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Abstract 
Determining the stable structure types of an alloy is critical to determining many 

properties of that material. This can be done through experiment or computation. Both 
methods can be expensive and time consuming. Computational methods require energy 
calculations of hundreds of structure types. Computation time would be greatly 
improved if this large number of possible structure types was reduced. A method is 
discussed here to predict the stable structure types for an alloy based on compiled data. 
This would include experimentally observed stable structure types and calculated 
energies of structure types. 

In this paper I will describe the state of this technology. This will include an 
overview of past and current work. Curtarolo et al. showed a factor of three 
improvement in the number of calculations required to determine a given percentage of 
the ground state structure types for an alloy system by using correlations among a 
database of over 6000 calculated energies. I will show correlations among 
experimentally determined stable structure types appearing in the same alloy system 
through statistics computed from the Pauling File Inorganic Materials Database Binaries 
edition. I will compare a method to predict stable structure types based on correlations 
among pairs of structure types that appear in the same alloy system with a method based 
simply on the frequency of occurrence of each structure type. I will show a factor of two 
improvement in the number of calculations required to determine the ground state 
structure types between these two methods. 

This paper will examine the potential market value for a software tool used to 
predict likely stable structure types. A timeline for introduction of this product and an 
analysis of the market for such a tool will be included. There is no established market for 
structure type prediction software, but the market will be similar to that of materials 
database software and energy calculation software. The potential market is small, but the 
production and maintenance costs are also small. These small costs, combined with the 
potential of this tool to improve greatly over time, make this a potentially promising 
investment. These methods are still in development. The key to the value of this tool lies 
in the accuracy of the prediction methods developed over the next few years. 
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1.0 Introduction: 

Determining the stable crystal structures that can fonn in an alloy is critical to 

determining most properties of the material. We refer to the low temperature stable 

structures as ground states of the system. The structure type of a material can be 

determined through experiment, but this is not an affordable way to scan several possible 

alloys in search of a particular property. The ground state structure types of an alloy can 

be predicted through computation. This potentially requires ab initio energy calculations 

for thousands of structure types. Someone could spend several years calculating the 

energies for one alloy. 

There are several databases of known ground state structure types. The Pauling 

File [ 141 has documented 80,000 structure entries. There are methods to use this 

experimental data to predict structure types. Pettifor maps have been used for years to 

predict stable structure types in binary alloys through correlations with known data [I]. 

Many structure types have computed energies available as well. It has been shown by 

Curtarolo et al. [2] that there is a correlation among the computed energies of various 

alloys. A method to use these correlations among experimental data and among 

computational data to predict ground state structure types would be very useful. 

In this paper I will first give a background of this technology. I will explain the 

process of determining ground state structure types through computation. I will also 

discuss the 1-esults of Curtarolo et al., who presented a study of correlations among a 

database of 6,000 calculated energies [2]. 

I have extracted and processed data from the Pauling File Inorganic Materials 

Database Binaries Edition. I will explain how the data was processed and show some 

statistics determined from the database. This includes tests to assess the predictive power 

of the data. 

A second goal of this paper is to discuss the commercial potential of this 

technology. A software tool to predict ground state structure types would be very useful. 

This tool would predict the most likely stable structure types for a particular alloy. This 

could be used to predict what alloys are likely to have a desired material property. 



There is no known structure type prediction software available. There is a 

moderate market for energy calculation software and materials database software. The 

market for this tool would be similar. This paper will discuss the approximate size of this 

market. The resources necessary to develop this tool will be evaluated and compared to 

the potential market value. I will give a timeline describing various phases of production 

of this tool. 



2.0 Background: 
The key to understanding and predicting the properties of a material is knowledge 

of the structure type of the material. There are thousands of known crystal structure 

types. Traditionally the structure type of a material is determined experimentally through 

x-ray diffraction or a similar technique. The material must be synthesized before this can 

be done. This is an expensive way to scan several materials for a desired property. There 

are heuristic models, where experimental observation is used to extract rules that 

rationalize crystal structures based on a few physical parameters, such as atomic radii and 

electronegativities. The Miedema rules are one such technique [3]. 

A widely used structure type prediction method is Pettifor maps [I, 41. They have 

been used for many years to predict likely stable structures. These maps predict stable 

structure types for binary alloys by comparing them to binary alloys with known stable 

structure types. Pettifor assigned a 'Chemical Scale' value to each element. Known 

stable structure types are indicated on a two dimensional plot of the chemical indices of 

the constituent elements. By locating the alloy of interest on this plot it is possible to 

determine what structure types are stable for alloys with similar indices. Figure 1 shows 

a Pettifor map for AB binary alloys. Each symbol represents a different structure type. 

Notice that the appearances of many structure types are clustered on this map. This 

shows a tendency for alloys of similar elements to have the same structure type. 

Pettifor maps are useful, but have limitations. They apply at only one 

composition. Only data at the composition of interest is used for prediction. This makes 

it difficult to predict structure types at compositions for which little data is known. 

Pettifor map methods have been expanded to ternary alloys by Villars [5] ,  but this 

requires known structure information about ternary alloys to compare. The fraction of 

ternary alloys with known structure types is much less than the fraction of binary alloys. 

More binary structures are known and there are fewer possible binary alloys than ternary 

alloys. It would be useful to use binary alloy information to predict stable structure types 

for ternary alloys, and to use structure type information at one composition to predict 

stable structure types at another composition. 
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Figure 1: AB Binary alloy Pettifor Map 

There is growing interest in using computational methods to predict structure 

types of materials [6-71. First principles approaches have made impressive progress, but 

are limited by the time it takes to explore the many possible structures for a new system. 

This becomes easier as computing speeds increase, but it is still a time consuming 

process. The energy for all known structure types must be computed for the alloy of 

interest. From these energies a convex hull is created for this alloy. The convex hull is 

the set of stable structures, or combination of structures, as a function of composition that 

has lower energy than any other structure. Figure 2 shows the convex hull for the AgAu 



alloy system [8], based on 173 calculated structure types. The energy points on the hull 

are the ground state structure types. The composition of the alloy and this convex hull 

are used to determine the structure type or types that will be stable. The energy 

calculation for one structure type will take somewhere between several hours and days. 

This means it would take on the order of several months to a year to determine the 

convex hull and the stable structure types for one alloy, assuming one has to explore 

170+ structures. If a method could predict the most likely stable structure types the 

computation time would be greatly decreased. 

Convex Hull for Ag-Au system 
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Fraction Au 

Figure 2: Convex Hull for Ag-Au alloy system 

3.0 Data Mining: 

Methods are being developed to use data mining to predict stable structure types. 

The goal is to reduce the number of calculations required to produce the convex hull by 

predicting the most likely stable structure types. Curtarolo et al. [2] have shown that 



there are correlations among the ab irzitio energies of different structure types and these 

correlations can be used to predict the most likely stable structure types. 

There is a growing amount of structure type data available. This includes 

databases of experimentally determined structure types, as well as databases of calculated 

energies for various structure types and alloys. I will show in this paper that there are 

correlations among experimentally known stable structure types. By mining available 

databases of structure types it is possible to predict likely ground state structure types of 

unknown alloy systems. A robust method of combining the computational and 

experimental data to predict structure types would be a very useful tool. Such a tool 

would continually improve as more data is available. 

3.7 Past Work: 
Curtarolo et al. studied correlations among a database of energy calculations of 

114 structure types for each of 55 binary alloys. The formation energies were calculated 

using density functional theory in the local density approximation with ultra-soft 

pseudopotentials. Calculations were at zero temperature and pressure and without zero 

point motion. The number of k-points used for Brillouin zone integrations was 2000 

divided by the number of atoms in the unit cell. The absolute energy of these 

calculations was converged to better than 10 meV per atom. This study was later 

expanded to a library of 154 structure types for each of 82 binary alloys [9]. 

A principal component analysis (PCA) was performed on this database of 

energies [lo]. Consider the 114 structural energies for an alloy as an energy vector. The 

goal of the PCA was to express this energy vector as an expansion in a basis of reduced 

dimension, d. PCA consists of finding the proper basis set that minimizes the remaining 

squared error for a given dimension, d. This regression was done using a Partial Least 

Squares method implemented with the SIMPLS algorithm [ l  1-1 31. 

Figure 3 shows the results of this PCA analysis for the larger library of 82 alloys 

and 154 structure types. This plot shows the root mean squared error, in eV per atom, as 

a function of the reduced dimension d, the number of principal components used. The 

dashed line in the plot shows the rms error if the structure energies in the database are 

randomly permuted. This is what we would see if the structural energies were not 



correlated. The plot shows that for an acceptable error of 50 meV/atom, less than 20 

principal components are required. 

0 20 40 60 80 
# Principal Components 

Figure 3: RMS error as a function of number of principal components used for DMQC compared to 
uncorrelated energies [9] 

A test was defined to assess the predictive ability of this data. This is done 

through an iterative process. This test started with the energies for the bcc, fcc and hcp 

structures for the pure elements of an alloy system. The energies of the remaining 

structure types were predicted using the partial least squares regression. The structure 

type with an energy value the furthest below the convex hull, based on the least squares 

fit, is computed using ab initio methods. At the start of the test this convex hull is a 

straight line connecting the lowest energy structures of each of the two pure elements. If 

no energies fall below the convex hull the structure with an energy value nearest to the 

hull is computed. This energy is then added to the database and the PLS regression is 

performed again to predict the next candidate structure type. This method is referred to 

as Data Mining of Quantum Calculations (DMQC). 

This method was tested on the database of energies with a leave one out 

validation method. One alloy was left out of the library. The partial least squares 

regression was performed using the remaining alloys. From this regression the structure 

type with the predicted energy farthest below the convex hull for the new alloy system is 



determined. The ab initio energy for this structure type is added to the list of energies for 

the new alloy system and the process is repeated. This method was repeated for several 

alloy systems. 

Figure 4 shows the number of calculations required as a function of the 

percentage of ground states predicted correctly using this DMQC method, and the larger 

library of 82 alloy systems and 154 structure types. The dashed line shows the number of 

calculations required using random structure selection to choose each candidate structure 

type. This shows a great improvement in the calculation time required through the 

DMQC method compared to random structure selection. One hundred percent of the 

ground state structures were predicted with 80 calculations, much less than the 154 

calculations required with random structure selection. Overall this method shows 

approximately a factor of three improvement in the calculations required for a given 

degree of accuracy. 

70 80 90 1 00 
accuracy % 

Random Sti-uciuic Selection 
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# 

Figure 4: Number of calculations required as a function of the percentage of ground states predicted 
correctly for DMQC method compared to Random Structure Selection [9] 

This method was also able to predict whether the alloy system left out was 

compound forming. This was done using the smaller library of 55 alloy systems and 114 

structure types. It was determined if an alloy system was compound forming with 13 



calculations using DMQC, compared to 98 calculations required with random structure 

selection. 

3.2 Current Work: 
The work by Curtarolo et al. showed approximately a factor of three improvement 

between random structure selection and the DMQC method in the amount of computation 

required for a given accuracy. It would be useful to use experimental structure type data 

in addition to the ab initio energies to predict likely stable structure types. This way it 

would be possible to predict structure types from experimental data that are not in the 

library of structures used in the calculated energy database. In order to assess the 

feasibility of this it is necessary to investigate the correlations among experimentally 

observed stlucture types. 

I have used the Pauling File Inorganic Materials Database Binaries edition for this 

study. This contains 27,395 structure type entries. The Pauling File is compiled from 

150,000 original publications taken from over 1,000 scientific journals since 1900 [14]. I 

have extracted and processed the data from the Pauling File to determine correlations 

among the structure type entries of various alloy systems. 

3.2.1 Preparing the Data: 
In order to obtain the most accurate statistics from the database, we must 

determine what data should be included. Some of the entries are for high temperature or 

high pressure phases. These must be studied separately. We will only consider standard 

temperature and pressure entries. There are many systems that have been extensively 

studied. As a result there are many duplicate entries. There are also entries that are 

similar enough to be considered duplicate entries. For example, there is an entry for 

CuTi and C U ~ . ~ ~ T ~ ~ . ~ ~ ,  both with the same structure type. Entries such as this must be 

removed along with the duplicate entries. 

In order to determine if two entries are duplicates we want to determine which 

compositions are valid compositions for any given structure. This was done through an 

iterative process for each structure type. Initially all compositions, binned to the nearest 

1%, that contained at least 5% of the entries for that structure type were considered valid. 

All other entries were moved to the nearest composition. The cutoff value was then 



increased from 5% to 30% in 1% intervals. After each increase, a new set of valid 

compositions was determined for the new cutoff value and all other entries were binned 

to the nearest valid composition. A set of 29 compositions with rational fractions were 

determined based on the distribution of data in the Pauling file. Any of the valid 

structure compositions that did not occur at one of these rational fractions was moved to 

the nearest rational fraction for this study. Table 1 shows these composition values and 

the number of structure types at each composition. I only show the 15 values up to 0.5. 

The numbers have been symmetrized so the number of structure types at 0.1 is actually 

the number of structure types at 0.1,0.9, or both. 

This set of rational fractions is included to accommodate the tests that I will 

discuss later. We want to be able to consider the structure types that could be seen at a 

certain composition. In order to do this the set of compositions must be defined. 

Table 1: Number of Structure types at each allowed composition 

# Structure Tvpes 
25 
20 
27 
31 
35 
24 
66 
33 
28 
85 
49 
60 
21 
26 
65 

Composition 
0 

0.1 
0.143 
0.167 
0.2 

0.222 
0.25 

0.286 
0.3 

0.333 
0.375 
0.4 

0.429 
0.444 
0.5 

Fraction 
0 

1/10 
117 
116 
115 
219 
1 I4 
217 
3/10 
113 
318 
215 
317 
419 
1 I2 



Structure Type Occurrences: Full database 

Figure 5: Percentage of total entries in Pauling File as a function of the number of most frequent 
structure types included 
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types by the frequency of occurrence. Figure 5 shows the percentage of entries included 

by the top n structure types from this list. The 200 most frequent structure types contain 

75% of the total entries. 761 of the structure types only appear once. 

For further analysis of the data, a structure type is defined by the prototype name 

and the composition at which it is being considered. It is important to have a consistent 

method for defining the composition. For any binary alloy system, AB, I have 

considered the first element alphabetically as A. So the compound Au3Cu has a 

composition of 0.75 while AuCu3 has a composition of 0.25. This is required to 

determine the proper correlations among structure types. I will discuss in the next section 

how the data was symmetrized. This was done so that when a structure type occurs at 

0.25 and 0.75, for example, both compositions are considered together. 



3.2.2 Statistics: 
We would like to investigate the correlations among structure types seen in the 

same alloy system, at different compositions. We know from previous work with 

structure maps that there are correlations among structure types seen at one composition 

in similar alloy systems. It is essential to the approach discussed here that experimental 

data shows a tendency for certain structure types to appear in the same alloy system. 

I am making comparisons of pairs of structure types appearing together in the 

same system. When a structure type is seen at two symmetric compositions, such as 0.25 

and 0.75, both entries are instances of the same structure type, but they must be 

considered differently for this comparison. Consider the compositions and structure 

types shown in table 2. Structure types a1 and a2 are the same structure type appearing at 

symmetric compositions, as are pl and p2. The appearance of a1 and P I  in the same alloy 

system is equivalent to the appearance of a2 and p2 in the same alloy system, as the 

difference is only in how the composition variable is defined. On the other hand, a1 and 

pl  appearing in the same system is not equivalent to a1 and & appearing together in the 

same system. This is handled in this study by considering symmetric structure types 

separately when counting statistics, but combining the results later. 

Table 2: Example of structure type pair correlations 

Index of Terms: 

N ,  : Number of systems in the data set 

N ,  : Number of systems with a structure at composition ci 

N , , , ,  : Number of systems where structure a appears at composition ci 

0.67 

a2 

0.33 

P 1 

Composition 

Structure Type 

N ,  : Number of systems with a structure at composition ci and composition cj 

0.75 

P2 

0.25 

a 1 

N a ( r i  )B(c , )  :Number of systems with structure a at composition ci and structure P at 

composition Cj 



In order to see the col-relations among the data I have defined two enhancement 

factors, ,Pee,, , and F * ~ ( ~ ,  ) B ( ~ ,  ) that show correlations among pairs of structure types 

occurring in the same alloy system. The pair cumulant is the cumulant for a pair of 

structure types. This is defined as 

The pair curnulants I will show in this paper are the average of the pair cumulant and the 

pair cumulunt when both structure types are at the symmetric composition. If there is no 

correlation between the occurrences of the two structure types the value of this factor will 

be one. Values larger than one indicate positive correlation; values less than one indicate 

negative correlation. The largest possible value for this factor will occur when 

N a ( ,  ,Pee,, is equal to the smaller of N , , ,  , and No,,, , . This value will be Nsys divided by 

the larger of Na,c i )  and N P c c , ) .  

The composition restricted cumulant, pa,, ,P(c j , , c , c ,  , is similar to the pair cumulant, 
I I  

with the condition that we know there is a structure at both compositions, ci and cj. This 

is defined as 

There is one assumption made in the above equation. I am making the approximation 

that p(a(ci)  I cicj) = p(a(c,) I ci) . This is saying the probability of seeing a particular 

structure type at composition ci in a system where we know there is a structure type at 

compositions ci and cj, is approximately the same as seeing that structure type at 

composition ci in a system where we only know there is a structure type at composition 

ci. For some structure types this may not be accurate, especially if ci and c, are close in 

value. 



This factor is intended to account for the fact that some compositions are more 

likely to have a stable structure type than others. Pairs of structure types at compositions 

that are unlikely to both have stable structure types in the same system will have values 

for the composition restricted cumulant that are larger than the pair cumulant for that pair 

of structure types. If there are two compositions that very seldom appear in the same 

system, but two structure types from these compositions appear together a lot, this will be 

reflected by a large value for the composition restricted cumulant. As with the pair 

cumulant, the values I will show for this cumulant are an average with the symmetric 

compositions. 

I have also calculated conditional pair probabilities for each pair of structure 

types. This represents the probability of finding structure P at composition cj given that 

structure a appears at composition ci in the same system. This value is averaged with it's 

symmetric equivalent, with each individual probability weighed by the number of 

instances of structure type a at that composition. 

I have also calculated the probability of no structure type appearing at composition cj 

given that structure a appears at composition ci, the conditional null structure probability, 

Pwj  )la(ci The importance of this variable will be made clear later. 

I have calculated and analyzed these factors for the set of data that I am calling 

the metallics. This is all entries not containing the non-metals, He, B, C, N, 0, F, Ne, Si, 

P, S, C1, Ar, As, Se, Br, Kr, Te, I, Xe, At, or Rn. This subset of the data was chosen 

because it still contains a majority of the data, 4,836 entries, and the remaining alloy 

systems are expected to have more similarities than the entire database. 

I have sorted the data from this statistical analysis in several different ways in 

order to see the important correlations and anti correlations. Each list I am including here 

contains twelve columns. These columns are the name and composition of each structure 

type, the number of systems each structure type appears in, the number of times the two 

structure types appear in the same system, the number of systems with a structure type at 

each composition, the two cumulants, the conditional pair probability, and the conditional 



null structure probability. The numbers shown all include the statistics for the symmetric 

equivalent. Each list shows the top 50 results. 

For the inter-metallics dataset there are 4,836 entries spread over 29 compositions 

in each of 1408 systems. The probability that any of these system-composition pairs has 

no structure type is 88%. This will be the average value of the conditional null structure 

probability. I have listed the conditional null structure probability, because it is 

significant when the conditional pair probability and the conditional null structure 

probability sum to 1 .  In these cases every time a structure was seen at composition cj in a 

system with structure a at composition ci, it was structure p. Situations when the 

conditional null structure probability is 1 can also be significant. This signifies for every 

system that structure a appeared in at composition Ci, no structure was seen at 

composition cj. This is especially significant when K(,, and q,, are large. 

Highest Enhancement Factor: 

The first list I will show here is sorted by the highest pair cumulant. Half of the 

structure types only appear once. Anytime two of these unique structure types appear in 

the same system they have an extremely large pair cumulant due to their low frequency 

of occurrence. These structures could show accurate correlations, but the large number 

of unique structure types in the Pauling File causes them to dominate lists such as this. I 

have not included unique structure types in this list. 

The first two entries on this list are cases where every time structure type a 

appeared at composition ci, either structure type P appeared at composition cj or no 

structure appeared at composition cj. Correlations such as this are of note when 

considering the predictive power of the data. Knowing that every time structure a 

appears at composition Ci, either structure P appears or no structure is found greatly 

reduces the number of energy calculations required to construct the complex hull. It is 

possible to understand the reason for some of these correlations by examining the pairs of 

structure types more closely. Both entries Rb5Hgls and Rb3Hgzo only appear in Mercury 

systems. Relations such as this could be useful in predicting candidate structure types. 
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Fe3Ga4 

Fe2P 

K2Hg7 

Li5Sn2 

Li9Ge4 

Au2V 

Ir3Si 

Ir3Si 

KHg 

KHg 
Ta2H 

Cu Al 

NbH0.95 

V7A145 

Co5Ge7 

Ce24Co11 

Ru2Ge3 

Pt2Ga 

Pt3Ga 

PdAl 

CdSb 



Ba7Cd31 

Ba7Cd31 

Cr9.5A116 

Cr9.5A116 

Li22Pb5 

Li22Pb5 

LiRh 

Mg3ln 

RbGa3 

Rb3Hg20 

Rb5Hg19 

V7A145 

Cr9.5A116 

Li5Sn2 

LiGe 

Li l r3 

PuGa 

Rb21n3 

Table 3: Structure type pairs sorted by Enhancement Factor 1 

Highest number of occurrences together: 

This next list is sorted by the number of times the structures appear in the same 

system. This shows correlations among frequently occurring structure types. The 

beginning of this list is dominated by the elemental structures, because they appear in 

many more systems, but there are other structure types on the list. The first pair of two 

non elemental structure types is the 16" entry on the list, Fe3C and MgCu2. The pair 

cumulant for this pair is 8.95. This is a strong correlation for two common structure 

types. There are 20 pairs of structure types that appeared in more than 50 systems 

together. 

Mg 
CsCl 

Cu 

Mg 
Cu 

Cu 

Cu 

Cu 

Cu 

Mg 
MgCu2 

CsCl 

Cu3Au 

C u 

0 Mg 
0.5 Mg 

0 Mg 
0 W 

0 W 

0 Cu3Au 

0 MgCu2 

0 CsCl 

0 Cu 

0 MgZn2 

0.333 Mg 

0.5 W 

0.25 Mg 

0 CaCu5 



Mg 
MgCu2 

Cu 

Mg 
Cu3Au 

Cu3Au 

MgCu2 

Cu 

MgZn2 

Cu3Au 

Cu3Au 

NaCl 

W 

CsCl 

Cu 

Mn5Si3 

Cu 

MgCu2 

Cu 

Cu 

Mg 
Mn5Si3 

Mg 
Cu3Au 

Mg 
CsCl 

Cu 

Mg 
CsCl 

Cu3Au 

Mg 
Fe3C 

MgCu2 

MgCu2 

Cu 

Cu 

MgZn2 

Fe3C 

TI I 

Mn5Si3 

CsCl 

Cu3Au 

W 

Fe3C 

W 

W 

Mn5Si3 

As 

W 

CuTi 

Nd 

Sm5Ge4 

FeB-b 

CaCu5 

Th7Fe3 

Cu3Au 

TI I 

W 

CuTi 

CuAu 

Fe3C 

MgCu2 

Mn5Si3 

NaZnl3 

KHg2 

Mg 
As 

Mn5C2 

PuNi3 

Th2Ni17 

Cu Au 

Sm5Ge4 

Table 4: Structure type pairs sorted by occurrences in the sams alloy 
system 

Lowest Enhancement Factor 

This list is the anti correlations. This shows structures that never appear together. 

This list is sorted by the minimum of N,,,, and Np,, , ,  , in descending order. The first 

several entries in this list are some of the most frequently occurring structure types. This 



indicates that the frequency of occurrence of structure types is not enough information to 

effectively predict stable structure types. 
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Cu 
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W 
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0.5 TI1 
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0.333 NaCl 

0.5 NaCl 

0.333 MgZn2 

0.333 MgZn2 

0.333 NaCl 

0.333 Nd 

0.333 Nd 

0 Nd 

0 Nd 

0.333 Mn5Si3 

0.333 Mn5Si3 
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0.333 Fe3C 

0.333 Fe3C 

0.375 Fe3C 

0 Fe3C 

0.25 Fe3C 



Fe3C 

Fe3C 

Fe3C 

Fe3C 

MgCu2 

MgZn2 

TI I 

Fe3C 

NaCl 

FeB-b 

CuAu 

Cu3Au 

MgCu2 

NaCl 

Nd 

As 

As 

Cu Au 

CuAu 

CuAu 

CuAu 

CuAu 

CuAu 

Nd 

CaCu5 

CaCu5 

Table 5: Structure type pairs sorted by lowest Enhancement Factor 1 

Sum of conditional Probabilities is 1: 

This is a list of structure type pairs for which the sum of the conditional pair 

probability and the conditional null structure probability is 1. For this list I have only 

included pairs of structure types from among the 100 most frequently occurring structure 

types. Consider the ninth pair on this list. There are only 24 systems where a structure 

appears at 0.833 and 0.3. 20 of these times the two structures are CaCus and Th7Fe3. 

Both of these structure types have hexagonal primitive cells. 
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Fe3C 
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KHg2 

Mg3Cd 
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Th7Fe3 

Th7Fe3 

Th7Fe3 

Th7Fe3 

Table 6: Structure type pairs sorted by the sum of conditional pair 
probability and conditional null structure probability 

Most Frequent Structure types: 
This last list shows the most frequently occurring structure types. The list is 

ordered by the minimum of R,,, and & c c j , ,  in descending order. This is interesting to 

see correlations among the most common structure types, where the statistics are the best. 
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Cu3Au 

Cu3Au 

Cu 

Cu 
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Cu3Au 

Cu3Au 

Cu 

Cu 
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0 Mg 
0 Cu 

0 W 

0 W 

0 W 

0 W 
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0.5 W 

0.5 Mg 

0 CsCl 

0.25 W 

0.25 W 

0.25 Mg 

0.25 Mg 

0.25 CsCl 

0.25 Cu3Au 

0 Cu3Au 

0 Cu3Au 

0.333 W 

0.333 W 

0.333 Mg 

0.333 Mg 

0.333 MgCu2 

0.5 MgCu2 

0.25 MgCu2 

0.25 MgCu2 

0 MgCu2 

0 MgCu2 

0 TI1 

0 TI1 

0.333 TI1 

0.5 Tll 

0.25 TI1 

0 TI1 

0.5 NaCl 

0 NaCl 

0 NaCl 

0.333 NaCl 
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0.25 NaCl 0.5 241 142 0 423 0 0 

0 NaCl 0.5 805 142 10 1301 0.27 0.27 

0.333 NaCl 0.5 121 142 0 524 0 0 

0.333 TI1 0.5 121 174 2 524 0.24 0.21 

0.333 W 1 121 542 46 906 1.93 1.88 

0.333 W 0 121 542 14 862 0.57 0.58 

0.333 MgZn2 0.667 121 121 0 226 0 0 

0 MgZn2 0.667 892 121 55 906 1.36 1.33 

0 MgZn2 0.333 892 121 85 862 2.18 2.23 
Table 7: Structure type pairs sorted by frequency of occurrence 

3.2.3 Prediction Tests: 
We want to test the ability to predict stable structure types at one composition 

based on structure types seen in that system at a different composition. I have defined 

and run some tests for this purpose. These tests are intended to compare different 

methods of creating candidate lists from which to choose possible ground state structure 

types. For these tests I leave out all structure entries from the system I am testing when 

calculating statistics. Unique structures are ignored as it is impossible to predict them 

when they are left out. Compositions where no structure type appears in the Pauling File 

for a given system, null structure entries, are not considered. These cases are very 

common. As a result, when they are included, the null structure prediction is the correct 

choice most of the time so the results are similar with every method. 

The four methods tested are random structure selection, ordering by frequency of 

occurrence, ordering by pair probabilities, and ordering by a cumulant expansion. For 

each method I record the fraction of structure types checked before finding the stable 

structure type for that system. 

With random structure selection structure types are selected at random from a list 

of all structure types appearing at the composition of interest. On average half of the 

possible structure types will have to be checked before finding the correct one with this 

method. 

With frequency of occurrence, all structure types seen at the composition of 

interest are ordered by the number of times that structure type appears at that composition 

in the database. This is the simplest way of using the experimental data to predict 

possible structure types. 



For the pair probability method I order the possible structure types by the 

conditional pair probabilities. For each system I try to predict each stable structure type 

that appears in the system based on the conditional pair probabilities from each of the 

other structure types that appear in the system. For any system with more than one 

structure type a series of tests are run for each structure type a in the system. This series 

of tests consists of looking at each composition other than that of structure type a where a 

structure type appears. A list of candidate structure types for this composition is 

compiled based on the conditional pair probabilities from structure type a. If there are ni 

structure types that appear in alloy system i. There will be ni*(ni-1) tests for that system. 

Structure types with the same conditional pair probability are ordered by frequency of 

occurrence. 

For the cumulant expansion method I order the possible structure types by the 

conditional probability based on all other structure types that appear in the system. This 

is P(P 1 cr, ...cr,), where p is the structure I am trying to predict and a1 . . . an are all other 

structure types that appear in the system. I calculate this using a cumulant approach. 

P(P I a;... an) = p(Pa,...an p(a1 ... an) ) 

The term on the right of the second equation represents the product of the 

cumulants of all subsets of the set of structure types that appear in a system. I am making 

the approximation that the cumulant for all subsets with more than two elements is 1, so I 

only use two event cumulants. 

All subsets not containing P will appear in both the numerator and denominator, 

canceling out. 



Using this method to predict the correct structure type, there is one test for each 

structure type entry, based on all other entries for that system. Structure types with the 

same conditional probability are ordered by frequency of occurrence. 

3.2.4 Results: 
I recorded the results of the tests as the fraction of structure types that must be 

tested with each method before finding the correct structure type. Table 8 shows the 

average and standard deviation for the four methods. For the conditional pair probability 

method there were 19,701 tests. One test involves compiling an ordered list of structure 

types and determining where on this list the known stable structure type for the alloy 

system and composition of interest appears. For the frequency of occurrence method and 

cumulant approach there were 4096 tests. 

Table 8: Statistical data for structure type prediction using four different methods. Values are in 

fraction of possible structure types checked 

There is a greater than two times improvement in the average fraction of structure 

types tested before finding the ground state structure type between the frequency of 

occurrence method and the conditional pair probability method. The average fraction 

from the cumulant approach is higher than that from the conditional pair probability 

method. This can be explained by a lack of adequate data for the cumulant method. This 

method orders structure types by the products of the two point cumulants for all structure 

types appearing in the system at a composition other than the composition being tested. 

Many of the two point cumulants are zero because many pairs of structure types never 

appear together in the same system, or only appear together in the system being studied, 

which is left out. As a result 92 % of the conditional probabilities determined with this 

method are zero. This effect is less of a problem with the conditional pair probability 

Standard Deviation 

0.333 

0.2688 

0.1859 

0.2502 

Random Structure Selection 

Frequency of Occurrence 

Conditional Pair Probability 

Cumulant Approach 

Average 

0.5 

0.2458 

0.1 1 10 

0.1726 



method because we are only looking at one conditional pair probability at a time. With 

the cumulant approach many conditional pair probabilities are multiplied together, 

increasing the chance of a zero value. Structure types with a cumulant expansion of zero 

are ordered by frequency of occurrence. The improvement in average fractions, shown in 

table 8, from 0.2458 to 0.1726 is large considering only 8% of the data is affected. 

In addition to the average and standard deviation from each method, it is of 

interest to see the percentage of correct structure types found with each method for a 

specific fraction of possible structure types checked. This is shown in figure 6. The 

cumulant approach is similar to the frequency of occurrence method at low and high 

percentages. The major deviation is between 60 and 85%. All three methods perforrn 

fairly well up to about a 60% chance of finding the correct structure type. The frequency 

of occurrence method begins to get worse here. The cumulant approach continues to do 

well until about 70%. The conditional pair probability method holds on until about 80%. 

The frequency of occurrence method does well at predicting common structures. It is not 

expected that this method would improve much with more data. The results for this 

method are a reflection of the fraction of the database that is contained by the most 

frequently occurring structure types. The other two methods are able to predict some of 

the less frequent structures well. More data would improve the ability of these methods 

to predict the less frequent structure types. 

I have compared the structure types in the Pauling File with the structure types in 

the database Curtarolo et al. used in the DMQC work. I was able to match 61 of the 

structures in the Curtarolo database with structures in the Pauling File. These 61 

structure types contain 57% of the entries from the Pauling File, after the duplicates and 

non standard temperature and pressure phases were removed. The remaining 43 % of the 

entries represent cases where experimental data can be used to predict structures that are 

not currently in the database of structures used to create the library of computational 

energies. This is one of the reasons it is desired to use experimental data in conjunction 

with computed structural energies to predict candidate structure types. 



Fraction structure types tested vs. % of ground states found 

% Chance of finding correct structure type 
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Figure 6: Comparison of fraction of structure types that must be checked to identify a given 
percentage of stable ground states using the four different methods 

3.3 Future Work: 
There are several important obstacles to overcome before this technology is ready 

for commercial use. This paper and the work by Curtarolo et al. have shown there are 

correlations among both experimental and calculated structure type data. Tests in both 

cases have shown the ability to use these correlations to predict the most likely stable 

structure types. The correlations among the computed energies must be combined with 

the correlations among the experimentally known structure types in a robust predictive 

algorithm. 

The work so far has used only binary alloys. It is important that these methods 

apply to other systems as well. More testing is required to determine how well these 

correlations can be used to predict structure types in alloys of more than two elements. 

In addition to predicting the stable structure types, it is also important to predict 

when there is no stable structure type. Curtarolo et al. were able to show great 
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improvement in the calculations required to determine if an alloy system is compound 

forming using the DMQC method. This is an area that must be researched further. 

4.0 Commercial Analysis: 

4.7 Potential commercial application: 

Part of the goal of this project is to examine commercial applications for this 

technology. The product considered here is a software tool that could predict stable 

structure types of an alloy or predict alloys with a given structure type. This tool would 

be of use to many scientists and engineers. Such a tool would be useful in improving the 

efficiency of research in both academic and commercial settings. If someone is interested 

in investigating the properties of a particular alloy they could use this tool to predict the 

stable structure types. Also if a particular property is desired the tool could predict alloys 

like to have a structure type with this desired property. 

There is work to be done before such a tool would be ready, but previous and 

current work shows that such a prediction tool is possible. The confidence level of these 

predictions is the key factor to be determined. This confidence level would improve over 

time as more data is available. This is an important detail about this technique. Any 

prediction methods will improve as more structure type data is made available. This is 

sort of a snowball effect. The tool will improve the efficiency of calculations to 

determine structure types. The results of these calculations will improve the prediction 

tool. This allows continued revenue as updates to the tool are required. 

4.2 lntellectual property: 

When considering the commercial potential of a technology it is important to 

understand any intellectual property associated with the technology. I have found no 

patents related to predicting structure types [16]. Professor Ceder's group has made a 

technology disclosure for this technology. It has yet to be determined if it is worthwhile 

to apply for a patent for this technology. 



There are numerous patents on techniques to correlate data [17- 191. These 

patents will not affect the commercial potential of the data mining approach to structure 

type prediction discussed here. The correlation techniques being used are developed in 

house. The methods are specific to structure type prediction, which is not covered by any 

patents I have found. 

One other intellectual property consideration is database protection. Currently 

databases only have copyright protection in the United States. This does not sufficiently 

protect the work done to compile and organize the data. In some cases entire databases 

can be extracted and reproduced. The Database and Collections of Information 

Misappropriation act [20] has been in congress for several years. It is currently in the 

House of Representatives. It has been passed by the House of Representatives before, but 

the Senate has rejected it. This act is intended to prevent misappropriation of data in 

this manner. It would allow the producer of a database to prohibit someone from using 

their database in a product that competes in the same market. An alternative to this act 

was introduced to congress in March of 2004. This is the Consumer Access to 

Information Act. This act more narrowly defines misappropriation of a database. 

These acts only apply to the United States. The European Union has much more 

strict regulations in place protecting the creator of a database [21]. The best approach to 

allow worldwide sales would be to market the product as part of a database package. 

This would require working with a database producer, such as Pauling File, or ICSD. 

4.3 Market: 

There are no structure prediction tools available so there is no direct competition 

for this product or an established market. Much work has been done using structure maps 

like the Pettifor maps discussed earlier, to predict stable structure types. Some 

companies use this sort of method internally for structure type prediction. Rational 

Discovery has published a paper discussing the use of structure maps for structure type 

prediction [22]. There is no known software on the market for this purpose. There is an 

established market for energy calculation software and materials databases. The potential 

market for tile product described here would be similar to the market for these products. 



The most widely used energy calculation software packages available 

commercially are Gaussian and VASP [23-241. Gaussian is a software package used to 

predict energies, molecular structure and vibrational frequencies through computation. 

This is the most popular such product for chemists. The exact customer data for 

Gaussian is protected [25-261, but they have thousands of customers worldwide. VASP 

is the most common energy calculation software package for crystals. They have 400 

academic licenses and 40 industry licenses [27]. There are also several energy 

computation software packages available for no charge. 

The Inorganic Crystal Structure Database (ICSD) and the Pauling File are the 

most popular crystal structure databases. The exact customer numbers for ICSD are 

protected, but they are of the same order as the energy calculation software packages, 

approximately 1000 - 2000 [21]. The Pauling File is new to the market. Their free 

online database has 191 8 registrations as of June 2004, almost double there June 2003 

total of 1038 [35]. Ninety percent of the customer base for crystal structure databases is 

academia [32]. 

The prices for these types of software package are vastly different for academia 

and industry [28-301. The price for energy calculation software for academics ranges 

from $500 to $5000. The prices for industry vary from $1000 to $30,000. The high end 

of these ranges is for Gaussian and VASP. The prices for materials database software 

range from $300 for a single user CD version of ICSD for academia to $3000 for multiple 

user industry packages [36,37]. These are well established and developed software 

packages. Typical add on packages are $100 to $200 for academia, and twice this for 

industry. The software product I am proposing should be sold as an additional package in 

conjunction with a database. The exact price would depend on the effectiveness of the 

software and inflation before the product is ready for market. 

The International Technology Research Institute did a study between 1998 and 

2000 on the use of computational modeling in industry [3 11. This study investigated 

modeling work at companies in Japan, Europe and the US. Automobile manufacturers 

are interested in predicting the optimum alloys for various automotive applications. 

There is also increasing interest in studying hydrogen fuel technology. Semiconductor 

manufacturers are interested in determining the optimum material for various 



applications. Pharmaceutical companies and research laboratories also constitute a large 

number of the companies involved in this study. 

I have used this study to compile a list of the number of companies doing 

modeling research organized by the year they started this research. This is shown in 

figure 7. The numbers for the last two years are somewhat low because this was the same 

time the study was taking place so the study is less complete for companies starting 

modeling in these years. Over the last 10 years approximately five companies have 

begun research in modeling each year. This trend should continue or increase as new 

uses for modeling are discovered and computing speeds increase. This shows that the 

market will increase greatly in the 6-8 years before this product would be ready for sale. 

Companies Entering Modeling Field 

,& ,90% ,gPP ,9P ,9BB ,990 ,992 ,909 ,9q6 ,998 
Start Year 

Figure 7: Histogram of companies starting computational modeling work by year started 

USA 

Japan 

Europe 
- - -- 

The potential market for the proposed software tool is on the order of 2,000 

customers. Approximately 90% of the customers are academic [27, 321, but the industry 

numbers appear to be growing. I have constructed a table of the projected annual revenue 



for different market shares and pricing schemes. I have also shown how these results 

would change if the industry percentage of the market grew from 10% to 15% of the 

overall market. Table 4 shows these results. The projected revenue ranges from $88,000 

per year to $575,000 per year. 

Table 4: Projected Potential Revenue for various pricing schemes and market shares 

4.4 Business plan: 

50% Market Share 

15% Industry 

$230,000 /year 

$575,000 /year 

I have developed a business plan for development of this product and introduction 

into the market. There are four phases of this plan, preliminary work, development, 

limited release and commercial release. Estimating software development times is a 

difficult task, especially at this early stage. A range of from 2 to 6 years can be expected 

for this software tool [33-341. This work will be started in phase 1 and completed in 

phase 2. 

We are currently in the preliminary work phase. During this phase we will gain a 

better understanding of the correlations among the data. In this phase the obstacles 

discussed in the future work section will need to be overcome. Structures of more than 

two elements must be investigated and included in the prediction methods. Prediction 

methods must be developed that combine the computed and experimental data. I estimate 

this phase will take 2 to 4 years. This is a rough estimate based on the work I have done 

this year and past work done by Professor Ceder's research group. 

During the development phase the software will be developed for internal use 

based on the methods determined in phase 1. This software will be tested and used to 

fine tune the prediction methods during this phase. This phase should take approximately 

Market Share 

Pricing 

$200 Academic 

$400 Industry 

$500 Academic 

$1000 Industry 

50% Market Share 

10% Industry 

$220,00 /year 

$550,000 /year 

20% Market Share 

10% Industry 

$88,000 /year 

$220,000 /year 

20% Market Share 

15% Industry 

$92,000 /year 

$230,000 /year 



2 years. There is some overlap between phase 1 and phase 2. An early version of the 

software tool would make testing the methods much easier. 

When the software has been thoroughly tested internally, it should be released in a 

limited fashion for beta testing and to increase interest in the tool. This could be 

accomplished through a free version released through the database producer. I would 

expect this phase to last 2 or 3 years. Beta testing can be accomplished in one or two 

years. If there is enough interest in the software and there has been sufficient beta 

testing, this time frame can change. Marketing this product with an established database 

provider could greatly decrease the time to develop a customer base for this tool. During 

this phase a final determination should be made on the commercial value of the product. 

This will depend on the interest in the product and the estimated price that could be 

charged based on the confidence level of the predictions. 

Once beta testing is complete and there is enough interest in the prediction tool it 

could be released into the market. The revenue for the product would be through an 

annual license fee charged to users in association with the database manufacturer. The 

license fee is to receive updates to the tool, when new data is amassed. This is one of the 

important selling points of the tool. The accuracy and usefulness increases greatly over 

time as more data is included in the system. 

I Phase I Time Estimate I Objectives I 
Preliminary Work 

Development 

Initial ~ e l e a s e / ~ e t a  Testing 

4.5 Funding: 
The development of this tool would have to be done with research funding. It is 

I Commercial Release 

unreasonable to expect outside investment until a proven tool exists, especially with the 

4-6 years 

2 years 

2-3 years 

Support and Update software 

small market size. There is a good possibility of receiving research funding for this 

project. Regardless of the market value of the product such a tool would be useful and it 

Develop prediction methods 

Develop Software 

Beta Test / Increase interest in 

tool 

Table 9: Business Plan for structure type prediction software tool 



has been a hot topic in computational modeling. Current work is done with funds from a 

National Science Foundation Information Technology Research (NSF-ITR) grant and 

Department of Energy grant. The Pauling File project [14] is a joint project between 

Japan Science and Technology Corporation (JST) and Material Phases Data System 

(MPDS). This is being funded by the National Institute for Materials Science (NIMS). 

The goal of the project is to compile a comprehensive materials database which covers all 

non-organic solid state materials. 

Once a tool has been developed and tested, outside investment could be sought. I 

would consider this a new product in an existing market, so it is in the comfort zone for 

investors. The potential returns are not large, but only minimal investment would be 

required. There are no materials needed, just computation time and man hours. During 

the development and beta testing period the work could be done by graduate students so 

the man hours are cheap. When the tool reaches the market, two employees would be 

required, one person for support and one for development. This development would 

include adding new data to the database as it is available. 

The ability of this tool to improve with use would cause interest among investors. 

The value of this tool will increase over time for multiple reasons. As more data is 

included the prediction ability of the tool would improve. As computational methods 

increase in popularity, the market for this tool will also increase. 

5.0 Conclusions: 

Past work has shown that there are correlations among the computed structural 

energies over different alloy systems. Curtarolo showed a factor of three improvement in 

calculations required using data mining on quantum calculations compared to random 

structure selection. Current work and the use of Pettifor maps has shown that there are 

correlations among experimentally observed stable structure types. Certain pairs of 

structure types have a tendency to appear together in the same alloy system, while other 

pairs of structure types show a strong tendency not to appear together. These correlations 

have also been shown to improve the ability to determine ground state structure types of 

an alloy system. A factor of two improvement was shown using structure type pair 

correlations compared to choosing structure types based on their frequency of occurrence. 



A tool to predict stable structure types for an alloy of interest or to predict alloys 

likely to have a desired structure would be of use to many people. This could greatly 

improve efficiency of experimental and computational work in materials. It will be 

useful in many different academic departments as well as to commercial companies 

interested in computational modeling. 

There are several tasks remaining before such a tool could be developed. The 

correlations among computed energies and the correlations among experimental data 

must be combined into a robust prediction tool. These correlations must be extended to 

multi-component alloy systems. Any method must also be able to predict whether or not 

an alloy system will be compound forming and at what compositions no structure type is 

expected. 

The value of this tool in the market is yet to be determined. This will depend 

largely on the confidence levels that can be achieved by such a tool. The growing 

interest in computational modeling in industry will also play a large role in this decision. 

It is expected that the number of companies involved in computational modeling will 

greatly increase in the next 10 years during which this tool will be developed. This 

increase in modeling in industry is important because the price that can be charged in 

industry is much larger than the academic prices. I estimate the potential market value on 

the order of $150,000 annually. 

The estimated time to market is 8 to 11 years. The business plan involves four 

phases. Preliminary work must be done before methods are ready for such a prediction 

tool to be developed. The tool must be developed and internally tested. Next the tool 

should be released in a limited fashion to academia. This is important for beta testing and 

to determine interest. If this third phase shows enough interest in the product it could be 

released in the market. 

Funding required for production of this tool is limited. Research funding could 

allow for development and testing of the tool. If and when the tool is ready for a 

commercial release it could be supported by two people, a software developer and a 

scientist, possibly part time. An updated market assessment and cost analysis should be 

done during the beta testing phase to determine if this is a potentially profitable 

application. At this time outside investors could be contacted. The low investment 



required and the improvement expected over time would make this product interesting to 

investors. 
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