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Abstract

Determining the stable structure types of an alloy is critical to determining many
properties of that material. This can be done through experiment or computation. Both
methods can be expensive and time consuming. Computational methods require energy
calculations of hundreds of structure types. Computation time would be greatly
improved if this large number of possible structure types was reduced. A method is
discussed here to predict the stable structure types for an alloy based on compiled data.
This would include experimentally observed stable structure types and calculated
energies of structure types.

In this paper I will describe the state of this technology. This will include an
overview of past and current work. Curtarolo et al. showed a factor of three
improvement in the number of calculations required to determine a given percentage of
the ground state structure types for an alloy system by using correlations among a
database of over 6000 calculated energies. I will show correlations among
experimentally determined stable structure types appearing in the same alloy system
through statistics computed from the Pauling File Inorganic Materials Database Binaries
edition. I will compare a method to predict stable structure types based on correlations
among pairs of structure types that appear in the same alloy system with a method based
simply on the frequency of occurrence of each structure type. I will show a factor of two
improvement in the number of calculations required to determine the ground state
structure types between these two methods.

This paper will examine the potential market value for a software tool used to
predict likely stable structure types. A timeline for introduction of this product and an
analysis of the market for such a tool will be included. There is no established market for
structure type prediction software, but the market will be similar to that of materials
database software and energy calculation software. The potential market is small, but the
production and maintenance costs are also small. These small costs, combined with the
potential of this tool to improve greatly over time, make this a potentially promising
investment. These methods are still in development. The key to the value of this tool lies
in the accuracy of the prediction methods developed over the next few years.
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SR



Acknowledgements

I would first like to thank my advisor, Professor Ceder. In addition to guiding me
throughout the project, he has also helped me stay focus and improved my skills as a
researcher.

Dr. Dane Morgan and Chris Fischer were very helpful answering any questions I
had and filling in the many gaps in my knowledge of the subject.

I would also like to thank Dr John Rodgers of Toth Systems, Inc for taking the
time to help me understand the many commercial aspects to consider.

In addition I would like to thank Kathleen Farrell, who always knows the answer,
and all my fellow Masters of Engineering students for support and laughter along the
way.



2.0 Backround: ........co.ooveeiiimiiiieiiiieic et s b eee e 7
3.0 Data MININE: ....ooviieriiiiieiiceieitiecneee ettt s s n e s s e sesae s e e e see e e e s ee 9
3] PASE WOTK: euuereeieiieeeree ettt eere e e e e e e esan e e s e es s sbsreeeeeeesessnttbeeeeseessssssassessanas 10
3.2 CUITENE WOTK: oottt e e et e e e e s e s s saaaee e e e s eassaneeeeeas 13
3.2.1 Formatting the Data: .........cccoooeerirrienieieeeesteeeee et e s e s e e e 13
RIS ¥ 1y 1] s (ot TSR ORRR 16
3.2.3 Prediction TeStS: ... .uu ettt ceeeree e s e eearr e e e e e s e s eesensreeesesnneeseeenas 27
R N T 11 SRRSO 29

B3 FULUTE WOTK: oo oeiineeeiieieeee ettt ceerteee e e e e e e e eaeeee e e eesssssreereeeesssssrssesseensssnnsnsaeenans 31
4.0 Commercial ANALYSIS:......covverriereeirrieriirieeteerieereesteste st e s sre e et s saeessresseessasseseesaseas 32
4.1 Potential commercial appliCAtION:.......cccevteiiririereeeiiieneetesreeteseeereeseeseeeessessenns 32
4.2 INtelleCtial PrOPETLY: ..c.ceoveruerierrereereeereererreetereee et seesessesseesessessessessenseseeseneenesnessens 32
i \Y, B = S ST R USRI 33
4.4 BUSINESS PLAN: ..ottt e 36
4.5 FUNAING: ..ottt sttt ettt sse s bt e sanesanesasesaneane 37
5.0 CONCIUSIONS: 1eevreieeiiererteeeeeeeteseeiite e e e eessssteeeeeesesssssereeeseessssssaresesesssssbsrrressesesnsnnaeessans 38



1.0 Introduction:

Determining the stable crystal structures that can form in an alloy is critical to
determining most properties of the material. We refer to the low temperature stable
structures as ground states of the system. The structure type of a material can be
determined through experiment, but this is not an affordable way to scan several possible
alloys in search of a particular property. The ground state structure types of an alloy can
be predicted through computation. This potentially requires ab initio energy calculations
for thousands of structure types. Someone could spend several years calculating the
energies for one alloy.

There are several databases of known ground state structure types. The Pauling
File [14] has documented 80,000 structure entries. There are methods to use this
experimental data to predict structure types. Pettifor maps have been used for years to
predict stable structure types in binary alloys through correlations with known data [1].
Many structure types have computed energies available as well. It has been shown by
Curtarolo et al. [2] that there is a correlation among the computed energies of various
alloys. A method to use these correlations among experimental data and among
computational data to predict ground state structure types would be very useful.

In this paper I will first give a background of this technology. I will explain the
process of determining ground state structure types through computation. I will also
discuss the results of Curtarolo et al., who presented a study of correlations among a
database of 6,000 calculated energies [2].

I have extracted and processed data from the Pauling File Inorganic Materials
Database Binaries Edition. I will explain how the data was processed and show some
statistics determined from the database. This includes tests to assess the predictive power
of the data.

A second goal of this paper is to discuss the commercial potential of this
technology. A software tool to predict ground state structure types would be very useful.
This tool would predict the most likely stable structure types for a particular alloy. This

could be used to predict what alloys are likely to have a desired material property.
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There is no known structure type prediction software available. There is a
moderate market for energy calculation software and materials database software. The
market for this tool would be similar. This paper will discuss the approximate size of this
market. The resources necessary to develop this tool will be evaluated and compared to
the potential market value. I will give a timeline describing various phases of production

of this tool.



2.0 Background:

The key to understanding and predicting the properties of a material is knowledge
of the structure type of the material. There are thousands of known crystal structure
types. Traditionally the structure type of a material is determined experimentally through
x-ray diffraction or a similar technique. The material must be synthesized before this can
be done. This is an expensive way to scan several materials for a desired property. There
are heuristic models, where experimental observation is used to extract rules that
rationalize crystal structures based on a few physical parameters, such as atomic radii and
electronegativities. The Miedema rules are one such technique [3].

A widely used structure type prediction method is Pettifor maps [1, 4]. They have
been used for many years to predict likely stable structures. These maps predict stable
structure types for binary alloys by comparing them to binary alloys with known stable
structure types. Pettifor assigned a ‘Chemical Scale’ value to each element. Known
stable structure types are indicated on a two dimensional plot of the chemical indices of
the constituent elements. By locating the alloy of interest on this plot it is possible to
determine what structure types are stable for alloys with similar indices. Figure 1 shows
a Pettifor map for AB binary alloys. Each symbol represents a different structure type.
Notice that the appearances of many structure types are clustered on this map. This
shows a tendency for alloys of similar elements to have the same structure type.

Pettifor maps are useful, but have limitations. They apply at only one
composition. Only data at the composition of interest is used for prediction. This makes
it difficult to predict structure types at compositions for which little data is known.
Pettifor map methods have been expanded to ternary alloys by Villars [5], but this
requires known structure information about ternary alloys to compare. The fraction of
ternary alloys with known structure types is much less than the fraction of binary alloys.
More binary structures are known and there are fewer possible binary alloys than ternary
alloys. It would be useful to use binary alloy information to predict stable structure types
for ternary alloys, and to use structure type information at one composition to predict

stable structure types at another composition.
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Figure 1: AB Binary alloy Pettifor Map

There is growing interest in using computational methods to predict structure
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types of materials [6-7]. First principles approaches have made impressive progress, but

are limited by the time it takes to explore the many possible structures for a new system.

This becomes easier as computing speeds increase, but it is still a time consuming

process. The energy for all known structure types must be computed for the alloy of

interest. From these energies a convex hull is created for this alloy. The convex hull is

the set of stable structures, or combination of structures, as a function of composition that

has lower energy than any other structure. Figure 2 shows the convex hull for the AgAu



alloy system [8], based on 173 calculated structure types. The energy points on the hull
are the ground state structure types. The composition of the alloy and this convex hull
are used to determine the structure type or types that will be stable. The energy
calculation for one structure type will take somewhere between several hours and days.
This means it would take on the order of several months to a year to determine the
convex hull and the stable structure types for one alloy, assuming one has to explore
170+ structures. If a method could predict the most likely stable structure types the

computation time would be greatly decreased.

Convex Huli for Ag-Au system
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Figure 2: Convex Hull for Ag-Au alloy system

3.0 Data Mining:

Methods are being developed to use data mining to predict stable structure types.
The goal is to reduce the number of calculations required to produce the convex hull by

predicting the most likely stable structure types. Curtarolo et al. [2] have shown that



there are correlations among the ab initio energies of different structure types and these
correlations can be used to predict the most likely stable structure types.

There is a growing amount of structure type data available. This includes
databases of experimentally determined structure types, as well as databases of calculated
energies for various structure types and alloys. I will show in this paper that there are
correlations among experimentally known stable structure types. By mining available
databases of structure types it is possible to predict likely ground state structure types of
unknown alloy systems. A robust method of combining the computational and
experimental data to predict structure types would be a very useful tool. Such a tool

would continually improve as more data is available.

3.1 Past Work:

Curtarolo et al. studied correlations among a database of energy calculations of
114 structure types for each of 55 binary alloys. The formation energies were calculated
using density functional theory in the local density approximation with ultra-soft
pseudopotentials. Calculations were at zero temperature and pressure and without zero
point motion. The number of k-points used for Brillouin zone integrations was 2000
divided by the number of atoms in the unit cell. The absolute energy of these
calculations was converged to better than 10 meV per atom. This study was later
expanded to a library of 154 structure types for each of 82 binary alloys [9].

A principal component analysis (PCA) was performed on this database of
energies [10]. Consider the 114 structural energies for an alloy as an energy vector. The
goal of the PCA was to express this energy vector as an expansion in a basis of reduced
dimension, d. PCA consists of finding the proper basis set that minimizes the remaining
squared error for a given dimension, d. This regression was done using a Partial Least
Squares method implemented with the SIMPLS algorithm [11-13].

Figure 3 shows the results of this PCA analysis for the larger library of 82 alloys
and 154 structure types. This plot shows the root mean squared error, in eV per atom, as
a function of the reduced dimension d, the number of principal components used. The
dashed line in the plot shows the rms error if the structure energies in the database are

randomly permuted. This is what we would see if the structural energies were not

10



correlated. The plot shows that for an acceptable error of 50 meV/atom, less than 20

principal components are required.

0.3k y

RMS (eV/atom)

# Principal Components

Figure 3: RMS error as a function of number of principal components used for DMQC compared to
uncorrelated energies [9]

A test was defined to assess the predictive ability of this data. This is done
through an iterative process. This test started with the energies for the bce, fcc and hep
structures for the pure elements of an alloy system. The energies of the remaining
structure types were predicted using the partial least squares regression. The structure
type with an energy value the furthest below the convex hull, based on the least squares
fit, is computed using ab initio methods. At the start of the test this convex hull is a
straight line connecting the lowest energy structures of each of the two pure elements. If
no energies fall below the convex hull the structure with an energy value nearest to the
hull is computed. This energy is then added to the database and the PLS regression is
performed again to predict the next candidate structure type. This method is referred to
as Data Mining of Quantum Calculations (DMQC).

This method was tested on the database of energies with a leave one out
validation method. One alloy was left out of the library. The partial least squares
regression was performed using the remaining alloys. From this regression the structure

type with the predicted energy farthest below the convex hull for the new alloy system is
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determined. The ab initio energy for this structure type is added to the list of energies for
the new alloy system and the process is repeated. This method was repeated for several
alloy systems.

Figure 4 shows the number of calculations required as a function of the
percentage of ground states predicted correctly using this DMQC method, and the larger
library of 82 alloy systems and 154 structure types. The dashed line shows the number of
calculations required using random structure selection to choose each candidate structure
type. This shows a great improvement in the calculation time required through the
DMQC method compared to random structure selection. One hundred percent of the
ground state structures were predicted with 80 calculations, much less than the 154
calculations required with random structure selection. Overall this method shows
approximately a factor of three improvement in the calculations required for a given

degree of accuracy.

150 A

Random Struciure Selection -

100 _

\

# of calculations

O M - i
60 70 80 90 100

accuracy %

Figure 4: Number of calculations required as a function of the percentage of ground states predicted
correctly for DMQC method compared to Random Structure Selection [9]

This method was also able to predict whether the alloy system left out was
compound forming. This was done using the smaller library of 55 alloy systems and 114

structure types. It was determined if an alloy system was compound forming with 13

12



calculations using DMQC, compared to 98 calculations required with random structure

selection.

3.2 Current Work:

The work by Curtarolo et al. showed approximately a factor of three improvement
between random structure selection and the DMQC method in the amount of computation
required for a given accuracy. It would be useful to use experimental structure type data
in addition to the ab initio energies to predict likely stable structure types. This way it
would be possible to predict structure types from experimental data that are not in the
library of structures used in the calculated energy database. In order to assess the
feasibility of this it is necessary to investigate the correlations among experimentally
observed structure types.

I have used the Pauling File Inorganic Materials Database Binaries edition for this
study. This contains 27,395 structure type entries. The Pauling File is compiled from
150,000 original publications taken from over 1,000 scientific journals since 1900 [14]. I
have extracted and processed the data from the Pauling File to determine correlations

among the structure type entries of various alloy systems.

3.2.1 Preparing the Data:

In order to obtain the most accurate statistics from the database, we must
determine what data should be included. Some of the entries are for high temperature or
high pressure phases. These must be studied separately. We will only consider standard
temperature and pressure entries. There are many systems that have been extensively
studied. As a result there are many duplicate entries. There are also entries that are
similar enough to be considered duplicate entries. For example, there is an entry for
CuTi and Cug6Ti1 04, both with the same structure type. Entries such as this must be
removed along with the duplicate entries.

In order to determine if two entries are duplicates we want to determine which
compositions are valid compositions for any given structure. This was done through an
iterative process for each structure type. Initially all compositions, binned to the nearest
1%, that contained at least 5% of the entries for that structure type were considered valid.

All other entries were moved to the nearest composition. The cutoff value was then

13



increased from 5% to 30% in 1% intervals. After each increase, a new set of valid

compositions was determined for the new cutoff value and all other entries were binned

to the nearest valid composition. A set of 29 compositions with rational fractions were

determined based on the distribution of data in the Pauling file. Any of the valid

structure compositions that did not occur at one of these rational fractions was moved to

the nearest rational fraction for this study. Table 1 shows these composition values and

the number of structure types at each composition. I only show the 15 values up to 0.5.

The numbers have been symmetrized so the number of structure types at 0.1 is actually

the number of structure types at 0.1, 0.9, or both.

This set of rational fractions is included to accommodate the tests that I will

discuss later. We want to be able to consider the structure types that could be seen at a

certain composition. In order to do this the set of compositions must be defined.

Composition Fraction # Structure Types

0 0 25
0.1 1/10 20
0.143 1/7 27
0.167 1/6 31
0.2 1/5 35
0.222 2/9 24
0.25 1/4 66
0.286 2/7 33
0.3 3/10 28
0.333 1/3 85
0.375 3/8 49
0.4 2/5 60
0.429 3/7 21
0.444 4/9 26
0.5 172 65

Table 1: Number of Structure types at each allowed composition

14



Structure Type Occurrences: Full database
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Figure 5: Percentage of total entries in Pauling File as a function of the number of most frequent
structure types included

There were 3,436 entries for high temperature phases and high pressure phases.
14,316 of the entries were duplicate entries. After removing these unwanted entries,
9,643 entries are left. From these entries there are 1520 different structure types. Itis
interesting to look at the distribution of these structure types. I ordered the structure
types by the frequency of occurrence. Figure 5 shows the percentage of entries included
by the top n structure types from this list. The 200 most frequent structure types contain
75% of the total entries. 761 of the structure types only appear once.

For further analysis of the data, a structure type is defined by the prototype name
and the composition at which it is being considered. It is important to have a consistent
method for defining the composition. For any binary alloy system, AB, I have
considered the first element alphabetically as A. So the compound Au;Cu has a
composition of 0.75 while AuCujs has a composition of 0.25. This is required to
determine the proper correlations among structure types. I will discuss in the next section
how the data was symmetrized. This was done so that when a structure type occurs at

0.25 and 0.75, for example, both compositions are considered together.



3.2.2 Statistics:

We would like to investigate the correlations among structure types seen in the
same alloy system, at different compositions. We know from previous work with
structure maps that there are correlations among structure types seen at one composition
in similar alloy systems. It is essential to the approach discussed here that experimental
data shows a tendency for certain structure types to appear in the same alloy system.

I am making comparisons of pairs of structure types appearing together in the
same system. When a structure type is seen at two symmetric compositions, such as 0.25
and 0.75, both entries are instances of the same structure type, but they must be
considered differently for this comparison. Consider the compositions and structure
types shown in table 2. Structure types a; and a; are the same structure type appearing at
symmetric compositions, as are B; and B,. The appearance of a; and B; in the same alloy
system is equivalent to the appearance of a, and B, in the same alloy system, as the
difference is only in how the composition variable is defined. On the other hand, a; and
B: appearing in the same system is not equivalent to a; and B, appearing together in the
same system. This is handled in this study by considering symmetric structure types

separately when counting statistics, but combining the results later.

Composition 0.25 0.33 0.67 0.75

Structure Type 0oy B1 %) B2

Table 2: Example of structure type pair correlations

Index of Terms:

N, : Number of systems in the data set

N, : Number of systems with a structure at composition ¢;

N (., : Number of systems where structure a appears at composition ¢;

N, : Number of systems with a structure at composition c; and composition c;
N o) pic,) - Number of systems with structure a at composition ¢; and structure B at

composition c;

16




In order to see the correlations among the data I have defined two enhancement

factors, P, p(.,» and p “ac)B(c, that show correlations among pairs of structure types
¥ J

occurring in the same alloy system. The pair cumulant is the cumulant for a pair of

structure types. This is defined as

Na(r )ﬂ(r/ N
plale)fc;)) D)y

pat‘ C Sys
@R " plale )* plBLe,)) W/ mc/ Nt *Npeep

The pair cumulants 1 will show in this paper are the average of the pair cumulant and the

pair cumulant when both structure types are at the symmetric composition. If there is no
correlation between the occurrences of the two structure types the value of this factor will
be one. Values larger than one indicate positive correlation; values less than one indicate
negative correlation. The largest possible value for this factor will occur when

N is equal to the smaller of N, ., and N B, This value will be Ny, divided by

a(c)B(c;) a(c;
f n .
the larger of N, and Ny ,
The composition restricted cumulant, p .., s ye.. » 1S similar to the pair cumulant,
i PRt}

with the condition that we know there is a structure at both compositions, ¢; and c;. This

is defined as

Naf((,-)ﬂ(cj)
ﬁ _ P(a(Ci)ﬁ(Cj”CiCj) _ N(‘,-(‘j _ Na(q)ﬂ(cj) *NC,- *N(‘j
a(c) Blc)ee; p(a(C,-) | Cicj)* P(ﬁ(cj)l cicj) Na(c,-) . Nﬂ(c,-) Na(c,.) £ Nﬂ(c,) N%
N, N,

There is one assumption made in the above equation. I am making the approximation
that p(a(c,) | c;c;) = p(a(c;)| c;) . This is saying the probability of seeing a particular
structure type at composition ¢; in a system where we know there is a structure type at
compositions c; and c;, is approximately the same as seeing that structure type at
composition ¢; in a syStem where we only know there is a structure type at composition

¢;. For some structure types this may not be accurate, especially if ¢; and ¢; are close in

value.



This factor is intended to account for the fact that some compositions are more
likely to have a stable structure type than others. Pairs of structure types at compositions
that are unlikely to both have stable structure types in the same system will have values
for the composition restricted cumulant that are larger than the pair curmulant for that pair
of structure types. If there are two compositions that very seldom appear in the same
system, but two structure types from these compositions appear together a lot, this will be
reflected by a large value for the composition restricted cumulant. As with the pair
cumulant, the values I will show for this cumulant are an average with the symmetric
compositions.

I have also calculated conditional pair probabilities for each pair of structure
types. This represents the probability of finding structure B at composition c; given that
structure a appears at composition c; in the same system. This value is averaged with it’s
symmetric equivalent, with each individual probability weighed by the number of

instances of structure type o at that composition.

N““-)ﬂ(fﬂ * N al=¢)Bl-c)) o N
N— a(c;) Ny a(l-c;) N
a(c;) a(l-¢;) _ e )B(c;) ~¢;)B-c;)

p ) . = =
lg(fj)|a((|) N +N Na(c_) +Na(l

+ Nt,,(1

a(c;) a(l-c;) ~¢;)
I have also calculated the probability of no structure type appearing at composition c;
given that structure o appears at composition c;, the conditional null structure probability,

Po(c,yetc) - The importance of this variable will be made clear later.

I have calculated and analyzed these factors for the set of data that I am calling
the metallics. This is all entries not containing the non-metals, He, B, C, N, O, F, Ne, Si,
P, S, Cl, Ar, As, Se, Br, Kr, Te, I, Xe, At, or Rn. This subset of the data was chosen
because it still contains a majority of the data, 4,836 entries, and the remaining alloy
systems are expected to have more similarities than the entire database.

I have sorted the data from this statistical analysis in several different ways in
order to see the important correlations and anti correlations. Each list I am including here
contains twelve columns. These columns are the name and composition of each structure
type, the number of systems each structure type appears in, the number of times the two
structure types appear in the same system, the number of systems with a structure type at

each composition, the two cumulants, the conditional pair probability, and the conditional
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null structure probability. The numbers shown all include the statistics for the symmetric
equivalent. Each list shows the top 50 results.

For the inter-metallics dataset there are 4,836 entries spread over 29 compositions
in each of 1408 systems. The probability that any of these system-composition pairs has
no structure type is 88%. This will be the average value of the conditional null structure
probability. 1have listed the conditional null structure probability, because it is
significant when the conditional pair probability and the conditional null structure
probability sum to 1. In these cases every time a structure was seen at composition ¢; in a
system with structure a at composition c;, it was structure B. Situations when the
conditional null structure probability is 1 can also be significant. This signifies for every

system that structure a appeared in at composition c;, no structure was seen at

composition c;. This is especially significant when J—V—a(q) and IV%_ are large.

Highest Enhancement Factor:

The first list I will show here is sorted by the highest pair cumulant. Half of the
structure types only appear once. Anytime two of these unique structure types appear in
the same system they have an extremely large pair cumulant due to their low frequency
of occurrence. These structures could show accurate correlations, but the large number
of unique structure types in the Pauling File causes them to dominate lists such as this. I
have not included unique structure types in this list.

The first two entries on this list are cases where every time structure type a
appeared at composition c;, either structure type B appeared at composition c; or no
structure appeared at composition c¢;. Correlations such as this are of note when
considering the predictive power of the data. Knowing that every time structure a
appears at composition c;, either structure B appears or no structure is found greatly
reduces the number of energy calculations required to construct the complex hull. It is
possible to understand the reason for some of these correlations by examining the pairs of
structure types more closely. Both entries RbsHg9 and RbsHg,o only appear in Mercury

systems. Relations such as this could be useful in predicting candidate structure types.
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Rb5Hg19 0.2 Rb3Hg20 0.143 2 2 2 34 1338  350.07 1 0
TisTe4 0.444 OsGe2 0.667 3 3 2 87 836.25 539.2 0667 0.333
Ni3P 025 TiAs2 0.667 5 3 2 287 75262 610.2 0.4 0.2
Cu6Ce 0.143 CublLa 0.143 5 4 2 96 72475 19.12 0.4 0
Ca2Cu 0.333 CaCu 0.5 2 2 1 524 669  589.15 05 0
Li9Ge4 0.3 Li7Ge2 0.222 2 2 1 7 669 435 05 0.5
LiGe 05 Li7Ge2 0.222 4 2 2 37 669  524.06 05 0.5
Mg2Ga 0.333 MgGa 0.5 2 2 1 524 669  566.38 05 0.5
Pt3Ga 025 Pt2Ga 0.333 2 2 2 115 669  622.72 1 0
CeH3 0.25 CeH2.1 0.3 2 2 2 23 669  424.91 1 ]
Li2Ga 0.333 Li5Ga4 0.444 2 2 2 23 669 591.3 1 0
Ba7Cd31 0.833 K2Hg7 0.778 2 2 2 26 669  102.13 1 0
DyGe3 0.714 YGe1.82 0.667 2 2 2 14 669 1001.57 1 0
DyGe3 025 DyGel.85 0.333 2 2 2 115 669  622.72 1 0
Er3Ged 0.429 DyGe1.85 0.333 2 2 2 23 669  563.59 1 0
Er3Ge4 0.429 DyGe3 0.25 2 2 2 30 669 34262 1 0
KGe 0.5 Cs4Ge9 0.3 6 2 2 68 446 32106 0.333 0.667
Li3AI2 0.4 Li5Ga4 0.444 3 2 2 10 446 24747 0667 0.333
Li3AI2 0.4 Li2Ga 0.333 3 2 2 43 446 38217 0667 0.333
CuAl 05 AudAl 0.2 2 2 1 36 3345 27542 0.5 05
Fe6Ge5 0.556 Fe3Ga4 0.429 2 2 1 7 3345 21568 05 0.5
Ir3Si 025 Fe2P 0.333 2 2 1 115 3345 31136 05 0
KHg 05 K2Hg7 0.778 2 2 1 26 3345 20872 05 05
LiGe 0.5 Li5Sn2 0.714 2 2 1 34 3345 277.04 0.5 0.5
LiGe 0.5 Li9Ge4 0.3 4 2 1 68 3345 23961 0.25 05
NbP13 075 Au2V 0.667 2 2 1 172 3345 257.44 05 0
Pt2Ga 0.333  Ir3Si 0.25 2 2 1 115 3345 31136 05 0
Pt3Ga 0.25 Ir3Si 0.25 2 2 1 337 3345 84.25 05 0
Rb3Hg20 0.143  KHg 0.5 2 4 1 69 3345 320.78 05 0.5
RbsHg19 0.2 KHg 0.5 2 4 1 120 3345 27542 05 05
TaH0.5 0.444 Ta2H 0.333 2 2 1 23 3345 29565 05 0.5
TI2Pt3 04 CuAl 05 2 4 1 133 3345 269.99 0.5 0
V2H 0.333  NbH0.95 0.429 2 2 1 23 3345 28179 05 05
VAI10 0.9 V7Al45 0.857 2 2 1 13 3345 17567 05 05
IrGe4 02 Co5Ge7 0.429 2 2 1 2 3345 4575 05 0.5
La2Ni3 06 Ce24Col1 0.7 2 2 1 16 3345 57.66 0.5 0.5
OsGe2 0.667 Ru2Ge3 0.6 2 2 1 27 3345 410 05 05
Pt8AI21 0.714 Pt2Ga 0.333 2 2 1 31 3345 195.36 05 0
P18AI21 0714 Pt3Ga 0.25 2 2 1 16 3345  300.14 05 05
Pt8AI21 0.286 PdAl 05 3 2 1 59 3345 27704 0.333 0
Zn6.35b4.7 0.556 CdSb 0.5 2 2 1 66 3345 247.88 05 0.5
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Ba7Cd31 0.167 Rb3Hg20 0.143 4 2 1 18 334.5 11865 025 0.75
Ba7Cd31 0.167 Rb5Hg19 0.2 4 2 1 41 334.5 1582 0.25 0.5
Cr9.5A116 0.625 V7Al45 0.857 2 2 1 11 334.5 197.59 05 0
Cr9.5A116 0.571 Cr9.5AI16 0.625 2 2 1 1 334.5 276 0.5 05
Li22Pb5 0.833 Li5Sn2 0.714 4 2 2 9 334.5 178.92 05 025
Li22Pb5 0.833 LiGe 0.5 4 2 2 77 3345 24251 0.5 0
LiRh 0.5 Lilr3 0.25 8 2 2 423 3345 27244 025 0.75
Mg3In 025 PuGa 0.5 4 2 1 423 3345 269.19 0.25 0
RbGa3 0.75 Rb2In3 0.6 2 2 1 41 334.5 197.56 0.5 0.5

Table 3: Structure type pairs sorted by Enhancement Factor 1

Highest number of occurrences together:

This next list is sorted by the number of times the structures appear in the same
system. This shows correlations among frequently occurring structure types. The
beginning of this list is dominated by the elemental structures, because they appear in
many more systems, but there are other structure types on the list. The first pair of two
non elemental structure types is the 16™ entry on the list, Fe3C and MgCu2. The pair
cumulant for this pair is 8.95. This is a strong correlation for two common structure

types. There are 20 pairs of structure types that appeared in more than 50 systems

together.
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Mg 0 Mg 1892 892 214 2482  0.76 0.76 024 0.035
CsCl 05 Mg 0 448 892 197 1301 1.32 129 044 0
Cu 0 Mg 1 805 892 186 2482  0.68 068 0231 0017
Mg 0w 1 892 542 131 2482 072 0.73 0.147 0.035
Cu 0o w 1 805 542 127 2482 079 0.79 0.158 0.017
Cu 0 Cu3Au 025 805 241 125 671 1.78 178 0155 047
Cu 0 MgCu2 0333 805 198 112 862  2.09 214 0139 0412
Cu 0 CsCl 05 805 448 93 1301  0.66 0.65 0.116 0.317
Cu 0 Cu 1 805 805 88 2482 038 0.38 0.109 0.017
Mg 0 Mgzn2 0333 892 121 85 82 218 223 0.095 0.589
MgCu2 0.333 Mg 1 198 892 73 906  1.06 103 0369 002
CsCl 05 W 0 448 542 65 1301  0.71 0.7 0.145 0
Cu3Au 025 Mg 1 241 892 65 688 08 078 027 0.008
Cu 0 CaCus 0167 805 8 57 177 = 242 234 0071 0.637
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Mg 0
MgCu2 0.333
Cu 0
Mg 0
Cu3Au 0.25
Cu3Au 0.25
MgCu2 0.333
Cu 0
MgZn2 0.333
Cu3Au 0.25
Cu3Au 0.25
NaCl 0.5
w 0
CsCl 0.5
Cu 0
Mn5Si3 0.375
Cu 0
MgCu2 0.333
Cu 0
Cu 0
Mg 0
Mn5Si3 0.375
Mg 0
Cu3Au 0.25
Mg 0
CsCl 0.5
Cu 0
Mg 1
CsCI 0.5
Cu3Au 0.25
Mg 0
Fe3C 0.25
MgCu2 0.667
MgCu2 0.333
Cu 0
Cu 0
Table 4:

Lowest Enhancement Factor

This list is sorted by the minimum of N

MgZn2
Fe3C
T
Mn5Si3
CsCl
Cu3Au
W
Fe3C
W

W
Mn5Si3
As

W

CuTi
Nd
Sm5Ge4
FeB-b
CaCu5
Th7Fe3
CuBAu
T

w

CuTi
CuAu
Fe3C
MgCu2
Mn5Si3
NaZn13
KHg2
Mg

As
Mn5C2
PuNi3
Th2Ni17
CuAu
Sm5Ge4

0.667
0.75
0.5
0.375

0.444
0.5
0.167
0.7
0.75
0.5

0.5
0.5
0.25
0.333
0.625
0.9
0.333

0.286
0.7
0.1
0.5
0.556

Structure type pairs

892
198
805
892
241
241
198
805
121
241
241
142
542
448
805
118
805
198
805
805
892
118
892
241
892
448
805
349
448
241
892

87
124
198
805
805

121

87
174
118
448
241
542

87
542
542
118
1
542

76
120

56

83
45
241
174
542
76
86
87
198
118
43
63
892
mm
35
47
58
86
56

55
54
54
53
52
50
49
47
46
46
45
44
42
42
42
41
41
39
39
39
38
37
37
37
35
35
35
33
33
33
32
31
31
31
31
a1

906
287
1301
312
423
232
906
688
906
688
137
1301
2482
1322
2482
80
1301
128
97
688
1301
312
1301
423
671
524
312
144
524
671
2482
52
172
96
1301
160

1.36
8.95
1.07
1.28
1.29
23
1.25
1.89
1.93
0.94
44
7.39
0.38
3.3
1.26
17.31
1.48
7.04
3.06
0.53
0.64
1.66
1.45
4.79
1.23
1.02
1.04
2.94
3.34
0.37
0.83
27.16
712
6.86
1.25
1.94

1.33
7.38
1.05
1.23
1.05
1.8
1.22
1.86
1.88
0.92
2.56
7.23
0.38
1.63
1.26
4.1
1.44
3.07
3.01
0.52
0.63
1.59
1.42
3.89
1.23
0.88
1.01
2.8
2.87
0.37
0.83
13.94
5.48
4.71
1.23
1.91

0.062
0.273
0.067
0.059
0.216
0.207
0.247
0.058

0.38
0.191
0.187

0.31
0.077
0.094
0.052
0.347
0.051
0.197
0.048
0.048
0.043
0.314
0.041
0.154
0.039
0.078
0.043
0.095
0.074
0.137
0.036
0.356

0.25
0.157
0.039
0.039

0.572
0.601
0.317
0.751
0.32
0.614
0.02
0.547
0.008
0.008
0.656
0.106
0.052
0
0.017
0.492
0.317
0.783
0.675
0.547
0.476
0
0.476
0.32
0.691
0.592
0.641
0.693
0.592
0
0.035
0.632
0.476
0.763
0.317
0.67

sorted by occurrences in the same alloy

system

This list is the anti correlations. This shows structures that never appear together.

a(c;

) and N Ble)> in descending order. The first

several entries in this list are some of the most frequently occurring structure types. This
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indicates that the frequency of occurrence of structure types is not enough information to

effectively predict stable structure types.
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CsCl 05 T 0.5 448 174 0 1322 0 0 0 0
Cu3Au 0.25 NaCl 05 241 142 0 423 0 0 0 032
CsCl 0.5 NaCl 0.5 448 142 0 1322 0 0 0 0
MgCu2 0.333 NaCl 0.5 198 142 0 524 0 0 0 0.551
Til 0.5 NaCl 0.5 174 142 0 1322 0 0 0 0
MgCu2 0.333 MgZn2 0.667 198 121 0 226 0 0 0 0.798
MgZn2 0.333 MgZn2 0.667 121 121 0 226 0 0 0 0.934
MgZn2 0.333 NaCl 05 121 142 0 524 0 0 0 0.769
MgCu2 0.333 Nd 0 198 120 0 862 0 0 0 0
MgZn2 0.333 Nd 0 121 120 0 862 0 0 0 0
w 0 Nd 0 542 120 0 2578 0 0 0 0
Nd 0 Nd 1 120 120 0 2482 0 0 0 0.087
MgCu2 0.333 Mn5Si3 0375 198 118 0 128 0 0 0 0985
MgZn2 0.333 Mn5Si3 0.375 121 118 0 128 0 0 0 0.983
Mn5Si3 0.375 Mn5Si3 0.625 118 118 0 94 0 0 0 0771
Mn5Si3 0375 W 1 118 542 0 312 0 0 0 0
Mn5Si3 0.375 Nd 1 118 120 0 312 0 0 0 0
Cu 0 As 0 805 111 0 2578 0 0 0 0
Cu3Au 025 As 1 241 111 0 688 0 ] 0 0.008
MgCu2 0.333 As 1 198 111 0 906 0 0 0 0.02
Mg 0 As 0 892 11 0 2578 0 0 0 0
Mgzn2 0333 As 0 121 1M 0 862 0 0 0 0
MgZn2 0.333 As 1121 1IN 0 906 ] 0 0 0.008
Mn5Si3 0.375 As 0 118 1M1 0 312 0 0 0 0
w 0 As 0 542 111 0 2578 0 0 0 0
T 0.5 As 0 174 111 0 1301 0 0 0 0
Nd 0 As 0 120 111 0 2578 0 0 0 0
As 0 As 1 111 11 0 2482 0 0 0 0018
MgZn2 0.333 FeB-b 05 121 90 0 524 0 0 0 0.769
NaCl 0.5 FeB-b 05 142 90 0 1322 0 0 0 0
FeB-b 05 As 0 90 111 0 1301 0 0 0 0
Cu3Au 025 Fe3C 025 241 87 0 697 0 0 0 0
MgCu2 0.333 Fe3C 025 198 87 0 287 0 0 0 0586
MgZn2 0.333 Fe3C 025 121 87 0 287 0 0 0 0.959
Mn5Si3 0.375 Fe3C 075 118 87 0 137 ] 0 0 0449
w 0 Fe3C 0.75 542 87 0 688 0 0 0 0613
Fe3C 0.25 Fe3C 0.75 87 87 0 232 0 0 0 0552



Fe3C
Fe3C
Fe3C
Fe3C
MgCu2
MgZn2
Til
Fe3C
NaCl
FeB-b
CuAu
Cu3Au
MgCu2

Sum of conditional Probabilities is 1:

0.25
0.25
0.25
0.25
0.333
0.333
0.5
0.25
0.5
0.5
0.5
0.25
0.333

NaCl 0.5
Nd 1
As 0
As 1
CuAu 0.5
CuAu 0.5
CuAu 0.5
CuAu 0.5
CuAu 0.5
CuAu 0.5
Nd 0
CaCu5 0.833
CaCub 0.833

87
87
87
87
198
121
174
87
142
90
86
241
198

142
120
111
i1
86
86
86
86
86
86
120
83
83

O O O 0O O O 0O 0O O o O o o

423
688
671
688
524
524
1322
423
1322
1322
1301
36
16

O O O 0O O O 0O O O o O O o

© O O O 0O O O O o o o o o

O O O O O O O 0o oo o o ©

Table 5: Structure type pairs sorted by lowest Enhancement Factor 1

This is a list of structure type pairs for which the sum of the conditional pair

0.517

0.551
0.769

0.517

0.992
0.98

probability and the conditional null structure probability is 1. For this list I have only

included pairs of structure types from among the 100 most frequently occurring structure

types. Consider the ninth pair on this list. There are only 24 systems where a structure

appears at 0.833 and 0.3. 20 of these times the two structures are CaCus and ThyFes.

Both of these structure types have hexagonal primitive cells.

3
3 B
N =
8 = 2 X =8
1
g & g = 2 | §8
2 2 3 S 3./ 3%
) S
» ® 3 s w s B S N
= = a g S S| S
= = S 3 . 4
E=1 E=1 < 3 S 3 B 8=
3] 3] ~ P & QR =N 8 =8
g g g g g 2 5 £ 28 ==
b b . 3 Q B ] =3 S s S E S h
77} 5 7] < Z 4 V4 r4 _ (SIEN L O
Cu3Au 0.25 CaCus 0.167 241 83 6 59 0.82 064 0.025 0.975
Cu3Au 0.25 Th2Ni17 0.9 241 58 4 39 0.73 0.8 0.017 0.983
Sm5Ge4 0.444 CaCub 0.833 56 83 2 7 1.16 1.7 0.036 0.964
CaCu5 0.167 Sm5Ge4 0.556 83 56 2 7 1.16 1.7 0.024 0.976
PbCI2 0.333 Sm5Ge4 0.444 48 56 10 64 10.02 8.87 0.208 0.792
PbCI2 0.333 CaCubs 0.833 48 83 1 16 0.51 167 0.021 0.979
Fe3C 0.25 PbCI2 0.333 87 48 9 287 6.57 53 0.103 0.897
FeB-b 0.5 Th7Fe3 0.3 90 45 68 461 3.32 0.078 0.922
Th7Fe3 0.3 CaCus 0.833 45 83 20 24 14.47 3.86 0.444 0.556
Th7Fe3 0.3 Fe3C 0.25 45 87 19 41 13.06 8.13 0.422 0.578
PbCI2 0.333 Th7Fe3 0.3 48 45 3 22 3.61 5.52 0.062 0.938

24



Th2Ni17 0.1 Th7Fe3 0.7 58 45 1 4 0.97 3.05 0.017 0.983
PuNi3 0.756 CaCub 0.167 47 38 8 11 5.99 9.38 0.17 0.3
Mn5C2 0.286 PbCI2 0.333 35 48 25 1.28 1.63 0.029 0.971

—_

Mn5C2 0.286 Fe3C 0.25 35 87 31 52 27.16 13.94 0.886 0.114
Th7Fe3 0.3 Mn5C2 0.286 45 35 3 15 4.85 0.84 0.067 0.933
PbCI2 0.333 Mn5C2 0.286 48 35 1 25 1.28 163 0.021 0.979
Sm5Ge4 0.444 Mn5C2 0.286 56 35 2 7 2.74 261 0.036 0.964
Th2Ni17 0.1 Mn5C2 0.714 58 35 1 3 1.24 3.94 0.017 0.983
KHg2 0.333 Mn5C2 0.714 63 35 1 62 0.95 0.5 0.016 0.984
CaCus 0.167 Mn5C2 0.714 83 35 7 9 6.2 5.02 0.084 00916
Fe3C 0.75 Ag51Gdi4 0.8 42 35 1 50 0.91 0.69 0.024 0.976
MgZn2 0.333 Ag51Gd14 038 56 35 1 38 0.68 0.8 0.018 0.982
Pu3Pd5 0.375 Sm5Ge4 0.556 33 56 4 35 5.33 295 0.121 0.879
Zn17Th2 0.9 PuNi3 0.756 32 47 16 48 14.23 11.57 05 0.5
Zn17Th2 09 CaCu5 0.833 32 45 12 39 11.156 3.5 0375 0.625
CuAl2 0.333 Zn17Th2 0.9 41 32 2 25 2.04 3.76 0.049 0.951
MgZn2 0.333 Zn17Th2 0.9 56 32 1 25 0.75 1.38 0.018 0.982
PuNi3 0.75 Smb5Ge4 0.556 47 30 1 36 0.95 0.7 0.021 0.979
W5Si3 0375 Mn5C2 0.286 28 35 1 32 2.46 111 0.036 0.964
W5Si3 0.375 CaCu5 0.833 28 83 1 13 1.1 1.82 0.036 0.964
CuAi2 0.333 Th2Ni17 0.1 41 28 1 34 1.17 0.52 0.024 0.976
PuNi3 0.75 Th2Ni17 0.1 47 28 6 6 6.1 13.13 0.128 0.872
Th2Ni17 0.1 Zn17Th2 0.9 28 32 10 13 14.93 598 0.357 0.643
Th2Ni17 0.1 PuNi3 0.75 28 47 6 6 6.1 13.13 0.214 0.786
Co2Si-b 0.333 Th2Ni17 0.9 27 30 4 25 6.61 1217 0.148 0.852
Th2Ni17 0.9 Co2Si-b 0.333 30 27 4 25 6.61 12.17 0.133 0.867
CuZzr2 0.333 Smb5Ge4 0.444 28 26 1 23 1.84 1.62 0.036 0.964
AlB2 0.667 CaCu5 0.833 25 45 5 74 5.95 3.34 0.2 08
Zn58Gd13 0.167 Cr5B83 0.625 25 28 1 13 4.05 662 0.04 096
Zn58Gd13 0.167 Fe3C 0.75 25 87 1 36 1.35 154 0.04 0096
Zn58Gd13 0.167 CsCl 0.5 25 448 24 127 5.76 392 096 004
NazZn13 0.9 AlB2 0.667 43 25 1 62 1.24 1.07 0.023 0.977
NaZn13 0.9 KHg2 0.333 43 24 6 25 7.78 1433 014 086
Cd2Ce 0.667 Mg3Cd 0.25 23 27 4 145 8.62 737 0174 0.826
Cd2Ce 0.667 CsClI 0.5 23 224 22 276 5.71 5.03 0957 0.043
Zn17Th2 0.9 Th7Fe3 0.3 32 23 3 4 5.45 8.57 0.094 0.906
MoSi2 0.667 Th7Fe3 0.3 34 23 1 33 1.71 111 0029 0.971
PuNi3 0.75 Th7Fe3 0.3 47 23 5 20 6.19 483 0.106 0.894
Be5Au 0.833 Th7Fe3 0.7 22 22 1 4 2.76 239 0.045 0.955

Table 6: Structure type pairs sorted by the sum of conditional pair
probability and conditional null structure probability

Most Frequent Structure types:
This last list shows the most frequently occurring structure types. The list is

ordered by the minimum of N and N s> in descending order. This is interesting to
J

a(c;)

see correlations among the most common structure types, where the statistics are the best.
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Mg 0 Mg 1 892 892 214 2482 0.76 076 0.24 0.035
Cu 0 Mg 1 805 892 186 2482 0.68 0.68 0.231 0.017
Cu 0 Mg 0 805 892 15 2578 0.06 0.06 0.019 0
Cu 0 Cu 1 805 805 88 2482 0.38 0.38 0.109 0.017
w 0 W 1 542 542 42 2482 0.38 0.38 0.077 0.052
Mg 0 W 1 892 542 131 2482 0.72 0.73 0.147 0.035
Mg 0 W 0 892 542 11 2578 0.06 0.06 0.012 0
Cu 0w 1 805 542 127 2482 0.79 0.79 0.158 0.017
Cu 0 W 0 805 542 6 2578 0.03 0.03 0.007 0
CsCl 05 W 0 448 542 65 1301 0.71 0.7 0.145 0
CsCl 05 Mg 0 448 892 197 1301 1.32 1.29 0.44 0
Cu 0 CsCl 0.5 805 448 93 1301 0.66 065 0.116 0.317
Cu3Au 025 W 1 241 542 46 688 0.94 092 0.191 0.008
Cu3Au 025 W 0 241 542 8 671 0.16 0.16 0.033 0
Cu3Au 0.25 Mg 1 241 892 65 688 0.8 0.78 0.27 0.008
Cu3Au 0.25 Mg 0 241 892 33 671 0.37 0.37 0.137 0
Cu3Au 025 CsCl 05 241 448 52 423 1.29 1.05 0216 0.32
Cu3Au 0.25 Cu3Au 075 241 241 50 232 23 1.8 0207 0614
Cu 0 Cu3Au 075 805 241 39 688 0.53 0.52 0.048 0.547
Cu 0 Cu3Au 025 805 241 125 671 1.78 178 0.155  0.47
MgCu2 0333 W 1 198 542 49 906 1.25 122 0247 0.02
MgCu2 0333 W 0 198 542 27 862 0.64 065 0.136 0
MgCu2 0.333 Mg 1 198 892 73 906 1.06 1.03 0.369 0.02
MgCu2 0.333 Mg 0 198 892 25 862 0.4 041 0.126 0
MgCu2 0.333 MgCu2 0667 198 198 2 228 0.15 02 0.01 0798
CsCl 0.5 MgCu2 0.333 448 198 35 524 1.02 0.88 0.078 0.592
Cu3Au 0.25 MgCu2 0.667 241 198 10 287 0.47 04 0.041 0.614
Cu3Au 0.25 MgCu2 0333 241 198 29 287 1.6 135 0.12 0.639
Cu 0 MgCu2 0.667 805 198 5 906 0.08 0.08 0.006 0.548
Cu 0 MgCu2 0.333 805 198 112 862 2.09 214 0.139 0412
w o T 05 542 174 17 1301 0.48 0.47 0.031 0.461
Mg 0o Ti 05 892 174 38 1301 0.64 0.63 0.043 0.476
MgCu2 0.333 TI 05 198 174 23 524 1.97 169 0.116 0.551
CsCl 05 TH 05 448 174 0 1322 0 0 0 0
Cu3Au 025 T 05 241 174 29 423 1.84 151 012 032
Cu o T 05 805 174 54 1301 1.07 1.05 0.067 0.317
Ti 0.5 NaCl 05 174 142 0 1322 0 0 0 0
w 0 NaCl 05 542 142 21 1301 0.73 0.71 0.039 0.461
Mg 0 NaCl 05 892 142 16 1301 0.32 0.31 0.018 0.476
MgCu2 0.333 NaCl 05 198 142 0 524 0 0 0 0.551
CsCl 0.5 NaCl 05 448 142 0 1322 0 0 0 0



Cu3Au 0.25 NaCi 0.5 241 142 0 423 0 0 0 032

Cu 0 NaCl 05 805 142 10 1301 0.27 027 0.012 0317
MgZn2 0.333 NaCl 0.5 121 142 0 524 0 0 0 0.769
MgZn2 0.333 TiI 0.5 121 174 2 524 0.24 0.21 0.017 0.769
MgZn2 0333 W 1 121 542 46 906 1.93 1.88 0.38 0.008
MgZn2 0.333 W 0 121 542 14 862 0.57 0.58 0.116 0
MgZn2 0.333 MgZn2 0.667 121 121 0 226 0 0 0 0.934
Mg 0 MgZn2 0.667 892 121 55 906 1.36 1.33 0.062 0.572
Mg 0 MgZn2 0333 892 121 85 862 2.18 223 0.095 0.589

Table 7: Structure type pairs sorted by frequency of occurrence

3.2.3 Prediction Tests:
We want to test the ability to predict stable structure types at one composition

based on structure types seen in that system at a different composition. I have defined
and run some tests for this purpose. These tests are intended to compare different
methods of creating candidate lists from which to choose possible ground state structure
types. For these tests I leave out all structure entries from the system I am testing when
calculating statistics. Unique structures are ignored as it is impossible to predict them
when they are left out. Compositions where no structure type appears in the Pauling File
for a given system, null structure entries, are not considered. These cases are very
common. As a result, when they are included, the null structure prediction is the correct
choice most of the time so the results are similar with every method.

The four methods tested are random structure selection, ordering by frequency of
occurrence, ordering by pair probabilities, and ordering by a cumulant expansion. For
each method I record the fraction of structure types checked before finding the stable
structure type for that system.

With random structure selection structure types are selected at random from a list
of all structure types appearing at the composition of interest. On average half of the
possible structure types will have to be checked before finding the correct one with this
method.

With frequency of occurrence, all structure types seen at the composition of
interest are ordered by the number of times that structure type appears at that composition
in the database. This is the simplest way of using the experimental data to predict

possible structure types.



For the pair probability method I order the possible structure types by the
conditional pair probabilities. For each system I try to predict each stable structure type
that appears in the system based on the conditional pair probabilities from each of the
other structure types that appear in the system. For any system with more than one
structure type a series of tests are run for each structure type o in the system. This series
of tests consists of looking at each composition other than that of structure type a where a
structure type appears. A list of candidate structure types for this composition is
compiled based on the conditional pair probabilities from structure type a. If there are n;
structure types that appear in alloy system i. There will be n;*(n;-1) tests for that system.
Structure types with the same conditional pair probability are ordered by frequency of
occurrence.

For the cumulant expansion method I order the possible structure types by the
conditional probability based on all other structure types that appear in the system. This

is P(B|a,..c,), where B is the structure I am trying to predict and a,... a, are all other

structure types that appear in the system. I calculate this using a cumulant approach.

P(Ba,..a,)
P e R Uit St W4
(ﬁlal a,,) P(a,...an)
P(ﬁap..an) = Hrg(ﬂa, ) IN)y
P(ﬂlal...an)zw

Hyg(a]‘..a") ﬁy
The term on the right of the second equation represents the product of the
cumulants of all subsets of the set of structure types that appear in a system. I am making
the approximation that the cumulant for all subsets with more than two elements is 1, so I

only use two event cumulants.

p(fa)
r(B)p(a)

All subsets not containing B will appear in both the numerator and denominator,

p(Po)=

canceling out.

n ~ n p(ﬂa') 1 ]n_l n
P oo = i=1 i= i=1 - i=1 i
(Blor-a)= pOIL, 5(6e) = O, —ELE [p(ﬂ) I p(B| o)
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Using this method to predict the correct structure type, there is one test for each
structure type entry, based on all other entries for that system. Structure types with the

same conditional probability are ordered by frequency of occurrence.

3.2.4 Results:

I recorded the results of the tests as the fraction of structure types that must be
tested with each method before finding the correct structure type. Table 8 shows the
average and standard deviation for the four methods. For the conditional pair probability
method there were 19,701 tests. One test involves compiling an ordered list of structure
types and determining where on this list the known stable structure type for the alloy
system and composition of interest appears. For the frequency of occurrence method and

cumulant approach there were 4096 tests.

Average | Standard Deviation
Random Structure Selection 0.5 0.333
Frequency of Occurrence 0.2458 0.2688
Conditional Pair Probability | 0.1110 0.1859
Cumulant Approach 0.1726 0.2502

Table 8: Statistical data for structure type prediction using four different methods. Values are in

fraction of possible structure types checked

There is a greater than two times improvement in the average fraction of structure
types tested before finding the ground state structure type between the frequency of
occurrence method and the conditional pair probability method. The average fraction
from the cumulant approach is higher than that from the conditional pair probability
method. This can be explained by a lack of adequate data for the cumulant method. This
method orders structure types by the products of the two point cumulants for all structure
types appearing in the system at a composition other than the composition being tested.
Many of the two point cumulants are zero because many pairs of structure types never
appear together in the same system, or only appear together in the system being studied,
which is left out. As a result 92 % of the conditional probabilities determined with this

method are zero. This effect is less of a problem with the conditional pair probability
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method because we are only looking at one conditional pair probability at a time. With
the cumulant approach many conditional pair probabilities are multiplied together,
increasing the chance of a zero value. Structure types with a cumulant expansion of zero
are ordered by frequency of occurrence. The improvement in average fractions, shown in
table 8, from 0.2458 to 0.1726 is large considering only 8% of the data is affected.

In addition to the average and standard deviation from each method, it is of
interest to see the percentage of correct structure types found with each method for a
specific fraction of possible structure types checked. This is shown in figure 6. The
cumulant approach is similar to the frequency of occurrence method at low and high
percentages. The major deviation is between 60 and 85%. All three methods perform
fairly well up to about a 60% chance of finding the correct structure type. The frequency
of occurrence method begins to get worse here. The cumulant approach continues to do
well until about 70%. The conditional pair probability method holds on until about 80%.
The frequency of occurrence method does well at predicting common structures. It is not
expected that this method would improve much with more data. The results for this
method are a reflection of the fraction of the database that is contained by the most
frequently occurring structure types. The other two methods are able to predict some of
the less frequent structures well. More data would improve the ability of these methods
to predict the less frequent structure types.

I have compared the structure types in the Pauling File with the structure types in
the database Curtarolo et al. used in the DMQC work. [ was able to match 61 of the
structures in the Curtarolo database with structures in the Pauling File. These 61
structure types contain 57% of the entries from the Pauling File, after the duplicates and
non standard temperature and pressure phases were removed. The remaining 43 % of the
entries represent cases where experimental data can be used to predict structures that are
not currently in the database of structures used to create the library of computational
energies. This is one of the reasons it is desired to use experimental data in conjunction

with computed structural energies to predict candidate structure types.
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Fraction structure types tested vs. % of ground states found
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Figure 6: Comparison of fraction of structure types that must be checked to identify a given
percentage of stable ground states using the four different methods

3.3 Future Work:

There are several important obstacles to overcome before this technology is ready
for commercial use. This paper and the work by Curtarolo et al. have shown there are
correlations among both experimental and calculated structure type data. Tests in both
cases have shown the ability to use these correlations to predict the most likely stable
structure types. The correlations among the computed energies must be combined with
the correlations among the experimentally known structure types in a robust predictive
algorithm.

The work so far has used only binary alloys. It is important that these methods
apply to other systems as well. More testing is required to determine how well these
correlations can be used to predict structure types in alloys of more than two elements.

In addition to predicting the stable structure types, it is also important to predict

when there is no stable structure type. Curtarolo et al. were able to show great



improvement in the calculations required to determine if an alloy system is compound

forming using the DMQC method. This is an area that must be researched further.

4.0 Commercial Analysis:

4.1 Potential commercial application:

Part of the goal of this project is to examine commercial applications for this
technology. The product considered here is a software tool that could predict stable
structure types of an alloy or predict alloys with a given structure type. This tool would
be of use to many scientists and engineers. Such a tool would be useful in improving the
efficiency of research in both academic and commercial settings. If someone is interested
in investigating the properties of a particular alloy they could use this tool to predict the
stable structure types. Also if a particular property is desired the tool could predict alloys
like to have a structure type with this desired property.

There is work to be done before such a tool would be ready, but previous and
current work shows that such a prediction tool is possible. The confidence level of these
predictions is the key factor to be determined. This confidence level would improve over
time as more data is available. This is an important detail about this technique. Any
prediction methods will improve as more structure type data is made available. This is
sort of a snowball effect. The tool will improve the efficiency of calculations to
determine structure types. The results of these calculations will improve the prediction

tool. This allows continued revenue as updates to the tool are required.

4.2 Intellectual property:

When considering the commercial potential of a technology it is important to
understand any intellectual property associated with the technology. I have found no
patents related to predicting structure types [16]. Professor Ceder’s group has made a
technology disclosure for this technology. It has yet to be determined if it is worthwhile

to apply for a patent for this technology.



There are numerous patents on techniques to correlate data [17-19]. These
patents will not affect the commercial potential of the data mining approach to structure
type prediction discussed here. The correlation techniques being used are developed in
house. The methods are specific to structure type prediction, which is not covered by any
patents I have found.

One other intellectual property consideration is database protection. Currently
databases only have copyright protection in the United States. This does not sufficiently
protect the work done to compile and organize the data. In some cases entire databases
can be extracted and reproduced. The Database and Collections of Information
Misappropriation act [20] has been in congress for several years. It is currently in the
House of Representatives. It has been passed by the House of Representatives before, but
the Senate has rejected it. This act is intended to prevent misappropriation of data in
this manner. It would allow the producer of a database to prohibit someone from using
their database in a product that competes in the same market. An alternative to this act
was introduced to congress in March of 2004. This is the Consumer Access to
Information Act. This act more narrowly defines misappropriation of a database.

These acts only apply to the United States. The European Union has much more
strict regulations in place protecting the creator of a database [21]. The best approach to
allow worldwide sales would be to market the product as part of a database package.

This would require working with a database producer, such as Pauling File, or ICSD.

4.3 Market:

There are no structure prediction tools available so there is no direct competition
for this product or an established market. Much work has been done using structure maps
like the Pettifor maps discussed earlier, to predict stable structure types. Some
companies use this sort of method internally for structure type prediction. Rational
Discovery has published a paper discussing the use of structure maps for structure type
prediction [22]. There is no known software on the market for this purpose. There is an
established market for energy calculation software and materials databases. The potential

market for the product described here would be similar to the market for these products.
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The most widely used energy calculation software packages available
commercially are Gaussian and VASP [23-24]. Gaussian is a software package used to
predict energies, molecular structure and vibrational frequencies through computation.
This is the most popular such product for chemists. The exact customer data for
Gaussian is protected [25-26], but they have thousands of customers worldwide. VASP
is the most common energy calculation software package for crystals. They have 400
academic licenses and 40 industry licenses [27]. There are also several energy
computation software packages available for no charge.

The Inorganic Crystal Structure Database (ICSD) and the Pauling File are the
most popular crystal structure databases. The exact customer numbers for ICSD are
protected, but they are of the same order as the energy calculation software packages,
approximately 1000 - 2000 [21]. The Pauling File is new to the market. Their free
online database has 1918 registrations as of June 2004, almost double there June 2003
total of 1038 [35]. Ninety percent of the customer base for crystal structure databases is
academia [32].

The prices for these types of software package are vastly different for academia
and industry [28-30]. The price for energy calculation software for academics ranges
from $500 to $5000. The prices for industry vary from $1000 to $30,000. The high end
of these ranges is for Gaussian and VASP. The prices for materials database software
range from $300 for a single user CD version of ICSD for academia to $3000 for multiple
user industry packages [36, 37]. These are well established and developed software
packages. Typical add on packages are $100 to $200 for academia, and twice this for
industry. The software product I am proposing should be sold as an additional package in
conjunction with a database. The exact price would depend on the effectiveness of the
software and inflation before the product is ready for market.

The International Technology Research Institute did a study between 1998 and
2000 on the use of computational modeling in industry [31]. This study investigated
modeling work at companies in Japan, Europe and the US. Automobile manufacturers
are interested in predicting the optimum alloys for various automotive applications.
There is also increasing interest in studying hydrogen fuel technology. Semiconductor

manufacturers are interested in determining the optimum material for various



applications. Pharmaceutical companies and research laboratories also constitute a large
number of the companies involved in this study.

I have used this study to compile a list of the number of companies doing
modeling research organized by the year they started this research. This is shown in
figure 7. The numbers for the last two years are somewhat low because this was the same
time the study was taking place so the study is less complete for companies starting
modeling in these years. Over the last 10 years approximately five companies have
begun research in modeling each year. This trend should continue or increase as new
uses for modeling are discovered and computing speeds increase. This shows that the

market will increase greatly in the 6-8 years before this product would be ready for sale.

Companies Entering Modeling Field
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Figure 7: Histogram of companies starting computational modeling work by year started

The potential market for the proposed software tool is on the order of 2,000
customers. Approximately 90% of the customers are academic [27, 32], but the industry

numbers appear to be growing. | have constructed a table of the projected annual revenue
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for different market shares and pricing schemes. I have also shown how these results

would change if the industry percentage of the market grew from 10% to 15% of the

overall market. Table 4 shows these results. The projected revenue ranges from $88,000

per year to $575,000 per year.

Market Share 20% Market Share | 50% Market Share | 20% Market Share | 50% Market Share
Pricing 10% Industry 10% Industry 15% Industry 15% Industry
$200 Academic | $88,000 /year | $220,00 /year | $92,000 /year | $230,000 /year
$400 Industry

$500 Academic | $220,000 /year | $550,000 /year | $230,000 /year | $575,000 /year
$1000 Industry

Table 4: Projected Potential Revenue for various pricing schemes and market shares

4.4 Business plan:

I have developed a business plan for development of this product and introduction
into the market. There are four phases of this plan, preliminary work, development,
limited release and commercial release. Estimating software development times is a
difficult task, especially at this early stage. A range of from 2 to 6 years can be expected
for this software tool [33-34]. This work will be started in phase 1 and completed in
phase 2.

We are currently in the preliminary work phase. During this phase we will gain a
better understanding of the correlations among the data. In this phase the obstacles
discussed in the future work section will need to be overcome. Structures of more than
two elements must be investigated and included in the prediction methods. Prediction
methods must be developed that combine the computed and experimental data. I estimate
this phase will take 2 to 4 years. This is a rough estimate based on the work I have done
this year and past work done by Professor Ceder’s research group.

During the development phase the software will be developed for internal use
based on the methods determined in phase 1. This software will be tested and used to

fine tune the prediction methods during this phase. This phase should take approximately



2 years. There is some overlap between phase 1 and phase 2. An early version of the
software tool would make testing the methods much easier.

When the software has been thoroughly tested internally, it should be released in a
limited fashion for beta testing and to increase interest in the tool. This could be
accomplished through a free version released through the database producer. I would
expect this phase to last 2 or 3 years. Beta testing can be accomplished in one or two
years. If there is enough interest in the software and there has been sufficient beta
testing, this time frame can change. Marketing this product with an established database
provider could greatly decrease the time to develop a customer base for this tool. During
this phase a final determination should be made on the commercial value of the product.
This will depend on the interest in the product and the estimated price that could be
charged based on the confidence level of the predictions.

Once beta testing is complete and there is enough interest in the prediction tool it
could be released into the market. The revenue for the product would be through an
annual license fee charged to users in association with the database manufacturer. The
license fee is to receive updates to the tool, when new data is amassed. This is one of the
important selling points of the tool. The accuracy and usefulness increases greatly over

time as more data is included in the system.

Phase Time Estimate Objectives

Preliminary Work 4-6 years Develop prediction methods

Development 2 years Develop Software

Initial Release/Beta Testing 2-3 years Beta Test / Increase interest in
tool

Commercial Release Support and Update software

Table 9: Business Plan for structure type prediction software tool

4.5 Funding:

The development of this tool would have to be done with research funding. It is
unreasonable to expect outside investment until a proven tool exists, especially with the
small market size. There is a good possibility of receiving research funding for this

project. Regardless of the market value of the product such a tool would be useful and it




has been a hot topic in computational modeling. Current work is done with funds from a
National Science Foundation Information Technology Research (NSF-ITR) grant and
Department of Energy grant. The Pauling File project [14] is a joint project between
Japan Science and Technology Corporation (JST) and Material Phases Data System
(MPDS). This is being funded by the National Institute for Materials Science (NIMS).
The goal of the project is to compile a comprehensive materials database which covers all
non-organic solid state materials.

Once a tool has been developed and tested, outside investment could be sought. 1
would consider this a new product in an existing market, so it is in the comfort zone for
investors. The potential returns are not large, but only minimal investment would be
required. There are no materials needed, just computation time and man hours. During
the development and beta testing period the work could be done by graduate students so
the man hours are cheap. When the tool reaches the market, two employees would be
required, one person for support and one for development. This development would
include adding new data to the database as it is available.

The ability of this tool to improve with use would cause interest among investors.
The value of this tool will increase over time for multiple reasons. As more data is
included the prediction ability of the tool would improve. As computational methods

increase in popularity, the market for this tool will also increase.

5.0 Conclusions:

Past work has shown that there are correlations among the computed structural
energies over different alloy systems. Curtarolo showed a factor of three improvement in
calculations required using data mining on quantum calculations compared to random
structure selection. Current work and the use of Pettifor maps has shown that there are
correlations among experimentally observed stable structure types. Certain pairs of
structure types have a tendency to appear together in the same alloy system, while other
pairs of structure types show a strong tendency not to appear together. These correlations
have also been shown to improve the ability to determine ground state structure types of
an alloy system. A factor of two improvement was shown using structure type pair

correlations compared to choosing structure types based on their frequency of occurrence.
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A tool to predict stable structure types for an alloy of interest or to predict alloys
likely to have a desired structure would be of use to many people. This could greatly
improve efficiency of experimental and computational work in materials. It will be
useful in many different academic departments as well as to commercial companies
interested in computational modeling.

There are several tasks remaining before such a tool could be developed. The
correlations among computed energies and the correlations among experimental data
must be combined into a robust prediction tool. These correlations must be extended to
multi-component alloy systems. Any method must also be able to predict whether or not
an alloy system will be compound forming and at what compositions no structure type is
expected.

The value of this tool in the market is yet to be determined. This will depend
largely on the confidence levels that can be achieved by such a tool. The growing
interest in computational modeling in industry will also play a large role in this decision.
It is expected that the number of companies involved in computational modeling will
greatly increase in the next 10 years during which this tool will be developed. This
increase in modeling in industry is important because the price that can be charged in
industry is much larger than the academic prices. I estimate the potential market value on
the order of $150,000 annually.

The estimated time to market is 8 to 11 years. The business plan involves four
phases. Preliminary work must be done before methods are ready for such a prediction
tool to be developed. The tool must be developed and internally tested. Next the tool
should be released in a limited fashion to academia. This is important for beta testing and
to determine interest. If this third phase shows enough interest in the product it could be
released in the market.

Funding required for production of this tool is limited. Research funding could
allow for development and testing of the tool. If and when the tool is ready for a
commercial release it could be supported by two people, a software developer and a
scientist, possibly part time. An updated market assessment and cost analysis should be
done during the beta testing phase to determine if this is a potentially profitable

application. At this time outside investors could be contacted. The low investment



required and the improvement expected over time would make this product interesting to

investors.
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