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by
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Master of Science in Physics

Abstract
This thesis contains work on three separate topics: the spontaneous motility of functional-
ized particles, the designability of RNA secondary structures, and the statistical mechanics
of homopolymer RNAs.

For the work on spontaneous motility, we were motivated by in vitro experiments in-
vestigating the symmetry-breaking motility of functionalized spherical beads to develop a
general theory for the dynamics of a rigid object propelled by an active process at its sur-
face. Starting from a phenomenological expansion for the microscopic dynamics, we derive
equations governing the macroscopic velocities of the object near an instability towards
spontaneous motion. These equations respect symmetries in the object's shape, with im-
plications for the phase behavior and singularities encountered at a continuous transition
between stationary and moving states. Analysis of the velocity fluctuations of such an
object reveals that these fluctuations differ qualitatively from those of a passive object.

For the work on designability, we investigated RNA folding within a toy model in which
RNA bases come in two types and complementary base pairing is favored. Following a
geometric formulation of biopolymer folding proposed in the literature, we represent RNA
sequences and structures by points in a high-dimensional "contact space." Designability
is probed by investigating the distribution of sequence and structure points within this
space. We find that one-dimensional projections of the sequence point distribution approach
normality with increasing RNA length N. Numerical comparison of the structure point
distribution with a Gaussian approximation generated by principal component analysis
reveals discrepancies.

The third and final project concerns the statistical mechanics of homopolymer RNAs.
We compute the asymptotics of the partition function Zn and characterize the crossover
length scale governing its approach to its leading asymptotic behavior. Consideration of
restricted partition functions in which one or more base pairs are enforced leads to an
interesting connection with ideal Gaussian polymers. We introduce the notion of gapped
secondary structures and analyze the partition function Z?, ) for RNAs of length n with gap
at p. Another length scale emerges whose scaling agrees with that of the crossover scale
found earlier.

Thesis Supervisor: Mehran Kardar
Title: Professor
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Chapter 1

Symmetry-Breaking Motility

1.1 Introduction

The pathogenic bacteria Listeria monocytogenes has become a model system for in-

vestigations into actin-based motility. These bacteria are coated with a protein, ActA,

that catalyzes actin polymerization in the cytoplasm of a host. After infection, this

coating facilitates the spontaneous formation of a polarized actin "comet tail" that

pushes Listeria forward, propelling it rapidly at rates up to over a micron per sec-

ond [10]. Besides being an interesting biophysical phenomenon in its own right, it is

hoped that understanding Listeria's actin-based propulsion will give insight into the

cytoskeletal processes underlying eukaryotic cell motility and organization [6].

A number of in vitro experiments have been performed using artificial systems

designed to mimic Listeria motility under simplified and more easily controlled con-

ditions [35, 12, 33, 28, 5, 7]. In these experiments, the bacteria are replaced with

spherical beads coated with ActA or a functionally similar protein such as N-WASP.

When these functionalized beads are placed in cell extracts or a mixture of purified

proteins, they can acquire Listeria-like motility, even if the coating of the beads is

uniform. When such uniformly coated beads are initially placed in solution, they

first become enveloped in a spherically symmetric cloud of actin filaments. Then,

depending on the various parameters of the experiment, some beads are observed to

spontaneously break free of their actin clouds and move away, propelled by an actin
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comet tail. This symmetry-breaking phenomenon can be quite striking [1].

Several theories have been put forward to explain this spontaneous motility. van

Oudenaarden and Theriot model the actin filaments surrounding the bead as elastic

Brownian ratchets [32]. The stochastic growth of these filaments is coupled by the

bead so that the growth of one filament makes room for the growth of neighboring

filaments, generating positive feedback and the possibility of avalanching symmetry-

breaking. Mogilner and Oster suggest an alternative explanation based on the cooper-

ative failure of cross-links within the actin network [24]. Another type of model treats

the actin cloud surrounding the bead as an elastic gel [25, 30, 13]. Polymerization

occurs at the bead surface, expanding and stretching the gel until the resulting stress

causes the gel's outer surface to rupture, allowing the bead to escape. The rupture

can either be abrupt, as in the fracture of a brittle material [25, 13], or alternatively

it may arise continuously from small fluctuations in the gel thickness [30].

Our aim is not to reconcile these existing theories, or to provide a comprehen-

sive description of the observed phenomena. Instead, we investigate the behavior

of an activated rigid bead within a framework that is sufficiently general to include

many possible microscopic models. In the spirit of the Landau theory of magnetism,

we treat the actin filaments as an effective field that generates a normal force den-

sity at each point on the bead surface. The time evolution of this field depends on

the bead velocity, allowing the possibility of positive feedback as in the Brownian

ratchet model [32]. Our approach neglects some aspects of the experimental system

frequently mentioned in the literature, such as nonlocal elastic effects arising from

the crosslinking of filaments [30]. In addition, as will be discussed later, a number of

idealizations are made that may misrepresent the experimental situation(s) to vary-

ing degrees. While the theory has its weaknesses as far as the particular actin-based

phenomena in consideration are concerned, its generality makes it relevant to a larger

class of phenomena in which any rigid object is propelled by forces at its surface.
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Figure 1-1: Rigid bead surrounded by a cloud of polymerizing actin filaments. The filaments
exert a force per unit area g(r, t) on the surface of the bead.

1.2 Model

We consider a rigid bead with a given fixed shape. Points on the surface of the bead

are specified by a vector r measured from the bead's center of mass. We denote the

unit normal vector at r by fi(r). Our model for the dynamics of a functionalized bead

consists of the following elements:

1. Actin polymerization (or any other active, energy-consuming process) exerts a

force locally directed along the normal at every point on the bead surface. The

force per unit area at time t and location r is denoted by g(r, t). See Fig. 1-1.

The net force on the bead due to the activity is the integral of this local force

over the entire bead surface:

Fa(t) = /dS g(r, t) fi(r) (1.1)

2. In response to this force, the bead moves with an instantaneous velocity v(t).

The velocity is linearly related to the force via

11



va(t) = =afFz(t) =IQ /Q dS g(r, t) nz(r), (1.2)

where a, 3 = 1,2, 3 and the mobility tensor /t depends on the shape of the

object. We are unconcerned with the exact nature of the drag force associated

with this mobility1 . We only assume that at small enough velocities we may

make an expansion for velocity in terms of force, with Eq. (1.2) representing

the leading term of this expansion. At this stage we neglect rotational motion

of the bead.

3. We assume that the rate of change of g(r, t) is an unknown function of the

local value of g and the bead velocity v. The dependence on v couples the

field g at different positions on the bead and provides the possibility of positive

feedback. We expand the function (I in powers of g and v, resulting in

Og(r, t) = -P [g(r), v] = -g + av fi - 9g2 + bgv fi
9t

+dv- v + e (v fi)2 _ g3 + + r(r, t), (1.3)

where we have included all terms to second order and the simplest cubic term.

Note that the vector v appears through the scalar forms v = v-fi and v2 = v v.

This expansion is presumably valid close to a continuous transition between

stationary and moving states, during which both g and v are small; the existence

of such a continuous transition needs to be self-consistently justified. We have

rescaled g and t so that the coefficients of g and g2 are both -1. The sign of

the linear term is negative so that a uniform distribution of actin (set to g = 0

without loss of generality) is stable in the absence of any velocity coupling,

while the sign of the g2 term is unimportant since we may always consider

the dynamics of -g rather than g. We are also free to rescale lengths, and

'For functionalized beads propelled by an actin comet tail, there is evidence that drag from
tethered filaments far exceeds viscous drag due to the surrounding medium [33]. Whether this is
true for a stationary bead in an actin cloud is unknown.
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a convenient choice is to set the surface area of the bead to unity. Through

appropriate redefinitions, our previous formulas for the force Fa(t) and bead

velocity v(t) remain unchanged. For analysis and numerical simulations of

Eq. (1.3) we typically set d = e = ... = 0, and c > 0 for stability. The final

term in Eq. (1.3) allows for a stochastic noise (r, t).

1.3 Analysis

1.3.1 Spherical Beads

We first analyze the case of a spherical bead, and then generalize its lessons to more

complicated shapes. Due to its symmetry, the velocity and force are parallel for a

sphere, with ,,,, = uSpJ3. In the absence of noise 71, the dynamics admit the trivial

solution of g(r, t) = v(t) = 0 which corresponds to a static, uniform actin distribution

and a motionless bead. This solution is linearly stable for a < 3/p, but unstable to

dipolar fluctuations for a > 3/L. In the latter case, the unstable actin fluctuations

grow and saturate. Thus our model describes a symmetry-breaking transition from

a bead at rest (v = 0) to a bead in motion (v = const) as the parameter a is varied

past a critical value a = 3/fL. This parameter controls the strength of the positive

feedback in the coupling of the bead velocity to the actin field.

Near this transition we expand g in spherical harmonics with g(r, t) -+ g(Q, t) =

Eem gem(t)Yem(Q), where Q represents the solid angle coordinates 0 and A. In this

basis Eq. (1.3) becomes

dgtm -(-1+ e) gem + nonlinear terms, (1.4)

where the nonlinear terms couple different gem's with coefficients of the form f dQYelml Y 2m 2Y*,

f dQYelmlYe2m 2Ye3m3 Y*m, etc. From the linear terms in Eq. (1.4) we see that, near

transition with e - (a - a)/ac < 1 and for small actin fluctuations, the dipolar

(? = 1) modes evolve on a slow time scale t oc Jej- 1, while the other modes evolve

on a fast time scale t oc 0(1). Due to their instability (or near instability) we also
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expect the dipolar modes to be larger than the others. We therefore treat the fast

f 1 modes as adiabatically slaved to the slow = 1 modes and self-consistently

solve for their amplitudes as functions of the glm's. Substitution then yields evolution

equations for the slow modes, and by a simple transformation, the bead velocity2 :

dt 52 3 3dt = 27 1 - -2- c v3 +uv5 +..., (1.5)

with v3 = v2v, etc. Near transition the bead velocity v obeys a Ginzburg-Landau

equation consistent with spherical symmetry. When the coefficient of the cubic term

is negative, the transition to nonzero v is continuous with the steady state velocity

v* going to zero as e -- 0+. In the vicinity of this continuous transition our expansion

Eq. (1.3) is self-consistently justified and Eq. (1.5) provides an accurate description

of the dynamics. The fifth-order coefficient u, although not explicitly presented, is

negative in this region, providing overall stability.

The phase diagram and critical behavior associated with the steady-state solutions

v* of Eq. (1.5) are familiar from mean-field theory in statistical mechanics. The

cubic coefficient is negative when bl < b < b 2, where bl and b 2 are the two roots of

(ib/3- 1)( 1 b/3-2) = c (recall that c > 0). When b lies in this interval, the transition

at = 0 is continuous with v* oc e1/2 for > 0. When b lies outside this interval,

the cubic coefficient is positive and the transition is discontinuous. Tricritical points

occur when b = bl or b 2 precisely. At these points the cubic term vanishes and

v* oc e1/ 4 . We may also calculate the critical behavior through the tricritical points

along the line = 0 or a = ac. Along this line the linear term in Eq. (1.5) vanishes

and v* oc lb- b11/2 for i = 1, 2 as b varies outside of the interval bl < b < b 2.

Since the transition at a = a is discontinuous for b > b 2 or b < bl, in these

regions the v = const solutions that exist for a > a also exist and are locally stable

for a* < a < ac, where the limit of metastability a* has some b dependence. Near the

tricritical points we find that a - a* o (b - b) 2 for b < bl or b > b 2. In the region

between the limit of metastability a* and the line a = ac, both the v = 0 and the

2Equation (1.5) neglects terms of the form env3 with n = 1, 2,3,... and similarly at order v5 .
Calculation of these terms by adiabatic elimination requires more care.
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b

v = const

ac a

Figure 1-2: Phase diagram in the a-b plane for the motion of a spherical bead in the vicinity
of continuous transitions at a = a and bl < b < bc2.

(infinitely degenerate) v = const fixed points are locally stable. If there is a source

of noise, the system can in principle switch back and forth between the two states.

The phase diagram in Fig. 1-2 summarizes the above results.

To confirm the analytical results, we numerically simulated Eq. (1.3) with a fourth-

order Runge-Kutta scheme. For integrations over the surface of a sphere, we adapted

routines from the NAG library [2]. We confirmed the phase diagram in Fig. 1-2, as

well as the various critical exponents. As an example of the latter, Fig. 1-3 illustrates

the time evolution of velocity for a > a = 1. Starting from an initial (unstable)

stationary state, any small fluctuation takes the sphere into a moving phase. The

characteristic time scale for this change of state diverges as e- 1 c l1/(a - ac), while

the saturation velocity scales as 1/2 c a -a,. As indicated in Fig. 1-3, the velocity

evolution curves obtained for a number of different a can be collapsed using these

scalings of velocity and time.

1.3.2 Nonspherical Beads

We now consider a rigid bead of arbitrary shape. The analog of Eq. (1.5) for the

sphere can be obtained by taking a time derivative of Eq. (1.2) and substituting from

Eq. (1.3):

15
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0 10 20

t (a-ad

Figure 1-3: Rescaled bead speed versus rescaled time for = 3, c = 0.2, b = 1.5 (bcl 0.83
and b 2 2.17), and various values of a > a = 1. The bead begins (very nearly) at rest at
t = 0 with a small random actin distribution. The curves are nearly perfectly superimposed.

dvQ
dt (- 5p + a yv nn3 ) v + . (1.6)

At linear order, properties of the bead shape are encoded in the tensor nn, _

f dS n(r)n(r). The linear stability of a stationary bead is determined by the

eigenvalues {Ai} of the matrix / z-nn. When aAi > 1 for some i, the bead is unstable

to motion in the corresponding eigendirection. The largest eigenvalue indicates the

direction that initially becomes unstable. Of course, as in Fig. 1-2, it is possible to

have coexistence of moving and stationary states before the onset of this instability.

In fact, the analysis so far does not rule out coexistence of several states moving along

different directions.

It is interesting to note that the eigenvalues of nn are larger along directions where

the shape displays a bigger cross-section. Thus, ignoring variations in mobility, a

pancake shape prefers to move along its axis (breaking a two-fold symmetry), while

a cigar shape moves perpendicular to its axis (breaking a degeneracy in angle). In

contrast, for passive ellipsoids in a fluid, hydrodynamic effects favor motion along the

slender axis. Experiments on functionalized glass rods [8] and polystyrene disks [29]

agree with this prediction of our model. On the other hand, Listeria apparently

contradicts the theory by moving along its slender axis. This discrepancy is likely

16
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Lx

Figure 1-4: An active triangular bead moving in two dimensions. For < the bead
becomes spontaneously motile in the x-direction first as a is increased.

due to the asymmetric coating of ActA on the surface of Listeria [19].

To consider Eq. (1.6) beyond linear order, we adiabatically eliminate all modes of

g(r, t) except the three-dimensional subspace corresponding to the three macroscopic

velocities of the bead3 . If the transition at a = a is continuous, its singularities are

determined by the next higher-order term in this equation. For the sphere, symmetry

forbids a quadratic term; the cubic term leads to the singularities discussed earlier.

However, quadratic terms v3v may appear in Eq. (1.6) with coefficients Coa/ that are

related to the shape by nnn -- f dS na(r)np(r)n,(r). If such terms are present, the

velocity will vanish on approaching the transition as e, rather than A/c. To distinguish

the two universality classes along a particular direction, we merely need to ask if the

opposite direction is equivalent. Thus the velocity of a cigar-shape will vanish as

vE, while that of an arrowhead goes to zero linearly. In the language of dynamical

systems, the transition at e = 0 is a pitchfork bifurcation in the former case and a

transcritical bifurcation in the latter [31].

As an example of the transcritical case, consider the triangular bead depicted in

Fig. 1-4. We neglect rotational motion and for convenience eliminate the _92 term

in the actin dynamics Eq. (1.3). (As before we set c = 1 and d = e = ... = 0.) For

, < , the bead becomes unstable to motion in the x-direction first for increasing a,

with ac = (2 cos 0 + 2 cos2 0)-1 . Near transition vx obeys

3 This is only reasonable near transition when aA1 - 11 < 1, where A1 is the largest eigenvalue
of · nnii. The elimination of fast modes is only partial, in that the components of v in directions
perpendicular to the unstable eigenvector are fast, but still retained.
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dt= - 2b sin2()v +..., (1.7)

while vy = 0 is stabilized at the linear level on a fast time scale. The triangular

bead does not possess symmetry in the x-direction that prohibits a quadratic term

from appearing in the dynamics, and here we have explicitly calculated this term.

For a > a, the triangular bead becomes spontaneously motile to the right or left for

b > 0 or b < 0 respectively, with a steady-state velocity v* that goes linearly with e.

1.3.3 Rotational Motion

We now include the rotational motion of the bead in our analysis. We assume a linear

dependence of the bead's center of mass velocity V and angular velocity w on the

external force F and torque N experienced by the bead:

(V )( VF PVN ) F M F 
_ = , (18)

w LOF A N N

where M1 is a 6 x 6 mobility matrix4 . As before, the activity at a point r on the bead

surface generates a local force density g(r)i(r), the net force being the integral of this

quantity over the entire bead surface (recall Fig. 1-1). In addition we now consider

the local torque density g(r)r x fi(r) and corresponding net torque N. To complete

the generalization of our model, we replace the bead velocity v that appears in the

microscopic dynamics Eq. (1.3) with the local velocity of the bead surface at r, i.e. we

put v - v(r) = V + w x r. Eq. (1.3) becomes

g(r) = -g(r) + a(V + w x r) . fi(r) + nonlinear terms. (1.9)
at

Taking the time derivative of Eq. (1.8) in a bead-fixed frame, we find

4 For a rigid object in a fluid at low Reynolds number, the forms of the various mobilities /L are
constrained. See, for example, [15].
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(bead (~i)- Q + nonlinear terms, (1.10)

where

Qij = -ij + aMikBkBj; B= . (1.11)rxfi
Here the Latin indices run from 1 through 6, and as before the overline indicates an

average over the bead surface, i.e. f(r) = f dSf(r). The form of Eq. (1.11) is the same

as that of Eq. (1.6). In the stationary state V = 0, w = 0, all modes are stabilized

by the Kronecker delta, while some are destabilized by actin-based feedback, the

strength of which is governed by the parameter a. As a is increased, eigenmodes of

Q progressively become unstable, with the largest eigenvalue determining the limit

of stability of the stationary state. Near transition, the nonlinear terms in Eq. (1.10)

may be computed by eliminating fast modes. As before, we expect the form of these

nonlinear terms to respect symmetry constraints.

For objects with relatively high symmetry, the tensor MBB often takes a diagonal

form. For a thin rod oriented along the 1-direction, for example, (MBB)ij is nonva-

nishing only for i = j = 2, 3, 5, or 6, corresponding to translational motion in the 2-3

plane or rotational motion through axes in the 2-3 plane. For a planar object such

as a thin ellipsoidal disk with the normal pointing along the 1-direction, (MBB)ij

is nonvanishing only for i = j = 1,5, or 6, corresponding to translational motion

in the 1-direction or rotational motion through axes in the 2-3 plane. For a fully

three-dimensional object such as an ellipsoid, MBB is diagonal with nonvanishing

entries for all six modes. Note that as before, there is no reason a priori to rule out

the coexistence of several different modes of motion.

As a simple illustration, we consider a thin rod with length = 2 fixed at its

center and free to rotate in a plane. See Fig. 1-5. We put d = e ... = 0 in the

microscopic dynamics Eq. (1.3) and take the rotational mobility v to be unity. For

a > a = 3/4 the rod is unstable to spontaneous rotations; the unstable mode of g is

19



Figure 1-5: Thin rod rotating in two dimensions about a fixed point at its center. The actin
field g(r, t) is defined along the two long edges of the rod.

a linear function of the distance from the rod's center. Near transition, w obeys

dw 3 3 b 3 9 3 (1.12)

d--= EW+ [ (b- (b -- 2) o +.., (1.12)

where e - (a - ac)/a,. This equation is similar in form to Eq. (1.5) for the spherical

bead and should result in a similar phase diagram in the a-b plane.

We may generalize the rod problem slightly by allowing the rod to translate as

well as rotate. Since the rod is thin, there is no activity at its ends and the rod only

translates in a direction perpendicular to its axis, say with center of mass velocity

V. This is the simplest situation involving both translations and rotations, with a

single degree of freedom for each. Generically, the rod becomes unstable to one type of

motion before the other as a is increased. (As usual, there may be coexistence in some

regions of the phase diagram.) As a theoretical exercise we may ask what happens

if we tune the system so that the two modes become unstable simultaneously. This

can be achieved, for example, by manipulating the linear and rotational mobilities.

As in the case of the triangular bead we use the microscopic dynamics Eq. (1.3) with

no _92 term, c = 1, and d = e = = 0. We find near transition coupled dynamics

of the form

dw= e + 3 sW3 + 3swV2
dt 5

20
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dV = EV + SV3 + sVw2, (1.13)

where a, (4/) -1, = (a - a)/a,, s = s(ut, b) = b2 (16pu2)-1 , and the mobilities

(u for translational motion and v for rotational motion) are tuned so that v = 3,

which gives the simultaneous criticality. A second-order transition at a = a, requires

s < 0, which occurs when -(4[u) -1 < b < (4/) -1 . Rescaling w and V appropriately

yields dynamics that are potential, with an energy function of the form

1 2V 2) V4 ± I2v2.
F(w,V)=--(w +V)+ Aw4+ 2BV4- lV. (1.14)

In fact, from symmetry constraints on the macroscopic dynamics we see that

the system is always governed by a potential function of this form. Just above a

second-order transition (O < c < 1), Eq. (1.14) has possible fixed points at 1wl [ 0

and IV = 0, 1wl = 0 and VI 0, and Iwl 0 and V I y! 0. In general, the

stability of these fixed points depends on the coefficients A and B, and on the sign

of the coupling term. The somewhat surprising point is that, regardless of the values

of the parameters b, c, d,... in the actin dynamics Eq. (1.3), we always find that

< A, B < 1 and that the coupling term has positive sign. The result is that

the 1wI 0, VI 4 0 fixed point is always unstable, while the other fixed points

are always stable. A thin rod moving in two dimensions cannot stably rotate and

translate simultaneously near transition.

This observation leads to the interesting theoretical issue of determining what

sorts of objects, if any, permit such a stable combination of translational and ro-

tational motion. A propeller-shaped object seems like a likely candidate. Such an

object, however, is "naturally" inclined to simultaneously rotate and translate, i.e. the

off-diagonal inobilities pVN and PwF in Eq. (1.8) are nonvanishing (for any coordinate

system fixed in the bead). It would be interesting to determine whether an object

without this natural inclination, i.e. with VN = AWF = 0, could be driven to si-

multaneously rotate and translate at transition purely from actin dynamics. From a

purely mathematical standpoint, there is no reason to believe that this situation is
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impossible. Mathematically the situation in which V and w become simultaneously

critical is very similar to the situation, in the case of a sphere in two dimensions for

example, in which v, and vy become simultaneously critical. In the case of a sphere,

A = B = 1 in the potential analogous to Eq. (1.14); the two modes v and vy can

freely mix at transition, leading to symmetry-breaking in an arbitrary direction. The

issue in the case of simultaneous translation and rotation is whether there are general

geometric constraints that limit, for example, the possible values of A and B to a

certain regime.

1.3.4 Beads in External Potentials

We now consider an active bead moving in a potential well. For simplicity, we con-

strain the bead to move in the x-direction and ignore rotational motion. The net

force on the particle (excluding drag) is

F(t) = F(t) + Fpot(t) = J dS g(r, t)nx(r) - '(x). (1.15)

The bead velocity is given by v(t) = puF(t). Eq. (1.15) leads to the linearized dynamics

v = -[r + "(x)]v- (x), (1.16)

where r =_ I - ann and (x) has been redefined to absorb a factor of [L. At the

linear level only the harmonic component of the potential (x) contributes through

the terms -"(x)v and -0'(x). Eqs. (1.16) are the same as those describing a particle

moving through a viscous medium in a harmonic potential, except for the fact that

the "drag" r + " can become negative for large enough a. The stationary state

becomes unstable when a > [1 + "Y(O)]/Annx. The bifurcation at a = a is Hopf

so that for a > a the system is unstable to an oscillating mode. This is consistent

with the intuition of a particle in a harmonic well with "negative drag". Of course,
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nonlinearities in the dynamics that are neglected in Eq. (1.16) can control these

growing oscillations.

1.4 Fluctuations

Our objective in this section is to make some observations on the effect of the noise

term in the actin dynamics Eq. (1.3). This term is intended to account for all

manner of stochasticity in the polymerization and force generation process, including,

for example, fluctuations in the concentration of monomeric actin or other relevant

proteins, the intrinsic stochasticity of the polymerization process, disorder in the

cross-linked actin network, etc. In the absence of a microscopic model, a detailed

account of the origin or form of r1 cannot be given. For simplicity in the analysis we

take r to be delta-correlated in space and time with (r1(r, t)) = 0 and (r/(r, t)r7(r', t')) =

2A62(r - r')5(t - t'), the parameter A determining the noise strength.

1.4.1 Spherical Beads

We begin by investigating the effect of noise on spherical beads in the v = 0 phase.

We approximate the dynamics in Eq. (1.3) by its linear terms, yielding

Og(r, t) = -g(r, t) + av(t) fi(r) + qr(r, t). (1.17)at

The deterministic part of the dynamics is potential, with an energy function

[(r)] = 2 JdSg 2- a/J |dS 1dS2g(rl)g(r2)fi(rl) fi(r2) (1.18)

The steady-state probability distribution for g is given by P*[g] c e-f13[9], with

3 = A-l; the corresponding distribution for v is given by P*(v) c e-7 2 with y =

:2A (a - a). Actin correlations at long times are given by

(g(Q, t)g(Q', t'))c c A 2( - ')e-lt-t'l + 3 Acos ( t-t/ e ) (119)7---) , (1.19)4~~~i (r-l-t'J/~\
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where T = e1-1 is the relaxation time for dipolar actin fluctuations and y is the angle

between Q and Q'. Actin fluctuations on the same side (opposite sides) of the bead

are positively (negatively) correlated. Velocity correlations for the bead are given by

(v(t) v(t')) oc ATe-lt-t'l/T

Analysis of fluctuations in the v = const phase appears more difficult. Quali-

tatively we expect that for weak levels of noise the bead will move with a nearly

constant speed, while its direction of motion evolves like a random walk. At long

times and distance scales the motion is diffusive, while at short times t < A-l the

motion is ballistic. In the coexistence region, noise can drive the system between the

v = 0 and the degenerate manifold of v = const states.

1.4.2 Non-Maxwellian Fluctuations

For the remainder of the analysis on fluctuations, we focus on the issue of how the

steady-state velocity distributions for an active bead in the stationary v = 0 phase

differ from those for a passive Brownian particle. If rotational motion is forbidden,

we may perform a simple analysis by including the noise in Eq. (1.6) and keeping

only the linear terms. The resulting Langevin equation is given by

v, = KOpv + f,, (1.20)

where Koks = -56, + a nlrnn, and the noise f is characterized by

(fQ(t)) = 0; (f.(t)fO(t')) = 2A6(t - t'),ylOnKnn,n - QC6(t - t'). (1.21)

The steady-state velocity distribution in this case is Gaussian, P*(v) cx exp (vM-v3/2),

where the variances M,, can be found by solving the matrix equation KM + MKT =

-Q [27]. In contrast to a passive Brownian particle, whose velocity distribution is

Maxwellian, the matrix M,O is in general not proportional to 56,, i.e. the fluctuations

of an active particle are correlated with the particle shape and may be larger in some
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directions than others. For an object where upO and rn,n are diagonal, for example,

we have M = A-,2,t -u/(1 -alanan,) (no summation). Whether the fluctuations

of, for example, a pancake-shaped object are larger along its normal axis or along an

axis lying in its plane depend on the precise forms of p and nn. The difference

between the active and passive cases is that for a Brownian particle, fluctuation-

dissipation constraints enforce a particular relationship between the viscous drag and

the noise that leads to the isotropic velocity distribution. For the active particle this

relationship is spoiled.

The same situation occurs for rotational motion. Consider an arbitrarily shaped

active bead free to rotate in three dimensions about its center of mass. The linearized

rotational dynamics (see Eqn. (1.10)) leads to the Langevin equation

cji = Kijwj + fi, (1.22)

where now Kij = -ij + avik(r x fi)k(r x fi)j, with v the rotational mobility tensor.

The noise f is characterized by

(fi(t)) = 0; (fi(t)fj(t')) = 2A6(t-t')ikvj1(r x fi)k(r x fi)l-- Qij6(t-t'). (1.23)

The similarity with the translational case is evident. For, say, an ellipsoidal par-

ticle, the tensors K and Q are diagonal in the principal coordinate system, i.e. the

dynamics are decoupled into rotations along the principal axes. The steady-state

solution to the Fokker-Planck equation for this system [18] is Gaussian with P*(w) oc

exp (-Miw2/2). The inverse variances Mi are not in general proportional to the mo-

ments of inertia Ii of the particle, as would be the case for a rotating Brownian particle

in thermal equilibrium. Indeed, for an active particle the moments of inertia are in

fact irrelevant to the dynamics since we are considering the regime of overdamped

motion.

As a final example, we reconsider an active particle moving in an external poten-

tial. As in Sec. 1.3.4, we consider a bead moving in one dimension without rotating.
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The dynamics are given by Eq. (1.16) with the addition of a noise term f in the

velocity dynamics. We are interested in the steady-state distribution P*(x, v) for the

position and velocity of the bead. Using the Fokker-Planck equation for this system

and setting OP/at = 0 leads to

-vaOP + (r + aO,2)(vaOP + P) + (Ox)(aOP) + QO,2P = 0, (1.24)

where Q is given by the variance of the noise f, Q A 2nnx. For the case of a

Brownian particle with unit mass, the equilibrium distribution is given by P*(x, v) oc

exp[-P(v 2 /2 + O(x))] = P*(x)P*(v). In this case the particle position and velocity

are independent and covariances like (xv), trivially vanish. Eq. (1.24), on the other

hand, does not in general admit a factorable solution of the form P*(x)P*(v), doing

so apparently only for harmonic potentials. For anharmonic potentials one expects

nonvanishing position-velocity correlations; in particular, one expects that (v) = 0

only by accident.

To verify this expectation, we solved Eq. (1.24) numerically using finite differenc-

ing [26] for various anharmonic potentials. In all cases tried, we found that (xv), < 0.

Fig. 1-6 gives a typical result of this calculation.

1.5 Conclusions and Discussion

Motivated by experiments on functionalized spherical beads and their actin-based

symmetry-breaking motility, we have developed a phenomenological model for the

active motility of rigid particles. In our model a motile object is propelled by forces at

its surface generated by some energy-consuming process such as actin polymerization.

The dynamical evolution of these forces depends locally on the velocity of the bead

surface through the surrounding medium. This velocity coupling can provide positive

feedback so that the bead can become unstable to one or more modes of motion.

Spontaneous motility and symmetry-breaking are interpreted as consequences of this

instability. The main idea of our approach is to make an expansion for the force

dynamics near the instability threshold and to eliminate fast microscopic modes,
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Figure 1-6: Numerically calculated solution P*(x,v) to Eqn. (1.24) for the steady-state
probability distribution of an active bead in a one-dimensional potential well. Here r = 1,
Q = 5, and the potential has a double-well shape with q(x) = ix 4 - x 2 . The contours are
lines of equal probability. The distribution is peaked at the two minima of 0. Note that
P*(x, v) does not possess any symmetry that would cause (xv) to vanish.

leading to equations of motion for the macroscopic observables, the translational and

rotational velocities of the bead.

The main conclusions of our study are as follows. Near transition, we find that the

macroscopic velocities of the object obey Ginzburg-Landau equations consistent with

the symmetries of the object. These equations determine the phase diagram for the

macroscopic behavior of the bead near transition and provide the various singularities

encountered. These singularities (or more generally, the bifurcation structure) are

dependent on symmetries in the object's shape. We find that the fluctuations in

velocity for an active particle in the stationary phase differ qualitatively from the

Brownian fluctuations of a passive particle with the same shape.

Our model has its weaknesses when viewed from the standpoint of describing

the experimentally observed phenomena discussed in the introduction. One obvious

drawback of our phenomenological approach is that no connection is made to micro-

scopic details. As a result the model has very little to say, for example, on the effects

of varying the different experimentally tunable parameters, such as the concentra-
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tions of various factors in the medium or the density of the coating on the beads.

The model also neglects a major physical aspect of the experimental situation, that

of nonlocal interactions within the actin gel. A number of papers [25, 30, 13] have

explained symmetry-breaking for spherical beads in terms of a model where the actin

cloud is treated as an elastic material that ruptures under stress. The interaction

between actin filaments in this situation would be a complicated nonlocal effect that

depends on the topology of the bead and gel. On the other hand, there is some exper-

imental evidence for the existence of two regimes, one in which symmetry-breaking

is primarily a result of this rupturing effect, and another in which local stochastic

fluctuations in polymerization are more important [7]. If this were true, then our

model potentially captures the dominant effects for the latter case.

Our theory has other potential weaknesses as well. Strictly speaking, our model

applied to actin-based motility describes a bead in an infinite homogeneous and

isotropic medium (an actin cloud) capable of exerting force on its surface. This

medium responds instantaneously to movement of the bead, making way for the bead

in front of it and reforming behind it. The medium carries no memory of its previous

history, even if for example the bead has recently traversed through the region in

question. In the experimental situation, on the other hand, the actin cloud is plainly

finite. When the bead moves towards the edge of the cloud, one expects something

to change compared to when the bead is in the middle; in other words one expects

the relative position of the bead within the cloud to make some difference. The actin

cloud is not isotropic, since polymerization is directional and activated by the bead

coating. One would presume that the actin retains some memory of its history as

well. The importance of these additional factors in the experimental system that are

neglected in the theory is unclear.

We turn our critical eye to the theoretical aspects of our model. As we have

noted, the form of the equations of motion for the macroscopic velocities of the bead

(e.g. Eqns. (1.5), (1.6), (1.7), etc.) are determined by symmetry. Thus we could have

written these equations down immediately without any work at all. One may wonder

what exactly is gained by starting from the microscopic Eq. (1.3). The obvious poten-
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tial benefit is in being able to calculate the coefficients of the macroscopic equations of

motion in terms of experimental parameters; this would require a microscopic model

connecting our phenomenological parameters a, b, c,-.. to experimental factors. In

the absence of a microscopic model, the most that can be gained from Eq. (1.3) are

constraints for the coefficients in the macroscopic equations. In Sec. 1.3.3 for exam-

ple, such constraints led to the conclusion that a thin rod moving in two dimensions

cannot stably rotate and translate simultaneously near transition. As we speculated

in that section, perhaps more general statements of this type can be made. In the end

however, most of the mileage from Eq. (1.3) comes from its linear terms -g + av. fi.

Diagonalizing the linear dynamics gives the potentially unstable modes and the de-

gree of their instability (i.e. their critical values a). The results on non-Maxwellian

fluctuations also come from the linear theory alone. Because of the simplicity and

generality of the linear dynamics it would not be surprising if aspects of our analysis

appear again in other contexts.

Our theory is similar to those used to model pattern formation [9, 3] or "self-

organization"[14] in various contexts. These theories typically describe systems in

which a uniform, homogeneous state develops a linear instability as a control param-

eter is varied past a critical value. Above this critical threshold, the instability grows

and saturates because of nonlinearities, forming the pattern of interest. Generically,

pattern-forming systems are described near threshold by "amplitude equations" that

govern the dynamics of the slow, unstable modes and whose form is constrained by

symmetries. As in our case, these amplitude equations can often be derived from the

microscopic dynamics by eliminating fast modes.

We may view our theory as describing a novel pattern-forming system. In our

case the substrate for the pattern is motile and its movement is coupled to the

pattern-forming instability. The novelty from a theoretical standpoint is in this cou-

pling, which is geometric in nature. It would be interesting to find other, perhaps

biologically-motivated, systems in which geometry and dynamics are so intimately

related.
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Chapter 2

RNA Secondary Structures:

Designability and Combinatorics

2.1 Introduction

RNA is a biopolymer whose most important function in (most) living organisms is to

translate the genetic information encoded in DNA into proteins. Like other biopoly-

mers, RNA has structure and organization at several different levels. The sequence

of an RNA is a string composed of the four letters A, U, G, and C representing the

four different nucleotide bases available for incorporation in the backbone. A base

pair is formed when two bases form hydrogen bonds; chains of consecutive base pairs

"stack" to form helices. This level of organization is referred to as the RNA secondary

structure. Tertiary structure involves the spatial arrangement of the helices of the

secondary structure. Since helix-helix interactions are typically significantly weaker

than those of base pairing, RNA folding is viewed as hierarchical, and secondary

structure is studied in isolation without concern for tertiary interactions.

We will adopt the mathematical definition of RNA secondary structure widely

used in the literature. A secondary structure is an undirected graph on N vertices

labeled I through N representing the bases of the RNA. The edges of the graph

represent base pairing; we will refer to these edges either as "base pairs" or "bonds"

and denote them by ordered pairs (i, j). Each base can pair at most once, so each
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Figure 2-1: RNA secondary structure.

* = - + 
1 n+l 1 n n+l 1 k n n+l

Figure 2-2: Basic recursion to enumerate all RNA secondary structures. The new, (n + 1)th
base is either unpaired or paired.

vertex can have at most one edge. If a secondary structure contains the base pairs

(i, j) and (k, 1), with i < j and k < I and i < k < j, then necessarily i < k < 1 < j.

This requirement disallows graphs that contain pseudoknots. See Fig. 2-1 for an

example of a secondary structure. Forbidding pseudoknots is equivalent to requiring

that the arches in this diagram do not cross. Our final restriction is that any base

pair (i, j) in a secondary structure must have Ij - i > d, where d is the minimum

hairpin gap. This requirement accounts for the fact that in physical RNAs, steric

constraints prevent bases from pairing whenever they are very close to each other

along the backbone. The secondary structure in Fig. 2-1, for example, is legal for

d = 2 but illegal for d = 3.

As is well known, it is a simple matter to recursively enumerate all secondary

structures of length n. See Fig. 2-2. The same basic recursion can be used to calculate

Xn, the number of secondary structures of length n:

Xn+l = Xn + -k=1 Xk-lXn-k, X1 = X2 = Xd+l = 1 (21)

Because of this basic recursion, RNA secondary structures are unusually theoreti-

cally tractable. For example, algorithms based on dynamic programming techniques

have been developed that calculate the exact partition function for an RNA with a

given sequence in polynomial time [17]. These algorithms use realistic energy mod-

els and rely on experimentally measured physical parameters and consequently have

significant predictive power [16].

In this chapter we explore two theoretical topics pertaining to RNA secondary
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structures. The first is the sequence to structure map of RNA folding, and in par-

ticular, the designability of RNA secondary structures. The second is the statistical

mechanics of homopolymer RNAs. Both investigations are incomplete and represent

works in progress.

2.2 RNA Folding and Designability

2.2.1 Introduction

A general problem in biopolymer folding is to understand the mapping of sequence to

structure. For RNAs, structure prediction for a given sequence has been largely solved

by dynamic programming algorithms, so in some sense this map is understood. For

proteins, structure prediction remains a difficult problem. It has been suggested that

the RNA sequence to structure map is fundamentally different from that of proteins.

We were motivated to explore this issue by an elegant geometric formulation of

protein folding developed by Li et al [21]. In this model, the sequence of an N-residue

protein is represented by a vector of length N, S = (1, s2 ,". , SN), where si is the

degree of hydrophobicity of the ith residue. A protein structure is represented by

another vector of length N, F = (fi, f2, - * , fN), where fi = 0 for surface sites and

,fi = 1 for interior or core sites. The allowable structures for a protein are taken to be

compact self-avoiding walks on a 2D square lattice. The vectors F and S may both

be regarded as points in an N-dimensional space.

With these definitions, the energy of a protein with some sequence S folded into

some structure F can be taken to be E = -F S = [(F - S)2 - F2 - S2]. The native

structure for a particular sequence S* is that structure F* for which E is minimized;

S* is said to design F*. Noting that F2 is constant over all structures 1 , minimization

of E for given S is equivalent to minimization of the squared distance (F - S)2 .

Thus the native structure for a given sequence S is that structure which lies closest

(according to the standard Euclidean metric) to S in the N-dimensional space of

1In [21] they considered only structures that fit perfectly into a 6 x 6 square lattice. In this case,
the number of interior sites for any structure is indeed a constant.
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Figure 2-3: Schematic representation of the N-dimensional sequence/structure space. Se-
quence points are shown as dots, while structure points are shown as circles. One of the
structure points is enclosed by its Voronoi polytope. Those sequence points enclosed by the
polytope design the structure. Taken from [34].

sequence and structure points. This observation leads to a simple geometric method

for finding all sequences that design a particular structure F*: the volume around

F* enclosed by drawing bisector hyperplanes between F* and all other neighboring

structures in sequence/structure space contains all the desired sequence points. This

enclosed volume is called the Voronoi polytope. See Fig. 2-3.

One way to gain insight into the mapping of sequence to structure in biopolymer

folding is through the notion of designability [20]. The designability of a structure

is defined to be the number of sequences that design that structure. For the model

of Li et al., the fact that the sequence points are uniformly distributed in the se-

quence/structure space lead via the Voronoi construction to the conclusion that the

designability of a structure is proportional to the volume of its Voronoi polytope.

Thus the most designable structures are located in regions of low structure point

density, while the least designable structures are located in regions of high structure

point density. Insight into designability can therefore be gained by investigating the

distribution of structure points in the N-dimensional space. Yahyanejad et al. found

that the distribution of structure points within this model of protein folding can be

well approximated by a Gaussian distribution with a single peak [34].

34

A



2.2.2 Model

Our objective is to analyze RNA folding along lines similar to those above. We

represent the three-dimensional structure of an RNA N-mer by its adjacency matrix

or contact map, a symmetric N x N matrix F in which Fij = 1 if the ith and

jth residues are in contact and 0 otherwise2. In analogy with the contact map, we

represent the sequence of an RNA N-mer by an N x N matrix S in which Sij is the

energetic incentive of forming a contact between bases i and j. As an idealized model,

we suppose RNA monomers come in two varieties, e.g. purines and pyrimadines.

Then, for some RNA sequence S = S1S2S3 .· · · N where si = 0 if the ith base is a purine

and i = 1 if it is a pyrimidine, we construct the corresponding sequence matrix S by

putting Sij = 1 if si $ sj, i.e. if bases i and j are complementary, and 0 otherwise.

Note the distinction between an RNA sequence S, which has length N, and an RNA

sequence matrix S, which is N x N and exists in an M = N(N-1) dimensional space.2

We will use the term "sequence point" interchangeably with "sequence matrix", and

we will call the M-dimensional space the "contact space."

In analogy with Li et al. [21], we assign an energy for folding a sequence S into a

structure F via E = -F S = -FijSij, where S is the sequence point corresponding to

the sequence S. The sequence and structure points S and F may be regarded as points

in the same M-dimensional contact space. Reasoning as before, the designability

of a particular RNA structure is determined by the local density of sequence and

structure points in its neighborhood3 . Note that in our case, the sequence points are

not uniformly distributed in contact space. To the extent that the distributions of

the sequence and structure points can be characterized, insight will be gained into

the designability of RNA secondary structures.

2 We do not bother to specify a convention for the diagonal entries of F because these entries will
not be relevant.

3 This time, there is a minor technical point in the argument because F2 is not constant over all
structures. We can get around this problem as follows. Instead of the definition we presented, we
could have defined Fi'j = 1 for bases i, j in contact and Fi'j = -1 otherwise. With this definition, F'2

would indeed be constant. Since F' = 2F - I, where Iij = 1 for all i, j, E' = -F' S is minimized
when E = -F S is minimized, for a given sequence point S. Our problem can therefore be avoided
by a minor redefinition of F. Since this redefinition doesn't make any important difference as far as
an analysis of the distribution of structure points is concerned, we stick to our original definition.
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2.2.3 The Distribution of Sequence Points

We begin by investigating the distribution of sequence points S in the M-dimensional

contact space for RNAs of length N. For convenience, rather than investigating the

distribution of the points S themselves, we investigate the distribution of the inverse

points S* obtained by inverting the points S through the point (1/2, 1/2,1/2,..., 1/2)

in contact space. In other words, we investigate the distribution of the points S*

constructed from RNA sequences S by putting S = 1 if i = j and Si*j =- 0

otherwise4 . We reiterate that the distributions of the points S* and the points S in

contact space are identical up to inversion. From now on we drop the asterisk and

refer only to the sequence points S.

Before proceeding further we make some basic observations. For any RNA se-

quence S and its corresponding sequence matrix S, the inverse sequence S* defined

by s* = 0 if i = 1 and vice versa has an identical sequence matrix. Thus there are a

total of 2N-1 distinct sequence points in contact space, each one twofold degenerate.
N(N-1)

There are 2M = 2 2 vertices of the unit hypercube in contact space; the sequence

points are sparse when considered as a subset of these vertices.

Correlations in the Distribution

One way to investigate how the sequence points are spread throughout contact space

is to compute the cumulants (Sij)c, (SijSkl)c, (SijSklSmn)c, etc., where the averages

are taken over all sequence points S. The cumulants give the correlations between

the components of the sequence points in different coordinate directions in contact

space. For the means and covariances we have

(Sij)e = 1/2, (i j) (2.2)

4 With this definition the sequence points S* can be used to model proteins within a simple
hydrophobic/polar model. There is positive incentive for hydrophobic/hydrophobic or polar/polar
base pairing and no incentive for mixed pairing.

36



iKZŽ3
Figure 2-4: Diagram for the "loop" cumulant (SijSjkSki)c.

O CS

Figure 2-5: Nonvanishing cumulants up to order five.

(SijSk)c = { 1/4, if ij, kl same pair (2.3)
0, otherwise.

For convenience we may represent higher order cumulants with diagrams. Fig. 2-

4 is one example. Various rules may be applied to simplify calculations of these

cumulants. Only one-point irreducible diagrams are nonvanishing, for example. Also,

cumulants for topologically equivalent diagrams differ only by a factor related to the

difference in the order (number of edges) of the two diagrams. The nonvanishing

cumulants up to order five are depicted in Fig. 2-5.

From the means (Sij)c and covariances (SijSkl)c we conclude that the distribu-

tion of sequence points is centered at (1/2, 1/2, ... ,1/2) and that the distribution is

roughly rotationally symmetrical.

One-dimensional Projections of the Distribution

Another approach to analyzing the distribution of sequence points is to project them

onto diagonals of the unit hypercube and to analyze the resulting one-dimensional

distributions. For example, let I be the vector diagonally spanning the hyper-

cube defined by Iij = 1 for all i, j, and consider the distribution of the quantity

S. I = SijIij = i<j Sij over all sequence points S. This quantity ranges from a
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Figure 2-6: Distribution P(x) of the quantity x = S I over all sequence points S. Here
N = 150 and (x) t 5590.

minimum of (N 2 - 2N)/4 for sequence points whose corresponding sequences contain

N/2 ones, i.e. sequences for which Ei si = N/2, to a maximum of N(N - 1)/2

for sequence points whose corresponding sequences contain either all 's or all O's. A

short calculation yields

e-(4x-N 2+2N)/2N

P(x)dx 4x-N 2 + 2N dx (2.4)

where P(x) is a continuum approximation to the density of sequence points S for

which S I = x. This distribution is highly skewed with respect to its mean (x) =

N(N - 1)/4. See Fig. 2-6.

In fact, the distribution Eq. (2.4) holds for all 2 N- 1 diagonals of the hypercube

that pass through a sequence point. See Appendix A. We expect the distribution to

be similarly skewed for diagonals "near" one of these 2
N- 1 diagonals. However, due

to the very high dimensionality of the contact space, there are still an overwhelming

number of diagonals to account for. A calculation of the normalized cumulants of

the one-dimensional projections of the sequence point distribution shows that, for the

overwhelming majority of diagonals of the hypercube, this one-dimensional distribu-

tion approaches normality for large N. See Appendix A. We conclude that as a first
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approximation we may take the distribution of sequence points to be a rotationally

symmetric Gaussian centered at the center of the unit hypercube.

2.2.4 The Distribution of Structure Points

We now consider the distribution of RNA structure points F in contact space. For

practical values of N, exhaustive enumeration of all structures is impossible. To

investigate the distribution of structure points without full enumeration, we follow the

procedure of calculating the moments (Fij), (FijFkl), etc. Taking the averages over all

secondary structures of length N, we have (Fij) = DN,ij/XN, (FijFkl) = D(2)/XN

etc, whe17r D(m)etc., where D('-N,jkl is the number of secondary structures of length N that contain

the m base pairs (i, j), (k, ),.... These quantities may be recursively calculated.

Explicitly, we have for the first two orders

n-d i-1

Dn+l,i,j = Dn,i,j + Dk-l,i,jXn-k + Dn-k,i-k,j-kXk-1 (2.5)
k=j+l k=l

i-1
D(2) / ( 2) (2 )n+lijkl -p,i , p j+ p -p,k-p,-p

p=l
k-i n-d

+ E Dp_+i,jDn-pk-pI -p+ E )(2) lXn-P (2.6)p-l,i,j,k,l n-p ·

p=j+l p=l+l

The second recursion is for pairs (i, j) and (k, 1) that are not nested, i.e. if i < j and

k < 1, then either i < j < k < 1 or k < I < i < j. If instead the pairs are nested, then

a recursion similar to the recursion Eq. (2.5) for a single base pair applies.

A great simplification occurs if d = O, i.e. if we ignore physical constraints and

allow any two bases to form a base pair (including nearest-neighbors along the back-

bone). In this case we have

Dni,j = X _ilXn-j+i-l (i < j) (2.7)
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D(2) - I X-i-_1Xt-k-1Xn-j+i-l+k-2, i < j < k < 
n,i,j,k,l (2.8)

Xl-k-lXj-i-l+k-2Xnj+i-1, i < k < 1 < j

In other words, to find the number of secondary structures Dn,i,j with the bond (i, j),

we simply multiply the number of structures possible for the interior region i < x < j

by the number of structures possible for the exterior region (1 < x < i) U (j < x < n).

The double-bond quantity D(2J) k similarly factorizes; the result depends on whether

the bonds (i, j) and (k, ) are nested or not. This factorization clearly generalizes to

the higher order quantities D(m).

The means (Fij) give the center of the distribution of structure points, while

the covariances (FijFkl), give the spreads in various directions. The matrix Cijkl =

(FijFkl), is real and symmetric under ij +- kl; it can therefore be diagonalized to give

the principal axes of the distribution along with the variances in those directions.

From the symmetry Cijkl = CN+1-i,N+1-j,N+1-k,N+1-l, we see that if Fij is an

eigenvector of C, then the vector FN+1-i,N+1-j is an eigenvector with the same eigen-

value. Thus if an eigenvalue is nondegenerate, its corresponding eigenvector possesses

the mirror symmetry Fij = FN+1-i,N+1-j. If d = 0, then in addition to mirror sym-

metry, C possesses the translational symmetry Cijkl = Ci+p,j+p,k+p,l+p for any integer

p (taking the indices modulo N). We can utilize this symmetry by changing into

Fourier variables with

Fqq, = N C ei(qj+q')(Fjj, - (Fjj,)), (2.9)
jj,

where q and q' range over 0, 27r/N,..., 27r(N - 1)/N. Then the new matrix

Cqqlqq, -- N2 E e(q+q' --q3-jq )C3 (2.10)
jj'jj,

is Hermitian and has the same eigenvalues as the original correlation matrix Cijkl-

Using translational symmetry to write Cijkl -- Cyg, with y - j-i, 1 - k, and

z - k- i, we find

40



Pi

0.15 .

0.125

0.1

0.075

0.05

0.025

20 40 60 80 1

Figure 2-7: Eigenvalues of the correlation matrix C for d = 0 and N = 14. There are a
total of 91 eigenvalues.

1

Cqq q= N q+q'-q-q(mod 27r) E ei(qY-z-'(Y+z))C y (2.11)
y,y,z

so that the matrix elements Cqq' vanish unless q + q' = q + q'(mod 27r). From this

fact and the mirror symmetry Cijkl = CN+1-i,N+1-j,N+1-k,N+1-l we conclude that the

matrix Cqq'qq' is real, and in turn that Cqq'qqf = C2r-q,27r-q,27r-q,27r-q'.

We now analyze the spectrum of eigenvalues of Clq, q. Since the nonvanishing

elements have q + q' = q + ', the matrix is block diagonal, with blocks that may be

labeled with their value of q + q'. The eigenvalues of the matrix are the union of the

eigenvalues of the blocks. From the fact that Cqq'qq = C27r-q,27-q,27r-q,27r-q', we see

that the blocks q + q' = n and q + q' = -n(mod 27r) have the same eigenvalues. Thus

most eigenvalues come in pairs, the exceptions being the eigenvalues associated with

the q + q' = 0 and q + q' = 7r blocks (the latter occurring only when N is even). The

e igenvectors associated with nondegenerate eigenvalues possess reflection symmetry,

as noted earlier. Fig. 2-7 illustrates a typical set of eigenvalues.

Using the principal directions and variances given by the diagonalized correlation

matrix, we can write down a Gaussian distribution that approximates the true struc-

ture point distribution in contact space. However, beyond having the correct first

and second moments, the Gaussian may or may not resemble the true distribution.

To investigate this numerically, we compared the approximate and true distributions
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Figure 2-8: Comparison between the Gaussian approximation and the true structure point
distribution for d = 0 and N = 14 in two principal directions. The histogram is the true
structure point distribution, calculated through exhaustive enumeration of all structure
points. Left: distributions projected along the 18th eigenvector, with eigenvalue A18

0.0575. Right: distributions projected along the 50th eigenvector, with eigenvalue A50

0.0288.

along the principal directions, using exhaustive enumeration to generate the true dis-

tribution. Fig. 2-8 shows some typical results. For the small values of N that are

numerically accessible (say, up to N - 16), we find that the Gaussian approximation

is appropriate for some principal directions but not others. Superficial observations

indicate that the approximation works better for principal directions associated with

smaller eigenvalues. Further investigation would be needed to determine why some

directions in contact space posssess the non-normal distributions, and, if possible,

the form of those distributions. It is possible that deviations from the Gaussian

approximation disappear for larger values of N.

2.2.5 Discussion

Motivated by the work of Li et al. on the designability of protein structures [21],

we have investigated the designability of RNA secondary structures within a simple

toy model of RNA folding. In this model RNA bases come in two types and base

pairing is favorable for complementary monomers. We use the contact representation

for RNA structures and an analogous representation for RNA sequences so that both

sequences and structures may be regarded as points in a single contact space. Insight

into designability can be gained by investigating the distributions of sequence and
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structure points in this space.

We find that one-dimensional projections of the sequence point distribution onto

diagonals of the unit hypercube asymptotically approach the same normal distribu-

tion with increasing N. The interpretation of this result is not clear; it may be a

simple consequence of the very high dimensionality of the contact space, as opposed

to a meaningful characterization of the sequence point distribution. We performed a

principal component analysis of the structure point distribution [34] for the ideal case

d = 0, partially diagonalizing the correlation matrix analytically and finishing the di-

agonalization numerically. We compared the actual structure point distribution with

a Gaussian distribution with the proper covariances by exhaustively enumerating all

secondary structures of length N. For the very limited values of N that are accessible

numerically, we find that the Gaussian approximation works in some principal direc-

tions but not others. Further investigation would be required to better understand

this distribution.

2.3 Gapped RNA Secondary Structures

In this section we investigate the statistical mechanics of homopolymer RNAs, for

which all the bases are equivalent. This highly simplified treatment directly describes

physical RNAs only in the molten phase [4]. However, from a theoretical standpoint

this toy model yields interesting results, such as a connection with ideal Gaussian

polymers and a characterization of the length scale ~ beyond which RNAs are in the

asymptotic or thermodynamic limit.

2.3.1 The Homopolymer RNA Partition Function Zn

Recall that the number Xn of secondary structures of length n can be calculated

recursively via the basic recursion Eq. (2.1). With the inclusion of a Boltzmann

weight, this same recursion can be used to calculate the partition function Zn for a

homopolymer RNA of length n [4]:
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n-d
Zn+ = Zn + qZk-lZn-k; q - ep . (2.12)

k=1

Here is the energy of base pairing, and q is the corresponding Boltzmann weight.

We may use standard methods of combinatorics to derive the asymptotic behavior

of the series Zn (and therefore Xn, by setting q = 1) from Eq. (2.12). Multiplying

both sides by zn and applying n=O0 leads to

(2- 1) = 2 + qz2(2 - d), (2.13)
Z

where Zm - 1 + z + z2 +. + zm for m > 0, Z1 - 0, and 2 = Z(z) - n=o ZnZ n

is the generating function for the series Zn. Solving for Z gives

1-Z +qZ2Zdl- /1-Z + qZ2Zd_1)24qz 2
(z) 2qz2 (2.14)2qz2

According to the formalism of singularity analysis, the singularities of Z(z) determine

the asymptotic behavior of Zn [11]. These singularities occur at the branch points of

the square root in Eq. (2.14). The dominant singularity p is the singularity of smallest

modulus, or the smallest root of the polynomial a(z) = (1 - z + qZd_1) 2 - 4qz2 .

a(z) and p depend on the minimum hairpin gap d; for d = 0 and d = 1, we have

p = 1/(1+2,/F) and p = (1- /1 + 4 1+2 /)/ 2 q, respectively. The large q behavior

of p(q) for d 1 is given by5

1 1

1ig. 2-9±· shows . (2.15)

Fig. 2-9 shows the behavior of p(q) as a function of q for various values of d.

Note that the leading large q behavior of p is different when d = 0 compared to

when d > 0. As we saw in Sec. 2.2.4 with regards to translational invariance and the

factorizability of the quantities Dn,i,j etc, (2when d = the system possessesn,i,j,k,l, etc., when d = 0 the system possesses

many unique properties. In connection with the behavior of p at large q, we point out

another of these properties. When d > 0, the ground state of the system is the unique

5See Appendix B.

44



p
1.(

o.E

o.E

0.4

0.2

2 4 6 8

Figure 2-9: q dependence of the dominant singularity p for d = 0, 1, 2, oo (low to high).

Figure 2-10: Unique ground state secondary structure for n = 12, d = 2, and q > 1. In
physical space this structure resembles a hairpin.

or weakly degenerate (depending on the parity of the number of bases n) "hairpin"

structure depicted in Fig. 2-10. When d = 0 on the other hand, the ground state of

the system is highly degenerate. It is plausible that the differing large q behavior of

p(q) when d = 0 as opposed to when d > 0 is a consequence of this difference in the

degeneracy of the zero temperature state.

Returning to the asymptotic behavior of the series Z, we use tabulated results

from singularity analysis to find [11]

Zn C0/- + C/2 +-**.* = C 0o/2 1 I+ + (2.16)n3 /2 n5/2cl +··· co n3/2 [,, con

for constants co, cl,... that may be analytically calculated. The leading behavior

, , p-n/n3/ 2 is characteristic of the square-root singularity in the generating func-

t;ion Z(z). The ratio c/co gives a crossover length scale for Z,, or the length scale

beyond which the RNA may be thought of as being in the asymptotic regime [22].

For d = 0, we have c/co = -9/4 - 3/(1 6 v/7). In principle, we have a procedure

for analytically calculating cl/co for any d; however, as d increases, exact calculations

rapidly become too complicated to carry out. One thing we do find is that in the limit
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Figure 2-11: Slip-linked RNA.

of large q, we have cl/co - q1/4 , q/2 for d = 1, 2, respectively. Note the qualitative

difference between the cases d = 0 and d # 0; for d = 0 the crossover scale does not

increase with q.

2.3.2 The Restricted Partition Function Z) and Gapped

Secondary Structures

We define the restricted partition function Z(r) to be the partition function for an

RNA of length n in which the bases i and j are bonded. As observed previously in

Sec. 2.2.4 in connection with the quantity Dn,ij, the bond (i, j) serves to divide the

RNA into two disjoint regions, the region interior to the bond and the region exterior

to the bond. In the ideal case d = 0, we have the factorization analogous to Eq. (2.7):

Z(,i- = Zj-i-lZn-j+i-1, (2.17)

where the right-hand side involves unrestricted partition functions. Using the asymp-

totic value of Z gives

(r) p2-n
nZi (j i - 1)3/2(n - j + i - 1)3/2' (2.18)

This form for the restricted partition function leads to an interesting physical

consequence. Suppose we imagine that an RNA is threaded through a slip-link [23].
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Figure 2-12: Failure of simple factorization of Z(rij for d $ O. This secondary structure is
not accounted for in the product Zj-i-lZn-j+i-l (assuming that one visualizes the factor-
ization in the natural way).

See Fig. 2-11. The slip-link forces two bases i and j to bond, but the RNA is free

to slide through the slip-link so that i and j may vary. In equilibrium, the RNA

will explore the various possible configurations with weights given by Z(r). The

particular form of Zri j given by Eq. (2.18) dictates that the RNA will tend towards

configurations where either the loop has length n1/ 2 and the exterior region has the

remaining length - n, or vice versa. In other words, the loop in a slip-linked RNA

will prefer to be either "tight" or "loose". This result is identical to a result obtained

by Metzler et al. for slip-linked ideal Gaussian polymers [23]. The correspondence is

the result of the factorizability of Z(i j along with the interesting coincidence that

the asymptotic form Zn p-n/n 3/ 2 is the same as the configurational entropy of an

ideal polymer loop in three dimensions.

For the ideal case d = 0, the factorization in Eq. (2.17) generalizes to higher-

order restricted partition functions in which additional pair bonds are enforced. The

calculation of arbitrary restricted partition functions in this case is very simple and

requires only knowledge of the behavior of Zn. The consequences for more complicated

slip-linked RNAs will be as given in [23].

We now consider the non-ideal cases d > 0. At first glance it may appear that

the factorization of Zi j still works; after all, the bond (i, j) still separates the RNA

into an interior and an exterior region. The reason the factorization fails is that the

partition function for the exterior region is no longer equal to Zn-j+i-l See Fig. 2-12.

To resolve this difficulty, we introduce the notion of a gapped secondary structure.

A gapped secondary structure of length n, minimum hairpin gap d, and gap at p is a

graph on n vertices with the usual properties, with the modification that base pairs

(i, j) with i < p < j do not have to obey the minimum gap requirement. In other
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Figure 2-13: Gapped secondary structure with d = 2 and gap at p. Bonds that cross the
dotted line do not have to obey the minimum gap requirement. Without the gap at p, this
would not be a legal secondary structure.

words, such base pairs (i,j) may have Ij - i < d. See Fig. 2-13. We denote the

partition function over gapped secondary structures with length n and gap at p by

z.g)
"n,p-

With this definition, the restricted partition function Zn(,j again factors:

Zn(rj = ZiilZn(g)j+li_ 1 (2.19)

where the right-hand side now involves the partition function for secondary struc-

tures with gap at i - 1. Clearly, we may generalize the above definitions to doubly

gapped, triply gapped, etc. secondary structures. Then, even if d 0, restricted

partition functions for RNAs with an arbitrary number of bonds will be factorizable

into products of gapped and ungapped partition functions.

7(g)2.3.3 Analysis of the Gapped RNA Partition Function Zn,p

The quantity Zn(,p satisfies a recursion relation similar to the ones seen earlier:

p n-g
Z ®g) _ 7(9) -+ qy z Z ®g Z ®g I -k- (2.20)

=n+l,p n ,p 1Z n-k,p-k + q E k-l,PZ n -k

k=l k=p+l

Multiplying both sides by xnyP and applying E,p gives

Z(xy)2(g)(x , y) =() (2.21)
1 - x - qx2y2(xy) - q2[2(X) - 2 d_(X)]'

where 2(g)(x, y ) O Z)xnyP is the bivariate generating function for the series

Z(9,) and as before Zm - 1 + z + z 2 . + zm . By performing asymptotics on Z(g)(x, y)

and its derivatives we can compute the asymptotic statistics of the series Z(g,p.
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Figure 2-14: Diagrammatic representation of the recursion (2.22). Each diagram with a
bond on the right-hand side represents the set of illegal diagrams with the depicted bond
as the most interior bond relative to the gap at p.

There is an alternate recursion relation for Z7n,) that will be useful. This relation

stems from the observation that most gapped secondary structures on n bases are

also ordinary secondary structures on n bases. The only gapped structures that do

not qualify as ordinary secondary structures are those that have one or more bonds

spanning the gap at p that do not meet the minimum hairpin requirement. We may

classify these extra illegal diagrams by their innermost illegal bond, i.e. that bond

which is most interior relative to the gap at p. The partition function for these sets

of illegal diagrams can be written in terms of gapped partition functions. The net

result is the recursion

n,p + n-2,p-1 + n-3,p-2 + qn-3,p-1
qZ(g) + q9(g)

·. q n-d-l,p-d + qn-d-l,p-l
d+l k-1

Zn + q Z £ -(g) (2.22)
k=2 1=1

See Fig. 2-14 for a diagrammatic representation of this recursion. Note that the sum

is truncated if p < d or p > n - d.

For given n, the gapped partition function Zn,) can be viewed as a statistical

distribution for p. The typical behavior of this distribution in the long RNA or large

n limit is shown in Fig. 2-15. The gap p has roughly equal probability to be located

anywhere along the RNA, except at the very ends where there is a drop-off in the

distribution. Physically, this drop-off arises from entropic disadvantages that are
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Figure 2-15: Z ) (normalized) vs. p for a long RNA. Here d = 3, q = 10, and n = 272.

magnified (diminished) for q > 1 (q < 1). The value of Z, ) over the flat plateau can

be computed using the recursion Eq. (2.22). Asymptotically (for large n) this quantity

approaches the value6 Zn/(1 - r), where r = q(p2 + 2p3 + ... + dpd+l) and as before

p is the dominant singularity for the polynomial a(z) = (1 - z + qz 2Zd_1)2 - 4qz2 .

We also compute the length scale characterizing the edge effect; the drop-off at the

tails of the distribution has an exponential form with a characteristic size that scales

as - qd/4 for large q (see Appendix B).

The behavior of the gapped partition function provides an alternative length scale

characterizing long RNAs, compared to the crossover scale cl/co discussed earlier in

connection with Eq. (2.16): an RNA is long when Z(g,) has the flat-top shape shown

in Fig. 2-15. Intuitively we expect this length scale to be the same as that of the

edge effect, with I ' qd/4, although the precise argument is not clear. An explicit

approach to extracting this length scale is to follow the decay (with increasing n)

of the normalized cumulants (pn)c/(p2)c/ 2 to their asymptotic values for the large

n distribution. In principle, these cumulants may be computed from the bivariate

generating function Eq. (2.21); in practice the details are quite cumbersome. With

some work using this approach we find that at large q the long RNA length scale

behaves as ql/4 and q/ 2 for d = 1 and d = 2, respectively, in agreement with the

scale of the edge effect as expected. This also agrees with the scaling of the crossover

length discussed earlier in connection with Eq. (2.16). It seems plausible that all

6See Appendix B.
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Figure 2-16: The distribution Z (g) (normalized) in the finite RNA regime. Here d = 3,
q = 30, and n = 152.

these length scales are in fact the same, for all d.

When an RNA cannot be considered long, finite-size effects come into play. Fig. 2-

16 shows a typical distribution Z7() in this regime. The shape of the distribution is

qualitatively different than that observed previously. As n is increased, the sharp

central peak diminishes in relative size, becoming the flat plateau we saw earlier in

the thermodynamic limit.

2.3.4 Discussion

We have explored a number of issues pertaining to the combinatorics and statistical

mechanics of homopolymer RNA secondary structures. We began this section by

calculating the asymptotic behavior of the homopolymer RNA partition function

.Z,. A crossover length scale c1/co emerged characterizing the approach of Zn to its

leading asymptotic behavior for increasing n. We next investigated the restricted

partition function Zij for RNAs with the bond (i, j). For the ideal case d = 0

this quantity factorizes, leading to an interesting connection with slip-linked ideal

Gaussian polymers. The notion of the gapped secondary structure was introduced

so that factorization of Z()j would be possible for the non-ideal cases d > 0. We

analyzed the behavior of the gapped partition function Z,) in the long RNA limit

and extracted a length scale characterizing when this limit is reached. To the extent

that calculations could be made, this length scale agreed with the crossover scale
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found for Z. We hypothesize that all the length scales are in agreement, behaving

as , qd/4 for large q.
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Appendix A

Results on the Distribution of

Sequence Points

In this appendix we present detailed arguments for the results stated in Sec. 2.2.3.

We begin by formalizing definitions.

Definitions An RNA sequence is a binary string S = S1S2S3 ... N We consider

sequences with fixed length N. Let the sequences S exist in the N-dimensional

sequence space U with Hamming metric I u, i.e. 15 iu = Ei Isil. We always denote

sequence vectors with a hat.

For every sequence S C U, there is a corresponding sequence point S E V where

V is the N(N-1) -dimensional contact space. A sequence point is constructed from its2

corresponding sequence by putting Sij = 1 if si = sj and Sij = 0 otherwise. Let the

Hamming metric I ... v be defined on the contact space.

The inverse A* of a sequence point A is defined by A* = 1 if Aij = O and A = 0

if Aij = 1. The inverse S* of a sequence S is similarly defined. I

To analyze the distribution of sequence points in contact space we project the

distribution onto diagonals of the unit hypercube. For diagonals that pass through a

sequence point, this distribution is always the same.

Proposition 1 Let X V be a given sequence point and let X* be its inverse.

The points X and X* define a diagonal X = X*- X of the unit hypercube in V.
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The distribution of the quantity (S - X) X over all sequence points S is the same,

regardless of which sequence point X is considered.

Proof Let S be a sequence point, and consider the sequences X and S corresponding

to X and S. The distance IS- XIv is wholly determined by the distance S - XIu; if

the latter is equal to n with 0 < n < N, then the former is equal to n(N - n). Noting

that X = -2X+I where Iij = 1 for all i, j, we have (S-X) .X = (S-X) (-2X+I) =

IS - Xv. Since the distribution of n = IS - Xlu taken over all sequences S is

independent of X, the distribution of IS - Xlv and hence (S - X) X taken over all

sequence points S is independent of X. I

The following proposition demonstrates that, as N goes to infinity, the projected

one-dimensional distribution approaches a normal distribution for a fraction of all

diagonals of the hypercube that approaches 1.

Proposition 2 Let C be the set of vertices of the unit hypercube in V. For G E C,

define G = G* - G, where G* is the inverse of G. Then as N + oo, the distribution

of the quantity (S - G) G over all sequence points S approaches the same normal

distribution for a fraction of the points G E C that approaches 1.

Proof Let G E C. First note that G = -2G + I with I = (1, 1, .. ,1) so that

Gij= { }if Gij = { }. Thus (S-G).G = SG+IGIv and ([(S-G)G] m)c=

((S. G)m)c + Jm,1lGIv, where the averages are taken over all sequence points S.

We compute the cumulants ((S. G)m)c. For the mean and variance we have

(G S) = Gij(Sij) (A.1)

= 2Gij (A.2)
i<j

= M/2- IGIv (A.3)

((' S)2 )c = GijGkl (SijSkl)c (A.4)

1 (ij,) 2 = M/ 4 (A.5)
i<j

54



where M = N(N-1) and we have used Eqs. (2.2) and (2.3). Note that (G S) =

M/2 - GIv = ((S - G) G) = M/2. These results are what we expect.

Now we continue to normalized higher order cumulants, and demonstrate that

they tend to zero as N -- oo. For third order cumulants we have

((S 0)3)c = GijGklmn(SijSklSmn)c (A.6)

= 8GijGjkGki, (A.7)

because the only nonzero third-order cumulant (SijSklSmn)c is the "loop" cumulant

(SijSjkSki) '8

If G is a sequence point, then GijGjk~ki = -1 (no summation) always. The

vast majority of points G G C, however, are not sequence points. In fact, we have

(GijGjkGki)G = 0, where the average is over all 2 M possible points G E C. We also

have

((GijGjkGki) 2 )G = (GijGjkGkiGmnGnoGom)G. (A.8)

'The only nonvanishing terms in the right-hand side occur when i, j, k and m, n, o are

the same loop, i.e. when the two sets of indices are permutations of each other. Thus

((GijGjkGki) 2 )G = (combinatorial factor) x ( N3, (A.9)

where the combinatorial factor in this case is just 3! 3!. Thus the quantity GijGjkGki

has 0 mean and standard deviation ' N3 / 2. If we consider the subset Q C of

all points G for which GijGjkGkil < N2 , then as N - oc, Q encompasses the

overwhelming majority of points G E C. For these points, the normalized skewness

behaves as

((S. G)), N2
-- ,0. (a. 10)

((s. )2)32 N3

55



The argument generalizes to the nth cumulant ((S G)n)c. Again, we have

((S. G) = ijGkl.. (Sijkl..)c (A.11)

In general, there are many different types or diagrams of nonvanishing cumulants

contributing to the right-hand side. However, the "loop" diagram dominates over the

other nonvanishing diagrams because there are far more possible loop diagrams than

any other type. Thus

((S O)n)c OijOjk... n-loop · ·. (A.12)

Again, if G is a sequence point, then GijGjk... = 1 or -1 (no summation) always.

When all points G E C are considered, however, we have (GijGjk ... n-loop ... )G = 0

and

((GijGjk .')2)G = (ijjk... loop 1 ... Gijj'k' .. loop 2...)G (A.13)

N . (A.14)

The quantity GijGjk . n-loop .. has 0 mean and standard deviation N n/ 2. If we

consider the subset Q c C of points G for which Iijjk ... I < Nn/ 2+1 , then as

N -- oo, Q contains the overwhelming majority of points G E C. For these points,

((S.G)), N/ 2+the relative nth cumulant <(s.0)2)n2 0. 
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Appendix B

Results on RNA Combinatorics

In this appendix we give detailed arguments for some of the results presented in

Sec. 2.3.

Lemma 1 The large q behavior of the dominant singularity p of a(z) = (1 - z +

qz2 2 d_1)2 - 4qz2 for d > 1 is given by

1 1

P 1 + qd/4+1/2 (B.1)

Proof According to Pringsheim's theorem [11], the dominant root p is positive real

if it is unique, which we assume. Using this fact we can rewrite the equation a(z) = 0

as 3(x) = x d+ 2 - 2(1 + )d+l + (1 + Vf)2 xd q = 0 with x = z- 1 . We look for the

largest root w of this equation, with w = p-1.

Numerically we find that the largest root is always near x* = 1 + Fq for large q.

Substituting w = x* + 6 in /3(w) = 0 yields

To)s (1 + --) q (B.2)

Thus to lowest order we have (1 + r)da2 = q = 6 , q-d/4+1/2 : W = 1 +

q-d/ 4 +1/ 2 + ... for large q. The lemma follows. I

Proposition 3 Let a long RNA have length n. Let p be sufficiently far away from

the edges 1 and n. Then asymptotically,
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z( ) =- Znn,p 1-r (B.3)

where r = q(p2 +2p3 +_* .+dpd+l) and p is the dominant singularity for the polynomial

ca(z) = (1 - z + qz2d_1)2 - 4qz2.

Before we prove the proposition we need a lemma.

Lemma 2 The quantity r = q(p2 + 2p3 + .. + dpd+l) satisfies 0 < r < 1.

Proof of lemma That r > 0 is clear. To show that r < 1, we may rewrite the series

p2 + 2p3 + . .. + dpd+l to yield

q(p2 + 3 + . .. + pd+l) _ qdpd+2 (R An
1-p

Since p is a root of a(z) = (1 - z + qz 2 d_1)2 - 4qz 2 and p > 0, we have q(p2 + p3 +

... + pd+l) = 1 + (1 + 2)p. Then

=-1 + (1 + 2/)p - qdpd+2
-.'-,1-p

Numerically we find that r approaches 1 when q is large. Using lemma 1 for the large

q behavior of p gives

2
r=1- 4 +--

qd/4

and 0 < r < 1 as desired.

(B.6)

I

Proof of proposition We begin with the recursion Eq. (2.22). By repeatedly sub-

stituting into the right-hand side, we can write Zn, purely in terms of q and Zm for

various m:

(B.7)

58

k - _

Z(9) = Zn + q[Zn-2 + 2Zn-3 + - -+ dZn-d-] + q[q(Zn-4 + · -) + - ' + 



Define a series Bo0, B 1, .. where Bi is the term in the above expansion involving qi.

Then Zn = Bo + B + B2 + B2 + . The series breaks down at some point, but if n is

very large and p is sufficiently far away from the edges, then this breakdown does not

occur for many terms. Using the asymptotic behavior of Zn we have

B2 q[Zn-2 +... + dZn-d-l]
(B.8)

B 1 Zn
q rAp-(n-2) +2Ap-(n-3) + + dAp-(n-d-1) + 0 p-(n-2) 

L(n_ 2)3/2 (n-3)3/2 (n-d-13/2 5/2 (n__(B.9)

P--nn/2

= q[p2 +2p3 +- +dpd+ 1+ )] (B.10)

~ r. (B.11)

In fact, to the extent that n is large and p is far away from the edges, this ratio holds

for any two consecutive terms Bj and Bj+, i.e. B+ 1 - r. Thus we have

Z® = Bo+B1+B 2+.. (B.12)

= Zn + rZn + r2Zn - + '. (B.13)

According to the lemma, the series converges, and the result follows. I

Proposition 4 The edge effect in the probability distribution Z,) for the gap location

p has the form of an exponential with characteristic decay length qd/ 4 for large q.

Proof For p < n/2 we propose the form

n,= [1-eP/(] , (B.14)

where as before r = q(p 2 + 2p3 +... + dpd+l). The factor Zn/(1 - r) is just the "bulk"

value of Zn,) away from the edge p = 1.

To find the decay length (, we substitute (B.14) into the recursion Eq. (2.22). In

doing so, we implicitly assume that p > d, since otherwise the recursion Eq. (2.22)
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does not hold. Thus our argument is relevant only when q is so large that > d, or

in other words when there is a relatively slow or continuous decay of Z(n,) near the

edge p = 1. Substitution yields

q(p2 + p3 +... + pd+l)el/ + q(p3 +... + pd+l)e2/ . ++ qpd+led/ = 1. (B.15)

This equation may be solved to find J. When q is large so that 1/ is small, we may

expand the exponentials and

qp2[+ + qp+ .. qpd+ l dd )/2= (B.16)

For large q we expect -- qm with m > 0; keeping only terms of order qp2/g or larger

gives

qp2 + q(p2 + 2p3 +. + dpd+l) = 1 (B.17)

1
qp2 +r = 1. (B.18)

From lemma 1 we have r = 1- 2/qd / 4 + , so that qd/4.
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