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Abstract 

Trapped atom interferometry was demonstrated with Bose-Einstein condensates in an opti- 
cal double-well trap. Coherent splitting of trapped condensates was performed by deforming 
an optical single-well potential into a double-well potential, and the relative phase of the 
two split condensates was shown to be reproducible. Microfabricated atom chips were de- 
veloped with prospect for chip-based confined-atom interferometry. The same dynamical 
splitting scheme was implemented in a purely magnetic double-well potential on an atom 
chip and interference of two split condensates was observed, but not reproducible phase. 

Coherent optical coupling between two spatially separated condensates was realized 
using stimulated light scattering. The relative phase of the two condensates was continu- 
ously measured with an optical method, which demonstrated atom interferometry without 
need for a conventional beam splitter or recombiner. The Josephson-like phase dynamics 
of the coherent optical coupling was investigated and it was experimentally shown that 
the induced atomic currents depend on the relative phase of the two condensates and an 
additional controllable coupling phase. 

Condensates in an optical dipole trap were distilled into a second empty dipole trap 
adjacent to the first one. We showed that the distillation was driven by thermal atoms 
spilling over the potential barrier separating the two wells and then forming a new conden- 
sate. This thermodynamic relaxation process serves as a model system for metastability in 
condensates and provides a test for quantum kinetic theories of condensate formation. 

Doubly quantized vortices were topologically imprinted in spinor condensates and the 
stability of the vortex state was investigated. The decay of a doubly-quantized vortex core 
into two singly-quant ized vortex cores was observed using a tomographic imaging technique. 
The characteristic time scale of the splitting process was found to be longer at higher atom 
density. 
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Chapter 1 

Introduction 

1.1 Bose-Einstein Condensation in dilute atomic gases 

Bose-Einstein Condensation (BEC) is the underlying mechanism for quant um phenomena 

such as superfluidity and superconductivity. The phenomenon of a macroscopic number of 

identical part,icles condensing in a single quantum-mechanical state was predicted in 1924 

by Bose and Einstein [12, 131 and has been studied in diverse systems such as ~e~ superfluid 

and superconductors. The history of BEC study in its early stages is reviewed in Ref. [14] 

and references therein. 

In 1995, Bose-Einstein condensation was experimentally realized in a new system: dilute 

atomic gases (151. This historic discovery opened a new golden era of BEC study; in contrast 

to the other systems confronting with the complexity of the particle interaction, the weakly- 

interacting atomic system provides a unique opportunity for the systematic investigation 

of Bose-Einstein condensates in a regime where interactions are perturbative and theory- 

tractable. In the subsequent years, the novel properties of Bose-Einstein condensates such as 

phase coherence [16], superfluidity, and quantized vortices [I 7, 18, 191 were experimentally 

investigated. In recognition of these remarkable achievements, the 2001 Nobel Prize for 

Physics was awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman [20, 211. 

Over the last decade, the field of quantum degenerate gases has developed in a dra- 

matic way [22, 231. The number of species of Bose condensed atoms has grown to two 

digits1, and the range of experimental research topics has been extended to spinor conden- 

sates [34, 35, 361, condensates in lattice potentials [37, 381, and low-dimensional conden- 

sates [39, 40, 41, 42, 431. This explosive and steady progress in the field was made possible 

by the constrilctive interference of technical advances in experimental atomic physics and 

well-founded condensed matter theory ; the current BEC study represents a fascinating 

8 7 ~ b  [15], " ~ a  [24], 7 ~ i  [25, 261, 'H [27], 8 5 ~ b  [28], 4 ~ e *  [29], 4 1 ~  [30], 1 3 3 ~ ~  [31], 1 7 4 ~ b  [32], and 
52Cr [33] 



interdisciplinary research area. More surprisingly, quantum degenerate Fermi gases were 

demonstrated with 4 0 ~  [44] and 6 ~ i  [45] and experimental explorations of the crossover 

bet ween a BEC and a Bardeen-Cooper-Schrieffer (BCS) superfluid were recently reported, 

addressing a long-standing problem in condensed matter theory. 

My Ph.D. research described in this thesis is mainly concerned with atom optics with 

Bose-Einstein condensates, which are a gigantic quantum matter wave. Having full control 

over the phase coherence of matter waves is the ultimate goal of atom optics, which opens 

the prospects for novel applications such as atom interferometry and quantum information 

processing. We developed microtraps for condensates, such as magnetic traps with micro- 

fabricated atom chips and an optical double-well trap having a tunable well-separation. 

Most of the experiments in this thesis were designed for investigating technical possibilities 

to measure and manipulate the relative phase of two separate condensates. As main results, 

we demonstrated coherent, dynamic splitting of a trapped condensate, optical read-out of 

the relative phase of two condensates, and optical Josephson-like coupling between two 

spatially separate condensates. 

In this introduction, I present and discuss several crucial concepts for understanding 

the phenomenon of Bose-Einstein condensation: what determines bosons and fermions, 

consequences in quantum statistics, a criterion for Bose-Einstein condensation, and an order 

parameter for the phase transition. A mean-field theory for dilute Bose-Einstein condensates 

is introduced by deriving the Gross-Pitaevskii equation. In the following discussion on the 

order parameter of condensates, I address the conceptual question: what is the phase of a 

Bose-Einstein condensate; is it a real physical quantity or just a convenient field-theoretical 

tool? There are still theoretical debates on this issue. I simply recapitulate a couple of 

viewpoints on the controversy and express my preference. This discussion is very relevant 

to the experiments described in this thesis. In the end, the outline of this thesis is presented. 

1.2 Quantum Statistics: Boson vs Fermion 

The principle of the indistinguishability of the particles of a same kind requires a fundamen- 

tal change in the description of a system of identical particles. Even in classical statistical 

physics, the need for the indistinguishability is indicated in the Gibbs ' paradox, saying that 

the fact that identical particles are distinguishable is contradictory to the fact that the 

entropy is an extensive variable of a system [46]. This can be solved by reducing the config- 

urat ion space under the principle of indistinguishability, resulting in a topologically different 

configuration space than the simple Cartesian product of the one-particle spaces [47]. The 

meaning of the particles being indistinguishable is that the physical situation is unchanged 



if the particles are interchanged. In the quantum description, it is expressed as 

where lji is a wave function of the N-particle system, and P is any permutation of the N 

particle coordinates, {xi). Because any P can decompose into a product of exchanges, Xi j ,  

between two particles, i and j , we have a simple sufficient condition, 

Since naturally X 2  = I, where I is the identical operator2, eat = 1, i.e., eit = 1 or eit = -1. 

According to the exchange property, there are two classes of particles existing in nature: 

bosons with eic = 1 and fermions with eit = -1. 

The consequences of the restriction deeply affect the quantum statistics which the parti- 

cles of each class should follow, and the resulting statistics are called Bose-Einstein statistics 

for bosons and Fermi-Dirac statistics for fermions. For distinguishable particles, the clas- 

sical statistics is Maxwell-Boltzmann statistics. The most dramatic difference of the two 

quantum statistics is that many bosons can occupy a same state but fermions are fun- 

damentally prohibited to multiply occupy a state, which is called the exclusion principle. 

Consequently, at zero temperature, i.e, in the true ground state, bosons would be all to- 

gether in the single-particle ground energy level, and fermions would pile up one particle in 

each adjacent level from the bottom. One minor remark on the indistinguishability of the 

particles is that it is a principle, i.e., an axiomatic statement, which has been supported by 

a myriad of experimental measurements. 

What determines particles to be bosons or fermions? There is a spin-statist ics theorem 

saying that particles with an integer spin are bosons obeying Bose-Einstein statistics, and 

particles with a half-odd integer spin are fermions obeying Fermi-Dirac statistics. In the 

relativistic arguments in context of quantum field theory, the question (:an be recasted in the 

following form [49]: what determines the (anti)commutative relations of field operators for 

particles? The cornmutat ive and anti-commutative relation of field operators are associated 

with bosons and fermions. The basic requirements for a consistent relativistic theory with a 

given pair of the spin of a particle and the (anti)commutative relations of the field operators 

are that it should have no negative energy states and that the causality should be preserved, 

i.e., two obsel-vables with a space-like separation should commute each other. Based on 

2 ~ n  a higher than three dimensional space, X 2  = I is the case. However, in lower dimensions, this 
requirement is relaxed, resulting in the concept of an anyon [47]. Fractional statistics were experimentally 
observed in a two-dimensional condensed matter system [48]. 



these requirements, Pauli [50] showed that particles with integer spin should obey Bose- 

Einstein statistics due to the causality, and particles with arbitrary half-odd integer spin 

should obey Fermi-Dirac statistics due to the nonexistence of negative energy states. More 

rigorous mathematical treatments can be found in Ref. [51].~ 

1.3 Criterion for Bose-Einstein Condensation 

Bose-Einstein condensation of particles in a physical system is a macroscopic occupation 

in a single state of the system; the 'macroscopic' occupation means that the number of 

particles in the state is a finite fraction of N ,  i.e., O(N) ,  where N is the total number 

of particles in the system. In a system of fermionic particles, the occupation number is 

bounded to be O(1) due to the exclusion principle and thus Bose-Einstein condensation is 

fundament ally prohibited. 

The criterion for Bose-Einstein condensation can be mathematically expressed in a sim- 

ple form. We have the density matrix, o, for a given state of the system of identical N boson 

particles. By definition, the density matrix has all information of the system. We obtain a 

single-particle density matrix, Q, by tracing down a with respect to particles 2,3, ..., N. 

where we multiply by N for a physically more intuitive interpretation. Because of the 

permutation symmetry in the bosonic system, a1 has all information about a single particle, 

i.e., the population distribution and the allowed single-particle states. The eigenfunctions 

for 01, {$i}, and the corresponding eigenvalues, {nil,  represent the single-particle states 

defined in the given many-body state and the occupation number of each corresponding 

state, respectively. Therefore, the criterion for Bose-Einstein condensation can be rewritten 

as 

3no - O(N)  BEC, 

and the associated single-particle wave function, t,bo is the state where a macroscopic number 

of particles stay, and may be called the wave funct ion of a condensate. This criterion 

provides a straightforward evaluation method for the existence of Bose-Einstein condensates, 

and it can be generally applied to most of systems even in the case including interparticle 

interactions and not in the true ground state. 

Penrose and Onsager generalized the criterion (1.5), and suggested an alternative math- 

3~ non-relativistic geometrical argument was suggested in Ref. [47]. One might find a simple argument 
with the conjecture that the exchange operator might be expressed as a sum of spin rotation and inversion. 



ematical form of the criterion for Bose-Einstein condensation 1521: 

and the wave function of the condensate, $J~, is one of possible solution for f (x). Yang 

elaborated on the concept of of-diagonal long-range order based on the above criterion, 

and emphasized that it is a quantum phenomenon not describable in classical mechanical 

terms [53]. However, the off-diagonal long-range order loses its application to the trapped 

boson system because the asymptotic behavior is not well defined due to the finite size of 

the system. 

1.4 Phase Transition and Order Parameter 

Bose-Einstein condensation, first introduced as a pure population condensing effect, is a 

quantum phase transition. Thermodynamic calculations of an interacting bose gas show a 

discontinuity of specific heat at the beginning of condensation, implying that Bose-Einstein 

condensation is a second-order phase transition4 1541. The analogy between the discontinuity 

in this phase transition and the A-transition of liquid ~ e ~ ,  at which the specific heat becomes 

logarithmically infinite, hinted that the underlying principle of the superfluidity of liquid 

EIe4 might be Bose-Einstein condensation [55]. 

In most of phase transitions, a phase with higher symmetries transforms into a phase 

with lower symmetries as the temperature comes down through the critical temperature. A 

liquid changes into a solid, losing translational and rotational symmetries, and a ferromagnet 

obtains a ma,croscopic net magnetization in the absence of a magnetic field, losing the 

symmetry of spin rotation. Accordingly, the ground state of the system at zero temperature 

might not have the full symmetries residing in the governing Hamilitonian. Many possible 

but 'non-superposable' ground states would be degenerate and equivalent with respect to 

the lost symmetry, but one of them should be selected for each real system. In this context, 

the idea of spontaneous symmetry breaking has been introduced to account for the critical 

phenomena in condensed matter physics and elementary particle physics 156, 491. 

In his discussion of a second-order phase transition, Landau pointed that in order to 

quantitatively describe a phase transition, an order parameter, vanishing in one phase and 

becoming non-zero in the other phase, is necessary to describe the dynamics of the new 

phase [57]. For example, the order parameter for the solid is the crystal structure and 

for the ferromagnet is the net magnetization. It is commonly believed that establishing 

a nonzero order parameter in a phase transition comes with the spontaneous symmetry 

4 ~ o s e - ~ i n s t e i n  condensation in an non-interacting bose gas is a first-order transition like a liquid-gas 
transition. 



breaking. 

What is the broken symmetry in Bose-Einstein condensation, and what is the corre- 

sponding order parameter? This question is quite legitimate because we know that Bose- 

Einstein condensation is a second-order phase transition, and as investigated in ~e~ super- 

fluidity, the macroscopic properties of a Bose-Einstein condensed phase is totally different 

from a non-condensed phase. The off-diagonal long-range order might be an order parame- 

ter for Bose-Einstein condensates, which has been objected due to the physical requirement 

that the order parameter should be determined by local dynamical variables 1541. The 

choices of the broken symmetry and the order parameter are not always obvious from the 

first principles. Generally, people suggest that Bose-Einstein condensation break the gauge 

symmetry related to the choice of a global phase of creation and annihilation operators and 

that the order parameter be equal to the wave function of the condensate. 

1.5 Macroscopic Matter Wave 

A pictorial description on the condensation process [58] provides insight into the wave func- 

tion of a condensate, elucidating the aforementioned mat hemat ical criterion. In quant um 

mechanics, the wave nature of a particle delocalizes the particle over its de Broglie wave- 

length, XdB = J 2 r T i 2 / r n k ~ ~ .  When the temperature of a gas gets low enough to make 

XdB comparable to the interparticle separation n-$, where n is the density of particles, 

matter wave packets of the indistinguishable particles start overlapping. When the phase 

space density p = n ~ : ~  exceeds 1, the phase transition to a single macroscopic matter wave 

occurs. This is a Bose-Einstein condensate: a gigantic quant um object. 

The macroscopic matter wave is embodied by the wave function of the condensate. 

In following, I summarize a mean-field (Hartree) approach to obtain the Gross-Pitaevskii 

equatzon which describes BEC dynamics in terms of the wave function of the condensate. 

Basically, mean-field description deals with how a single particle feels the averaged interac- 

tion from t he other particles. 

The Hamiltonian of a system of N interacting particles is 

where V ( x )  is the external potential for particles and the interparticle potential is simplified 

by defining an effective potential5 with Uo = e, where a is the s-wave scattering length.6 

The physical justification for the s-wave approximation can be found in Ref. [54]. 

5 ~ e r m i  first introduced this approach as the 'pseudopotential' method. E. Fermi, Ricerca Scz.7, 13 (1936). 
"or 2 3 ~ a ,  a = 2.93 f 0.06 nm from Ref. [59], which gives Uo = h x 1.62 k ~ z / c m ~ .  
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The mean-field theory starts with an ansatz for the many-body wave function, 

and the total energy of state, E, will be 

Minimization of' E subject to the constraint of normalization of +(x) and the introduction of 

the wave function of the condensate, $(x) = O + ( x ) ,  would result in the time-independent 

Gross-Pitaevskii equation, 

where p = BEIBN is the chemical potential of the system. The generalized time-dependent 
d Gross-Pitaevskii equation ifiz$(x, t )  = p$(x, t) gives a non-linear Schrodinger equation 

governing the dynamics of the wave function of the condensate. 

The mean-field approach has been very successful in accounting for most of the experi- 

mental results. Nevertheless, as being one of simplest approaches for many-body systems, 

the mean-field theory has some theoretical inconsistencies to be improved. Leggett [60] 

pointed out that the mathematical origin of the limitation is the fact that the trial ansatz (Eq. 1.8) 

does not allow two-particle correlation and restricts the whole description in a reduced 

Hilbert space. Since the two-particle interaction would cause some correlation between 

particles especially in a short range separation, a better ansat z should accommodate the 

possibility of two-particle correlations, which is the essence of the advanced Bogoliubov 

approach. For theoretical details, please refer to Ref. [61, 62, 60). 

From the viewpoint of a macroscopic matter wave, Bose-Einstein condensates open 

a new era for atom optics; BECs are to atom interferometry what lasers are to optical 

interferometry, i.e., a coherent, single-mode, and highly brilliant source. Since the remark- 

able demonstration of the macroscopic interference of two gaseous Bose-Einstein conden- 

sates (161, exploiting the laser-like coherence of gaseous Bose-Einstein condensates has been 

one of hottest topics in atom optics. Furthermore, the nonlinearity due to atom-atom inter- 

actions in the governing Hamiltonian allows the study of nonlinear atom optics. Analogies 

of the phenomena in nonlinear optics, such as matter wave amplification [63], four-wave 

mixing [64, 651, and soliton formation [66] have been experimentally demonstrated. 



1.6 Phase of a Condensate 

At first sight, using the wave function of a condensate for describing its dynamics inspires 

us to believe that this method might be the only natural choice for the order parameter for 

Bose-Einstein condensat ion. However, when it comes to symmetry breaking, the situation 

is in confusion. Theoretically, it is generally believed that Bose-Einstein condensation is a 

spontaneous breakdown of the gauge symmetry resulting in the well-defined global phase 

factor of the field operator, 4, for particles. 

which means that in the presence of a Bose-Einstein condensate, the expectation value of 

the field operator has a non-vanishing value, i.e., a coherent state of matter. The function 

4(x) is equivalent to the wave function of the condensate, possessing a well-defined phase, 

i.e, 4(x) = d-e"('), where n is the particle density of the condensate and 0 is the 

phase of the condensate. Anderson [67] argued that the observation of Josephson effects 

demonstrated the existence of the phase of a condensate, emphasizing that every part 

of condensates should have a definite phase value. Furthermore, some people argue that 

Eq. (1.11) is even the only legitimate definition of the order parameter. Most of established 

theoretical works were based on the assumption of the gauge symmetry breaking. 

However, the non-vanishing expectation value of the field operator 4 for massive parti- 

cles is not an easy idea to accept. In quantum mechanics, field operators for particles are 

not observables because of their non-hermitian property, and mathematically the field oper- 

ators couple two Hilbert subspaces with different particle numbers, i.e., 4 : ' f l ~ + ~  -+ ?lN,  

where 3CN represents a Hilbert subspace with N particles. Generally, NN's for a massive 

particle are distinguishable under the super-selection rules7 Therefore, the idea of the non- 

vanishing expectation value of the field operator, allowing the superposition of states with 

different particle number, seems to be a theoretically artificial tool. 

The necessity of the phase of a Bose-Einstein condensate is controversial. Javanainen and 

Yoo [68] demonstrated that quantum measurements entangling two condensates generate 

a relative phase of the two condensates. M~lmer  [69] criticized that the phase concept 

in quantum system is overall fictitious, pointing out that observable phenomena do not 

depend on whether an absolute phase exists or not. Leggett [60] showed his strong opinion 

that coherent states of matters violating the super-selection rule are physically impossible. 

Furthermore, a theoretical formalism without assuming the gauge symmetry breaking was 

developed [70, 71, 721. On the other hand, Dunningham and Burnett [73] tried to justify 

the definition of coherent states by introducing a reference condensate as a phase standard. 

7 ~ 1 1  observables commute with the atom number operator N. 
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Lieb et al. [74] and Siito [75] showed that the gauge symmetry breaking is asymptotically 

equivalent to Bose-Einstein condensation in a thermodynamic limit. 

I support the opinion that Bose-Einstein condensation does not necessarily imply spon- 

taneous symmetry breaking. First of all, the global phase of a condensate is not measurable. 

I believe that everything in nature should be understood in its simplest form. Therefore we 

could abolish the concept of a definite global phase of condensates if only a consistent theory 

explains the whole phenomena without the concept. The absolute value of a quantum dy- 

namic phase is physically meaningless, and only comparing quantum phases, i.e., measuring 

relative phases is experimentally allowed via phase sensitive dynamics or interference effects. 

Ehen in a single condensate, it is the relative phase of two points of the condensate that is 

physically relevant. This viewpoint might be similar to Landau's philosophy for hydrody- 

namic equations, where he mentioned that only important quantities are density and flow 

rate. In an aesthetic viewpoint, assigning a definite phase to a condensate might look more 

beautiful frorn the standpoint of symmetry breaking and second-order phase transitions. In 

a practical viewpoint, assuming coherent states might be justified to be more efficient for 

calculations. However, it should be noted that a definite global phase is not necessary for 

describing BEC dynamics. 

1.7 Relative Phase of Two Condensates 

I emphasized that the relative phase of two condensates is a measurable quantity and 

does not have a conceptual problem with respect to symmetry breaking. In the following, I 

illustrate the relative phase, using a two-mode system where only two orthogonal states, are 

allowed for particles. The two states are designated by $A and $ B ,  and the corresponding 
t t field operators are &A and &,, respectively. Two many-body states are considered: a 

coherent state and a number (Fock) state. 

where 10) is a particle vacuum state. In the coherent state, all particles stay in the same 

single-particle state, -&($a + e " ~ $ ~ ) ,  and we say that two condensates represented by 

and qB have a well-defined relative phase 4,. Even though for the two states the average 

particle numbers in each single-particle state are equal to N/2, the coherent state is a 

superposition of a number of number states with regular phase relations. Number states are 



states with fixed particle number in each single-particle state. Therefore, two condensates 

having a well-defined relative phase means that there is corresponding uncertainty in particle 

numbers of the two condensates with strong correlation among number states. 

The above consideration may be extended to the case of a single condensate. Indeed, 

in the case of the coherent state, we can call the two condensates as a single condensate 

because one single-particle wave function describes the whole system. If we rephrase this 

statement, we can claim that the relative phase of any two points in a single condensate 

is well-defined and consequently there are corresponding density fluctuations in a single 

condensate. This picture focus just on the internal phase relation in a condensate, not 

irritating our intuition by breaking particle number conservation. The definition of the long 

range order parameter shows this intrinsic property of a condensate, even though it can not 

be rigorously applied to a finite-size sample. 

1.8 Outline of the Thesis 

This thesis is organized as follows. Chapter 2 briefly describes experimental procedures 

in our BEC apparatus and introduces the microtraps which we used for the experiments 

presented in this thesis, such as an optical double-well trap and a magnetic microtrap on an 

atom chip. Chapter 3 focuses on 'coherent splitting' experiments, where we tried to split 

a condensate into two parts with a well-defined relative phase. Splitting was performed 

by deforming a single-well potential into a double-well potential, and this scheme was im- 

plemented in an optical trap and a magnetic trap. Chapter 4 describes dynamics of two 

optically coupled condensates. Two spatially separate condensates were optically coupled 

via Bragg scattering, and phase-sensitive atomic currents were established between the two 

condensates. The relative phase was optically read out and the coupling dynamics were 

experimentally investigated. Chapter 5 and 6 deal with somewhat different topics. Chap- 

ter 5 reports thermal relaxation processes in a double-well potential. With a condensate in 

one well, a metastable state was prepared by making the other well deeper than the well 

having the condensate. A new condensates formed up in the lower well and the distillation 

process was studied. Chapter 6 describes vortex experiments with an atom chip. A dou- 

bly quantized vortex state were topologically imprinted by adiabatic spin rotation, and a 

doubly-quantized vortex core was observed to split into two singly-quantized vortex cores. 

In Chapter 7, some concluding remarks and prospective are included. 

Publications directly related to this thesis are added in Appendices B-H. Most of the 

contents of this thesis are based on what we discussed in the publications. Although I tried 

to put an original spin on discussing our work, large portions of the text reproduce the pub- 

lished work, especially when technical discussions were already optimized for publication. 



Chapter 2 

BEC Machine and Microtraps 

Experimental techniques for producing Bose-Einstein condensates of gaseous atoms have 

been developed rapidly since the first realization in 1995 [15, 241 with pioneering break- 

throughs such as a dark spontaneous force optical trap (dark-SPOT) 1761 and a time- 

averaged orbiting (TOP) trap 1771. Now, the technical recipe for making Bose-Einstein 

condensates is well established. Moreover, Bose-Einstein condensates were created with all 

optical methods [78] as well as in a miniaturized magnetic trap [79, 801. 

All of the experiments described in this thesis were carried out with BEC-I11 machine 

in MIT. The first BEC with the machine was produced in early 2001. A comprehensive 

description of' the machine design and performance is provided in Ref. [81]. In this chapter, I 

overview the experimental procedures in our apparatus with some maintenance information 

for next users, and describe the microtraps used for the experiments, such as an optical 

double-well trap and a magnetic microtrap on an atom chip. The development of atom 

chips in MIT is outlined at the end of this chapter. 

2.1 BEC Experiments in 'Science' Chamber 

The BEC-I11 machine features itself for an auxiliary vacuum chamber - the 'science' chamber 

(SC).' The purpose of the science chamber is to physically separate BEC experiment space 

from BEC production space. In a conventional BEC apparatus, mechanical and optical 

accesses to condensates are restricted due to the presence of large magnetic coils and the 

optics for laser cooling which are indispensable to BEC production. Adding new components 

on the apparatus without disturbing the pre-existing product ion setup sometimes requires 

serious compromises in designing a new experiment. Thus having separate experiment space 

would give great flexibility to accommodate further complicated experiments and allow a 

rapid cycle of various experiments as well. The high productivity of the BEC-I11 machine 

'Some people prefer the nomenclature of 'experiment' chamber rather than 'science' chamber. 
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BEe Production

Figure 2-1: Experimental procedures with BEC-III machine. (a) A Bose-Einstein con-
densate of 23Na atoms is generated in the production chamber after radio-frequency (rf)
evaporation cooling in a loffe-Pritchard type magnetic trap. (b) The condensate is loaded
into optical tweezers and (c) transported into the science chamber by moving the focal spot
of the optical tweezers. (d) The condensate is loaded into a microtrap and initialized for
further designed experiments.

over the past four years with a very diverse range of experiments definitely proves this

advantage. In Figure 2-1, the general experimental procedures with BEC-III machine are

illustrated. A Bose-Einstein condensate is produced in the production chamber, and then

the condensate is transported to the science chamber by using optical tweezers. Once the

condensate is located in the science chamber, it is initialized for a designated experiment;

ready to go for the BEG study.

2.1.1 Basic Operations

BEC experiments generally consist of three steps: 1) preparing condensates, 2) perturbing

and manipulating the condensates, and 3) observing or measuring the condensates' re-

sponses. In this secion, I present a very brief overview of the basic operations: production,

manipulation, and imaging. For a more comprehensive review and detailed description of

hardware and experimental parameters, please refer to Ref. [58, 82, 81].
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Product ion 

Bose-Einstein condensates with 2 3 ~ a  atoms in the IF = 1, m F  = -1) state are created 

in a static Ioffe-Pritchard magnetic trap. A slow thermal atomic beam out of a spin- 

flip Zeeman slower is continuously loaded into a dark-SPOT [76] type magnet ic-optical trap 

(MOT) [83]. The Zeeman slower has a zero-field point along the axis to increase the capture 

velocity of the slower. The slow thermal atomic beam has a mean velocity - 30 m/s and 

a,tomic flux N 10" atoms/s. After turning off the atomic beam, atoms are additionally 

cooled down by applying a dark polarization-gradient cooling ( P G C ) . ~  For the PGC, the 

frequency of the MOT beams is shifted further to the red and repumping sidebands are 

added by an electro-optic modulator (EOM). Reviews on laser cooling techniques can be 

found in Ref. [84, 85, 86, 871. Atoms in the IF = l , m F  = -1) state are captured in a 

Ioffe-Pritchard (:IP), cloverleaf magnetic trap. In a dark-SPOT MOT, most of atoms in the 

center region are in the IF = 1) state. However, we found that a small fraction of atoms 

are optically pumped into the 1 F = 2) state by the strong slowing beam passing through 

the MOT cloud. This might be the reason why a stronger slowing beam results in smaller 

condensates. After catching the atom cloud in a magnetic trap, forced evaporative cooling 

is applied using a radio frequency (rf) transition from the IF = 1, m~ = -1) state to the 

IF = 1, m~ = 0, + 1) states. Typical condensates contain over 1.5 x 107 atoms. 

Procedure 
Atomic oven 

I Slowing arid MOT loading 
Dark PGC 

Catching in a IP  trap 
rf-evaporation to BEC 

Decompression 
Loading in Tweezers 

Transporting in the SC 

Duration Atom number (density) 
(1014 ~ m - ~ )  

Temper at ure 
530 K - 1 mK 

100 pK 

Table 2.1: Production procedures. Atoms are loaded in a MOT, cooled down to BEC, and 
transferred to the science chamber. The duration of each procedure and the approximate 
atom number., density and temperature after accomplishing each procedure are presented. 

Laser system 

When BEC-I11 machine was built, we shared a laser system with the BEC-I machine. 

Because of high demand, we decided to build a new laser system for BEC-I11 machine, and 

in February 2003, BEC-I11 machine was equipped with its own laser system. The basic 

2 ~ t  is called a 'dark' PGC because the most of atoms are in the dark state, IF = 1). As far as I know, 
the real mechanism of this dark PGC has never been investigated systematically. 



design of the new laser system is identical to that of the old laser system. A 589 nm 

yellow laser light is generated from a dye laser pumped by a 532 nm green laser. The laser 

frequency is locked to a Fabry-Perot cavity, and the reference for the cavity is an external 

saturation-absorption spectroscopy (SAS) [88] lock-in scheme. One technically interesting 

aspect is a 500-600 MHz high frequency acousto-optic modulator (AOM). The diffraction 

efficiency of the AOM is as high as - GO%, but the output mode is not good enough to 

make the fiber-coupling efficiency over 60%. A schematic diagram of the laser system is in 

Appendix A. 

MHz 

F1=2 
MHz 

MHz 
F'= I 
F'=O 

(d) atomic mass m = 3.81 x kg 
linewidth r = 2nxIOMHz 
saturation intensity I, = 6.40 mW/cm2 
magnetic moment p = p,/2 = 0.7 MHzlG 
cross section a, = 1.66 x I O - ~  cm2 

Figure 2-2: Sodium 2 3 ~ a  energy levels and the relevant atomic transitions. (a) Laser cooling 
and optical imaging use the D2 line. Relative strength of the (b) IF = 2) -+ IF' = 3) and 
(c) IF = 1) -+ IF' = 2) electric dipole transitions [87]. Only o+ and half of ?r transitions 
are indicated for simplicity. (d) Sodium atomic parameters. 

Manipulation Tools 

Manipulation of condensates can be categorized into three groups according to the atomic 

properties effected: 1) center-of-mass motion, 2) atomic transition, and 3) atomic collision. 

Center-of-mass motion - Magnetic force and optical dipole force are included in this 

category, which affect the external motion of atoms in condensates. These forces are based 



on the magnetic and electric dipole moments of atoms. Potentials with desired configura- 

tions can be formed by tailoring the spatial pattern of external fields such as magnetic field 

and laser beam intensity. All BEC experiments use a trapping potential to isolate atoms 

from hot and decoherencing environment. The optical dipole potential relies on dipole tran- 

sitions between excited states and the ground state, i.e., ac Stark shifts, and it can confine 

atoms in any magnetic state, allowing the study of spinor condensates, which is impossi- 

ble in an magnetic trap confining atoms only in weak-field seeking states. Furthermore, 

the laser frequency dependence of optical potential 1891 and the interference effects of laser 

beams provide much wider applications such spin-dependent optical lattice potential (901. 

In the experiments described in Chapter 3, condensates wave functions were dynamically 

deformed by changing the geometry of trapping potentials. 

Atomic transition - Atomic optical transition and magnetic transition are used to 

prepare condensates in target states. This category contains, for examples, Bragg transi- 

t ions between different external momentum states and Raman transit ions between different 

atomic internal states. Bragg scattering provides a robust probing method for the dynamical 

structure factor of condensates [91, 921. In the experiments described in Chapter 4, Bragg 

scattering was used for detecting the relative phase of two condensates [ll] and optically 

coupling two separate condensates [5]. 

Atomic collision - BEC dynamics is strongly affected by atom-atom interactions which 

make atomic colidensates an interesting system for many-body physics and nonlinear atom 

optics. The effective atom-atom interactions are determined by the scattering properties 

of atoms. The scattering properties are adjustable with external magnetic field. Since an 

atom has a magnetic moment and consequently the energy levels of the molecular states of 

two colliding atoms depend on a magnetic field, a scattering resonance happens when the 

energy of the bound molecular state crosses zero. At this moment the effective scattering 

length diverges. This is called Feshbach resonance [93], which gives a substantial freedom 

to atomic systems with quantum degenerate gases: an experimental knob for tuning atom- 

atom interactions. This method allows the study of BEC-BCS crossover. 

Transport and Optical Tweezers 

The optical tweezers is our method to transport condensates from the main (production) 

chamber to the Science chamber. The idea is straightforward: loading condensates in an 

optical dipole trap and moving the center of the optical trap, i.e., t,he focal spot of the 

laser beam to the target position in the Science chamber. A schematic setup for the optical 

tweezers for transportation is provided in Figure 2-3. The early developing story of the 

optical tweezers is described in Ref. [81]. The first lens is mounted on a linear air-bearing 



Science Chamber Main Chamber 

Figure 2-3: Experimental setup for optical tweezers. The collimated infrared (IR) beam is 
focused by the tweezers lens L1 and the focal point of the tweezers lens is transferred by 
the one-to-one telescope (L2 and L3), forming optical tweezers in the vacuum chambers. 
By moving the tweezers lens in the longitudinal propagation direct ion, the optical tweezers 
correspondingly move between the product ion chamber and the science chamber. When the 
optical tweezers are located in the center of the production chamber (A'), the focal point of 
the tweezers lens is placed on the first mirror MI so that the position A' is adjusted by the 
second mirror M2. On the other hand, when the optical tweezers are located in the center 
of the science chamber (B'), the focal point of the tweezers lens is placed on the second 
mirror M2 so that the position B' is adjusted by the first mirror MI.  

translation stage.3 The trajectory of the translation stage has a trapezoidal acceleration 

profile where the acceleration linearly increases and decreases to ensure the total travel 

time for a given distance. The power of the optical tweezers is roughly proportional to the 

traveling velocity.4 

The trajectory of the optical tweezers should pass two points in the chambers. One is 

the initial position of condensates in the main chamber and the other one is the center of 

a microtrap in the science chamber. In order to facilitate the two-point alignment of the 

optical tweezers, two mirrors are placed in the beam path before the one-to-one telescope 

and the axial positions of two mirrors were selected to make them correspond to the focal 

positions in the main chamber and the science chamber. This configuration allows, ideally, 

to move independently the tweezers position in the main chamber and in the science chamber 

by adjusting one of the mirror at time. Please see Figure 2-3 for details. The positions of 

the focal spot in the main chamber and the science chamber can be adjusted independently 

to some extent. This design is extremely helpful when we have two different experiment 

setups in the science chamber and change the final position of the optical tweezers every 

other day. 

3Aerotech ABL20040 
 h he first intuition suggests that the power should be proportional to the acceleration. The power profile 

was empirically adjusted. 



Optical Imaging 

Most of the data presented in this thesis was acquired by taking destructive, absorption 

images. Two atornic transitions were used for this purpose: the IF = 1, m~ = -1) -+ IF' = 

2,mb = -2) transition ( F  = 1 image) and the IF = 2 , m ~  = -2) -+ IF' = 3,m; = -3) 

cycling transition (F = 2 image). For F = 2 images, condensates in the F = 1 hyperfine 

level were optically pumped into the F = 2 hyperfine level, and then imaged by the resonant 

probe beam. The images are focused on a CCD camera. An absorption image of atoms 

in a trap direct,ly provides the spatial distribution of the trapped atoms. An absorption 

image after ballistic expansion by releasing atoms out of the trap provides the momentum 

distribution of the atoms.5 

Absorption images provide the column density of atomic clouds integrated along the 

probe beam direction. The total number of atoms, N ,  in the absorption images taken along 

x-direction is given 

N = dxdy S A - 1 n ( t ( x 7  y)) = - c - ln(t(z, y)) ,  
00 O0 pixels  

where 00 is the resonant cross-section, A is the pixel area in the image. t is the transmission, 

and 5 is the coarse averaged transmission over the pixel area. For F = 2 images, 00 = 

3X2/2r, and for F = 1 images, oo = 3 ~ ~ / 4 7 r ,  where X is the resonance wavelength of the 

optical transition. 

Other image techniques such as absorption imaging, phase-contrast imaging [94], and 

fluorescent imaging may be used according to the purpose of experiments. Detailed descrip- 

tion on the quantitative analysis of absorption images is provided in Ref. [58]. 

2.1.2 Machine Maintenance 

BEC-I11 machine has been operated about for five years without major problems, which 

reflects that the machine was designed out of valuable experiences with the previous gener- 

ation BEC machines. In the following, several maintenance notes are presented. 

Sodium oven - The sodium oven is one of the main parts requiring periodic mainte- 

nance. We have to open the oven for regular oven cleaning and sodium refill. We added a 

45" elbow in front of the half-nipple sodium cup to prevent spilling-over and accommodate 

more sodium. With 25 g sodium, the operation lifetime showed over 2000 hr which corre- 

sponds to the duration of six-month intensive operation. The oven ion pump seems to be 

degrading. When the oven was designed, an elbow and a Chevron baffle were connected 

to prevent the ion pump from being seriously poisoned by alkalis, but five-year exposure 

5 ~ u r i n g  expassion, the mean-field energy of condensates is converted to kinetic energy, giving faster 
expansion in the more tightly confining direction. 



to the running condition may be too much for the ion pump. When the oven was vented 

and re-pumped out, baking-out of the ion pump turns out to be necessary for achieving the 

typical pressure - 5 x 10-8 torr a t  the running condition. 

Science chamber pumping body - The pumping body for the science chamber was 

replaced to improve the vacuum in the chamber. In the new pumping body, the ion pump 

are placed farther away from the science chamber in order to reduce the effect of fields from 

the ion pump magnet on the experiments. For future reference, the design of the pumping 

body is included in Appendix. A. 

Replacing experiment setups i n  the science chamber - Experiment setups in the sci- 

ence chamber have been replaced almost every six months. Because the safe region in the 

science chamber for the optical tweezers to deliver condensates without any serious problem 

is horizontally - I", the large 6"-cube science chamber can support a couple of different ex- 

periment setups if they do not conflict over optical accesses for probing. Setup replacement 

takes less than two weeks: venting the chamber, installing new setups, attaining ultra-high 

vacuum (UHV), and making condensates. Typically, new experiment setups are pre-baked 

in a test chamber, which helps to get UHV back in the science chamber. In the case of a 

well-prepared setup, four-day baking at -- 150 "C is enough to reach the typical vacuum of - 1 x 10-lo torr. 

2.2 Optical Double-Well Trap 

Figure 2-4 shows a schematic diagram of the optical setup for an optical double-well po- 

tential which is used for the experiments described in Chapters 3, 4, 5. The separation of 

two traps is dynamically controlled by the frequency difference of the driving rf signals and 

the depths of the optical traps were stabilized by giving a negative feedback to the power 

of the rf signals. It is helpful to select a frequency range where the diffraction efficiency of 

the AOM is almost uniform. The total power of the laser beam was monitored, and using 

a pinhole, the power of one of the two diffracted beam was preferentially monitored, too. 

This double monitoring allows stabilizing the trap depths individually. The optical traps 

were turned off by switching off the rf signals with additional help of a fast LCD shutter to 

get rid of leakage lights. 

Since the separation of two traps is determined by the frequency difference of the driving 

rf signals, the trap position fluctuations due to mechanical vibrations of in-transit mirrors 

is common to both traps. This common-mode rejection feature is crucial to experiments 

requiring a precise double-well potential. Another advantage of using an AOM is that two 

optical traps are automatically co-planar, which is important to observe the matter wave 

interference of two condensates. We tried to generate an optical double-well potential with 
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Figure 2-4: Schematic diagram of the optical setup for an optical double-well trap. An
acousto-optic modulator (ADM) is driven simultaneously by two frequencies, 11 and 12,
and diffracted a collimated infrared (IR) beam into two beams. The ADM is placed in
the focal plane of a lens of focal length F so that after the lens, the two diffracted beams
propagate parallel to each other forming two optical traps. The radial separation of the
two traps, d, is controlled by the frequency difference, ~I = 111 - 121, determining the
diffraction angle difference, e. The zeroth order beam is blocked before the lens (BB). The
laser beams for the optical traps are sampled out and monitored by photo diodes. Photo
diode 2 (PD2) preferentially monitors one of the beams.

two independent optical traps using two polarization beam splitters (PBSs), but we could

not observe matter wave interference with them, which we attributed to the possible twist

of the axes of the two traps. However, one technical note for using an ADM for generating

a muti-well potential is that the beam profile of the diffracted beam seems to be affected

by the presence of the other diffracted beam. Extreme care was required.

2.3 Magnetic Microtrap on an Atom Chip

The concept of an atom chip was introduced with the idea of integrating atom-optics el-

ements on a microfabricated device [95]. The fabrication technology, which has flourished

in the micro-electronics industry, makes this idea conceivable. Miniaturizing and align-

ing atom-optics elements with sub-micron precision would significantly improve control

over atoms. Furthermore, since in the proximity of the potential source the field gradient

is higher and the length scale of the potential is smaller, using the proximity of minia-

turized atom-optics elements would allow tighter confinement with small power consump-

tion and more precise positioning of atoms. At first, atom chips were developed based on

millimeter-size current-carrying wires. Magnetic wave guides [96, 97], microtraps [98, 99],

and beam splitters [100] were experimentally demonstrated with thermal atoms. Recently,

Bose-Einstein condensed atoms were added on this atom chip technology [79, 80], opening
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Figure 2-5: Fabrication process for conducting wires on an atom chip. The pattern of
wires is defined on a substrate using lithography technique. Conducting wires grow on
the substrate with evaporation or (and) electroplating. The final structure is established by
chemical processes. For technical information for each fabrication process, refer to Ref. [106].

the prospect for chip-based atom optics with Bose-Einstein condensates as coherent matter

wave source [6, 101, 102, 103].

Atom chip technology keeps being developed, including the integration of optical and

electric components on a chip as well as magnetic components and extending its format

to magnetic films, hard disks, and ferromagnets. Comprehensive reviews on the working

principles of microtraps and atom chip fabrication can be found in Ref. [104, 105].

2.3.1 Chip Fabrication

The fabrication procedures for conducting wires on a substrate are illustrated in Figure 2-5.

Compared to typical chip devices, an atom chip is a current-based device; the current distri-

bution directly affects the magnetic potential on a chip so that controlling the homogeneous

conductivity and the uniform shape of wires determines the performance of the atom chip.

Furthermore, the situation becomes more non-trivial because the cross section of the wires

should be larger than several ten J-Lm2 to accommodate an operating current of a few A. The

thickness of wires on atom chips will be a few /-lm, much larger than in thin film « 1 J-Lm)

applications in typical micro-electronics.

Fabricating very uniform conducting wires with a thick metal film is the technical chal-

lenge in the atom chip fabrication. Considering the advantage of using the proximity of
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wires for tighter confinement, we might suggest to bring atoms closer to the wires in order 

to reduce the operation current. However, proximity effects put fundamental limits on the 

closest distance from the wires, which will be described in the next subsection. Practically, 

fabrication processes and materials should be carefully selected according to the purpose of 

experiments. 

2.3.2 Proximity Effects 

IJsing tohe proximity of the potential source allows tighter confinement with small power 

consumption and accurate manipulation of atoms. However, there could be some problems 

about placing an ultra-cold atom cloud very close to a room-temperature surface. The 

magnetic field on an atom chip is directly determined by the current distribution in the 

wires of the atom chip, and thus, if the current distribution is not perfectly controlled, 

atoms would be affected in an uncontrollable way. Placed closer to the wires, atoms will 

be more sensitive to imperfections of the current distribution. When an atom in the IF = 

1, mF = -1) state is placed 100 pm away from a straight wire carrying 1 A, the magnetic 

potential of the atom is 14 MHz, so a small deviation of the current would make a potential 

variation compa,rable to condensate's chemical potential which is typically a few kHz. 

Proximity effects due to the imperfections of the current distribution can be divided 

into two groups: static and dynamic. Static effects are about spatial fluctuation of the 

current distribution. Spatial fragmentation of a condensates near a current-carrying wire 

was reported in several atom chip experiments [6, 107, 9, 1081, and it was found that this 

fragmentation effect is caused by current path deviations within the conducting wires, i.e., 

current was not flowing straight so that the magnetic potential along the wire is not uni- 

form [log, 110, 1 11, 1121. The potential roughness can happen due to imperfect fabrication 

of wires such as corrugated edges, rough top surface, and inhomogeneous deposition of con- 

ducting material. Even for very straight wires, current deviations rnay arise from other 

fundamental mechanism such as electromigration [113, 1141. The best uniformity in the 

geometrical shape of wires was reported in Ref. [115], where electron beam lithography 

and a lift-off procedure were used for making the atom chip. However, they still observed 

potential roughness and suggested the role of local fluctuations in wire composition. 

On the other hand, dynamic proximity effects are about temporal fluctuations of the 

current distribution, i.e., noise currents in wires. The current noises are fundamental or 

technical. At a finite temperature, currents are generated by thermal agitation of electrons 

in a conductor, which is called Johnson thermal noise [116]. In magnetic traps, atoms 

experience magnetic field fluctuations due to the current noise, which have harmful effects 

such as spin-flip induced trap loss, heating, and decoherence. The field fluctuations might 

induce magnetic transitions between Zeeman sublevels. Spin-flipped atoms are repelled 



from the magnetic trap. Field fluctuations could also shake the magnetic trap and heat up 

the atoms into higher vibration modes. Heating and reduced trap lifetime near a current- 

carrying wire were reported in early atom chip experiments [80, 107, 91. Direct comparison 

of experimental results with theoretical predictions requires more careful and systematic 

controls for clear distinction of the effects of the fundamental noises from those of technical 

noises [9]. Recent observations [108, 117, 1181 showed good agreement with theoretical 

predictions [119, 120, 1211, showing a fundamental limit to the lifetime of condensates near 

a conducting wire. 

The proximity effects restrict atom chip design in a serious way. With regard to coherent 

manipulation, decoherence due to spatially inhomogeneous field fluctuation [122, 123, 1241 is 

a formidable problem to be solved or might be a failure reason for further application such as 

atom interferometry and quantum information processing. However, various experimental 

and theoretical investigations for solving or circumventing these problems are undergoing. 

Long coherence lifetime for internal states was observed with a high value of magnetic 

field [125], and interestingly, use of dilute alloys of noble metals was suggested to reduce 

the magnetic noises at low temperature [126]. 

2.3.3 Current Capacity 

The limiting factor for the current capacity for a wire is the increase of the wire temperature 

due to ohmic heating. The electric resistivity of the wires will subsequently increase so that 

the heating effect is exponentially accelerated and ends up blowing the wire off. This is 

how a fuse works to prevent over-current. Therefore, the solution for improving the current 

capacity of a chip wire is clear: decreasing the electric resistivity of the wire and increasing 

the thermal conductance to the substrate. 

In terms of bulk electric resistivity (Ag: 1.6 pfLcm, Cu: 1.7 pn-cm, Au: 2.2 p0-cm), 

Ag can be called the best candidate for the conducting material for wires. However, it was 

reported that Au shows the best performance when microfabricated in small wires, reaching 

current densities N lo8 A/cm2 at liquid nitrogen temperature [127] and > lo7 A/cm2 at 

room temperature [128]. Current density of lo7 A/cm2 means that 1 A can flow in a wire of 

1 pm height and 10 pm width. Superconductors are excluded in this consideration because 

of the fundamental limitation on the maximum current density, such as the critical field and 

flux pinning. In our atom chip development, the sheet resistance of 2 pm-thick evaporated 

Au film was measured to less than 0.015 n/sq. which corresponds to 75 % of the bulk 

c o n d u ~ t i v i t ~ . ~  

An ideal substrate for an atom chip should be a good electric insulator for preventing 

leakage currents and a good thermal conductor for fast heat dissipation. We tested silicon 

 or Au film deposition, we used an external vendor. (Thinfilms, Inc./www.thinfilmsinc.com) 



Table 2.2: Relevant properties of substrate materials. A120s has different thermal expansion 

Property 
Thermal conductivity 
Heat capacity 
Thermal expansion 
Density 
Electric resistivity 

rates depending on the expanding axis. The data for A1 is for comparison. 

(Si) substrates, sapphire (Al2O3), and aluminium nitride ( A1N) . Relevant properties of 

these material are provided in Table. 2.2. All of them have proper electric and thermal 

properties and have been reported to be used as a chip substrate, Sapphire is attractive for 

its high optical transmission allowing more optical accesses to atoms. However, it showed 

relatively poor performance in our test experiments. When a sapphire substrate experienced 

extreme local heating of a current-carrying wire, it cracked. The chip failure was caused 

by substrate cracking, not by wire blowing-up. We attribute this result to its relatively low 

thermal conductivity and thermal expansion coefficients which have different values for two 

crystal axes. Sapphire seems to be physically vulnerable to high temperature gradients. 

A.lN has as good thermal conductivity as aluminum and Si and it is perfectly insulating 

as a ceramic material. One technical problem with A1N is that the surface roughness of 

commercially polished AlN substrates is > 1 pm, which affects the straightness of the metal 

wires.7 We found the best solution for our chip substrate to be Si. 

Unit 
W/mK 

J/kg mK 
~ o - ~ / ' c  
g/cm3 
fl-cm 

2.3.4 Chip Development at MIT 

An atom chip setup consists of an atom chip, supporting structure, and electric connection 

parts. Figure 2-6(d) shows how the components were assembled. The atom chip was glued 

on an A1 base block for better heat dissipation. A vacuum compatible epoxy with high 

thermal conductivity8 was used, which significantly helped improve the current capacity of 

chip wires. The A1 block with the atom chip was secured by four stainless rods welded on 

a vacuum CF flange with a 25-pin type-D electrical f e e d t h r ~ u ~ h . ~  Then, the atom chip 

was electrically connected with a kapton coated UHV ribbon cable to the feedthrough. 

For connecting external wires to the atom chip, several methods such as spot-welding, 

mechanical clamping, and soldering were used. 

Since 2001, atom chip experiments have been carried out in BEC-I11 machine and several 

Si 
163 
700 
4.2 
2.3 

7 ~ n  private communication, Anderson group in JILA claimed that they developed a special polishing 
technique for A1N substrates. 

' ~ 7 7  from epoxy technology (www.epotek.com) 
'MDC vacuum products corp. (www.mdc-vacuum.com) The feedthrough could handle up to 6 A without 

any vacuum problern. The toughest test condition was 4 pins having 6 A individually. 

A1203 
27.2 
419 

5.615.0 
3.97 

> loi4 

A1N 
170-190 

800-1000 
4.6 
3.3 

> loi4 

A1 
237 
900 

2.7 



Figure 2-6: Photographs of atom chip sets. (a) Atom chip-I (2001). (b) Atom chip-III
(2003). (c) Atom chip-IV (2004). (d) Atom chip-V (2005). The dimension of the aluminum
base block in each image is 2" x 2" X 0.5". The features of each atom chip are described in
the text.
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atom chips were developed. In the following, I describe the features of each atom chip and 

the technical problems we experienced with each generation. Photo images of the atom chip 

setups are provided in Figure 2-6. 

Atom chip-I (October 2001) featured a Z-wire trap and a straight magnetic wave guide. 

The atom chip was fabricated by the Microsystems Technology Laboratories in MIT. Copper 

wires were electroplated to a thickness of 10 pm and the current capacity of a 50 pm-wide 

wire was less than 1.8 A in a continuous mode. The wire connection was done with spot- 

welding technique. However, after high temperature baking (- 200°C), 70% of connections 

fell off so that we could not make full use of all wires on the chip. Excitationless propagation 

of condensates in a magnetic waveguide 161 and topological formation of vortex states (81 

were demonstrated. Furthermore, the spatial fragmentation of condensates near a wire was 

first reported with this chip [6], and the proximity effects were subsequently studied (91. 

From the second generation, we have collaborated with Mukund Vengalattore at Har- 

vard, Prentiss group. We provided him with optical masks and metal-filmed substrates, and 

he fabricated atom chips for us. Atom chip-I1 (December 2002) was designed for generating 

a double-well potential using a two-wire scheme [129]. The chip surface faced sideways in 

order to open a vertical optical access. Electric connection was done by a mechanical clamp- 

ing method. A group of several wires were pressed down on the corresponding connection 

pads by a single ceramic bar. Unfortunately, the chip performance was disastrous after 

high temperature baking; non-negligible leakage currents run between wires which were 

supposed to be isolated. We attributed this failure to the breakdown of the insulating layer 

due to the combination of high pressure from the clamps and high baking temperature. 

Because several wires were placed under one single clamping bar, to ensure that all wires 

were connected it was likely to overpressure the external wires on the chip. 

With lessons from Atom chip-11, we improved a couple of issues with Atom chip-I11 

(October 2003). To avoid possible overpressure, we individually clamped down external 

wires on the chip connection pads. A small piece of ceramic was glued on the end of a small 

screw, and this screw worked as a single clamp secured by a A1 holder which provides a 

spring effect due to its long arm. The structure can be seen in Figure 2-6(b). Also, the 

other vacuum components except the atom chip were pre-baked in a test chamber at high 

temperature and the real chip setup was mildly baked in the science chamber at less than 

150°C. This individual clamping method was successful. The design of Atom chip-I11 was 

similar to that of Atom chip-11, but it has independent endcap wires, which enabled us to 

study the stability of a doubly quantized vortex state [3]. 

The goal of Atom chip-IV design (July 2004) was to generate a double-well potential 

with trapping parameters similar to the optical double-well potential [I] where we demon- 

strated the feasibility of coherent splitting. To achieve the trapping condition without being 
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Figure 2-7: Wire patterns of the atom chip. (a) Atom chip-I11 with four individual endcap 
wires. A thick line on the right side is a RF antenna. (b) Atom chip-IV. Various spacing 
between wires for a two-wire scheme. (c) Atom chip-V. Several modulated wires are placed 
on the right side of the chip. (d) Atom chip-VI. The chip is designed double-sided for 
implementing the axial splitting. 

affected by the proximity effects, we improved the current capacity of chip wires. The chip 

wires of 12 pm height and 50 pm width were electroplated with Au on a thermally oxi- 

dized Si substrate with a 2-pm-thick Au evaporated film. With this hybrid deposition, we 

could increas the current capacity to 6 A in a continuous mode. Chapter 3 has a detailed 

description of the chip setup. 

Atom chip-V (June 2005) was prepared for the experiment of guiding atoms inside a 

hollow core photonic crystal fiber. Such a fiber is based on an omnidirectional Bragg reflector 

formed by a regular array of holes and is able to guide the light inside a hollow core. The 

atoms can be guided by the light inside the fiber and hopefully trapped and transported 

efficiently to distant location. The motivation of the experiment is using an atom chip as 

a precise positioning tool for atoms which may solve the atom-injection problems. Instead 

of using clamps, external wires were soldered on the chip in order to have open space for 

integrating a hollow fiber on the atom chip. Silver solder with a high melting point10 was 

used for baking and vacuum properties. Technical details for soldering were taken care 

of by Gyuboong Jo. At the moment when I write this thesis, Atom chip-VI for atom 

interferometry is in preparation. 

- 

'O~mtech solder products, Inc. (www.amtechinc.com) 



Chapter 3 

Coherent Splitting of a Condensate 

in a Double-Well Potential 

This chapter describes experiment a1 efforts to demonstrate a coherent beam splitter for 
developing a chip-based confined-atom interferometer. The results were reported in the 
following publications: 

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Lean- 
hardt, Atom Interferometry with Bose-Einstein Condensates in a Double- Well Poten- 
tial, Physical Review Letters 92, 050405 (2004). Included in Appendix B. 

Y. Shin, C. Sanner, G.-B. Jo, T .  A. Pasquini, M. Saba, W. Ketterle, D. E. Pritchard, 
M. Vengalattore and M. Prentiss, Interference of Bose-Einstein Condensates split with 
an Atom Chip, Physical Review A 72, 021604(R) (2005). Included in Appendix C. 

An interferometer is a measurement device based on the wave nature of probe particles. 

The working principle of the interferometers is that the probe particles are coherently split 

into two or more paths and then recombined to read out the phase difference among the 

paths. Thanks to the intrinsic sensitivity of atoms to the environment, atom interferometers 

have been used to sense accelerations [130, 371 and rotations 1131, 1321, monitor quantum 

decoherence [133], characterize atomic and molecular properties (1341, and measure fun- 

damental constants [130, 1351, showing comparable or even better performances than the 

optical counterparts. It had been anticipated that exploiting Bose-Einstein condensed atoms 

would upgrade the conventional thermal-atom interferometers: Bose-Einstein condensates 

having a uniform quantum phase are to matter wave interferometry what lasers are to op- 

tical interferometry, i.e. a coherent, single-mode, and highly brilliant source. Moreover, 

atom interferometry with confined particles has the prospects of improving flexibility and 

capability in anaslogy with optical interferometry using fiber-optic devices. 

Diverse atom optical elements such as mirrors, beam splitters, gratings and waveguides 

were introduced, and have been developed for the coherent manipulation of matter waves. 



An atom chip, as described in Section 2.3, integrates these elements on a microfabricated 

device allowing for precise and stable alignment [96, 97, 991. Recently, this atom chip 

technology has been combined with Bose-Einstein condensed atoms [79, 801, and opened 

the prospect for chip-based confined-atom interferometers with Bose-Einstein condensates. 

Current proposals for confined-atom interferometers rely on a dynamic method: Split- 

ting an atomic wave packet by deforming a single potential well into two potential wells 

and recombining the atomic wave packets by the reverse process [129, 136, 1371. This 

chapter deals with our experimental efforts to implement this scheme with Bose-Einstein 

condensates in optical and magnetic microtraps. In Section 3.1, I depict the dynamics of 

a Bose-Einstein condensates in a double-well potential and outline relevant physics for co- 

herent dynamic splitting. In the next two section, I describe the experimental study on 

dynamic splitting of Bose-Einstein condensates in a double-well potential. 

There are two sets of experiments. The first set of the experiments (Section 3.2) used an 

optical double-well that was introduced in Section 2.2. We demonstrated coherent splitting 

of Bose-Einstein condensates and performed a trapped atom interferometer with the optical 

double-well system [I]. These results are remarkable in that the experimental feasibility of 

the scheme for confined-atom interferometers based on dynamic splitting is confirmed. In 

addition to technical challenges related to adiabatic manipulation of matter waves, it has 

not been even theoretically clear if the two condensates generated after macroscopic large 

splitting end up in a phase-coherent state or a number-squeezed state (138, 139, 140, 1411. 

A central prerequisite for confined-atom interferometers was demonstrated: A condensate 

can be coherently split into two halves with a determined relative phase and the two halves 

can be separated by an arbitrary distance, much larger than the dimension of the original 

condensate. 

In the second set of the experiments (Section 3.3), we studied the dynamical splitting of 

condensates in a purely magnetic double-well potential on an atom chip. Inspired by the ob- 

servat ion of coherent dynamic splitting with an optical double- well potential in the previous 

experiments, we developed an atom chip capable of duplicating the previous experimental 

conditions such as trap confinement and trapping geometry, which is a quite reasonable 

strategy for developing a chip-based atom interferometer. Matter wave interference of two 

split condensates was observed, from which the coherence of the splitting process was in- 

vestigated. It was found that the stability of the magnetic double-well potential needs to 

be improved for coherent splitting. I propose several alternative schemes. 



3.1 Dynamic Splitting of Condensates 

Coherent splitting of matter waves is dividing the matter waves into two different wave 

packets with a well-defined relative phase, which is a prerequisite for further applications 

such as atom interferometry and quantum information processing. The methods envisioned 

for coherent splitting can be divided in two classes. One is splitting in momentum space 

and subsequently generating a spatial separation, using scattering of atoms from a periodic 

optical potential (142, 1021. The other is dynamic splitting by directly deforming a single 

wave packet into two spatially separate wave packets, which can be considered as cutting 

off the weak link between two wave packets, i.e., stopping tunneling through the barrier 

separating two wave packets. Splitting in momentum space has led to remarkably clean 

interferometric measurements and this method was generally used in atom interferometers 

using thermal atoms in free space. However, it has been pointed out that momentum 

splitting is not always accompanied by full spatial separation of the two wave packets so 

that spatially dependent phase shifts induced by atom-atom interactions during separation 

are problematic [102, 1431. Dynamic splitting in real space instead is perfectly compatible 

with keeping atoms confined, a feature beneficial to the versatility of interferometers. 

3.1.1 BEC in a Double-Well Potential 

Dynamic splitting of a Bose-Einstein condensate has been theoretically studied in the con- 

text of two coupled condensates in a double-well potential, which is one of the simplest ex- 

tensions of the study of a single condensate. Since a Bose-Einstein condensate is described 

by a macroscopic wave function with an arbitrary but fixed phase, the double-well system 

has quantum tunneling through a potential barrier separating two condensates. Moreover, 

atom-atom interactions in condensates add to the simple single-particle quantum tunneling 

system richer physics such as Josephson effects (1441 which are direct manifestation of the 

phase of a macroscopic quantum system. 

The governing Hamiltonian in the double-well system can be represented by nonlinear 

time-dependent many-body Schrodinger equations, which are, however, generally known 

to be difficult to solve. Most of theoretical investigations were based on the two-mode 

approximation [145, 146, 1411, where the state space of the system is restricted to a smaller 

space spanned b,y only two single-particle states. Usually, the two states are the motional 

ground states for each well or equivalently, the left state +L and the right state +R, are 

simply constructed from the single-particle ground state 4, and the first excited state 4, 
of the double well potential. +L = L(+ + 4,) and +R = L(+ - 4,) are localized in JZ a 9 

the left well and the right well, respectively. +L(t)  and c # I ~ ( ~ )  may be functions of time 

especially when the double-well potential transforms in dynamic splitting process. There 



might be another recipe for the two states: constructing the two wave functions from the 

Gross-Pitaevskii equations in each well with a given atom number and updating them with 

atom numbers in each well changing during evolution. However, this method is not only 

numerically heavy but also unnecessary for our purpose to obtain insights on the underlying 

physics . 
The simplified Hamiltonian in the restricted state-space is given as 

t t where aL and aR  are the mode creation operators for $L and $R, respectively. Ul = 

J dxl$L,R14 represents on-site atom-atom interaction in one well and U2 = 1 dzlq!)~ l 2  (q!)RI2 

represents atom-atom interaction between the two wells. The first term is proportional to 
t t  the product of the atom numbers in each well, NLNR = (aLaLaRaR), the second term 

represents single-particle hopping with the effective single-particle tunneling strength, J,' 

and the third term represents two-particle hopping which will be ignored in the following 

description. We assumed that and $R are symmetric and ignored the term proportional 
t to the total atom number, N = NL + NR = (aLaL + aRaR). The complete derivation can 

be found in Ref. [141]. 

What is the many-body ground state for this Hamiltonian? The ground state is de- 

termined out of the competition between the on-site interaction energy and the tunneling 

energy. Two limiting cases help understand the physical effects of the energy terms. When 

there are no atom-atom interactions, i.e., g = 0, the ground state is the one with all atoms 

in the state $g = L($L + $R),  a coherent state with a definite relative phase. On the fi 
other hand, when tunneling is prohibited, i.e., J = 0, the minimization of the total energy 

suggests that the ground state is the one with equal population in each well because NL NR 

has a minimum value at Nt = NR for fixed N .  Therefore, the tunneling-dominated situ- 

ation has the ground state close to a coherent state having a well-defined relative phase, 

and the interact ion-dominated situation has the ground state close to a Fock state having 

fixed atom numbers for the two wells. In a periodic potential such as an optical lattice, the 

superfluid-Mot t insulator transition originates from the same physical mechanism. 

The dynamics of a Bose-Einstein condensate in a double-well potential has been theo- 

ret ically investigated by many authors, in particular focusing on nonlinear Josephson oscil- 

lations. The physical origin of the phenomena is the nonlinear coupling between the relative 

phase and the population imbalance of two condensates; the two variables are quantum- 

mechanically conjugate to each other.2 Since the population imbalance is not accessible 

J = Jo - gNU3, where Jo is the ideal single-particle tunneling rate, N  = NL + NR is the total atom 
number, and U3 = J ~ x ] ~ ! I L I ~ # ; ~ ! I R .  

2 ~ n  a thermodynamical limit, N  >> 1. 



with superconductor Josephson junctions, the system of two coupled atomic condensates 

allows the investigations of novel effects such as macroscopic quantum self-trapping [I471 

and n-phase oscillations [148]. 

A real situation of Bose-Einstein condensates in a double-well potential may have more 

complicated and interesting physics originated from additional terms ignored in Eq. (3.1). 

In the experimental situations described in Chapter 4 and 5, the tunneling term is extremely 

negligible. Instead, the experiment in Chapter 4 deals with an external, optical coherent 

coupling between two condensates and the experiment in Chapter 5 deals with incoherent 

thermal coupling between two condensates at finite temperature. 

3.1.2 Requirements for Coherent Dynamic Splitting 

Coherent dynamic splitting is equivalent to decreasing the tunneling rate J + 0 resulting 

in a final coherent state with a well-defined relative phase. This splitting can be physi- 

cally implemented by increasing the height of the potential barrier between the two wells. 

However, as explained in the previous subsection, the true ground state with J = 0 is a 

Fock state with a completely random relative phase. When we start with a coherent state 

with large tunneling and increase the height of the potential barrier, the number fluctuation 

tends to evolve from Poissonian to sub-Poissonian increasing the uncertainty of the relative 

phase [146]. Therefore, an extremely slow splitting process satisfying the adiabaticity of the 

internal phase dynamics over the whole process will never generate a coherent state, which 

suggests one criterion for the upper bound for the time scale of the splitting process. 

Fundamental limits on the phase coherence between isolated condensates arise due to 

the phase diffusion 1149, 138, 139, 140, 1411. A coherent state is a superposition of many 

number states. Due to atom-atom interaction, the energy of a number state nonlinearly 

depends on the atom number, which cause the relative phase to naturally diffuse [149, 1381. 

This phase diffusion gives another consideration for the upper bound: The splitting process 

is required to be finished before the relative phase diffuses away. 

One of the conceivable methods for coherent dynamic splitting might be abruptly remov- 

ing the tunneling between the two wells. However, the abrupt rise of the potential barrier 

and the acco~npanying rapid change in the double well potential would induce collective 

excitations in the initially stationary condensate. Therefore the splitting process should 

be slow enough to keep the condensates in the stationary ground states of the resulting 

individual wells. The time scale for ramping up the potential barrier needs to be larger 

than the oscillation period which is the inverse of the trap frequency. 

In conclusion, coherent dynamic splitting requires to be diabatic with respect to the 

internal phase dynamics and adiabatic with respect to the external motional dynamics. 

The detailed analysis on the adiabaticity conditions for coherent dynamic splitting can be 



found in Ref. [145, 146, 141].

3.2 Coherent Splitting in an Optical Double-Well Potential

Dynamic splitting of Bose-Einstein condensates was investigated first with an optical double-

well potential. Condensates were initially loaded from the tweezers into an optical trap

shown in figure 3-1(a). The potential barrier between the two wells was smaller than the

peak atomic mean field energy so that the trap was characterized as a single-well containing

a single connected condensate with a uniform phase. Starting with the dimpled single-well

trap was beneficial to reduce collective excitations accompanying the splitting process, such

as radial dipole oscillations. Increasing the barrier height without changing the centers of

the two wells might be more ideal in terms of quietness, but in atom interferometry larger

separation is preferred. After holding the cloud in this dimpled single-well trap over 10 s to

damp excitations which might have been caused during the loading procedure, condensates
were almost stationary.

(a) (b)

•-d.
I

(c)

Figure 3-1: Splitting Procedure in an optical double-well potential. A Bose-Einstein con-
densate was split into two parts by deforming (a) an optical single-well potential into (b)
a double-well potential. The experimental setup for the optical double-well potential was
described in Section 2.2. The l/e2-intensity radius of the focused beam corresponding to a
single-well potential was 5 J.1.m. In the typical experimental condition, the separation of the
two well di = 6 /-lm for initial single-well trap and df = 13 J.1.m for final double-well trap. A
single, isolated potential well had trap depth of Uo = h x 5 kHz, which was determined from
interferometric measurements described in Section 3.2.2, and radial (axial) trap frequency
JT = 615 Hz (Jz = 30 Hz). The potential "dimple" in (a) was < h x 500 Hz which was
much less than the peak atomic mean field energy of I'V h x 3 kHz allowing the trap to be
characterized as a single-well. The potential "barrier" in (b) was h x 4.7 kHz which was
larger than the peak atomic mean field energy allowing the resulting split condensates to
be characterized as independent. The atom number of condensates was I'V 105. (c) The ab-
sorption image shows two well-separated condensates confined in the double-well potential
diagramed in (b). The field of view is 200 J.1.m x 350 /-lm. The gravitation, g, points into
the page.

The single-well trap was deformed into the double-well potential shown in figure 3-1(b)

by linearly increasing the distance between the two wells to 13 J.1.m in 5 ms. The splitting
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time and the final distance between the two wells were experimentally optimized for long

coherence time after splitting. The operating principle of the optical double-well potential

was described in Section 2.2. The amplitudes of the rf signals were tailored during the

splitting process to yield nearly equal population and trap depths for each potential well.

(a)

@9
-5<

Position

Figure 3-2: Matter wave interference. (a) Absorption image of condensates released from
the double-well potential immediately after splitting and allowed to overlap during 30 ms of
ballistic expansion. The imaging axis was parallel to the direction of gravitational accelera-
tion, g. The field of view is 600 /-Lmx 450 /-Lm. (b) Radial density profiles were obtained by
integrating the absorption signal between the dashed lines, and typical images gave > 60%
contrast. The solid line is a fit to a sinusoidally-modulated Gaussian curve from which the
spatial phase of the interference pattern was determined (see text for details). This figure
presents data acquired in a single realization of the experiment.

The relative phase of the two split condensates was determined by the spatial phase

of the matter wave interference pattern formed by releasing the condensates from the

double-well potential and letting them ballistically expand and overlap (Figure 3-2). For

a ballistic expansion time much larger than the trap oscillation period and neglecting in-

teractions during ballistic expansion, each condensate has a quadratic phase profile [62],

'l/J:i(r,t) = v'n:i(r,t)exp(i2~tlr:f:d/212 + CP:i),where:f: denotes one well or the other, n:i is

the condensate density, m is the atomic mass, :f:d/2 is the starting position of the ballistic

expansion, and <PI is the condensate phase. Thus, the full density profile of the interference

pattern takes the form

(3.2)
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where 4, = q$+ - 4- is the relative phase between the two condensates and d = d?. To 

determine +,, the integrated cross section shown in Figure 3-2(b) was fit with a sinusoidally- 

modulated Gaussian curve, G (x) = A exp(- (x - x,) /02) (1 + B cos (F (x - xO ) + 4 ) ) , where 

q$f is the phase of the interference pattern with respect to a chosen fixed xo. Ideally, if xo 

is set at the center of the two wells, then 4, = q5f. However, misalignment of the imaging 

axis with the direction of gravitational acceleration created a constant offset, q5f = 4, + 64. 

With t = 30 ms the measured fringe period, X = 41.5 pm, was within 4% of the point source 

formula prediction [Eq. (3.2)], ht/rnd = 39.8 pm. 

3.2.1 Coherence Time 

Each realization of the experiment produced an interference pattern with the same spatial 

phase. This reproducibility demonstrated that the two condensates in a double-well poten- 

tial had deterministic relative phase and that deforming the optical potential from a single 

well into a double well coherently split the condensate. This result is remarkable in that it 

experimentally confirms the feasibility of coherent dynamic splitting of a condensate. 

We attribute this success to the favorable feature of the optical setup for a double-well 

potential: since both wells are derived from a single laser beam passing through an AOM, 

vibrations and fluctuations of the laser beam are rejected as common modes. Furthermore, 

an optical trap provides clean releasing of condensates because it can be turned off rapidly. 

In the past experiment where a double-well potential was created by splitting a magnet- 

ically trapped condensate with a blue-detuned laser beam [16], coherent splitting, i.e., a 

reproducible relative phase between the split condensates could not be observed due to 

fluctuations in the position and the power of the splitting laser beam and irreproducible 

t urn-off of the high current magnetic trap that initiated ballistic expansion. 

The relative phase between the separated condensates was observed to evolve linearly 

in time (Figure 3-3(a)). This evolution was primarily attributed to a small difference in the 

well depths. Equal population in each potential well indicates that the well depths of the two 

wells were equal at the moment of splitting, but due to the frequency-dependent diffraction 

efficiency of the AOM mentioned before, the well depths could happen to be changed after 

splitting. Since the two condensates had equal peak atomic mean field energy, the difference 

of the chemical potentials of the two condensates reflected the difference in the well depths. 

The rate of relative phase evolution could be tailored by adjusting the relative intensity of 

the two laser beams generating the wells. 

The standard deviation of eight measurements of 4, was < 40 degrees for condensates 

split then held separated for up to 1 ms and increased to over 90 degrees after 5 ms holding 

(Figure 3-3(b)). Here, we can ask two relevant questions on coherence after splitting: What 

determined the initial phase uncertainty and what made the phase uncertainty growing? In 
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Figure 3-3: Phase coherence of the separated condensates. (a) The spatial phase of the 
matter wave interference pattern is plotted versus hold time after splitting the condensate. 
Each point represents the average of eight measurements. The phase evolution was due 
to unequal trap depths for the two wells, which was determined from the linear fit to be 
h x 70 Hz or -i 1 % of the trap depth; (b) Standard deviation of eight measurements of the 
relative phase. The definition of the standard deviation of phase might not be clear because 
of the module property of phase. However, considering that a random distribution of phases 
between - 180 and +I80 degrees would have a standard deviation of - 104 degrees (dashed 
line), the results quantitatively confirm the reproducible nature of the splitting process and 
the coherent evolution of the separated condensates. Polar plot representation of eight 
phase measurements for (c) 0 ms holding, (d) 3 ms, and (e) 5 ms. 



our experimental condition, we would expect a phase diffusion time t f'V ~ ~ 250 ms [149]

because of Poissonian number fluctuations in a coherent state. As described in Section 3.1,

the localization due to atom-atom interactions may reduce the initial phase coherence of

the split condensates but this would also extend the phase diffusion time [138, 139, 140,

150, 141]. Apparently, the coherence time observed in our experiment was almost one order

magnitude smaller than this phase diffusion time, so definitely, the coherence time was

not limited by these fundamental issues, but some technical issues. For example, we could

not certainly determine the spatial phase of fringes at hold times > 5 ms because of axial

and breathing-mode excitations created during the splitting process. These excitations are

represented as angled and curved fringes, i.e., the relative phase of two condensates along

the axial direction is not uniform, meaning relative axial motions of the two condensates.

Matter wave interference patterns after 5 ms holding are displayed in Figure 3-4.

Figure 3-4: Perturbation from splitting process. Matter wave interference patterns after
5 ms holding are displayed. The curvature of the interference fringes increased with hold
time limiting the coherence time of the separated condensates to 5 ms. When we determined
the relative phase of two condensates from the spatial phase of the interference pattern, we
picked up the region where the tangent direction of fringes was parallel to the axial direction,
meaning the relative axial motion of the two condensates was at rest. The two black dashed
lines in each image indicate the region used for phase measurement and the white dashed
lines are guiding lines for phase comparison. The field of view is 450 /-lm x 700 /-Lm.

In a perfect symmetric double-well potential, the splitting process can not induce axial

relative motions of two split condensates, due to mirror symmetry, and therefore angled

fringes would not appear. In principle, slower splitting should result in more straight and

parallel fringes, but the straightness of fringe patterns could not be improved with even

larger splitting time> 5 ms. Therefore, the observation of angled fringes obviously shows

that the two traps are not symmetric. With numerical simulation, Collins et. ai. [151] pointed

that these asymmetric fringe patterns suggest the presence of slight additional geometry

variations of the two traps. If the two traps are not parallel, the splitting process would not

occur at the same time along the axial direction and the condensates would flow down to

the converging direction. If the two traps do not have the same axial position, the splitting
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direction would not be normal to the axial direction and induce the relative axial motions. 

Even though the two optical beams for the two traps have almost same optical paths, 

they can have different focal positions due to optics aberration and beam profile difference. 

IJnfortunately, there is no easy experimental knob for controlling the relative axial position 

of the two traps. In the experiment, extreme care for optical alignment was needed. 

3.2.2 Trapped Atom Interferometry 

As a proof-of-principle experiment, we performed trapped atom interferometry with con- 

densates using tht: coherent splitter described in the previous section. The phase sensitivity 

of the trapped-atom interferometer was demonstrated by applying ac Stark phase shifts to 

either (or both) of the two separated condensates. Phase shifts were applied to individual 

condensates by pulsing off the optical power generating the corresponding potential well 

for a duration 7p << l/ fr Figure 3-5(a) shows that the spatial phase of the matter wave 

interference pattern shifted linearly with the pulse duration, as expected. Due to the in- 

homogeneous optical potential, U ( r )  , the applied ac Stark phase shifts varied across the 

condensate as A+(r) = - U ( r ) ~ ~ / h *  Averaging this phase shift over the inhomogeneous 

condensate density, n ( 3 ,  we approximate the expected spatial phase shift of the matter 

wave interference pattern as A 4  = $ Jd3r '  n(qA+(? )  = (Uo - $ p ) ~ t / T i ,  where N is the 

number of atoms, and Uo is the potential well depth, and p is the atomic mean field energyS3 

The measured phase shifts yielded Uo = h x 5 kHz (Figure 3-5(c)), which was consistent 

with calculations based on the measured trap frequencies. 

In a good atom interferometer, the phase evolution of atoms in one arm should be 

independent of the phase evolution of atoms in the other arm. If there is some interaction 

between the two arms, i.e., some phase coupling between the two separate condensates, then 

the relative phase would show nonlinearity such as Josephson oscillations [147, 621, which 

would make the interpretation of the external effects extremely complicated or practically 

impossible. Due to the large well separation and mean field energy h x 1.7 kHz below the 

barrier height, the single-particle tunnelling rate in our system was 5 x Hz [62], 
and the condensates were effectively decoupled. The linear behavior in Figure 3-5(a) of the 

relative phase of the two condensates indirectly shows the absence of coupling between the 

two separate condensates. 

As a supplementary experiment, we performed an experiment where the time of applying 

ac Stark phase shifts was controlled. Because the relative phase of the two condensates 

3 ~ h i s  first-order approximation gives rise to an interesting question about its validity. Nonuniform phase 
shifts physically correspond to  forces and cause external motions. In our situation, it is a breathing mode. 
Phase gradient represents kinetic energy and the subsequent phase evolution would become faster so that 
the averaging method might underestimte the resulting phase shift. In our experiment, rp << l /  f, to ensure 
that the phase difference across the condensate is small. 
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Figure 3-5: Trapped-atom interferometry. (a) ac Stark phase shifts were applied to either 
well exclusively (solid circles and open circles) or both wells simultaneously (crosses) by 
turning off the corresponding rf signal(s) driving the AOM for a duration rp. The resulting 
spatial phase of the matter wave interference pattern scaled linearly with T~ and hence 
the applied phase shift. Applying the ac Stark shift to the opposite well (solid versus open 
circles) resulted in an interference pattern phase shift with opposite sign. Applying ac Stark 
shifts to both wells (crosses) resulted in no phase shift for the interference pattern. This 
data was taken with a slightly modified experimental setup such that the trap depth of the 
individual potential wells was Uo = h x 17 kHz, corresponding to a 270 degree phase shift 
for a 50 ps pulse. (b) The time sequence of the optical intensity for the well(s) temporarily 
turned off. (c) Independent evolution of two separate condensates. A 50 ps pulse induced a 
70 degree shift independent of the pulse delay, r d ,  showing that there is no phase coupling 
between the two condensates. The experimental setup was as described in Figure. 3-1 
(Uo = h x 5 kHz). ac Stark phase shifts were applied to either well exclusively in the same 
way as in (a). (d) The time sequence of the optical intensity for the well temporarily turned 
off. 



was linearly running in time, applying phase shifts at different time means applying it 

with different relative phases. The measured phase shifts of the matter wave interference 

depended only on the time-integral of the applied ac Stark phase shifts (Figure 3-5(c)), 

as expected for uncoupled condensates. The final relative phase, +,., should be the same 

on different phase trajectories because the history of phase accumulation does not affect 

the total amount of accumulated phase. For coupled condensates, a time dependent signal 

would appear due to nonlinearity. 

As a summary of this section, we have performed atom interferometry with Bose-Einstein 

condensates confined in an optical double-well potential. The large spatial separation be- 

tween the potelitial wells guaranteed that each condensate evolved independently and al- 

lowed for addressing each condensate individually. The phase readout scheme using matter 

wave interference after ballistic expansion allowed us to avoid deleterious mean field effects 

inherent in proposals using in-trap wavepacket recombination [152]. If we propagate the 

separated condensates along a waveguide prior to phase readout, the atom interferometer 

would have a,n enclosed area and become rotation-sensitive. Implementing this idea with 

chip-based magnetic waveguides [6] is a motivation for the experiment described in the next 

sect ion. 

3.3 Toward Atom Interferometry on an Atom Chip 

Encouraged by the successful demonstrat ion of trapped atom interferometry with Bose- 

Einstein condensates in the previous experiment, we made efforts to realize a chip-based 

atom interferometer. The reason why we want to do an almost same experiment with 

an atom chip as what we already did with the optical system is that in the viewpoint 

of atom interferometry, the magnetic system currently looks more promising to extend to 

a rotation-sensitive geometry. In addition to the technical advantages of atom chips as 

discussed in Section 2.3, atom chips based on current-carrying wires can create a magnetic 

double-guiding potential with adjustable separation. 

The primary goal of the following chip experiment is to duplicate the previous opti- 

cal experiment; achieving coherent splitting of a condensate on an atom chip. Since we 

demonstrated coherent splitting with the optical double-well potential and identified the 

experimental parameter window for coherent splitting, generating a magnetic double-well 

potential having similar trapping parameters would be definitely a reasonable strategy for 

carrying out the corresponding chip experiment, which suggests that the magnetic double- 

well potential have trap frequency over 300 Hz and barrier height over 5 kHz with a well- 

separation less than 30 pm. Although we can fulfill these requirements easily by bringing 

the atoms very close to the current-carrying wire, deleterious proximity effects such as frag- 
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Figure 3-6: Magnetic doube-well potential in a two-wire scheme. An atom chip is set facing
+z-direction and two straight wires are fabricated on the chip, having currents Ie in -y-
direction. With an external magnetic field Bx, two local minima in the magnetic field are
placed on the same side of the chip. (a) Increasing Bx results in moving the two minima
from open circles to solid circles. The dashed line indicate the trajectories which the two
minima follow with Bz=O. The center line is perpendicular to the chip surface and in the
middle of the two chip wires, and the circle passes the two wire with a diameter of d. At
the merge point M, the two minima are coalesced with Bx = Bxo. Color contour plots of a
magnetic field with (b) Bx < Bxo and (c) Bx < Bxo. Corresponding plots for Bz > 0 are
displayed in (d), (e), and (f). With a non-zero Bz, the two minima can not be completely
merged.

mentation and lifetime reduction [6, 107, 9, 108, 111] impose restrictions on the minimum

distance between atoms and chip surfaces. With our moderate in-house fabrication quality,

the experiment should be performed at least 200 /-lm away from wires in order to avoid

fragmentation [6], meaning that high current capacity is needed for satisfying the above

requirements for the trap geometry. Atom chip-IV was developed under this condsideration

(Section 2.3).

3.3.1 Magnetic Double-Well Trap

A magnetic double well potential was realized with an atom chip using a two-wire scheme [129].

The basic geometry of an atom chip for a double-well potential is illustrated in figure 3-6.

When two chip wires have currents, Ie, in the -y direction and the external magnetic
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field, Bx, is applied in the +x direction, two lines of local minima in the magnetic field are 

generated above the chip surface. Each local minimum has a quadruple field configuration 

in the xz plane, and with an additional non-zero magnetic field in the axial direction (y- 

direction), two Ioffe-Pritchard magnetic traps can be formed. The relative magnitude of 

Bx to the field from Ic determines the direction of separation and the distance of the two 

traps. The two traps are separated in z-direction with B, < Bxo (Figure 3-6(b)) and in 

2-direction with Bx > Bxo (Figure 3-6(c)). Bxo = ,uoIc/7rd is the critical field magnitude 

for merging two magnetic harmonic potential to form a single quartic potential, where d 

is the distance between the two chip wires and po is the permeability of the vacuum. The 

merge point is located at the middle of the two wires and d / 2  away from the chip surface. 

When B,. >. Bxo, the two trap centers are located symmetric on the circle which is 

determined by t'he two chip wires and the merge point (Figure 3-6(a)), which can be easily 

understood by observing that the x-component of magnetic field from the two wires is zero 

on the circle. When the angle of the two trap centers on the circle is 20, the corresponding 

riven as value for Bx is b' 
POIC 1 B z =  -- - - Bx0 

7rd cos 0 cost?' 

When 0 << I ,  the distance between the two trap centers s is 

where ABx =: Bx - Bxo. 

Experimental procedures are described in Figure 3-7. A condensate is loaded at the 

bottom well with Bx < Bxo and split into two parts by increasing Bx over Bxo. The 

relative phase of the two split condensates is determined by releasing the condensates and 

recording their interference pattern like in the previous experiment. 

3.3.2 Symmetric Axial Confinement 

A small magnetic field in the z-direction can break the symmetry between the relative 

positions of the two traps with respect to the two chip wires, as the two wells have op- 

posite responses to Bz. For example, when Bx > Bxo and the two wells are separated in 

x-direction, positive B, makes the left well move downward and the right upward (Figure 3- 

6(f)). Furthermore, with a nonzero Bz,  the two wells do not merge completely at any B, .4  

In order to place the two wells at the same height and split atoms symmetrically, B, should 

be kept zero along the axial, y-direction. If Bz changes along the axial direction, the two 

4 ~ h i s  pr0pert.y can be used for asymmetric splitting. In our experiment, B, = 0 was found confirming 
symmetric splitting with equal populations in each well. 
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Figure 3-7: Experimental procedures with an atom chip. (a) A condensate is loaded at P.
(b) The condensate is split into two parts, Land R, by increasing the external magnetic
field Bx. (c) A matter wave interference pattern is formed by releasing the two condensates
and letting them overlap during time-of-flight. The relative phase of the two condensate is
measured by the spatial phase of the interference pattern.

wells are no longer parallel and the gravitational force would cause an axial displacement

of the two split condensates. Therefore, when the axial trapping potential is added to form

up Ioffe-Prichard magnetic traps, it should be carefully designed to ensure that conden-

sates split perpendicular to the axial direction and stay in the same axial position. When

endcap wires are placed only on the chip surface as in Atom Chip III which was used for

vortex experiments in Chapter 6, a non-zero field gradient a~z inevitably accompanies a

field curvature a;~y for the axial confinement, i.e., Bz changes from positive to negative

along the axial direction (Figure 3-8(a)). Actually, we observed that two condensates were

axially misaligned after splitting (Figure 3-8(b)), which brought this symmetry issue to our

attention.
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Figure 3-8: (a)Magnetic field from endcap wires for axial confinement. In Atom chip-III, the
endcap wires for axial confinement were fabricated on a substrate. The detailed description
on the wire pattern can be found in Chapter 6. In addition to the field curvature 82By/8y2
for axial confinement, a non-zero field gradient 8Bz/8y is generated from the endcap wires.
(b) Absorption image of two split condensates. After splitting, the two split condensates
were axially misplaced due to the non-zero field gradient 8Bz/8y. The dashed line indicates
the chip surface.

The experimental setup of the atom chip is shown in Figure 3-9. The atom chip was set
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to face downward and the two traps are horizontally separated when Bx > Bxo, In order

to provide the axial confinement and at the same time minimize 8!!uz, we placed two pairs

of external wires 1.5 mm above and 4 mm below the chip surface. This three-dimensional

design of axial confinement was necessary for obtaining the interference signal of two split

condensates. Moreover, maintaining the geometric symmetry of two wells will be crucial

for longer coherence time after splitting [1].

mirror

(a)

external wires

Figure 3-9: (a) Schematic diagram of the atom chip (Atom chip-IV). A magnetic double-
well potential is created by two chip wires with a current Ie in conjunction with an external
magnetic field. The chip wires of 12 J-Lm height and 50 J-Lm width were electroplated with Au
on a thermally oxidized Si substrate with a 2-p,m-thick Au evaporated film. The chip was
glued on an Al block for heat dissipation and the current capacity was 6 A in a continuous
mode. The distance between two wires was 300 p,m or 500 J-Lm. A pair of external wires
with 18 above the chip surface provided the axial confinement along the y direction, and
the other pair of external wires with IT with the chip surface were used for compensating
the anti-symmetry effect from the pair of external wires above the chip surface (for detail,
see text). Gravity was in the +z direction. (b) Photo of the atom chip set. Using the chip
surface and the mirror, images of atoms can be taken from the direction normal to the chip
surface.

3.3.3 Interference of Two Condensates Split with an Atom Chip

Bose-Einstein condensates of IF = 1, mF = -1) 23Na atoms were loaded in a bottom well

with Bx < Bxo, Experimental parameters were Ie = 1.8 A, Bxo = 24 G, By = 1 G,

d = 300 J-Lm, and the axial trap frequency fy = 13 Hz. Condensates were first loaded in the

bottom well 500 p,m away from the chip surface, brought up to 30 J-Lm below the merge point

in 1 s, and held for 2 s in the bottom well to damp out excitations. The whole experiment

was carried out with a radio-frequency (rf) shield [58] and before splitting, condensates

contained over 8.0 x 105 atoms without discernible thermal components. Splitting was done

by ramping ~Bx = Bx - Bxo linearly from -140 mG to 100:i: 20 mG in 200 ms. The
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separation between two condensates was controlled by the final value of Bx. After splitting,

two condensates were released from the magnetic trap and the absorption image was taken

along the axial direction.

Figure 3-10: Splitting of a condensate on an atom chip. A condensate is split into two parts
by increasing the external magnetic field Bx. A series of absorption images of atoms in trap
with different Bx are provided.

In order to observe matter wave interference pattern of two split condensates, the two

split condensates should spatially overlap during ballistic expansion. It sounds a very simple

requirement but extra technical efforts were needed to obtain the first fringe image. First

issue was about clean and rapid releasing. In the two wire scheme, the responses of the two

wells to an external magnetic field are opposite and thus any kind of uncontrolled residual

field in the turn-off process would cause the two condensates to be kicked in opposite

directions, preventing a spatial overlap during time-of-flight (Figure 3-11(e)). With high-

current fast-switching MOSFETs, the magnetic trap could be turned off within 20 J-Ls much

shorter than the inverse of any trap frequency. The external bias field Bx was provided by

a pair of macroscopic external coils having currents f'V 28 A.5

Second issue was about long-living axial dipole oscillation. In principle, the axial di-

pole oscillation should not affect the visibility of the interference pattern because the two

condensates would oscillate in phase after splitting in a perfectly symmetric double-well

potential. Furthermore, this can be used for developing a rotation-sensitive atom interfer-

ometer with a guiding potential. However, the axial trap frequencies for two wells were

found to be different by 17 % and the two condensates had different axial velocity shortly

after splitting, which would result in tilted fringes with respect to the sight line of the

absorption image. We attributed this asymmetry to the imperfect fabrication of the chip

wires, observing that the fragmentation pattern of clouds near the two wires are different.

Furthermore, the centers of the oscillations of the two condensate were axially different. We

tried to adjust the currents in the external coils for axial confinement in order to reduce

5Another method for clean turn-off might be using the p,-wave transition from the \1, -1) state to 12,0)
state [153].
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Figure 3-11: Long-living axial motion and unclean releasing. (a) The dipole oscillation in
the axial direction had a very long lifetime. After splitting, the two condensates showed
different oscillation periods. Bottom absorption images of atoms in traps at (b) 0 ms and
(c) 420 ms after splitting. (d) A green light (a repulsive potential) was applied at the end
part of condensates in order to damp the long-lived axial dipole oscillation. The dashed
region indicates the position of the green light. (e) Non-synchronized slow turn off of the
magnetic potential induced mechanical perturbation on two condensates when they were
released.

the displacement, and searched for more homogeneous parts of the chip wires. At the end,
the long-living axial dipole oscillation was damped by applying a repulsive potential wall
at the one end of condensates with a blue-detuned laser beam (532 nm) before splitting.

Finally, matter wave interference fringes were observed after releasing the condensates
and letting them expand in time-of-flight (Figure 3-12). High visibilityof fringes indicates
that the splitting procedure was smooth enough to produce two condensates having uniform
phases along their long axis perpendicular to the splitting direction. The relative phase
of the two split condensates was determined from the spatial phase of the matter wave
interference pattern as in the previous experiment.

The relative phase of two split condensates turned out to be unpredictable when they
were fully separated (Figure 3-12). The separation of two condensates was determined from
the spacing, As, of the interference fringes, using the formula, d = ht/mAs The typical
fringe spacing was A ~ 15 p,m with t = 22 ms, corresponding to d ~ 26 /-lm. Given the
precise knowledge of the fabricated wires, the full trap parameters can be calculated. We
assumed that the condensates followed trap centers in the motional ground state. When
the separation is less than 20 /-lm and two condensates are linked, the uncertainty of the
spatial phase of fringes was less than 60°, and when the barrier height was over 1.5 kHz,
the relative phase started to be random. Since the chemical potential of the condensates,
p,= 1.4:i:0.2 kHz, was very close to the barrier height, the condensates just started to lose
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Figure 3-12: Interference of two condensates split with an atom chip. The separation of
two condensates was determined from the spacing of interference fringes. Fifty data points
for the same experimental conditions are plotted. Three dashed lines indicate the distances
of two wells with the barrier height of 1 kHz, 2 kHz, and 3 kHz, respectively. The chemical
potential of the condensates J-L = 1.4 :f: 0.2 kHz.

their coupling at this point. We tried to reduce the phase uncertainty by optimizing the

splitting time, the final separation, and trap frequencies. However, full investigation was

limited by short lifetime of condensates near the merge point.

3.3.4 Stability of Trapping Potentials

During the splitting process, condensates experience a dramatic change in the trapping

geometry. Figure 3-13 shows how the trapping potential changes during the splitting

process. When condensates come closer to the merge point, the bottom well and the top well

merge. Generally, the merging of two harmonic conservative potentials creates a quartic

potential with zero harmonic trap frequency. Due to gravitation, Iz is always over 200 Hz

but Ix vanishes at the merge point. Immediately after the merge point, the trajectory of the

trap centers abruptly changes its direction from vertical to horizontal, and the separation

of two wells quickly increases to 15 J-Lm with a small magnetic field change of 6Bx ~ 10 mG.

For a single particle in a harmonic potential with trap frequency, lx, the quantity Q ==
-h ~ accounts for the transition probability from the ground state to the first excited

state in transforming the potential, and it can parameterize the external adiabaticity of

the process. Q« 1 should be maintained to keep the particle staying in the motional

ground state. Neglecting the collective excitations of a condensate, we apply this criterion,

Q == pl g~x d~x « 1, to our situation. The harmonic trap frequency, Ix defined at the
x x

centers of wells, in the splitting direction vanishes at the merge point. With d~x = 1.2 Gis,
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a < 1 at f x > 150 Hz, but obviously, a diverges to infinity near the merge point and its

definition no longer holds.

Since the energy level spacing becomes smaller, the adiabatic condition in the quartic

potential around the merge point becomes more stringent. The abrupt change of trap-

ping potential will induce mechanical perturbations of condensates, particularly inducing

quadrupole excitations via coupling between radial modes and axial modes. Subsequent

dissipation or coupling into internal excitation modes [101] would make the relative phase

of two split condensates unpredictable.
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Figure 3-13: Magnetic trapping potential during splitting. (a) Radial cross sections of trap-
ping potential including gravity for LlBx=O, 50, 100 mG, where LlBx is the field deviation
from the critical field magnitude Bxo which is the field magnitude for forming a single
quartic trap. The origin of coordinates is the merge point without gravity. Contour lines
correspond to 0.5, 1, 1.5, 2 kHz above the bottom of the trap. (b) Thap frequencies in each
direction. (c) Separation of two trap centers and barrier height between two wells.

Surprisingly, a phase singularity was observed in the interference patterns with high

visibility. The fork shape of interference fringes represents a phase winding around a vortex

core [154]. This vortex interference pattern appeared more frequently with faster splitting

and further separation and the observed phase singularity definitely shows the breakdown of

adiabaticity of splitting process. Splitting might be considered as slicing condensates in two

parts. Furthermore, the abrupt change of the moving trajectory from vertical to horizontal

at the merge point could cause some 'rotation'. The fact that the observed "forks" (Figure 3-

14) always open towards the top implies that the the slicing always occurred in the same
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Figure 3-14: Vortex interference. (a) An absorption image showing the vortex interference
pattern of a vortex state. The probability of vortex generation was f'J8 % with the experi-
mental parameters in Fig. 3-12, where data points with vortices were not included. Vortex
interference patterns appeared more frequently with faster splitting and further separation.
(b) Same as (a), but with lines indicating regions with constant phase.

direction and created either vortices with positive charge on the left side or with negative

charge on the right side. Experimental study on the probability of vortex generation with

the slicing method was reported in Ref. [154].6
As a method to reduce the motional perturbation, one could consider starting with two

weakly-linked condensates in a double-well potential where the barrier height is lower than

the chemical potential of condensates and controlling the coupling between two condensates

with a small change of the barrier height. However, because the sensitivity of the trapping

potential to the magnetic field is extremely high, when the trap centers locate near the

merge point, it was technically difficult to have a stable double-well potential with a small

barrier height. Small fluctuations of currents or external magnetic field will shake and heat

up condensates. The lifetime of condensates measured around the merge point was > 5 s

away from the merge point (~Bx < -50 mG or ~Bx > 150 mG) and < 100 ms near

the merge point (0 < ~Bx < 100 mG).7 The high field-sensitivity was also indicated in the

measurements of remaining fraction of a condensate during splitting. In the splitting process

changing ~Bx from -140 mG to 250 mG for 500 ms, 60 % of a condensate disappeared.

The remaining fractions of the condensates were inversely proportional to the time spent in

the low lifetime region (0 < ~Bx < 100 mG) near the merge point.

With a barrier height of 0.5 kHz in our experiment, the sensitivity of the barrier height

and the condensate separation to Bx is 0.04 kHz/mG and 0.3 {Lm/mG, respectively. 8Bx =
1 mG corresponds to 8Ic = 7.5 x 10-5 A. Therefore, extreme current stabilization and

6 Another possible vortex formation mechanism is topological imprinting when the zero point of the
magnetic field crosses though condensates resulting in a doubly quantized vortex in spin-l condensates [8, 3].
However, since we have never observed the interference pattern of a doubly quantized vortex and turning
off magnetic traps was done too fast for atom spins to adiabatically follow the magnetic field direction, we
think that this scenario is unlikely.

7For "after-splitting" positions, condensates were moved only to the left well by detouring the merge
point.
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Figure 3-15: (a) Lifetime of a condensate near the merge point. Including gravity, the 
merged well was formed at ABx = 50 mG. For ABx > 50 mG, condensates were moved only 
to the left well by detouring the merge point. The data points in the dashed box showed 
bad lifetimes for unidentified technical reasons. (b) Remaining fraction of a condensate 
during splitting. The splitting process was changing AB, from -140 mG to 250 mG over 
500 ms. The number of condensed atoms were measured in the middle of splitting by 
suddenly releasing the condensate when AB, reached a target value. The inset shows final 
remaining fraction versus splitting time. 

shielding of ambient magnetic field fluctuations may be necessary for controlling a phase- 

coherent splitting process. Estkve et al. [155] discussed the stability of a magnetic double- 

well potential on an atom chip and suggested that the separation of two wires be smaller 

than 10 pm in order to maintain the fluctuation of tunneling rate at less than 10% with 

SB < 1 mG. 

3.3.5 Discussion: Alternative Splitting Schemes 

We have demonstrated splitting of a Bose-Einstein condensate in a magnetic double-well 

potential on an atom chip and observed the interference of the two condensates released 

from an atom chip. High field sensitivity of the magnetic potential geometry around the 

merge point prevented coherent splitting with a predictable phase. Since coherent splitting 

of trapped condensates were demonstrated with our optical double-well system [I], there is, 

in principle, no fundamental limitation on realizing the same experiment with an atom chip, 

once the magnetic potential has a same level of stability. We emphasize that the current 

problem with the atom chip is a technical one. Recently, coherent splitting of a condensate 

on an atom chip was reported [I031 using a field-induced adiabatic potential [156]. 

Actually, interesting double- well phenomena such as quant um tunneling and nonlinear 

self-trapping were directly observed in an optical double-well system which was created by 

combining a single optical dipole trap with a well-controlled periodic optical lattice poten- 

tial [157]. Then, we can not help asking what are the advantages of magnetic micropotentials 

on an atom chip over these optical systems? As we mentioned before, in the viewpoint of 



atom interferometry, the magnetic system looks more promising to extend to wave guiding 

potentials with a rotation-sensitive geometry. In the following, we suggest several alterna- 

tive splitting schemes for preparing a coherent state of two condensates, which we plan on 

investigating with Atom chip-VI. 

One-To-Two Scheme 

In the splitting process of the two-wire scheme, a condensates trapped in the bottom well 

moves upward and abruptly split in the horizontal direction when it reaches the merge 

point. It is like having the condensate hit the top ceiling and splash violently. This rapid 

change of moving direction, which might induce some vortices in the condensate, could not 

be avoided due to the short lifetime around the merge point in our previous experiment. 

Figure 3-16: One-to-two scheme. Three chip wires are equally spaced on a chip surface. 
(a) A condensate is prepared in a single-wire trap using the middle chip wire. The external 
magnetic field B, > Bxo. (b) The splitting process is done by decreasing the current in the 
middle wire, IM, and simultaneously increasing the currents in the outer wires, Ice When 
the final currents in the outer wires are same as the initial current in the middle wire, 
the distance of the trap centers from the chip surface is maintained at a same value, i.e., 
hl = ha. 

With the motivation to make the splitting process happen along one horizontal line, 

which is the case in the optical double-well system, we consider a 'one-to-two' scheme 

illustrated in Figure 3-16. Instead of increasing the external magnetic field with fixed 

currents in chip wires, the current distribution on the chip wires is controlled to deform 

a single well potential into a double-well potential at the same height. Three chip wires 

are equally spaced on a chip surface. The key idea is that the distance, hl ,  from the 

chip surface in the single-wire case (Figure 3-16(a)) is the same as hz in the two-wire case 

(Figure 3- 16 (b)) . 

where IM is the current in the middle chip wire and we used Eq. 3.3. When IM = IC, 

hl = h2. Therefore, we can imagine a splitting process at a same height where IM(t)  + 



Ic(t) =constant. The numeric simulation including gravitation showed that this scheme is

promising in terms of vertical motional perturbation.

Three- Wire Scheme

(a) (b) Si substrate

Through-wafer Etching

Si-Si substrate bonding

Wire deposition

Figure 3-17: (a) Three-wire scheme. A double-well potential is generated by three built-in
wires on an atom chip with no external control field. The control field is provided by the
current of the inner wire, IB, in the trench. (b) Three-dimensional structuring can be done
by using through-wafer etching and Si-Si substrate bonding.

A double-well potential is generated by three chip wires as in Figure 3-17. The role of

the external magnetic field in the two-wire scheme is substituted by the current of the inner

wire IB. This design allows for overall screening of external magnetic field noise and a more

precise control of the splitting process with small currents. Furthermore, the field gradient

from IB enhances the tightness of the confinement. When the wires are connected in series,

the final separation of the two wells will be intrinsically stable even with possible current

fluctuations because the separation is determined by the ratio of IB and Ie.

Axial Splitting

Another alternative for preparing a coherent state of two spatially separate condensates is

first having two condensates in ground states in each well and establishing a well-defined

relative phase later with an optical method [11], which is described in Chapter 4. Even

though the optical phase imprinting method is almost non-destructive, it is desired to

start with a large atom number for signal-to-noise ratio. Two separate condensates can

be prepared without passing through the merge point where rapid heating was observed.

The splitting procedure is illustrated in Figure 3-18. A condensate is first split in the axial

direction and the two split condensates are then moved into the left well and the right well,

respectively. The asymmetric effect due to the field gradient 8Bzj8y from a Z-shape wire

in the middle is used for this purpose. At the end, Iz is slowly turned off to place the two
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condensates in the same axial position.
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Figure 3-18: Axial splitting. (a) A condensate is prepared in the bottom well (Bx < Bxo).
(b) The condensate is split in the axial direction by increasing the current in the Z-shaped
wire, I z . (c) When Bx is increased over Bxo, the upper condensate moves to the left well
and the lower condensate moves to the right well due to the field gradient 8Bzj8y generated
from lz. (d) Two condensates are placed at the same axial position after turning lz off.
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Chapter 4 

Dynamics of Optically Coupled 

Condensates 

This chapter deals with the situation where two spatially separate condensates are optically 
coupled by Bragg scattering. The experiments were reported in two publications: 

M. Saba, T .  A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, and D. E. Pritchard, 
Light Scattering to  Determine the Relative Phase of T w o  Bose-Einstein Condensates, 
Science 307, 1945 (2005). Included in Appendix D. 

Y. Shin, G.-B. Jo, M. Saba, T.  A. Pasquini, W. Ketterle, and D. E. Pritchard, Opti- 
cal Weuk .Link between T w o  Spatially Separate Bose-Einstein Condensates, Physical 
Review Letters 95, 170402 (2005). Included in Appendix E. 

The phase coherence of Bose-Einstein condensates was dramatically demonstrated by 

observation of matter wave interference of two condensates 1161 and the phase dynamics 

of condensates was central for a variety of experiments, including solitons and vortices 

in a single condensate, and Josephson oscillation in two coupled condensates. However, 

most of phase rneasuring methods have been based on atom number counting via light 

absorption where the measurement processes involve whole condensates. For this reason, a 

well-defined initial phase is required in order to trace the temporal evolution of the phase 

dynamics, which is actually the same reason why we need a coherent beam splitter for 

atom interferometry. Therefore having a monitoring tool for condensate phases without 

destroying the whole condensates will definitely relax some technical lirnitation on the study 

of phase dynamics. This is the motivation of the experiments described in this chapter. 

One of the simplest scheme for measuring the relative phase of two condensates without 

destroying all of them is using small portions of the condensates: phase sampling is illus- 

trated in Figure 4-1. Some atoms are sampled out from the two big mother condensates, 

forming two little condensates. Let's call them son and daughter. The relative phase of 



the son and the daughter condensate was measured by a conventional method using inter-

ference fringes or a phase-sensitive transition. Then, the relative phase of the two mother

condensates can be deduced from that of the son and the daughter if they are coherently

sampled out to have a well-defined phase relation to their own mother condensates. This

idea can be extended by using continuous sampling: extracting continuous atom lasers from

the condensates [158, 159, 160]. Each atom in the atom lasers carries the phase informa-

tion of the source at the moment when it was coupled off. Two major challenges in the

experimental implementation of this scheme are coherent sampling and phase measurement

without perturbing the mother condensates.

C~8)~
Phase measurement

Figure 4-1: Phase sampling. The relative phase of two condensates, BEC A and BEC B, is
determined by measuring the relative phase of small portions of two condensates, A' and B',
which are coherently sampled out of mother condensates, BEC A and BEC B, respectively.
The process of coherent sampling establishes well-defined phase relation between mother
condensates and sampled son and daughter condensates.

In this chapter, I describe a series of experiments motivated by this phase sampling

scheme. Two spatially separate Bose-Einstein condensates were prepared in an optical

double-well potential as introduced in Chapter 3. Coherent continuous sampling, i.e., atom

lasers from the two condensates were generated by Bragg scattering process and the rela-

tive phase of the two spatially separate condensates was determined by interference of the

two atom lasers. Furthermore, the same phase information could be obtained from the

stimulated light scattering accompanied with Bragg outcoupling. The optical signal would

allow real-time phase measurement and novel quantum phase engineering such as phase

feedback and phase creation. I develop a theoretical model for the situation, elaborating

on the optical coupling which establishes phase-sensitive atomic currents between two spa-

tially separate condensates. A concept is introduced, namely, Josephson coupling of two

spatially non-overlapped quantum systems via intermediate systems. We experimentally
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demonstrated that the atomic current can be controlled by an additional coupling phase 

due to the presence of the intermediate systems. 

4.1 Continuous Measurement of the Relative Phase of Two 

Condensates 

4.1.1 Beating between Two Atom Lasers 

Our experiment situation is schematically illustrated in Figure 4-2(a). Two Bose-Einstein 

condensates containing 1 - 2 x lo6 sodium atoms in the IF = 1, m p  = -1) state were 

prepared in an optical double-well potential where the potential barrier between the wells 

was so high and thick that the two condensates were expected to be independent (no tun- 

neling). Phase measurement fundament ally requires the spatial overlap of two condensates 

under inve~tigat~ion. In other words, the son and the daughter condensate should meet each 

other to reveal their phase relation. We applied two counter-propagating laser beams for 

Bragg scattering to the two condensates in the separation direction so that the direction 

of imparted momentum from the scattering process was parallel to the displacement of 

the two condensates. Since the trap depth (- 5 kHz) was much smaller than the recoil 

energy ( E  100 kHz), the Bragg scattered atoms flew away from the trap, establishing an 

outcouped atom beam from the condensate. Consequently, two atomic beams from each 

trapped condensates would overlap during propagation. 

In our experiment, the Bragg laser beams were 1.1 GHz red detuned with repect to 

the IF = 1) + IF' = 2) transition and the frequency difference between the two Bragg 

beams, v, was 102 kHz, resonant for Bragg scattering with counter propagating beams 

(4h2k2/2m = 4 x h x 25 kHz, the additional 2 kHz accounted for the mean field energy). The 

Bragg scattering rate was of the order of 200 Hz and the spontaneous Rayleigh scattering 

rates of the Bragg beams were in the 10 - lOOHz range. 

Two atomic beams from the two condensates overlapped during propagation and a 

density oscillation was observed as the interference of the two atomic beams (Figure 4- 

2(b)-(d)). The spatial distribution of the outcoupled atomic beam density represents the 

temporal distribution of the relative phase of the two mother condensates. In order to 

confirm that the observed density oscillation was the manifestation of the relative phase 

evolution, we controlled the phase evolution rate by applying magnetic field gradients, B', 

in the separation direction. Since atoms were in the magnetic sensitive state, the field 

gradient induced the potential difference according to the spatial separation. The shift of 

the density oscillation frequency was linearly proportional to the applied magnetic field 

gradient (Figure 4-4 (a)). 

'when atoms propagated out from the condensates, they were still affected by the field gradient. They 
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Figure 4-2: Continuous outcoupling from two separate condensates. (a) Schematic de-
scription of experimental situation. Two Bragg laser beams are applied to two separate,
trapped condensates and outcouple an atomic beam from the condensates. In the typical
condition, the separation between the two wells was ~ 14 )..Lm, the trap frequencies were
~ 325 Hz radially and ~ 10 Hz axially, and the overall trap depth Uo ~ h x 5 kHz. The
gravity is in +z-direction. (b)-(d) Absorption images (z-direction) were taken after 8 ms
outcoupling and 5 ms additional time-of-High. High-contrast oscillation in the stream of out-
coupled atoms are clearly visible. An additional magnetic field gradients of (b) 1.15 G/ cm
and (d) -0.77 G/cm were applied in +x-direction. The field of view in each image is
1.35 mm x 0.90 mm.
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The concept of beating atom lasers was previously exploited in a couple of experiments. 

Spatial coherence in a single condensate was measured by generating two atom lasers from 

different positions of the condensate [161]. Gravity was measured by a beating frequency 

of atoms outcoupled from a vertical array of regularly spaced condensates in an optical 

lattice [37, 1621, where the interference signal was actually established by Landau-Zehner 

tunneling between different band states but it can be regarded as interference of atom lasers 

originated from many sites in a generalized sense. 

There is one question which helps understand what is really happening in our situation. 

What if the two source condensate are out of phase? Should the two atomic beams already 

outcoupled from the condensate suddenly disappear when they meet each other? This 

event would definitely violate the atom number conservation. What really happens in 

the situation is that the atoms outcoupled from the left condensates are pumped into the 

right condensates by the Bragg coupling when the atoms spatially pass though the right 

condensate. In the other case when the two condensate are in phase, more atoms will 

be coupled out from the right condensate due to constructive interference. Therefore, the 

observed interference pat tern resulted from the fact that the outcolipling efficiency from 

the right condensates was enhanced or suppressed by the presence of the atoms outcoupled 

from the left condensate according to the phase relation. This picture based on the local 

dynamics in matter waves provides clear understanding of the underlying mechanism of our 

situation. This discussion will be elaborated in section 4.2. 

4.1.2 Optical Measurement of Relative Phase Evolution 

Even though in the previous experiment we were able to measure the temporal evolution 

of the relative phase of two condensates over 8 ms, we had to interrupt the experiment to 

illuminate atoms with a resonant laser beam to take an absorption image. In principle, we 

might be able to spatially mask the condensates from the probe beam and measure only 

out coupled atoms to monitor the relative phase without destroying the whole condensates. 

However, this selective measurement requires a time delay for the out coupled atoms to move 

away from the condensates. Bragg outcoupling method for generating atom lasers provide 

us with a great chance for optical detection. Bragg scattering is a two-photon stimulated 

scattering process and for each scattered (outcoupled) atom, a photon is transferred from 

one beam to the counter propagating one. Therefore, all information contained in the 

stream of outcoupled atoms is also present in the scattered light and can be collected by 

monitoring the intensity of one or both of the Bragg laser beams. 

This optical detection was successfully demonstrated. The two Bragg beams were set 

would eventually slow down or speed up, showing the chirping of the oscillation frequency. Because this 
effect was very small for our experimental conditions, we assumed that the density oscillation was uniform 
over the whole atomic beam. 



c
o~'wo
0..

o 1 2 Time (ms)

coc
.Q'
C/)

I-1 Io I

1
Time (ms)

I

2
I

3

Figure 4-3: Continuous optical readout of the relative phase of two condensates. In the
upper panel is the optical signal image detected by streaking the CCD camera. The traces,
offset vertically for clarity, are cross sections of the images. The central trace corresponds
to the upper image integrated between the dashed lines. Bragg scattering starts at t = 0
when the strong Bragg beam is turned on. The relative depth of the two wells was different
for the three traces, generating a difference in the oscillation frequency. The overall slope
of the traces was due to spontaneous Rayleigh scattering of the light from the atoms in the
condensates. As the time went on, the condensates were depleted, the light transmission
increased more due to the reduction of Rayleigh scattering. Excitations in the condensates
appeared as tilted or curved fringes in the streak images; in such cases, we took cross
sections from portions of the images where fringes were vertical and therefore the phase
evolution was less perturbed.
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t,o be minimally angled against each other in the horizontal plane so that one of the beams 

could be picked up after passing through the condensates. The signal was faint and care was 

taken to improve the signal-to-noise ratio. In order to reduce the intensity fluctuation of the 

background light without compromising the intensity of the Bragg scattered photons, the 

intensities of the two Bragg beams were strongly stabilized and set to be very asymmetric. 

The background intensity of the detected light was leveled down by decreasing the intensity 

of the picked Bragg beam, 11, and the Bragg scattering rate was compensated by increasing 

the intensity of the other Bragg beam, 12. Since the stimulated two-photon Bragg scattering 

rate is proportional to the product of the intensities of the two beams, Il x 12, and the 

spontaneous one-photon Rayleigh scattering rate is proportional to the sum of the intensities 

I I  + 12, the asymmetric intensities would result in fast depletion of condensates due to 

Rayleigh scattering. In our experiment, the intensity ratio was 11/12 2. 0.1. Even though 

the Rayleigh scattering rate was increased by factor of 2, the effective gain in the signal-to- 

noise ratio was positive. 

The dynamics of the optical signal was measured with a CCD camera in streaking 

mode. The liglit crossing the condensates was selected with a slit-shaped aperture and 

imaged on a few-pixel wide vertical stripe of the CCD camera. Streaking the CCD pixel 

rows horizontally at a 50 kHz rate produced images with time on one axis and spatial 

position along the condensates on the other axis (Figure 4-3). We first tried to use a low 

noise photo-multiplier tube (PMT) as a light detector, but failed to observe an oscillating 

signal. The advantage of using a CCD camera is the inherent spatial resolution of the CCD 

camera as well as a high quantum efficiency. When the condensates do not have a uniform 

relative phase along the axial direct ion, the integrated optical signal would have a reduced 

or completely diminished oscillation amplitude. Indeed, most of experiment a1 data showed 

curved pat terns. 

In order to prevent the transient intensity fluctuation from deteriorating the light signal, 

we applied the weak, detecting Bragg beam 1 ms earlier than the strong Bragg beam. The 

intensity of the detecting Bragg beam oscillated in time at a frequency controlled by the 

relative energy between the two wells. The oscillating signal was observed to build up 

during the first (2 250 ps after the strong Bragg beam was applied. This delay is the time 

required for the outcoupled atoms to travel from one condensate to the other one and start 

interference. This observation supports the dynamic picture discussed before. Another 

noticeable observation is that the initial phase of the oscillation was random, indicating 

that the two condensates were independent. 

A merit of the optical detection is that it directly measures the beat frequency with 

accuracy not depending on calibration of image magnification or other disturbances affecting 

atoms during time-of-flight. Furthermore, this technique can be developed into a real- 



time measurement, opening interesting future perspectives. Active phase control could be 

achieved by feeding the real-time light signal back to a device providing external phase 

shifts and preparing the desired phase at the desired time. In principle, the uncertainty in 

the relative phase could even be squeezed by the feedback [163]. 

4.1.3 Interferometry without a Beam Splitter 

Atom interferometry with two trapped Bosc-Einstein condensates was realized by contin- 

uous monitoring of the time evolution of the relative phase. Figure 4-4 demonstrates the 

sensitivity of the interferometer to an applied external force (magnetic field gradient) and 

to the application of a potential difference between the two wells (ac Stark shift). The 

sensitivity of the present measurements was limited by mechanical excitations that cause 

chirping of the frequency during the observation time and shot-to-shot variations. 

The atom interferometer demonstrated here has a remarkable feature. Since the in- 

terferometric information is contained in the beat frequency of two condensates and the 

continuous measurement allows for determining external phase shifts in a single experimen- 

tal realization, t he interferometer is independent of the initial relative phase between the 

condensates. This means that there is no need for a coherent beam splitter which was, in 

Chapter 3, described as indispensable to atom interferometry. This provoking statement 

becomes comprehensible if the purpose of an interferometer is clarified. In atom interfer- 

ometers, we want to measure phase shifts associated with a given interaction so that at 

least two pieces of information should be obtained: phase before the interaction and phase 

after the interaction. In the conventional single-particle picture, these quantities can not be 

determined in a single experimental realization and thus a coherent beam splitter is required 

to ensure the initial phase. However, in our interferometer, the coherence of Bose-Einstein 

condensates allows for measuring the two quantities in a single experiment a1 realization. 

The situation may be analogous to interference of two lasers. Coherent sampling may be 

regarded as a beam splitter that picks up a small portion of the laser; one can monitor the 

beating frequency of two lasers by mixing a small fraction of their intensities. 

Furthermore, the atom interferometer works with two condensates even in a Fock state 

where the relative phase is completely undetermined. Phase measurement process drives 

the system into a state with an arbitrary but well-defined relative phase as a back action 

of the measurement [68, 1641. This effect physically originates from the fact that we do 

not know from which condensate outcoupled atoms come. No phase diffusion is expected 

during the measurement. This is a general manifestation of the influence of measurement 

on a quantum system [165], similar to the quantum Zeno effect where the time evolution is 

suppressed by repeated or continuous measurements. 

On the other hand, our atom interferometer has a couple of fundamental limitations. 
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Figure 4-4: Interferometry with two trapped condensates. (a) The two well depths were 
prepared offset by 21 0.53 kHz in the absence of magnetic field gradients, and the shift of the 
beat frequency with respect to this initial value is plotted versus the applied magnetic field 
gradient. The beat frequency is determined from absorption images of the outcoupled atom 
stream (Figure 4-2). The solid line is a linear fit to the data; the dashed line represents 
the theoretical value p B  B1d/2h expected for the evolution of the relative phase of the two 
condensates due to the difference in energy induced by the gradient (B' is the independently 
measured magnetic gradient, p~ is Bohr magneton, and d is the separation of the two 
condensates). (b) Beat frequency measured in the optical signal is shown as a function of 
the relative depth of the two potential wells. The well balance parameter is proportional to 
the differnece in optical power used to create each of those wells. 

While the phase measurement method introduced here is almost non-destructive, the finite 

number of atoms in the condensates limits the total interrogation time and consequently 

the signal-to-noise ratio. Instead of applying the Bragg beams coritinuously, using two 

Bragg pulses with a time delay may extend the effective interrogation time. The first phase 

measurement sets an initial relative phase between the two condensates at each experimental 

run and the second phase measurement determines a phase shift during the time delay.2 This 

two-pulse scheme was experimentally demonstrated [ll] (Appendix D) and the correlation 

between the first measured phase and the second measured phase was observed. 

The second fundamental limitation is a nonlinear effect of the outcoupling process on 

the time evolution of a relative phase. As mentioned before, if the relative phase stays at 

a constant value, there is a possibility that the population of the right condensate is dra- 

matically changed by constructive or destructive interference resulting in large asymmetric 

depletion. The induced chemical potential difference would affect the phase evolution in re- 

turn and thus the measured beat frequency would reflect not only the environment but also 

the coupling mechanism. In our experiments, the outcoupling efficiency was set very low 

to ensure the linear regime. However, interestingly, we did not observe oscillation frequen- 

cies below 500 Hz (Figure 4-4). Short observation time and excitations could contribute to 

2 ~ h i s  scheme is different from the Ramsey separated-oscillatory-field technique which has a enhanced 
sensitivity based on the interference of the two separate fields. 



this, but the ultimate limit is set by this nonlinear effect because the asymmetric depletion 

would be enhanced at low beat frequencies. The chemical potential difference induced by 

the asymmetric depletion would be as large as a few h x  100 Hz in a few ms for our ex- 

perimental parameters, which set a lower bound to the measurable beat frequency. This 

is analogous to the inhibition of slow large amplitude Josephson oscillations in a nonlinear 

junction [147]. One positive note is that if the relative phase is actively controlled, atoms 

can be coherently transferred from one well to the other one, replenishing one of the two 

condensates without scrambling its phase, a method that could lead to a continuous atom 

laser [7] .  

4.2 Theoretical Models for Phase Measurment 

4.2.1 Momentum Interferometry 

Several physical interpretations of the experiment are possible besides the interference of 

atom lasers from the condensates. Pitaevskii and Stringari [I661 introduced the interference 

of two spatially separate condensates in momentum space and showed that in the presence 

of coherence, interference fringes appear in the dynamical structure factor, measurable 

through Bragg scattering. Also, they pointed out the possibility of creation of coherence as 

a back action of the measurement process. 

Scattering experiments provide information on the excitation spectrum of a given phys- 

ical system: by scattering a probe particle from the system and measuring the change in 

momentum and energy of the probe particle, we are allowed to watch the response properties 

of the system to the perturbation.3 Bragg scattering directly probes density fluctuations 

and equally measures the dynamic structure factor S(& w ) ,  which is crucial in the theoretical 

description of many-body systems [91]. 

In the atomic viewpoint, Bragg scattering is an optical transition between two different 

momentum states as described in Section 2.1.3. Absorbing one photon and emitting an- 

other one in different direction, the atom receives a momentum kick without changing the 

internal state. This Bragg scattering is Doppler-sensitive; due to energy and moment um 

conservation, there is a resonant initial momentum state of the atom with given directions 

and frequencies of the photons. Therefore, we can simply conclude that the probability of 

the two-photon scattering is proportional to the probability for atoms to be in the specific 

momentum state. 

The momentum distribution of two condensates is dependent of the relative phase of the 

two condensates. For example, we have two condensates described by wavefunctions, 9L (x) 

and GR(x),  respectively. The two condensates are separated by d and do not have a spatial 

3 ~ t  is not wrong to say that scattering is the only way to perturb and investigate a physical system. 



Figure 4-5: (a) Two condensates are described by wavefunctions, QL (solid) and QR 
(dashed), respectively, and the displacement of the two condensates is d in coordinate 
space. (b) Momentum representation of the two condensates when they have the relative 
phase of 4. The fringe pattern has a periodicity of $. 

overlap, i.e., Q L , ( x ) ~ R ( x )  = 0,Vx. For simplicity, we assume QL(x + d/2) = QR(x - d/2). 

In the presence of coherence, the wavefunction for the whole condensates may be defined 

as, 
1 

Q(x) = (QL (x) + ei4QR(x)), 

representing a coherent state with the relative phase of 4. Taking the Fourier transform of 

this coordinate representat ion of the wavefunct ion, we have the moment um represent at ion 

of the wavefuntion, @(p). The momentum distribution n(p) is given as 

where no(p) is the momentum distribution of one condensate, XLJ~,~(X) .  The momentum 

distribution shows a periodicity of hld and an offset from zero determined by the relative 

phase as illustrated in Figure 4-5. 

Bragg scattering from condensates becomes more complicated due to atom-atom inter- 

actions, but the underlying physical mechanism is the same as that in the single-particle 

case. By measuring the Bragg scattering rate, we probe the population in a specific momen- 

tum state, which is a phase-sensitive quantity. Moreover, time-resolved Bragg scattering 

becomes a probe for the temporal evolution of the relative phase as we demonstrated in the 

previous experiments [Ill. 

This interpretation based on the momentum interference of the two condensates provides 

a complementary understanding to the atom-laser interpretation. 



4.2.2 What is Really Interfering? 

Optical readout of the relative phase of two condensates has been theoretically investigated 

and photon scattering from two separate wave packets provided a model system for this 

study. Cohen-Tannoudj i [I 681 argued that photon scattering may be considered as position 

measurement of the scattered atom to localize the atom and reduce the length of spatial 

coherence. Localizing the atoms is incompatible with obtaining information about the 

relative phase. On the other hand, Rz+zewski et a1 [169], and Dubetsky et a1 [170] showed 

that the spontaneous emission carries the information of the relative phase of the two wave 

packets in form of the spectral line shape of the emitted photon due to the Doppler shifts. 

They claimed that no information of the relative phase can be extracted from angular 

distribution of the emitted beam intensity because interference signal would be washed 

out after integrating over emitted photon frequency. In our experiments, we selected the 

frequency of emitted photons via Bragg two-photon stimulated scattering. There is one 

aspect we have to emphasize in this optical read-out discussion: the interference signal does 

not result only from the interference of photons emitted from the two wave packets, but 

also from the interference of final states of atoms. 

In order to clarify what really determines the interference signal, we consider the sit- 

uation where a glass wall is placed between the two atomic wave packets. The glass wall 

is perfectly transparent for photons, but is perfectly opaque for atoms. By calculating the 

dynamic structure factor S(q, w), we sketch out the effect of the presence of the glass wall 

on the interference signal. 

s ( q , ~ )  = 1 ( n l e ~ ~ ~ ~ 0 ) 1 ~ 6 ( w  - (w, - wo)), 
n 

where In) is an eigenstate of the given system with energy of hwn and (0) is the initial state 

of two wave packets. We assume that atoms are initially trapped in a double-well potential 

and the system has a well defined energy of hwo. Due to the presence of the glass wall, In) 

is divided into two groups, the left eigenstates, InL) and the right eigenstates, InR). The 

glass wall is located at x = 0. 

With 10) = I$L)  + e i "@~) ,  where I@L) (I@R)) represents the left (right) wave packet 
vanishing at x > 0 (x < O) ,  



S(q, w )  does not depend on the relative phase any more, which means that the interference 

signal will disappear due to the presence of the glass wall. Physically, the glass wall modifies 

the Hamiltonian for atoms so that the left wave packet and the right wave packet are 

coupled to two distinctive groups of excited states via scattering process. Therefore, the 

phase-sensitivity of S(q, w )  results from the interference of the transition amplitudes of the 

two wave packets to the same excited states, which emphasizes the importance of the spatial 

overlap of scattered atoms in our experiments 

This conclusion provides a interesting interpret at ion of the spectroscopic resolution nec- 

essary to measure the relative phase. If two wave packets are separated by d, then the 

oscillation in momentum space would have a periodicity of hid and the energy difference 

between two peaks would be A E  = v,,,(h/d), where v,,, is the recoil velocity after Bragg 

scattering. Due to time-energy uncertainty, we need to have At = h / A E  = dlv,,, to resolve 

this energy difference. This is the travel time for scattered atoms from one wave packet to 

the other with t'he recoil velocity. 

As a summary of this section, we conclude that in optical scattering process, the interfer- 

ence signal having the information of the relative phase is essentially from the interference 

of scattered atoms, not only from scattered photons. The relative phase of two condensates 

can not be measured without any type of spatial recombination of the two condensates. 

4.2.3 Theoretical Model 

In the previous discussion, we presented a dynamic structure factor interpretation as a com- 

plement ary description to the atom-laser description. However, when two condensates have 

a different chemical potential and the relative phase evolves, this interpretation does not 

give a clear picture. Of course, we can divide the dynamic evolution into small pieces with 

a fixed relative phase, but this approach might not be able to provide unified understanding 

on the real sit uahion. 

In this section, we provide a theoretical model elaborating on the underlying mechanism 

of' the optical outcoupling. We use the conventional wavefunction description for conden- 

sates in order to account for the temporal evolution of the relative phase. The simplified 

situation is illustrated in Figure 4-6. Two condensates 1 and 2 are trapped in a double-well 

potential and optically coupled into unconfined states by a single pair of Bragg beams. 

Ignoring the accumulated phase shifts due to the interaction with the condensates, we ap- 

proximate t he unconfined coupling states as truncated free propagating states, i.e., t he ex- 

cited coupling states from the two trapped condensates as $, (x, t )  cx O (x - xi) dfle"2(xyt) 
(i = 1,2), respectively, where O(x) is the Heaviside step function, y is the Bragg outcou- 



Figure 4-6: Optical out-coupling from two separate condensates. Two condensates are 
trapped at x = x1 and x2 (d = 2 2  -xl) .  A pair of Bragg beams in x direction with frequency 
difference v are applied to two condensates and make transitions to higher momentum states 
to generate a continuous atomic beam from each condensate. The two atomic beams are 
overlapped in x > 2 2 ,  forming a matter wave interference pattern. U1 (U2) denotes the 
trap depth of the left (right) well, jll (j12) the mean-field interaction energy of the left 
(right) condensate, and kl (k2) the wave number of the atomic beam from the left (right) 
condensate outside the trap. 

pling efficiency, Ni is the total atom number of condensate i. Because the excited states 

are free propagating states, xi(x7 t )  = kix - wit + Xi0 is the phase of the coupling state with 
h2 k2 

hwi = e, where rn is atomic mass. The phase continuity at the coupling position x = xi 

requires 

xi (xi 7 t) = $i (t) + $B (xi 7 t) - ~ / 2 ,  (4.8) 

where k (t) is the phase of the condensate, 4B (x, t )  = 2k,x - vt + $Bo is the phase of the 

Bragg beams with wave number k, and frequency difference v, and the last phase term of 

-7r/2 is the phase shift attributed to the scattering process (1711. 

In a linear regime with y < 1, $i is not perturbed by the coupling, i.e., $i(t) = -9t+dio.  

pi = -Ui + ,Li is the chemical potential of the condensate, where Ui denotes the trap depth 

and ,Li is the mean-field interaction energy of condensate i. Satisfying the phase relation 

Eq. (4.8) at all t requires 

where Ski = ki - 2k,. Eq. (4.9)) the temporal part in Eq. (4.8)) corresponds to energy 

conservation. 

In the overlapping region, x > x2, the two atomic beams from each condensate form 

a matter wave interference pattern, and the outcoupled atom density n(x, t )  = (x, t) + 
q2(x,  t)I2. For a better interpretation, we define the right outcoupled atom density nR(s ,  t )  = 



n ( s  + 2 2 ,  t ) ,  where s indicates the distance from the right condensate, 

where Nt = N1 + N2, Ak = k2 - kl , d = x2 - XI ,  and 4, (t) = qh2 (t) - $1 (t). We approximate 

the propagating velocity vi = 2 2 Zv, with 6ki << 2k,, where v, = is the recoil 

velocity. The spatial and temporal modulation of the outcoupled atom flux nn represents 

the evolutiorl of the relative phase +,, which was directly demonstrated in our previous 

experiments [ll]. 

Using the wavefunction description is somewhat similar to the atom-laser description. 

Here, we want to remind ourselves of the matter wave interference interpretation, again. 

When atoms are outcoupled from condensate 1, they carry the phase information of the 

condensate. ,4t the moment when they spatially overlap with condensate 2, the outcoupled 

atoms from condensate 1 are coupled into or amplified by condensate 2, depending on the 

relative phase 4,. This aspect will be investigated in the experiment described in Section 4.3. 

The finite size of the condensates affects the contrast of the interference signal. In the 

model described above, we assume the two condensates as point sources, and therefore 

the phase condition for matter wave interference is required at the condensate position. 

However, when the condensate have a finite size, the phase matching condition should be 

fulfilled over the whole condensate; a more stringent requirement. With a chemical potential 

difference Ap, the difference of the wave numbers of two atom laser is Ak = rnAp/h2 k,, 

where we assume that the trap depth is smaller than the kinetic energy of outcoupled 

atoms. In order to obtain an interference signal with a reasonable contrast, the phase 

modulation over the condensate has to be Akl < 1, where I is the size of the condensate. 

Naively speaking, constructive and destructive interference happen alternatively over the 

condensate when Akl > 1, resulting in a decrease of the signal amplitude. This condition 

gives an upper bound for the measurable beat frequency, 

The same condition can be obtained by considering the momentum uncertainty Sk of 

out-coupled atoms. Sk might be the same as the initial momentum uncertainty of a single 

condensate, i.e., Sk - 111, which can also be inferred from the energy uncertainty due 

to the finite coupling time between the mother condensate and out-coupled atoms. The 

coupling time is 6t = lrnlhk, and the corresponding energy uncertainty is SE - l lb t  = 
i&.l = t i2k,6k 
m 1 m . When Ap > SE, the energy state of atoms outcoupled from the left 

condensate is very different from that of atoms outcoupled from the right condensate. The 

two condensates are not coupled to the same excited state; no phase information and no 



fringes are obtained. This condition is exactly equivalent to Eq. 4.12. With the upper 

bound condition, the maximum separation of two condensates in the gravitational direction 

would be dm,, = 40 pm with condensates that extend over 1 z 5 pm. 

In the above analysis, we simply considered the one-dimensional situation and neglected 

the effect of the Rayleigh scattering of Bragg photons. The divergence of the atom laser due 

to the mean-field interaction with the condensates [172] would be another factor reducing 

the signal amplitude. 

4.3 Optical Weak Coupling of Two Spatially Separate Con- 

densates 

Josephson effects [I441 are quantum phenomena in which the current between two weakly 

coupled, macroscopic quantum systems depends on the relative phase of the two systems. 

These effects have been considered as direct evidence for the existence of the phase of 

a macroscopic quantum system [67] and have been observed in quantum systems such as 

superconductors [I 731, superfluid 3 ~ e  [174], and Bose condensed gases [175, 1571. Josephson 

coupling between two systems is typically established via tunneling through a separating 

potential barrier or via an external driving field as in the internal Josephson effect [176, 1771. 

Both couplings require spatial overlap of the two systems due to the intrinsic locality of the 

coupling interact ions. 

The concept of Josephson coupling can be extended to include two spatially separate 

quant um systems by using intermediate coupling systems. If the phase relations among 

these systems are preserved and thus the net particle exchange is phase-sensitive, the two 

spatially separate systems might be regarded as being effectively Josephson-coupled via the 

intermediate systems. Furthermore, the phase of the coupling may be actively controlled by 

adjusting the coupling states of the intermediate systems. This idea has been theoretically 

introduced in the context of relative phase measurement [178]. 

In the previous section, we observed that there is an effective atomic current from the 

left condensate to the right condensate depending on the relative phase of the two conden- 

sates. According to the generalized Josephson coupling discussed above, these unconfined 

propagating atoms constitute the intermediate coupling system in our case. In this section, 

we investigate a situation where two condensates are irradiated by two pairs of Bragg beams, 

allowing bidirectional atom exchange between two separate condensates. The two pairs of 

Bragg beams couple out beams of atoms propagating to the left or the right, respectively. 

Depending on the relative phases of the two condensates and the coupling states, we ob- 

serve only one outcoupled beam propagating to one or the other side, or two identical beams 

propagating in opposite direct ions (Figure 4-7). This demonstrates the control of coupling 



phase and establishes a new scheme to realize Josephson effects with two non-overlapping 

condensates. 

4.3.1 Bi-directional Bragg Outcoupling 

In Section 4.2.3, we presented a theoretical model for the case with a single pair of Bragg 

beams, and derived the right outcoupled atom density nR(s,  t ) .  Now, we consider another 

pair of Bragg beams to out-couple atoms in -x direction. Modifying the previous calculation 

by kilT -+ -ki7, the left out-coupled atom density nL(s,  t )  = n(xl -s) is obtained in a similar 

way. 

nl,(s, t )  = L(N~ + 2 J m c o s ( ~ k s  + 4,(t) + 6k2d)), 
2% 

nR(s,  t )  = L(N~ + 2 d m  cos(Aks + 4, (t) - 6kld)). 
2%-  

Considering all atom flux for each condensate, we obtain the rate equations for Nl and N2. 

For example, the left condensate has influx of yN2 from the right condensate and outflux 

of yN1 and nL(O, t) in +x and -x direction, respectively. The final rate equations read 

Except for the global depletion effect of Bragg scattering, the rate equations definitely 

show the Josephson-character of the optical coupling using bi-directional Bragg scattering, 

i.e., that the atom currents into the condensates depend on the relative phase of the two 

condensates. 

One interesting observation is that there are additional phase terms, -Slcld and Sk2d. 

These phase terms can be interpreted as the phase shift which outcoupled atoms would 

accumulate during the flight from one condensate to the other with respect to the Bragg 

beam phase +B which is acting as the phase reference. This phase shift is the key element 

for an actively-controlled optical coupling and its physical importance will be manifest in 

the following experiment. 

4.3.2 Phase-Controlled Optical Coupling 

The optical Josephson coupling has a unique feature in the control of the phase accumulated 

by atoms in the coupling state [178]. Since the intermediate system "delivers" the phase 

information from one condensate to the other, the phase can be manipulated in transit and 

consequently, the phase of the effective coupling can be controlled without affecting the 

two condensates. In the bidirectional coupling scheme, the control of the coupling phase 



is embodied by the phase shift terms, -6kld and 6k2d. We define the coupling phase as 

0 = (6kl + 6k2)d, and with bki << 2kr, approximate 19 as 

t i2k2 where Er = is the recoil energy. 0 is equivalent to the relative phase of n~ and n ~ .  

When 0 = 0 (I9 = r )  (mod 2r ) ,  nL and nB will show (anti)symmetric correlation. 

The control of the coupling phase 0 was experimentally demonstrated. In this experi- 

ment, the l/e2-intensity radius of a focused laser beam for a single well was 7.6 pm and the 

typical trap depth was U1,2 - h x 18 kHz. The separation of the two wells was d = 11.4 pm 

and each well started with a condensate of - 5 x lo5 atoms. Two pairs of Bragg beams 

parallel to the separation direction were applied to the condensates by retroreflecting two 

copropagating laser beams with frequency difference v.  The lifetime of condensates was over 

18 s and the l / e  depletion time due to Bragg scattering into both directions was 4.5 ms. 

The coupling phase 0 was controlled with Bragg frequency difference v Eq. 4.17. When 

v was varied, the outcoupling pattern cycled through symmetric and antisymmetric correla- 

tions (Figure 4-7). The coupling phase 0 was fit to the observed patterns for each Bragg fre- 

quency (Figure 4-7(e)). The linear dependence was measured as dO/dv = (2.4 f 0.2 k~z)-' , 
which is consistent with the predicted value d/vr = (2.6 k ~ z ) - ' .  This clearly demonstrates 

the presence and control of the coupling phase in our optical coupling scheme. With the 

antisymmetric condition, 0 = T ,  as a function of the propagating relative phase, the output 

oscillated between predominantly to the left and predominantly to the right (Figure 4-7(c) 

and (d)) . The experimental situation has perfect mirror symmetry. Unidirectional output 

in a symmetric situation is a macroscopic consequence of the condensates' phase. 

We might expect that large depletion would give a chance to observe some of nonlinear 

effects such as the transition between symmetric correlation to antisymmetric correlation 

because the correlation phase is a function of the chemical potentials. However the weak 

signal after large depletion prevented from observing the transition in our experimental 

condition. 

The long condensates used here introduce a new degree of freedom into the usual point- 

like Josephson junctions: the condensates can have a spatially varying phase along the 

axial direction. Furthermore, spatial control with barrier heights or well separations could 

create spatially varying coupling along the condensate axis, and realize, e.g., ring currents. 

Josephson vortex [I791 and modulational instabilities [I801 in elongated coupled condensates 

were theoretically suggested. 

' ~ n  a harmonic potential, the chemical potential decay as p(t) = poe-i", much slower than the atom 
number N ( t )  = NoeeYt. 
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Figure 4-7: Symmetric and antisymmetric correlation between out-coupled atom patterns.
Two pairs of Bragg beams with same frequency difference v were applied to two condensates
in order to out-couple atoms in either +x or -x direction. Absorption images were taken
at 2 ms after 5 ms out-coupling and the leftout-coupled atom patterns were compared with
the corresponding right patterns. Symmetric correlation between two patterns was observed
at (a) v = 27r x 100.5 kHz and (c) antisymmetric at v = 27r x 101.5 kHz. The field of view
is 900 /lm x 590 11m. (b,d) Out-coupled atom flux densities were obtained by integrating
optical densities between the dashed lines and converting the spatial coordinate to the time
coordinate. The solid (dashed) lines correspond to left (right) out-coupled atoms. (e) The
correlation phase e of the two out-coupled patterns showed a linear dependency on v with
Be/8v = (2.4 kHz)-l.
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4.3.3 Optical Josephson Coupling on a Ring Geometry

Figure 4-8: Optical coupling of two condensates on a ring. Two condensates are confined
at opposite sides on a ring-shaped waveguide and a pair of Bragg beams out-couple atoms
in the clockwise direction. The shaded boxes A and B are phase modulators for atoms and
photons, respectively.

One limitation of the bidirectional coupling scheme is that atoms are depleted out of

the system due to the linear geometry. Even though the pattern of out coupled atoms is

a crucial signal for monitoring the coupling dynamics, the coupling time is fundamentally

limited due to the finite size of condensates. To overcome this shortcoming, we envisage a

system preserving the total atom number like in Figure 4-8, where atoms circulate between

two condensates in a ring waveguide. With assumptions that the traveling time 6t for

atoms from one condensate to the other is short enough to satisfy <Pr6t « 1 and that

the density profiles are constant over the trajectories between the two condensates, the

governing equation, in a linear regime, of the population difference of the two condensates

is

(4.18)

where <Pm is the effective coupling phase which is determined by the accumulated phase

shift over the round trajectories and the phase of the Bragg beams. The derivation of the

equation is straightforward and similar to the calculation in Section 4.2.3.

Particularly, the ring geometry has an enclosed area so that this scheme may be de-

veloped into a rotation-sensitive device using the Sagnac effect; a neutral atom analogue

of a superconducting quantum interference device (SQUID). Confining potentials with ring

geometry have already been realized [181, 182, 183]. Different from the typical atom inter-

ferometry, the two condensates in the above scheme are used as quantum phase references.
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Figure 4-9: Monitoring of slow relative axial motions. Two chemical potentials were equal-
ized within 400 Hz and the temporal evolution of the relative phase of two condensates
along the axial (z) direction was recorded in the out-coupled atom patterns. (a) repre-
sent relative dipole oscillation, corresponding to relative velocity:::::: 0.3 mmls, (b) relative
quadruple oscillation.

4.4 Diagnostic Applications of Continuous Bragg Scattering

Continuous Bragg out coupling can diagnose the relative axial motion of two condensates.

Since the optical coupling is established selectively at the same axial position, axial gra-

dients of the relative phase are directly observed through tilted fringes in the pattern of

out coupled atoms. In principle, we can rebuild the relative axial motion of the two con-

densates over the interrogation time from an out-coupled atom pattern. In Figure 4-9, we

present several examples showing the effects of relative dipole and quadruple axial motions

of two condensates. Furthermore, because the out-coupling efficiency is directly sensitive of

the relative phase, there is no limit for detectable slow motions. Figure 4-9(a) represents a

relative velocity:::::: 300 J.1.m/s corresponding to ::::::0.13 nK.5

Continuous Bragg scattering was used to characterize the trap depth and the trap fre-

quency of a single optical trap (Figure 4-10). Since momentum and energy imparted in the

scattering process are precisely defined, we can determine the depth of a trap by measuring

the kinetic energy of atoms coupled out of the trap. We measured the traveling distance

D of out coupled atoms with fixed traveling time t, and determined the trap depth U from

the relation, D It = y'4v; - 2U1m, ignoring the mean-field interaction with the condensate

and the finite size of the trap. Additionally, the exact knowledge of the recoil velocity Vr

calibrates the optical magnification of images.

The trap frequency was measured using velocity sensitivity of Bragg scattering. When

a condensate oscillates in a trap, atoms are coupled out only when the condensate is at the

5We could not rule out the possibility that the observed motion is induced by the coupling process.
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resonant velocity. Since the dipole oscillation of a condensate in a harmonic trap is the same

as the trap frequency 1, the outcoupling frequency is the same as 1 when Bragg beams are

tuned at the maximum velocity (Figure 4-10(b)), 21 at zero velocity (Figure 4-10(c)). Even

though the frequency resolution is limited by the finite coupling time, this method provides

a lot of information in a single measurement. For example, the pattern of outcoupled atoms

in Figure 4-10(b) is curved because the trap frequency changes along the axial direction.
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Figure 4-10: Trap characterization with a continuous outcoupling. (a) Trap depth measure-
ment. Atoms were out-coupled from a single well and escape velocity v f was measured by
traveling distance D with fixed traveling time t = 7 ms, changing the trap depth U which
was monitored in an arbitrary unit with the total power of the laser beam forming the single
well. The solid line is a fitting curve (see the text for details.) with 1 a.u.= 18.0 kHz and
1 pixel= 3.11 /-lm. Dipole oscillation in x-direction was induced by suddenly shifting the
trap center. Trap frequency measurement. The out-coupling pattern with Bragg frequency
difference (b) v = 27f x 101.5 kHz, (c) v = 27f x 114 kHz, and (d) v = 21f x 120 kHz, which
correspond to the resonant velocity ~ 0 mm/s, ~ 4 mm/s, and ~ 6 mm/s, respectively.
In (c) and (d), the left and the right pat tern have antisymmetric correlation because the
resonant velocities for the left-side outcoupling and the right-side out coupling have opposite
sIgns.
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Chapter 5 

Distillation of Condensates 

This chapter describes the experiment a1 investigation on thermal relaxat ion in a double- well 
potential, which was reported in the publication: 

Y. Shin, M. Saba, A. Schirotzek, T. A. Pasquini, A. E. Leanhardt, D.E. Pritchard, and 
W. Ketterle, Distillation of Bose-Einstein Condensates in a Double- Well Potential, 
Physical Review Letters 92, 150401 (2004). Included in Appendix F. 

Bose-Einstein condensation is the accumulation of a macroscopic number of bosonic par- 

ticles in the lowest quantum state and the formation process of a Bose-Einstein condensate 

and related thermodynamics have attracted great interest. People look for the answers for 

the following questions: how fast a condensate grows out of non-condensed atoms and how 

a condensate builds up the phase coherence in itself. Experimental studies of condensation 

dynamics have been carried out with dilute atomic gases, including the observations of the 

bosonic stirnulatoion effect on the growth of condensates 11841, the growth and collapse of 

condensates with attractive interactions [185], and local formation of condensates in hydro- 

dynamic regime [186]. However, there are still discrepancies between theoretical predictions 

and experimental results [187, 1881. The description of the formation of the condensate is 

a current theoretical frontier and requires finite-temperature quantum kinetic theories. 

Dynamics of a system can be investigated by perturbing the system quicker than any 

equilibration process and monitoring how the system in a nonequilibrium state evolves 

into t her ma1 equilibrium. Experimental challenges are preparing the system in a well- 

defined nonequilibrium state and measuring the meaningful thermodynamic quantities of 

the evolving system without ambiguity. The aforementioned experiments [184, 188, 1861 

exploited a shock cooling method to prepare a well-defined initial state of thermal clouds, 

where a tail of the thermal distribution is quickly truncated. However, this quick forced 

evaporation may lead to a complicated initial state due to the one-dimensional nature of 

the truncation and nonergodic effects [189]. 



a b c d

Figure 5-1: Scheme for distillation of condensates in a double-well potential. (a) Conden-
sates are loaded into the left well. (b) A new ground state is created by linearly ramping
the trap depth of the right well from zero to the final value. (c) Atoms transfer into the
right well via high-energy thermal atoms, and a new condensate starts to form in the right
well. (d) The whole system has equilibrated. V denotes the height of the potential barrier
between the two wells, which is measured with respect to the bottom of the left well, and
t::,.U denotes the trap depth difference between the two wells.

Metastable states can help understand thermodynamic processes due to their intrin-

sically long relaxation time. Metastable situations for a condensate can be created by

modifying a system to have one or more even lower quantum state. The original condensate

realizes that it is in the wrong state and eventually migrates to the true ground state of the

system. This is the situation which we experimentally explore using a double-well potential

and we measure the time scale for this equilibration process.

The experimental scheme is described in Figure 5-1. Equilibrium Bose-Einstein conden-

sates in an optical dipole trap are prepared and a metastable situation is set by creating a

second trap horizontally adjacent to the first. When the new trap is deeper than the orig-

inal trap, condensates happen to be not in the ground state any more and try to migrate

into the empty well. The resulting double-well potential is characterized by the trap depth

difference between the two wells, t::,.U, and the height of the potential barrier between the

two wells, V. Since the probability of quantum tunneling through the barrier is extremely

small [62], the coupling between the two wells occurs only by the incoherent transfer of

high-energy thermal atoms over the potential barrier between the two wells. Since t::,.U
and V are adjustable, we can control the flux of the incoherent coupling between the two

potential wells. By monitoring the time evolution of the double-well system we characterize

how these variables, t::,.U and V, determine the dynamics.

This double-well system can be a good model system for studying thermodynamic

processes, having the advantage of being an almost closed system (little evaporation) with

well defined initial conditions and widely adjustable time scales (through the height of the

barrier). A similar situation was investigated with spinor condensates. Spinor Bose-Einstein

condensates are multi-component quantum systems where the components are coupled and

can exchange particles, showing rich ground states and collective excitations [34]. Several

groups have observed long-lived metastable configurations [190, 191, 192, 193] and specu-

88



lated about transport of atoms from one domain to another via the thermal cloud (190, 1921. 

While spinor condensates provide unique opportunities for studying Bose-Einstein thermo- 

dynamics with tunable heat and particle bath,' the systems involve additional complexities 

such as spin dynamics and collisional losses 1194, 192, 193, 1951. The double-well system 

allows us to characterize thermal relaxation processes in their simplest realization. 

The relaxation process we study is relevant for other questions. The incoherent trans- 

port observed here in a double well-potential imposes stringent limitations on future ex- 

periments aiming at the observation of coherent transport in Josephson junctions at finite 

temperature [147, 196, 1971. To observe quantum tunneling, the thermal relaxation time 

rth (K exp[V/kBT]) should be longer than the tunneling time rt, (o( ezp [d~ /mf i2w] )  where 

w is the thickness of the barrier. Our observation of condensate growth in one potential well 

due to the addition of thermal atoms realizes the key ideas of proposals on how to achieve a 

continuous atom laser [198] which is different from the experiment where condensates were 

replenished with transported condensates [7]. 

5.1 Thermal Relaxation in a Double-Well Potential 

The following experiment was carried out with Bose-Einstein condensates in the IF = 

1, mF = -1) state using the optical double-well potential as in Chapter 3 and 4. The 

l/e2 intensity radius of the focused beam corresponding to a single well was 11.3 pm. The 

details of the initial preparation and the experimental procedures are described in Ref. [2] 

(Appendix F) .  The potential was transformed into a double-well potential by linearly 

ramping the right well potential from zero to the final value of UR over 500 ms while 

keeping UL constant. The effective ramping time during which the trap depth difference 

is less than the temperature, Ti, was 500 ms x (Ti/UR) -- 40 ms which is much faster than 

the typical relaxation time of w 500 ms. The barrier height was set higher than the peak 

atomic mean field energy of condensates so that condensed atoms remained confined to the 

left well during the transformation. 

Figure 5-2 shows the dynamical evolution for a situation where the right well was much 

deeper than t'he left well. In that case, the right well was filled first by thermal atoms, 

which then formed a new condensate. Condensates that initially existed only in the left 

well were almost completely distilled within 3 s to form condensates of comparable size in 

the right well. 

The whole system may be partitioned into five parts: 1) condensed atoms in the left 

well, 2) condensed atoms in the right well, 3) thermal atoms in the left well with kinetic 

energy lower than the potential barrier, 4) thermal atoms in the right well with kinetic 

'1n spinor condensate system, magnetic fields act as a barrier height, using the magnetic properties of 
atoms. 



(a)

(b)

Figure 5-2: Time evolution of atom clouds in a double-well potential. (a) The absorption
images were taken for various hold times after creating the right well. The field of view
of each absorption image is 130 J-Lm x 1160 J-Lm. Before ramping up the right well, the
temperature of the initial clouds in the left well was Ti = (180 ::f: 90) nK and the number
of condensed atoms was Ni = (1.1 ::f: 0.1) x 106 with a peak mean field energy of fio ~
kB X 300 nK. The trap depths were U L = kB x 2.4 J.lK (left well) and U R = kB x 2.9 J.lK
(right well) with a potential barrier of V = kB x 510 nK between them. During the
hold time, the radial separation between the potential wells was 15.9 J-Lm. For clarity, the
separation was increased to d = 31.2 J.lm just before taking absorption images. (b) A series
of absorption images after 1 ms ballistic expansion. The initial condensate was distilled
from the left to the right well.
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energy lower than the potential barrier, and 5) thermal atoms accessible to the both wells 

with high kinetic energy. The particle exchanges among the subparts might be modeled 

with simple rate equations to describe the full evolution of the system. However, due to 

possible ambiguity, we did not try this approach. 

The time evolution of the double-well system was characterized by monitoring the num- 

ber of condensed atoms and the temperature of clouds in each well. Actually, the system 

under investigation was not in equilibrium and thus the temperature might not hold its de- 

finition in our situation. Especially at the beginning of the thermal relaxation, the hottest 

thermal atoms in the left well spilled over the potential barrier to fill and share the trapping 

volume of the right well. We, however, assumed local equilibrium in each well and deter- 

mined the temperature with the density distribution of thermal atoms, which was necessary 

to extract physically relevant information from our observation. This assumption might be 

justified by a short collision time, rC,1 w 1 ms, but its validity should be carefully examined. 

The fitted value of the temperature of clouds and the number of condensed atoms in 

each well were obtained by fitting radially-integrated one-dimensional atomic density cross 

sections to a bimodal distribution. For the condensate, we used a Thomas-Fermi distribu- 

tion, and determined the number of condensed atoms by measuring the axial length of the 

condensate. 'This measurement was supplemented by taking absorption images with 1 ms 

ballistic expansion to distinguish the condensate from the thermal atoms around it (Fig- 

ure 5-2(b)). For thermal clouds, the fits to a Bose-Einstein distribution were restricted only 

to the wings t,o avoid the distortions due to the mean field repulsion of the condensate [199]. 

The temperakure turned out to be very sensitive to the value of the chemical potential of 

the thermal clouds. Assuming local equilibrium, we set the chemical potential of the thermal 

clouds in each well equal to that of the condensates in the same well. This constraint means 

that thermal clouds in contact with condensates always have the phase-space density at its 

saturated value of 2.61. In the dynamical situation, the presence of a condensate coexisting 

with a thermal cloud with a phase-space density less than 2.61 can not be excluded 1194, 1951, 

but a precise measurement of a value of the phase-space density is generally difficult in a 

non-equilibrium situation. In the absence of a condensate, the chemical potential of the 

thermal cloud was determined by the fit to a Bose-Einstein distribution. 

Density Distribution of a Bose Gas 

We consider the density distribution of Bose condensed atomic gases trapped in a three- 

dimensional harmonic potential: 



In the Thomas-Fermi limit, the density of the condensate part is 

where p, is the chemical potential of the condensate and g = 4?rh2a/m. In the harmonic 

trap, the condensate has a parabolic density profile 

where N is the total number of condensed atoms, im = J2pC/mw; (i = x, y, 2). The column 

density fi, and the radially (xy)-integrated one-dimensional density fi, are given by 

15 z 
( z )  / dydx n, = -N max((1 - i ) 2 ,  0) 

16 xm 

With the assumption ksT >> h ~ , , ~ , , ,  we can obtain the density distribution of the 

thermal atoms, 
1 

where Ade = d 2 a h 2 / r n k B ~ ,  [(q = exp((pth - V(?'))/kBT), pth is the chemical potential 

of the thermal cloud, and V ( 3  is the potential thermal atoms feel at F. The Bose functions 

are given by g, (z) = CEO zl / l , .  

In the absence of a condensate, V ( 3  = U ( Q  The column density fith and the radially(x- 

y)-integrated one-dimensional density nth are given by 

where ith = d2kB~/mw:  (i = x, y). 

In the presence of a condensate, the mean-field repulsion from the condensate results in 

V(F) = U(f )  + 2gnc(F). There are no simple analytic expressions for fith and f i t h ,  but in 

the region 121 > zm outside the condensate, Eq. (5.7) and (5.8) can be used with pth = p,. 

Fitting Results 

Figure 5-3 displays the evolution of the condensed atom number and temperature for the 

situation in Figure 5-2. The initial, abrupt increase in the temperature of the thermal clouds 
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Figure 5-3: Approach to thermal equilibrium in a double-well potential. The temperature 
and the number of condensed atoms in each well are shown as a function of hold time after 
creating the right well. Open and solid circles represent atoms in the left and the right 
well, respectively. Every data point is averaged over three measurements, and the error 
bar shows f one standard deviation. The experimental parameters are the same as for the 
results shown in Fig. 5-2. 

in the right well indicates that high energy thermal atoms rapidly transferred into the right 

Condensates started to form in the right well after (400 f 150) ms and saturated 

within 2 s, resulting in 50% of the condensate being transferred. The final temperature 

in the right well was Tf 350 nK, which is - 150 nK higher than the initial temperature 

T,. This increase of temperature reflects the energy gained by the atoms when they "fall" 

into the right potential well which is deeper by Al l  = 480 nK. After 3.5 s, the total number 

of atoms in the whole system was Nf = (0.6 f 0.1) x lo6, which is 15% less than expected 

for the measured lifetime of T = 12.1 s. Evaporative cooling due to finite trap depth may 

explain both the atom loss and the fact that the temperature increase was much less than 

nu. 
Even after 3.5 s hold time, full global equilibrium was not reached. This can be seen 

in both the temperature and the condensed atom numbers. As the chemical potential of 

condensates in the right well was lower than the trap bottom of the left well, there should 

2 ~ h e  fit values for the temperature of the right well a t  hold times less than 1 s parametrize a cloud our 
of equilibrium due to the violent evolution. 



not have been any condensate remaining in the left well in global equilibrium. However,
Figure 5-2 shows a small condensate of f'V 103 atoms in the left well even after 3.5 s holding.
Furthermore, the temperature in the left well was measured f'V 100 nK lower than in the right
well. Note that in our trap geometry, the exchange of thermal atoms might be geometrically
suppressed due to the small "contact area" between the two elongated cigar shaped clouds.
Moreover, if the transferred thermal atoms have high angular momentum, they have poor
collisional coupling to the cold trapped atoms like the Gort cloud in magnetic traps [200].
Indeed, the density of thermal atoms with higher energy than the potential barrier in the
left well after 3.5 s holding is f'V 3 X 1011/cm3, and their collision time with the atoms
confined in this well is (naVrel)-l ~ 0.5 s. More quantitative study of the slow relaxation
process with this metastable state might lead to useful insights.

5.1.1 Relaxation Rate

650 ms 700 ms
------- Hold Time

800 ms

Figure 5-4: Measurement of the onset of condensation with interference fringes. The onset
time in the right well was measured by observing the appearance of a matter wave inter-
ference pattern when the condensates were released from the double-well potential. The
separation of the two wells was d = 15.9 /-Lmand the trap depth difference was Li.U ~ 420 nK.
Absorption images with variable hold times are provided and resolvable fringe patterns ap-
pear after 650 ms hold time.

Another quantity of interest in the condensate formation process is the onset time of
condensation, Le., the hold time until a condensate first appears in the newly created
adjacent well [184, 187, 188]. The formation of a new condensate is a clearly distinctive
event in the thermal relaxation. To avoid ambiguities in fitting small condensates, we
determined the onset time in the right well by observing the appearance of interference
fringes when two condensates were released from the double-well potential (Figure 5-4).
For two pure condensates, the visibility of the interference fringes is larger than 55% as
long as the number ratio of the two condensates is larger than 'TJ =0.05. Using the methods
described in Ref. [1], we have observed discernible interference fringes down to 'TJ = 0.08,
corresponding to f'V 8 X 104 condensed atoms in the right well.
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Figure 5-5: Onset time of condensation. UL was kept at k B  x 2.4 pK for all experiments. 
(a) The separations of the two wells, d, were 14.3 pm (open circle), 15.1 pm (solid circle), 
and 15.9 pm (open square). Interference fringes were not observed at AU = -ks x 240 nK 
even after 20 s hold time. The energy diagrams for the double-well potential are provided. 
(b) The same data are plotted vs. V - AU/2 where V is the height of the potential barrier. 

Onset times were measured as a function of d and AU (Figure 5-5). The qualitative 

understanding of the dependence of the thermal relaxation rate on V and AU can be easily 

obtained. The barrier of height V provides the 'resistance' against equilibration, since 

thermal atoms must have a kinetic energy larger than V to transfer from the left well to the 

right well. On the other hand, the potential well difference AU can expedite the process. 

When thermal astoms transfer to the right well, they would be rethermalized by themselves. 

Some of them would be captured in the right well and some of them would come back in 

the original left well with higher kinetic energy, accelerating the process by heating the 

condensate in the left well. Therefore, the equilibrium process will be faster with larger AU 

and smaller V. 

The experimental result definitely shows this behavior. Phenomenologically, we found 

that the condensate onset time depends only on the combination (V -AU/2) with an almost 

exponential dependence (Figure 5-5(b)). (V - AU/2) can be considered as (Vef - AU), 

where V, = [V + (V + AU)]/2 is the average height of the barrier measured from each 

well. The exponential behavior of the Maxwell-Boltzmann distribution may explain the 

observed dependence. 

In two limiting cases, no interference patterns were observed. When the trap depth 

difference is larger than the peak atomic mean field energy of condensates, i.e. lAU1 > ,Go, 

it is energetically favorable for condensates to remain in the lower well. We observed no 

interference pattern when AU = -kB x 240 nK even after 20 s hold time. On the other 

hand, when AU 2 x 360 nK, the 'appearance and then disappearance' of interference 



fringes was observed because the condensates were completely distilled into the right well. 

In the limit where the barrier height is smaller than the peak atomic mean field energy of 

condensates, i.e. V < ,Go, condensate atoms can directly 'spill' over the potential barrier. 

Indeed, we observed that condensates appeared in the right well immediately for V less 

than - k B  x 290 nK, consistent with ,Go - kB x 300 nK. 

5.2 Discussion 

In conclusion, we have created Bose-Einstein condensates in a metastable state in a double- 

well potential and studied their dynamical evolution. The observed distillation was driven 

by thermal atoms spilling over the potential barrier separating the two wells and then 

forming a new condensate. The onset time of a new condensate was measured over a very 

broad range from a few ten millisecond to a few seconds with various trap parameters. 

Kinetics of Bose-Einstein condensation is generally believed to have several qualitatively 

different stages [201, 202, 203, 2041. In a rapidly cooled atomic gas near the critical temper- 

ature, particles first relax into low energy states according to classical Boltzmann kinetics, 

and once the particles are concentrated enough in the low energy states where interparticle 

interaction energy is dominant over kinetic energy, the coherent evolution of the low lying 

levels should be taken into account and from this point the occupation number in each 

level can not represent the state of the system. It is theoretically anticipated that a quasi- 

condensate with suppressed density fluctuation would appear having a spatially fluctuating 

phase. A genuine condensate with a uniform phase would emerge after a system-dependent 

phase relaxation time [203, 2051. A numerical simulation based on full quantum kinetic 

theory [206, 187, 2071 showed a quantitative agreement with this phase ordering scenario, 

emphasizing the role of highly occupied low-lying excitation levels. Furthermore, the local 

formation of condensates reported in Ref. [186] shows the experimental feasibility of the 

study of this phenomenon. 

We speculate that the interference method used for detecting new condensates might 

allow to study how the phase coherence emerges with condensation. Taking advantage of 

having another condensate as phase reference might be a more direct method to study 

the phase coherence build-up mechanism in condensation than Bragg scattering [42] and 

condensate focusing [186]. Indeed, this was the original motivation of this distillation ex- 

periment. We could verify the nonuniformity of the phase of a newly formed condensate by 

observing a fragmented fringe pattern (see the 650 ms-holdtime image in Figure 5-4)) but 

unfortunately the experiment apparatus was not stable enough to allow systematic studies. 



Chapter 6 

Dynamical Instability of a Doubly 

Quantized Vortex State 

This chapter describes vortex experiments on atom chips. Experimental results were re- 
ported in the following publications. 

A. E. Leanhardt, A. Gorlitz, A. P. Chikkatur, D. Kielpinski, Y. Shin, D. E. Pritchard, 
and W. Ketterle, Imprinting Vortices in a Bose-Einstein Condensate using Topological 
Phases, Physical Review Letters 89, 190403 (2002). 

A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and W. Ketterle, Coreless 
Vortex Formation in a Spinor Bose-Einstein Condensate, Physical Review Letters 90, 
140403 (2003). Included in Appendix G. 

Y. Shin, hl. Saba, M. Vengalattore, T.A. Pasquini, C. Sanner, A.E. Leanhardt, M. 
Prentiss, D.E. Prichard, and W. Ketterle, Dynamical Instability of a Doubly Quantized 
Vortex in a Bose-Einstein condensate, Physical Review Letters 93, 160406 (2004). 
Included in Appendix H. 

A Bose-Einstein condensate is described by a macroscopic wave function and the veloc- 

ity is represented by the spatial gradient of the quantum phase, meaning that a condensate 

can sustain a rotational flow only around a density singularity. Since the condensate wave 

function should be single-valued, the change of the phase value over any closed path must 

be a multiple of 27r. This is the Onsager-Feynman quantization condition (208, 2091. Conse- 

quently, atoms in a Bose-Einstein condensate circulate with angular momentum only equal 

to an integer multiple of h, in the form of a quantized vortex [210]. 

Superfluidity is closely related to a Bose-Einstein condensates and it is generally be- 

lieved that Bose-Einstein condensation is an underlying physical mechanism for superfluid- 

ity. However, Huang [211] clearly stated that superfluidity and Bose-Einstein condensation 

are independent concepts, showing that superfluidity emerges in lower dimension without 

Bose-Einstein condensation and a Bose-Einstein condensate in a disordered system does 



not have superfluidity. Simply, the ideal Bose gas at zero temperature is not a superfluid 

because of the absence of atom-atom interaction. Superfluidity is a collective property not 

relying on the existence of Bose-Einstein condensates. 

One aspect of superfluidity of a Bose-Einstein condensate can be investigated with the 

stability of a quantized vortex state. Vortices are excited states of motion and therefore 

energetically unstable towards relaxation into the stationary ground state. However, quan- 

tization constrains the decay: a vortex in Bose-Einstein condensates cannot simply fade 

away or disappear, it is only allowed to move out of the condensate or annihilate with 

another vortex of opposite circulation. Vortex decay and metastability have been a central 

issue in the study of superfluidity [212, 213, 214, 215, 216, 2171. Since stable quantized vor- 

t ices indicate the existence of a condensate wave function and phonon-like quasipart icles in 

the excitation spectrum, the observation of stable quantized vortices is taken as conclusive 

evidence for superfluidity. In almost pure condensates, vortices with lifetimes up to tens of 

seconds have been observed in atomic condensates [17, 18, 191. 

Generally, the study of topological excitation and their stability is an active frontier 

in the field of quantum degenerate gases. One of interesting subjects is the stability of 

mult iply-quant ized vortex states. Giving a Bose-Einstein condensate angular moment um 

per particle larger than h can result in one multiply-quantized vortex with large circulation 

or, alternatively, in many singly-quantized vortices each with angular moment um h. The 

kinetic energy of atoms circulating around the vortex is proportional to the square of the 

angular moment um; therefore the kinetic energy associated with the presence of a multiply- 

quantized vortex is larger than the kinetic energy of a collection of singly-quant ized vortices 

carrying the same angular momentum. In an energetic sense, a multiply-quantized vortex 

may decay into many singly-quantized vortices. Observations of arrays of singly-quantized 

vortices in rapidly rotating condensates [18, 191 indirectly suggests that the instability leads 

to fast decay of mult iply-quantized vortices. 

A multiply-quantized vortex is believed to decay coherently by splitting into singly- 

quantized vortices and transferring the kinetic energy to coherent excitation modes. This 

phenomenon is called dynamical instability and it is driven not by dissipation in an exter- 

nal bath, but by atomic interactions [214, 218, 219, 2201. On the other hand, the existence 

of stable multiply-quantized vortices in trapped Bose-Einstein condensates has been pre- 

dicted with a localized pinning potential [218] or in a quartic trapping potential [221]. 

Stable doubly-quantized vortices were observed in superconductors in presence of pinning 

forces [222] and in superfluid 3 ~ e - ~  which has a multicomponent order parameter [223]. 

Recently, surprisingly long lifetime of a "giant" vortex core has been reported [224]. In this 

chapter, I describe our experimental study of a doubly quantized vortex state. 



6.1 Topological Imprinting of a Vortex State 

Preparing condensates in vortex states is an experimentally challenging task. One of the 

simplest methods for injecting angular momentum into condensates is mechanically rot at ing 

the condensates, analogous to the rotating bucket experiments with 4 ~ e .  Vortices have been 

generated by rotating condensates with an optical stirer (a repulsive optical potential) [18, 

191 and an anisotropic trapping potential [225, 2261, and slicing condensates above the 

critical velocity 11541. 

Another type of methods for creating vortex states is directly imprinting the phase 

pattern of the vortex states on condensates. With two-component condensates, a dynamical 

phase imprinting technique was demonstrated [227, 171. The phase imprinting technique 

is versatile because the spatial phase pattern can be directly tailored according to the 

final target state. Furthermore, this technique provides a unique opportunity for studying 

dynamically unstable states due to the fast preparation. Dynamics of solitons in condensates 

were investigated with the phase imprinting technique, and actually vortices were also 

observed through the decay of solitons [228, 66, 2291. 

In the experiments described in this chapter, a doubly quantized vortex state was pre- 

pared using a topological phase imprinting method (230, 81. In the following subsections, 

the working principle of the method is presented. 

6.1.1 Berry's Phase in Spin Rotation 

Berry introduced additional quantum phase factors for a quantum system experiencing 

adiabatic changes, and formulated the geometric feature of the quantum phase factors in 

his seminal paper [231]. This subsection shows the basic definition of Berry's phase and 

illustrate its consequences in spin rotation. 

When a quantum system is governed by time-independent Hamilitonian H and the 

system is in the nth eigenstate InH) from the ground state 10) of the system, the state of 

the system I $ ) ,  in Schrodinger picture, evolves as 

where En is the corresponding eigenenergy and 1$(0)) = InH). The phase factor e-iEntlh 

is called a dynamic phase factor due to the energy of the system. Let's imagine that the 

external environment for the system is time-dependent. For simplicity, assume that the 

Hamilitonian H is parameterized with X,  i.e., H  = H ( x )  and x = ~ ( t ) .  If R is changing 

very slowly, slower than any transition frequency, we can expect the state of the system 

to adiabatically follow the change and keep staying in the nth eigenstate (nH(x)) which is 
; dt1E.(~(t '))  also time-dependent. Naively we might think the phase factor would be e-- 



However, Berry verified that the final state should be 

reflecting the adiabatic change, where y in the second phase factor is called Berry's phase. 

At first sight, it might be claimed that we can simplify the situation by redefining the nth 

eigenstate as e271nH(X)). However, Berry's phase y(C) depends on not only the final value 

of R but also the trajectory of R to the final value. 

The path-dependence of Berry's phase is clearly illustrated in spin rotation. Imagine a 

spin-1 particle pointing in +z direction and rotate the spin direction to -z direction. In 

the conventional not at ion taking +z direct ion as a quantization axis, angular moment um 

operator 3 is presented as 

"", which rotates the spin by 0 in fi direction (1fi1 = The rotation operator R(fi, 0) = e-K 

1). Consider rotation with fi = ii cos 4 + y sin 4, and then 

C O S ~  ; - L sin ee-idJ JZ 
R ( ~ , o )  = e- j$e(~z cos @+Fy sin 4) = - L sin ee@ fi cos e 

- sin2!! 224 -- 
2 e  sin 8ei@ cos2 ; 

Applying R(4, T) on the initial state / + l), makes the spin point in -z direction at the end 

of the rotation. 
cos2 ?j 

, + 1 )  = ( - s i n e )  = e Z 2 +  - z),. 
2 lr 224 - sin 2e 

Notice that the phase factor ei2@ depends on the rotation axis. For example, a final state 

with T-rotation in +x and one with with T-rotation in +y are completely out of phase. 

The above consideration can be straightforwardly extended to the case with a particle 

with spin-F. Especially, when the spin travels back to its initial position, Berry's phase 

accompanying the spin trajectory can be unambiguously defined without bothering the 

definition of the final state. For a spin F particle in a eigenstate lrnF), Berry's phase, 

y(C),  accompanying an adiabatic change represented by a closed loop, C ,  on the surface 

of the spin sphere in Figure 6-1 is given by y (C) = -mFfl(C), where Ci is the solid angle 

subtended by a surface bounded by the spin trajectory, C [231]. The relation to a solid 
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Figure 6-1: Berry's phase in spin rotation. When a spin initially prepared in the 1+ z) state
is transformed into the I - z) by rotation, the final phase factor of the spin state depends
on the direction of the rotation axis. The final state with (a) 7f-rotation in +x direction is
out of phase to that with (b) 7f-rotation in +y direction. Generally, Berry's phase, ,(C),
accompanying an adiabatic change represented by a closed loop, C, on the surface of the
spin sphere is proportional to the solid angle subtended by a surface bounded by the spin
trajectory, C.

angle in Hamiltonian's parameter space is a universal property of Berry's phase, and that

is why it is called a geometrical phase in contrast to a dynamical phase.!

6.1.2 Phase Imprinting of Multiply Quantized Vortex States

Gaseous condensates trapped in a magnetic trap are generally spin polarized so that the

spin direction of each atom in the condensate can be manipulated by adiabatically changing

a magnetic field direction at the position of the atom. Therefore, a specific phase pattern

in a condensate can be prepared by rotating each atom in a proper direction because the

final phase of a spin state depends on the direction of a rotation axis as we discussed in the

previous subsection.

A vortex formation method using a magnetic field rotation was suggested in Refs. [232,

230, 233, 234]. Let's assume that a spinor condensate polarized in IF, mF) is prepared in

a Ioffe-Pritchard trap. The quantization axis is in the +z direction. The transverse field

configuration of the magnetic trap is given in Figure 6-2(a). The initial axial magnetic field

is in +z direction and is ramped down to a negative value. This field inversion process is

carried on slowly enough that spins can adiabatically follow the field direction. Due to the

nonzero transverse field, spins effectively rotate and the rotation direction is determined by

the transverse field direction. As we can see in Figure 6-2, the rotation axis n changes along

JIn mathematics, the difference between 'geometrical' and 'topological' is whether length(measure) is
important or not in description. We named the vortex generation method as a 'topological' phase imprinting,
instead of 'geometrical', because the spatial dependence, i.e., the topological shape of rotation axes is essential
to generate a vortex state.
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Figure 6-2: (a) The transverse magnetic field in a Ioffe-Pritchard magnetic trap has a 
quadrupole field configuration. When the axial (z-direction) magnetic field changes from a 
positive value to a negative value, the rotation axis, fi, of the magnetic field depends on the 
azimuthal angle, 4. (b) The rotation axis, fi($), and the transverse field direction, b along 
the dashed circumference. 

the circumference indicated by a dashed line. 

fi(4) = 3i. sin 4 + y cos 4, (6.6) 

where 4 is the azimuthal angle at the atomic position. Assuming that the field inversion 

makes T-rotation from +x direction to -z direction, the final spin state after the rotation 

is given by 

Reflecting the azimuthal dependence of the rotation axis fi(4), the condensate after the field 

inversion ends up with a 4mpr  phase winding; a multiply quantized vortex state for F 2 1. 

Rotating spins in a twisted way results in a spatial phase modulation in a condensate, 

injecting angular momentum and kinetic energy into the condensate. It is generally believed 

that state-to-state transfer by an adiabatic change always leaves the entropy of a system 

unchanged so that the ground states of two Hamiltonians can be connected by an adiabatic 

transfromat ion from one Hamiltonian to the other. However, the above situation shows 

that this general belief is not universally true because of the presence of singularitiesa2 

2 ~ h e  situation may be considered as a two-dimensional space embedded in a three-dimensional space 
because the spin rotation is not applicable at  the trap center. 



6.1.3 Vortex Experiments on an Atom Chip

(b)
Bz

z

Figure 6-3: Vortex experiment on an atom chip. (a) Wire pattern on the atom chip. A
magnetic trap is formed by a current Ie flowing through the center wire in conjunction with
a external uniform magnetic field Bx. The axial confinement along z direction is generated
by currents IL and IR in the end-cap wires. Each current is controlled independently. (b)
Imprinting of a vortex in a Bose-Einstein condensate. By inverting the z direction magnetic
field Bz, a doubly quantized vortex was imprinted in IF = 1) condensates. The direction of
IL and IR were also reversed to maintain the axial confinement.

Our vortex experiments were carried out with atom chips. Bose-Einstein condensates
of 23Na atoms in the IF = 1,mp = -1) state were loaded into a Ioffe-Pritchard magnetic
trap generated by a microfabricated atom chip, and vortices were topologically imprinted
in the condensates by inverting the axial magnetic field. The wire pattern on the atom
chip is shown in Figure 6-3(a). We designed an atom chip with separate end-cap wires,
allowing independent control of the axial magnetic field. Also, the axial trap position and
the axial trap frequency of the inverted trap were matched to those of the original wire
trap by adjusting the final values for IL and IR after field inversion. With the simple Z-
shaped wire trap, it is technically impossible to change the sign of the axial magnetic field
curvature. Typical radial trap frequency iT rv 250 Hz, and axial trap frequency iz rv 3 Hz.
Bz was ramped linearly from rv 0.5 G to rv -0.5 G in ~ 10 ms. More detailed information
on experiment parameters such as size of condensates, life times of condensates, and loss
rate due to spin flips, were described in Ref. [8, 10, 3].

Atom chips demonstrated their superb capability for precise manipulation of atoms
throughout the vortex experiments. The experimental implementation of the vortex forma-
tion method might look simple; just inverting the axial magnetic field. However, to maintain
the confinement after inverting, the axial field curvature should be also inverted. further-
more, matching the trap parameters before and after imprinting is crucial for preparing
clean vortex states. In real experiments, since the radial trap frequency iT is proportional
to the square root of axial magnetic field Bz (iT ex IBzl-1/2), the vortex imprinting process
is accompanied by sudden mechanical perturbations: 1) squeezing in the radial direction
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as Bz passes through zero can lead quadruple excitations, 2) the change in the vertical

trap position due to a gravitational sag (ex fr-2) can induce vertical dipole excitation, 3)

mismatching in the axial trap posi tion and the axial trap frequency after the field inversion

will bring axial excitations. Small operating currents and adequate spatial design of atom

chips made the vortex experiments possible.3

6.2 Observation of Splitting of a Doubly Quantized Vortex
Core

The topological phase imprinting method was experimentally demonstrated in our first

vortex experiment [8], generating multiply quantized vortex states with F = 1 and F = 2

atoms. The axial angular momentum per particle of the vortex states were measured using

surface wave spectroscopy [236, 237, 238], showing the consistence with the predicted values,

2;" for F = 1 atoms and 4;" for F = 2 atoms. This experiment was carried out with a Z-wire

trap on Atom chip-I. As mentioned before, it was technically impossible to keep condensates

confined after imprinting.

With a newly designed atom chip (Figure 6-3), we investigated the stability of a doubly

quantized vortex state, focusing on how a doubly-quantized vortex core decays into two

singly-quantized core. Absorption images was taken along the imprinted vortex line after

releasing the condensate and letting it expand during time-of-flight. The size of a doubly-

quantized vortex core was typically r-.J 40 J1.m with 15 ms time-of-flight.

(a)

Figure 6-4: Tomographic imaging technique. (a) The visibility of a vortex core in an
integrated F = 1 absorption image completely vanished within 30 ms. (b) A central slice
of a condensate in the F = 1 hyperfine state is selectively pumped into the F = 2 hyperfine
state with a sheet of a pumping beam, and then the radial profile of the condensate in the
selected region is imaged with a probe pulse resonant with the F = 2 -t F' = 3 cycling
transition.

3The same vortex imprinting method was implemented with 87Rb atoms in a macroscopic trap and
deleterious effects due to a gravitational sag were reported [235].
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However, the visibility of a vortex core in an integrated absorption image completely

vanished within 30 fiS (Figure 6-4(a)) so that further evolution of the vortex core could

not be monitored with integrated absorption images. To reduce blurring due to possible

bending of the vortex line [239], we employed a tomographic imaging technique [16]. As

illustrated in Figure 6-4(b), a 30 /-lm thick central slice of the condensate was selectively

pumped into the F = 2 hyperfine level with a sheet of laser light perpendicular to the

condensate long axis, and then the radial profile of the condensate in the selected region

was imaged with a light pulse resonant with the F = 2 -t F' = 3 cycling transition. This

tomographic imaging technique was crucial for observing the time evolution of vortex cores

beyond 30 ms.

A series of absorption images of the splitting process of a doubly-quantized vortex core

is provided in Figure 6-5. Images taken just after imprinting show a doubly-quantized

vortex core of high visibility. The visibility of the core decreased with evolution time, which

we attribute to bending of the vortex line [239] and other excitations created during the

imprinting process which we discussed in the previous section. Later in the evolution, the

central core deformed into an elliptical shape and split into two closely-spaced cores. Once

the two cores were separated by their diameter, they appeared well resolved in our images.

The angular position of the two cores was random for each experimental realization with

the same evolution time, so the precession frequency and the precession direction of two

cores could not be determined with our destructive image technique.

Figure 6-5: Splitting of a doubly-quantized vortex core. Axial absorption images of conden-
sates was taken after 15 fiS of ballistic expansion with a variable hold time after imprinting
a doubly quantized vortex. A tomographic imaging technique was used. A doubly quantized
vortex decayed into two singly quantized vortices. For this data, the interaction strength
was anz ~ 7.5 (see text for definition). The field of view in each image is 320 /-lfi x 320/-lm.
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6.2.1 Density dependence of Decay Rate 

To investigate the dependence of the instability of a doubly-quantized vortex state on the 

mean field atomic interaction, we measured the characteristic time scale of the splitting 

of a doubly-quantized vortex core as a function of the atom density. Atom density was 

controlled by removing a variable number of atoms with rf evaporation before imprinting 

a vortex. Images were classified as follows: images where the two cores were separated by 

more than one core diameter were labelled as "two visible cores"; images with a clearly- 

defined circular central core were labelled as "one core"; images in the intermediate range, 

where the central core was elliptical but the two cores were not resolved, or with a bad 

visibility were labelled as "undetermined". For example, the images at 62 ms and 75 ms in 

Figure 6-5 and Figure 6-6A were classified as "two visible cores", and 50 ms in Figure 6-5, 

and Figure 6-7(a) and (c) as "undetermined". 

Experimental results are provided in Figure 6-6 as a function of the linear atom density 

n, (along the condensate long axis) multiplied by the s-wave scattering length a.  The 

rescaled quantity, a n ,  = a J l$(r) 12dxdy corresponds to the strength of the mean field 

interaction, with $(r) being the condensate wavefunction. The total atom number in the 

absorption image is linearly proportional to n, because only a central slice of the condensate 

contributes to the image. Results in Figure 6-6 clearly demonstrate that a doubly-quantized 

vortex core splits more slowly as the density becomes higher. 

6.2.2 Dynamical Instability 

Multiply-quantized vortices in a harmonic potential are predicted to be dynamically un- 

stable [214], i.e., the vortices spontaneously decay into other states even in the absence of 

dissipation and external perturbations. Static stability is concerned with that the energy of 

the given system has a local extreme in the parameterized Hamilitonian space and dynamical 

stability considers the temporal evolution of the given system with arbitrary infinitesimal 

perturbation. Typically, the analysis on dynamical stability uses approximate linearized 

equations of motions. In the Bogoliubov framework, which is believed to well describe 

quantized vortices in one component condensates, this dynamical instability manifests as 

the existence of excitation modes with a complex eigenfrequency. The nonvanishing imagi- 

nary part of the eigenfrequency implies an exponential growth in time of the corresponding 

excitation mode, leading to decay of the multiply-quantized vortex state. This spectral in- 

stability is a general parametric phenomenon occurring when several modes compete during 

coherent evolution and has been studied in many other nonlinear physical systems. 

For a doubly-quantized vortex state in a cylindrically symmetric condensate, it was 

theoretically found that there are two excitation modes with a complex eigenfrequency [214, 

2191. One of them is confined inside the doubly-quantized vortex core; the growth of 
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Figure 6-6: Density dependence of the decay process. (a) The time scale for the decay
process of doubly quantized vortex states was measured by observing the vortex cores
and classifying them as one vortex (open circles) or two vortices (solid circles). Data
were collected with three axial trap frequencies fz = 2.7, 3.7, 12.1 Hz and the interaction
strength anz was controlled by changing the atom number by rf induced evaporation before
imprinting. Typical absorption images for (A) fast decay at low density (anz = 1.5) and
(B) slow decay at high density (anz = 10.1). The fieldof view in the absorption images is
300 p,m x 300 p,m. (b) The separation of two visiblecores vs. the hold time for 2 < anz < 3
(solid triangles) and 6 < anz < 8 (open triangles). The solid and dashed lines indicate the
diameter of one vortex core and of the condensate, respectively.
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Figure 6-7: Examples for the dynamic evolution after imprinting a doubly quantized vortex:
(a) Surface Exicitation. Regular density modulation of the surface was observed after 51 ms
hold time for anz = 1.8 (b) same as (a) with a contour line. (c) Crossing of vortex lines.
55 ms hold time and anz = 8.4. (d) same as (c) with guide lines for vortex lines. The field
of view is 270 {tm x 270 /-lm.

this so-called "core" mode induces splitting of the original doubly-quantized vortex core

into two separate singly-quantized vortex cores. The other mode, having the conjugate

eigenfrequency, grows with the core mode in order to conserve energy. In the low density

limit, this mode corresponds to the co-rotating quadrupole mode, leading to oscillations

in the surface shape of condensates. We always observed that the surface of condensates

changed into a quadrupole shape as the two cores appeared, as shown in Figure 6-6A, and

the ellipticity was larger at lower density.

Once the doubly-quantized vortex core splits into two cores, the distance between the two

cores was almost constant (I"V 50 j.tm) during the further evolution, as shown in Figure 6-

6(b). This is evidence that the separation process was driven mainly by the dynamical

instability, and not by dissipation, which would gradually increase the separation of the two

cores. Dissipative processes were minimized by performing the experiments at the lowest

possible temperature. Condensates did not have any discernible thermal components even

after extended hold time. Furthermore, the energy released by the dissociation of the

doubly-quantized vortex was I"V 5 nK negligible to the critical temperature I"V 240 nK. For

the upper bound to the temperature of < 100 nK, Ref. [240] predicts that dissipative decay

time to be :::::::1.5 s for a single vortex, a time scale much longer than what we observed.

What is the further evolution of the two cores? Some of the images at low density

showed a regular surface modulation, as in Figure 6-7(a), which was not seen in clouds with

a single core. This indicates that higher-order surface modes are excited during the coherent

evolution [241]. Several images, especially those labelled as "undetermined", suggest that

vortex lines crossed [219, 242], as in Figure 6-7( c). In our system, it was difficult to trace

the positions of the two cores beyond 80 ms hold time.
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6.2.3 Discussion 

According to the above observations such as the ellipticity of the cloud, the surface modu- 

lation, and the rapid saturation of the core separation, the decay of the doubly-quantized 

vortex state seems to be due to dynamical instability. However, there is a qualitative dis- 

crepancy between theoretical calculation and our observation. The dynamical inst ability 

of the doubly-quantized vortex state is related to the magnitude of the imaginary part of 

the complex eigenfrequency, and, according to the numeric calculation in Ref. [219], non- 

vanishing imaginary part of the eigenfrequency appears at an ,  < 3 and a n ,  - 12, showing 

a quasi-periodic behavior as a function of the interaction strength, an,. In contrast to 

this prediction, the experiment showed a monotonic increase of the lifetime with no hint of 

periodic behavior. 

However, we should remind that the calculated instability is not directly comparable to 

the observed lifetime. In the theoretical calculation, the imaginary part represents only the 

initial instability, whereas our criterion for decay was the observation of two separated vortex 

cores. Therefore, there is no information on how the exponential growth of excitation modes 

would affect the following evolution and it is possible that the dynamical instability changes 

after the doubly-quantized vortex state is significantly perturbed [215, 2201. Furthermore, 

the theoretical investigation was based on two-dimensional calculation. The real situation 

is more complicated: 1) The density, i.e., the interaction strength is changed along the axial 

direction. One might imagine the twisting of two vortex lines in three dimension [219]. 2) 

The trap has 2% asymmetry in the radial trap frequency due to the gravitational sag. 3) 

A certain amount of excitations must be induced by the imprinting process, as described in 

Section 6.1.3. 

Recently, Jackson et al. [243] emphasized the role of static instability of the doubly- 

qilant ized vortex state. Even though we excluded the possibility of thermal dissipation, the 

slow decay with a higher atom density reminds of the zero-point energy argument: Since 

the size of the vortex core decreases with a higher peak density, the zero-point energy of 

the core mode increases and consequently slows down the thermal dissipation of the vortex 

state [212]. Interestingly, Gawryluk et al. [244] presented a three-dimensional numerical 

simulation colisistent with our observation. 

One possible extension of this experiment is combining this setup with an one-dimensional 

optical lattice along the axial direction, which would realize a two-dimensional trap array. 

Reducing the axial dimension, one may have a simpler situation. Dynamics of a vortex 

line in a stack of weakly coupled two-dimensional condensates were theoretically investi- 

gated [245, 2461. 



6.3 Observation of Coreless Vortices: Spin Textures 

In spinless or spin-polarized condensates, vortices need to have cores where the density of 

condensed particles is zero because the condensate wave function is single-valued. However, 

in spinor condensates represented by a complex vector wave function with an internal, spin 

degree of freedom, coreless vortices exist as spin textures [247, 2481. With the spin-rotation 

topological imprinting technique, we created coreless vortices where each spin component 

has a different phase winding [lo]. Coreless vortices in spinor condensates are different 

from the vortex states with two component condensates [17] where one component fill up 

the core of the vortex cores of the other condensate. Fundamentally, condensate mixtures 

are different from spinor condensates because of the presence of coherent coupling among 

components [210]. 

Let's have a closer look at what is happening inside condensates during the field inver- 

sion. The axial magnetic field B, is ramped from +BZo(> 0) to - BZo, and the rotation 

angle 0 is given by B(B,) = cot-' (Bz/Br) with the assumption that the initial spin is paral- 

lel to z-direction (BZo >> BB,), where Br is the transverse field at atom position. According 

to Eq. (6.3)) a spinor condensate initially prepared in the 11, -I), state is transformed into 

where 4 -+ - 4 to account for the field direction in Figure 6-2. During the field inversion 

0 : 0 -t T ,  the population transfers from the 11,-1) state with no vortex into the 11,O) 

state with a singly quantized vortex and the 11, +1) state with a doubly quantized vortex. 

Because B, cx r ,  the rotation angle 8 also has radial dependence and outer atoms will rotate 

further when B, > 0. We can imagine a coreless vortex state where a vortexless 11, -1) 

component in the center is surrounded by other circulating components. 

When 0 = $ (B, = 0)) a physically interesting situation happens; all three spin states 

are almost equally populated, but each state has a different phase winding from each other 

so that the corresponding centrifugal force would separate them in the radial direction. 

However, the atomic Zeeman energy would compete this segregation effect because the 

misalignment of spins from the magnetic field direction costs energy. The competition 

between kinetic energy and Zeeman energy would cause interesting dynamics of the spin 

texture. 

The nature of the spin texture with B, = 0 was experimentally studied by a projec- 

tion method. The experimental conditions for producing the spin texture were similar to 

those for the previous vortex experiments. After ramping down B, -+ 0, the strong axial 



Figure 6-8: Coreless vortices in F = 1 spinor condensates. Coreless vortices were imprinted
by ramping the axial magnetic filed Bz to zero in a Ioffe-Pritchard magnetic trap. The spin
texture was diagnosed by a projection method, suddenly switching (a,b) Bz « 0 and (c,d)
Bz »0. Axial absorption images were taken after 20 ms time-of-flight. In (b) and (d),
the three spin states were spatially separated by a magnetic field gradient. The magnetic
sublevel number mF is defined with respect to +z quantization axis.

magnetic field was suddenly switched on to project the condensate wave function onto a

basis quantized in the axial, z direction. This experimental technique corresponds to the

theoretical decomposition of the wave function in the z quantization axis. Following the

field projection, condensates were released and each spin component was spatially separated

during time-of-flight by an additional field gradient, an implementation of the Stern-Gerlach

effect. Coreless vortices having three spin states with different vorticities were observed and

a typical absorption image is provided in Figure 6-8.

When the projection field was applied in +z direction (positive projection), additional

ring structures were observed in 11,-1) and 11,0) states. They may be a signature of spin

wave excitations [34, 35], but we attribute these effects mainly to technical imperfections in

our field control. Detailed analysis of the projection method and possible technical issues are

described in Ref. [10]. Changing the final value of Bz in the vortex imprinting process, the

spin textures were measured (Figure 6-9), which clearly demonstrates that the population

transfers from the 11,-1) state to the 11,+1) state.

Studying the dynamic evolution and the stability of the spin texture was limited by

the short lifetime of condensates which was rv 1 ms with Bz ~ 0 due to non-adiabatic

(Majorana) spin flips at the trap center. The spin flip effect was directly confirmed by

observing atom leakage out of the magnetic trap. Using an optical dipole trap might be an

alternative method to study the dynamics. However, it was technically difficult to overlap

an optical trap with a magnetic trap and hold atoms stably.
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Figure 6-9: Spin textures vs. final axial magnetic field. Vortex states were imprinted by
ramping down Bz from Bzo to Bz,Jinal ~ O. Changing the final field value Bz,Jinal around
zero, spin textures were measured by suddenly switching (a) Bz « 0 (negative projection)
and (b) Bz » 0 (positive projection). The field control is sketched in (c).
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Chapter 7 

Conclusion 

Experimental breakthroughs that access previously unexplored regions and interactions, 

which may be ultrafast phenomena, ultra small objects, ultra low temperatures, or ex- 

tremely large cosmic objects, have always uncovered new and unexpected physical scenarios. 

This indisputable fact always drives and challenges experimentalists to expand the exper- 

imentally accessible realm with new techniques and systems. Experimental realization of 

Bose-Einstein condensation with a weakly interacting neutral atoms is one clear example of 

these efforts. Since 1995, the quantum degenerate atomic gas system has provided a mag- 

nificent playground where experimentalists can play at  will with quantum coherent matter 

waves and a simplified bridge to many-body physics through which one can investigate 

sophisticated concepts in condensed matter physics. 

As a small effort along this line, I and my colleagues have tried to expose condensates 

to new environments to see something unobservable before. The main theme in this thesis 

research was phase dynamics of Bose-Einstein condensates, and for this we have developed 

an optical double-well system and magnetic microtraps on an atom chip. Dynamic coherent 

splitting of a trapped condensate was demonstrated by deforming a single well potential 

into a double-well potential and this coherent beam splitter allowed performing a 'proof- 

of-principle' experiment of confined atom interferometry with Bose-Einstein condensates. 

Coherent optical. coupling and incoherent thermal coupling of two spatially separate con- 

densates were in.vestigated in a double-well potential system. An optical read-out of the 

relative phase of the two condensates was developed using phase-sensitive atomic currents 

between the two condensates. A doubly-quantized vortex state was topologically imprinted 

by adiabatic spin rotation and the reliability of the creation method made it possible to 

study the stability of a doubly-quantized vortex state. 

The idea of the atom chip was suggested at first for the technical advantages of using the 

proximity of the potential source such as tighter confinement with small power consump- 

tion and precise spatial control due to microfabrication. This idea has been successfully 



demonstrated in the last decade and now people desire and investigate to integrate every 

experimental manipulation tool on a microchip, such as optical fibers, optical cavities, and 

electric field sources. Experiments meticulously designed on a micron scale would open 

many prospects. For examples, an atom chip combined with an optical cavity would allow 

a strong coupling between atoms and photons because of its precise positioning ability and 

one with an single-atom detector would open up the field of quantum atom optics. The 

atom chip technology is envisioned to be a platform with a quantum tool box for future 

atomic physics experiments. 

Fundamentally, miniaturization brings us deeper into quantum regime. Quantum phe- 

nomena such as quantum tunneling become important at a microscopic scale and thus, I 

believe that the future development of the atom chip technology will be directed toward 

more miniaturization down to a sub-micron scale beyond simple integration of conventional 

components. Well-controlled sub-micron potentials would give us a chance to study quan- 

tum transport, effects of disorder potentials, and low-dimensional physics. Currently, an 

optical lattice may be a unique system with a sub-micron scale and implementing sub- 

micron potentials on a microchip is hampered by the deleterious proximity effects. This 

surface effects might be regarded as being a fundamentally unavoidable limit, but given 

the previous achievements in many other research groups, I expect that this limit will be 

pushed back at the end. 



Appendix A 

Designs for the Apparatus 

This appendix contains the diagrams for the laser system and the science chamber pumping 

body. 
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Appendix B 

Atom Interferometry with 

Bose-Einstein Condensates in a 

Double- Well Potential 

This appendix contains a reprint of Ref. [I]: Y. Shin, M. Saba, T.A. Pasquini, W. Ketterle, 

D.E. Pritchard, and A.E. Leanhardt, Atom Interferometry with Bose-Einstein Condensates 

in a Double- Well Potential, Physical Review Letters 92, 050405 (2004). 
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Atom Interferometry with Bose-Einstein Condensates in a Double-Well Potential 

Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. ~eanhardt"  
Department of  P/I~,FIc.\ ,  MIT-H~irvc~rd Centel- f i r  Ultrtrcold Atonzs, cind Recrcirch Laborertory of  E1ectronrc.c. 
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A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein condensates coher- 
ently split by deforming an optical single-well potential into a double-well potential. The relative phase 
bet ween the two condensates was determined from the spatial phase of the matter wave interference 
pattern formed upon releasing the condensates from the separated potential wells. Coherent phase 
evolution was observed for condensates held separated by 13 ,urn for up to 5 ms and was controlled by 
applying ac Stark shift potentials to either of the two separated condensates. 

DOl: 10 1103/PhysRevLett.92.050405 PACS numbers: 03.75.D~. 03.75. Lm, 39.20.+q 

Atom interferometers have been used to sense ac- 
celerations [1,2] and rotations [3,4], monitor quantum 
decoherence [5], characterize atomic and molecular prop- 
erties [6], and measure fundamental constants [1,7]. 
Demonstrating atom interferometry with particles con- 
fined by magnet ic [8- 1 11 and optical [I 21 microtraps and 
waveguides would realize the matter wave analog of opti- 
cal interferometry using fiber-optic devices. Current 
proposals for confined-atom interferometers rely on the 
separation and merger of two potential wells to split and 
recombine atomic wave packets [13-151. Atom-atom in- 
teractions tend to localize particles in either potential 
well and reduce the coherence of the splitting and recom- 
bination processes [16,17], whereas tunneling serves to 
delocalize the atomic wave packets and maintain a well- 
defined relative phase between the potential wells [16]. 

Bose-Einstein condensates are to matter wave interfer- 
ometry what lasers are to optical interferometry, i.e., a 
coherent, single-mode, and highly brilliant source. Con- 
densates have been coherently delocalized over multiple 
sites in optical lattices where the tunneling energy domi- 
nates the on-site atom-atom interaction energy due to the 
submicron barrier between neighboring potential wells 
[2,18-211. Here, the thin barrier helps to maintain phase 
coherence across the lattice, but also prevents addressing 
individual lattice sites. To construct a versatile atom in- 
terferometer capable of sensing forces with arbitrary 
spatial variation two individually addressable interfering 
paths are needed. 'This apparently simple requirement 
represents a considerable challenge when it comes to 
splitting a Bose-Einstein condensate with a thick barrier 
that prevents tunneling and separates the resulting 
condensate pair by large distances (that allow for indi- 
vidual addressability) without affecting their quantum 
mechanical phase in an uncontrolled way. In addition to 
the technical challenges, it is not even clear theoretically 
if the two condensates generated after splitting will share 
the same phase (a phase-coherent state) or if each will 
have a well-defined number of particles without relative 
phase coherence (a number-squeezed state) [16,22-241. 

In this Letter, we demonstrate that a condensate can be 
split coherently along two separated paths by deforming 
an initially single-well potential into two wells. The 
relative phase between the two condensates was deter- 
mined from the spatial phase of the matter wave interfer- 
ence pattern formed upon releasing the atoms from the 
separated potential wells [25,26]. This scheme realizes a 
trapped-atom interferometer. The large well separation 
(13 pm)  (i) allowed ac Stark phase shifts to be applied 
to either condensate by temporarily turning off the laser 
beam generating its potential well and (ii) suppressed 
tunneling such that the phase of each condensate evolved 
independently. Without the aid of tunneling to preserve 
phase coherence, the measured coherence time of the 
separated condensates was 5 ms. 

Bose-Einstein condensates containing over 10' " ~ a  
atoms were created in the I F  = 1, r n ~  = - 1) state in a 
magnetic trap, captured in the focus of a 1064 nm optical 
tweezers laser beam, and transferred into an auxiliary 
"science" chamber as described in Ref. [27]. In the sci- 
ence chamber, the condensate was loaded from the optical 
tweezers into a secondary optical trap formed by a coun- 
terpropagating, orthogonally polarized 1064 nm laser 
beam. The secondary optical trap was formed by a colli- 
mated laser beam that passed through an acousto-optic 
modulator (AOM) and was focused onto the condensate 
with a lens [Fig. ](a)]. The AOM was driven simulta- 
neously by two radio frequency (rf) signals to tailor the 
shape of the potential from single well [Fig. I(b)] to 
double well [Fig. I(c)]. The separation between the po- 
tential wells was controlled by the frequency difference 
between the rf drives. The waist of each focused beam 
was 5 pm.  A single, isolated potential well was charac- 
terized by a trap depth Uo - h X 5 kHz, where 17 is 
Planck's constant, and a radial (axial) trap frequency 
.f, = 615 Hz (.f; = 30 Hz). 

Condensates were initially loaded from the tweezers 
into a single-well trap [Fig. I(b)]. After holding the 
cloud for 15 s to damp excitations, the condensate con- 
tained - 105 atoms with a peak atomic mean field energy 
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FIG. I. Optical double-well potential. (a) Schematic diagram
of the optical setup for the double-well potential. An acousto-
optic modulator (AOM) was driven by two frequencies. fl and
h. and diffracted a collimated beam into two beams. The
AOM was placed in the focal plane of a lens of focal length F
so that the two beams propagated parallel to each other. The
radial separation of the potential wells. d. was controIled by the
frequency difference. 6.f = If I - hi. The acceleration due to
gravity, g, points into the page. The absorption image shows
two well-separated condensates confined in the double-weIl
potential diagrammed in (c). The field of view is 70 x
300 1Lm. Energy diagrams for (b) initial single-weIl trap with
d = 6 1Lm and (c) final double-well trap with d = 13 1Lm. In
both (b) and (c), Un = II X 5 kHz and the peak atomic mean
field energy was -h X 3 kHz. The potential "dimple" in (b)
was <h X 500 Hz which was much less than the peak atomic
mean field energy aIlowing the trap to be characterized as a
single weIl. The potential "barrier" in (c) was II X 4.7 kHz
which was larger than the peak atomic mean field energy
allowing the resulting split condensates to be characterized
as independent.

J.L"'" II X 3 kHz. The single-well trap was deformed into a
double-well potential [Fig. I(c)] by linearly increasing
the frequency difference between the rf signals driving
the AOM over 5 ms. The amplitudes of the rf signals were
tailored during the splitting process to yield nearly equal
atom number and trap depths for each potential well.

Condensates realized from the double-well potential
ballistically expanded. overlapped. and interfered (Fig. 2).
Each realization of the experiment produced a matter
wave interference pattern with the same spatial phase.
This reproducibility demonstrated that deforming the
optical potential from a single well into a double well co-
herently split the condensate into two clouds with deter-
ministic relative phase. i.e., the relative phase between the
two condensates was the same from shot to shot

This experiment derived its double-well potential from
a single laser beam passing through an AOM. Vibrations
and fluctuations of the laser beam were common mode to
both wells. and a clean and rapid trap turn-off was
achieved by switching off the rf power driving the
AOM. In contrast, past experiments created a double-
well potential by splitting a magnetically trapped con-
densate with a blue-detuned laser beam [25]. Such work
was unable to observe a reproducible relative phase be-

050405-2

FIG. 2. Matter wave interference. (a) Absorption image of
condensates released from the double-weIl potential in Fig. I(c)
immediately after splitting and allowed to overlap during
30 ms of ballistic expansion. The imaging axis was parallel
to the direction of gravitational acceleration. g. The field of
view is 600 X 350 1Lm. (b) Radial density profiles were ob-
tained by integrating the absorption signal between the dashed
lines. and typical images gave> 60% contrast. The solid line is
a fit to a sinusoidally modulated Gaussian curve from which the
phase of the interference pattern was extracted (see text). This
figure presents data acquired in a single realization of the
experiment.

tween the split condensates, due to fluctuations in the
blue-detuned laser beam and irreproducible turn-off of
the high current magnetic trap that initiated ballistic
expansion.

The relative phase between the two separated conden-
sates was determined by the spatial phase of their matter
wave interference pattern. For a ballistic expansion time
r» II fr' each condensate had a quadratic phase profile
[28], I/J~Cr,r) = Jn~Cr, r)exp[i(mI2Iir)lr:t dl212 + 4>:!J,
where :t denotes either well, 1/ + is the condensate den-
sity, m is the atomic mass, d is-a vector con necting the
two wells, 4>~ is the condensate phase, and Ii = hI2TT'.
Interactions between the two condensates during ballistic
expansion have been neglected The total density profile
for the matter wave interference pattern takes the form

where 4> r = 4> + - 4> - is the relative phase between
the two condensates and d = di. To extract 4>r' an inte-
grated cross section of the matter wave interference
pattern [Fig. 2(b)] was fitted with a sinusoidally modu-
lated Gaussian curve, G(x) = A exp[ -(x - xc)2Iu2]{ I +
B cos[ (2 TT'IA)(x - xo) + 4>1]}' where 4>1 is the phase of
the interference pattern with respect to a chosen fixed Xo.
Ideally, if Xo was set at the center of the two wells, then
4>r = 4>1' However, misalignment of the imaging axis
with the direction of gravitational acceleration created a
constant offset, 4>f = 4>r + 84>. With r = 30 ms the
measured fringe period, A = 41.5 J.Lm, was within 4%
of the point source formula prediction [Eq. (I)],
hrlmd = 39.8 J.Lm.
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FIG. 4. Trapped-atom interferometry. (a) ac Stark phase
shifts were applied to either well exclusively (solid circles
and open circles) or both wells simultaneously (crosses) by
turning pff the corresponding rf signal(s) driving the AOM for
a duration T p' The resulting spatial phase of the matter wave
interference pattern scaled linearly with T p and hence the
applied phase shifl Applying the ac Stark shift to the opposite
well (solid versus open circles) resulted in an interference
pattern phase shift with opposite sign. Applying ac Stark shi fts
to both wells (crosses) resulted in no phase shift for the
interference pattern. These data were taken with a slightly
modified experimental setup such that the trap depth of the
individual potential wells was Un = h x 17kHz, correspond-
ing to a 2700 phase shi ft for a 50 J-Ls pulse. (b) A 50 J-LS pulse
induced a 700 shi ft independent of the pulse delay. Td' The
experimental setup was as described in Fig. I (Un =

h X 5 kHz). Solid and open circles have the same meaning as
in (a). The insets show the time sequence of the optical
intensity for the wel\(s) temporarily turned off.

substantial curvature, rendering a determination of <Pr
impossible. Splitting the condensate more slowly did not
improve the measured stability of <Pr since we were un-
able to split the condensate much slower than the axial
trap period and much faster than the expected phase
diffusion time.

The phase sensitivity of the trapped-atom interferome-
ter was demonstrated by applying ac Stark phase shifts to
either (or both) of the two separated condensates. Phase
shifts were applied to individual condensates by pulsing
off the optical power generating the corresponding po-
tential well for a duration T" « 1/ fro The spatial phase of
the matter wave interference pattern shifted linearly with
the pulse duration, as expected [Fig. 4(a)]. Because
of the inhomogeneous optical potential, U(r), the applied
ac Stark phase shifts varied across the condensate as
ti<p(r) = -U(r)Tp/li. Inhomogeneous phase shifts
should lead to an excitation of the condensate that was
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FIG. 3. Phase coherence of the separated condensates. (a) The
spatial phase of the matter wave interference pattern is plotted
versus hold time after splitting the condensate. Each point
represents the average of eight measurements. The phase evo-
lution was due to unequal trap depths for the two wells, which
was determined from the linear fit to be h x 70 Hz or -I% of
the trap depth. (b) Standard deviation of eight measurements of
the relative phase. A standard deviation -104 0 (dashed line) is
expected for random relative phases. Matter wave interference
patterns after 0 and 5 ms holding are displayed. The curvature
of the interference fringes increased with hold time limiting
the coherence time of the separated condensates to 5 ms.

The relative phase between the separated condensates
was observed to evolve linearly in time [Fig. 3(a)]. This
evolution was primarily due to a small difference in the
well depths and could be tailored by adjusting the relative
intensity of the two laser beams generating the wells.

The standard deviation of eight measurements of <Pr
was <900 for condensates split then held separated for
::;5 ms [Fig. 3(b)]. For hold times::; I ms, the standard
deviation was substantially smaller, <400. Since a ran-
dom distribution of phases between - 1800 and + 1800

would have a standard deviation of -104 0, the measured
results quantitatively confirm the reproducible nature of
the splitting process and the coherent evolution of the
separated condensates.

The number-phase uncertainty principle provides a
fundamental limit to the phase coherence between
isolated condensates due to phase diffusion [16,22-
24,29,30]. For Poissonian number fluctuations about a
mean condensate atom number N, we expect a phase
diffusion time -1/(2p.,/5hJF/) - 250 ms. Atom-atom
interactions may localize particles in either potential
well during splitting and reduce the relative number
fluctuations. This would reduce the measured coherence
of the split condensates, but extend the phase diffusion
time. The uncertainty in determining <Pr at hold times
> 5 ms is attributed to axial and breathing-mode excita-
tions created during the splitting process. These excita-
tions led to interference fringes that were angled and had
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probably too small to be observed We assume that the 
measured phase shift can be found by averaging the 
applied inhomogeneous phase shift over the inhomoge- 
neous condensate density: A $  = $ Jd3in(3)A+(Z) = 

(Uo - $ , u ) A t / h ,  where N = Jd3Zn(F) is the number of 
atoms. The measured phase shifts yielded Uo = 

h X 5 kHz [Fig. 4(b)], which was consistent with calcu- 
lations based on the measured trap frequencies. 

The measured phase shifts in the interferometer de- 
pended only on the time integral of the applied ac Stark 
phase shifts [Fig. 4(b)]. For uncoupled condensates, the 
final relative phase, +,, should be the same on any phase 
trajectory because the history of phase accumulation does 
not affect the total amount of accumulated phase. For 
coupled condensates, Josephson oscillations between the 
wells would cause the relative phase to vary nonlinearly 
with time and produce a time dependent signal in 
Fig. 4(b). The single-particle tunneling rate and Joseph- 
son oscillation frequency in our system were calculated to 
be -5 X Hz [28] and - 1 Hz [31], respectively. 

In conclusion, we have performed atom interferometry 
with Bose-Einstein condensates confined by optical 
potentials. A coherent condensate beam splitter was dem- 
onstrated by deforming a single-well potential into a 
double-well potential. The large spatial separation be- 
tween the potential wells allowed each condensate to 
evolve independently and for addressing each condensate 
individually. Recombination was performed by releasing 
the atoms from the double-well potential and allowing 
them to overlap while expanding ballistically. Im- 
plementing a similar readout scheme with magnetic po- 
tentials generated by microfabricated current carrying 
wires should be possible. Propagating the separated con- 
densates along a microfabricated waveguide prior to 
phase readout would create an atom interferometer with 
an enclosed area, and hence with rotation sensitivity. 
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Wc have used a nlicrofabricated atom chip to split a single Bose-Einstein condensate of sodit~nl atoms into 
two spatially separated condensates. Dynarnical splitting was achieved by tlefonning the trap along the tightly 
confining direction into a purely magnetic double-well potential. We observed the matter wave intetierence 
patter11 fonned upon releasing the condensates from the microtraps. The intrinsic features of the quartic 
potential at the lnege point, such as zero trap frequency and extremely high field-sensitivity. ca~~sed random 
variatiolls of the relative phase between the two split condensates. Moreover. the perturbation from the abnipt 
cha~lge of the trapping potential during the splitting was observed to induce vortices. 

Coherent manipulation of niatter waves is the ultitnate 
goal of atom optics, ancl diverse atom optical elements have 
been developed such as mirrors, beamsplitters, gratings, and 
waveguides. An atom chip integrates these elements on a 
microfabricated device allowing precise and stable alignment 
[I-31. Recently, this atom chip technology has been com- 
bined with Bose-Einstein condensed atoms [4,5], and opened 
the prospect for chip-based atom interferometers with Bose- 
Einstein condensates. Despite various technical problems 
[6-101. there have been advances toward that goal, such as 
excitationless propagation in a waveguide [6] and demon- 
stration of a Michelson interferometer involving splitting 
along the axis of a single waveguide [ I  I]. 

Coherent splitting of matter waves into spatially separate 
atomic wave packets with a well-defined relative phase is a 
prerecluisite for further applications such as atom interferom- 
etry arid quantum information processing, and it has been 
a lriajor experimental challenge. The methods envisioned 
for coherent splitting on atom chips can be divided in two 
classes. One is splitting in momentum space atid subse- 
quently generating a spatial separation, using scattering of' 
atoms from a periodic optical potential [ I  1.121. The other is 
dynamical splitting by directly deforming a single wave 
packet into two spatially separated wave packets, which 
cat1 be considered as cutting off the link between two wave 
packets, i.e., stopping tunneling through the barrier separat- 
ing two wave packets. Splitting in momentum space has 
led to remarkably clean interferometric measurements 
when the atoms were allowed to propagate freely after 
splitting, but i t  has been pointed out that momentum splitting 
of contined atoms (e.g., inside a waveguide) is problematic 
due 10 spatially deperident phase shifts induced by alom- 
atom interactions during separation [ I  1.131. Dytiatnical 
splitting in real space instead is perfectly compatible with 

'"LJKL: 11ttp:llcun.n~it.etlu/liett~r1c~roup/ 

keeping atoms confined. a feature beneficial to the versatility 
of interferometers, There has been a theoretical debate 
concerning the adiabatic condition for coherent dynamical 
splitting [14-171. In our recent experiment with an optical 
double-well potential, we demonstrated that it is possible to 
dyna~iiically split a condensate hito two parts in a coherent 
way [18]. 

In this work, we studied the dynamical splitting of con- 
densates in a purely magtietic double-well potential on an 
atom chip. We developed an atom chip to generate a 
symmetric double-well potential and succeeded in observing 
the matter wave interference of two split condensates, from 
which the coherence of the splitting process was investi- 
gated. We found that the mechanical perturbations during 
splitting are violent enough to generate votlices in conden- 
sates. We discuss the adiabatic condition of the splitting 
process. 

A magnetic double-well potential was realized with 
an atom chip using a two-wire scheme [19]. The experimen- 
tal setup of the atom chip is shown in Fig. I.  When two 
chip wires have currents. lc, in the -)I direction and 
the external magnetic field, R,, is applied in the +x direction, 
two lines of local minima in the magnetic field are ge~ierated 
above the chip surface. Each local minimum has a quadruple 
field configuration in the s; plane, and with an additional 
nonzero magnetic field in the axial direction (?-direction), 
two loffe-Pritchard magnetic traps can be formed. The 
relative magnitude of R ,  to the field from I, determines 
the direction of separation and the distance of the two 
traps. The atoni chip was set to face downward and the 
two traps are vertically (horizontally) separated when 
&, < B,,l(Bt > U, , , ) .  B,O=pU.OlcI mi is the critical field 
magnitude for merging two tiiagnetic harmonic potentials to 
form a single quartic potential. where d is the distance 
between the two chip wires and is the permeability of 
the vacuum. The merge point is located at the middle of 
the two wires atid d l 2  away from the chip surface. In our 
experiment, d = 3 0 0 p m ;  thus, the splitting happened 
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FIG. I. (Color online) Schematic diagram of the atom chip. A
magnetic double-well potential was created by two chip wires with
a current Ie in conjunction with an external magnetic field. The
distance between the two chip wires was 300 J.Lm. A pair of external
wires with In provided the axial confinement along the y direction,
and another pair of external wires with IT were used for reducing
the antisymmetry effect. (For details. see text.) Gravity was in the
+z direction.

more than 200 J.Lln away from the chip wires to avoid del-
eterious surface effects [6-10]. The chip wires of 12 ILm
height and 50 ILm width were electroplated with Au on a
thermally oxidized Si substrate with a 2-ILm-thick Au evapo-
rated film. The chip was glued on an AI block for heat dis-
sipation [20] and the current capacity was 5 A in a continu-
ous mode.

The axial trapping potential was carefully designed to
ensure that condensates split perpendicular to the axial
direction and stay in the same axial position. The two
wells have opposite responses to B:: positive B:. makes
the left (right) well move upward (downward). If B:.changes
along the axial direction, the two wells are no longer parallel
and the gravitational force would cause an axial displace-
ment of the two split condensates. When endcap wires
are placed only on the chip surface as in our previous
work [21], a nonzero field gradient ilB:.1 ily inevitably accom-
panies a field curvature ;?-B,./ ill for the axial confinement,
i.e., B: changes from positive to negative along the axial
direction. In order to provide the axial confinement and at
the same time minimize ;IB:.I ily, we placed two pairs of
external wires 1.5 mOl above and 4 mm below the chip
surface. This three-dimensional design of axial confinement
was necessary for obtaining the interference signal of two
split condensates. Moreover. maintaining the geometric sym-
metry of two wells wi II be crucial for longer coherence time
after splitting [18].

The splitting process was demonstrated with the experi-
mental procedures described in Fig. 2. Bose-Einstein con-
densates of IF= l.mF=-I) DNa atoms were transferred and
loaded in a magnetic trap generated by the atom chip
[6.21.22]. Experimental parameters were le= 1.8 A. B~1)

=24 G. By= I G. and the axial trap frequency f,.= 13 Hz.
Condensates were first loaded in the bottom well: 500 ILm
away from the chip sUlface. brought up to 30 ILm below the
merge point in I s. and held there for 2 s to damp out exci-
tations. The long-living axial dipole excitation induced in the
transfer phase was damped by applying a repulsive potential
wall at the one end of the condensates with a blue-detuned

PHYSICAL REVIEW A 72. 02 I604(R) (2005)

FIG. 2. Splitting of condensates. (a) Condensales were initially
loaded and prepared in the bottom well and (b) split into two parts
by increasing the external magnetic field. R,. For clarity, two con-
densates were split by 80 J.Lm. The dash line indicates the chip
sUltace position. The currents in the chip wires flow into the page
and B, is parallel to the wire separation. T.....o condensates were
released from the nKlgnetic double-well potential and the matter
wave interference pattern of two condensates formed after time-of-
flight. (c) Typical absorption image of interference fringes taken
after 22 ms lime-of-llight. The fringe spacing was 14.8 J.L1ll. corre-
sponding to a condensate separation of 25.8 J.L1ll.

laser beam (532 nm) I. The whole procedure was carried out
with a radio-frequency (rf) shield and, just before splitting.
condensates contained over 8.0 x Io-~ atoms without a dis-
cernible thennal population. Splitting was done by ramping
tlBx=B.-B'11 linearly from -140 mG 10 100:t20 mG in
200 ms. The separation between two condensates was COIl-

trolled by the final value of B•. The magnetic trap was then
quickly turned off within 20 j.Ls. a duration much shorter
than the inverse of any trap frequency. preventing random
perturbations. High-contrast matter wave interference fringes
were observed after releasing the condensates and letting
them expand in time-of-f1ight (Fig. 2). indicating that the
splitting procedure was smooth enough to produce two con-
densates having uniform phases along their long axial axis
perpendicular to the splitting direction. In order to study the
coherence of the splitting, the relative phase of the two'split
condensates was determined from the spatial phase of the
matter wave interference pattern.

The relative phase of two split condensates turned out to
be unpredictable when they were fully separated (Fig. 3).
The separation of two condensates was determined from the
spacing. h~, of the intetference fringes. using the formula d
=IItlmh

J
where II is Planck's constant. III is atomic mass, and

f is time-of-f1ight. The typical fringe spacing was A
~ 15 j.Lm with 1=22 illS, corresponding to d~ 26 ILm. Given
the precise knowledge of the fabricated wires. the full trap
parameters can be calculated. Assuming that the condensates
followed trap centers in the motional ground state. it was
found that when the barrier height was over 1.5 kHz. the

I[n a perfectly symmetric double-well potential. two ('ondensates
would oscillate in phase after splitting. Furthermore. this could be
lIsed for developing a rotation-sensitive atom interferometer with a
guiding potential. However, the axial trap frequencies for the two
wells were found to be different by 12% due to the imperfect fab-
rication of wires.

021604-2
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2Wh~n the separation was I~ss than 20 J.L1lI and IWO condensates
w~r~ linked. lhe uncertninty of the spatial phase of fringes was less
than 60".

180 .:
g;120 . ,. .

~ e• .~ 60
,.

Q) . .
III : .... . ..
~ 0 .. . . ' . .
a.. ".. .~
iU .:..I., ~ : . .:
al
0. . : ,.C/) -120 .:

-180
22 24 26 28

Separation (11m)
FIG. 3. Spatial phase of interf~r~nce fring~s. Th~ separation of

two condensales was determined from lhe spacing of interference
fringes. Fifty repetitions of lhe same experimelll are ploued. where
lh~ experimental control value for th~ external magnetic field.Bx,
was fixed when lhe atoms were released. Three dash lines indicate
th~ separations of two wells with the barrier height of I kHz.
2 kHz. and 3 kHz. r~spectively.
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FIG. 5. (Color online) Trapping potential during spliuing. (a)
Radial cross sections of trapping potential including gravity for
~BI=O, 50. and 100 mG, where 6-Bx is lhe fielddeviation from the
criticalfieldmagnitude BrtJ which is the fieldmagnitude for fonning
a single quartic trap. The origin of coordinates is the merge point
without gravity. Contour lines correspond to 0.5. I. 1.5, and 2 kHz
above the bottom of the trap. (b) Trap frequencies in each direction.
(c) Separation of two trap centers and barrier height between two
wells.

energy level spacing diminishes. the adiabatic condition in
the quartic potential around the merge point becomes more
stringent. The abrupt change of trapping potential will induce
mechanical perturbations of condensates. Subsequent dissi-
pation or coupling into internal excitation modes [24] would
make the relative phase of two split condensates unpredict-
able. The observed phase singularity definitely shows the
breakdown of adiabaticity.

One possible alternative to avoid passing through the
merge point is starting with two weakly linked condensates
in a double-well potential where the barrier height is lower
than the chemical potential of condensates and controlling
the coupling between two condensates with a small change
of the barrier height. This method was used to reduce the
motional perturbation in our previous work [18]. However.

FIG. 4. Vortex interference. (a) An absorption image showing
the vortex interference pallern of a vortex state.The probability of
vortex generation was -8% for the experimental parameters of Fig.
3, where data points with vortices were not included. Vortex inter-
ference patterns appeared more frequently wilh faster splitting and
further separation. (b) Same as (a).but with lines indicating regions
with constant phase.

3kHz2 kHz

relative phase started to be random.2 Since the chemical po-
tential of the condensates, J..L= 1.4j: 0.2 kHz. was very close
to this barrier height. the condensates just started to lose their
coupling at this point.

Surprisingly. a phase singularity was observed in the in-
terference patterns with high visibility. The fork shape of
interference fringes represents a phase winding around a vor-
tex core [23]. This vortex interference pattern appeared more
frequently with faster splitting and further separation. An ex-
ternal perturbation can lead to internal excitations in conden-
sates. Splitting might be considered as slicing condensates in
two parts. The fact that the observed "forks" (Fig. 4) always
open towards the top implies that the slicing always occurred
in the same direction and created either vortices with positive
charge on the left side or with negative charge on the right
side. A possible vortex formation mechanism is topological
imprinting when the zero point of the magnetic field crosses
though condensates resulting in a doubly quantized vortex in
spin-l condensates [21,22]. However, since we have never
observed the interference pattern of a doubly quantized vor-
tex, we think that this scenario is unlikely.

We now discuss how the trapping potential changes
during the splitting process (Fig. 5). When condensates split
into two wells, the trap frequency, Ix. in the splitting direc-
tion vanishes and the separation of two wells abruptly in-
creases to 15 J..Lm with a small magnetic field change of
8Bt= 10 mG. For a single particle in a harmonic potential,
th~ quantity a= (1/ f;)(rJfJ aBt)(dBJ dt) accounts for the
transition probability from the ground state to the first ex-
cited state and parametrizes the external adiabaticity of the
process, neglecting the collective excitations of a condensate.
a~ I should be maintained to keep condensates staying in
the motional ground state. With dB.Jdt= 1.2 Gis, a< I at
It> 150 Hz. but obviously. a diverges to infinity near the
merge point and its definition no longer holds. Since the

021604-3



SHIN el trl. PHYSICAL, REVIEW A 72. 021($14(K) (2005) 

since the sensitivity of the trapping potential to the magnetic 
field is extrelnely high when the trap centers are close to the 
merge point. it was technically difficult to have a stable 
double-well potential with a small barrier height. The life- 
time of condensates rneasured around the merge point was 
:.5 s away from the merge point (AB,<-50 mG or AB, 
>. 150 tnG) and < 100 ms near the merge point (0 < AR, 
c: 100 m~).' With a barrier height of 0.5 kHz in our experi- 
ment, the sensitivity of the barrier height and the condensate 
separation to B, is 0.04 kHz/mG and 0.3 pnilmG. respec- 
tively. 8.Br=l niG co~.responds to ('ilc=7.5X lo-' A.  Ex- 
treme current stabilization and shielding of ambient magnetic 
field fluctuations may be necessary for controlling a phase- 
coherent splitting process. Another alternative for preparing 
a coherent state of two spatially separated condensates is 
first preparing two condensates in the ground states in 

 or p o s ~ t ~ o ~ ~ s  u it11 AH, > 0 ("after" spli t t~ng).  the collde~lsates 
uerc  moved to the left well w~thout  pnssi~lg through the merge 
polnt 
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each well and then establishing a well-defined relative phase 
with an optical niethod 1251. Tliis scheme is currently under 
investigation. 

In conclusion, we have demonstrated the interference of 
two Bose-Einstein condensates released froin an atom chip. 
The condensates were created by dynamical splitting of a 
single condensate and could be kept confined in a magnetic 
double-well potential, separated by an arbitrary distance. We 
studied the cohcrencc of the dynamical splitting process by 
measuring the relative phase of two split condensates and 
identified technical limitations. intrinsic to the magnetic field 
geometry, that prevented coherent splitting with a predictable 
phase. This stitdy is a promisilig step in the route towards 
atom chip interferometers and might serve as a guide fix the 
design of future microfahricatetl atom optics devices. 
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Light Scattering to Determine 
the Relative Phase of Two 
Bose-Einstein Condensates 

M. ~aba,*  T. A. Pasquini, C. Sanner, Y. Shin, W. Ketterle, 
D. E. Pritchard 

We demonstrated an experimental technique based on stimulated light 
scattering to continuously sample the relative phase of two spatially separated 
Bose-Einstein condensates of atoms. The phase measurement process created a 
relative phase between two condensates with no initial phase relation, read out 
the phase, and monitored the phase evolution. This technique was used to 
realize interferometry between two trapped Bose-Einstein condensates 
without need for splitting or recombining the atom cloud. 

The outstanding property of atoms in a Bose- condensates has led to the observation of a 
Einstein condensate (BEC) is their coherence: host of phenomena, including Josephson oscil- 
They all have the same phase. This property lations (3 ,  4), number squeezing ( 5 ) ,  and the 
became apparent when high-contrast interfer- transition from superfluid to Mott insulator (6). 
ence between condensates was observed (1-3). The evolution of the phase is affected by 
Phase coherence between spatially separated external potentials acting on the atoms and has 
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been exploited for interferometric measures of
gravity and other interactions (3, 7-9). Ideally,
one could reach extreme interferometric
sensitivity by coherently extracting atoms
from two distant condensates and letting them
interfere (10). So far, however, the relative
phase of condensates has been measured only
destructively, by taking an absorption image
of interfering atomic waves.

Several methods have been considered to
determine the relative phase of two separated
atomic wavepackets spectroscopically by the
scattering of light. In the simple case of a
single atom delocalized in two separate wells,
spontaneous photon scattering leaves the atom
localized in one well, destroying the spatial
coherence without giving any interferometric
information (11, 12). On the other hand,
selecting the frequency of the scattered
photons makes it possible to retrieve interfer-
ence from specially prepared wavepackets,
like two spatially separated components mov-
ing on parallel trajectories (13). BECs offer
the possibility of scattering many photons out
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of the same coherent ensemble, affecting only
a small fraction of the atoms in the conden-
sates and providing an almost nondestructive
measurement of the relative phase between
the two condensates (14-16). Thus, light scat-
tering could be used to compare the phase of
two separate condensates at multiple subse-
quent times, realizing an interferometer with
neither coherent splitting nor recombination of
the wave packet.

Even if the condensates are in states with
poorly defined relative phase (such as the so-
called Fock states, in which the atom number
is well defined), they still interfere with each
other. In this case, the relative phase is
"created" in the measurement process by pro-
jecting the system on a coherent state with a
well-defined phase (17-21).

We show that stimulated light scattering
can be used to continuously sample the
relative phase between two spatially separate
BECs. The basis of our measurement is that
the structure factor of two neighboring BECs
shows interference fringes in momentum
space (21). This interference can be pictured
in a very direct way: Let us continuously
impart some momentum q to a fraction of the
atoms in each condensate, so that they move
parallel to the displacement of the two
condensates. When the atoms from the first
condensate reach the second one, the two

streams of atoms moving with momentum q
will overlap and interfere. The process can be
rephrased as beating of two atom lasers
originating from the two condensates. If the
relative phase of the condensates is fixed, the
total number of moving atoms depends on
the value of the momentum q and oscillates
sinusoidally with periodicity hid as q is
scanned (h is Planck's constant and d is the
displacement of the condensates). If instead
the phase evolves in time and the momentum
q is fixed, the number of atoms in the moving
stream will vary in time at the same rate as
the relative phase.

The experimental tool used to impart a pre-
cise momentum to atoms in a BEC is Bragg
scattering (22, 23). Two counterpropagating
laser beams with wave vectors k 1,2 hit the atoms
so that, by absorbing a photon from one beam
and reemitting it into the other one, the atoms
acquire recoil momentum h(k2 -kl), provided
that the energy difference between photons
matches the atom recoil energy.

In our experiment (Fig. I, A and B), two
independent cigar-shaped BECs containing
::::I06 sodium atoms were prepared in a
double-well optical dipole trap (8) and were

-1 0 1 2 3
Time (ms)

Fig. 2. Continuous optical readout of the
relative phase of two condensates. In the upper
panel is the optical signal image detected by
streaking the CCD camera (24). The traces,
offset vertically for clarity, are cross sections of
the images (the central trace corresponds to
the upper image integrated between the
dashed lines). Bragg scattering starts at t = 0
when the second beam is turned on. The
relative depth of the two wells was different
for the three traces, generating a difference in
the oscillation frequency. The overall slope on
the traces was due to spontaneous Rayleigh
scattering of the light from the atoms in the
condensates. As the time went on, the con-
densates were depleted and the Rayleigh
scattering was reduced. Excitations in the
condensates appeared as tilted or curved
fringes in the streak image; in such cases, we
took cross sections from portions of the
images where fringes were vertical and there-
fore the phase evolution was less perturbed.

ccd•V1
\' 2

B

Fig. 1. Interference of
two atom 1asers coupled
out from two indepen-
dent condensates. (A)
Energy diagram of the
two BECs (BEC I and
BEC II) confined in an
optical double-weU trap.
(B) Experimental scheme
for continuous phase
measurement. Two la-
ser beams were applied phase

to the condensates to mea~;:~en
outcouple a few atoms
from the trap. Detect-
ing the rate of out-
coupled atoms or the
number of scattered
photons gives a mea-
surement of the rela-
tive phase between the
condensates. The con-
trol coils generate mag-
netic field gradients
that affect the frequen-
cy of interference oscil-
lations. Gravity points
down in this picture. (C
to E) Absorption im-
ages showing the opti-
cal density of the atom clouds were taken from top after applying the Bragg beams (gravity points
into the page). The thick shadows on the far left in each panel are the unresolved two condensates; to
the right are the atoms that were continuously outcoupled and flew from left to right. High-contrast
oscillations in the stream of outcoupled atoms are clearly visible. In the central picture (D),
oscillations originated from the imbalance in the depth of the two wells. In (C), an additional
magnetic field gradient of 1.15 G/cm was applied with the control coils; in (E), the gradient was
-0.77 G/cm (with the positive direction pointing to the right). Images were taken after an addi-
tional 5 ms of time of flight, and the field of view in each picture is 1.35 mm x 0.90 mm.
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a fundamental limitation to the minimum mea-
surable frequency due to interactions between
atoms. If the phase stays (almost) constant
for a long time, one of the two condensates
can end up continuously amplifying or deam-
plifying the atoms outcoupled from the other
one, causing asymmetric depletion of the con-
densates and therefore a difference in chemical
potential, as large as a few h x 100 Hz in a
few milliseconds under our experimental para-
meters. This is analogous to the inhibition of
slow, large-amplitude Josephson oscillations
in a nonlinear junction (25). If the relative
phase is actively controlled. atoms can be co-
herently transferred from one well to the other,
replenishing one of the two condensates with-
out scrambling its phase; a method that could
lead to a continuous atom laser (26).

The interferometric information contained
in the beat frequency of two condensates is
independent of the initial phase between the
condensates and eliminates the need for coher-
ent beam splitting (10). The present measure-
ments already show a sensitivity below 100Hz.
limited by mechanical excitations that cause
chirping of the frequency during the obser-
vation time and shot-to-shot variations. More
fundamentally, the finite number of atoms in
the condensates limits the number of Bragg-
scattered photons and therefore the signal-
to-noise ratio. No phase diffusion is expected
during the measurement, the oscillations being
continuously driven by the laser beams (27, 28).
This is a general manifestation of the influence
of measurement on a quantum system (29).
similar to the quantum Zeno effect, where the
time evolution is suppressed by repeated or
continuous measurements.

A more versatile interferometric scheme
can be obtained by applying two successive
Bragg pulses to the pair of condensates and ex-
ploiting the fact that the optical phase readout
allows comparison of subsequent measure-
ments on the same pair of condensates. A first
Bragg pulse lasting I ms determined a ran-
domly varying relative phase between the two
condensates at each realization of the experi-
ment (Fig. 4B). A second Bragg pulse fol-
lowed after allowing the two condensates to
evolve for some delay (0.5 ms) and measured
a relative phase again random at each shot

in the scattered light and could be gathered in
real time by monitoring the intensity of one of
the Bragg laser beams. instead of interrupting
the experiment to illuminate atoms with a reso-
nant laser for absorption imaging. The dynam-
ics of the optical signal was measured with
a charge-coupled device (CeD) camera in
streaking mode, generating images with time
on one axis and spatial information on the
other (Fig. 2) (24). The intensity of the Bragg
beam oscillated in time at a frequency con-
trolled by the relative energy between the two
wells. The oscillating signal built up during the
first ::::250 ~s, this being the time required for
the outcoupled atoms to travel from one con-
densate to the other one and start interference.

Interferometry between two trapped BECs
was realized by continuous monitoring of their
beat frequency. Figure 3 demonstrates the sen-
sitivity of the interferometer to an applied ex-
ternal force (magnetic field gradient) and to
the application of a potential difference be-
tween the two wells (dynamical Stark shift
induced by increasing the laser power in one
of the two wells).

We did not observe oscillation frequencies
below 500 Hz. Short observation times and
excitations could contribute to this, but there is

A N 5
N 0.4 J:
J: ~ 4~ >-~ 0.2 g
.J:: CI 3C/) ::I

g 0.0 I 2CI c:::Je 0-.::
U. -0.2

~
1

0

illuminated with two counterpropagating Bragg
beams to impart recoil momentum to a few
atoms (24). The Bragg-scattered atoms flew
away from the trap because the trap was shal-
lower than the recoil energy. In the stream of
outcoupled atoms (Fig. I, e to E). the spatial
modulations in the absorption images re-
flect temporal oscillations in the number of
atoms outcoupled from the two condensates,
implying a continuous evolution of the rel-
ative phase cI> with time t at a rate dcl>/dt = MIh,
caused by the energy offset M between the
condensates. The three images were taken
with different magnetic field gradients applied
with the control coils. The difference in mag-
netic field between the two wells modi fed the
energy offset M and therefore affected the
beat frequency dcl>/dt of the two condensates.
The fact that the fringes are not straight every-
where can be related to motional excitations
in the condensates and the perturbing effect
of the optical dipole potential on the time-of-
flight trajectory of the atoms.

For each atom outcoupled from the
condensate, a photon was transferred from
one beam to the counterpropagating one.
Therefore, all information contained in the
stream of outcoupled atoms was also present

-0.4 -0.2 0.0 0.2 0.4 1.5 2.0 2.5 3.0
Gradient (G1cm) Well balance (arb. units)

Fig. 3. Interferometry with two trapped BECs. (A) The two well depths were prepared offset by
:::::0.53 kHz in the absence of magnetic field gradients, and the shift of the beat frequency with
respect to this initial value is plotted versus the applied magnetic field gradient. The beat fre-
quency is determined from pictures similar to those in Fig. 2. The solid line is a linear fit to the
data; the dashed line represents the frequency ~B8' d/2h expected for the evolution of the relative
phase of the two condensates due to the difference in energy induced by the gradient (8' is the
independently measured magnetic gradient, IlB is half Bohr magneton corresponding to the
magnetic moment of the atoms, and d is the displacement of the two condensates). (B) Beat
frequency measured in the optical signal is shown as a function of the relative depth of the two
potential wells. The well balance parameter is proportional to the difference in optical power used
to create each of those wells and was controlled by the power in each of the two radio frequencies
fed into the acousto-optical modulator. arb., arbitrary.
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Fig. 4. Preparing a relative phase between two independent BECs with no difference between (B) and (C). (E) Phase difference between the
initial phase relation. (A) The temporal trace of the Bragg beam intensity oscillations in two pulses as a function of the phase shift applied during
shown with the pulse sequence. (B) Phase of the oscillations recorded the evolution time between pulses. Each point is the average of several
during the first pulse. (C) Phase during the second pulse. (0) Phase shots (between 3 and 10).
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(Fig. 4C). Comparison with the phase mea- 
sured in the first pulse shows that the two mea- 
surements were correlated (Fig. 4D). In other 
words, the first measurement established a def- 
inite relative phase between the two conden- 
sates that may not have had a defined phase 
before, and the second measurement verified 
that the condensates evolved with that partic- 
ular phase during the interval between pulses. 

Interferometry was demonstrated by putting 
an interaction time between the two pulses 
and changing the outcome of the second 
measurement. We briefly modified the energy 
offset between the two wells during the in- 
terval between the pulses, when the phase was 
not being observed. Figure 4E compares the 
measured phase shift with the value AEAt/h 
expected from an energy offset AE applied 
for a time At. The agreement between the pre- 
diction and the measurement demonstrates that 
the relative phase can be engineered by ap- 
plying external forces to the atoms. 

Active control of the phase opens in- 
teresting future perspectives: One could mea- 
sure the light signal in real time and feed back 
the phase measurement into the control coils 
(or into the acousto-optical modulator that 
controls the two laser powers, creating the 
double-well potential), preparing the desired 
phase at the desired time. In principle, the 
uncertainty in the relative phase could even be 
squeezed by the feedback, allowing sub-shot 
noise interferometry (5, 10, 30). 

Several physical interpretations of the 
experiment are possible besides the interfer- 
ence of two atom lasers. One is interference in 
momentum space (21): The zero-momentum 

tial. Coupling was established by tunneling of 
atoms between adjacent lattice sites and 
depended exponentially on the barrier shape, 
whereas the laser beams in our scheme 
established a coupling through a state de- 
localized over the barrier. In principle, larger 
barriers could be overcome by imparting 
larger momenta in the Bragg process. From 
the standpoint of precision interferometry, 
optical lattices have the advantage of a very 
well-known and controlled displacement be- 
tween condensates, whereas the optical detec- 
tion that we introduce here measures the beat 
frequency continuously and in real time, with 
accuracy not depending on the calibration of 
image magnification (3) or other disturbances 
affecting atoms during time of flight. 

Our scheme to nondestructively measure the 
beat frequency of two previously independent 
condensates, thus establishing phase coherence, 
could permit us to couple condensates displaced 
by tens of microns on atom chips or in other 
microtraps, to explore Josephson oscillations, 
phase diffusion, and self-trapping. We have 
already demonstrated its potential in exploiting 
the phase coherence of BECs to create a novel 
type of atom interferometer 
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Optical Weak Link between Two Spatially Separated Bose-Einstein Condensates

Y. Shin, G.-B. Jo, M. Saba, T. A. Pasquini, W. Ketterle, and D. E. Pritchard*
Department of Plzysic.~.MIT-H£lrvard Center for Ultracold Atoms. and Research Laboratory of Electronic.5.

Massac/uuett.5 Institute of Technology. Cambridge. Mas.~achusetts. 02139. USA
(Received 6 July 2005; published 17 October 2005)

Two spatially separate Bose-Einstein condensates were prepared in an optical double-well potential. A
bidirectional coupling between the two condensates was established by two pairs of Bragg beams which
continuously outcoupled atoms in opposite directions. The atomic currents induced by the optical
coupling depend on the relative phase of the two condensates and on an additional controllable coupling
phase. This was observed through symmetric and antisymmetric correlations between the two outcoupled
atom fluxes. A Josephson optical coupling of two condensates in a ring geometry is proposed. The
continuous outcoupling method was used to monitor slow relative motions of two elongated condensates
and characterize the trapping potential.

DOl: 1O.1103/PhysRevLetl.95.170402

Josephson effects [I] are quantum phenomena in which
the current between two weakly coupled, macroscopic
quantum systems depends on the relative phase of the
two systems. These effects are direct evidence for the
existence of the phase of a macroscopic quantum system
[2] and observed in quantum systems such as supercon-
ductors [3], superfluid 3He [4], and Bose condensed gases
[5,6]. Josephson coupling between two systems is typically
established via tunneling through a separating potential
barrier or via an external driving field as in the internal
Josephson effect [7,8]. Both couplings require spatial over-
lap of the two systems due to the intrinsic locality of the
coupling interactions.

The concept of Josephson coupling can be extended to
include two spalia//y separale quantum systems by using
intermediate coupling systems. If the phase relations
among these systems are preserved and thus the net particle
exchange is phase sensitive, the two spatially separate
systems might be regarded as being effectively Josephson
coupled via the intermediate systems. Furthermore, the
phase of the coupling may be actively controlled by adjust-
ing the coupling states of the intermediate systems. This
idea has been theoretically introduced in the context of
relative phase measurement [9].

In this Letter, we experimentally demonstrate phase-
sensitive optical coupling of two spatially separate Bose-
Einstein condensates using Bragg scattering. The situation
we are investigating is two condensates, irradiated by two
pairs of Bragg beams [Fig. 1(a)]. The two pairs of Bragg
beams couple out beams of atoms propagating to the left or
the right, respectively, and these unconfined propagating
atoms constitute the intermediate coupling system in our
scheme. Depending on the relative phases of the two con-
densates and the coupling states, we observe only one
outcoupled beam propagating to one or the other side, or
two identical beams propagating in opposite directions
(Fig. 2). This demonstrates phase control of currents and
establishes a new scheme to realize Josephson effects with
two nonoverlapping condensates. In the following, we

PACS numbers: 03.75.Lm. 03.75.pp. 74.50.+r

present a model for the phase-sensitive outcoupling pro-
cess and an experimental test of the prediction that the
phase of the atomic currents into each condensate can be
controlled. Finally, we suggest a Josephson optical cou-
pling of two condensates in a ring geometry.

First, we elaborate on the situation with a unidirectional
optical coupling [Fig. I(b)]. We use the conventional wave
function description for condensates. Two condensates I
and 2 are trapped in a double-well potential and optically
coupled into unconfined states by a single pair of Bragg
beams. Ignoring the accumulated phase shifts due to the
interaction with the condensates, we approximate the un-
confined coupling states as truncated free propagating
states, i.e., 1/1;(.'(. I) ex: E>(x - x;).J=iiiT;eix;l.t.t} (i = 1.2),
where E>(x) is the Heaviside step function, /' is the out-
coupling efficiency of the Bragg beams. Ni is the total atom

FIG. I. Optical coupling between two separate condensates.
(a) Bidirectional coupling. Two pairs of Bragg beams with
frequencies f and f + v are applied to two separate condensates.
(b) Outcoupling process. Two condensates are trapped at x = Xl

and X2 (d = X2 - XI)' A pair of Bragg beams with frequency
difference v generate a continuous atomic beam from each
condensate. The two atomic beams overlap in X> X2. forming
a matter wave interference pattern. VI (V2) denotes the trap
depth of the left (right) well, Jil (Ji2) the mean-field interaction
energy of the left (right) condensate, and k. (k2) the wave
number of the atomic beam from the left (right) condensate
outside the trap.

0031-9007/05 /95( 17)/ 170402(4)$23.00 170402-1 @ 2005 The American Physical Society
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FIG. 2. Symmetric and antisymmetric correlation between out-
coupled atom patterns. Two pairs of Bragg beams [Fig. I(a))
outcoupled atoms in either +x or -x direction. Absorption
images were taken after 5 ms outcoupling and 2 ms additional
ballistic expansion. The left outcoupled atom patterns were com-
pared with the corresponding right patterns. Symmetric correla-
tion between two patterns was observed at (a) v = 21T X
100.5 kHz and (c) antisymmetric at p = 21T X 101.5 kHz. The
field of view is 900 JLm X 590 JLm. (b), (d) Outcoupled atom
flux densities were obtained by integrating optical densities
between the dashed lines and converting the spatial coordinate
to the time coordinate. The solid (dashed) lines correspond to left
(right) outcoupled atoms. (e) The coupling phase 0 of the two
outcoupled patterns showed a linear dependence on p with
(jOjav = (2.4 kHz)-I.

number of condensate i, and Xj(x. t) = kjx - Wjt + XjO is
the phase of the coupling state with hWj = ;f}, where m is
atomic mass. The phase continuity at the coupling position
x = X; requires

Xj(x;. t) = ~j(/) + ~8(X;. t) - 7T/2. (I)

where ~j(/) is the phase of the condensate, ~B(X, t) =
2krx - vt + ~B() is the phase of the Bragg beams with
wave number kr and frequency difference v, and -1T/2 is
the phase shift attributed to the scattering process [ 10]. In a
linear regime with y« I, ~j is not perturbed by the
coupling, i.e., ~j(t) = -7/ t + ~jO' where h is Planck's
constant divided by 27T and P-j = -Vj + iij [Fig. I(b)] is
the chemical potential of the condensate. Satisfying the
phase relation Eq. (I) at all t requires

h Wj = hv + P-j. (2)

XiO = -8kjxj + ~80 + ~j() - 1T/2. (3)
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where 8kj = k; - 2kr• Equation (2), the temporal part in
Eq. (I), corresponds to energy conservation.

In the overlapping region, x > X2. the two atomic beams
from each condensate form a matter wave interference
pattern, and the outcoupled atom density n(x. I) =
11/11(x. t) + 1/12(X. tWo For a better interpretation, we define
the right outcoupled atom density nR(s. t) == fI(S + X2' t),
where s indicates the distance from the right condensate.

nR(S'I) = 2:
r

(Nt + 2.jN)N2 cos[~ks + ~At) - 8k)d]).

(4)
where Nt = N) + N2• ~k = k2 - kl, d = X2 - XI' and
~At) = ~2(f) - ~) (f). We approximate the propagating
velocity Vj = ~ == 2vr with 8k; « 2kp where Vr = ¥,t is
the recoil velocity. According to the relative phase ~ p

outcoupled atoms from the left condensate are coupled
into or amplified by the right condensate. The spatial and
temporal modulation of the outcoupled atom flux IlR rep-
resents the evolution of the relative phase ~p which was
directly demonstrated in our previous experiments [II].

The phase term - 8k Id can be interpreted as the phase
shift which outcoupled atoms would accumulate during the
flight from the left condensate to the right with respect to
the Bragg beam phase ~ H which is acting as the phase
reference. A similar relation between IlR and ~r can be
obtained in terms of the dynamic structure factor of 2
separate condensates [12], but the phase modulation of
coupling states in the middle of two condensates is likely
to be ignored in the conventional impulse approximation
[13]. This phase shift is the key element for an actively
controlled optical coupling and its physical importance
will be manifest in the following bidirectional coupling
scheme.

We now add another pair of Bragg beams to outcouple
atoms in the - x direction. Modifying the above calculation
by k;.r - -kj.p the left outcoupled atom density nL(s, t) ==
n(xi - s) is given as

nd.f. t) = 2:J Nt + 2.jN)N2 cos[~ks + ~r(r) + 8k2d])-

(5)
Considering the atom flux for each condensate, we find rate
equations for N) and N2• For example, the left condensate
has influx of yN2 from the right condensate and outflux of
yNI and nL (0. t) in + X and -x direction, respectively. The
final rate equations read

N 1.2 = -2Y(NI.2 + .jN1N2 cos[~r(t) =+ 8kl.2d]). (6)

Except for the global depletion effect of Bragg scattering,
the rate equations describe Josephson oscillations due to
the bidirectional optical coupling, i.e., that the atomic
currents into the condensates depend on the relative phase.

The optical Josephson coupling has a unique feature in
the control of the phase accumulated by atoms in the

170402-2
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coupling state [9]. Since the intermediate system "deliv-
ers" the phase information from one condensate to the
other, the phase can be manipulated in transit and conse-
quently, the phase of the effective coupling can be con-
trolled without affecting the two condensates. In the
bidirectional coupling scheme, the control of the coupling
phase is embodied in the phase shift terms, - 5k I d and
5k2d. We define the coupling phase as () == (5kl + 5k2)d,
and with 5ki « 2kr, approximate () as

(7)

where Er = ~ is the recoil energy. () is equivalent to the
relative phase of nL and nR' When ()= 0 «() = 1T) (mod 21T),
nL and nR will show (anti)symmetric correlation.

The control of the coupling phase () was experi-
mentally demonstrated. Condensates of 23Na atoms in the
IF = I, m,.. = -1) state were prepared in an optical
double-well potential as described in Ref. [14]. The
1/ e2-intensity radius of a focused laser beam for a single
well was 7.6 p.m and the typical trap depth was Vu -
II X 18 kHz. The separation of the two wells was d =
11.4 p.m and each well started with a condensate of -5 X
1o-~atoms. Two pairs of Bragg beams parallel to the sepa-
ration direction were applied to the condensates by retro-
reflecting two copropagating laser beams with frequency
difference v. The lifetime of condensates was over 18 s.
The 1/ e depletion time due to Bragg scattering into both
directions was 4.5 ms, resulting in the magnitude of initial
atom currents -1.1 X 108 atoms/so Outcoupling patterns
were measured by taking absorption images of outcoupled
atoms.

When the Bragg frequency difference v was varied, the
outcoupling pattern cycled through symmetric and anti-
symmetric correlations (Fig. '2). The coupling phase () was
fit to the observed patterns for each Bragg frequency
[Fig. 2(e)]. The linear dependence was measured as
iJ () / d v = (2.4 :!: 0.2 kHz)-I, which is consistent with the
predicted value d/ur = (2.6 kHz)-I. This clearly demon-
strates the presence and control of the coupling phase in
our optical coupling scheme. With the antisymmetric con-
dition, () = 1T, as a function of the propagating relative
phase, the output oscillated between predominantly to the
left and predominantly to the right [Figs. 2(c) and 2(d)].
The experimental situation has perfect mirror symmetry.
Unidirectional output in a symmetric situation is a macro-
scopic consequence of the condensates' phase.

Control of the coupling phase can be used to introduce
temporal and spatial variations of Josephson-type cou-
pling. Temporal control with real-time feedback could
ensure the coherent and continuous replenishment of a
condensate [see Ref. [15] ]. For elongated condensates, as
used here, spatial control with barrier heights or well
separations could create spatially varying coupling along
the condensate axis, and realize, e.g., ring currents.

One limitation of the bidirectional coupling scheme is
that atoms are depleted out of the system due to the linear
geometry. Even though the pattern of outcoupled atoms is a
crucial signal for monitoring the coupling dynamics, the
coupling time is fundamentally limited. To overcome this
shortcoming, we envisage a system preserving total atom
number like in Fig. 3, where atoms circulate between two
condensates in a ring waveguide. With assumptions that
the traveling time 51 for atoms from one condensate to the
other is short enough to satisfy ~r51 « I and that the
density profiles are constant over the trajectories between
the two condensates, the governing equation, in a linear
regime, is

where <Pm is the effective coupling phase which is deter-
mined by the accumulated phase shift over the round
trajectories and the phase of the Bragg beams.

The long condensates used here introduce a new degree
of freedom into the usual pointlike Josephson junctions:
the condensates can have a spatially varying phase along
the axial direction. Since the optical coupling is selectively
established between condensates at the same axial posi-
tion, axial gradients of the relative phase are directly
observed through tilted fringes in the pattern of outcoupled
atoms. In Fig. 4, we present two examples showing the
effects of relative dipole and quadruple axial motions of
two condensates. Josephson vortex [16] and modulational
instabilities [17] in elongated coupled condensates were
theoretically suggested.

Continuous Bragg scattering was used to characterize
the trap depth and the trap frequency of a single optical trap
(Fig. 5). Since momentum and energy imparted in the
scattering process are precisely defined, the kinetic energy
of atoms coupled out of a trap determines the depth of the
trap. We measured the traveling distance D of outcoupled
atoms with fixed traveling time I, and determined the trap
depth V from the relation, D / I = .J4u; - 2U / m, ignoring
the mean-field interaction with the condensate and the
finite size of the trap. Additionally, the exact knowledge

FIG. 3. Optical coupling of two condensates on a ring. Two
condensates are confined at opposite sides on a ring-shaped
waveguide and a pair of Bragg beams (Bragg I and 2) outcouple
atoms in the clockwise direction. The shaded boxes A and B are
phase modulators for atoms and photons, respectively.
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output is equivalent to the magnetization in a ferromagnet,
which. by spontaneous symmetry breaking, points into a
specific direction. Spontaneous symmetry breaking can be
observed in the interference pattern of two overlapping
condensates which has a definite phase [18J. Unidirec-
tional output in a symmetric situation more dramatically
shows the existence of the condensates' phase.

In conclusion, we experimentally studied the optical
coupling between two spatially separate condensates using
bidirectional Bragg scattering and demonstrated that the
phase of the coupling currents can be controlled. This
scheme is a new approach for observing Josephson phe-
nomena, but also for monitoring condensate motion and
characterizing trapping potentials.
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FIG. 4. Monitoring of slow relative axial motions. Two chemi-
cal potentials were equalized within 400 Hz and the temporal
evolution of the relative phase of two condensates along the axial
(z) direction was recorded in the outcoupled atom panerns.
(a) represents relative dipole oscillation. corresponding to rela-
tive velocity =300 J.Lm/s or kinetic energy of = 130 pK x kB•

and (b) relative quadruple oscillation. kB is the Bohzmann
constant.

of the recoil velocity v, calibrates the optical magnification
of images.

On the other hand. the trap frequency was measured
using velocity sensitivity of Bragg scattering. When a
condensate oscillates in a trap. atoms are coupled out
only when the condensate is at the resonant velocity.
Since the dipole oscillation of a condensate in a harmonic
trap is the same as the trap frequency f, the outcoupling
frequency is the same as 1when Bragg beams are tuned at
the maximum velocity [Fig. 5(b)J, 21 at zero velocity
[Fig. 5(c)J. Even though the frequency resolution is limited
by the finite coupling time, this method provides a lot of
information in a single measurement. For example, the
pattern of outcoupled atoms in Fig. 5(b) is curved because
the trap frequency changes along the axial direction.

The system studied here is perfectly symmetric. Never-
theless, in any realization of the experiment, the relative
phase of the two condensates assumes a specific value and
spontaneously breaks the symmetry. The unidirectional

FIG. 5. Trap characterization by continuous outcoupling.
(a) Atoms were outcoupled from a single well and the traveling
distance D with fixed traveling time t = 7 ms was measured,
changing the trap depth U by varying the total power of the laser
beam fonning the single well. The solid line is a fining curve
(see the text for details) with I au. = 18.0 kHz and I pixel =

3.11 J.Lm. Dipole oscillation in the x direction was induced
by suddenly shifting the trap center. (b) Outcoupling pattern
with Bragg frequency difference v = 21T x 114 kHz and
(c) v = 21T x 101.5 kHz. which correspond to resonant veloc-
ities of = 4 mm/s and "'" 0 mm/s, respectively. In (b). the left
and the right pattern have antisymmetric correlation.
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Bose-Einstein condensates of sodium atoms. prepared in an optical dipole trap, were distilled into a
second empty dipole trap adjacent to the first one. The distillation was driven by thermal atoms spilling
over the potential barrier separating the two wells and then forming a new condensate. This process
serves as a model system for metastability in condensates, provides a test for quantum kinetic theories
of condensate formation, and also represents a novel technique for creating or replenishing condensates
in new locations.

DOl: 10.1103/PhysRevLett92150401 PACS numbers: 03.75.Lm. 64.60.My

FIG. J. Scheme for distillation of condensates in a double-
well potential. (a) Condensates are loaded into the left well.
(b) A new ground state is created by linearly ramping the trap
depth of the right well from zero to the final value. (c) Atoms
transfer into the right well via high-energy thermal atoms. and
a new condensate starts to form in the right well. (d) The whole
system has equilibrated V denotes the height of the potential
barrier between the two wells. which is measured with respect
to the bottom of the left well, and tiU the trap depth difference
between the two wells.

experi ment where condensates were replen ished with
transported condensates [14].

The scheme of the experiment is shown in Fig. 1. Bose-
Einstein condensates in an optical dipole trap were pre-
pared in a metastable state by creating a second trap
horizontally adjacent to the first Since the probability
of quantum tunneling through the barrier was extremely
small [15]. the coupling between the two wells occurred
only by the incoherent transfer of high-energy thermal
atoms over the potential barrier between the two wells.
The second trap was filled first by thermal atoms, which
then formed a new condensate. By monitoring the time
evolution of the double-well system, we characterized
how differences in chemical potential and the height of
the barrier determined the dynamics.

Bose-Einstein condensates containing over 107 23Na
atoms were created in the IF = I.mF = -I) state in a
magnetic trap, captured in the focus of a 1064 nm optical
tweezers laser beam. and transferred into an separate
"science" chamber as described in Ref. [16]. In the sci-
ence chamber the condensate was transferred from the
optical tweezers into another optical trap formed by a

The characteristic feature of Bose-Einstein condensa-
tion is the accumulation of a macroscopic number of
particles in the lowest quantum state. Condensate frag-
mentation, the macroscopic occupation of two or more
quantum states, is usually prevented by interactions [I],
but may happen in spinor condensates [2,3]. However,
multiple condensates may exist in metastable situations.
Let us assume that an equilibrium condensate has formed
in one quantum state, but now we modify the system
allowing for one even lower state. How does the original
condensate realize that it is in the wrong state and even-
tually migrate to the true ground state of the system?
What determines the time scale for this equilibration
process? This is the situation which we experimentally
explore in this Letter using a double-well potential.

The process we study is relevant for at least four differ-
ent questions. (l) The description of the formation of the
condensate is a current theoretical frontier and requires
finite-temperature quantum kinetic theories. There are
still discrepancies between theoretical predictions and
experimental results [4,5]. Our double-well system has
the advantage of being an almost closed system (little
evaporation) with well-defined initial conditions and
widely adjustable time scales (through the height of the
barrier). (2) Spinor condensates show rich ground states
and collective excitations due to the multicomponent
order parameter [2]. Several groups have observed long-
lived metastable configurations [6-9] and speculated
about transport of atoms from one domain to another
via the thermal cloud [6,8]. The double-well potential
allows us to characterize such distillation processes in
their simplest realization. (3) The incoherent transport
observed here in a double-well potential imposes strin-
gent limitations on future experiments aiming at the
observation of coherent transport in Josephson junctions
[10-12]. (4) Our observation of condensate growth in one
potential well due to the addition of thermal atoms real-
izes the key ideas of proposals on how to achieve a
continuous atom laser [13] which is different from the
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counterpropagating, orthogonally polarized 1064 nm la- 
ser beam. As in Ref. [17], the double-well potential was 
created by passing a collimated laser beam through an 
acousto-optic modulator that was driven by two radio- 
frequency (rf) signals. The separation between the poten- 
tial wells, d, was proportional to the frequency difference, 
and the individual trap depth was tailored by controlling 
the rf power at the two frequencies. Typical parameters 
were an l/c2 radius of each focused beam of 11.3 pm,  a 
single-well potential depth of U = kB X 2.4 pK, where 
k s  is the Boltzmann constant, and a radial (axial) trap 
frequency, J', = 830 Hz Cfz = 12.4 Hz). As shown in 
Fig. 1, condensates were initially loaded into the left 
well with depth UL while the trap depth of the right 
well, UR, was maintained at zero. After holding the 
condensates for 2 s to damp excitations which might 
have been caused by the loading process, the temperature 
was Ti = (180 t 90) nK, the number of condensed atoms 
Ni  = (1.1 t 0.1) X 10"ith a peak mean field energy of 
,CO = k ,  X 300 nK, and the lifetime T = (12.1 -+ 1.5) s. 

The potential was transformed into a double-well po- 
tential by linearly ramping the right well potential from 
zero to the final value of UH over 500 ms while keeping 
UL constant. This time scale was chosen to be much 
longer than the radial trap period of -1 ms to avoid 
excitations. The resulting double-well potential is charac- 
terized by the trap depth difference between the two 
wells, AU = UR - UL, and the height of the potential 
barrier between the two wells, V, which is measured with 
respect to the bottom of the left well, i.e., the well 
initially full of atoms. The barrier height was set higher 
than the peak atomic mean field energy of condensates so 
that condensed atoms remained confined to the left well 
during the transformation. 

The thermal relaxation process was observed by taking 
absorption images of clouds confined in the double-well 
potential for various hold times after turning on the right 
well. In order to fully resolve the clouds in the two wells, 
their distance was increased to cl = 31.2 p m  just before 
taking absorption images. We assume that this did not 
change either the number of atoms in each well or the 
axial density distributions, since this additional separa- 
tion was done in 10 ms, which is much shorter than the 
axial trap period of -100 ms, and the height of the 
potential barrier exponentially increases when the two 
wells move apart. 

Figure 2 shows the dynamical evolution for a situation 
where the right well was much deeper than the left well. 
In that case, condensates that initially existed only in the 
left well were almost completely distilled within 3 s to 
form condensates of comparable size in the right well. 

The time evolution of the double-well system was 
characterized by monitoring the number of condensed 
atoms and the temperature of clouds in each well. These 
numbers were obtained by fitting radially integrated one- 
dimensional atomic density cross sections to a bimodal 

FIG. 2. Time evolution of atom clouds in a double-well po- 
tential. The left (right) well appears as the top (bottom) atom 
cloud in the images. A condensate was distilled from the left to 
the right well. The absorption images were taken for various 
hold times after creating the right well. The field of view of 
each absorption image is 130 p m  X 1 160 pm. The trap depths 
were U L  = ks X 2.4 p K  (left well) and UR = kB X 2.9 gK 
(right well) with a potential barrier of V = k B  X 510 nK be- 
tween them. During the hold time, the radial separation be- 
tween the potential wells was d = 15.9 pm. 

distribution. The assumption of local equilibrium in each 
well is justified by a short collision time T,,, = 1 ms. For 
the condensate, we used a Thomas-Fermi distribution, 
and for the thermal clouds the fits to a Bose-Einstein 
distribution were restricted only to the wings to avoid the 
distortions due to the mean field repulsion of the con- 
densate [18]. The temperature turned out to be very sen- 
sitive to the value of the chemical potential of the thermal 
clouds. Assuming local equilibrium, we set the chemical 
potential of the thermal clouds in each well equal to that 
of the condensates in the same well. In the absence of a 
condensate, the chemical potential of the thermal cloud 
was determined by the fit to a Bose-Einstein distribution. 

Figure 3 displays the condensed atom number and 
temperature for the images of Fig. 2. Condensates started 
to form in the right well after (400 t 150) ms and satu- 
rated within 2 s, resulting in -50% of the condensate 
being transferred. The final temperature in the right well 
was T f  - 350 nK, which is -150 nK higher than the 
initial temperature Ti. This increase of temperature re- 
flects the energy gained by the atoms when they "fall" 
into the right potential well which is deeper by AU = 

480 nK. After 3.5 s, the total number of atoms of the 
whole system was N f  = (0.6 t 0.1) X lo6, which is 15% 
less than expected for the measured lifetime of r = 

12.1 s. Evaporative cooling due to finite trap depth may 
explain both the atom loss and the fact that the tempera- 
ture increase was much less than AU. 

Even after 3.5 s hold time, full global equilibrium was 
not reached. This can be seen in both the temperature and 
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FIG. 3. Approach to thermal equilibrium in a double-well
potential. The temperature and the number of condensed atoms
in each well are shown as a function of hold time after creating
the right well. Open and solid circles represent atoms in the left
and the right well, respectively. Every data point is averaged
over three measurements, and the error bar shows :t one
standard deviation. The experimental parameters are the
same as for the results shown in Fig. 2.
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the onset time in the right well by observing the appear-
ance of interference fringes when two condensates were
released from the double-well potential. For two pure
condensates, the visibility of the interference fringes is
larger than 55% as long as the number ratio of the two
condensates is larger than 17= 0.05. Using the methods
described in Ref. [17], we have observed discernible
interference fringes down to 17= 0.08, corresponding to
-8 X let condensed atoms in the right well.

Onset times were measured as a function of d and t1V
(Fig. 4). The condensate formation is driven by the po-
tential well difference t1U, whereas the barrier of height
V provides the "resistance" against equilibration, since
thermal atoms must have a kinetic energy larger than
V to transfer from the left well to the right well.
Phenomenologically (see inset of Fig. 4), the condensate
onset ti me depends only on the combi nation (V - t1 U /2)
with an almost exponential dependence. (V - t1V /2) can
be considered as (Verr - t1U), where Verr = [V + (V +
t1U)]/2 is the average height of the barrier measured
from each well.

In two limiting cases, no interference patterns were
observed When the trap depth difference is larger than
the peak atomic mean field energy of condensates, i.e.,
1t1 VI > ilo, it is energetically favorable for condensates
to remain in the lowest well. We observed no interference
pattern when t1U = -kB X 240 nK even after 20 s hold
time. The disappearance of interference fringes was ob-
served when t1U 2: kB X 360 nK due to complete distil-
lation of the condensates into the right well. In the limit

FIG. 4. Onset time of condensation. The onset time in the
right well was measured by observing the appearance of a
matter wave interference pattern when the condensates were
released from the double-well potential. The trap depth differ-
ence is defined as au = UN - UL• UL was kept at k8 x 2.4 JLK
for all experiments. The separations of the two wells, d, were
14.3 JLm (open circle), IS. I JLm (solid circle), and 15.9 JLm
(open square). Interference fringes were not observed at au =

-kB x 240 nK even after 20 s hold time. The inset shows the
same data plotted vs V - au /2, where V is the height of the
potential barrier.

2
Hold Time (5)

1 :\
Hold Time (5)

f t f f + • ; f t
• f f ~ f 0 •• e

o

I If' I
f • p ~ 1 1f 9 T T

•••

..;-
~1.2

~
.9 1.0
c(

al 0.7
III

~ 0.5

8
'00.2

~
E
:>
Z

the condensed atom numbers. As the chemical potential
of condensates in the right well was lower than the trap
bottom of the left well, there should not have been any
condensate remaining in the left well in global equilib-
rium. However, Fig. 2 shows a small condensate of - 103

atoms in the left well even after 3.5 s holding.
Furthermore, the temperature in the left well was mea-
sured - 100 nK lower than in the right well.

On first sight, this slow approach towards equilibrium
is surprising. In evaporative cooling, one has very fast
cooling for a ratio of the height of the potential barrier to
the temperature of less than 3 [19], as in our experiment
Note, however, that in our trap geometry the exchange of
thermal atoms is geometrically suppressed due to the
small "contact area" between the two elongated cigar-
shaped clouds. Moreover, if the transferred thermal atoms
have high angular momentum, they have poor collisional
coupling to the cold trapped atoms such as the Oort cloud
in magnetic traps [20]. Indeed, the density of thermal
atoms with higher energy than the potential barrier in the
left well after 3.5 s holding is - 3 X lO" /cm3, and their
collision time with the atoms confined in this well is
(nuvrel)-I = 0.5 s.

Another quantity of interest in the condensate forma-
tion process is the onset time of condensation, the hold
time until a condensate first appears [4,5,21]. To avoid
ambiguities in fitting small condensates, we determined
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where the barrier height is smaller than the peak atomic 
mean field energy of condensates, i.e., V < Po ,  conden- 
sate atoms can "spill" over the potential barrier. Indeed, 
we observed that condensates appeared in the right well 
immediately for V less than -kB X 290 nK, consistent 
with - kB X 300 nK. 

To observe quantum tunneling, the thermal relaxa- 
tion time rth(3: exp[V/kBT]) should be longer than the 

tunneling time T,,(x exp[ J ~ : W ] ) ,  where w is the 
thickness of the barrier. For a thick barrier such as 
ours ( > 5 ,urn), the tunneling time is extremely long 
( > 10%) and thermal relaxation is likely to dominate. 
A high and thin barrier is necessary to observe tunneling 
and the related Josephson effects. 

In conclusion, we have created Bose-Einstein conden- 
sates in a metastable state in a double-well potential and 
studied the dy namical evolution. The observed distilla- 
tion process is important for equilibration in spinor con- 
densates and for replenishing condensates in continuous 
atom lasers. 
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Coreless vortices were phase imprinted in a spinor Bose-Einstein condensate. The three-component 
order parameter of F = I sodium condensates held in a Ioffe-Pritchard magnetic trap was manipulated 
by adiabatically reducing the magnetic bias field along the trap axis to zero. This distributed the 
condensate population across its three spin states and created a spin texture. Each spin state acquired a 
different phase winding which caused the spin components to separate radially. 

D01: 10.1103/PhysRevLett.90.140403 PACS numbers: 03.75.Lm, 03.6S.Vf, 03.75.Mn, 67.57.Fg 

Spin textures play a central role in describing the 
physics of elementary particles [I], liquid 3 ~ e - A  [2-41, 
the quantum Hall effect [5], and gaseous Bose-Einstein 
condensates [6-101. Topological defects vary between 
superfluid systems described by scalar and vector order 
parameters. In spinless or spin-polarized condensates, 
line defects such as vortices have cores where the density 
of condensed particles is necessarily zero to keep the 
order parameter single valued [I 1-13]. However, in con- 
densates with an internal, spin degree of freedom, core- 
less vortices exist as spin textures [4,14]. Such structures 
are referred to as skyrmions (Anderson-Toulouse vortices 
[3]) or merons (half-skyrmions, Mermin-Ho vortices [ 2 ] )  
depending on the boundary conditions of the system. 

In this Letter, we study spin textures in a Bose-Einstein 
condensate. Coreless vortices were created in F = l 
spinor condensates held in a Ioffe-Pritchard magnetic 
trap by adiabatically reducing the magnetic bias field 
along the trap axis to zero. This continuously transformed 
the initially spin-polarized condensate into a coherent 
superposition of three spin states, each with a different 
phase winding. The resulting angular momentum per 
particle varied between spin states and the condensate 
evolved such that states with more angular momentum 
per particle circulated around states with less angular 
momentum per particle. Thus, the condensate had a net 
axial magnetization that varied with radial position. 
Previous work on vortices in a two-component system 
used laser, microwave, and radio frequency fields to spa- 
tially and temporally control the interconversion between 
components [14]. However, without these applied fields 
the two components evolved independently as distin- 
guishable fluids. In our work, the spin states can freely 
interconvert at all points in space and time such that the 
spin texture would continually heal itself even in the 
presence of state-dependent losses. 

In cylindrical coordinates, the spin-F condensate 
wave function can be written as Iq(r,  4, z)) = 

J m I i ( r ,  4 ,  e)), where n is the atomic number den- 
sity and the 2 F + 1  component spinor l J )=  
xi_=-F IF, m,), l(JlJ)12 = 1 describes a spin texture. 

A loffe-Pritchard magnetic trap consists of an axial 
bias field (with curvature) and a two-dimensional quad- 
rupole field in the orthogonal plane [I 5,161: 

where B' is the radial magnetic field gradient and quad- 
ratic terms have been neglected. For a condensate of 
radial extent R confined in a Ioffe-Pritchard magnetic 
trap with B, >> B'R > 0, 15) = IF, mr = mF), where mr 
and m~ are the projection of the atomic spin along the z 
axis and local magnetic field direction, respectively. 
Adiabatically ramping B, from B, >> B'R > 0 to zero 
rotates the atomic spin about the position-dependent 
axis A ( + )  = sin42 + cos4 j ,  and drives the transition 
IF, m: = m,) - ~jr'l-~ , )  i 111, exp[i(m, - rnF)4llF. m:) 
[17,18]. Thus, the condensate population is distributed 
across 2(mF( + 1 spin states with each acquiring a differ- 
ent topological phase factor and angular momentum per 
particle due to the variation of Berry's phase with mag- 
netic quantum number [19]. 

The condensate remains in the state IF, inF) with re- 
spect to the local magnetic field provided the local 
Zeeman energy, -gF,u,[~? + (~ ' r ) ' ]"~,  dominates the 
local kinetic energy associated with the spin texture, 
-h2 /m?,  where gF is the Land6 g factor, ,u, is the 
Bohr magneton, and m is the atomic mass. For B, = 0, 
atomic spins aligned with the quadrupole magnetic field 
produce the planar spin texture in Fig. I(a). However, the 
infinite kinetic energy associated with the wave function 
singularity at r = 0 creates a nonplanar spin texture over 
a disk of radius -(h2/mgF,u8~')'/" with higher angular 
momentum spin states residing outside those with lower 
angular momentum. 

Bose-Einstein condensates containing over 10' 2 3 ~ a  
atoms were created in the 11, -1) state in a mag- 
netic trap, captured in the focus of an optical tweezers 
laser beam, and transferred into an auxiliary "science" 
chamber as described in Ref. [21]. In the science cham- 
ber, the condensate was loaded into a microfabricated 
Ioffe-Pritchard magnetic trap formed by a Z-shaped 
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FIG. I .  Planar spin textures. Spins aligned with two- 
dimensional (a) quadrupole and (b) hexapole magnetic fields 
produce textures with winding numbers - 1  and -2, respec- 
tively. Counterclock~~ise traversal of the dashed contours i n  (a) 
and (b) leads to clockwise (negative) spin rotation, with the 
winding number defined as the integer number of revolutions 
made by the spin vector while circumnavigating the singularity 
at the origin [20]. 

50 p m  X 10 p m  electroplated copper wire carrying cur- 
rent I and an external magnetic bias field, BL, as de- 
scribed in Ref. [22]. Typical wiretrap parameters were 
I = 720 mA, Bl = 5.3 G, and B, = 1.3 G, resulting in a 
radial magnetic field gradient B' = 180 G/cm. This pro- 
duced axial and radial trap frequencies o, = 2 7 ~  X 4 Hz 
and w l  = 2 7 ~  X 250 Hz, respectively. Condensates in the 
wiretrap had 2 2 >: 10%toms, a Thomas-Fermi radius 
of -5 p m ,  and a lifetime r 25 s. 

Coreless vortlces imprinted onto the condensate wave 
function by adiabatically ramping B, -+ 0 are shown in 
Fig. 2. To observe the nature of the spin texture, an axial 
bias field was switched on nonadiabatically along either 
the negative [Figs. 2(b)-2(d)] or positive [Figs. 2(e)- 
2(h)] z axis. Switching the axial bias field on suddenly 
"froze" the atomic spins and effectively "projected" the 
condensate wave function onto a basis quantized with 
respect to the local (axial) magnetic field This allowed 
the spin states to be separated by a magnetic field gradient 
applied during ballistic expansion. Switching the direc- 
tion of the axial projection field exchanged the roles of the 
11, - I )  and I I ,  t 1) states. Figures 2(a) and 2(e) show the 
coreless nature of the vortices, while Figs. 2(b) and 2(f) 
show the concentric cylinder structure resulting from the 
competition between the atomic Zeeman energy and the 
kinetic energy of the rotating spin states. We assume that 
the two-dimensional (w, << wl) ballistic expansion 
process simply magnifies the condensate wave function, 
21s it does in the expansion of a single-component con- 
densate with vortices 123,241. 

Along the wiretrap axis, the magnetic field was 

where quadratic terms neglected in Eq. (1) are included 
Nonzero axial magnetic field curvature, B" = 5 G/cm2, 
implies that the spin texture had a slight axial depen- 

dence. The axial bias field was ramped linearly from 
= 1.3 G to BZ - 0 in 10 ms to imprint the coreless 

vortices. This compressed the condensate radially and 
increased the condensate chemical potential from p .= 

(pB/2)  X 3 mG to ,u = (pB/2)  X 27 mG. Ramping 
B, -. 0 fast compared to the axial trap period (250 ms), 
but slow compared to the initial radial trap period (4 ms), 
guaranteed that the axial magnetic field variation re- 
mained constant throughout the experiment at AB, = 
3 mG, while at B: = 0 the radial magnetic field variation 
was ABr = 27 mG. The images shown in Fig. 2 inte- 
grated the atomic number density along the z axis and 
therefore averaged over the minor (AB, << AB,) axial 
variation to the spin texture. 

To project the condensate wave function onto a basis 
quantized with respect to the local magnetic field, an 
= 10 G axial bias field was switched on at a rate of B, = 

2 X lo5 G/s along either the negative or the positive z 
axis. 100 p s  later the magnetic trap was switched off 
allowing the atoms to expand ballistically. For 0 5 B,  5 

AB,, the Landau-Zener nonadiabatic transition proba- 
bility, ~ x ~ ( - T , ~ ~ B ~ / / ~ B ; )  2 0.9, was sufficiently close 
to unity that the atomic spins remained "frozen" during 
the sudden application of the axial bias field and the spin 
texture could be accurately diagnosed. While the total 
condensate density monotonically decreased as a func- 
tion of radial position [Figs. 2(a) and 2(e) 1, the density 
of each spin component peaked at a different radius 
signifying a variation in the angular momentum per 
particle between spin states [Figs. 2(b) and 2(f)]. 

Applying the projection field along the positive z axis 
generated additional rings of atoms in the I I ,  - 1 )  and 
)1,0) states [Fig. 2(f)]. Ramping B, --, 0 in 10 ms caused 
nonadiabatic spin flips for atoms near r = 0 resulting in 
an atom loss of = 50% [18]. If these atoms had not left the 
condensate before the projection field was applied, they 
may have contributed to the images displayed in Fig. 2(f). 
The additional rings of atoms may also correspond to a 
low energy, radial spin-wave excitation [6,7]. However, 
we could not identify any asymmetry between applying 
the projection field along the positive versus negative z 
axis that would account for the presence of the extra rings 
in Fig. 2(f), but not in Fig. 2(b). 

Engineering topological states in a Bose-Einstein 
condensate has received much theoretical attention 
[17,25-301. The evolution of a condensate confined in a 
Ioffe-Pritchard magnetic trap while ramping B; -+ 0 is 
described by a position-dependent spin rotation about the 
f i(q5) axis through an angle P ( r )  [I81 

where F is the spin operator and ISo) = IF, m; = mF) is a 
polarized spinor. For I&) = 1 1 ,  - I ) ,  Eq. (3) gives the 
condensate spinor in the laboratory frame as 
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FIG. 2. Coreless vortex formation in a spinor Bose-Einstein condensate. Coreless vortices were imprinted by ramping B~ -- 0 and
diagnosed by suddenly switching (a)-{d) B~ « 0 and (e)-{h) B~ » O. Axial absorption images display the optical density of
condensates after 20 ms of ballistic expansion (a).(e) without and (b).(f) with a magnetic field gradient applied to separate the
different spin states. (c),(g) Azimuthally averaged optical density vs radial position for spin components shown in (b) and (0.
respectively. The radial separation of the spin states resulted from their relative phase windings and is a clear signature of the
skyrmion/meron wave function [Eg. (4)]. (d),(h) Axial magnetization per particle. M/N = (JLB/2) X (iimr-+I - iill/F~-t>/iilota" vs
radial position. The absorption imaging light was resonant with the F = 2 -- F' = 3 transition. The atoms were optically pumped
into the F = 2 hyperfine level with a pulse resonant with the F = I -- F' = 2 transition. This provided equal imaging sensitivity to
each spin state. The field of view in (a). (b), (e), and (f) is 1.0 mm X 3.0 mm.

I((r, cPo z» = cos2[,8(r)/2]11. -I)
-I .

+ J2 sin[,8(r)]e'''' I I, 0)

+ sin2[,8(r)/2]ei2'" I I. + I). (4)

,8(0) = 0 and skyrmions (merons) are described by the
boundary condition ,8(00) = 7T [,8(00) = 7T/2].

The radial dependence of ,8(r) is determined by requir-
ing the Gross-Pitaevskii energy functional.

f - (1i2 (CO C2IFI2))E = d3r 11-(\7(I\7() + V + - + --2 n,
2m 2 2 Ii

(5)

be stationary with respect to variations in ,8. Equation (5)
uses the Thomas-Fermi approximation, and (\7(1\7() =

2.~.=-F \7(~, . \7(11I,. V = -gFJ.LBF' B/n, F =
«(I.rl(). Co = 47T1i2ii/m. and C2 = 47T1i26,a/m. Here
ii = (2(10 + a2)/3 and 6,(1 = ((12 - ao)/3 characterize
two-body interactions, where ao and a2 are scatter-
ing lengths for collisions with total angular momentum
F = 0 and F = 2. respectively [6]. For C2 > O. the atomic
interactions are anti ferromagnetic (polar), as in 23Na [31],
while for C2 < 0 they are ferromagnetic, as in 1l7Rb [32].

Using Eq. (4) as a trial spinor, we find that ,8(r) satisfies
the meron boundary conditions and varies from ,8(0) = 0,
due to the kinetic energy of the spin texture. to ,8(00) =
7T/2, due to the atomic Zeeman energy, over a character-
istic length scale given by the larger of (1i2 / mg FJ.LsB') 1/3

and IB:I/ B'. We observed that the boundary condition
,8(0) = 0 was maintained regardless of the sign of B:,
i.e., atomic spins along the trap axis always remained in
the initial state. If the atomic spins had simply followed
the local magnetic field, ,8(r) would satisfy tan,8(r) =
B' r/ B:. Thus, scanning B: from slightly positive to
slightly negative would instantaneously change the
boundary condition at the origin from ,8(0) = 0 to
,8(0) = 7T and flip the atomic spins along the trap axis.

The trial spinor in Eq. (4) does not have the most
general form since it was derived by rotating a polarized
spinor [Eq. (3)] and is inherently ferromagnetic, IFI = Ii.
Accordingly, the spin-dependent interaction term in
Eq. (5) does not vary with ,8 and therefore does not
contribute to the determination of ,8(r). This restriction
is not severe since the Zeeman energy dominates the spin-
dependent interaction energy in our experiment.

In future experiments, it should be possible to over-
lap the condensate with an optical dipole trap so that,
after ramping Bz - 0, relaxing the radial magnetic field
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gradient would allow for the spin-dependent interactions 
to determine the evolution of the condensate. It is pre- 
dicted that sky rmions/merons in condensates with anti- 
ferromagnetic (ferromagnetic) interactions are unstable 
(stable) [9,10,33-391. Presently, excitations created dur- 
ing the field ramping process have prevented a study of 
the stability of coreless vortices in an antiferromagnetic 
'-%a condensate. However, we were able to imprint the 
spin texture in the presence of an optical dipole trap, as 
well as produce vortices with a 47r phase winding in an 
optical dipole trap by fully inverting the axial bias field 
[18]. At zero magnetic field, it may be possible to observe 
multiply charged vortices in a spinor condensate "un- 
wind" themselves as predicted in Ref. [6]. The unwinding 
process is precisely the position-dependent spin rotation 
demonstrated in previous work [18], with the spin texture 
investigated here as an intermediate state [37]. 

In conclusion, we have demonstrated a robust tech- 
nique for creating coreless vortices in a Bose-Einstein 
condensate. Our technique can be extended to generate 
spin textures with arbitrary winding number and variable 
angular momentum per particle by using higher-order, 
axisymmetric multipole magnetic fields and condensates 
with different spin. 'This work opens up the opportunity to 
study the stability of topological defects in spinor Bose- 
Einstein condensates. 
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M. Crescimanno for valuable discussions. This work was 
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Doubly quantized vortices were topologically imprinted in IF = 1) 2 3 ~ a  condensates, and their time 
evolution was observed using a tomographic imaging technique. The decay into two singly quantized 
vortices was characterized and attributed to dynamical instability. The time scale of the splitting 
process was found to be longer at higher atom density. 

D01: 10.1103/PhysRevLett93.160406 PACS numbers: 03.75.Kk. OA.75.Lm. 67.90.+z 

Quantum fluids, like superfluid He, electrons in a su- 
perconductor, or a Bose-Einstein condensate of atoms, 
are described by a macroscopic wave function. This re- 
quires the flow field to be irrotational, and gives rise to 
superfluidity and quantized circulation [I]. Atoms in a 
Bose-Einstein condensate, for example, can only circu- 
late with an angular momentum equal to an integer 
multiple of ti. in the form of a quantized vortex [2]. 

Vortices are excited states of motion and therefore 
energetically unstable towards relaxation into the ground 
state, where the condensate is at rest. However, quantiza- 
tion constrains the decay: a vortex in Bose-Einstein con- 
densates cannot simply fade away or disappear, it is only 
allowed to move oul of the condensate or annihilate with 
another vortex of an opposite circulation. Vortex decay 
and metastability, due to inhibition of decay, has been a 
central issue in the study of superfluidity [3-81. In almost 
pure condensates, vortices with lifetimes up to tens of 
seconds have been observed [9-111. 

Giving a Bose-Einstein condensate an angular mo- 
mentum per particle larger than ti can result in one multi- 
ply quantized vortex with large circulation or, alterna- 
tively, in many singly quantized vortices each with an 
angular momentum h. The kinetic energy of atoms cir- 
culating around the vortex is proportional to the square of 
the angular momentum; therefore the kinetic energy as- 
sociated with the presence of a multiply quantized vortex 
is larger than the kinetic energy of a collection of singly 
quantized vortices carrying the same angular momen- 
tum. A multiply quantized vortex can decay coherently by 
splitting into singly quantized vortices and transferring 
the kinetic energy to coherent excitation modes, a phe- 
nomenon called dynamical instability, which is driven by 
atomic interactions [5,12-141 and not caused by dissipa- 
tion in an external bath. Observations of arrays of singly 
quantized vortices in rapidly rotating condensates [lo, 111 
indirectly suggest that the dynamical instability leads to 
fast decay of multiply quantized vortices. However, the 
existence of stable multiply quantized vortices in trapped 

Bose-Einstein condensates has been predicted with a 
localized pinning potential [12] or in a quartic potential 
[15]. Stable doubly quantized vortices were observed in 
superconductors in the presence of pinning forces [16] and 
in superfluid we-A,  which has a multicomponent order 
parameter [17]. Recently, formation of a multiply quan- 
tized vortex in a Bose-Einstein condensate has been 
demonstrated using topological phases [18,19], and sur- 
prisingly, a long lifetime of a "giant" vortex core has been 
reported [20]. The study of topological excitation and its 
stability is an active frontier in the field of quantum 
degenerate gases [2 1,221, 

In this Letter, we study the time evolution of a doubly 
quantized vortex state in a Bose-Einstein condensate, 
and directly confirm its dynamical instability by observ- 
ing that a doubly quantized vortex core splits into two 
singly quantized vortex cores. The characteristic time 
scale of the splitting process was determined as a func- 
tion of atom density and was longer at higher atomic 
density. 

Bose-Einstein condensates of " ~ a  atoms were trans- 
ferred into an auxiliary chamber 1231 and loaded into a 
Ioffe-Pritchard magnetic trap generated by a microfabri- 
cated atom chip [24-261. The wire pattern on the atom 
chip is shown in Fig. ](a). In our previous work [19], we 
used a Z-shaped wire trap where changing the sign of the 
axial magnetic field curvature was technically impossible 
so that we could not trap condensates after imprinting a 
vortex. To overcome this technical difficulty, we designed 
our new chip with separate end cap wires, allowing in- 
dependent control of the axial magnetic field Typical 
wire currents were Ic  = 1.53 A in the center wire and 
IL = I H  =O. I A in the end cap wires, and the external 
magnetic field was B,  = 450 mG and B, = 5.3 G, resulting 
in a radial (axial) trap frequency f ,  = 220 Hz (f; = 3 Hz) 
and a distance of the trap from the chip surface of d = 

600 pm.  After holding condensates for 2 s to damp exci- 
tations, which might have been caused by the loading 
process, condensates contained over 1.5 X 10' atoms, and 
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(a)

FIG. I. (a) Wire pattern on the atom chip. A magnetic trap is
formed by a current Ie flowing through the center wire in
conjunction with an external uniform magnetic field B.t. The
axial confinement along the z direction is generated by currents
It and IR in the end cap wires. Each current is controlled
independently. A 2 J.Lm thick Au film was deposited by evapo-
ration on a thermally oxidized Si substrate and wires were
patterned by photolithography and wet etching. The width of
the center wire and the end cap wires were 50 J.Lm and 100 J.Lm,
respectively. (b) Imprinting of a vortex in a Bose-Einstein
condensate. By inverting the z direction magnetic field B:, a
doubly quantized vortex was imprinted in IF = I) condensates,
using topological phases as in Ref. [19]. The direction of I Land
IR were also reversed to maintain the axial confinement. The
dashed lines indicate the selective probing region for tomo-
graphic imaging as described in the text.

the lifetime of condensates was = 8 s with a radio-
frequency (rf) shield [27].

Doubly quantized vortices were topologically im-
printed in condensates by inverting the axial magnetic
field, B:, as in Ref. [19]. B: was ramped linearly from
450 mG to -460 mG in 12 ms. As B: passed zero, the
sign of the axial field curvature was changed by reversing
the directions of IL and IR in 1 ms. The trap position and
the axial trap frequency of the inverted trap were matched
to those of the original wire trap by adjusting the final
values for IL and IR. Losses due to nonadiabatic spin flips
as B: passed through zero reduced the number of atoms in
the condensate after imprinting to about -1 X 106, giv-
ing a typical healing length of ~ = 0.4 J..Lm. The lifetime
of condensates after imprinting was less than 2 s.

The vortex imprinting process was accompanied by a
sudden mechanical squeeze in the radial direction and a
kick in the vertical direction. The radial trap frequency is
inversely proportional to the square root of the bias
magnetic field (i, :x: IB:I-1/2) and became temporarily
higher during field inversion. Additionally, the vertical
position of the trap center changed as the gravitational sag
(:x: 1;2) changed from 5.1 J..Lm to zero. The Thomas-
Fermi radius of condensates in the loading phase was
-5 J..Lm. After imprinting a vortex, the amplitude of
quadruple oscillation in the axial direction was -20%
of the axial length of condensates (=600 J..Lm), but there
was no detectable dipole oscillation in the vertical
direction.

The decay of a doubly quantized vortex state was
studied by taking absorption images along the imprinted
vortex line after releasing the condensate and letting it
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expand for 15 ms. The visibility of a vortex core in an
integrated absorption image completely vanished within
30 ms. To reduce blurring due to possible bending of the
vortex line [28], we employed a tomographic imaging
technique [29]. A 30 J..Lm thick central slice of the con-
densate [see Fig. l(b)] was selectively pumped into the
F = 2 hyperfine level with a sheet of laser light perpen-
dicular to the condensate long axis; the radial profile of
the condensate in the selected region was then imaged
with a light pulse resonant with the F = 2 - F' = 3
cycling transition. In our absorption images, the size of
a doubly quantized vortex core was typically -40 J..Lm.
This tomographic imaging technique was crucial for
observing the time evolution of vortex cores beyond
30 ms.

A series of absorption images of the splitting process is
provided in Fig. 2. Images taken just after imprinting
show a doubly quantized vortex core of high visibility;
the v isibi Iity of the core decreased with ti me, an effect we
attribute to bending of the vortex line [28] and other
excitations created during the imprinting process. Later
in the evolution, the central core deformed into an ellip-
tical shape and split into two closely-spaced cores. Once
the two cores were separated by their diameter, they
appeared well resolved in our images. The angular posi-
tion of the two cores was random for each experimental
realization with the same evolution time, so the preces-
sion frequency of the two cores could not be determined
with our destructive image technique.

To investigate the dependence of the instability on the
mean field atomic interaction, we measured the character-
istic time scale of splitting of a doubly quantized vortex
core as a function of the atom density. Atom density was
controlled by removing a variable number of atoms with
rf evaporation before imprinting a vortex. Images were
classified as follows: images where the two cores were
separated by more than one core diameter were labeled as
"two visible cores"; images with a clearly-defined circu-I1EJI1
BElli

FIG. 2. Decay of a doubly quantized vortex. Axial absorption
images of condensates after 15 ms of ballistic expansion with a
variable hold time after imprinting a doubly quantized vortex.
A doubly quantized vortex decayed into two singly quantized
vortices. For this data, the interaction strength was an: = 7.5
(see text for definition). The field of view in each image is
320 J.Lm x 320 J.Lm.
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lar central core were labeled as "one core"; images in the
intermediate range, where the central core was elliptical
but the two cores were not resolved, and images with a
bad visibility were labeled as "undetermined". For ex-
ample, the images at 62 ms and 75 ms in Fig. 2 and
Fig. 3(a) were classified as two visible cores, and at
50 ms in Fig. 2, and Fig. 4(a) and 4(c) as undetermined

Experimental results are provided in Fig. 3 as a func-
tion of the linear atom density n: (along the condensate
long axis) multiplied by the s-wave scattering length a.
The resealed quantity, an: = a fl"'(r)l2dxdy corresponds
for a cylindrical condensate to the strength of the mean
field interaction, with "'(r) being the condensate wave
function. Results in Fig. 3 clearly demonstrate that a
doubly quantized vortex core splits more slowly as the
density becomes higher.

Once the doubly quantized vortex core split into two
cores, the distance between the two cores was almost
constant (- 50 p,m) during the further evolution, as
shown in Fig. 3(c). This is evidence that the separation
process was driven mainly by the dynamical instability,
and not by dissipation, which would gradually increase
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FIG. 3. Density dependence of the decay process. The time
scale for the decay process of doubly quantized vortex states
was measured by observing the vortex cores and classifying
them as one vortex (open circles) or two vortices (solid circles).
Data were collected with three axial trap frequencies I. = 2.7,
3.7, and 12. I Hz and the interaction strength an: was controlled
by changing the atom number by rf induced evaporation before
imprinting. Typical absorption images for (a) fast decay at low
density (an. = 1.5) and (b) slow decay at high density (an: =
10. I). The field of view in the absorption images is 300 p.m x
300 p.m. (c) The separation of two visible cores vs the hold
time for 2 < an; < 3 (solid triangles) and 6 < an: < 8 (open
triangles). The solid and dashed lines indicate the diameter of
one vortex core and of the condensate. respectively.
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the separation of the two cores. Dissipative processes were
minimized by performing the experiments at the lowest
possible temperature. Condensates did not have any dis-
cernible thermal atoms even after an extended hold time.
Furthermore, the energy released by the dissociation of
the doubly quantized vortex was -5 nK, negligible to the
critical temperature -240 nK. For the upper bound of
temperatures < 100 nK, Ref. [30] predicts that the dissi-
pative decay time be = 1.5 s for a single vortex, a time
scale much longer than what we observed

Multiply quantized vortices in a harmonic potential are
predicted to spontaneously decay into other states even in
the absence of dissipation and external perturbations [5].
In the Bogoliubov framework, which is believed to de-
scribe well quantized vortices in one component conden-
sates, the dynamical instability manifests as the exis-
tence of excitation modes with a complex eigen frequency.
The nonvanishing imaginary part of the eigenfrequency
implies an exponential growth in time of the correspond-
ing excitation mode, leading to decay of the multiply
quantized vortex state. This spectral instability is a gen-
eral parametric phenomenon occurring when several
modes compete during coherent evolution, and has been
studied in many other nonlinear physical systems (see,
e.g., Ref. [31,32]. and references therein).

For a doubly quantized vortex state in a cylindrically
symmetric condensate, it was theoretically found that
there are two excitation modes with a complex eigenfre-
quency [5.13]. One of them is confined inside the doubly
quantized vortex core; the growth of this so-called
"core" mode induces splitting of the original doubly
quantized vortex core into two separate singly quantized
vortex cores. The other mode. having the conjugate ei-
genfrequency, grows with the core mode in order to
conserve energy. In the low density limit, this mode
corresponds to the corotating quadrupole mode, leading
to oscillations in the surface shape of condensates. We
always observed that the surface of condensates changed
into a quadrupole shape as the two cores appeared. as
shown in Fig. 3(a), and the ellipticity was larger at lower
density.

The dynamical instability of the doubly quantized
vortex state is related to the magnitude of the imaginary

FIG. 4. Examples for the dynamic evolution after imprinting
a doubly quantized vortex: (a) Surface excitation. Regular
density modulation of the surface was observed after 51 ms
hold time for an. = 1.8. (b) Same as (a) with a contour line.
(c) Crossing of ~ortex lines. 55 ms hold time and an. = 8.4.
(d) Same as (c) with guidelines for vortex lines. The field of
view is 270 p.m X 270 p.m.
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part of the complex eigenfrequency, and, according to the 
numeric calculation in Ref. [13], the nonvanishing imagi- 
nary part of the eigenfrequency appears at an, < 3 and 
an, - 12, showing a quasiperiodic behavior as a function 
of the interaction strength an,. The experiment showed a 
monotonic increase of the lifetime with no hint of peri- 
odic behavior. However, the calculated instability is not 
directly comparable to the observed lifetime. The imagi- 
nary part represents only the initial instability. Our cri- 
terion for decay was the observation of two separated 
vortex cores. It is possible that the dynamical instability 
changes after the doubly quantized vortex state is signifi- 
cantly perturbed [7,14]. It would be helpful to have more 
inclusive calculations leading to a lifetime directly com- 
parable with the experiments. 

What is the further evolution of the two cores? Some of 
the images at low density showed a regular surface modu- 
lation, as in Fig. 4(a), which was not seen in clouds with a 
single core. This indicates that higher-order surface 
modes are excited during the coherent evolution [33]. 
Several images, especially those labeled as undeter- 
mined, suggest that vortex lines crossed [13,34], as in  
Fig. 4(c). In our system, it  was difficult to trace the 
positions of the two cores beyond 80 ms hold time. 

In conclusion, we observed how a doubly quantized 
vortex splits into a pair of singly quantized vortices, and 
found higher stability at higher atom density. The topo- 
logical phase imprinting technique is unique in generat- 
ing doubly quantized or quadruply quantized vortex 
states [19,35]; a key feature is the rapid preparation of 
well-determined vortex states, which gives access to their 
dy namical instabilities and coherent evolution. 
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