibit an equilibrium oscillation, but rather grow continuously

in amplitude, becoming increasingly turbulent, while exhibiting a wide spread range

of frequencies. The laboratory results presented here suggest that, in fact, shallow

vegetated shear flows result in an oscillation that is more regular, and in better ac-

cord with the natural frequency predicted by linear hydrodynamic instability theory

than free shear layers. Thus these results should be of fundamental interest to the

study of turbulence, shear flows, and particularly, wall-bounded flows. That presence

of self-sustained oscillation in the channel with an array of obstructions brings up a

suite of questions about the continuum between solid-wall-bounded flows, which do

not exhibit regular periodic oscillations, and free shear flows, which exhibit transient

oscillations. The laboratory results presented here suggest that porous walls in gen-

eral may be conducive to self-sustained oscillations because they permit crossbows

into and out of the porous region.

Another important result is the self-similarity of the inner layer and outer layer

velocity profiles. The results demonstrate that there is an inner layer that is only
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dependent on the vegetation characteristics, and an outer layer that is independent

of the vegetation. To date, shear layers in vegetated flows and on floodplains have

been treated with a single length scale. This study is the first to recognize that

there are in. fact two independent regions. This fact is essential for understanding

the velocity structure and shear layer size. However, a better understanding of what

controls the outer layer width is needed, as discussed below.

This work has also demonstrated that mass and momentum transfer in a range

of vegetated flows can be understood in terms of the physical characteristics of the

vortices. This is important, e.g., for the prediction of turbulent fluxes of momentum,

aerosols, and water vapor above forest canopies, or for predicting the total conveyance

of a connected channel-floodplain flow at flood stage. Moreover, the results can be

viewed at a paradigmatic level. In the past, aquatic vegetation has often been treated

as simply a drag force, or a dissipator of energy, with the literature full of Manning

"n"s and Darcy-Weisbach "f"s to describe channel head loss. The vortex formation

mechanism is a strong example that vegetation, in fact, redistributes energy, trans-

porting mass and momentum and opening lines of communication between different

regions of an aquatic system, like the main channel and a floodplain, which have very

different ecological, and geomorphological characteristics.

From the perspective of application to natural systems, some questions are still

outstanding. While the laboratory experiments suggested the outer layer scale is

unaffected by vegetation, its upper limit in a natural channel, and thus the constraint

on the horizontal scale of the vortices, is uncertain. It appears that the vortices are

free to grow up to the scale of the lateral boundary layer, but results from shallow

mixing layers, e.g., at river confluences, suggest they may be dissipated by bottom

friction when they reach a critical size. Studies over a greater range of open channel

conditions, with varying channel width and flow depth, must be undertaken in order

to establish precisely what factors affect the outer boundary layer width.

The results suggest that the vortex exchange is an important mechanism for mass

transport across the vegetation interface in natural channels. This mechanism may

be of particular interest for overbank suspended sediment transport. Field studies of
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these vortices are, it appears, wholly lacking, as all (published) accounts of floodplain

vortices appears to be laboratory studies. Thus observation of these vortices in a

natural channel is a worthy goal, though such an effort would be complicated by the

need to make such an observation when the channel is at flood stage. In addition,

it may be possible to conduct tracer studies in field scale floodplain-channel flows to

determine the rate of transport onto the floodplain and compare it to the prediction

based on the vortex characteristics. Finally, measurements of the sediment grain size

distribution on floodplain banks would be of use in evaluating the vortex exchange

model. Even additional laboratory studies of sediment transport in the partially

vegetated channel configuration would be useful, as the sediment deposition pattern

could be measured and interpreted in light of the vortices. For slightly greater realism,

a depth-varying compound channel could be used, with a slightly elevated floodplain.

While it is hoped that this experimental study sheds light on the hydrodynamics

of natural vegetated flows, the results should also afford a more fundamental under-

standing of partially-obstructed shear flows. Shear flows adjacent to porous layers

have been studied extensively at low Reynolds numbers, but few, if any, under turbu-

lent conditions. Considerable effort has been poured into determining the appropriate

boundary condition for laminar flow adjacent to a porous medium, but none to date

have studied the transition to shear instability. This transition should be studied and

the critical Reynolds number for instability found in terms of the porous medium

characteristics.

In addition, the turbulence structure in the experimental channel studied here

resembles elements of both free shear layers and wall-bounded flows, and might offer

a connection between the turbulence structure and instability mechanisms in each.

At low Reynolds number, the turbulent transition in a wall-bounded flow occurs

through the development of Tollmien-Schlichting waves. In a free shear layer the

transition occurs through the Kelvin-Helmholtz instability. As the flow adjacent to

the cylinder array has elements of both, there may be a transition between the two

types of instabilities depending on the array characteristics, particularly the packing

density. Thus a stability analysis, and laboratory experiments, could be carried out
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at low Reynolds number to study the continuum between the boundary layer and

shear layer instabilities for flow near a cylinder array with varying porosity.

Finally, an understanding of the transition to nonlinear instability in shallow, par-

tially vegetated flows is of interest, particularly as they appear capable of converging

to a wave-like oscillatory flow. A nonlinear analysis would demonstrate the competing

physical affects, presumably drag and Reynolds stress, that lead to the equilibrium

and frequency lock-in. One approach would be to derive and study a Stuart-Landau

equation for the system, where the coefficients would represent the balancing physical

processes that lead to the equilibrium.
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Appendix A

Velocity Transects with the Laser

Doppler Velocimeter (LDV)

System

In chapter 2, section 2.4, the experimental measurements of velocity and turbulent

quantities using Laser Doppler Velocimetry (LDV) was described. Here, more detail is

given on the use and operation of the experimental flume and the LDV and positioning

system.

A.1 Details of the Flume and Pump Operation

All experiments were conducted in the 1.2 m wide, 13 m long flume with recirculating

pump, which provides flows between approximately 2 - 50 Ls-. A schematic of the

flume is shown in figure A-1. The pump draws from a stilling basin on the downstream

end and delivers it via a PVC pipe to an upstream stilling basin. As the water enters

the upstream basin from the pipe, a multiport diffuser ensures equal distribution of

the discharge and a baffling system in the basin further redistributes the flow. These

two effects help to achieve smooth entrance conditions at the upstream end of the

flume. At the downstream end, a slotted frame at the entrance to the stilling basin

accepts weirs of different heights. The presence of a weir causes supercritical flow at
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the entrance to the stilling basin, resulting in a spillover of water from the channel

into the basin. This is advantageous for removing surface scum that can produce

unwanted surface tension effects in the experiment. Ideally, the height of the still

water depth, in the absence of a current, should rise 1-3 cm above the weir height

in order to achieve the supercritical flow. At the onset of an experiment, the water

level can be optimized with the pump running to establish the water level at which

the ideal supercritical flow over the weir is observed.

The pump speed is varied using an AC controller, which controls the current

delivered to the pump. By adjusting current setting on the controller, given in Hz

(the frequency of the AC current), the flowrate of the pump can be varied. In general,

there is a nonlinear relationship between the current setting, C, the water depth,

h, and the ultimate flowrate delivered, Q, which can be written mathematically as

F(C, h, Q) = 0. This function must be calibrated uniquely for different experimental

conditions, as it depends on the frictional resistance within the channel, and thus

depends on the density of the cylinder array or any other solid obstructions, as well

as the roughness of the channel bed substrate, and the height of the weir.

For maintenance of the flume, the water should be drained regularly, at least

twice weekly, to avoid the growth of algae and other biofilms. If biofilms develop, the

addition of 2 L of regular Clorox bleach (Sodium hypochlorite) to the flume when

completely filled with water is sufficient for disinfection. In addition, the flume is

equipped with a filtration system, with replaceable fiber filters, and run by a secondary

pump.

A.2 Laser Doppler Velocimetry

A.2.1 Principles of Operation

The Laser Doppler Velocimeter (LDV) system uses optical scattering to determine

the velocity of small particles moving through the water. The system consists of

four laser beams focused at a point in the flow, which create an optical pattern,
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Figure A-1: A schematic of the laboratory flume.

known as a fringe pattern, at their intersection. When a particle passes, the fringe

pattern is optically reflected, with a doppler shift dependent on the velocity of the

particle. When the reflected pattern is processed, the velocity of the particle can be

determined. LDV is an ideal measurement technique because it is both non-invasive

and results in high temporal data rates. It's shortcoming is that it can measure the

instantaneous flow only at one point. For details on the well-established method,

(see, e.g., Buchhave et al., 1979).

The LDV system used in the experiments was manufactured by Dantec Dynamics,

and includes a 300 mW Argon-ion laser, a beamsplitter, a Bragg cell, an optical probe,

and a processer. The 514 nm beam generated by the laser is first split into two by

the beam splitter and the two beams are then shifted relative to one another by the

Bragg cell, producing one 514 nm beam and one 488 nm beam. These two beams

are then split again, producing four beams, one pair for each wavelength. The four

beams are then directed through a fiber optic cable to the optical probe.

The optics focus the four beams into a cylindrical measurement volume approx-

imately 0.8 mm in diameter and approximately 1 cm in length (long axis is in the

direction of the beam projection). The dimensions of the measurement volume de-

pend on the focal length of the probe optics, which can be varied from 16 to 40 cm by

changing lenses. The fringe pattern at the beam intersection is backscattered when

a particle passes, and the reflection is returned to the optical probe. Thus the optics

are both transmitting and receiving. The scattered light is carried back through the
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fiber optic cable to a photomultiplier, which converts the light pattern to a voltage

signal and amplifies it. The processor then performs a spectral analysis on the volt-

age signal to determine the frequency of the waveform, from which the velocity of the

particle which originally reflected the light can be determined by doppler shift theory.

The reflected signal from one passing particle is termed a "burst". Each of the two

beam pairs is responsible for measuring one velocity component, and together, the

four-beam system can measure the simultaneous two-dimensional velocity vector in

the plane normal to the beam projection axis.

A.2.2 Optimization of Sampling Rate

The LDV sampling rate is predominantly determined by three factors: the rate at

which particles pass through the measurement volume, the transmissivity of the opti-

cal path between the probe and the sampling volume, and the high voltage setting, or

signal amplification, of the returned signal by the photomultiplier. These are briefly

detailed below.

Particle Seeding

The first factor, the particle flux through the measurement volume, is determined by

the concentration of particles in the flow and the flow velocity. To achieve an optimum

sampling rate, the flow is seeded with small, highly reflective particles. Borosilicate

glass particles, 10 um in diameter, manufactured under the trade name Sphericel by

Potters Industries, are both inexpensive and effective at scattering light. The particles

come in a fine powder and should be mixed in a liquid slurry before adding to the

flume. A carboy can be set up on a continuous drip to supply the seeding particle

slurry and produce a well-mixed distribution throughout the flume. However, as both

the particle concentration and the flow velocity influence the sampling rate, it should

be noted that the sampling rate will drop substantially for low flow, regardless of

particle concentration. As a rough guideline, the optimum sampling rate for a mean

velocity of 1 cm s -1 is about 10 Hz, while the optimum sampling rate for a mean
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velocity of 10 cm s-1 is about 100 Hz.

A.2.3 Optical Path

The clarity of the optical path also substantially influences the sampling rate. For

instance, if the concentration of particles is too high, the light attenuation in the water

will be too great, and the sampling rate compromised. The same effect is caused by

too much background turbidity in the water. In addition, the transparent surface

through which the beams pass to enter the flow must be free of debris, and should

be cleaned frequently. Also note that both glass and cast acrylic allow the beams to

pass effectively, but extruded acrylic contains imperfections which destroy the optical

signal and are thus incompatible with LDV.

A.2.4 Signal Amplification

The third factor influencing the sampling rate is the high voltage setting of the pho-

tomultiplier. This can be tuned between a range of 1000 and 1800 V within the

Dantec BSA. Flow software. Higher settings amplify the optical signal, but also am-

plify the noise, so it is recommended to use the lowest voltage that gives an acceptable

sampling rate.

A.2.5 Sampling Duration

The LDV processor accepts only bursts with sufficiently high cross-correlation be-

tween u(t) and v(t), ensuring sound statistics for the cross moments, such as the

Reynolds stress, (u'v'). Nonetheless, for convergence of the higher turbulent mo-

ments, a sampling duration at any single position was of at least four minutes is

needed. However, this duration depends on the velocity and relevant time scales in

the flow and should be optimized accordingly. In the present experiments, the crite-

rion was that samples at any one position should be sufficiently long to capture at

least 10 coherent vortex structures.
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Figure A-2: A schematic of the mechanical two-axis traverse.

A.3 Positioning

A.3.1 Mechanical Traverse

In the present experiments, lateral velocity transects were made at mid-depth, and

at various longitudinal positions along the flume. The LDV was positioned under

the flume and directed upward through the bottom glass. Because opaque PVC

baseboards were used to hold the cylinder array, cast acrylic spacers (1/2" wide) were

placed between adjacent baseboards to allow a clear optical path for the LDV beams.

For positioning, the LDV optical probe was mounted on a positioning system driven

by a stepper motor and controller (OEM750X), manufactured by Parker-Hannifin,

and connected to a PC over an RS-232 cable. The positioning system consists of two

perpendicular axes mounted together, with a belt-driven linear actuator on each axis.

Thus motion is allowed in both the vertical (z-) and horizontal (y-) directions, with

a resolution of approximately 0.1 mm. A schematic of the traverse is shown in figure

A-2 and a schematic of the LDV and positioning setup is shown in figure A-3.
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Figure A-3: A schematic of the LDV with positioning system in relation to the flume.

A.3.2 Initial Positioning

To position the LDV, the optical probe is mounted on the mounting cart and con-

trolled by the Parker-Hannifin X-Ware terminal emlulator software on the PC, which

allows a variety of simple motion commands, such as distance settings, stop and go

commands, and position zeroing. The X-Ware manual has a detailed description of

all commands. Before collecting data, the LDV measurement volume must be aligned

with the bottom of the flume to establish the position of the bed, z = 0. This is done

simply by placing a flat, solid sheet, e.g., a small plate of opaque plexiglass, in the bot-

tom of the flume and focusing the beam on the surface until all four beams converge.

This defines the zero. The X-Ware software can be used to zero the vertical traverse

axis at this position by entering a "2PZ" command (commands referring to the y-axis

are prefaced with a "1" and those referring to the z-axis with a "2"). Similar zeroing

can be done with the horizontal axis. For instance, in the present experiments, the

lateral zero was taken as the center-line of the first row of cylinders. Thus the y-axis

was moved laterally until the LDV beams converged at the center of the first cylinder.

Entering the command "PZ" then zeroes the y-axis of the traverse.

After setting the zeroes of the traverse, limits switches must be set to restrict

the motion of the traverse in order to avoid collisions with the bottom glass or with

the frame of the flume. Magnetic limit switches on each of the two axes can be

moved manually using the adjustable Allen screws and should be manually placed
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at the desired limits of the probe motion. Both the zeroing and the limit switch

positioning is done manually, typically under the flume with the laser on. As such,

safety precautions are taken to minimize the stray laser reflections and eye protection

should be worn.

A.4 LDV Traverse Programming

A.4.1 Writing a Script for the Traverse

Once the initial positioning of LDV optics is complete, a traverse can be made while

collecting data with Dantec BSA flow software. For a traverse, the X-Ware software

can be programmed to execute a series of motions contained in a script file. An

sample script is shown below with comments. The script first positions the traverse

at the global zero position, then executes 30 successive movements at 1 cm increments.

After each move, the traverse pauses for 240 seconds. During this time, the LDV can

acquire 240 seconds of data at that particular position.

XD1 % initiates script

MPA % sets positioning to absolute mode

IDO % sets the distance to be the absolute zero

1G % go command: initiates the move to x = 0

MPI % sets position to incremental mode

1D7500 % sets distance to an increment of 7500 revolutions = 1 cm

L30 % loop: the following commands will be repeated 16 times

1PR % position report: queries traverse position and returns the value

T240 % traverse pauses for 240 seconds

1G % go command: moves the increment assigned above (1 cm)

N % the "end" statement for the loop

XT % the "end" statement for the script
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A.4.2 Synchronizing the Traverse and the LDV Sampling

Because the LDV data collection is not synchronized with the traverse, a simple

method is needed to correlate the data sampling with the traverse position. The

following method was employed in the experiments. The LDV data collection was

set for a duration long enough to cover the entire traverse time. For the above

example, that time would be at least T = 30 x 240 s = 2 hours. The traverse simply

was allowed to execute its positions as the data collection ran continuously. In the

post-processing it was possible to determine the time at which the traverse moved

between positions by velocity spikes in the time series. The individual

position-records can then be parsed from the single long time series for the whole

traverse by cutting around the spikes. This can be done in a very straightforward

way in Matlab.

A.5 Processing

The Dantec processor calculates the velocities returned from each burst and the

data is logged continuously on a computer using the Dantec BSA Flow software.

The data can be output in the form of an ASCII text file containing the sample

number, the time it was logged, the transit time, which is the time the particle

responsible for the burst spends in the measurement volume, and each component of

velocity, u(t) and v(t).

Once the data are exported and after they are parsed into individual position

records using the method detailed above, they can be processed by Matlab for the

mean velocities and turbulent second and third moments. Of interest are the

Reynolds stress, (u'v'), the second moments, (' 2 ), (' 2 ), and the triple correlations,

(U'
3 ), (V'

3 ), (/ 2V'), and (v'2u'). Because the data are unevenly-spaced in time, there

is a natural bias toward higher velocities (more samples at higher velocity move

through the measurement volume). The LDV processor employs

transit-time-weighting to calculate the moments (see Buchhave et al., 1979).

However, if the raw data are exported and moments are to be calculated in Matlab,
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as they were in the present experiments, the weighting scheme must be used in the

processing. The moments are calculated as follows, using the mean streamwise

velocity, (u) as an example.
N

(u) = wiua (A.la)
i=l

where

Wi = tti (A. ib)
Wi= 1 tti

and i represents the ith sample in the time series, tti is the transit time, N is the

total number of samples in the time series, and wi is the weighting function. The

same procedure should be carried out for (v) and all higher moments.

Because of the uneven time sampling, the time series must also be resampled onto a

evenly spaced grid before any Fourier analysis can be carried out. In the present

experiments, the data were resampled onto a grid with temporal spacing, At, equal

to the shortest time duration between samples in the given velocity record. Then

the standard MATLAB power spectral density function, "PWELCH.m" can be used

to obtain the power spectral densities, Pu and Pv. This function is preferable to

the more antiquated MATLAB function "PSD.m" because it produces spectra that

are properly normalized, i.e.,

j Pudf = (a2 ) (A.2)

where f is the frequency. Note that, as detailed by Tummers & Passchier (2001),

resampling the time series onto a regularly-spaced grid reduces the maximum

frequency at which the PSD is accurate to frax = S/(2r) where S is the mean data

rate of the raw, irregularly-spaced LDA data.
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Appendix B

Measuring Surface Slope with

Wave Gauges

The method for measuring the free surface slope was discussed in chapter 2, section

2.5.4. The mean force balance over the entire array is between the pressure gradient

and the hydrodynamic resistance by the array, given by (2.16) as

ICDaU2 = (1 - )gS. (B.1)
2

where S = --dh/dx is the surface slope. The mean slope over a length of array, L, is

S = -h/L. Surface displacement gauges were used to measure Ah between the

beginning and the end of the array, and thus calculate CD given U1 and a. Here the

method for measuring the displacement is described.

The surface displacement gauges are analog capacitance-based probes that can

measure a ti:me series at 25 Hz of surface displacement relative to a reference. The

gauges consist of two closely-spaced parallel rods, which, when submerged in water

develop a potential between the rods which is in proportion to the depth of

submergence. The voltage signal is sent to an amplifier and then to a

analog-to-digital converter board from which it can be logged to a computer. Up to

eight wave gauges may be connected to the amplifier and the voltage time series are

logged using SonTek ADV data collection software. A schematic of a representative
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Figure B-1: A schematic of a representative surface displacement gauge with demonstrating
the free surface displacement between the still water level and the level with flow, 3h.

surface displacement gauge and the measurement of surface slope is shown in figure

B-1.

Before collecting surface displacement data, each probe must be calibrated to

determine the relationship between voltage, V, and displacement, h,

h = B6V (B.2)

where B is a constant. The calibration was performed by moving each wave gauge

over a range of depths, z = zo, z, ... zn and measuring the corresponding voltage,

V = VO, V1, ...Vn. In general, the total range of depths spanned approximately 1 cm,

and approximately five different depths were used for each calibration. In addition,

six gauges were used in all. To simplify the calibration, three gauges each at the

upstream and downstream ends of the array were placed on a vertical traverse,

which could be vertically positioned very accurately, such that all three gauges

moved simultaneously for each vertical displacement. The displacements were

measured using Vernier calipers with a resolution of 0.001 cm. By plotting V vs. z

for each calibration, the slope, B, between displacement and voltage was calculated

for each gauge. This was done at least once per week during the times at which the

surface slope measurements were being made. Based on the results of the
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calibrations, the resolution of the wave gauges is in the range between approximately

0.1 to 0.5 mnm, and varies slightly between individual gauges. A note on data

processing. The voltage records logged by the ADV data collection application,

"ADVA.exe", were processed in MATLAB. The voltage, V, for one position record

was simply taken as the long-time average of the time series. However, some of the

wave gauges had a tendency to occasionally produce occasional isolated values of

very low voltage in the time series. These "drop outs" were rejected in the data

processing, by rejecting outliers lower than 2 standard deviations of V. The "drop

outs" are likely an artifact of the analog nature of the signal and amplification.

After calibrating the probes, the surface slope could then be measured for each

experimental condition of interest. Three gauges were placed at the upstream end of

the array and three gauges were placed at the downstream end, and the length of

array between them, L, was measured. The flume was then filled with water to the

still water depth desired for the experimental run to be measured. A time record of

voltage over approximately 4 minutes duration was then logged. For each of the six

wave gauges, this still water case provides the voltage, V, corresponding to the

reference depth of submergence, h. Following the reference measurement, the flume

pump is then set to the flow rate of interest. With flow, the depth rises everywhere

in the flume., but a surface slope develops in response to the frictional resistance of

the array. After waiting for transients to cease, a second set of voltage

measurements was logged. The time duration for logging depends on the flow, but

should be much longer, by a factor of at least 10, than the longest turbulent or

oscillation time scale present in the flow. In these experiments, data were logged for

a time of at least 10 vortex periods. The measurements with flow provided the

voltages, Vl, corresponding the surface elevation after displacement, hi. The surface

displacement for each probe between the still water case and the flow case was then

calculated from the calibration curve for that probe as

ohi = (hi - ho)i = Bi(V - V)i (B.3)
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Figure B-2: A schematic of a representative surface slope measurement with three wave
gauges on the upstream and three on the downstream end.

where i represents the ith wave gauge.

To calculate the free surface elevation drop over the array, the mean displacement at

the upstream end is first calculated,

N

dh = E hi, (B.4)-j . (B.4)i=l

where the u represents wave gauges at the upstream end. Similarly, for gauges at

the downstream end,
N

hd = 6 hi,d. (B.5)
i=l

The surface elevation change between the upstream and downstream end is then

simply

Ah = 6hd - h. (B.6)

A schematic of the surface slope measurement across the array is shown in figure

B-2.

In the present experiments, three gauges were used on both the upstream and

downstream ends of the array. This yields 6 - 4 = 2 statistical degrees of freedom

for Ah (since it is necessary to have at least 2 wave gauges, one upstream and one

downstream, to have 1 independent measurement). To have a greater statistical

sample size, in the present experiments, more measurements were made by moving

the traverse with the three gauges to a different set of locations within the array.
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This was done both with the upstream and downstream gauges. The experiments

were then run again by turning off the pump, letting transients subside, making still

water reference measurements, and then turning on the pump and taking

measurements with flow. This yielded an additional 3 measures of Ah. Within the

array, there is considerable heterogeneity of the free surface due to the wakes behind

cylinders. Thus it is advantageous to have several independent measurements of Ah.

Finally, the surface slope is

S= L (B.7)
L

and the drag coefficient, CD can be calculated from (B.1) as

CD = 2 - ( - 9 g (B.8)
aU(B8)

CD=2 aU,
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