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Abstract

The amount of electronically accessible information has been growing exponentially. How to
effectively use this information has become a significant challenge. A post 9/11 study indicated that
the deficiency of semantic interoperability technology hindered the ability to integrate information
from disparate sources in a meaningful and timely fashion to allow for preventive precautions.
Meanwhile, organizations that provided useful services by combining and reusing information from
publicly accessible sources have been legally challenged. The Database Directive has been
introduced in the European Union and six legislative proposals have been made in the U.S. to
provide legal protection for non-copyrightable database contents, but the Directive and the proposals
have differing and sometimes conflicting scope and strength, which creates legal uncertainty for
valued-added data reuse practices. The need for clearer data reuse policy will become more acute as
information integration technology improves to make integration much easier.

This Thesis takes an interdisciplinary approach to addressing both the technology and the policy
challenges, identified above, in the effective use and reuse of information from disparate sources.

The technology component builds upon the existing Context Interchange (COIN) framework for
large-scale semantic interoperability. We focus on the problem of temporal semantic heterogeneity
where data sources and receivers make time-varying assumptions about data semantics. A collection
of time-varying assumptions are called a temporal context. We extend the existing COIN
representation formalism to explicitly represent temporal contexts, and the COIN reasoning
mechanism to reconcile temporal semantic heterogeneity in the presence of semantic heterogeneity
of time. We also perform a systematic and analytic evaluation of the flexibility and scalability of the
COIN approach. Compared with several traditional approaches, the COIN approach has much
greater flexibility and scalability.

For the policy component, we develop an economic model that formalizes the policy instruments
in one of the latest legislative proposals in the U.S. The model allows us to identify the
circumstances under which legal protection for non-copyrightable content is needed, the different
conditions, and the corresponding policy choices. Our analysis indicates that depending on the cost
level of database creation, the degree of differentiation of the reuser database, and the efficiency of
policy administration, the optimal policy choice can be protecting a legal monopoly, encouraging
competition via compulsory licensing, discouraging voluntary licensing, or even allowing free riding.
The results provide useful insights for the formulation of a socially beneficial database protection
policy.

Supervisor: Stuart E. Madnick

Title: John Norris Maguire Professor of Information Technology and
Professor of Engineering Systems
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Chapter 1

Introduction

This Thesis concerns the effective use and reuse of information in autonomous, heterogeneous, and
evolving sources. We take an interdisciplinary approach to develop the semantic interoperability
technology that enables information integration and analyze the public policy issues that arise when
such technology is used for systematic reuse of information from sources created by different
organizations. This chapter provides the motivation behind this study, highlights the major
contributions, and outlines the structure of this Thesis.

1.1 Challenges and Objectives

This Thesis is motivated by the challenges depicted in Figure 1.1. We will explain these challenges
in detail and present the specific objectives of this Thesis.

Technological deficiency:
* Post 9/11 study finds lack of semantic interoperability
* Facilities industry loses -$16B/year in U.S. due to lack of interoperability.~~~~~~~~~~~~

Objective 1: To advance semantic interoperability technology to
make information integration easier

More data reuse activities occur I Socially beneficial policy preserves data-
with improved technology base creation incentives and accommo-

dates valued-added data reuse

Objective 2: To determine choices for data reuse policy 

Legal uncertainty:
* Valued-added data reusers get sued
* Six bills with different scope/strength to protect database contents

Figure 1.1 Challenges and objectives

In the aftermath of the 9/11 tragedy, a study by the National Research Council (2002) found that
"although there are many private and public databases that contain information potentially relevant
to counter terrorism programs, they lack the necessary context definitions (i.e., metadata) and access
tools to enable interoperation with other databases and the extraction of meaningful and timely
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information". A congressional investigation' on 9/11 indicated that had various businesses and

government agencies been able to exchange and integrate information in a meaningful and timely

fashion, the tragedy could perhaps have been prevented. This is a typical semantic heterogeneity

problem that is often encountered in information integration, which we explain below.

When people design information systems and create databases, they typically make numerous

assumptions about various aspects of the meaning of the data, such as units of measure (e.g., profit in

Deutschmarks or Euros), scale factors (e.g., profit in thousands or millions), and definitions of data

elements (e.g., whether the profit is gross profit including taxes or net profit excluding taxes). The

semantic heterogeneity problem arises when different systems and the users of the systems have

different assumptions about what appear to be similar data. Furthermore, the assumptions can change

over times (e.g., currency can change from Deutschmarks to Euros), causing what appear to be

similar data in different time periods to have different interpretations. We call this phenomenon time-

varying semantics and the heterogeneity problem in the presence of time-varying semantics temporal

semantic heterogeneity. The differences in those assumptions need to be reconciled, automatically or

semi-automatically by integration software systems, when a user needs to integrate data from these

systems; in other words, we need to achieve semantic interoperability amongst heterogeneous

systems and system users.

Semantic interoperability is important for government agencies, businesses, and even individuals

who want to effectively use the increasing amount of information available in an ever growing

number of electronically accessible data sources. It is also a difficult challenge for the following

reasons:

* The assumptions in various information systems and by diverse system users are often not

explicitly recorded, making it impossible for a software system to account for the differences

of the assumptions. We call a set of assumptions by a system or a user a context. Thus,

different systems and system users are often in different contexts.

* Even if the assumptions are explicitly recorded, they may be in a format not accessible to the

software that performs information integration. For example, the assumptions may be

recorded in word processing files as system documentation that is meant for human

consumption.

* Even if the assumptions are accessible to the software, e.g., if units of measure are made part

of the data or are recorded as metadata (i.e., structured and systematic description of the data,

often managed by metadata software), the integration software won't necessarily know what

to do with mismatched metadata, e.g., units of measure. That is, metadata in different

sources still need to be interpreted and instructions on how to deal with mismatches need to

be provided.

To summarize, the assumptions (i.e., the contexts) of various systems and system users may be

unavailable, inaccessible, or unusable for the integration software to reconcile any context

"Joint Inquiry into Intelligence Community Activities before and after the Terrorist Attacks of September 11,
2001", by The House Permanent Select Committee On Intelligence And The Senate Select Committee on
Intelligence, December 2002.
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difference. These distinctions roughly correspond to the continuum of semantics in Uschold (2003)2.
In the rest of the Thesis, we will not make these distinctions and simply call the assumptions implicit
assumptions. These assumptions need to be captured explicitly and the differences should be
reconciled systematically to allow for meaningful and timely integration for information from
diverse sources. Technologies deployed today lack this capability.

A significant amount of effort has been put into addressing this challenge. Unfortunately, most
existing approaches, which we will discuss in Chapter 5, are inefficient and very costly to implement
and maintain. As a result, despite the fact that a typical large organization spends nearly 30% of its

IT budget on integration and interoperation related efforts3, many inter- and intra- organizational
systems still have poor interoperability. We learned from the 9/11 tragedy that serious consequences
can result from this technological deficiency. As another example, the National Institute of
Standards and Technology (NIST) estimates that the lack of interoperability costs the U.S. capital
facilities industry4 alone $15.8 billion per year, representing 1-2% of industry revenue; this estimate
is likely to be only a portion of the total cost of inadequate interoperability (Gallaher et al., 2004).

There have been various technical attempts to address different aspects of the challenge, and
much work continues (Lenzerini, 2001; Abiteboul et al., 2005). In this Thesis, we aim to contribute
to the technology for enabling semantic interoperability. The specific objective is:

Objective 1. To develop a representation formalism and a reasoning mechanism for
representing and reconciling temporal semantic heterogeneity.

The ease of accessing data provided by the Web has made possible certain new business
practices that reuse and combine data from various sources. This often requires using existing
semantic interoperability technology, even though it is in a primitive state. While most of the data
reuse practices are value creating activities, they sometimes can run afoul of the interests of the
initial database creators, who wish to have legal protection of database contents when the access to
their databases cannot be restricted via other means (e.g., data in web pages that are meant to be
publicly accessible). This has raised policy concerns about the rights a database creator (data source
owner) should have over how that data is reused, and how any policy on this subject, if needed,
should be formulated. The European Union first introduced the Database Directive 5 in 1996 to

require its member states to provide legal protection to database contents beginning January 1, 1998.
In the U.S., six legislative proposals, discussed in Chapter 6, have been introduced in Congress but
none of them has been passed into law. These proposals offer protection with differing and
sometimes conflicting strength and scope, which creates legal uncertainty for value-added data reuse
practices. The need for clearer policy will become more acute as semantic interoperability

2 Semantics can be implicit, explicit but informal, formal but for human processing, and formal for machine
processing.
3 See "Reducing Integration's Cost", Forrester Research, December 2001.
4 The capital facilities industry, a component of the entire U.S. construction industry, encompasses the design,
construction, and maintenance of large commercial, institutional, and industrial buildings, facilities, and plants.
In 2002, the nation set in place $374 billion in new construction on capital facilities
5 "Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases", a copy of the Directive can be found at http://europa.eu.int/ISPO/infosoc/legreg/docs/969ec.html
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technology (the subject of Objective 1 above) improves to make data integration and reutilization

much easier. Hence, this Thesis also investigates the policy issues of data reutilization, which leads

to the following objective:

Objective 2. To analyze the policy implications when semantic interoperability technology

is applied for data reuse, identify the conditions under which legal protection for database

contents may be needed, and determine socially beneficial policy choices that preserve

database creation incentives and accommodate value-added data reuse.

1.2 Summary of Contributions

How to effectively use the increasing amount of electronically accessible information is one of the

biggest challenges faced by many organizations and individuals. We make unique contributions to

addressing this challenge by developing the enabling technology as well as considering the societal

implications of the technology. The interdisciplinary approach allows the outcome of the Thesis to

be of theoretical significance as well as practical impact.

The technology component of the Thesis is developed as extensions to the existing Context

Interchange (COIN) framework (Goh, 1997; Goh et al., 1999; Firat, 2003), which offers a formalism

for explicit representation of the different assumptions made by systems and system users and for

declarative descriptions on how differences, if any, can be resolved. COIN also has a reasoning

mechanism, implemented in a software component called the mediator, which automatically

compares contexts and generates instructions in a mediated query to reconcile context differences.

Our extensions deal with the problem of temporal semantic heterogeneity caused by time-

varying semantics. This is different from current schema versioning and schema evolution research,

which focuses on the management of structural changes in data sources, i.e., it only concerns that

data is not lost and old data remains accessible when the schema is changed (Roddick, 1995).

In describing the contributions of the present work, certain concepts, not yet explained but

covered in the rest of the Thesis, will be used.

Formalism for Representing Time-Varying Semantics

We introduce the concept of temporal context and develop a formalism for representing time-

varying semantics. The existing COIN framework uses a shared ontology and a set of special

attributes called modifiers to encode semantic assumptions in data sources and receivers 6
. A (static)

context is described using a single rule that assigns a value for each modifier in the shared ontology.

In a temporal context, at least one modifier changes its value over time. That is, modifiers in a

temporal context can be multi-valued. In this case, we use multiple rules for value assignment, with

each rule applicable over a time period. Intuitively, this is equivalent to using time-stamped, multi-

valued modifiers to describe temporal contexts.

6 Any system that provides data upon request is a data source; any system (including a user or a user

application) that makes such requests is a data receiver. These are the roles a system can play in information
exchange.
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Extensions to COIN Reasoning Mechanism

We extend the COIN reasoning mechanism to process temporal contexts and reconcile temporal
semantic heterogeneity. With temporal context, the semantic differences between the sources and the

receiver become a multi-set, i.e., there are different sets of semantic differences in different time

periods. They are identified by comparing the modifier assignments in the source contexts and the

receiver context. This involves temporal reasoning because the applicability of the modifier

assignment rules is time dependent. We translate the temporal reasoning problem into a temporal

constraint solving problem, which is solved by constraint solvers implemented using the declarative

language Constraint Handling Rules (CHR) (Friihwirth, 1998). The effect of temporal consistency is

to generate vertical partitions for the sources so that each partition corresponds to a static context.

That is, this process reduces the temporal context problem into multiple problems with static

contexts.

The temporal constraint solver in this Thesis is in fact a form of semantic query optimization; by

removing unsatisfiable temporal constraints in the mediated query, we eliminate unnecessary data

fetching in distributed sources. In addition, we also develop a method of treating certain source

capability restrictions as constraints, which are solved using CHR so that certain kinds of capability

heterogeneity can be reconciled during mediation.

Systematic Evaluation of the Flexibility and Scalability of the COIN Approach

We provide a systematic evaluation of the technology in terms of adaptability, extensibility, and

scalability. Adaptability refers to the capability of adapting to changes in sources and receivers;

extensibility is the capability of accommodating new sources and receivers with minimal effort.

These two properties are collectively called flexibility. Scalability measures the amount of effort

involved in developing data transformations between a given number of data sources and receivers.

Prior to this work, the lack of such systematic analysis has led to certain misunderstandings of the

COIN approach (Kashyap and Sheth, 2000). By comparing with commonly practiced traditional

approaches, we show that COIN is flexible because of the declarative approach it takes. It is also

scalable because it can compose all necessary conversions using a small set of component

conversions.

Socially Beneficial Policy Choices for Database Protection

We develop an economic model to formally analyze public policy choices for the legal

protection of database contents. This is still an unsettled and widely debated issue in the U.S. and

worldwide. Similar to the existing Intellectual Property (IP) laws, a database protection law needs to

balance between protecting the incentives of creating the databases and providing opportunities of

value creation through reuse. This objective is very difficult to achieve because there is nothing like

the idea-expression dichotomy in copyright law to guide the determination of what kinds of reuse

should be allowed or disallowed. As discussed in Heald (2001), the extraction-duplication

dichotomy does not exist in data reuse; instead, it is a continuum. The model developed in this

Thesis allows us to identify social welfare enhancing policy choices under different conditions

- 13 -



depending on the location on the continuum and other factors, e.g., cost of database creation and

transaction cost of licenses. The results of this formal analysis allow us to derive a set of guidelines

for formulating the database policy.

Successful Demonstration of the Value of Interdisciplinary Approach

Lastly, we argue that the interdisciplinary approach to semantic interoperability constitutes a

unique contribution. A new technology often brings about new societal issues. For example, the

earliest significant data reuse case was in 1918 between International News Service (INS) and

Associated Press (AP), where INS lifted news stories from AP bulletins and wired them to its

member newspapers on the west coast. This form of data reuse was enabled by telegraphic

technology invented in the mid- to late-1800s. Many recent data reuse cases involve aggregators

enabled by the Web and information integration technologies (Madnick and Siegel, 2002; Zhu et al.,

2002a). Therefore, it is important that we understand the societal implications of the technologies we

develop and advance. By studying the technology and policy aspects of information integration

conjunctively, this Thesis generates interesting and timely results useful for improving the effective

use of information in our society. In addition, the thesis also demonstrates the value of taking an

interdisciplinary approach to technology research because technologists tend not to spend enough

time to study the societal implications of technology 7 , and the societal implications often have

significant impact on the effectiveness of technology.

1.3 Thesis Outline

The Thesis is organized into seven chapters. There is no centralized literature review in the Thesis.

Instead, we cite the literature that is most relevant to the particular issues addressed in each chapter.

Chapter 2 identifies and illustrates the kinds of temporal semantic heterogeneity. In addition to

time-varying data semantics, the data models for time are tremendously heterogeneous across

systems, e.g., different semantic assumptions, representations, and supported operations for temporal

entities. We identify that little work has been done to represent and reason about time-varying

semantics in the presence of heterogeneous time models. The technology component of this Thesis is

to fill this gap.

Chapter 3 uses examples to illustrate how the COIN system with the extensions developed in this

Thesis can be used to reconcile temporal semantic heterogeneities. We demonstrate the features from

the perspectives of the users and system architecture. The COIN mediation service allows users to

query data sources in diverse contexts as if they all were in the user's own context, therefore, users

are alleviated from the burden of keeping track of contexts, the evolvement of contexts, and the data

conversions from other contexts to the user context. This service reconciles semantic heterogeneity

and at the same time supports heterogeneous user needs.

7 For example, when discussing Project Oxygen, a massive effort on pervasive and human-centered computing
at MIT's Computer Science and Artificial Intelligence Laboratory, co-director Professor Victor Zue comments
"[W]e engineers think of wonderful ideas, but often they have unanticipated consequences" and points out the
need for more study on the societal implications of the project, and pervasive computing in general. Details of

his comments can be found at http://web.mit.edu/giving/spectrum/winterO5/computertalk.html.
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Chapter 4 provides the technical details behind the features illustrated in Chapter 3. We start
with a formal description of COIN, followed by the extensions for temporal semantic heterogeneity.
Previously, data transformations are introduced declaratively during mediation and their execution is
deferred to the query execution stage. When relations over temporal entities exist in the query, it
becomes beneficial to execute the transformations for ground temporal values during mediation to
perform semantic query optimization. We will discuss the tradeoffs between the two strategies. In
addition, the roles of ontology and contexts in COIN and their relationship will be discussed.

Chapter 5 presents the metrics for evaluating information integration technologies. The metrics
include adaptability, extensibility, and scalability. We then use the metrics to evaluate COIN against
other commonly practiced approaches.

Chapter 6 focuses on the analysis of data reuse policy. After an overview of the history of
database legislation, we present an extended spatial competition model to formalize the extraction-
duplication continuum and the provisions proposed in a recently failed bill in the U.S. In addition,
we also consider transaction cost and show how it affects the licensing provision. Based on the
results of this formal analysis, we derive a set of guidelines for making policy choices that
maximally allow value added data reuse without eliminating the incentives of creating databases.

Chapter 7 provides a brief summary and points out several areas for future investigation.

- 15-
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"A problem well-defined is half solved"
- John Dewey

Chapter 2

Temporal Semantic Heterogeneity

From Chapter 1 we know that data semantics is dependent on the assumptions made about the data.

Semantic heterogeneity exists when different systems make different assumptions about similar data,

and temporal semantic heterogeneity exists when the assumptions change over time. In this chapter,

we develop a deeper understanding about the problem of temporal semantic heterogeneity by using

examples and reviewing relevant literature. The issues identified in this chapter will be addressed by

the technology component of this Thesis.

This chapter is organized as follows. In Section 2.1, we present a categorization of types of

semantic heterogeneity that encompasses temporal semantic heterogeneity. In Section 2.2, we

illustrate different aspects of temporal semantic heterogeneity using examples. In Section 2.3 we

survey the existing approaches to temporal information management and identify the gap that this

work is intended to fill. We summarize in Section 2.4.

Throughout the Thesis, we use data and information interchangeably. Any system that can

provide data upon request is called a data source; any system (including a user or a user application)

that makes such requests is a data receiver. Therefore, a system can be a source and a receiver,

depending on whether it is requested to send data (source) or it requests to receive data (receiver).

We also use receiver and user interchangeably.

2.1 Categorization of Semantic Heterogeneity

Various types of semantic heterogeneity have been documented in the literature (Goh, 1997; Firat,

2003; Kashyap and Sheth, 1996; Ram and Park, 2004; Naiman and Ouskel, 1995), though there is

little consensus on how to categorize them. For example, Goh (1997) distinguishes schematic

heterogeneity from semantic heterogeneity, and characterizes the distinction between them by the

differences in the structure (i.e. the logical organization of data) versus the differences in the

interpretation (i.e., the meaning of data); whereas in the classification of Ram and Park (2004),
semantic heterogeneity exists in the data level as well in the schema level; while in Kashyap and

- 17-



Sheth (1996), schematic heterogeneity includes the differences in data interpretation due to the

differences in domain definition of a schema, e.g., different units of measure.

We observe that the logical organization of data (i.e., schema), and sometimes even the syntax

used for representing the data, can convey commonly understood assumptions for interpreting the

meaning of the data. So, it is difficult to have a crisp categorization that separate out semantics from

everything else. For explication purposes, though, we still offer a categorization below.

Recall from Chapter 1 that semantic heterogeneity is usually caused by the different assumptions

made by systems and system users. The assumptions (and hence the resulting heterogeneity) can be

categorized into two types: representational and ontological; furthermore, depending on whether

time is of concern, each type can be atemporal 8 or temporal. This categorization is illustrated in

Figure 2.1 and explained below.

Atemporal Temporal
Representational Profit is in DEM v. Profit is in DEM until 1998 and in EUR since 1999 v.

Profit is in USD Profit is always in USD

Ontological Profit is gross with taxes included v. Profit is gross with taxes included until 1998 and net
with taxes excluded since 1999 v.

Profit is net with taxes excluded Profit is always net with taxes excluded

Figure 2.1 Categorization of semantic heterogeneity.

Representational heterogeneity exists when different systems make different assumptions about

the representation of the same thing, such as using different units of measure, scale factors (e.g., in

thousands or millions), or syntax (e.g., the different orders of year, month, day appearing in a date).

In the (atemporal) example in Figure 2.1, the profit of a company can be represented in DEM (i.e.,

Deutschmarks) in one system or in USD (i.e., U.S. dollars) in another, where the currency used is the

assumption.

Ontology is an established branch in philosophy concerned with the nature and the relations of

being. Bunge (1977) and Bunge (1979) provide a formal philosophical treatment on the topic. More

recently, ontology has been widely studied in computer science as a formal and structured way of

specifying a conceptualization of a set of related things. Intuitively, it offers a vocabulary for

referring to things in the real world. An in-depth discussion of ontology is out of the scope of this

Thesis; interested readers are referred to Wand and Webber (1988), Gruber (1993), Lee (1996),

Guarino (1997), and Wand et al. (1999). 9 The intuitive understanding of ontology suffices for the

purpose of discussing our categorization of semantic heterogeneity.

Ontological heterogeneity exists when different systems make different assumptions in terms of

the definitions for what appears to be the same thing. In the (atemporal) example of Figure 2.1, the

profit of a company can be gross profit including the taxes in one system and net profit excluding the

8Means "independent of time, timeless" (http://education.yahoo.com/reference/dictionary/entry/atemporal). It
has been used in temporal database literature to refer to snap-shot data models.
9 Wand and Webber (1988) draw the concepts from Bunge's works on ontology to propose a set of ontological

principles useful in the design of information systems; Wand et al. (1999) illustrate the use the principles in
entity-relation analysis. Lee (1996) seeks to establish a philosophical foundation for semantic interoperability
by drawing Bunge's works on ontology as well as on semantics (Bunge, 1974a; Bunge, 1974b). Gruber (1993)
and Guarino (1997) use ontology for purposes of knowledge representation and sharing.
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taxes in another. In this case, the assumption is which definition of profit is meant by the term profit

in each system.

Loosely speaking, representational heterogeneity concerns the different representations of the

same thing, while ontological heterogeneity concerns the different meanings denoted by the same

term.

Both the representational and the ontological assumptions can be static and do not change over

time within an interested time period, in which case time is not of concern. The resulting

heterogeneity is atemporal. Conversely, the assumptions can change over time, and the resulting

heterogeneity is temporal. Thus, we can roughly distinguish four types of semantic heterogeneity:

* atemporal representational;

* atemporal ontological;

* temporal representational; and

* temporal ontological.

A data element can have a certain combination of these four basic types of semantic heterogeneity.

For example, the profit data in a source can have time-varying definitions (temporal ontological), yet

use the same currency through out (atemporal representational). We also give another example in

Example 2.3 in Section 2.2.1.

The examples of temporal semantic heterogeneity in Figure 2.1 are extended from the atemporal

examples by having the assumption in one system change over time. With temporal semantic

heterogeneity, interpretations of data can differ not only between systems, but also between different

time periods in a single system.

The following section focuses on temporal semantic heterogeneity. We will use examples to

illustrate various aspects that need to be considered when reconciling temporal semantic

heterogeneity.

2.2 Aspects of Temporal Semantic Heterogeneity

In addition to time-varying semantics, we identify two other aspects that are related to temporal

semantic heterogeneity. These aspects, as summarized below, will be each discussed in the next three

sub-sections:

time-varying semantics: we use several examples to illustrate temporal representational

heterogeneity and temporal ontological heterogeneity

different time models: just as with any other type of data, time itself can be represented and

interpreted differently in different systems. These differences correspond to representational

and ontological heterogeneity of time. In addition, systems can differ in their capabilities of

executing certain operations on time; we call these difference capability heterogeneity.

different associations between time and other types of data: we use examples from the literature

to explain that there can be different interpretations of the association between time and
other types of data.
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2.2.1 Time-varying Semantics

When the implicit assumptions change over time, data corresponding to different time periods are

subject to different interpretations. The following examples illustrate temporal semantic

heterogeneity caused by time-varying implicit assumptions.

Example 2.1 (Temporal representational heterogeneity) Stocks of some companies are traded at
multiple stock exchanges (i.e., markets) around the world. The prices of the same stock can be

different in different markets, creating arbitraging opportunities (i.e., someone can profit from the

price differences by buying shares in one market and selling them in another market at a higher

price). There are usually some price differences, but not substantial differences. How big can price

differences be in different markets? Are prices in multiple markets converging? These are the kinds

of questions often asked by traders, financial analysts, hedge fund managers, investors, regulators, as
well as financial economists. The availability of online financial databases provides the convenience

for finding answers to such questions. In addition to subscription-based databases such as

Datastream (from Thomson Financial at www.datastream.com), there are also sources such as Yahoo!

Finance (at finance.yahoo.com) that provide free access to certain financial data. Figure 2.2 shows an

excerpt of historical stock prices for IBM at Frankfurt (left) and New York (right) Stock Exchanges,

reported by Yahoo! Finance. The adjusted close prices are listed in the last column (labeled Adj Close')

of each table.

Frankfurt, Germany New York, USA
p~~~~~~~gi'e~~~~~~~~~~~~~~~t?~~~~ ... .0 _zm ih""!0*1s 10 *1 .. s 25 Nsl llll@0I e5 Sgl2lNl<9 i *,0*

Date Open High Low Close Volume Adj Close* Date Open High Low Close Volume Adj Close'
8-Jan-99 162.20 165 00 162.20 163.00 5,220 8-Jan-99 191 00 192.00 185.63 187.56 4,593,100 
7-Jan-99 162 00 162 50 160.00 160.00 3,647 77.51 7-Jan-99 187.94 192 38 187 00 190.19 4,155,300 91.25
6-Jan-99 160.90 164.00 160.90 164.00 23,616 79.45 6-Jan-99 190.31 192.75 188 50 188.75 4,775,300 90.56
5-Jan-99 154.00 155.00 154.00 155 00 5,975 75.09 5-Jan-99 183.00 189.88 182.81 189.63 4,955,900 90.98
4-Jan-99 155.00 158.00 155.00 155.50 7,024 4-Jan-99 185 00 186 50 181.50 183.00 4 ,077,500 

30-Dec-98 311.50 311.50 309.00 309.00 28,324 31-Dec-98 186.75 18719 18350 18438 1.933,800 
29-Dec-98 314.90 314.90 313.30 314.00 22,313 152.12 30-Dec-98 186.88 188.63 186.31 186.75 2410300 89.60
28-Dec-98 314 80 314 80 314.00 314.00 26,640 162.12 29-Dec-98 18 63 188.94 18700 187.13 1,881,700 89.78
23-Dec-98 303 50 305 00 302.50 305 00 38363 147.76 28-Dec-98 186 50 189 94 186.00 189 25 2,637,200 90.80
22-Dec-98 293 60 297 50 293.00 294.00 29,899 14243 24-Dec-98 184 75 18794 184.06 18794 1,527.700 9017
21-Dec-98 282 50 293.00 282.50 293.00 27,603 41.9 23-Dec-9 18269 185.38 181.13 185.00 3,537,800 88.76

* Close price adjusted for dividends and splits , 2 D c9
22-Dec-99 177 50 183.00 175.25 182.25 4,353,600 87.44
21-Dec-98 171 56 178.94 171 56 17638 3,744,500 84.6

*Close pe -dusted for dividends nd split.

Figure 2.2 Historical stock prices for IBM (from Yahoo).

Comparing the values of adjusted close price in the Figure, we notice several surprising

peculiarities. In the first row of data, the values enclosed in rectangles are significantly different:

78.96 in Frankfurt vs. 89.99 in New York. Even more dramatic differences are in the bracketed
values in the lower half of the figure, which correspond to prices during the period near the end of
1998. In addition, noticing the circled values in the middle, we observe that the value in the
Frankfurt table dropped by almost 50% on the opening day in 1999 while the change in New York

was less than 1%.

How could this happen? It turns out that we need to know the currencies in which the prices are
expressed in order to interpret the values. At the beginning of 1999, the Frankfurt Stock Exchange

changed the currency from German Mark (DEM) to Euro (EUR) and the irrevocable exchange rate is
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1 EUR = 1.95583 DEM°, while the prices at New York Stock Exchange are always in US dollars

(USD) and 1 USD = 1.67 DEM on December 30, 1998. Much of the difference between the two

exchanges can be explained by the use of different currencies; similarly, the significant value drop

on the opening day of 1999 in Frankfurt is due to currency change at the same exchange. In fact,

there have been studies (e.g., Heimonen, 2002; Berbena and Jansenb, 2005) to show that worldwide

financial markets have become more integrated and prices in different markets have been converging

in the last two decades. That is, prices in different markets have been very close. 

This example illustrates the challenges of lacking semantic interoperability among systems.

Implicit assumptions made in each system need to be captured and used to reconcile their differences

when data from these systems are combined. In the example, each stock exchange makes implicit

assumption about the currency used for representing adjusted close price. The meaning of data is

dependent on the assumption. For example, the number "149.69" circled in the Frankfurt table means

(or denotes) something different depending on whether the currency is EUR or DEM. When the

assumption changes, data semantics also changes. As a result, semantic heterogeneity exists not only

between two stock exchanges but also within Frankfurt Exchange.

Example 2.2 (Temporal ontological heterogeneity) In everyday communications and in various

information systems, it is very common that we refer to things using various codes, e.g., product

codes of a company, subject numbers in a university subject catalog, and ticker symbols commonly

used to refer to company stocks. Codes are sometimes reused in certain systems, thus the same code

can denote different things at different times. For example, subject number "6.891" at MIT has been

used to denote "Multiprocessor Synchronization", "Techniques in Artificial Intelligence",

"Computational Evolutionary Biology", and many other subjects in the past decade. As an another

example, ticker symbol "C" used to be the symbol for Chrysler; after Chrysler merged with Daimler-

Benz in 1997, the merged company chose to use "DCX"; on December 4, 1998, the symbol "C" was

assigned to Citigroup, which was listed as "CCI" before this change. .

In Example 2.2., while a code may denote different things at different times, there is always a

one-to-one correspondence between a code and what the code denotes in a given system. In Example

2.3 below, we illustrate that sometimes a one-to-one correspondence may become a one-to-many

correspondence, or vice versa.

Example 2.3 (Temporal ontological heterogeneity) Data from multiple sources are often required to

study economic and environmental development of the world. In the past 30 years, certain regions

have gone through significant restructuring, e.g., one country breaking up into several countries.

Such dramatic changes often make it difficult to use data from multiple sources or even from a single

source. As an example, suppose a Balkans specialist is interested in studying the CO2 emissions in

the region of former Yugoslavia during 1980-2000 and prefers to refer to the region (i.e. the

geographic area of the territory of former Yugoslavia) as Yugoslavia. Data sources like the Carbon
Dioxide Information Analysis Center (CDIAC)' at Oak Ridge National Laboratory organize data by

0 http://www.oanda.com/site/euro.shtml

1 http://cdiac.esd.ornl.gov/home.html
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country. Figure 2.3 lists some sample data from CDIAC. Yugoslavia as a country, whose official

name is Socialist Federal Republic of Yugoslavia in 1963-1991, was broken into five independent

countries in 1991: Slovenia, Croatia, Macedonia, Bosnia and Herzegovina, and Federal Republic of

Yugoslavia (also called Yugoslavia for short in certain other sources). Suppose prior to the break-up

the specialist had been using the following SQL query to obtain data from the CDIAC source:

Select C2Emissions from CDIAC where Country = "Yugoslavia";

Before the break-up, "Yugoslavia" in the receiver coincidentally referred to the same geographic

area as to what "Yugoslavia" in the source referred, therefore, the query worked correctly for the

receiver until 1991. After the break-up, the query stopped working because no country is named

"Yugoslavia" (or had the source continued to use "Yugoslavia" for Federal Republic of Yugoslavia,

the query would return wrong data because "Yugoslavia" in the source and the receiver refer to two

different geographic areas). *

Country Year CO2Emissions12

Yugoslavia 1990 35604
Yugoslavia 1991 24055

Slovenia 1992 3361
Croatia 1992 4587
Macedonia 1992 2902
Bosnia-Herzegovinia 13 1992 1289

Federal Republic of Yugoslavia 1992 12202

Figure 2.3 Sample CO2 emissions data from CDIAC.

In this example, the implicit assumption is what "Yugoslavia" denotes. For the receiver, it

always denotes a particular geographic area; the area happens to be denoted by "Yugoslavia" in the

source until 1991, and by five different names since 1992. According to our categorization, there is

temporal ontological semantic heterogeneity between the source and the receiver.

Alternatively, we can view the implicit assumption in terms of the organization of data: until

1991, the source organizes emissions data the same way the receiver expects; since 1992, the sum of

emissions of five particular records in the source corresponds to one record expected by the receiver.

We mentioned in Section 2.1 that there can be multiple kinds of semantic heterogeneity in one

data element. In the example, the CO2Emissions data in the source also make implicit assumptions

in three aspects: the emissions are in 1000ls (scale factor) of metric tons (unit of measure) of carbon

(not CO2 gas, hence ontology/definition). Thus for this data element alone there could be both

representational and ontological heterogeneity should other sources and receivers make different

assumptions in these aspects.

A variety of implicit assumptions can change over time, e.g., units of measure, scale factors,

naming conventions, accounting standards, concept definitions, and data gathering and processing

methods. For example, while people in the 1980s believed that computers played a big role of

12 The actual column is in the source is "Total C02 emissions from fossil-fuels (thousand metric tons of C)".
13 Correct spelling is Herzegovina.
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improving productivity in the U.S, the National Income and Product Accounts (NIPA)14 data from

the Bureau of Economic Analysis (BEA) did not show any evidence to support this belief. To a
certain extent, this productivity paradox was a measurement problem, i.e. the quality improvement of
computers was not measured in BEA's NIPA data (Jorgensen, 2001). To improve the productivity
measurement, the BEA introduced a series of changes to it accounting methods. One of major

changes is to use "constant quality price" (CQP) for various products of the information technology
industry, e.g., computers (since 1985), digital telephone switching equipment and cell phones (since

1996), semiconductors (since 1997), and prepackaged software (since 1998). Another change is the

reclassification of software expenditures as investment in 1999 (Jorgensen, 2001). Likewise, there

have been certain changes to the definition of unemployment data provided by the Department of
Labor 1 5. A few other examples can be found in Ventrone and Heiler (1991). Although certain data

sources retroactively update historical data to conform to current standards, for various reasons

certain data in many data sources are not updated, as seen in the example of the Frankfurt stock price.

2.2.2 Different Time Models

Although the notion of time is often taken for granted in everyday use, it is actually a rather complex

concept that has multiple meanings, e.g., there are as many as 14 entries for Time as a noun in

Merriam-Webster Online Dictionary16 . Hayes (1996) identifies six commonly used senses of time:
(1) a physical dimension; (2) a plenum (or "container") within which all events are located; (3) a

duration (e.g., 3 hours); (4) an interval (or period); (5) a point; and (6) a position in a temporal

coordinate system. To appreciate the complexity of time, a printout of the documentation needed to

work with dates and times in the Java programming language (the Java Calendar and

GregorianCalendar classes) is typically over 40 pages long.

There are two major approaches to representing temporal phenomena: change-based and time-

based (Shoham and Goyal, 1988). The intuition for the change-based approach is that time is

important only when the world changes. In this approach, time is implicitly embedded in the

changing states of the world or the relationships of events. The primitives are usually actions, as in

situation calculus (McCarthy and Hayes, 1969), or events, as in event calculus (Kowalski and Sergot,

1986).

Time is explicitly introduced in the time-based approach, which is common in many information
systems. It is desirable to have a general time model that is reusable in different systems. But

different systems often have different needs for time representation, therefore not all senses of time

are necessary in a particular system and the same sense may be formalized differently in different

systems. As a result, there have been many time theories developed for different purposes. This is

14 Gross Domestic Product (GDP) and Gross Domestic Income (GDI) are computed from the national income
and product accounts prepared by the BEA.
15 See the FAQ at http://www.bls.gov/cps/cpsfaq.htm. The answer to question "Have there been any changes

in the definition of unemployment" states: "The concepts and definitions underlying the labor force data have
been modified, but not substantially altered".
16 http://www.m-w.com/
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also the case in a number of recent efforts of developing time ontologies (Zhou and Fikes, 2000;

Hobbs and Pan, 2004), which define a set of concepts of time and their relationships.

Maiocchi and Pemrnici (1991) summarize five choices that most time theories need to make:

(1) primitive time entity: point or interval

(2) time ordering: linear, branching, or circular

(3) time structure: maps to the subset of Z (integer), Q (rational), or R (real)

(4) boundedness: if time can be infinite and if open time interval is allowed

(5) time metric: units for measuring duration

The choices are made depending on the application needs. For example, an interval-based theory is

used in (Allen, 1983) to represent and reason about temporal relationships of events and states. The

reasoning takes O(n3 ) time (n is the number of intervals in the constraint network). However, an

interval-based theory cannot represent continuous changes (Galton, 1990). Point-based theories do

not have this limitation (Koubarakis, 1994).

Most of the time models developed in Artificial Intelligence do not have a concrete

representation of time because their focus is on the relationships of the times associated with states

and events. For example, the interval logic of Allen (1983) is specifically devised for representing

relative temporal information where the exact dates or even fuzzy dates are not available. The kinds

of temporal information often have forms like "being in college" is after "being in high school" and

before "having a full-time job". Here the primary interest is the temporal relations of propositions

(e.g., "being in college") that represent states or events.

However, there are cases where the time position in a time coordinate system is known. For

example, we know that Frankfurt Stock Exchange started to use Euros from January 1, 1999. Most

temporal information recorded in databases has explicit time, sometimes called a timestamp. Time

series data also contains explicit time at certain granularities, e.g., daily, weekly, monthly, etc. This

Thesis focuses on heterogeneities in systems that contain explicit time. In these systems, time is

usually identified as a date (possibly with clock time) in a calendar (usually the Gregorian calendar).

As with other types of data, time data in different systems often have different semantic assumptions,

representations, and supported operations.

Different ontological assumptions. Common implicit assumptions for date and time include

calendar used, location or time zone, and standard time vs. Daylight Saving Time (DST). Under

different assumptions, a date and time string may denote different time points. For example, which

day "April 19, 2005" denotes depends on which calendar is used. If Julian calendar is used, it

denotes the day of "May 2, 2005" in Gregorian calendar; if Chinese calendar is used, it denotes the

day of"May 26, 2005" in Gregorian calendar.

Although most modem systems use the Gregorian calendar by default, other calendars can be

used on certain occasions, e.g., for recording cultural events. Conversions between different calendar

systems can be performed. There are also research efforts that aim to provide systematic multi-

calendar support (Soo and Snodgrass, 1995; Bry and Spranger, 2004).
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There are approximately 70 countries in the world that use DST, but DST starts and ends on

different dates in different countries and regions' 7. The starting and ending dates in a country can

change over time. For example, DST in the U.S. has changed several times, as summarized in the

case study in Figure 2.418. These aspects are often implicitly assumed in systems, e.g., local time vs.

UTC (coordinated universal time); standard time vs. daylight saving time (or summer time).

Figure 2.4 Changes to Daylight Saving Time (DST) in the U.S.

Different representations. Even when a single calendar is used, there are various representations for

date and time in terms of format and structure. These different representations continue to exist

despite the international standard "ISO 8601" (ISO, 2000), which specifies standard representations

of date and time. In the following discussion, we will use the term temporal entity to refer to date,

time and combination of date and time.

The different date formats create a number of problems in information integration:

* Semantic ambiguity - e.g., what is "03/04/05"? There are three commonly used sequences

for day (D), month (M), and year (Y); there are also two conventions of interpreting a two-

digit year (e.g., "03" as 1993 or 2003). Therefore, "03/04/05" can denote six possible dates,

ranging from April 5, 1903 to April 3, 2005. The ambiguity can be eliminated by using a

standard (e.g., ISO 8601) or if one knows the "syntax" of how different parts of a calendar

date and clock time are assembled into a single temporal entity.

* Proliferation of conversions - For any given date, there can be numerous representation

styles. Given:

o :3 styles for month: April, Apr, 04

o 3 orders for parts: DMY, MDY, YMD (D: day, M: month, Y: year)

o :3 kinds of separators: -,/, space (or no space)

o 2 ways of writing year: 4-digit and 2-digit

17 See http://webexhibits.org/daylightsaving/g.html for a list of DST start and end dates in different countries.
18 Adapted from http://webexhibits.org/daylightsaving/index.html.
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1918-1919 "An act to preserve daylight and provide standard time for the United States" was
enacted on March 19, 1918. Under the Act, DST was in use from last Sunday in
March to last Sunday in October. At the end of World War I, the law was repealed
and only a few states and cities continued to observe DST.

1920-1941 No federal law for DST
1942-1945 "An act to promote the national security and defense by establishing daylight saving

time" was enacted on January 20, 1942. Under this law, DST was year-round from
February 2, 1942 to September 30, 1945.

1946-1965 No federal law for DST.
1966-1971 "The Uniform Time Act of 1966" was enacted on April 12, 1966. DST was from

last Sunday of April to last Sunday of October. States can pass law for exemption.
1972-1985 In 1972, the Act was amended to provide options for States residing in multiple

time zones.
1986-present In 1986, the Act was amended to set the beginning of DST to first Sunday of April.



there are a total of 54 possible combinations out of these choices, i.e., 54 different

representations for any given date. A typical database management system (DBMS) supports
commonly used formats and provides conversion functions for converting between these
formats. For example Microsoft SQL Server uses the following function

CONVERT(datatype [( length )], expression [, style])

for date format conversion. The style parameter has predefined values to represent certain

formatting patterns, e.g., 101 is for "mm/dd/yy" and 107 is for "Mon dd, yy". An example of

using CONVERT is given in the Where clause a few paragraphs below. In addition, Microsoft

also supplies a DTS (Data Transformation Service) package to allow programmers to write

data transformation programs. Date-Time string transformation is one of the built-in

transformations. Oracle uses the following two functions to convert data formats:

TO_CHAR(<date>, '<format>')

TO_DATE (<string>, '<format>')

whereformat is a pattern string assembled using a set of predefined tokens.

Need for query rewriting - Temporal entities are often represented in different formats,

sometimes implemented using incompatible data types (e.g., system supported DATE type

vs. STRING type). As a result, query expressed against one system cannot be directly

evaluated in another system. For example, suppose Quote_date is present in an Oracle

database as well as a SQL Server database using the system supported DATE type and

DATETIME type, respectively. By default, date format in Oracle is "dd-MON-yy" 19, such as

"03-APR-05" for April 3, 2005. When a date string with correct format is compared with a

value of DATE type, Oracle first converts the string into DATE type before comparing.

Thus the Where clause in a query to the Oracle database may look like the following:

Where Quotedate = '03-APR-05'

However, SQL server does not automatically convert a date string to DATETIME type.

Therefore, a direct evaluation of the above Where clause in a SQL server will always return

an empty result. To ensure correct evaluation, the above Where clause must be rewritten to

convert data into the same type, e.g., converting DATETIME to string type like in the

following:

Where CONVERT(varchar(10), Quotedate, 101) = '04/03/05'

As we will see next, the need for query rewriting also arises where there are structural

differences and the differences in supported operations over the data types used for temporal

entity representation.

Many data sources do not use system supported time related data types for temporal entities.
Instead, they use other primitive types, such as string, to represent time and implement the time
model in application code. When this is the case, in addition to format differences, there can be

19 Date format template in Oracle databases is different from than in the Java programming language. In Oracle,

"MON" indicates the use of abbreviated month name, "APR" for month April.
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structural (i.e., schematic) and granular differences. Figure 2.5 illustrates just a few examples in

clinical data (Das and Musen, 2001).

(a) Month Day Year Patient ID Weight
1 23 3001 41288 71

(b) |Date| Length Unit Patient ID I Problem 
Jan 23 2001 2 Week 41288 Pneumonia

(c) Time Drawn Time Entered Patient ID Creatinine
Feb 1 2001 7:01:23AM Feb 1 2001 10:12:54AM 41288 2.3

(d) [Start Time |End time Patient ID I Drug Name Drug Dose Frequency Route I
Jan 30 2001 5:40PM Now 41288 Gentamicin 150mg 8 IV

Figure 2.5 Heterogeneities of Temporal Entities in Clinical Data (Das and Musen, 2001).

As shown in Figure 2.5, a temporal entity can be split into multiple parts as in (a) or be in one

piece as in the rest, with or without time part; they can have different granularities; an interval can be

represented using start time and end time in two separate columns as in (d), or using a date and a

duration prior to the date as in (b). Obviously, these differences require that a query expressed

against one structure to be rewritten for a different structure to ensure the executablility and

correctness of the query.

Different supported operations on temporal entities (capability heterogeneity). Different

systems often have different implementations for temporal entities. As a result, the supported

operations on temporal entities differ amongst systems. We call such differences capability

heterogeneity. For example, not all systems support the subtraction operation on two dates to give

the duration as the number of days between the dates, next operation on a date to return the next day,

or overlaps operation in temporal database query language TSQL2 (Snodgrass, 1995). Certain

systems do not even support all of the usual comparison operators: <, >, >=, <=, and =. For example,

to retrieve stock prices between December 21, 1998 and January 8, 1999 like those shown in Figure

2.2, one would expect to be express the date range in a SQL query like the following:

WHERE DATE>="21-DEC-98" and DATE=<"8-JAN-99" and ...

But if the source does not support operators such as >= and =< on the DATE attribute, the query

cannot be executed as expressed. As we will see in Chapter 3, Yahoo data source does have such

limitations and the date range conditions have to be translated to equality on StartYear, StartMonth,

StartDay, EndYear, EndMonth, and EndDay attributes.

The problem of capability heterogeneity exists for other types of data and has been recognized in
information integration research (Yerneni, 2001). Although capability heterogeneity is a separate

issue from semantic heterogeneity, a query answering system needs to resolve such heterogeneity so

that when a user query violates certain source restrictions, the query answering system can rewrite
the query into a form executable at the source.

- 27 -



2.2.3 Different Associations with Time

In the previous section, we focused on time itself and its representation in information systems. In

this section, we look at different ways of associating time to non-temporal data and different
interpretations of these associations. Temporal database literature distinguishes two dimensions of

time - valid time and transaction time (Snodgrass and Ahn 1985; Jensen and Snodgrass, 1996).
Valid time concerns the state of the modeled world (i.e., when a certain thing is true in the world),

and transaction time concerns the state of the database (i.e., when a certain record is current/stale in

the database). In the rest of the Thesis, we refer to valid time unless otherwise noted.

Time-stamping is a common practice of associating time to non-temporal data. For example,

Figure 2.6 shows a number of time-stamped records in a hypothetical bank account database

(adapted from Bettini et al., 2000). Account 123 has three transactions in January 2005: on January 1,

2005, there is a deposit of 100 and the resulting balance is 800; a withdrawal occurs on January 15,

2005, and the resulting balance is 750, etc.

Account Time Transaction Balance
123 1/1/2005 100 800
123 1/15/2005 -50 750
123 1/31/2005 200 950

Figure 2.6 Time-stamped bank account records.

With these records and other assumptions, such as that these records represent all changes that

could have affected the balance, one can infer this account has a balance of 800 on any given day

between January 1 and January 14; but one cannot say that the account has a transaction of 100 on

any given day between January 1 and January 14. That is, the balance-time and transaction-time

associations have different interpretations.

There are several formalizations of this phenomenon. Allen (1984) distinguishes three types of

entities to be associated with time: properties, events, and processes. In Allen's interval logic, the

attribute "balance" is a property, which holds true over an interval ff it holds true over any

subinterval of the interval, while the attribute "transaction" is an event, which can occur over an

indivisible interval.

Shoham (1987) introduces a logic that eliminates the need of using special predicates for
different entities and their associations with time. This is a reified20 logic that refers to the non-

temporal part as proposition type. For example, color(house 17, red) is a proposition type in predicate

TRUE(tl, t2, color(hoursel17, red)). This predicate is equivalently represented as a record in a

database table that has four attributes: <Begin, End, House, Color>. Thus, a proposition type roughly

corresponds to a relational attribute. The logic is expressive enough to distinguish different

proposition types: downward hereditary, upward hereditary, liquid. A proposition type is downward
hereditary if whenever it holds over an interval it holds for all its subintervals or its internal points; it

is upward hereditary if whenever it holds true for all subintervals or internal points of an interval it
holds for the interval; it is liquid if it is both downward and upward hereditary. According to these

20 Reification is the process of turning a predicate or function into an object in the language.
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definitions, "balance" is liquid, and "transaction" is non-hereditary. These characteristics can be used

to compact data storage (e.g., balance need not be stored for every day or every second); implicit
data can be derived based the liquidity of attributes (Bettini et al., 1998).

We observe that liquidity (or lack of liquidity) is determined by the nature of the attribute and it

does not vary across data sources or change over time. For example, "balance" is liquid in all data

sources and stays liquid all the time.

Certain functions can be applied over the time domain to obtain an aggregate attribute. Although

liquidity does not vary among sources, temporal aggregation can be different in different sources.

For example, in a precipitation database that records monthly precipitation, the value could be total

precipitation of each month, or the max, min or average daily precipitation within the month. In this

case, the function that is applied to obtain the aggregate determines the association of the attribute

with time. These different aggregates are conceptually different. Conversions between these different

aggregates are possible when the data to which functions are applied are available.

Sometimes different sources aggregate data over different granularities, e.g., daily precipitation

in one source and monthly precipitation in another, or monthly sales vs. quarterly sales. Conversion

from fine granularity to coarse granularity can be performed via aggregation, which may or may not

involve approximation (e.g., conversion from monthly sales to quarterly sales involves no

approximation, while conversion from weekly sales to monthly sales does). The conversion from

coarse granularity to fine granularity can only be approximated or extra information is required (e.g.,

approximating monthly sales from quarterly sales by taking the average).

Although both cases in the two preceding paragraphs involve aggregation, there are differences

between them. In the first case, different functions are applied over the same time period, in the

second case the same aggregation function is applied over different time periods. Work in temporal

aggregates (Lopez et al., 2005) has mainly focused on developing efficient algorithms to compute an

aggregate from data in fine temporal granularity.

2.3 Existing Approaches to Temporal Information Management

Temporal information management has been extensively researched in logic, AI, and database. In

this section, we review related literature from the perspectives of temporal information

representation and temporal reasoning. For representation, time can be introduced explicitly or

implicitly, time can have a homogenous representation or have heterogeneous representations. For

reasoning, it may or may not handle uncertain time or uncertain temporal relations; similarly, it may

or may not deal with data semantics that changes over time (i.e., dynamic). These aspects are

schematically shown in Figure 2.7.
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Figure 2.7 Categorization scheme for temporal information management.

Several logic formalisms introduce time implicitly. As mentioned earlier, time is implicit in

situation calculus (McCarthy and Hayes, 1969) and event calculus (Kowalski and Sergot, 1986). The

interval logic by Allen (1983) does not have explicit time representation either; it uses the

propositions that hold true in certain time intervals as surrogates for time. Temporal modal logics

(Kamp, 1968; Reichgelt, 1989; Halpen and Shoham, 1986) may or may not introduce time explicitly

depending on what modal operators are supported. Non-reified (Bacchus et al., 1989), reified (Allen,

1984; McDermott, 1982; Shoham, 1987), and annotated (Friihwirth, 1996) temporal logics explicitly

introduce time.

These formalisms are developed for problem solving in AI. Most of them can reason about

uncertain temporal information and dynamic semantics. Uncertainty can exist in temporal relations

(e.g., disjunctive temporal relations in Allen, 1983) or temporal values (e.g., Friihwirth, 1996). The

formalisms are developed to particularly handle changes. However, when time is explicitly

introduced, they all assume homogeneous time representation and semantics.

Temporal database research (see Ozsoyoglu and Snodgrass, 1995 for a survey and Date et al.,

2003 for a recent approach) focuses on efficient storing and querying large amounts of time-varying

data (i.e., temporal data). One of the objectives is to offload users from managing various aspects of

time, therefore, time is explicit from the system's point of view. This line of research does not

concern semantic heterogeneity; it assumes that time has homogeneous representation and semantics.

Earlier research deals with certain temporal information; recent work (Dyerson, 1994; Koubarakis,

1994) starts to develop techniques for managing uncertain temporal information.

Most existing information integration approaches do not systematically handle temporal

semantic heterogeneity. In TSIMMIS (Garcia-Molina et al., 1995), semantic heterogeneity is

identified in view definitions and a mediator is used to reconcile semantic heterogeneity through

view expansion and query rewriting. Time-varying semantics can possibly be handled through view

definitions that partition a data source into multiple ones. However, this is a manual process to be

performed before query mediation. SCROL (Ram and Park, 2004) is a global schema approach that

uses an ontology to explicitly categorize and represent predetermined types of semantic

heterogeneity. Although heterogeneous representations of temporal entities can be handled by
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SCROL, its ontology does not have constructs for representing time-varying semantics. COIN (Goh

et al., 1997; Firat, 2003) uses a shared ontology for describing data semantics and a mediator to

resolve semantic heterogeneities by query rewriting. Prior to the work described in this Thesis, its

capability of dealing with temporal semantic heterogeneity is similar to that of TSIMMIS. These

approaches (as well as work of this Thesis) cannot process uncertain information.

In addition tlo the above approaches that are intended for any application domain, there have

been research efforts that aim to address semantic heterogeneity problems in specific domains. In the

domain of medial applications, Shahar (1994) concerns automatic construction of interpretation

contexts within which time series data can be appropriately abstracted and interpreted. For example,

given a series of patient blood pressure readings, without any further information, the system may

interpret the patient's blood pressure to be above normal over a 2-week period; however, if it is

known that a drug with a side effect of increasing blood pressure had been administered during that

period, the system will automatically construct a different interpretation context within which the

same set of blood pressure data is interpreted as being normal. Although it facilitates data

interpretation via abstraction and context construction, the interpretation within a context does not

change over time.

Das and Musen (2001) focus on heterogeneity of temporal entities. They develop a canonical

time-stamping scheme and translate timestamps in other formats into this canonical format. These

translations need to be implemented manually using a number of operators specially designed for

this purpose. They do not concern the semantics of non-temporal data, e.g., the unit of creatinine

measurement in table (c) of Figure 2.5.

We use the categorization scheme of Figure 2.7 to summarize the related work, and present the

results in Table 2.1; (Y) indicates that some, not all, approaches in the group have the indicated

property or capability. The main contribution of this work is that it processes dynamic (i.e., time-

varying) semantics in the presence of semantic heterogeneity in time itself; this unique combination

of problems has not been addressed in previous information integration research.

Table 2.1 Various approaches to temporal information management.
Time introduction Time representation/semantics Temporal uncertainty Semantic assumptions

Explicit Implicit Homogeneous Heterogeneous Certain Uncertain Static Dynamic

Temp. Logic (Y) (Y) Y N Y (Y) Y Y

Temp. Database Y N Y N Y (Y) Y N

Info Integration Y N Y Y Y N Y N

Med. Info Sys Y N Y Y Y N Y N

This work Y N Y Y Y N Y Y

2.4 Summary

We have identified three kinds of temporal semantic heterogeneity: (1) time-varying data semantics

due to changes of implicit assumptions; (2) heterogeneous time models that include a number of

aspects of time (i.e., temporal entity) itself, e.g., representations, interpretations, and operations of

time; (3) different associations of non-temporal information to time. For (3), we observe that
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liquidity is dependent on attribute type and does not vary by source or time. Therefore, we need not

deal with heterogeneous liquidity in information integration.

We reviewed related literature in logic/AI, temporal databases, and information integration. It

can be seen that none of the existing research systematically addresses time-varying semantics and

heterogeneous time models simultaneously. This Thesis will fill this gap. We will develop a

representation formalism and reasoning mechanism to reconcile semantic heterogeneities where both

changing semantics and heterogeneous time models are present. This will be developed as extensions

to the existing COIN approach.

Specifically, we will focus on the integration of sources with explicit time and develop

techniques to address the following issues encountered in the integration of temporal data sources:

* Time varying semantics

* Semantic heterogeneity in temporal entities

* Capability heterogeneity in terms of supported operations on temporal entities

We will focus on certain temporal information, and leave uncertain temporal information for future

research.

The scope of this part of the Thesis can be further understood from the perspective of system

interoperability that needs to resolve heterogeneity in all layers of information systems. With

standards such as ODBC, Web Services, and XML, systems using different hardware and software

platforms can exchange data and parse the exchanged data relatively easily. They essentially provide

physical connectivity to allow different systems to exchange data, not the semantics of the data. For

the receiver to combine data from different sources and correctly interpret the meaning of the data

for various applications, schematic and semantic heterogeneities need to be resolved. Recent work on

schema matching (Rahm and Bernstein, 2001; Hernandez et al, 2001; Bernstein et al., 2004;

Madhavan et al., 2005; Bilke and Naumann, 2005) aim to automatically generate semantic

correspondences between a pair of schemas. These algorithms are getting better at identifying

similarities (e.g., price in schema S is similar to sale_price in schema S2), but they still lack the

capability of identifying semantic heterogeneity (e.g., price in S1 includes tax but sale_price in S2

does not). This Thesis focuses on developing a formalism for representing changing semantics in

various sources, and a reasoning technique for reconciling temporal semantic heterogeneity once the

heterogeneity has been described using the representation formalism.

The approach developed in the Thesis and numerous other integration approaches use ontologies

for representing semantics (Wache et al., 2001). Ontology also plays an important role on the

Semantic Web for knowledge sharing and reasoning (Berners-Lee, et al., 2001); Firat (2003)

discusses the relationship between COIN and the Semantic Web. The ontologies on the Semantic

Web and in various systems may use different representation languages and terms, and have different

structures. These differences need to be reconciled in large scale information integration that

involves multiple ontologies. Research on ontology translation, alignment, and merging addresses

this issue (Bruijn et al., 2004).
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"Every general theory must work in at least one case."
- Stuart E. Madnick

Chapter 3

Resolving Temporal Semantic Heterogeneity
using COIN
In the previous chapter, we identified various kinds of temporal semantic heterogeneity. Extensions

to the COIN framework have been developed to reconcile these kinds of heterogeneity. The

extensions do not change the architecture of COIN, which implements the framework and is briefly

described below. Then we use three examples to illustrate the reconciliation of temporal semantic

heterogeneity using the extended COIN. A summary of its capabilities and benefits is provided in the

end. We intentionally keep the discussion intuitive, leaving the technical details to the next two

chapters.

3.1 Overview of COIN Architecture

The COIN architecture, consisting of a graphic/web-based modeling tool and a mediation service, is

depicted in Figure 3.1.

Knowledge Representation - F-Logic based data model Graphic
Ontoloav - define types and binary relationships Web-based
Context descriptions - describe source and receiver contexts modeling tool
Elevation - provide correspondence between data elements and types in ontology

- ... Receivers/

Figure 3.1 COIN architecture.

One of the objectives of COIN is to provide a system service so that users or user applications

(i.e., receivers21) are not burdened with keeping track of and reconciling various kinds of semantic

21 In this Thesis, we use user and receiver interchangeably.
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heterogeneity. This is achieved by first using the modeling tool to explicitly record the implicit

assumptions made by the data sources and receivers. The explicit representation of the assumptions,

which we call context descriptions, is couched in an F-logic based data model that we will describe

in the next chapter.

Once the various assumptions have been recorded using the modeling tool, a receiver can query

all sources without the concern of semantic heterogeneity. The mediator component of the COIN

mediation service intercepts the user query, compares the context descriptions of both the receiver

and the data sources required to answer the query to detect differences, and outputs a mediated query

(MQ) that incorporates the instructions on data conversions necessary for reconciling the differences.

The query planner/optimizer/executioner (POE) then generates an optimized execution plan for the

MQ and executes it to obtain the data instances with all necessary conversions performed.

COIN assumes that all data sources have a relational data model. This gives us the convenience

of querying the data sources with SQL. When the actual implementation of a source is not relational,

we can superimpose the relational model using wrappers. For example, we can use the Cameleon

web wrapper (Firat et al., 2000) to make semi-structured web sources appear to be relational

databases.

Traditionally, the MQ is called the intensional answer and the data instances are the extensional

answer to the user query. Within the COIN system, the intensional answer is expressed in Datalog,

which can be further translated into SQL. We assume the readers are familiar with SQL and the

basics of relational calculus. An in-depth discussion on Datalog can be found in Ceri et al. (1989).

Since we will use the Datalog form of the MQ in the example, a brief intuitive introduction to

Datalog is provided below.

A Datalog query is the logical equivalent of an SQL query. For example, suppose there are two

catalog database relations (i.e., tables) that list items and their prices: dl (Item, Price), d2(Item, Price).

To find all items in dl whose prices are higher than those in d2, we can issue the following SQL:

Select dl.Item from dl, d2
Where dl.Item=d2.Item and dl.Price>d2.Price;

The following is an equivalent query in Datalog:

answer(Item) :-dl(Item,Pl), d2(Item, P2), P>P2.

Here, we use predicate answer to simulate the projection operator that outputs a list of attributes in

the Select clause of SQL. A relation in the source is represented by a predicate, e.g., relation dl is

represented by predicate dl. The attributes of a relation are referenced by the attribute names in SQL,

in contrast, they are referenced by variables of arbitrary names as the arguments of the corresponding

predicate in Datalog. The position of the argument determines the attribute being referenced. The

same variable (e.g., Item in the above Datalog query) appearing in different predicates within the

same Datalog query implies a Join condition. Conversely, variables with the same name in different

Datalog queries are not related, e.g., variables Product and P in the following two queries are not

related:

answer(Product, P) :- dl(Product, P).

answer(Product, P) :- d2(Product, P).
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3.2 Example 1 - Yahoo Historical Stock Price

3.2.1 Integration Scenario

We have seen the Yahoo historical stock price example in Chapter 2. At the Yahoo Finance website,
users can retrieve historical stock prices from most major stock exchanges by supplying the ticker
symbol and the desired date range. To compare stock prices at different stock exchanges around the
world, a user needs to retrieve data one exchange at a time and manually put them together. This is
very time consuming. It becomes even more problematic when it comes to "understanding" the data
because the prices at different exchanges may use different currencies and certain exchanges also
changed currencies over time without any explicit indication. It is desirable that such temporal
semantic heterogeneity is resolved by the system so that the users are not burdened with keeping
track of and reconciling the differences.

For illustration purposes, let us consider a scenario that involves three stock exchanges, as
depicted in Figure 3.2. Each exchange is viewed as a data source, for which we provide the schema,

some sample data, and a brief description of the context. For example, YHNYSE is the source for
stock prices at New York Stock Exchange (NYSE). When a source has only one relation, we use
relation name and source name interchangeably. Auxiliary sources used for data transformation (i.e.,
conversion) are also given with necessary context

- I

YHNYSE

Ticker QDate AdjClose

IBM 4-JAN-99 87.57
IBM 31-DEC-98 88.23
IBM 30-DEC-98 89.36

Context:
Monetary value is in US dollars (as in cusa)
Date format is d-MMM-yy (as in c_germany)

r-------------------------------------

YHFrankfurt

Ticker QDate AdjClose

IBM.I 4-JAN-99 75.05
IBM.f 30-DEC-98 149.14

Context: cgermany
Monetary value is

in German marks until the end of 1998
in Euros since the beginning of 1999

Date format is d-MMM-yy
_.......................

Figure 3.2 Integration of historical

t descriptions.

- - - - - - - - - - - … - - - - - - - - - -

YHParis

Ticker QDate AdjClose

IBM.pa 4-JAN-99 75.68
IBM.pa 30-DEC-98 77.55

Context: c_france
Monetary value is in Euros
Date format is d-MMM-yy

------------------------------------------

Context: cusa
Monetary value is US dollars
Date format is MM/dd/yyyy, e.g., 01/04/1999

.-----------------------------------......

Auxiliary sources:

Olsen (exchange rate):
<Expressed, Exchanged, Rate, Date>

colsen: Date format is MM/dd/yy, e.g., 01/04/99

Datecvt (date format conversion):
<datel, format1, date2, format2>

I …_ ....... . .......... …_

stock prices from multiple exchanges

A context is a set of descriptions about various aspects of the meaning of data. There are two
such aspects in the example: (1) the currency used for price, which is a kind of monetary value; and

(2) the date format useful for correctly interpreting date values. We use the format pattern in Java
SimpleDateFormat class 22 for describing date format. We reference a context using a context label,

22 See http://java.s.com/j2se/1.5./docs/api/javatext/SimpleDateFomat.html for documentation.
22 See http://java.stm.com/j2se/1.5.0/docs/api/java/text/SimpleDateFormat.htm for documentation.
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i.e., identifier, e.g., cermany is the identifier for the set of descriptions shown in the lower left

corner of Figure 3.2.

We associate each column of a database table to a context label. For example, in source

YHNYSE, the "QDate" column is associated to context label germany (thus we know the date

format is d-MMM-yy), whereas "AdjClose" column is associated to context label cusa (thus we

know the currency is USD). When all columns of every table in a source are associated to the same

context label, we say the source is in that particular context. For example, every column of

YHFrankfurt is associated to context label cgermany, so we say that source YHFrankfurt is in

context cgermany, or source YHFrankfurt's context is cermany. We also associate each receiver

to a context label.

Historical Prices Gt Histo.c.l Pico fO-Z:
SET DATE RAGCE

(9 Daily Ticker
Start Date: Dec Iv 20 1998 Eg Jn 1, 2003 r/Weekly

End Date:: Jon v! 10 1999 . Monthly
C Dividends Only

I Get PricesI
End points of QDate: StartMonth,StartDay,SartYar; EndMonth,EndDay,EndYear

PR' - QDate AdjClose r . l- 
PRICEY 

Date Open High Low Close Volume

8-Jan-99 19100 192 00 185.63 18756 4,593,100 99.75

7-Jan-99 18794 192.38 187.00 190.19 4,155,300 91 01

Figure 3.3 Historical stock quote interface at Yahoo Finance (adapted from Yahoo).

All the sources for historical stock prices are actually from the web site of Yahoo Finance (at

finance.yahoo.com). We also use Olsen (at Oanda.com) as a source for historical exchange rates, and

a servlet application called Datecvt for date format conversions. We use the Cameleon web wrapper

to provide an SQL interface to these web sources so that they can be queried using SQL.

As an example, Figure 3.3 shows the actual user interface of historical stock prices at Yahoo

Finance. Using the web wrapper, we can superimpose the following relational schema on the source:

<Ticker, QDate, AdjClose, StartMonth, StartDay, StartYear, EndMonth, EndDay, EndYear>

The last six attributes corresponds to the month, day, and year of "Start Date" and "End Date" and

are necessary only because the data source does not accept inequalities on the "QDate" attribute. Not

all sources have such restrictions. This is an example of capability heterogeneity discussed in

Chapter 2. Like the semantic heterogeneity, capability heterogeneity should be handled by the

integration technology, not the users. Therefore, users can specify the date range using >= and =<

operators on "QDate" attribute and the COIN mediation service will convert them to the

corresponding comparisons on the last six attributes in the schema.

This scenario illustrates several kinds of heterogeneity. First, the date formats are different in

several contexts. This is a simple example of time model heterogeneity. Second, different currencies

are assumed in different contexts; in the context of YHFrankfurt source, the currency also changed

firom German Marks (i.e., Deutschmarks) to Euros. In addition, the sources also have capability
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restrictions that other sources may not have. Therefore, we can use this simple scenario to illustrate
the following features:

* Resolving time-varying semantic heterogeneity in the presence of time model heterogeneity

* Automatic query rewriting for source capability heterogeneity

3.2.2 Using COIN in this Example

Suppose a receiver in the context c_usa, as depicted in Figure 3.1, is interested in IBM stock price in
Frankfurt during December 20, 1998 and January 10, 1999. To retrieve this information, the receiver
can issue the following SQL:

Q1: select Qate, AdjClose from YHFrankfurt
where Ticker="IBM.f" and QDate >="12/20/1998" and QDate =<"01/10/1999";

This query cannot be executed as is because of the source's inability in evaluating inequalities on
"QDate"; even if it could, it does not return meaningful data to the user. Comparing the context
definitions for the source and the user in Figure 3.2, we notice that there are currency and date

format differences. The currency assumed in the source also changed within the specified date range.
These capability restrictions, semantic differences and the change of semantics are recognized by the
COIN mediator, which subsequently generates the following mediated Datalog query:

MDQI: answer (V6, V5):-
olsen("DEM", "USD", V4, V3),
datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"),
datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"),
V5 is Vl * V4,
yhfrankfurt("IBM.f", V2, V, "Dec", "20", "1998", "Dec", "31", "1998").

answer(V6, V5):-
olsen("EUR", "USD", V4, V3),
datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"),
datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"),
V5 is V1 * V4,
yhfrankfurt("IBM.f", V2, V1, "Jan", "1", "1999", "Jan", "10", "1999").
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The corresponding mediated SQL query is:

MQ1: select
from

where
and
and
union
select
from

where
and
and

datecvt.date2, (yhfrankfurt.adjClose*olsen.rate)
(select 'DEM', 'USD', rate, ratedate
from olsen
where exchanged='DEM'
and expressed='USD') olsen,
(select datel, 'MM/dd/yy', date2, 'MM/dd/yyyy'
from datecvt
where formatl='MM/dd/yy'
and format2='MM/dd/yyyy') datecvt,
(select datel, 'd-MMM-yy', date2, 'MM/dd/yyyy'
from datecvt
where formatl='d-MMM-yy'
and format2='MM/dd/yyyy') datecvt2,
(select 'IBM.f', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
from yhfrankfurt
where Ticker='IBM.f'
and StartMonth='Dec' and StartDay='20' and StartYear='1998'
and EndMonth='Dec' and EndDay='31' and EndYar='1998') yhfrankfurt

datecvt2.datel = yhfrankfurt.qDate
datecvt.date2 = datecvt2.date2
olsen.ratedate = datecvt.datel

datecvt3.date2, (yhfrankfurt2.adjClose*olsen2.rate)
(select 'EUR', 'USD', rate, ratedate
from olsen
where exchanged='EUR'
and expressed='USD') olsen2,
(select datel, 'MM/dd/yy', date2, 'MM/dd/yyyy'
from datecvt
where formatl='MM/dd/yy'
and format2='MM/dd/yyyy') datecvt3,
(select datel, 'd-MMM-yy', date2, 'MM/dd/yyyy'
from datecvt
where formatl='d-MMM-yy'
and format2='MM/dd/yyyy') datecvt4,
(select 'IBM.f', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
from yhfrankfurt
where Ticker='IBM.f'
and StartMonth='Jan' and StartDay='l' and StartYear='1999'
and EndMonth='Jan' and EndDay='10' and EndYear='1999') yhfrankfurt2

datecvt4.datel = yhfrankfurt2.qDate
datecvt3.date2 = datecvt4.date2
olsen2.ratedate = datecvt3.datel

The SQL syntax is a bit verbose, so we will examine the more concise Datalog query MDQ1. It has

two sub-queries: one for the time period from December 20, 1998 to December 31, 1998, the other

for the time period from January 1 1999 to January 10, 1999. This is because the currency assumed

in the source is German Mark in the first period and is Euro in the second period, each needing to be

processed separately.

Let us focus on the first sub-query for the moment, which is reproduced in Figure 3.4 with line

numbers and annotations added. Line 6 queries the YHFrankfurt source. Notice that the date range

has been translated to equalities of the six attributes of month, day, and year of start date and end

date of the actual schema; the values for month are now in the format required by the source, i.e.,

"Dec" for December. Variable V2 corresponds to "QDate", V1 corresponds to "AdjClose". None of

them are in line 1 to be reported back to the user; the code in lines 2-5 has the instructions on how to

transform them to V6 and V5 as values to be returned to the user.
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Figure 3.4 Data transformations in MDQ 1

The procedural reading of the code is:

* line 4 converts "QDate" (V2) from the source format to the format expected by user

(V6), i.e., from "d-MMM-yy" format (e.g., 20-Dec-98) to "MM/dd/yyyy" format (e.g,

12/20/1998);

* line 3 converts V6 (from line 4) to V3 so that V3 has the format expected by source

olsen, i.e., it converts date format from "MM/dd/yyyy" (e.g, 12/20/1998) to

"MM/dd/yy" (e.g, 12/20/98);

* line 2 queries the olsen source to obtain exchange rate (V4) between Deutschmark

(DEM) and U.S. dollar (USD) for the date given by V3; and

* line 5 converts "AdjClose" (V1) to USD using the exchange rate (V4) from line 2.

The second sub-query is almost the same except that it deals with a different date range within

which the currency difference is EUR v. USD instead of DEM v. USD.

When the mediated query is executed, the user receives data instances2 3 as shown in the left pane

of Figure 3.5. For comparison, we also show the "raw" data from the source; notice that the unusual

abrupt price drop in the raw data (which is actually due to the change in currencies) no longer

appears in the mediated data.

Mediated results Non-mediated results (original data)

ODate AdiClose

301/08/1999 91.65

I01/07/1999 90.10

i01/06/1999 92.94

01/05/1999 88.28

101/04/1999 88.61

12/30/1998 89.27

12/29/1998 [ 90.54

12/28/1998 90.14

12/23/1998 88.06

12/22/1998 1 84.84

P2/21/1998 84.96

QDate AdjClose

8-Jan-99 [ 78.67

7-Jan-99 77.22

| 6-Jan-99 79.15 EUR

5-Jan-99 74.81

4-Jan-99 75.05)

30-Dec-98 149.13

[ 29-Dec-98 151.54

28-Dec-98 151.54 DEM

23-Dec-98 147.2 DEM

22-Dec-98[ 141.89

2 1-Dec-98[ 141.41 )

(user format) (in USD) (original format)

Figure 3.5 Mediated and non-mediated data instances.

The mediated query for Q1 has two sub-queries because the currency in the source changed

within the specified date range. When the user specifies a different date range within which there is

23 Mediated results are rounded for easy reading.
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1 answer(V6, V5):-
2 o1se DEM","USD", V3), %obtain exchange rate V4

3 date 1V, m' V6, "MM/dd/yyyy"), %obtain date V3 in MM/dd/yy
4 date "d-M V6, "MM/dd/yyyy"), %obtain date V6 in MM/dd/yyyy
5 V5 is %convert price: DEM -> USD
6 yhfrankfurt("IBM. V2, V, "Dec", "20", "1998", "Dec", "31", "1998").



no such change, the mediator will generate a mediated query accordingly. For example, when the

user issues the following query to obtain more recent data:

Q2: select QDate, AdjClose from YHFrankfurt
where Ticker="IBM.f" and QDate >="05/01/2005" and QDate =<"05/13/2005";

The mediated Datalog query becomes

MDQ2: answer(V6, V5) : -
olsen("EUR", "USD", V4, V3),
datecvt(V3, "MM/dd/yy", V6, "MM/dd/yyyy"),
datecvt(V2, "d-MMM-yy", V6, "MM/dd/yyyy"),
V5 is V * V4,
yhfrankfurt("IBM.f", V2, V1, "May", "1", "2005", "May", "13", "2005").

Notice that this mediated Datalog query contains only one sub-query similar to the second sub-query

in MDQ - during the specified date range, the currency difference is EUR v. USD.

When the user wants to compare stock prices at the three stock exchanges for the same date

range as in Q 1, the following query can be issued to the mediator:

Q3: select YHFrankfurt.QDate, YHFrankfurt.AdjClose, YHParis.AdjClose, YHNYSE.AdjClose
from YHFrankfurt, YHParis,YHNYSE
where YHParis.Ticker="IBM.PA"and YHNYSE.Ticker="IBM" and YHFrankfurt.Ticker="IBM.f"
and YHFrankfurt.QDate=YHNYSE.QDate and YHFrankfurt.QDate=YHParis.QDate
and YHFrankfurt.QDate >="12/20/1998" and YHFrankfurt.QDate =< "01/10/1999";

The mediated Datalog query MDQ3 (see below) looks similar to MDQ1, except that it queries

three sources instead of only one. The corresponding mediated SQL query MQ3 is shown in the

appendix at the end of the chapter.

MDQ3: answer(V1IO, V9, V8, V7):-
V9 is V6 * V5,
olsen("EUR", "USD", V4, V3),
datecvt(V3, "MM/dd/yy", V10, "MM/dd/yyyy"),
olsen("DEM", "USD", V5, V3),
datecvt(V2, "d-MMM-yy", V10, "MM/dd/yyyy"),
V8 is V * V4,
yhnyse("IBM", V2, V7, "Dec", "20", "1998", "Dec", "31", "1998"),
yhparis("IBM.PA", V2, V, "Dec", "20", "1998", "Dec", "31", 1998"),
yhfrankfurt("IBM.f", V2, V6, "Dec", "20", "1998", "Dec", "31", "1998").

answer(V9, V8, V7, V6):-
datecvt(V5, "MM/dd/yy", V9, "MM/dd/yyyy"),
olsen("EUR", "USD", V4, V5),
V8 is V3 * V4,
datecvt(V2, "d-MMM-yy", V9, "MM/dd/yyyy"),
V7 is V * V4,
yhnyse("IBM", V2, V6, "Jan", "1", 1999", "Jan", "10", "1999"),
yhparis("IBM.PA", V2, V, "Jan", "1", "1999", "Jan", "10", 1999"),
yhfrankfurt("IBM.f", V2, V3, "Jan", 1", "1999", "Jan", "10", 1999").

The data instances are shown in Figure 3.624. The currency has been converted into USD for all

prices; the date is also expressed in user preferred format. In this uniform context, it is easy to

compare the prices at different exchanges. Further analyses can be performed much more easily, e.g.,

one can calculate the maximum price differential across the three exchanges and find it to be $2.73

on 12/22/1998.

24 In theory, the values in YHFrankfurt.AdjClose column in Figure 3.6 should be the same as those in the left

pane of Figure 3.5, but we notice that they differ by up to a few cents. This is because that sometimes Yahoo
Finance returns slightly different values when it is queried at a different time.
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YHFrankfurt.QDate YHFrankfurt.AdjClose YHParis.AdjClose YHNYSE.AdjClose
[01/08/1999 91.67 1 91.10 89.75

[01/07/1999 90.12 91.24 f 91.01
[1/06/1999 , 92.95 92.50 [ 90.32
[01/05/1999 88.29 [ 88.52 [ 90.74

[ 1/04/1999 88.62 89.36 87.57

12/30/1998 89.28 90.83 1 89.36

[12/29/1998 90.55 91.26 - 89.54

[12/28/1998 90.14 91.76 90.56
12/23/1998 88.07 88.94 88.52

[12/22/1998 84.85 87.58 [ 87.21
[12/21/1998 84.97 86.25 7 84.40

Figure 3.6 Price comparison for IBM stock, 1998-1999

With the support of the mediation service, it becomes much easier to perform price comparison
and other analyses. Users can use the sources without the burden of keeping track of their contexts
and how the contexts change over time. They can also use the sources without being concerned about
source capability differences.

3.3 Example 2 - Economic and Environmental Development in Yugoslavia

The Yugoslavia example in Chapter 2 shows that temporal semantic heterogeneity can arise when
the real world undergoes changes. Based on the example, we construct a scenario that involves two
data sources and one receiver, as shown in Figure 3.7. The sources share the same context.

Context csrc Context creceiver
1. Monetary values are in official currency of the country, with 1. Monetary values are always in USD, with a scale

a scale factor of 1I M; factor of M;
2. Mass is a rate of tons/year with a scale factor of 1000; 2. Mass is in tons/year;
3. All other numbers have a scale factor of 1; 3. Other numbers have a scale factor of 1;
4. All values are aggregated by country. 4. If country code is "YUG", aggregate values for the
Schema of source 1: region of the former Yugoslavia.

Statistics(Country, Year, GDP, Population)

Schema of source 2:
Emissions(Country, Year, C02)

Figure 3.7 Sources and receiver contexts in Yugoslavia example.

In the scenario, the receiver is interested in the longitudinal economic and environmental
changes in the region of the former Yugoslavia; however, the sources organize the data by sovereign
country. Before the former Yugoslavia was broken up into five countries in 1992, the sources and the

receiver coincided on how data is organized; from 1992 onward, data for the five countries need to
be aggregated to meet the receiver need. In other words, the receiver wants to continue to use
"Yugoslavia" to refer to the region within the boundaries of the former country "Yugoslavia". In
addition, the sources and the receiver also make other implicit assumptions in terms of currencies
and scale factors, as shown in Figure 3.7. The five countries and their official currencies are shown
in Table 3.1.
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Table 3.1 Countries and their currencies of former Yugoslavia

Country Code Currency Currency Code
Yugoslavia 25 YUG New Yugoslavian Dinar YUM
Bosnia and Herzegovina BIH Marka BAM
Croatia HRV Kuna HRK
Macedonia MKD Denar MKD
Slovenia SVN Tolar SIT

With the support of the mediation service, the receiver can issue the following query to retrieve the

data:

Q4: Select S.Country,S.Year,GDP,C02
From Statistics S, Emissions E
Where S.Country=E.Country and S.Year=E.Year and S.Country="YUG";

The mediator generates the following mediated query to ensure that semantic differences both before

and after the break-up of the region are correctly reconciled:

MDQ4: answer(V8, V7, V6, V5) :-
V5 is V4 * 1000.0,
olsen("YUM", "USD", V3, V7),
statistics("YUG", V7, V2, V),
emissions("YUG", V7, V4),
V7 =< 1991, V6 is V2 * V3.

answer(V96, V95, V94, V93) :-
V92 is V91 * 1000.0, V90 is V89 * 1000.0,
V88 is V87 * 1000.0, V86 is V85 * 1000.0,
V84 is V83 * 1000.0, V82 is V90 + V92,
V81 is V88 + V82, V80 is V86 + V81,
V93 is V84 + V80, V79 is V78 * V77,
V76 is V75 * V74, V73 is V72 * V71,
V70 is V69 * V68, olsen("SIT", "USD", V67, V95),
Statistics("SVN", V95, V66, V65),
olsen("MKD", "USD", V68, V95),
statistics("MKD", V95, V69, V64),
olsen("HRK", "USD", V71, V95),
statistics("HRV", V95, V72, V63),
olsen("BAM", "USD", V74, V95),
statistics("BIH", V95, V75, V62),
olsen("YUM", "USD", V77, V95),
emissions("SVN", V95, V83),
emissions("MKD", V95, V85),
emissions("HRV", V95, V87),
Emissions("BIH", V95, V89),
statistics("YUG", V95, V78, V61),
emissions("YUG", V95, V91),
1992 =< V95, V60 is V66 * V67,
V59 is V76 + V79, V58 is V73 + V59,
V57 is V70 + V58, V94 is V60 + V57.

The first sub-query reconciles semantic differences for the time period before the break-up:

information in the source is organized the same way the receiver expects, but there are currency and

scale factor differences. The second sub-query is more complicated because what the receiver

expects corresponds to the sum of the data of the five countries in each data source; currency and

scale factor differences in these records need to be reconciled as well.

25 The Federal Republic of Yugoslavia was renamed Serbia and Montenegro in 2003. We will not encode this

change in the example to simplify illustration.
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3.4 Example 3 - Company Financials

In the preceding examples, only one semantic aspect changes (and it only changes once) during the

relevant time period. The temporal semantic heterogeneities resulting from such a "simple" change
are by no means "simple", as illustrated by the complex mediated queries. Furthermore, the
mediation service is not limited to "one-time change of one thing" at all. We will show an example
where multiple semantic aspects change more than once.

The example involves a receiver who is interested in annual financial data of a certain company.
The context definitions and source schema are shown in Figure 3.8. Notice that profit data in the
source makes assumptions on currency, scale factor, and profit definition in terms whether taxes are
included; all of the assumptions changed over time, not necessarily at the same time. The scale factor

changed twice, whereas currency and profit definition changed only once. The scale factor for
num_employee also changed once. Receiver context can change over time, as well. For simplicity,
we illustrate with a receiver whose context is static in the example.

Context csrc
1. All monetary values are in French Francs until 2000 and in

Euros afterwards;
2. All monetary values have a scale factor of 1M until 1999,

1K until 2001, and 1M from 2002
3. Profit is tax excluded until 2000, tax included afterwards
4. All other numbers have a scale factor of until 2001 and

1K afterwards

Schema:
Financials(Year, Num_Employee, Profit, Tax)

Context creceiver
1.All monetary values are always

in USD;
2. All monetary values always have

a scale factor of 1K
3. Profit is always tax included
4. All other numbers always have a

scale factor of I K

Figure 3.8 Source and receiver contexts in the company financials example.

Again, with the support of the mediation service, the receiver need not worry about context
differences and how contexts evolve. For example, the receiver can issue the following query to
retrieve company annual data from year 2000 and onward:

Q5: Select Year,Num_Employee,Profit
From Financials
Where 2000=<Year;

The following mediated query is generated to reconcile all semantic differences for the specified
time range:

MDQ5: answer(2000, V21, V20) :-
V21 is V19 * 0.001,
financials(2000, V19, V18, V17)
olsen("FRK", "USD", V16, 2000),
V15 is V18 * V16,
V14 is V17 * V16,
V20 is V15 + V14.

answer(2001, V13, V12) :-
V13 is V * 0.001,
financials(2001, V, V10, V9),
olsen("EUR", "USD", V8, 2001),
V12 is V10 * 8.

answer(V7, V6, V5) :-
olsen("EUR", "USD", V4, V7),
financials(V7, V6, V3, V2),
2002 =< V7,
V1 is V3 * V4,
V5 is V * 1000.0.

% adjusting num_employee to 1K

%V16 is exchange rate
%converting profit to USD
%converting tax to USD
%summing up to get tax-included profit

%adjusting num_employee to lk

%V8 is exchange rate
%converting tax-included profit to USD

% (no difference for num_employee)
% V4 is exchange rate

%year>=2002
%converting profit to USD
%adjusting for scale factor
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csrc: source context c_receiver: receiver context
monetaryValue profit semr num monetaryValue profit sem num

currency scale kind scale currency scale kind scale

1999

2000

2001

2002

....... A ...-

InclJSD 1 K a 1KTax

Figure 3.9 Graphical comparison of source and receiver contexts

To explain MDQ5, we need the assistance of Figure 3.9, which graphically presents the context

descriptions of Figure 3.8. In the figure, horizontal lines are drawn to indicate context changes. Time

line is on the left; each column shows how a modifier value evolves along the time line. A monetary

value, such as profit or tax, makes assumptions about currency and scale factor; a profit also makes

assumption on whether taxes are included; the number of employees also makes assumption about

scale factor.

For the year 2000 and beyond, we see three time periods separated by the horizontal lines; each

sub-query in MDQ5 corresponds to a time period. For example, when Year = 2000, the profit data in

the source is in FRF and it excludes taxes, while the receiver expects it to be in USD and with taxes

included; both the source and receiver assume the scale factor is 1K. In addition, the number of

employees has different scale factors: 1 in the source, 1K in the receiver. The annotation in MDQ5

shows that these differences are correctly reconciled. The other two sub-queries can be understood

with the annotations and Figure 3.9.

If the user issues a query like Q5 but without the WHERE clause, the mediated query will

consist of four sub-queries: in addition to the three in MDQ5, there is a fourth sub-query that

reconciles the semantic differences for Year=<1999:
answer(V32, V31, V30) :-

V29 is V28 * 1000.0,
V31 is V27 * 0.001,
olsen("FRK", "USD", V26, V32),
V28 is V25 * V26,
financials(V32, V27, V25, V24),
V32 =< 1999,
V23 is V24 * V26,
V22 is V23 * 1000.0,
V30 is V29 + V22.

If the user is only interested in historical employee data and issues the following query,

Q6: Select Yea::,Num_Employee
From Financials;

the mediated query will consist of only two sub-queries:
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MDQ6: answer (V9) :-
financials(V8, V7, V6, V5),
V8 =< 2001,
VS is V7 * 0.001.

answer(V4) :-
financials(V3, V4, V2, V1),
2C02 =< V3.

the first of which reconciles the scale factor difference (1 in the source, 1K in the receiver); the
second of which does not perform any transformation because there is no difference between the
source context and the receiver context (both have a scale factor of 1K).

3.5 Summary

As mentioned earlier, one of the main objectives of COIN is to relieve users from keeping track of
and reconciling semantic heterogeneities. This is accomplished by providing a system service that
records contexts and reconciles semantic differences automatically. With this service, any user

whose context has been recorded can use all sources as if they were in the user context.

The mediator rewrites the user query into a mediated query that includes instructions on how to

reconcile semantic differences; the mediated query can be optimized and executed to obtain data

instances with all necessary transformations performed. The user can get the mediated query as the

intensional answer and the data instances as the extensional answer. This two-step process has

several benefits (Imielinski, 1987; Goh, et al., 1999). First, the intensional answer contains useful
information that the extensional answer does not have - the data transformations in the MQ allow
one to examine and infer what semantic differences are there and how they are reconciled26 . Second,

the mediated query can be saved for repeated uses or can be used by the administrator to create

views27. This feature increases the usability of the mediation service. And lastly, it allows for the

opportunity of applying existing query optimization techniques to optimize the mediated query so

that the query can be executed efficiently.

The following features are due to the work reported in this Thesis.

In line with the primary objective of COIN, users also need not worry about how data semantics

changes over time in the data sources. The system automatically determines the semantic differences

in different time periods and reconciles them accordingly.

The mediated query usually consists of multiple sub-queries, one for each time period. In effect,

these sub-queries create partitions for the data sources; within each partition, the data semantics does

not change. Although partitioning can be done manually by the administrator, COIN dynamically

adjusts the partitions according to the user query. This automatic and dynamic portioning offers
certain advantages over manual and static partitioning.

First, the manual approach would generate more data sources, which complicates the task of
writing user queries. In Example 3, to ensure that there is no time-varying semantics in each partition,
the company financials data source must be partitioned into four (virtual) sources with the following

conditions on "Year" attribute: (1) Year <1999; (2) Year=2000; (3) Year=2001; and (4) Year>2002.

26 A table can be generated by the mediation service to summarize all the aspects in which the source and the

receiver are different.
27 A view is a virtual table based on the result of a query.
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Second, the manual approach sometimes creates too many partitions with respect to certain user

queries, which adds unnecessary complexity. For example, four partitions are more than is necessary

if the user is only interested in the number of employees; two partitions are enough because scale

factor for number of employees changed only once in history. With four partitions, the user has to

write four sub-queries, three of which deal with the same scale factor difference in the same way. In

contrast, the COIN approach generates only two necessary partitions automatically for this particular

query.

The automatic and dynamic partitioning also constitutes a form of semantic query optimization.

In MDQ5, the mediator uses the condition introduced in the WHERE clause to prune away sub-

queries that would conflict with this condition. In MDQ6, the first sub-query can be considered as a

result of coalescing three adjoining periods that would have been created by a manual partitioning.

These queries are said to be semantically optimized because for the first case it avoids unnecessary

access to data sources only to generate an empty answer, and for the second case it avoids repeated

accesses to the data source.

The mediator is responsible for rewriting user queries. Although the main goal of this rewriting

is to reconcile semantic differences, we can also let it reconcile source capability heterogeneities.

This capability is demonstrated in Example 1.

Other features of COIN and the extensions will be discussed after we have presented the

technical details in the next chapter.
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Appendix 3.1 - Mediated SQL Query MQ3

Mediated SQL quely corresponding to MDQ3.

select datecvt.date2, (yhfrankfurt.adjClose*olsen2.rate),
(yhparis.adjClose*olsen.rate), yhnyse.adjClose

from (select 'EUR', 'USD', rate, ratedate
from olsen
where exchanged='EUR'
and expressed='USD') olsen,
(select datel, 'MM/dd/yy', date2, 'MM/dd/yyyy'
from datecvt
where formatl='MM/dd/yy'
and format2='MM/dd/yyyy') datecvt,
(select 'DEM', 'USD', rate, ratedate
from olsen
where exchanged='DEM'
and expressed='USD') olsen2,
(select datel, 'd-MMM-yy', date2, 'MM/dd/yyyy'
from datecvt
where formatl='d-MMM-yy'
and format2='MM/dd/yyyy') datecvt2,
(select 'IBM', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
from yhnyse
where Ticker='IBM'
and StartMonth='Dec'
and StartDay='20'
and StartYear='1998'
and EndMonth='Dec'
and EndDay='31'
and EndYear='1998') yhnyse,
(select 'IBM.PA', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
from yhparis
where Ticker='IBM.PA'
and StartMonth ='Dec'
and StartDay ='20'
and StartYear ='1998'
and EndMonth ='Dec'
and EndDay ='31'
and EndYear ='1998') yhparis,
(select 'IBM.f', qDate, adjClose, 'Dec', '20', '1998', 'Dec', '31', '1998'
from yhfrankfurt
where Ticker='IBM.f'
and StartMonth ='Dec'
and StartDay ='20'
and StartYear =1998'
and EndMonth ='Dec'
and EndDay ='31'
and EndYear ='1998') yhfrankfurt

where datecvt2.datel = yhnyse.qDate
and yhnyse.qDate = yhparis.qDate
and yhparis.qDate yhfrankfurt.qDate
and datecvt.date2 = datecvt2.date2
and osen.ratedate = datecvt.datel
and datecvt.datel = olsen2.ratedate
union
select datecvt3.date2, (yhfrankfurt2.adjClose*olsen3.rate),

(yhparis2.adjClose*olsen3.rate), yhnyse2.adjClose
from (select datel, 'MM/dd/yy', date2, 'MM/dd/yyyy'

from datecvt
where formatl='MM/dd/yy'
and format2='MM/dd/yyyy') datecvt3,
(select 'EUR', 'USD', rate, ratedate
from olsen
where exchanged='EUR'
and expressed='USD') olsen3,
(select datel, 'd-MMM-yy', date2, 'MM/dd/yyyy'
from datecvt
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where formatl='d-MMM-yy'
and format2='MM/dd/yyyy') datecvt4,
(select 'IBM', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
from yhnyse
where Ticker='IBM'
and StartMonth='Jan'
and StartDay='1'
and StartYear='1999'
and EndMonth='Jan'
and EndDay='10'
and EndYear='1999') yhnyse2,
(select 'IBM.PA', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
from yhparis
where Ticker='IBM.PA'
and StartMonth ='Jan'
and StartDay ='1'
and StartYear ='1999'
and EndMonth ='Jan'
and EndDay ='10'
and EndYear ='1999') yhparis2,
(select 'IBM.f', qDate, adjClose, 'Jan', '1', '1999', 'Jan', '10', '1999'
from yhfrankfurt
where Ticker='IBM.f'
and StartMonth ='Jan'
and StartDay ='1'
and StartYear =1999'
and EndMonth ='Jan'
and EndDay ='10'
and EndYear ='1999') yhfrankfurt2

where datecvt4.datel = yhnyse2.qDate
and yhnyse2.qDate = yhparis2.qDate
and yhparis2.qDate = yhfrankfurt2.qDate
and datecvt3.date2 = datecvt4.date2
and datecvt3.datel = olsen3.ratedate



"There is nothing more practical than a good theory."
- Kurt Lewin

Chapter 4

Representation and Reasoning with Temporal
Semantic Heterogeneity
This chapter provides the detail about the techniques that underpin the COIN capabilities described

in the previous chapter. Since the new representation and reasoning capabilities are developed as

extensions to the existing COIN, most of the formal descriptions of COIN in Goh (1997) and Firat
(2003) are still valid. To make the Thesis as self-contained as possible, we present the theoretical

foundation of COIN in the first half of the chapter, followed by a formal presentation of the

extensions for temporal representation and reasoning.

In presenting the material of this chapter, we assume the readers have background
knowledge in several areas related to logic programming. The following pointers should be helpful if

reader needs further information about several useful topics. We suggest Lloyd (1987) for the

theories of logic programming, Bratko (2001) for introductory Prolog and its applications in AI,

Sterling and Shapiro (1994) for advanced Prolog programming, and Frtihwirth and Abdennadher

(2003) for constraint logic programming and its implementation using constraint handling rules
(CHR) (Frihwirth, 1998).

The rest of the chapter is organized as follows. In Section 4.1, we briefly introduce the effort
of formalizing context and discuss how it is related to the COIN approach. In Section 4.2, we

describe the representation formalism of COIN. Several important notions that are missing in prior

COIN work are provided in this section. In Section 4.3, we give background information on

Abductive Constraint Logic Programming (ACLP) (Kakas et al., 2000) and CHR (Frihwirth, 1998),

and then we describe the COIN reasoning mechanism. In Sections 4.4 and 4.5, we present the

extensions to the representation formalism and the reasoning mechanism respectively. In Section 4.6,

we discuss several issues that need further investigation. A brief summary is given in the last section.

4.1 Context and Semantic Interoperability

According to MaCarthy (1987), the truth or falsity of a statement can only be determined by
referencing a given context. For example, Holmes is a detective is true in the context of Sherlock
Holmes stories, whereas Holmes is a Supreme Court Justice is true in the context of U.S. legal
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history. These can be formalized using a logic of context that contains the following basic relations
(McCarthy and Buva6, 1997):

cO ist(c, p)
co : value(c, e)

The first relation means that the p is true in context c, this statement itself being asserted in an outer

context c0. While contexts can be nested infinitely, most practical problems often need only one layer

of outer context. Here, p can be a variable-free proposition or a first order logic (FOL)formula with

quantified variables. We refer to p as a statement when this distinction is not necessary. The second

relation is afunction that returns the value of term e in context c.

Lifting axioms are used to describe the relationship between terms and formulas in different

contexts. Guha (1995) provides several kinds of lifting axioms, most of which have one of the
following forms:

CO ist(cl, P) ist(c 2 , P2)
CO 'ist(cl, P) ist(c2 , P2)

which establishe the logical equivalence or logical implication relationship between statements pi

andp2 in contexts cl and c2, respectively (e.g., the second lifting axiom states "ifpl is true in cl, then

P2 is true in c2").

This notion of context is useful for understanding semantic heterogeneities between sources and

receivers. The tuples in relational sources can be seen as logical statements, asserting that certain

relationships exist between things represented by pieces of data. However, even if these statements

are true in the context associated with the source, they may be false in the context of a given receiver.

Lifting, or transformation, or conversion, is necessary to derive true statements for the receiver from

statements true in the source contexts. For example, the sample tuples in the YHFrankfurt source in

Figure 3.2 are equivalent to the following two statements:

yhfrankfurt(" IBM.f", "4 - JAN - 99", 75.05).
yhfrankfurt(" IBM.f", "30 - DEC - 98", 149.14).

The statements are true in context c_germany; in the logic of context, they are written as:

co : ist(c _ germany, yhfrankfurt(" IBM.f", "4 - JAN -99",75.05)).
co : ist(c _ germany, yhfrankfurt("IBM.f", "30 - DEC - 98", 149.14)).

(4.1)

However, the two statements are not true in the receiver context c_usa; they have to be transformed,

to the following statements:

yhfrankfurt("IBM.f", "01/ 04/1999",88.61).
yhfrankfurt(" IBM.f", "12 / 30/1998", 89.27).

which become true in the receiver context, i.e.,

co : ist(c_ usa, yhfrankfurt(" IBM.f", "01 / 04/1999",88.61)).
co : ist(c_ usa, yhfrankfurt(" IBM.f", "12 / 30/1998",89.27)).

(4.2)

The primary objective of semantic interoperability technology is to provide a transformation

service so that statements true in one context can be correctly restated in another context. The outer

context co is the context of the service, i.e., the integration context. Descriptions about inner contexts
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(e.g., "In c_usa, currency of monetary value is USD") and definitions on conversions between inner

contexts are all stated in this integration context c0.

The transformation can be declaratively defined using lifting axioms in logic of context

(McCarthy and Buva6, 1997; Guha, 1995). For example, it is possible to specify the following lifting

axioms to enable the transformation from (4.1) to (4.2):

co (VStock, Date, Price)
ist(c _ germany, yhfrankfurt(Stock, Date, Price) A Date < "31 - Dec - 1998") 

ist(c _ usa, yhfrankfurt(Stock,
f(Date, "d - MMM - yy", "MM/dd/yyyy'),
g(Price, Date, "DEM", "USD")).

co (VStock, Date, Price)
ist(c _ germany, yhfrankfurt(Stock, Date, Price) A Date > "1 - JAN -1999") -

ist(c _ usa, yhfrankfurt(Stock,
f(Date, "d - MMM - yy", "MM/dd/yyyy'),
g(Price,Date, "EUR", "USD")).

where f and g are conversion functions that can be defined using the logic or implemented in an

external program to return a value when all the parameters become instantiated. Notice that the

axioms are expressed over predicates with universally quantified variables. For semantic

interoperability, this is equivalent to expressions over the relations in data sources.

Lifting axioms are often specified pair-wise for all contexts, thus the number of lifting axioms in

this approach grows rapidly with the increase of the number of different contexts. COIN takes a

different strategy to overcome this problem. The technical details and the merits of the COIN

strategy will be covered in the rest of the chapter and the next chapter. Here, we only provide a brief

summary about how it differs from the strategy that relies on the expressiveness of logic of context.

The differences are mainly in how context is modeled and described, and how context is associated

with statements.

There has been no consensus on what context is. Particularly, McCarthy has insisted on not

giving context a definition. In McCarthy and Buva6 (1997), a poor context can be fully described,

while a rich context cannot be fully described at all. In Guha (1995), contexts are regarded as rich

objects that capture everything that is necessary to make a set of statements true. For example, he

says:

"In the formula ist(NaiveMoneyMt A1), the context denoted by the symbol NaiveMoneyMt

is supposed to capture everything that is not in Al that is required to make A] a meaningful

statement representing what it is intended to state. This includes assumptions made by Al

about the domain, assumptions about the applicability of Al, how Al might relate to
statements in other contexts, etc."

In his formulation, contexts are described using rules that specify the scope of a theory, certain

properties common to a class of contexts, and lifting rules that relate statements in one context to
those in another. In other words, a context is described indirectly by all the statements that are true in
the context and directly by the rules that relate these statements to those in the other contexts. Such

formulations are often very expressive but at a price of sacrificing computational tractability. Even

with certain restrictions such as assuming the same symbols denote the same objects across contexts
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in Buva6 (1996) and disallowing context nesting and quantification over contexts in Nayak (1994),

the resulting logics are still only semi-decidable (Guha et al., 2004). In addition, there will be a

proliferation of lifting axioms when there are a large number of contexts.

In COIN, contexts are described using the vocabulary from a shared ontology, namely by

assigning values to a set of modifiers present in the ontology. We will explain the concepts of

ontology and modifier later in the chapter. Although using just modifiers for context description has

limited expressiveness28 , it provides a systematic and structured way of describing contexts. We can

exploit the structure by devising more efficient reasoning algorithms to replace the generic inference

mechanism built into the various logics of contexts. Another benefit is that the number of lifting

axioms can be significantly reduced.

In Guha (1995), lifting axioms are specified for individual predicates, functions, and formulas so

that other formulas involving these specified components can be lifted automatically through

composition supported by the inference mechanism. In COIN, we go even further by allowing the

association of contexts with individual terms, which corresponds to the arguments in a predicate,

and the arguments correspond to attributes (i.e., columns) of a relation (i.e., table) in the relational

model. An example of associating attributes to contexts is given in Figure 4.2 of Section 4.2. The

finer granularity in COIN enhances context sharing and reduces the number of lifting axioms to be

specified.

Next, we describe the COIN framework, which consists of a representation formalism and a

reasoning mechanism for describing contexts and using the descriptions to automatically generate

instructions for transforming data from source contexts to receiver context.

4.2 The Representation Formalism of COIN

The purpose of knowledge representation in COIN is to have a formal way of describing various

assumptions about data and what each data element in the sources and receivers denote. Referring to

the statements in (4.1) above for the record yhfranfurt("IBM.f', "4-JAN-99", 75.05), the fact that the

value "75.05" denotes a stock price given in the currency EUR needs to be somehow represented. A

receiver may need the same stock price in a different currency, say, USD. Once such knowledge is

represented using a certain formalism, it can be manipulated by the mediator (i.e. software

component that implements the reasoning mechanism of the COIN framework) to automatically

convert data values in the source to the values desired by the receiver, e.g., deriving "88.61"as in (4.2)

for the receiver from "75.05" in the source. The representation formalism used by COIN is based on

an object-oriented data model. In the model, we introduce semantically "rich" data types, called

semantic types (e.g., stockPrice) to distinguish them from primitive types (e.g., integer, string). The

instances of these types are respectively called semantic objects and primitive objects; the relations

of these objects are respectively called semantic relations and primitive relations. The key concepts

of this data model are illustrated in Figure 4.1 and explained below.

28 We have not encountered any problem in various prototype applications we developed for testing the

approach. If more expressive power becomes necessary, we should introduce richer constructs in ontology or
look into other alternatives.
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IBM.f 30-DEC-98 149.14 I IBM.f 12/30/1998 1 89.27 1

Figure 4.1 Object-oriented data model in COIN

Each semantic type can have various aspects that may be different in different contexts. These
aspects are described for each context. For example, currency is an aspect of stockPrice, and for each
context we describe what currency is used. To access these descriptions, we construct semantic
objects that correspond to the data in the sources and receivers. For example, corresponding to data
value "75.05" in the source (and its corresponding context cgermany), there is a semantic object

(shown as a circle in Figure 4.1) that is an instance of stockPrice semantic type. Since this object is

created from a value in the context of cgermany, we call cgermany the original (or originating)
context of the object. The context descriptions are accessed through methods (shown as labeled
arrows pointing downward in Figure 4.1) of the semantic object, e.g., through currency method, the
mediator can determine that the currency of the semantic object is "EUR" in cgermany and "USD"
in cusa. By applying appropriate currency conversion, the value "88.61" in c usa can be derived.

Each semantic object is internally identified by a unique object-id (OID) constructed using
Skolemization, which we present in Section 4.2.3. As seen in the example, a semantic object can

have different values in different contexts. The value of a semantic object in a given context is
returned by calling the value method. To avoid confusion, we sometimes call the "value" returned by
the value method primitive value, which is in fact a primitive object. For a primitive object, we do

not distinguish between its OID and its value.

In the above discussion, for explications purposes we used data instances (e.g., "75.05") in data

sources to illustrate the distinction between a semantic object and a primitive object. In the COIN

approach, we actually do not create a semantic object for each data instance in the source. Instead,
we create a semantic object for each attribute in the source relation, e.g., there will be one semantic

object for "AdjClose" attribute. Such objects are meta-objects. The value method of a meta-object
does not return data instances, instead, it returns either the attribute (if no conversion is needed) or a
series of conversions applied to the attribute (e.g., currency conversion for converting "AdjClose"
attribute from EUR to USD) in the form of a query (which we call mediated query). Data instances
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are obtained when the query is executed. However, there are cases where we do create a semantic

object based on a particular data instance. These points will become clear when we discuss

Skolemization in Section 4.2.3.

4.2.1 The Concepts of Knowledge Representation

Loosely speaking, COIN implements the objected-oriented data model using the following four

components:

* an ontology, also called a domain model, that provides the semantic types in the application

domain and a vocabulary for describing contexts;

* a context set that has a collection of context descriptions using the vocabulary provided by

the ontology. The context descriptions capture all aspects of data interpretation that may

vary and specify conversion rules for each of the aspects;

* a source set that specifies the source schemas by identifying the relations and their integrity

constraints. These relations are called primitive relations; and

* an elevation set that creates a semantic relation for each primitive relation by mapping each

attribute of the primitive relation to a corresponding type in the ontology and associating

each attribute with a context.

We will give detailed explanations of these components in the rest of the section. After providing an

informal description of the main concepts, we present the formal specification of each component.

We will use Figure 4.2 to explain the four components. The Figure consists of a graphical

representation of the ontology, certain informal context descriptions, one data source from the Yahoo

historical price example in Chapter 3, and the mappings between the relational attributes and the

types in the ontology.

Contexts

c_gernany c_usa

currency 'DEM', 'USD'
(-o,31-DEC-98]

'EUR',
[1-JAN-99,+<) 

format d-MMM-yy MM/dd/yyyy

CVtcurrency ...

CVtformat = .

cgermany cgermany cgermany

yhfrankfurt' (skTicker, skQDate, SkAdjClose) (intensional) Semantic relation Elevations

yhfrankfurt (Ticker, QDate, AdjClose) (intensional) Primitive relation

HTicker QDate AdjClose Extensional (primitive) relation

IBM.f 4-JAN-99 75.05
IBM.f 30-DEC-98 149.14 L[

Fil Sources
Figure 4.2 Components of Knowledge Representation in COIN
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Ontology

From the conceptual modeling perspective, the ontology consists of all major concepts in the

application domain and the relationships between the concepts. These are high level concepts, the

precise interpretation of which needs to be further specified by each source and receiver according to

their respective contexts. Thus the terms representing the concepts still have certain ambiguities,

which are disambiguated in context descriptions. This approach simplifies ontology development by

requiring minimal ontological commitment on a much smaller set of terms. For example, the sources

and the receivers only need to agree that there is general notion of monetary value, having their

freedom of choosing the currency, the scale factor, and any other aspects that together disambiguate

the general notion. A further discussion about the benefit of this approach can be found in Chapter 5.

We distinguish three kinds of relationship: is_a, attribute, and modifier. The is_a relationship

indicates that a concept is more specific (or conversely more general) than another, and is shown

with a double shafted arrow in Figure 4.2. For example, stock price (stockPrice) is a more specific

concept than monetary value (monetaryValue). Since all concepts have a concrete representation, we

use basic for the concrete representation and all the other concepts are connected to it either directly

or via the transitive closure of isa relation.

A concept can be an attribute of another concept, e.g., the date concept is an attribute

(tempAttribute) of the monetaryValue concept. Similar to relations in Entity-Relation modeling

where a relationship (also called a role) can be described in both directions (e.g., the relationship

between a person and a company can be "works_for" or "employs"), monetary Value can be the

dateFor attribute of date, although we did not include this attribute in the ontology. Attributes often

reflect certain structural relationships between data elements in the sources and provide a mechanism

of accessing them for inference purposes.

A modifier is a special kind of attribute whose purpose is to capture one aspect of the

interpretation of a concept that may vary in the sources and receivers. We include two modifiers in

the sample ontology in Figure 4.2: currency modifier for monetary Value concept, indicating that a

monetary value may be in different currencies;format modifier for date concept, indicating that there

may be different representation formats. Each concept can have more than one modifier. For

example, in addition to currency, we could also include a scaleFactor modifer for monetaryValue

concept to indicate that monetary values can be expressed using different scale factors. Using these

modifiers we can explicitly capture those assumptions that are implicitly made by the sources and the

receivers. We do so by assigning values to the modifiers for each context. These assignments are part

of the context descriptions and are used to disambiguate the high level concepts in the ontology.

From an object-oriented modeling point of view, the concepts in the ontology are classes, which

we call semantic types (or types for short). Thus, the ontology provides a typing system that

organizes the types in a generalization hierarchy with provision of inheritance. Both structural

inheritance and behavioral inheritance are supported. Through structural inheritance, a type inherits

all the attributes and modifiers declared for its parent types in the isa relation. Through behavioral
inheritance, a type also inherits the value assignments and conversion specifications of the parent

types with optional overriding, where a type has value assignments different from those of its parent
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types. The attributes and modifiers are equivalent to the properties of an object, with the attributes

corresponding to the properties explicitly present in the data sources and the modifiers corresponding

to the properties implicitly assumed by the sources and receivers.

As mentioned earlier, instances of the semantic types are semantic objects. When at least one of

the modifiers, including the inherited ones29, of a semantic object has different values in different

contexts, the semantic object has different values in these contexts. Conversely, if all modifiers of a

semantic object have the same values in different contexts, the object has the same value in these

contexts. If a semantic object has no modifier, it has the same value in all contexts.

Context

Context descriptions disambiguate the concepts in the ontology by explicitly capturing the implicit

assumptions in the sources and the receivers. These descriptions come in two parts. (1) The first part

uses declarative rules, i.e., axioms, to assign values to modifiers or specify how modifier values can

be obtained dynamically through accessing other semantic objects. A context is a collection of value

assignments or specifications of all modifiers in the ontology and is referenced by a unique identifier.

In Figure 4.2, two contexts, cgermany and c_usa, are shown with the value assignments for the two

modifiers in the ontology. (2) The second part of context description is a collection of conversion

rules that specify, for each modifier, how to convert the value of a semantic object from one context

to another that has a different modifier value. These conversion rules are used for the same purposes

as McCarthy's lifting axioms, but they are much finer grained and more structured than lifting

axioms. The rules are specified for each modifier and are called component conversion rules; when

the data elements of interest involve multiple semantic types, each potentially having multiple

modifiers, all relevant component rules are identified to compose a composite conversion. As

discussed in Chapter 5, this mechanism significantly reduces the number of conversion rules to be

manually specified and maintained.

Source

Sources in COIN are treated uniformly as relational sources. Without loss of generality, we assume

the relations in all sources have unique names; this can be ensured by prefixing each relation with a

unique identifier maintained by a name space mechanism. The sources are represented by a

collection of predicates (with non-ground arguments) that correspond to the relational schemas and a

set of rules for the integrity constraints in the sources. We call the predicates intensional primitive

relations, or primitive relations for short, because their arguments correspond to the primitive values

in the sources. For example, yhfrankfurt(Ticker, QDate, AdjClose) is a primitive relation in Yahoo

Frankfurt data source. The actual data records in the source are called the extensional relations.

Integrity constraints are usually key constraints, foreign key constraints, and other constraints that

are useful for query pruning and optimization.

29 Inheritance is an intrinsic characteristic of object orientation. In the ensuing discussion, unless noted
otherwise, the attributes and modifiers of an object always include those inherited from parent types.
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Elevation

The data elements in each source are meaningful only in their own contexts. To make them also

meaningful in other contexts, we need to identify necessary conversions and generate the instructions

on how to perform these conversions. This is accomplished by mapping these data elements to the

semantic types and associating them with corresponding context descriptions. These mappings and

associations are generated using a collection of elevation axioms that create a semantic relation for

each primitive relation. In a semantic relation, each argument is a semantic object, which is created
using a structure that indicates (1) the attribute in the primitive relation, (2) its corresponding

semantic type, mand (3) its context. The intuition of elevation can be explained using the links shown

in Figure 4.2. For example, by indicating that "AdjClose" attribute is of stockPrice type and is in

cgermany context, the subsequent reasoning mechanism can determine the modifiers and their

value assignments, and incorporate appropriate conversion rules to generate the instructions for

transforming the values to conform to the receiver context. Therefore, elevation axioms play a vital

role of enriching primitive data elements in the sources with the explicit data semantics captured by

the ontology and context descriptions.

4.2.2 The COlIN Data Model

The knowledge representation concepts introduced above are formalized with a logical object-

oriented data model. It is logical because it uses mathematical logic as a way of representing

knowledge and expressing operations on various constructs of knowledge. It is also object-oriented

because it supports the object-orientation features discussed earlier.

The language of the COIN data model is a subset of F(rame)-logic (Kifer et al., 1995), which is a

first order logic (FOL) with syntactic sugar for object orientation. We choose this formalism because

of its support for inheritance. Semantic types can be expressed using type declarations. Attributes,

modifiers, and the conversion rules for modifiers are expressed as methods for semantic types.

COIN does not use the query answering and deductive inference mechanism of the F-logic

language; instead, we take advantage of its equivalence to FOL by translating F-logic expressions

into FOL expressions, and then implement inheritance and query answering in Prolog. This approach

combines the strengths from the two language paradigms: the succinct syntax of F-logic to support

object-orientation and the industrial strength programming platform of Prolog to support prototyping

and implementation. In addition, F-logic was not implemented when the first COIN prototype was

developed. Although there have been two implementations of F-logic30 since then, they only have

limited support for constraint handling. As the implementation improves, we will reevaluate the

feasibility of using F-logic directly in the future.

In the rest of this sub-section, we describe the COIN data model in terms of its language. A

number of important concepts that are missing or not clear in Goh (1997) and Firat (2003) are

provided. In the next sub-section, we introduce the correspondence between the COIN constructs and
a set of FOL predicates.

30 Currently there are two implementations of F-Logic: FLORA-2 (http://flora.sourceforge.net/) and FLORID
(http://www.informatik.uni-freiburg.de/-dbis/florid/). Both lack integration with constraint solvers essential to
the Abductive Constraint Logic Programming techniques (discussed in Section 4.3) that we use in COIN.-57 -



The COIN Language

The alphabet of the language consists of the following:

* a set of type symbols to represent semantic types; basic is a reserved semantic type; 1

represents all primitive data types;

* a set of constant symbols for representing the OlDs of primitive objects and a set of

variable symbols; recall that the OlD and the value of a primitive object are the same;

* a set of function symbols and predicate symbols; srcContext and srcValue are two

reserved functions;

* a set of method symbols corresponding to attributes and modifiers3; cvt is a built-in
method for value conversions and value is built-in method to derive the primitive value

of a semantic object in a given context;

* the usual logical connectives, quantifiers, and auxiliary symbols, e.g., AV,V,3,_,(,),

[,], :,::,-,<--,, etc. is a domain mapping symbol; <- is a logical implication

symbol; - and ";" are used for if-then-else conditional implication, e.g., A X;Y

means if A then X, else Y; and

* a set of context symbols, of the distinguished object type called ctx.

A term is either a constant, a variable, or a function of the form J(tl, ... , t), where f is a function

symbol and t, ... , tn are terms. The OlDs for semantic objects are Skolem functions which we

describe later. A predicate, function, or method is said to be n-ary if it expects n arguments.

In the following discussion, we use r, with or without certain super- or sub-script, as a type

symbol; it can be the special type basic. Similarly, we use t, with or without certain super- or sub-

script, as a term symbol.

Definition 4.1 A declaration is defined as follows:

* :: r' is a type declaration; we say that is a subtype of r', and conversely, that r' is a

supertype of . For any type " such that r':: r", r is also a subtype of r"; this is true

recursively. basic is supertype of all the other types.

Example: stockPrice::monetaryValue is a declaration for the is_a relationship shown in

Figure 4.2

* t: r is a semantic object declaration; we say that t is an instance of type . If T' is a

supertype of r , then t is said to be of inherited type r'. Similarly, t : r± is a primitive object

declaration.

Example: X:stockPrice declares that variable X represents a object of type stockPrice.

31 An attribute (or modifier) of a semantic object is another semantic object, which is returned when the

attribute (or modifier) method is called.
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* if p is predicate symbol, then p(r, ...,r,,) is a predicate declaration; the signature of

predicate p is rl x... x r; a predicate with all arguments being primitive type can be declared

similarly.

Example: yhfrankfurt(basic, date, stockPrice) is a declaration for yhfrankfurt relation.

* if a is an attribute symbol, then r[a => r'] is an attribute declaration, which means that

semantic type r has attribute a; the signature of the attribute is r --> r'.

Example: monetaryValue[tempAttribute > date] declares the tempAttribute attribute

shown in Figure 4.2.

* if m is a modifier, then [m@ctx > r'] is a modifier declaration. We say that m is a modifier

of semantic type r and has a signature of r - r'; the parameter of m is of type ctx.

Example.: monetary Value[currrency = basic] declares currency modifier.

* r[cvt m,ctx,rl I r 2 I1 r,rL > r1] is a component conversion declaration for modifier m;

symbol "I" indicates that argument can be one and only one of the types separated by '"I"'; the

signature of the component conversion is r x r - rL .

Example: monetary Value[cvt @ currency, ctx, string, string, float > float] declares the

component conversion for currency modifier of semantic type monetary Value.

* r[cvt ctx, r > r 1] is a composite conversion declaration; the signature of the composite

conversion is r r1 --> r .

Example: monetaryValue[cvt@ctx,float r float] declares the composite conversion for

semantic type monetaryValue.

* r[value (g ctx =:> r 1 ] is a value declaration; its signature is r -+ r.

Example.: monetary Value[value ctx > float] declares the value method for semantic type

monetary Value.

* srcContext(r) ctx declares the srcContext function, whose signature is r-- ctx

src Value(r) > r± declares the src Value function, whose signature is r -> .

Example.: srcContext(monetaryValue) > ctx declares the scrContext function for semantic

type monetaryValue; similarly srcValue(monetaryValue) => float declares the srcValue

function for semantic type monetary Value.

Declarations for attributes, modifiers, conversions, and the built-in method value are collectively

referred to as method declarations. N

In the following definition, we will not include examples. Plenty of examples about this definition
can be found in Sections 4.4 and 4.5.
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Definition 4.2 An atom is defined as follows:

* if p is an n-ary predicate symbol with signature of r, x... x rn and t, **- , t are of (inherited)

types r,., ,r, respectively, then p(t,, ... , t) is a predicate atom; similarly for a predicate

with primitive arguments.

* if a is an attribute symbol with signature -> r', t, t' are of (inherited) types r,r'

respectively, then t[a -> t'] is an attribute atom. Similarly, if m is a modifier symbol and c is

a context symbol, then t[m @ c -> t'] is a modifier atom.

* if m is a modifier symbol, its component conversion has signature r x r_ - , t is of

(inherited) type r, tins and tmr are of type Tm, t and t 2 are of type r, and t is a context

term (i.e., it can be a constant or a variable of type ctx), then t[cvt m, t,tmS,tM tr,tl - t1 2 ] is

a component conversion atom. Similarly, t[cvt tc, tl - t 2 ] is a composite conversion

atom.

* if c2 is a context symbol, t and t 2 are of type and r± respectively, then

t[value c2 -> t 2 ] is a value atom.

The atoms corresponding to attributes, modifiers, and built-in methods cvt and value are referred to

collectively as method atoms. *

For notational convenience, atoms can be combined to form molecules using the following

syntactic sugar:

* t[m1 X tl; .. ; mk -> tk ] as a shorthand for the conjunction t[m1- t ] A... A t[mk > tk];

* t[m -> t [mI1 -> t2]] as a shorthand for t[m--> t] A t [mI -> t2 ]; when t is not referenced

elsewhere, we can replace it with _ as in Prolog: t[m -> _[mI 1 - t 2 ]]; and

* t: [m -> t'] as a shorthand for t: T A t[m -- > t'].

Well formed formulas (wffs) are defined inductively as follows:

* an atom is a formula;

* if 0 and (p are formulas, so are -X , 0 A A, and v Ap; and

* if 0 is a formula and X is a variable occurring in 0, then both (VX {) and (3X {) are

formulas.

As suggested in Goh (1997), it is customary to restrict wff, to Horn clauses to have better

computational tractability. A Horn clause has the following form:

rF A<-BI, ,Bn.

where A is an atom, and is called the head of the clause; B,, Bn is a conjunction of atoms and is

called the body of the clause. The body can be empty; when it is empty, the implication symbol can

be omitted. is a collection of type declarations. When A is a method atom, all oid-terms in A must

be declared in F; otherwise, may be omitted.
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The value and cvt Methods

As discussed earlier, a semantic object can have different primitive values in different contexts. The
value and cvt methods provide the means of obtaining these primitive values of a semantic object.

These two methods are important in the COIN approach, but they are not well defined in either Goh

(1997) or Firat ('2003). Below we provide definitions for them.

As mentioned in the beginning of Section 4.2 and will be seen in Section 4.2.3, a semantic object

is created from a relational attribute a given source and is associated with a particular context. We

call this context the original context of the object.

The value method of a semantic object derives the primitive value of the object in a given

context. This is a built-in method of COIN and is evaluated internally. If the type of the object is

basic or any other semantic type that does not have any modifier, it returns the primitive value of the

object in its original context:

t basic - t[value @ tc --> t ] - t = src Value(t).
t:r - t[value(tc - t] - -t[m@tc - ta],t = srcValue(t).

(4.3)

Otherwise, value method invokes the composite conversion of the object to generate the instructions

on how to derive the primitive value tk in (receiver) context ck from the primitive value to in original

(source) context c:

t: r H t[valhe ck --> tk] v to = src Value(t), t[cvt @ Ck, to -> tk ].

(4.4)

From now on, we drop the subscript for terms representing primitive objects because they can be

inferred from the signatures of value and cvt methods. For example, both tk and to in formula (4.4)

are primitive types.

In COIN, the composite conversion of semantic object t is not defined a priori; instead, it is

composed at query mediation time by the mediator that consecutively invokes the component

conversions of all modifiers (including the inherited modifiers) of t. If the original context of t (i.e.,

the source context) is c, and t has k modifiers m, ... mk, the composite conversion can be obtained

according to the following formula:

t:r}-
t[cvt ck,t() - tk] <-

t[m1 C) c--_[value @ ck--ts ]], t[mI @ ck->_[value @ ck-tlr]],

(6, == tr t = to; t[cvt ~ m l , ck, t1s , Itl to->tl ]),
t[m 2 c->_[value @ ck--t2s ]], t[m2 @ ck-_[value @ ck->t2r ]],

(12s :==t2r > t2 = t ;t[cvt m2,ck, t 2s, t2 r, tl-t 2]),

t[m k ~~c-->_[value ck-tk ]], t[mk ck--_[value ck-tk ]],

(tis == tir - tk = tkl; t[cvt @ ink, ck , tk, tk-l -+tk])

(4.5)

The head of formula (i.e., t[cvt@Ck,to -> tk] ) indicates that given the semantic object t and its value

to in its original context, the composite conversion derives tk as the value of t in context Ck. The body

of the rule specifies the derivation procedure, which is roughly as follows: (1) for each modifier,

obtain the value assignments in the original context of t and the receiver context Ck; (2) then compare
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modifier values: if they are the same, do not change the primitive value, otherwise, introduce a

component conversion to convert the primitive value. Below we explain this procedure using the two

lines that contain modifier m2 in (4.5):

* the first molecule (i.e., t[m2 @c-_[value ck->t 2S]] ) obtains the assignment for modifier m2

in (source) context c. The assignment is an unnamed semantic object represented by "_".

Then use value method to derive this object's primitive value t2s in (receiver) context k;

* the second molecule (i.e., t[m2 ck-->_[value~ck--t 2r]]) is similar to the first one, but it

obtains m 2 's assignment in (receiver) context Ck, then derives its primitive value t2r also in

(receiver) context Ck; and

* in the second line containing m 2 , it tests to see if the modifier has same values (i.e., if t2s

equals t2r): if so, assign t to t2, otherwise, invoke the component conversion for m2 to derive

the primitive value t2 from t6.

After the invocation of the kth component conversion, we derive semantic object t's value tk in

(receiver) context Ck.

We also provide an alternative explanation of the composite conversion. As we noted earlier,

each modifier captures one aspect of interpretation that may vary across contexts. After invoking a

component conversion, the semantic object is lifted to a (intermediate) context that is the same as the

receiver context in terms of this aspect; by invoking the component conversions consecutively, the

semantic object is lifted through a series of intermediate contexts, each having one less aspect being

different from the receiver context; it reaches the receiver context in the end when no aspect is

different from the receiver context.

In the explanation of (4.5) we assumed the invocation of the component conversions is in the

order of their appearance in (4.5). Does the order matter? The answer to this question depends on the

orthogonality of the modifiers, which we discuss next.

Orthogonality of Modifiers

The modifiers of the (inherited) type r are orthogonal if the value derived from its composite

conversion is not affected by the order in which the component conversions are invoked. For

example, the currency and scaleFactor modifiers of type monetaryValue are orthogonal: we derive

the same value either by converting currency first followed by scale factor adjustment or by

adjusting scale factor first followed by currency conversion.

For a pair of modifiers that are not orthogonal, the component conversions need to be invoked in

a particular order to ensure the correctness of the composite conversion; we call this order a correct

order. The order often depends on how the component conversion is specified. We will use the

following example to illustrate this.

Suppose a source contains profit and tax data, expressed in 1000's of South Korean Won (KRW);

the profit is net profit not including taxes. A receiver needs gross profit data that includes the taxes,

expressed in 's of USD. These context descriptions are illustrated in Figure 4.3, which also shows

the source r(Profit, Tax) and the auxiliary source r(FromC, ToC, Rate) for currency conversion.
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Profit data is mapped to profit type, tax data is mapped to monetary Value type, data in the auxiliary

source are mapped to type basic.

Ontoloqgy Context descriptions

-, -'
I

, scaleFacto

monet

kind 1 e

" prf
I_ 

c1 c2]

ency 'KRW' 'USD'

eFactor1000 1
noax incl_tax

2.
c1 c1

rl ( skpmft, SkTax) r' ( SkFromC, S kToC, kRate) Semantic relations

rl ( Profit, Tax) r ( FromC, ToC, Rate) Primitive relations

rl ( 9, 3) r ( 'USD', 'KRW', 1200) Extensional relations

Figure 4.3 Example for Illustrating Modifier Orthogonality

Type profit has three modifiers: scaleFactor, currency, and kind, the first two of which are inherited

from its supertype monetaryValue. The component conversions for these modifiers are given below

(here we follow the logic programming convention where terms started with capital letters are

variables):
M : monetary Value 

M[cvt @ scaleFactor, Cr, Ms, Mr, U --> V] - V =U *Ms / Mr.

M : monetary Value H
M[cvt @ currency, Cr, Ms, Mr, U -> V] 

r(Ms, Mr, R), V = U * R.

P: profit -
P[cvt @ kind, Cr,' no_tax',' incl_tax', U - V] --

P[exclTax --> T],
T[value Cr - Tp ],
V=U+Tp.

As in logic programming, variables with the same name appearing in different clauses are not related.

Each of the component conversions converts from (source) context Cs to (receiver) context Cr to

derive primitive value V from U. In the conversions for scaleFactor and currency, the modifier

values in source and receiver contexts are Ms and Mr; these parameters are variables, indicating that

the component conversions can convert between any arbitrary pair of contexts. The profit conversion

can convert from any context whose kind modifier has a value of 'no_tax' to any other context

whose kind modifier has a value of 'incl tax'.

As we mentioned earlier, modifiers scaleFactor and currency are orthogonal. In fact, we can

illustrate this using the component conversions shown above: starting with a primitive value x,

applying scaleFactor conversion followed by currency conversion we derive x.MM R; we derive
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x R ' mM when currency conversion is applied before scaleFactor conversion. The two derived

values are equal.

The component conversion for kind, as specified above, must be invoked after those for

scaleFactor and currency. The component conversion first obtains the semantic object T

representing the taxes excluded from the profit data using the attribute method exclTax; then it calls

the value method of T to obtain its primitive value Tp in (receiver) context Cr; and finally it adds Tp

to the initial value U to arrive at value V. T is of type monetaryValue and has scaleFactor and

currency modifiers; the component conversions of the two modifiers are invoked when the value

method of T is called, i.e., Tp is the result of transforming the tax data in the source with scale factor

adjustment and currency conversion. Adding Tp to U entails the assumption that U has been

transformed for scale factor and currency before the addition takes place; otherwise T will be

transformed twice for scale factor and currency, resulting in wrong data. The above data

transformation sequence is shown in Figure 4.4(a) using the sample data record in the extensional

relation. As shown in Figure 4.4(b), if the component conversion for kind is invoked first, the result

will be incorrect because the tax data will be adjusted for scaleFactor and currency differences twice.

9 9

039*1000 (D49+(3*'1000/1200)

(L49*11000/1200 (L [9+(3*1000/1200)1*1000

0L(9*1000/1200)+(3*1000/1200) =10 ( 1[9+(3*1000/1200)]*1000/120=9.583

(a) scaleFactor, currency, kind (correct) (b) kind, scaleFactor, currency (incorrect)

9 9
L49+3 oL49*1000

(L4( 9 +3 )*1000 ( 9 *1000/1200

41(9+3)'*1000/1 20=10 (4L 9*10 0 0 /i 2 00+ =10.5

(c) kind, scaleFactor, currency (correct) (d) scaleFactor, currency, kind (incorrect)

Figure 4.4 Different Sequences of Data Transformation.

An alternative specification of the component conversion for modifier kind is to replace Cr with

Cs in the value method for semantic object T: the derived value Tp will be the primitive value of tax

data in (source) context Cs. In this case, adding Tp to value U requires the assumption that U is the

primitive value of profit data in source context Cs and the component conversion for kind modifier

should be invoked before those for scaleFactor and currency. This sequence is illustrated in Figure

4.4(c) using the sample data. With this specification of the component conversion for kind, if the

conversion is invoked last, the result will be incorrect because the tax data will not be adjusted for

scaleFactor and currency differences. This incorrect sequence is shown in Figure 4.4(d).

When a type has non-orthogonal modifiers, the precedence of modifiers should be specified so

that the component conversions can be applied in correct order. For example, with the component

conversions as shown earlier, we can specify the precedence of the three modifiers as the following:

[scaleFactor, currency] -< [kind]

where modifiers enclosed in the same brackets are orthogonal. The above specification means that

component conversion for kind must be applied after those for scaleFactor , whereas the order

between scaleFactor and currency does not matter. This can be implemented as a list structure for
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each semantic type (using a list imposes an ordering for orthogonal modifiers, but this does not affect

the correctness because any order amongst orthogonal modifiers is correct). Before applying the

composite conversion procedure, modifiers are first sorted according to the list to ensure that

component conversions are introduced in correct order.

4.2.3 COIN Constructs to FOL Translation

In this section, we introduce the FOL predicates corresponding to the COIN constructs in the F-logic

based COIN language. These correspondences provide the foundation for implementing the COIN

data model using mature Prolog programming platform; they are also helpful to readers of COIN

literature by bridging the gap between the different presentations, such as those in Goh (1997) and

Firat (2003). We also introduce a Skolem function that is used in the construction of semantic

relations.

Table 4.1 summarizes these correspondences. Notice that COIN declarations are simplified: (1)

type ' in attribute and modifier declarations are not indicated in the corresponding predicates,

instead, it is implied by the term t' in the respective atom definition; (2) predicate, conversion (cvt),

and value declarations are omitted; and (3) object declarations are omitted and can be inferred from

atom definitions. Composite conversion declarations and atom definitions are omitted; as we

mentioned earlier, composite conversions are composed dynamically by the mediator.

Table 4.1 Correspondences between COIN Constructs and FOL Predicates

COIN Construct FOL Predicate Comment

Type declaration r:: r' isa(r, r')
Attribute r[a > r'] attributes(r, [al,...,ak]) [al, ak] is a list of all
declaration ~~~~~~~~~~~declaration ~attributes of type r; can be

an empty list
Modifier r[m @ ctx > r']modifiers(r, [ml,...,mk]) [ml,.. *, mk] is a list of all
declaration ~~~~~~~~~~declaration modifiers to type rz-; can be

an empty list
Attribute atom t[a --> t'] attr(t, a, t')

Modifier atom t[m @c --> t'] modifier(r, t, , c, t')

Component t[cvt , tc, tin s, tmr, t l t2 ] CVt(, t, m, tc, tm, tl, tmr, t2)
conversion
value method t[value@ C2 -> t2] value(t, c 2 , t2)

As mentioned before, elevation axioms create semantic relations for primitive relations. Each

argument in a semantic relation is a semantic object denoted by a Skolem term. In mathematical logic,

Skolemization is a technique for eliminating existentially qualified variables, often by introducing

function symbols over constants or universally quantified variables to construct unique terms called

Skolem constants or Skolem functions. Below is the template for creating such Skolem terms in COIN:

skolem(ri, Ai, , r ( ., Ai, ..))
(4.6)
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where ri is the semantic type of the attribute Ai, Ai is the ith attribute of primitive relation rl, ci is the

context of the attribute and can be different for different attribute. Terms constructed with this

template are guaranteed to be unique because of the uniqueness of primitive relation. The following

is an example of using the template to specify the semantic relation corresponding to primitive

relation rl(Profit, Tax) in Figure 4.3:

rl ' (skolem(profit, Profit, c1 ,1, r (Profit, Tax)),
skolem(monetary Value, Tax, c1 ,2, rl (Profit, Tax))
) - rl (Profit, Tax).

(4.7)

For brevity, we will refer to a semantic relation by a predicate that post-fixes the relation name

and argument names of the corresponding primitive relation with the prime symbol, e.g., we use

ri'(Profit', Tax') to refer to the semantic relation as defined by the above rule.

Sometimes we need to create a semantic object for a particular primitive object in a certain

context. For example, later we will see that we need a semantic object for "31-DEC-98", which is a

primitive object in context cgermany. This is done by using template (4.6), but replacing the

attribute reference with the primitive object, and replacing the primitive relation with the special

predicate cste/1, which is always evaluated true. Below is the semantic object constructed for "31-

DEC-98":
skolem(date, "31 - DEC - 98", c _ germany,1, cste("31 - DEC - 98"))

Sources are represented by the predicates corresponding to the primitive relations. In addition,

they are further described using the following 5-ary relation predicate:
relation(src_Name, relName, purposelD, attrList, capability)

where the first two arguments are source name and relation name, purposelD can be one either "i" or

"e", with "i" indicating that the relation can appear in mediated query, and "e" indicating that the

relation is an internally defined view not appearing in mediated query; attrList is a list of attributes of

the relation, each element of list is a [Attribute_name, Primitivetype] pair; and capability is an

argument indicating the capability record of the relation3 2.

Rules are used to describe various constraints that hold in the source. These can be key

constraint on one relation, foreign key constraints between two relations, and other constraints that

are useful for query optimization. These rules are expressible using FOL wffs. For example, if K is

the key attribute in relation r(K, Al, ... , An), the following wffexpresses the key constraint:

Al=B1, ... , An=Bn r(K, Al, ... , An), r(K, B1, ..., B,).

This is a non-clausal form rule; in our prototype system, such rules are expressed using the

Constraint Handling Rules (CHR) language, which allows non-clausal formulae.

32 A capability record indicates the operators on an attribute supported in the source. It helps the POE to
generate executable query plan. See Alatovic (2002) for details. In current COIN prototype, the capability
record is given in an external file. For backward compatibility, we still keep the argument, but it can be left
unspecified using symbol "_" in Prolog.

- 66 -



4.2.4 Summary

We described the knowledge representation formalism of COIN in this section. The data model can

represent the four components introduced earlier; the components are collectively referred to by the

quadtuple <0, C(, Et', S>, where

O ::= ontology: a set of semantic types and the binary relations over the types: is_a, attribute,
and modifier.

C ::= context descriptions: a set of rules that specify modifier values or how to derive values for
modifiers and another set of rules specifying conversions for each modifier

E ::= elevation axioms: map each a relational attribute in the primitive relation to a type in the
ontology and assign it a context

S ::= source descriptions: a set of rules describing the source schemas and constraints

4.3 The Reasoning Mechanism of COIN

As mentioned before, although the COIN approach can be understood with McCarthy's formal

treatment of context and has a data model that is based on F-logic, we do not perform reasoning

using the machinery in these logics. Instead, we implement a reasoning algorithm in the mediator;

the structure provided by the ontology allows the algorithm to perform specialized and more efficient

reasoning. In particular, the mediator automatically composes the composite conversions according

to (4.5) using the component conversions of the modifiers of relevant semantic types.

The algorithm is implemented using Abductive Constraint Logic Programming (ACLP) (Kakas

et al., 2000), which combines Abductive Logic Programming (ALP) and Constraint Logic

Programming (CLP). Constraints are processed using solvers written in the constraint language

called Constraint Handling Rules (CHR) (Fruihwirth, 1998). In this section, we first provide the

background on ACLP and CHR, and then we describe the mediation implementation and query

answering mechanism in COIN.

4.3.1 Abductive Constraint Logic Programming (ACLP)

Abduction inference was first introduced by the philosopher Peirce (1903). It is a form of

hypothetical and non-monotonic reasoning that derives possible explanations for a given observation

from a set of rules. In this reasoning paradigm, a set of predicates need to be declared to be abducible

predicates, also called abducibles for short. Intuitively, abducibles should be something "interesting"

and can serve as explanations in a particular application domain. For example, given the following
rules:

wet_grass -- sprinkler_was_on.

wet_grass <- rained.

and knowing that sprinkler_was_on and rained are abducibles, for the observation wet_grass,

through abduction we can derive {springlerwason} and {rained} as possible explanations. In

Appendix 4.1 we show how the explanations are derived using the SLD+Abduction procedure first
introduced in Cox and Pietrzykowski (1986). Abduction is non-monotonic because if later we learn

that it did not rain last night, we can retract rained from the explanations.
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Abductive Logic Programming (ALP) is the extension of logic programming to support

abductive reasoning. It has been used as a problem solving technique in many AI applications, e.g.,

planning and scheduling, natural language understanding, database view updates (Kakas et al., 1993,

Kakas et al., 2000, and references therein). The use of ALP in COIN for information integration, first

proposed by Goh (1997), is a novel application of ALP. In these applications, the goals to be solved

are seen as observations to be explained by abduction, e.g., the mediated query is viewed as an

explanation for the intended user query.

Formally, the ALP framework is defined as a triple <T, A, I>, where T is a theory defined by a

logic program, A is a set of predicates designated as abducible predicates, or abducibles for short,

and I is the set of constraints (Eshghi and Kowalski, 1989; Denecker and Kakas, 2002). Given a

query (i.e., observation) Q, the abductive task is characterized by the following:

< T, A, I>, Q abd A

that is, the task is to derive a set of abducibles A as an explanation for Q such that

TUA=Q;
T U A satisfies I; and

T U A is consistent

The abducibles can be either ground or non-ground with variables existentially qualified, e.g.,

3X a(X); the latter case is known as constructive abduction (Kakas and Mancarella, 1993).

Constraint Logic Programming (CLP) is an extension of logic programming with a set of

constraint predicates and the corresponding dedicated constraint solvers. These solvers are

implemented with special algorithms to gain computational efficiency.

The similarity between ALP and CLP is observed by Kakas, et al. (2000): in both frameworks an

answer to a query is constructed from a set of special predicates - abducible predicates in ALP and

constraint predicates in CLP, which are constrained either by integrity constraints in ALP or by a

constraint theory in CLP. Abductive constraint logic programming (ACLP) aims to unify these two

frameworks by posting abducible predicates and constraint predicates into a constraint store; we use

the term constraint store to informally refer to a collection of constraints that need to be solved and

checked for consistency. The inconsistency of the store is used as immediate feedback to the

abduction procedure, which promptly abandons hopeless search branches to reduce search space.

There are numerous constraint solving techniques; the book by Marriott and Stuckey (1998) is a

good and extensive introduction to this topic, and the book by Fruhwirth and Abdennadher (2003)

provides a concise introduction and numerous examples using a high level and declarative solver

specification language called Constraint Handling Rules (CHR). The constraint theory in COIN is

implemented using CHR, which is briefly introduced in the next sub-section.

4.3.2 Constraint Handling Rules (CHR)

Traditional constraint solvers were implemented in low-level languages as "black boxes" that are

difficult to debug, maintain, and explain. Most built-in constraint solvers in many CLP systems are

still implemented in this fashion. CHR was introduced as a declarative language for writing solvers

for user defined constraints; it offers significantly more flexibility than the traditional approach and
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is much easier to develop solvers for fast prototyping. More details about CHR can be found in

Friihwirth (1998), here we give a brief introduction on its syntax and informal semantics.

CHR distinguishes two kinds of constraints: built-in constraints and CHR (i.e., user defined)

constraints. Built-in constraints are handled by the CLP system that hosts CHR; CHR constraints are

defined by a CHR program, which consists of a finite set of rules as defined below.

There are three types of rules:

* simplification rule: E < C G

* propagation rule: E > C G

* simpagation rule: E \ F C I G, which is a shorthand for E A F = C I E A G

where E (or F), called the head, is a conjunction CHR constraints; C, called the guard, is a

conjunction of built-in constraints; and G, called the goal, can be true, fail, or a conjunction of built-

in and CHR constraints. Here true and fail are trivial built-in constraints.

Before we present the operational and declarative semantics of CHR, let us first look at an

example of a CHR program consisting of simplification and propagation rules.

Example (CHR program for <): Given the built-in constraints true and =, below is a CHR

program for partial order relation <:

X < Y > X = Y true (rl: reflectivity)

X < Y A Y X X = Y (r2: anti-symmetry)

X < Y A Y Z X < Z (r3: transitivity) [

Operational semantics. Intuitively, when a simplification rule is applied, the constraints in the

constraint store that match the rule head are replaced with the goal of the rule. Take rl above as an

example: guard X=Y will be first checked; if guard checking returns true, head X<Y will be replaced

with goal true; if guard checking returns false, the rule will not be applied. Like rl and r2 in the

example above, simplification rules often have a smaller number of constraints in the goal than in the

head, therefore they tend to reduce the number of constraints to be solved.

When a propagation rule is applied, the constraints in the goal are added to the store without

removing the ones matching the head. Propagation rules (e.g., r3 above) appear to introduce certain

redundant constraints, but this redundancy may be useful to trigger the application of other rules that

can further reduce the number of constraints.

As is usually done for programming languages, the operational semantics of CHR is formally

given through a state transition system. A state is a pair <G, C>, where G is a goal, and C is a built-in

constraint. The initial state is of the form <G, true>. A state transitions to the next by applying a

simplify, propagate, or solve transition rule. The simplify and propagate transition rules are similar to

the intuitive explanation to simplification and propagation rules above. The solve transition rule

updates a state (e.g., consolidating built-in constraints in a state) to a normal form as defined in

Abdennadher et al. (1999). A formal specification of these transition rules can be found in

(Friihwirth and Abdennadher, 2003). A successful final state is reached when there no applicable

rule, and the state is of the form <G, C> where C is notfalse; <G, false> is a failed state.
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Let us continue to use the partial order (<) example to illustrate the use of transition rules. Given

the goal A<B A C<A A B<C, the following shows the state transitions that solve the goal; the CHR

constraints that are considered in the current transition step are underlined:

< A<B A C<A A B<C, true >
<A<B A C<A A B<C A C<B, true> (propagate, r3)
<A<BAB<A, B= C> (simplify,r2)
< A = B, B = C > (simplify, r2)
< top, A=B A B=C > (solve)

where the state in the line is a successful final state and "top" in the state represents an empty goal.

Declarative semantics. The declarative semantics of CHR is given by the following FOL

formulas corresponding to simplification and propagation rules:

E :>CIG -- V(C -(E + 3G))

E CIG - V(C->(E -39G))

where y are the variables that appear only in the body G.

The soundness and completeness of the derivation procedure specified by the operational

semantics can be established using the above declarative semantics (Abdennadher et al., 1999).

4.3.3 Query Answering in COIN

Figure 4.5 illustrates how queries are evaluated in COIN. It is a two step process: the user query is

first mediated to generate a mediated query as the intensional answer; the mediated query is then

optimized and executed to retrieve the data instances as the extensional answer. We focus on the

mediation step only in this Thesis.

<SQL, c>
XLNafve datalog-

Extensional Intensional
Answer Answer

User perspective

Well-formed
COIN Query

I … … =O tl .I0:=Ontolog 1

IIC:= Context L
I I

I
' I E:= ElevationJ |

_--S := Source .'-'

COIN Representation

-Abductive Query

.~~~~~~~~~~~~~~~~~~~~~~~~~J..... I
_"] s .-TA/ |uu lr' E* I-I uLi + Clark's FEQ

I:= ntegrity -
,- I Constraints I,

I1~ ' . + predicates for
- A := Abducibles -arithmetic operators

- Ahdrtive Answer

ACLP Framework

Figure 4.5 Query Answering in COIN

The user query in SQL along with the user context c are submitted to the system. The SQL is

first translated into a clausal form (i.e., datalog) using predicates corresponding to primitive relations

and the conditions specified in user query. This query is called naYve datalog query because it does

not consider the semantic differences between the source contexts and the user context. For example,

when <Q1, c_usa> is submitted, where Q1 is the first sample query as shown below:

Q1: select QDate, AdjClose from YHFrankfurt
where Ticker="IBM.f" and QDate >="12/20/1998" and QDate =<"01/10/1999";
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the system generates the following naive datalog query:
answer(QDate,AdjClose) :-

yhfrankfurt(Ticker,QDate,AdjClose,

StartMonth,StartDay,Startyear,EndMonth,EndDay,EndYear),

Ticker="IBM.F", QDate>="12/20/1998", QDate =<"01/10/1999".

Then the system translates the naive datalog query into a so called well-formed COIN query. Both

Goh (1997) and Firat (2003) discuss the procedure for this translation, which systematically renames

the variables and introduces value predicate so that all primitive values are in the user context. The

well-formed COIN query of the above example is:

answer(V10,V11) :- yhfrankfurt'(Vi',V2',V3',V4',V5',V6',V7',VS',V9'),

value(Vl', cusa, "IBM.f"),

value(V2', cusa, V10), V10>="12/20/1998", V10 =<"01/10/1999",

value(V3', cusa, V).

Notice that the first predicate in the body is a semantic relation with arguments VI' through V9'

representing semantic objects. The types and contexts of semantic objects VI', V2' and V3' are

illustrated earlier in Figure 4.2; semantic objects V4' through V9' are of basic type. As discussed in

Section 4.2, the value predicate introduces the composite conversion for the semantic object; the

composite conversion as specified in formula (4.5) then introduces component conversions specified

for the semantic object. This process is automated by the mediator, which is implemented in ACLP.

In Figure 4.5 we illustrate the approximate correspondences between the COIN representation

components <0, C, E, S> and the ACLP components <T, A, I>. Specifically:

* Ontology 0, context descriptions C, and elevation axioms E of COIN correspond to

logic theory Tin ACLP;

* Abducible predicates A include the predicates corresponding to source relations (e.g.,

yhfrankfurt/9, olsen/4, etc.) 33, predicates corresponding to externally defined functions,

and built-in predicates corresponding to arithmetic and relational (comparison) operators;

* Integrity constraints I include the constraints defined in sources S, Clark's Free Equality

(Clark, 1978) axioms, and symbolic equation solving constraints (Firat, 2003).

Abduction is implemented with an extended SLD+Abduction procedure as described in Goh

(1997); constraint handling is implemented with CHR. Abducible predicates encountered in the

procedure are put into a constraint store whose consistency is maintained by a CHR program. The

mediated query is constructed from the abducibles in the constraint store after the CHR program has

reached a successful final state. More details will be provided in Section 4.5.

4.4 Representation for Temporal Semantic Heterogeneity

We described the existing COIN approach in two previous sections. We gave a procedural definition

for the value method not previous defined in COIN literature. For a semantic object, this method

33 We follow the Prolog convention that uses predicate/arity as a shorthand notation to refer to a predicate
without explicitly listing all its arguments; arity indicates the number of arguments the predicate expects.

- 71 -



derives the primitive value of the object in any given context. We also clarified the notion of

modifier orthogonality that is only briefly mentioned in Goh (1997) and Firat (2002).

Starting from this section, we will present the temporal extensions developed for the existing

COIN. This section focuses on the extensions to the representation formalism, and the next section

focuses on the extensions to the reasoning mechanism.

As outlined in Chapter 2, we need to address the kind of temporal semantic heterogeneity

caused by time-varying semantics, which inevitably involves heterogeneous time models that include

such things as different representations (e.g., Month/Year v. Year-Month), operations capable to

perform (e.g., not all sources support < operation on temporal entities), and implicit assumptions

about temporal concepts (local time v. UTC time).

Similar to the case of non-temporal concepts, the different representations and implicit

assumptions about temporal concepts can be described using ontology and contexts. Depending on

the integration scenario, the ontology may need to include a single temporal concept (e.g., temporal

entity, date, etc) or all concepts of a full-blown time ontology such as the DAML time ontology

(Hobbs, 2002). What modifiers are needed for describing contexts (i.e., possible variations of

interpretation of a concept) also depends on the integration scenario. For example, for integration of

certain time series data, a date format modifier for describing different formats of date values my be

enough, while for integration of flight information, we may also need a modifier for time offset (i.e.,

combination of time zone and whether daylight saving time is in effect) in addition to date format.

4.4.1 Dynamic Modifier v. Dynamic Context Association

We identify two possible ways of representing time-varying semantics:

* Approach 1 (dynamic modifier): allow modifiers to have non-static values within a context

referenced by a context identifier, i.e., a modifier can have different values at different times

in a context.

* Approach 2 (dynamic context association): allow modifiers to only have static values within

a context referenced by a context identifier, but associate an argument (i.e., attribute) of a

primitive relation with different contexts at different times.

In Figure 4.6 below, we illustrate the two approaches when they are used to describe time-varying

currencies of the "AdjClose" argument in primitive relation yhfrankfurt/9.

Context cgermany |Context c_germanyl Context c_germany2
currency="DEM", if times"121 31/1998" currency="DEM" currency="EUR"
currency="EUR", if time>"1/1/1999" 

I|~~~ ~c_germanyl c germany2
c_germany a

It~~~ ~if times"121 31/1998" if time>"1/1/1999"
I \yhfrankfurt,_,AdjClose,_,_,_,_,_,_) YhfrankfurtL,_,AdjCose \ .. )

(a) dynamic modifier (b) dynamic context association

Figure 4.6 Two Approaches to Describing Time-varying Semantics
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With the dynamic modifier approach (Figure 4.6 (a)), we use cgermany to refer to the context

within which modifier currency has a value of "DEM" until December 31, 1998 and a value of

"EUR" since January 1, 1999. Then we simply associate the "AdjClose" argument of yhfrankfurt/9

with context cermany. The parameter time in both (a) and (b) of Figure 4.6 will be bound to

temporal entities in sources after a source attribute is associated with the context.

With the dynamic context association approach (Figure 4.6 (b)), we describe two contexts: in

context cgermnayl, modifier currency has a value of "DEM"; in context cermany2, modifier

currency has value of "EUR". Then we dynamically associate the "AdjClose" argument of

yhfrankfurt/9 with the two contexts: "AdjClose" is associated with cgermanyl until December 31,

1998, and it is associated with cgermany2 since January 1, 1999.

The following two definitions will be useful in the ensuing discussion about the two approaches.

Definition 4.3 (Static Context) A context is a static context iff every modifier has a single static

value in the context.

Definition 4.4 (Temporal Context) A context is temporal context iff at least one modifier has time-

varying values in the context.

The apparent differences between the two approaches are where time-dependent conditions are

specified: with the dynamic modifier approach the time-dependent conditions are given in the

description of temporal context, thus context association is simpler; with the dynamic context

association approach the time-dependent conditions are given in the context association, thus only

static context descriptions are necessary.

We select the dynamic modifier approach to representing time-varying semantics for the

following two reasons.

First, the existing COIN can be straightforwardly extended to admit dynamic modifiers. We will

present this extension in Section 4.4.2. In contrast, it is much more involved to develop the

extensions for the dynamic context association approach. Recall from Section 4.2.3 (especially

formulas 4.6 and 4.7) that a Skolem function is used to associate a relational attribute to a context.

We have to introduce more complicated structures to include time-dependent context associations. In

addition, since each semantic object has an original context, now multiple semantic objects need to

be created for a relational attribute (e.g., for "AdjClose", we need a semantic object with original

context cgermanyl, and another one with original context cgermany2). Consequently, we need to

cerate multiple semantic relations for a primitive relation. Further research is needed to find means

for reducing or avoiding such complications.

Second, when multiple sources share the same context, the dynamic modifier approach avoids

repeated specifications of the time-dependent conditions. For example, in addition to Frankfurt, all

the other exchanges in Germany switched currency in the beginning of 1999, thus the temporal

context cermany can be shared among them. However, with the dynamic context association, the

time-dependent conditions have to be specified repeatedly for all exchanges despite that share the

two static contexts cgermanyl and cermany2. Managing these redundancies can be cumberson

and error-prone.
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We shall point out that a potentially useful feature may be developed by extending the notion of

dynamic context association to dynamic elevation, i.e., a relational attribute in a primitive relation

can be elevated to different semantic types at different times. The feature is useful when certain

fields in a relational source are recycled to represent different things at different times. Field

recycling is a form of domain evolution exemplified in Ventrone and Heiler (1991). Future research

should further examine the merit of dynamic context association as well dynamic elevation.

In a temporal context the value of at least one modifier is dependent on time. In some cases the

modifier value may depend on factors other than time. Thus we can extend the notion of temporal

context to dynamic context, of which temporal context is a special case.

Definition 4.5 (Dynamic Context) A context is a dynamic context iff at least one modifier has

multiple values in the context.

Goh (1997) gives an example of dynamic context where company financials are reported in the

official currencies of the countries where the companies are incorporated; the value of currency

modifier is determined by first obtaining the company attribute, then using it to find the country in

which the company is incorporated, and lastly finding the official currency of the country and

assigning it to the modifier. Country of incorporation information is in the data source and can be

determined only at query execution step. Goh et al. (1999) provides another example where in a

context the scaleFactor modifier depends on the currency modifier and the currency modifier

depends on the country of incorporation like in the other example; scaleFactor has a value 1000 if

the currency is "JPY", and a value 1 otherwise.

The dependency of modifier on factors that cannot be determined during the mediation step

complicates the provision of component conversions and the mediated query has to consider all

possibilities. Temporal context is a special case because the modifier value depends on time only,

not other arbitrary factors. We can take advantage of this special case by systematically processing

the time dependency; in Section 4.5, we show how this is done to simplify (i.e., semantically

optimize) the mediated query.

4.4.2 Representation of Time-Dependent Dynamic Modifiers

A dynamic modifier can have multiple values over the time span in a temporal context, with each

individual value being valid for a particular time period within the span. The previously defined

COIN language allows single-valued modifiers only; certain extension is necessary to allow for

multi-valued modifiers. There are two alternative approaches to the extension: (1) treating time as a

distinguished type (much like type ctx for context) in the COIN data model; and (2) treating time as a

user defined type (i.e., a semantic type in the domain ontology). Below discuss these two alternatives.

Approach 1: Time as a Distinguished Type. This approach introduces a new object type tmp for

symbols representing temporal entities. The modifier declaration and the modifier atom can be

augmented with an argument of type tmp as below:

r[m@ctx,tmp > t']

t[m c,tm----X t'], where c:ctx, and tm:tmp.
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Because a modifier can be dynamic in one context and static in another, declarations with one

parameter and two parameters are both needed, which is supported by the polymorphism of the

language. This seems to be a plausible extension. But there are at least two issues that lie in the new

object type tmp. First, the purpose of introducing context is to use it as a mechanism of capturing the

sources of variance in data interpretation; time is just another such source, so it should be part of

context instead of being a special type that is of the same significance as context. Second, as we

discussed in Chapter 2, time is a complex data type. Using a symbol to represent an instance of a

complex data type requires the language to be committed to a predefined model for the complex type

(e.g., time point or time period, single- or multi-granularity, a calendar system for referencing time

line, etc.). Such commitment not only limits the expressiveness of the language, it may be even

impossible to suit the diverse needs for time representation in different integration scenarios.

Approach 2. Time as a User Defined Type. Instead of making time a distinguished type, we can

treat it like any other semantic type, which means that the semantics of the type is specified

externally by the ontology and the context descriptions, not by the COIN language. This alternative

approach allows for greater flexibility in handling time. We can do so by extending the language to

allow a modifier method to return multiple semantic objects with the following modifier declaration:
r[m@ctx :>> T']

where the double-arrow indicates that modifier m in context ctx has multiple objects of type '.

Since these objects have different values in the same context, we sometimes call a dynamic modifier

a multi-valued modifier. For example, we use the following to declare that the currency modifier in

certain context is multi-valued:
monetary Value[currency @ ctx =>n:> basic]

We distinguish a multi-valued method here from a set-valued method in F-logic. The validity of

different objects returned by a multi-valued modifier is dependent on different (temporal) conditions;

all elements in the set returned by a set-valued method are valid under the same set of conditions.

The different conditions of a dynamic modifier are specified using multiple rules. When

describing time-varying semantics, the conditions inevitably contain comparisons of temporal

entities. For example, when quote date is < "December 31, 1998", the currency is "DEM" in

context cgermany. Here the comparison is between temporal entities in a source and the ground

temporal entity 'December 31, 1998". Since we can only compare primitive values in the same

context, we need to decide the context in which the compassion is performed. There are two

alternative choices of the context: (1) the source context (more precisely is the context to be

described); and (2) the receiver context, which is known when a query is submitted for mediation.

We discuss each choice below.

Temporal Comparison in Source Context. In this case, the ground temporal entity in the

comparing can be a primitive object in the source, e.g., we can use "31-DEC-98" for "December 31,

1998". The following rules illustrate how to define modifier currency for context cgermany using

cgermany as the context of comparison:
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0: monetary Value, currency(cgermany, 0): basic F-
[currency @ c_germany -> currency(c_germany, 0)] <-

currency(c_ germany, O) [value @ c_ germany - "DEM"],
O[tempAttribute->T], T[value c_germany -* Tv], Tv < "31-DEC-98".

(4.8)

0: monetary Value, currency(cgermany, 0): basic [-
[currency cgermany -> currency(c_germany, 0)] <-

currency(cgermany, O)[value , c_germany - "EUR"],
O[tempAttribute -- T], T[value @ c_germany -> Tv ], Tv > "1-JAN-99".

(4.9)

In the above rules, currency(cgermany, 0) is a Skolem function representing the semantic object

returned by the method of currency modifier. In the body of each rule, the primitive value of the

object is given, the remaining atoms first obtain the temporal attribute T of semantic object 0, then

derive the primitive value of T in the context to be described (i.e., cgermany), and specify certain

constraint the primitive value needs to satisfy using comparison predicates such as < and >.

These comparison predicates are abducible constraint predicates and are abducted during query

mediation. For example, when rule (4.8) is selected during mediation, Tv <"31-DEC-98" is abducted

into the constraint store. When the user query involves multiple contexts, constraints with primitive

values in these contexts will be abducted into the constraint store. Thus the constraint store will

consist of constraints of primitive values in different contexts (e.g., "31-DEC-98", "12/31/1998",

"1998.12.31", 31-12-1998", etc. when the involved contexts have different date formats as shown

with these sample values). As we will see in the next section, there are several challenging

difficulties in solving constraints in multiple contexts. Therefore, we need to consider the choice of

performing comparison only in the receiver context.

Temporal Comparison in Receiver Context. In this case, the ground temporal entity in the

comparison should be a semantic object from the source. This semantic object is created using a

Skolem function and a special predicate cste/1 that is always evaluated true. To access the receiver

context when a user query is submitted, we need to add a fact about the receiver context C:

rcvContext(C). The following rules illustrate how to define modifier currency for context cgermany

using receiver context C as the context of comparison:

0: monetaryValue,currency(c_germany, 0): basic F-
[currency @ c_germany -> currency(cgermany, 0)] <-

currency(cgermany, O)[value @ cgermany -> "DEM"],
rcvContext(C), O[tempAttribute ->T], T[value @ C -> Tv],

skolem(date, "31-DEC-98", c _ germany,l, cste("3 1-DEC-98"))[value @ C - Tc]

Tv < TC.

(4.10)
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0: monetary Value, currency(cgermany, 0): basic -
O[currency D c_ germany -> currency(c_ germany, 0)] <-

currency(c_germany, O)[value c_ germany -> "EUR"],
rcvContext(C), O[tempAttribute -+T], T[value C -> T],
skolem(date, "1-JAN-99", c _ germany,l, cste("1-JAN-99"))[value @ C -+ Tc]
Tv > Tc.

(4.11)

With this form of representation, primitive values in all constraints abducted into the constraint

store are in the receiver context. For example, if the receiver context is c_usa, the value method for

semantic object created for the ground temporal entity in (4.10) will derive primitive value

"12/31/1998" for T.

Time-varying Semantics of Temporal Entities

In the preceding discussion we used examples where the interpretations of semantic objects other

than temporal entities are dependent on the comparisons of temporal entities. Such dependency is

specified using temporal entities in the context to be described in both forms of representation: one

uses the primitive objects, the other uses the semantic objects. The implicit assumption is that the

interpretations of these temporal entities do not change over time, i.e., the modifiers of the temporal

entities should be static. We will discuss the implications of the non-static case and suggest potential

solutions in Section 4.6.

4.4.3 Backward Compatibility

The representation extensions presented above do not affect how static modifiers are defined. For

example, the following much simpler rule specifies the currency modifier in context cusa:

0: monetary Value, currency(c_usa, 0): basic F-
O[currency c usa -> currency(c_usa, 0)] <-

currency(c usa, O)[value @ c_usa -> 'UTSD"].

(4.12)

which states that in context c_usa currency is always USD.

As we will see in the next section, abducible constraint predicates appearing in dynamic modifier

definitions are abducted into a constraint store; by solving the constraints of all modifiers involved in

the user query, we obtain a set of simplified common constraints under which all modifiers have a

single valid value. This means that we do not need to change how component conversions are

specified.

4.5 Reasoning about Temporal Semantic Heterogeneity

We have chosen to use dynamic modifiers to represent time-varying semantics and treat temporal

entity types like other semantic types when the interpretations of temporal entities do not change

over time. This representation formalism makes it possible to use the existing COIN query answering

mechanism to reason about temporal semantic heterogeneity. We first illustrate the use of existing

COIN for reconciling temporal semantic heterogeneity. Certain deficiencies of existing COIN are
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identified. Then we present the improvements made in constraint handling to overcome these

deficiencies.

4.5.1 Reconciling Temporal Semantic Heterogeneity with Existing COIN

We will use the historical stock price example in Chapter 3 for illustration. We need Figure 3.2 for

an informal description of the contexts and Figure 4.2 for the ontology. For ease in reading, we

reproduce the figures below.

YHNYSE

Ticker QDate AdjClose

IBM 4-JAN-99 87.57
IBM 31-DEC-98 88.23
IBM 30-DEC-98 89.36

Context:
Monetary value is in US dollars (as in cusa)
Date format is d-MMM-yy (as in c_germany)....................................

YHFrankfurt

Ticker QDate AdjClose

IBM.f 4-JAN-99 75.05
IBM.f 30-DEC-98 149.14

; Context: c germany
Monetary value is

in German marks until the end of 1998
in Euros since the beginning of 1999

Date format is d-MMM-yy
..................................... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

YHParis

Ticker QDate AdjClose

IBM.pa 4-JAN-99 75.68
IBM.pa 30-DEC-98 77.55

Context: c_france
Monetary value is in Euros
Date format is d-MMM-yy

….

Context: cusa
Monetary value is US dollars
Date format is MM/dd/yyyy, e.g., 01/04/1999

------------------------------------------

Auxiliary sQurces:

Olsen (exchange rate):
<Expressed, Exchanged, Rate, Date>

c_olsen: Date format is MM/dd/yy, e.g., 01/04/99

Datecvt (date format conversion):
<date1, formati, date2, format2>

- - - - - - - - - - -- - - - - .-- - - - - - - - - - - - - -

Figure 3.2 Integration of historical stock prices from multiple exchanges (reproduced)

Contexts

c_gernany

currency 'DEM',
(--,31-D

'EUR',
[1-JAN-e

format d-MMM-y)
CVtcurrency : -- ...

c cVtformat := ...

c-usa

'USD'
EC-98]

M9d+y) I,
I 1MM/dd/YYYY

cgermany c_germany c_germany

'""'" ~~~~~~Elevations
yhfrankfurt' (kTicker, SkQDate, SkAdjCbose) (intensional) Semantic relation Elevations

r / / /
yhfrankfurt (Ticker, QDate, AdjClose) (intensional) Primitive relation

f Ticker QDate AdjClose Extensional (primitive) relation

IBM.f 4-JAN-99 75.05
I_ ~ IBM.f 30-DEC-98 149.14

Sources

Figure 4.2 Components of Knowledge Representation in COIN (reproduced)

There are two modifiers in the ontology: format for type date and currency for type

monetaryValue. The component conversions for the modifiers are specified as follows:

- 78 -

I



D : date H
D[cvt @ format, Cr, Ms, Mr, U -- V]

datecvt(U, Ms, V, Mr).

(4.13)

M monetary Value -
M[cvt @ currency, Cr, Ms, Mr,U V] v

M[tempAttribute - T], T[value @ Cr -+ T ], olsen'(Fc ', Tc ', R', D'),
Fc'[value( Cr - Ms],Tc'[value@ Cr -- Mr ], D'[value Cr Tv],
R'[value@ Cr Rv ], V = U * R v .

(414)
Rule (4.13) specifies date format component conversion. In its body, predicate datecvt(Datel,

Format,, Date2 , Format2) corresponds to the primitive relation (implemented as a function) that

converts a date value from one given format to another given format; e.g., the query
:- datecvt("1-JAN-99", "d-MMM-yy", V, "MM/dd/yyyy").

would return V="01 / 01 / 1999". In the rule body we use the primitive relation rather than the

semantic relation because the terms appearing in the head and as the arguments of datecvt/4 are all

primitive objects.

Rule (4.14) specifies currency component conversion. It uses olsen(From_currency,

Tocurrency, Rate, Date) to retrieve the exchange rate between a pair of currencies on a given date.

We use the semantic relation of olsen/4, indicated with prime post-fixed predicate and arguments, to

ensure that date values in olsen and of the temporal attribute in the source (obtained via

tempAttribute) are converted into the same context before they are equated. Since the first three

arguments in osen are of type basic so their values are context invariant, we can specify the

component conversion alternatively by converting the date value of tempAttribute to olsen's context

and use the primitive relation of olsen:
M: monetary Value -

M[cvt @ currency, Cr, Ms, Mr, U V] -
M[tempAttribute -> T], T[value @ colsen - Tv , olsen(Ms,Mr, R, T v),
V = U * R.

(4.15)

Let us continue to use the sample query Q1 with c_usa being the receiver context. As shown

before, the well-formed COIN query for Q1 is:

answer(V10,V11) :- yhfrankfurt'(Vl',V2',V3',V4',V5',V6',V7',V8',V9'),

value(Vl', cusa, "IBM.f"),

value(V2', c_usa, V10), V10>="12/20/1998", V10 =<"01/10/1999",

value(V3', c_usa, V11).

As a reminder, the first three arguments for yhfrankfurt/9 are "Ticker", "QDate", and "AdjClose",
which are mapped to basic, date, and stockPrice types respectively; stockPrice is a subtype of

monetary Value.

When the ACLP based mediator receives this query, it tries to prove each predicate in the body.

We illustrate this mediation process in Figure 4.7, where for each step we underline the predicate to

be resolved and show the constraint store in a shaded box. Near the bottom of the figure we show

one of the two branches that correspond to the two rules specifying currency modifier in cgermany.
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Recall form Section 4.2.2 that the value method first finds modifier assignments, then applies

component conversions of the modifiers. For ease in reading, we show in the figure one of the two

specifications for currency modifier and the rule for currency component conversion. Further

explanation of the mediation process is given below.

elevation 

value(Vl' c usa, "IBM.f"), A={yhfrankfurt(V1 ,V2,V3,V4,V5,V6,V7,V8,V9)}
value(V2', cusa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3', c_usa, V11 )

(4.3)1

value(V2', c usa, V 10), V10>="12/20/1998", V10 =<"01/10/1999",[
value(V3', cusa, V11) A={yhfrankfurt(lBM.f",V2,V3,V4,V5,V6,V7,V8,V9)}

(4.13)

V10>="12/20/1998". V10 =<"01/10/1999",|
value(V3', c_usa, V11 ) A={yhfrankfurt("lBM.f",V2,V3,V4,V5,V6,V7,V8,V9),

datecvt(V2,"d-MMM-yy",V1 0,"MM/dd/yyyy")}
>= and =< are abducibles I

value(V3' c usa. V1 1) A={yhfrankfurt("lBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V1 0,"MM/dd/yyyy"),

j............ \ 12/20/1998"=<V10, VO10 =<"01/10/1999" }
c 0

A={yhfrankfurt("lBM.f",V2,V3,V4,V5,V6,V7,V8,V9), : monetaryValue,currency(c_germany,O) : basic -
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"), O[currency@c_germany --> currency(c germany,0)]- (4.8)
12/20/1998"=<VO10, V10 =<"01/10/1999", currency(c_germany,O)[value@ cgermany -> "DEM"],
V2=<31-DEC-98"} O[tempAttribute->T], T[value c_germany -> Tv], T, S "31-DEC-98".

A=yhfrankfurt("lBM.f,V2,V3,V4,V5,V6,V7,V8,V9), M monetaryValue 
datecvt(V2,"d-MMM-yy",V10,"MMfddyyyy"), Mctre 
12/2011998"=<V10, V10 =<"01/10/1999", M[CVt be C T] Mr, U T+ VI +- ,R 14)V2=<312/i99 C=- ViO =<"O/iO/i ~M[tempAttribute -- T],T[value@ Cr - T.,olsen'(Fc',Tc', R',D'),

Fc '[value@ Cr - Ms], T'[value@ C - Mr ],D'[value@ Cr -- T, ]
datecvt(V12,"MM/dd/yy",V 10,"MM/ddlyyyy"), R'[value@Cr -* R, V = U * Rr.
olsen("DEM","USD",R,V12), V11=V3*R}

Figure 4.7 Illustration of Mediation Process for Query Q1.

The first predicate in the body is a semantic relation, which is resolved with the elevation axiom

for primitive relation yhfrankfurt/9. This binds argument variables VI' through V9' with the semantic

objects (i.e., Skolem terms in this case) corresponding to the arguments in the primitive relation and

produces yhfrankfurt/9 as the new goal to resolve. Since predicates of primitive relations are

abducible predicates, yhfrankfurt/9 is abducted into the constraint store. The constraint store now has

one predicate: {yhfrankfurt (V1,V2,V3,V4,V5,V6,V7,V8,V9) }.

Then it tries to resolve the first value predicate. Object VI' is of type basic; according to formula

(4.3), the argument in primitive relation corresponding to this object is bound to "IBM.F". Thus the

constraint store becomes {yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9) }.

When it tries to resolve the second value predicate, because V2' is of type date and has modifier

format, the composite conversion for V2' is generated according to the template in formula (4.5). The

composite conversion invokes the component conversion for format, which resolves to datecvt/4

according to the conversion specified in (4.13). Since datecvt/4 corresponds to a primitive relation, it

is abducted into the constraint store. The remaining two predicates (>= and =<) in the same line are-80 -

yhfrankfurt'(V1 '.V2'.V3'.,V4'.V5'.V6',V7',V8',.V9'),
value(V1', cusa, "IBM.f),
value(V2', cusa, V10), V10>="12/20/1998", V10 =<"01/10/1999",
value(V3', cusa, V11 )

A=(



constraint predicates, which are abducibles and are abducted. There is a simplification rule that

rewrites >= to =<. Now the constraint store becomes:

{yhfrankfur-t('"IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),

datecvt(V2, "d-MMM-yy", VlO,"MM/dd/yyyy"),

"12/20/1998"-=<V10, V10 =<"01/10/1999" 

The last value predicate introduces composite conversion for object corresponding to AdjClose

in the source. It is of inherited type monetary Value and has a currency modifier. Following the

template of (4.5), the mediator first finds the modifier definitions in c-germany and cusa contexts.

In context cgermany, modifier currency has different values in two time periods, so we use two

rules to specify the values and the corresponding temporal constraints. We provided two alternatives

to specifying the constraints: one specifies constraints using primitive objects in the context the be

described, the other specified uses the semantic objects in the context to be described.

Let us consider the first alternative: rule (4.8) is selected first and rule (4.9) (not shown in Figure

4.7) will be used on backtracking. In processing the rule body of (4.8), modifier currency is assigned

value "DEM"; because the context parameter of the value method of temporal attribute T is the same

as T's context, it binds Tv to QDate (represented by variable V2) in the primitive relation; the next

predicate is a constraint predicate and is abducted, i.e., V2 =<"31-DEC-98" is added to the constraint

store.

For context c_usa, rule (4.12) is used to assign value "USD" for modifier currency. Then the

component conversion for currency is introduced. The two alternative specifications (4.14) and (4.15)

are equivalent. Suppose we chose to use (4.14): the value method on T generates another datacvt/4

and is subsequently removed by the key constraint CHR rule for datacvt4; the semantic relations

osen'/4 produces the primitive relation olsen/4; the value methods on the three objects that are of

type basic generates the binding for the three argument in olsen/4; and the value method on object D'

on generates the abducible datecvt/4, with date format parameters being the values of modifier

format in c_germany and c_olsen. As a result, datecvt(V12,"MM/dd/yy",V10O,"MM/dd/yyyy") is

added to the constraint store; primitive relation olsen/4 is abducted, with last parameter being bound

to V12: olsen ("DEM", "USD",R,V12). And finally, the price data is converted with the exchange rate;

because "=" is also an abducible, Vll=V3*R is put into the constraint store. Now the constraint store

contains the following:

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d--MMM-yy",VlO,"MM/dd/yyyy"),
"12/20/1998"=<V10, V10 =<"01/10/1999",
V2 =<"31-DEC-98",
datecvt(V12,"MM/dd/yy",VlO,"MM/dd/yyyy"),
olsen("DEM","UJSD",R,V12), V=V3*R 

There are no CHR rules that further process these constraints to simplify them or detect any

inconsistency among them. Thus this branch of proof ends successfully. A sub-query can be

constructed using the predicates in the constraint store. On backtracking, the second rule (i.e., rule

(4.9)) for modifier currency in cgermany is used, generating constraint "1-JAN-99"=<V2; the rest is

the same as in the case when the first rule is used. Similarly, another sub-query can be constructed
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from the predicates in the constraint store. The mediated query MDQl pr34 consisting of the two sub-

queries is shown in Figure 4.8. Certain constraints are renamed, e.g., V11=v3*R is rewritten as vi is

V3*R.

With the alternative that uses the semantic objects in temporal constraints, a value method is

used to derive the primitive value of the semantic object in the receiver context. In the example, two

rules are used to specify modifier currency. When the first rule (4.10) is selected, the constraint store

contains the following predicates at the end of the proof branch:

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy"),
"12/20/1998"=<V10, V10 =<"01/10/1999",
datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"), V10=<V13, "12/20/1998"=<V13, (4.16)
datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),
olsen("DEM","USD",R,V12), V=V3*R }

Notice that all primitive values in constraints are in the receiver context cusa. Variable V13

represents the primitive value in context cusa that corresponds to "31-DEC-98" in context cgermany.

Constraint 12/20/1998."=<V13 is generated by the transitivity rule for < from the two underlined

constraints. The transitivity rule is shown in Section 4.3.2.

Similarly, the second rule (4.11) is used on backtracking. The mediated query MDQ1so35,

constructed from the predicates in the constraint store, also consists of two sub-queries and is

presented in Figure 4.8.

MDQlpr answer(V1O,Vll) 
yhfrankfurt("IBM.F",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10, "MM/dd/yyyy"),
datecvt(V12,"MM/dd/yy",V10, "MM/dd/yyyy"),
V2 =<"31-DEC-98", V10>="12/20/1998", V10=<"01/10/1999",
olsen("DEM","USD",R,V12), V11 is V3*R.

answer(V10,V11) :-
yhfrankfurt("IBM.F",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy"),
datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"),
"l-JAN-99"=<V2, V10>="12/20/1998", V10=<"01/10/1999" ,
olsen("EUR","USD",R,V12), Vll is V3*R.

MDQlso Answer(V10, V1i):-
yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy"),
"12/20/1998"=<V10, V10 =<"01/10/1999",
datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"),V10=<V13,"12/20/1998" =<V3,
datecvt(V12,"MM/dd/yy",VlO,"MM/dd/yyyy"),
olsen("DEM","USD",R,V12), V11 is V3*R

answer(V10, V11ii):-
yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10, "MM/dd/yyyy"),
"12/20/1998"=<V10, V10 =<"01/10/1999",
datecvt("1-JAN-99","d-MMM-yy",V13,"MM/dd/yyyy"),V13=<VlO,V13=<"01/10/1999",
datecvt(V12,"MM/dd/yy",VlO,"MM/dd/yyyy"),
olsen("EUR","USD",R,V12), V1ii is V3*R

Figure 4.8 Mediated Queries

The two sub-queries of the mediated query generated by either approach (i.e., one performs

temporal comparison in source context and uses primitive objects for ground temporal entities, the

34 Here "pr" standards for "primitive object", indicating that the ground temporal entity is represented by a
primitive object in the source context.
35 Here "so" standards for "semantic object", indicating that the ground temporal entity is represented by a
semantic object from the source context.
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other performs temporal comparison in receiver context and users semantic objects for ground

temporal entities) retrieves and converts data of two time periods: ["December 20, 1998",

"December 31, 1998"] in the first sub-query, ["January 1, 1999", "January 10, 1999"] in the second

sub-query. Each sub-query reconciles a set of semantic differences unique to its respective time

period.

As intentional answers to the user query, both mediated queries are correct in that they reconcile

the semantic differences that exist between the source and receiver contexts. But problems arise at

the query execution step when the mediated queries are evaluated to obtain extensional answers.

These problems are caused by the deficiency of the existing COIN that we discuss next.

4.5.2 Deficiency of Existing COIN

The main deficiency in the existing COIN is that it does not have constraint handling rules for

temporal constraints and certain source capability constraints. As a result, temporal constraints often

remain unsolved in the mediation step, and the certain source limitations are not considered by the

mediated query, which lead to the following three problems:

* Lack of Semantic Optimization

* Inefficient Query Plan

* Unexecutable Query

Lack of Semantic Optimization: Undetected Inconsistent Temporal Constraints

Multiple rules are used to define a dynamic modifier in a temporal context. When a user query

involves multiple temporal contexts, the multiple rules of each modifier in each context are

considered combinatorially during mediation, and each combination produces a sub-query. The

number of sub-queries is:

Hn nic
c i

(4.17)

where nic is the number of rules for the ith modifier in context c.

The user query in the example involves two modifiers (i.e., format and currency) and two

contexts (i.e., cgermany and cusa). One rule is used for each modifier in each context except for

modifier currency that has two rules in context cgermany. According to (4.17), there are two sub-

queries: (2 x 1) x (l x 1) = 2.

In the example, although both the sub-queries are semantically correct, they contain redundant

temporal constraints. In other cases, certain sub-queries may contain inconsistent constraints that are

not detected during mediation; a semantically optimized query should eliminate such sub-queries.

For example, if the currency in the receiver context cusa also changed on the same date as in the

source context and primitive temporal values are used in the modifier definitions, the mediated query

would consist of four sub-queries that respectively have the following constraints in the body:

... datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy", V2=<"31-DEC-98", V10=<"12/31/1998", ... }

... datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy", V2=<"31-DEC-98", "01/01/1999"=<V10, ... }

{..., datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy", "1-JAN-98"=<V2, V10=<"12/31/1998", ... }

{..., datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy", "1-JAN-98"=<V2, "1/01/1999"=<V10, ... }
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the two in the middle contain inconsistent constraints that are not detected by the mediator. The

number of such sub-queries can be large when there are many modifiers that have time-varying

values. In the case of the company financial example in Chapter 3, when the temporal constraints are

not solved during mediation, the mediated query for the example user query would consist of 24 sub-

queries, out of which 21 sub-queries have inconsistent constraints and should be eliminated.

Inefficient Query Plan

Recall that two steps are involved in query answering in COIN: (1) mediation; and (2) query

planning/optimization/execution (POE). The mediation step is responsible for generating the

instructions on how to perform appropriate conversions to reconcile semantic differences; the POE

step is responsible for generating efficient query plan and executing the plan to obtain data instances.

For optimization purposes, certain constraints expressed in the receiver context or in other source

contexts may need to be converted into a particular source context. For example, in the first sub-

query of MDQlpr, to minimize or avoid the retrieval of unnecessary data, the constraint

V10=<"12/31/1998" in the receiver context needs to be converted to the source context so that only

data within the date range of ["December 20, 1998", "December 31, 1998"] is retrieved. But the

mediation step did not generate the instructions on how to perform this conversion. Therefore, the

only possible plan that can be generated by the POE given the mediated query is to retrieve all data

that is on or after December 20, 1998. It is even worse with MDQ1so, with which the only possible

plan to be generated is to retrieve all data from the source to find out later that only a small fraction

is needed.

This is a COIN weakness not specific to temporal constraints. When a user introduces

constraints, ground primitive values in the user context are used and the mediated query only

introduces conversions from the source contexts to the receiver context, not the other way around.

For example, for a query that retrieves products with price<10 in the query condition, the mediated

query would include all conversions to convert price data in the source context to the receiver

context, and then compare the converted values with 10, e.g., price*0.001ool*exchangrate<10. If the

source has the capability to evaluate the comparison, it is up to the source's query optimizer to

determine how the comparison is evaluated. If it evaluates the arithmetic operation on the left of"<",

then all price data in the sources will be converted before comparing to 10, which is inefficient. If the

optimizer is "smart" enough to rewrite the comparison as price<10/0.001/exchangerate, and knows

to first evaluate the arithmetic operations on the right of "<", it perhaps can leverage the index on

"price" to quickly find only the price data that satisfy the condition without needing to convert all the

price data. Had 10 in the receiver context been converted to the source context by the mediator, the

source would receive price<10/0.001/exchangerate, which is the form that is more likely to be

evaluated efficiently.

While a source may be able to manipulate arithmetic operations, it is impossible for a source

manipulate other user defined operations. For example, when a user in context c_usa issues a query
with Date<"12/31/1998" to a source whose "Date" attribute is in "dd-MMM-yy" format as in context

cgermany, the mediated query will contain datecvt(Date, "dd-MMM-yy", D, "MM/dd/yyyy") and

D<"12/31/1998", which can be evaluated only by first converting all "Date" data in the source. We
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should not expect the source to know datecvt enough to generate datecvt(D,"dd-MMM-

yy", "12/31/1998",, "MM/dd/yyyy") and Date<D.

Unexecutable Query

The problem of query evaluation becomes much more severe when the source has certain capability

constraints. In the example, the source requires that the beginning and ending date must be given in

the form of equality on year, month, and day elements. This means that it requires not only that

constraints expressed in the receiver context be converted to the source context, but also that

constraint be rewritten as a set of equality constraints. Without such rewriting, the query cannot be

executed at all, unless a more capable wrapper is developed for the source.

4.5.3 Extensions with Temporal Constraint Handling Rules

The problems discussed above can be solved by extending the existing COIN mediator with the

following capabilities:

* solving temporal constraints in multiple contexts;

* executing conversions for ground temporal values between any contexts during

mediation; and

* accommodating certain source capability limitations during mediation.

Before describing the solutions, let us first explain why these capabilities are needed.

From the problems discussed in the previous section, we know that the temporal constraints in

sub-queries need to be solved during mediation to eliminate the sub-queries that have inconsistent

constraints. We introduced two representation alternatives to defining dynamic modifiers: one uses

primitive objects and the other uses semantic objects to represent ground temporal entities. When

primitive objects are used in dynamic modifier definitions, the mediated query can contain

constraints in multiple contexts. Therefore a multi-context constraint solver is needed. The

alternative approach uses semantic objects in modifier definitions to ensure that all temporal values

are converted to the receiver context. It seems that this approach only needs a temporal constraint

solver in the receiver context, therefore eliminating the need for a multi-context constraint solver.

However, any context can be the receiver context in the COIN framework. Thus, we still need a

constraint solver that can solve constraints in any defined context.

Traditionally, all conversions are executed for data instances in the query execution step, not in

the mediation step. For example, datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy") in MDQlso is
a predicate for converting the ground value (i.e., constant) "31-DEC-98" to another value represented

by variable V13 in a different context. It is not executed during mediation, therefore, the value of

variable V13 is not known until the query execution step. Without knowing the value of V13, the

constraints involving it and other ground values cannot be solved during mediation. Therefore, when

a conversion is for a ground value, the conversion should be executed during mediation instead of
being deferred to the query execution step.

In the COIN system, the mediator generates the instructions on necessary data conversions in the
form of a mediated query, and the POE component executes the mediated query by marshalling parts

of the mediated query to data sources. The POE accommodates certain source limitations by properly
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sequencing different parts; if a source cannot evaluate certain expressions, the POE can compensate

for the source by evaluating the expressions itself. Some limitations of a source may be such that

instructions on data conversions are not included in the mediated query, e.g., a source may require a

begin date, therefore the begin date specified by the receiver (e.g., "12/20/1998") needs to be

converted to the source context (e.g.,"20-DEC-98"), but the existing COIN does not generate

conversions from the receiver context to source contexts. In this case, we need to handle such

limitations during mediation so that the instructions on how to perform the conversions can be

generated by the mediator.

Solution Approach

When ground primitive values in different contexts are posted into the constraint store, constraints

over these values cannot be solved until they are converted into the same context. To perform such

conversions, the constraint solver needs to have a cumbersome mechanism for keeping track of the

contexts of the ground values. This mechanism is not needed when semantic objects are used

because all ground values are in the receiver context. Therefore, we choose the representation that

uses semantic objects in modifier definitions.

Another requirement for solving the temporal constraints is that the constraint solver should be

able to determine a set of binary relations, <,<,=, >,etc., between the ground temporal values in all

defined contexts. For example, the constraint solver needs to know that in context c_usa

"12/31/1998"<"01/01/1999" is true, it also needs to know that in context cgermany

"31-DEC- 98"<"1- JAN- 99" is true, and so on. Although we can implement these binary relations

for each context, it is more efficient to adopt a model (which we call internal model) for temporal

values in the integration context, map ground temporal values in various contexts to values of this

model, and implement the relations only for this model. This model for temporal entities is within

the integration context; the mappings of ground temporal values are just bidirectional conversions

between the integration context and all the other contexts. The model and the binary conversion can

be implemented in a library accessible by the mediator. It is often desirable that the internal model is

general and flexible enough to meet the needs of a variety of integration scenarios.

The overall solution approach consists of the following:

* an internal model for time, MT, with binary relations for temporal values;

* a conversion function, fic, that provides bidirectional conversions for ground values

between the internal model and all defined contexts;

* a set of constraint handling rules that solve the temporal constraints expressed in any

given receiver context; and

* a set of constraint handling rules that address source capability limitations.

The internal time model MT can be implemented in several ways, e.g., using the Calendar class

in the Java programming language, or using date and time types supported in various relational

database management systems. Another possibility is based on a temporal system described in

Appendix 4.2.
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Below, we provide the general characteristics of the bidirectional conversion and the constraint

handling rules for temporal constraints. Later we use examples to illustrate how they may be

implemented. Constraint handling rules for source capability limitations are specific to the limitation,

thus we illustrate them using an example in the next section.

Definition 4.6 (Bidirectional conversion function fic) If tIc :MT, c:ctx, t: l , fc(tIc,c, t) is a

predicate atom whose procedural reading can be either of the two functions: (1) given a ground

primitive value t in context c, return the corresponding value I0c; the signature of this function is

ctxx r _-* MT; and (2) given a ground value tIc of the internal model, return its corresponding

primitive value t in a given context c; the signature of this function is MT ctx - r . ·

When the temporal entity type has only one modifier, the modifier value can uniquely identify a

context. In this case, we can use the modifier value in lieu of the context identifier in the definition of

fic and the type symbol ctx in the signature declarations should be replaced by the primitive type r .

Predicatefic is treated as a built-in constraint, thus can be used in the guard of a CHR rule.

Temporal constraints are the conjunction of a set of binary relations over the temporal entity

domain in the receiver context. The binary relations include { <,<, =, >, > }. In the ACLP framework,

these relations are treated as user defined constraints. The constraint = provides a means of variable

binding. Constraints and > are simplified into constraints < and < respectively using the

following simplification rules:

A > B : B < A (simplification for >)

A > B B < A (simplification for >)

With these rules., we only need to specify CHR rules for and <

For constraint , the CHR rules for reflectivity, transitivity, and anti-symmetry given in Section

4.3 are applicable in the temporal entity domain as well. Similar rules can be specified for <. We

introduce new rules for temporal constraints that that involve more than one ground temporal values.

A predicate groundTmp/l can be used to test if a term is a ground temporal value; since we use

strings to represent ground primitive values in the receiver context, we can use string1 for testing

purpose. For readability, we continue to use groundTmpl/1 in the following discussion. There are

three types of rules that process the conjunction of two constraints at a time:

* built-in rule - to eliminate the constraint between two ground values

* inconsistency rule - to detect inconsistency of the constraints

* subsumption rule - to eliminate the constraint that is less stringent

All of the rules use the predicate tr/3 to convert ground primitive values in receiver context to

the integration context and evaluate the given predicate in the integration context. The predicate is

defined below:

tr(R, T1, T2) (- rvContext(C), f (Ml, C, Tl ), fI (M2, C, T2), R(MI, M2).

(4.18)
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where R e {<,<} , T and T2 are ground primitive temporal values in the receiver context. The

evaluation of predicate R(MI, M 2) is provided by the internal time model MT.

A built-in rule directly evaluate the constraint < or <:

X < Y groundTmp(X), groundTmp(Y) I tr(<, X, Y). (built-in)

(4.19)

X < Y <: groundTmp(X), groundmp(Y) tr(<, X, Y). (built-in)

(4.20)

When these rules are applied, the constraint in the rule head will be removed if the rule goal is

evaluated true, otherwise, inconsistency is present and failure is signaled. For example, when

constraint "12/20/1998"=<"12/31/1998" is posted into the constraint store, rule (4.20) applies;

because the rule goal tr(=<, "12/20/1998", "12/31/1998") will return true, "12/20/1998"=<

"12 / 31 / 1998" will be removed from the constraint store.

The inconsistency rule is straightforwardly defined as follows,

M<X, X<N <> groundTmp(M), groundTmp(N), tr(<, N, M) I fail. (inconsistency)

(4.21)

The intuition of subsumption rules is that when one constraint is more stringent than the other,

we can remove the less stringent constraint from the constraint store. For example, given

X<"O01/01/1999" A X<"10/11/1999", we can remove X<"01/01/1999" because "01/01/1999"

<" 10/11/1999". We use simpagation rules to specify the subsumption rules:

X<M \ X<N > groundTmp(M), groundmp(N) I tr(<, M, N). (subsumption)

(4.22)

N<X \ M< X groundTmp(M), groundmp(N) tr(<, M, N). (subsumption)

(4.23)

The other six rules can be obtained by replacing either one of all of the ' 's with < in the head of

rules (4.22) and (4.23).

For temporal entities, we also introduce a composite conversion predicatefc/4 to convert ground

primitive values between two contexts. This predicate is treated as a CHR constraint and is handled

by the following rules:

fc(T,C 1 ,T2, C2) groundTmp(T),nonground(T 2 ) fc(M, C1,T1), fc(M, C2, T2).

(4.24)

fc¢(T1,C1,T2 ,C2) nonground(T1 ),groundTmp(T 2) fAc(M,C2,T 2), fic(M,CiT 1).

(4.25)

Illustrative Example

We illustrate an implementation of the solution approach and show how it addresses the deficiency

of the existing COIN use using the Yahoo historic stock price example.

For illustration purpose, we implement the internal time model as a library using a temporal

system described in Appendix 4.2. The bidirectional conversionfc is also implemented in the library;

fic is accessible to the mediator using the following predicate:-88 -



date_strinq(IM, C, P)

where IM is the argument for internal model and C is the context of primitive value P. Argument C

is an input; arguments IM and P cannot be output argument at the same time. Thus, for conversion

purposes, the predicate can be used to derive the internal representation given ground primitive value

or to derive the ground primitive value from an internal representation.

Since there is only one modifier for temporal entity type in the Yahoo historical quote

example, the conversion predicate datecvt/4 for the modifier is functionally equivalent to conversion

predicate fc/4. The CHR rules for datecvt/4 can be obtained from (4.24) and (4.25) by replacingfcc

with datecvt, and replacingfic with datestring:

datecvt(T 1, CI, T2, C2 ) < groundTmp(T 1I), nonground(T 2) 
date _ string(M, C1, T1), date _ string(M, C2, T2).

(4.26)

datecvt(TI, C1, T2, C2 ) :> nonground(T1 ), groundTmp(T2 ) 
date_ string(M, C2, T2 ), date _ string(M, C1, Tl ).

(4.27)

When datecvt is added to the constraint store and the guard of one of the above rules is evaluated to

true, the body of the rule will be applied, which in effect performs the actual conversion of a ground

temporal entity from one context to another, i.e., the datecvt is executed during mediation if the

guard is true. For example, when datecvt ("31-DEC-98", "d-MMM-yy",V13, "MM/dd/yyyy") is posted into
the constraint store, rule (4.26) applies, which removes the datecvt/4 constraint and binds V13 to

"12/31/1998".

With these constraint handling rules, the constraints generated by the existing COIN can now be

further processed. Let us illustrate these transformations using the constraints produced in the proof

branch that generates the first half of MDQ lso. For reader's convenience, we show these constraints

again below:

{yhfrankfur.:("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),
"12/20/1998" <V10,V10 =<"01/10/1999", (416
datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy"), V10=<V13, "12/20/1998"=<V13, (1
datecvt(V12, "MM/ddyy",VlO,"MM/dd/yyyy"),
olsen("DEM","USD",R,V12), V11=V3*R }

Figure 4.9 illustrates how the constraint store in (4.16) is transformed using the CHR rules

presented earlier. The constraint predicate(s) that triggers the CHR rule is underlined; the rule

applied is indicated next to the arrow pointing to the state resulting from the application of the rule.

Further explanation is given following the figure. We shall point that with ACLP, abduction and

application of CIHR rules are interleaved: as soon as a constraint is posted into the constraint store,

rules applicable to the constraint will be applied immediately before constraint is put into the store

by abduction. To simplify explication, in Figure 4.9 we show all constraints posted by abduction at

once and explain the applicable CHR rules one at a time.
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{yhfrankfurt("lBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12120/1998" =<V10,V10 =<"01/10/1999",

datecvt("31-DEC-98"."d-MMM-w",V13."MM/dd/vvvvww"), V10=<V13, "12/20/1998"=<V13, (4.16)

datecvt(V12,"MM/ddlyy",V10,"MM/idd/yyyy"), olsen("DEM","USD",R,V12), V 1 =V3*R }

I (4.26) for datecvt/4

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<V10, VI0 =<"01/10/1999", VIO=<"12/31/1998", "12/20/1998"=<'"12/31/1998",

datecvt(V12," MM/ddlyy ",Vi 0,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), V11 =V3*R }

(4.22), subsumption

{yhfrankfurt("lBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<VIO ,V1 0=<"12/31/1998", "12120/1998"=<" 12/31/1998",

datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), V11 =V3*R}

I (4.20), built-in

{yhfrankfurt("lBM.f",V2,V3,V4,V5,V6,V7,V8,V9), datecvt(V2,"d-MMM-yy",V10,"MM/dd/yyyy"),

"12/20/1998" =<V10 ,V10=<"12/31/1998", (4.28)

datecvt(V12,"MM/dd/yy",V10,"MM/dd/yyyy"), olsen("DEM","USD",R,V12), VI11 =V3*R }

Figure 4.9 Transformation of Constraint Store with CHR Rules

After predicate datecvt("31-DEC-98","d-MMM-yy",V13,"MM/dd/yyyy") is abducted, CHR rule (4.26)

for datecvt is applied. It uses the built-in predicate datestring to perform the necessary conversion.

As a result, V13 is bound to "12/31/1998" and the predicate datecvt("31-DEC-98","d-MMM-

yy",V13, "MM/dd/yyyy") is removed from the constraint store.

After constraint V10=<v13 is abducted into the constraint store, as we explained earlier, the

transitivity rule for <, which is a propagation rule, generates an extra constraint ,12 / 20 / 1998,"=<v13.

Meanwhile, because V13 is now bound to ground value "12/31/1998", subsumption rule (4.22) is

applicable for constraints v0io =<"01/10/1999",, and vl0=<V13, with Mbeing bound to "12/31/1998" and

N being bound to "0 o1 / 10 / 1999". Via predicate tr(<, M, N), the evaluation of < (M, N), which is the

prefix equivalent of M < N , is true in the integration context. According to the rule, vi 0

=<"01/10/1999- is removed from the constraint store.

Constraint "12/20/1998"=<v13 is also removed when the built-in rule (4.20) is applied.

The constraint store now contains the following constraints:

{yhfrankfurt("IBM.f",V2,V3,V4,V5,V6,V7,V8,V9),
datecvt(V2,"d-MMM-yy",VlO,"MM/dd/yyyy"),
"12/20/1998" =<VlO,V10 =<"12/31/1998", (4.28)
datecvt(V12,"d-MMM-yy",VlO,"MM/dd/yy"),
olsen("DEM","USD",R,V12), V11=V3*R }

At this point, the constraints cannot be further simplified, but the source capability limitation has

not been considered (i.e., the source requires that V4 through V9 are bound to various date parts of

the begin and end dates). To meet the source requirement, the ground primitive values in the

constraints involving V10 need to be converted the source context, and the different date parts need

to be extracted and equated to variables V4 - V9. This is accomplished using the following CHR
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yhfrankfurt(T, Q, P, Ml, D, Y1, M2 , D2 , Y2 ), datecvt(Q, Fl, A, F2 ) \ X < , A < Y r
groundTmp(X), groundTmp(Y) I datecvt(U, F1, X, F2 ), datecvt(V, F1, Y, F2), getM(U, F1, M1 ),
getD(U, ,, DI ), getY(U, F1, Y ), getM(V, Fl, M 2 ), getD(V, F1, D2 ), getY(V, Fl, Y2 ).

(4.29)

where the predicates starting with "get" are built-in predicates that bind the last argument according

to the first two arguments. For example, getM(" 1-JAN-99", "d-MMM-yy", M) binds M to "JAN".

When this rule is applied to the constraints in (4.25), the two constraints involving V10 are

removed and variables V4 - V9 are bound to appropriate values:
{yhfrankfurt("IBM.f",V2,V3,"DEC","20","98","DEC","31","98"),
datecvt(V2, "dc-MMM-yy",VlO,"MM/dd/yyyy"),
datecvt(V12,"d-MMM-yy",VlO,"MM/dd/yy"), (4.30)
olsen("DEM","USD",R,V12), V=V3*R }

From these constraints, we can construct a mediated sub-query that is equivalent to the first sub-

query in MDQ1 shown in Chapter 3, with the difference only in variable names.

4.6 Discussion on Future Extensions

In developing the temporal extensions, we made certain design choices and assumptions. For

example, we chose to represent time-varying semantic using dynamic modifiers and commented on

the alternative approach of using dynamic context association in Section 4.4.1. In this section, we

discuss two other issues. The first is related to the assumption made in Section 4.4.2 about time-

invariant semantics of temporal entities, and the second is related to the mediation-execution two-

step process of query answering in relation to query optimization.

4.6.1 Dealing with Time-varying Semantics of Temporal Entities

We proposed to use temporal entities in data sources in the description of time-varying semantics of

the other types of data in the sources. This approach requires that the semantics of temporal entities

is static, i.e., the modifiers of temporal entity types should have static values. Otherwise, the

interpretation of these temporal entities becomes indeterminate, which we explain below.

Proposition 4.1 (Indeterminacy) When temporal entities in the context to be described are used in

dynamic modifier definition and the temporal entity type has at least one modifier that is also time

dependent, the interpretation of the temporal entities become indeterminate because the reasoning

process as specified in (4.5) does not terminate. 

Explanation: We observe that when temporal entities are used in dynamic modifier specification, at

least one value method on temporal entity is called in the definition; let us use the following

predicate to refer to this method call:

T: temporalEntity - T[value @ C --> Tv ]

According to the definition of value method in (4.4), formula (4.5) is evaluated. It calls the modifier

method of all modifiers of the temporal entity type. When at least one of the modifiers is also time
dependent, its definition includes a value method call on temporal entity as shown above. It is

evaluated using formula (4.5). Then the dynamic modifier is encountered again, and the above

process continues in an infinite loop. .
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The indeterminacy can also be understood informally with the following example. Suppose a

database recording hourly temperature in Boston; it uses local time without stating whether it is EST

(Eastern Standard Time) or EDT (Eastern Daylight-saving Time). In the context description, we need

to specify this implicit assumption. Informally, we may have the following to describe when it is

EDT:

c_boston: EDT is used when T is in ["2005-4-3 2:00", "2005-10-30-2:00"]

The primitive values in the brackets are those in the source context. They can be replaced with

semantic objects in context c_boston. Either way, there is no way to tell if "2005-4-3 2:00" is EDT

or EST.

A similar problem exists for any non-temporal object when its interpretation depends on the

relative values of the object. For example, suppose a database containing price information in terms

of total cost. The context is such that when the base price is below $50, a $2 shipping charge is

included; when the base price is greater than or equal to $50, there is no shipping charge. Then we

cannot determine the base price for any price value in the range (50, 52) in this context.

The problem arises from the cyclic inter-dependency illustrated in Figure 4.10: the interpretation

of objects of semanticTypel depends on the modifiers they have; the definition of one of the

modifiers modifier depends on objects of semanticTypel.

I- _ A semanticType2 |

F , modifier 
interp. depends on , defn. depends on

L_ sementicTypel |- 

Figure 4.10 Interdependency of a type and its modifier

One way to avoid this circularity is to avoid using the objects of the type for which the modifier is

defined; a type with static semantics in the integration context is needed. In the case of time-varying

semantics of temporal entities, this means that when defining the dynamic modifiers of temporal

entities, a special type of time whose semantics does not change should be used, i.e., an internal time

model with static interpretation is needed when the meaning of temporal entities in sources and

receivers also changes over time.

4.6.2 Extending Mediation-Execution for Query Optimization

Query answering in COIN involves two steps: (1) mediation by the mediator to generate instructions

on all necessary data conversions; and (2) execution by the POE to carry out the instructions as

efficiently as possible.

Traditionally, the mediator generates instructions for the purpose of semantic reconciliation, and

does not consider particular needs from query optimization and execution point of view. In some

cases, certain conversions are needed for the query optimization and query execution, but they are

not generated by the mediator. As a result, the mediated query, which contains instruction for

semantic reconciliation purposes only, may be difficult to optimize or even impossible to execute.

We illustrated this problem in Section 4.5.3 using the Yahoo historical quote example, where

ground temporal values in the receiver context needed to be converted to the source context to meet
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certain variable binding requirements. We treated such requirements as capability constraints,

represented using CHR rules. Since the mediator processes CHR rules, conversions required by the

capability constraints are included in the mediated query.

While it may be possible to represent different requirements of POE using CHR rules, it is time

consuming to develop and keep these rules up to date, especially when the requirements of POE

evolve over time (e.g., query execution statistics accumulated over time may suggest moving the

evaluation of an expression from one source to another, therefore requiring different conversions to

be generated). Instead of changing the CHR rules manually every time the POE has new

requirements, we contemplate a more general solution that allows the POE to request the mediator to

generate the instructions on value conversions that are not in the original mediated query but are

found necessary by the POE. We explain this using the following example:

Suppose a user query requests data from catalog a where price in a is less than price in catalog b,

thus the query contains constraint a.price<b.price. The mediated query generated by the existing

COIN would include instructions on how to convert price from context a to the receiver context as

well as instructions on how to convert price from context b to the receiver context. If we denote these

conversions with far(a.price) and fbr(b.price), then the mediated query has constraint far(a.price)<

fbr(b.price). The POE would generate a plan that converts all price data in a and b to the receiver
context and applies the constraint to obtain the tuples that meet the criterion. A better plan would

either convert data from b to a (with conversionfba(b.price)), or a to b (with conversionfab(a.price)),

depending on other characteristics of the sources learned by the POE from accumulated query

execution statistics, and then apply the constraint at the source. This requires that the POE is able to

interact with the mediator to obtain the instructions on the conversions found necessary during query

optimization.

4.7 Summary

In this Chapter, we provided the technical details of the existing COIN and the extensions developed

for dealing with temporal semantic heterogeneity. Several contributions are made in the description

of the existing COIN:

* characterization of value and cvt methods - the two methods play a critical role of lifting

statements from one context to another. For the first time, we provide a clear definition

for the value method and provide a procedural definition for composition conversion

method cvt.

* modifier orthogonality - this notion is only briefly covered in previous COIN work. In

this chapter, we discover and explain its dependency on the specification of component

conversions.

* correspondence between F-logic constructs and FOL predicates - the two previous

theses on COIN have different representation styles: the F-logic based representation in
Goh (1997) and the FOL based presentation in Firat (2003). With F-Logic only, it is

difficult to understand the implementation of COIN; with FOL only, it is difficult to
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explain object-orientation that is so central to the COIN approach. The correspondence

provided in this Chapter bridges this gap.

The temporal extensions build upon the existing COIN. In "testing" the limit of the existing

COIN, we developed a number of important insights:

* constraints in modifier definitions -when ground primitive values in source contexts are

used in the constraints in modifier definitions, the constraint store can have constraints in

multiple contexts, making it difficult to detect inconsistencies and to semantically

optimize the mediated query. To avoid this problem, semantic objects should be used

and all constraints should be expressed in the receiver context.

* indeterminacy and the need for types in the integration context - when the semantics of

temporal entities also changes over time in a context, semantic indeterminacy arises if

temporal values in the context are used for modifier definitions. To avoid indeterminacy,

type for time interpreted in the integration is needed. In general, when the semantics of a

type is dependent on objects of the type, we need to introduce a special type whose

interpretation in the integration context is static.

* query optimization and the need for conversion to source context - to simplify the

mediation task, COIN uses a strategy that converts values from source contexts to

receiver context. But from the query optimization point of view, sometimes it is better to

convert certain values to source contexts. In limited cases, CHR rules can be used to

generate the necessary conversions during mediation. We proposed a more general

solution where the POE is able to request the mediator to generate conventions found

useful by the POE.

We also pointed out the need for further research on dynamic context association and dynamic

elevation. The insights from this work and the results from future research will further enahnce the

capability and performance of COIN.
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Appendix 4.1 Illustration of Query Mediation using SLD+Abduction

Procedure

The SLD+Abduction procedure is first introduced by Cox and Pietrzykowski (1986); several

extensions (e.g., Shanahan, 1989; Decker, 1996) also exist. Goh (1997) extended this procedure and

applied it to query mediation. In fact, an example of using the procedure for query mediation is given
in Chapter 5 of Goh (1997). Maybe because the example is quite involved, some readers found it

difficult to follow. The example we gave in Section 4.5 is modest, but it is complicated with

constraint handling using CHR rules.

The goal of this appendix is to use simple examples to illustrate how abduction is used for

mediation. We will use the "wet grass" example to explain the difference between deduction and

abduction. Then we use a simple mediation to illustrate how abduction is used for query mediation.

In the ensuring discussion, background knowledge about SLD is necessary. This can be found in

any standard logic programming text, e.g., Lloyd (1987).

Roughly speaking, the SLD+Abduction procedure makes the following modification to the SLD

procedure: when the chosen resolvant (i.e., a predicate or a negation of a predicate to be resolved) is

an abducible predicate (which we call abducible for short), it does not attempt to resolve the

abducible, instead, it puts the abducible into the constraint store. Each proof branch maintains its

own constraint store.

A4.1.1 The "Wet Grass" Example

Below is a logical theory T for "wet grass":

wetgrass <-- sprinkler_was_on.

wetgrass <-- rained.

Let us consider query " <- wetgrass". In Figure 4.11 we show the SLD-trees of deductive proof as

well as abductive proof. For abduction, the abducibles are A = {sprinklerwason, rained}.

wetgrass wet-grass A={}

sprinkler_was_on rained sprinkler was_on rained

j I I A=} =0
fail fail [ A={sprnklerwason} c A={rained}

(a) SLD-tree of deduction (b) SLD-tree of abduction

Figure 4.11 SLD-trees for Deduction and Abduction

The SLD-tree of deductive proof is given in Figure 4.11 (a). The deductive answer will be false

because as seen in the SLD-tree, it cannot resolve either sprinkerwason or rained (i.e., they are not
in the logical theory).

Figure 4.11 (b) shows the SLD-tree of abduction. The constraint store A at each proof step is

shown in a shaded box. When sprinkler_was_on is selected as resolvant, because it is an abducible, it

is put into the constraint store of the proof branch. The other branch is similar. In the end, the
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constraint stores of all successful leaf nodes are collected to form the abductive answer, which is

{sprinklerwas_on} or {rained}.

A4.1.2 A Simple Mediation Example

We use a very simple example to illustrate how the basic ideas in the "wet grass" example are

applied to query mediation.

Consider a data source containing one relation r(Company, Profit), which records profits of

different companies in 's of USD. A receiver wants to see the profits in 1000's of USD. We call the

context associated with the source cl and the receiver context c2. When the following SQL is issued

by the receiver:
Select Company, Profit from r;

the following mediated query is expected:
Select Company, Profit*l/1000 from r;

This scenario is illustrated in Figure 4.12, where we show the simple ontology, elevation from

the source to the ontology, and context descriptions.

Context descriptions

L" I 1 |IC c2
JscaleFactor[1 |1000 I

c1 c1

r'( Skcorpany Skprmpfit) Semantic relations

r ( Company, Profit) Primitive relations

Figure 4. 12 Ontology, Contexts, and Source of Simple Mediation Example

Below are the F-logic rules for elevation (4.31), modifier specifications for contexts cl and c2

(4.32 and 4.33), and component conversion for modifier scaleFactor (4.34).

r' (skolem(basic, Company, c1 ,1, r(Company, Profit))
skolem(moetary Value, Profit, c1,2, r(Company, Profit))) <- r(Company, Profit).

(4.31)

0: monetary Value, scaleFactor(cl, 0): basic H
O[scaleFactor @ cl -- scaleFactor(c], O)] <- scaleFactor(cl, O)[value @ cl -> 1].

(4.32)

0: monetary Value, scaleFactor(c2, 0): basic H
O[scaleFactor @ c2 - scaleFactor(c2 , O)] <- scaleFactor(c2, O)[value @ c2 -+ 1000].

(4.33)

M: monetary Value H
M[cvt @ scaleFactor, Cr, Ms, Mr, U 4-> V] + V = U * Ms / Mr

(4.34)

As described in Section 4.2.3, these rules can be translated into Prolog rules straightforwardly. For

illustration purpose, we will use these F-logic rules. Therefore, we will omit to show the

corresponding Prolog rules. Modifier declaration is also omitted here.

- 96 -



Recall the SQL will be translated to well-formed COIN query in Datalog, which is shown below:

answer(V3,V4) - r' (V1',V2'), value(V1l', c2, V3), value(V2', c2, V4).

The body of the query consists of the predicates for the abductive procedure to resolve. The

SLD+Abduction procedure will resolve the predicates according to the order they appear. In Figure

4.13 below we show the SLD-tree of the abductive mediation of this query.

r'(V1 ',V2'), value(V1', c2, V3), value(V2', c2, V4) A=0

( I rule (4.31)

r(ComDanv, Profit), value(V1', c2, V3), value(V2', c2, V4) A=0

O r/2 is abducible

|value(V1', c2, V3), value(V2', c2, V4) A={r(Company, Profit)} V3=Company

I V' is basic, rule (4.3)

value(V2'. c2. V4) A={r(Company, Profit)}

I rule (4.5) A=r(opany, Profit))
I ~~~A={r(Company, Profit)}

V2'[scaleFactorcic1->...1, V2'scaleFactrcc2...1. V2'[cvt@scalFactor...-V4]

( I modifier specifications, rules (4.32), (4.33)

V2',cvttscalFactor,c2,1,1000,Profit-V41 A={r(Company, Profit)}

Q component conversion, rule (4.34)

V4 = Profit *1/10001 A={r(Company, Profit))

o i= is abducible
A={r(Company, Profit),

[0 V4=Profit*1/1000}

Figure 4.13 SLD-tree for Query Mediation of the Simple Example

In Figure 4.13, for each step we underline the predicate to be resolved, show the constraint store,

label the step with a number, and provide a brief explanation next to the number. We only show

variable bindings useful for query construction.

In step 1, semantic relation r' is resolved to r/2 using the elevation rule (4.31).

In step 2, because r/2 is an abducible, it is removed and put into the constraint store.

In step 3, value predicate corresponds to the value method defined in Section 4.2.2. Because

semantic object VI' is of type basic, it is resolved according to (4.3) and V3 is bound to "Company"

attribute of r/2.

In step 4, similar to step 3, but composite conversion for semantic object V2' is introduced

according to (4.5). There is only one modifier, which is scaleFactor. Here we only show the

predicates for modifier specifications and the component conversion.

In step 5, to save space, we actually combine two steps that resolve the predicates for modifier

specifications in contexts cl and c2. Modifier values are bound to modifier variables in the next
resolvant.

In step 6, the component conversion is resolved using the conversion rule for scaleFactor (4.34).

In step 7, because "=" is an abducible, it is removed and put into the constraint store. An empty

resolvant indicates the derivation is successful.
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At the end of this successful derivation, a mediated query can be constructed using the variable

binding and the predicates in the constraint store:
answer(Company,V4) :- r(Company, Profit), V4 = Profit*l/1000.

We can then translate above mediated Datalog query to obtain the mediated SQL.
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Appendix 4.2 Time Representation using Temporal System

The temporal system introduced by Nogueira et al. (2004) provides a flexible representation of

temporal entities. Below we describe the system and illustrate its use as an internal time model. We

adapt their definition for temporal system as a Cartesian product of non-empty subsets of integers:

Definition 4.7 TS is a temporal system <=> 3k, .,k n N, 3TUI,...,TU, cZ: TS = TU x ... TUn and

ITUjI = ki, i = 1,... n. TUi is called a temporal unit. A time point in TSis a tuple <xI, ... , xn>e TS. 

In the above definition, N is the set of natural numbers, and Z is the set of integers. The

following three examples illustrate how various temporal systems can be defined.

Example 4.1 (Annual system) An annual system AS with only year in Gregorian calendar can be

defined as AS = Year, where Year = {..., -1, 1,... }, and -i is interpreted as the year i BC, ie N. A

tuple such as <1999> represents the year 1999.

Example 4.2 (24-hour clock) The 24-hour clock system If with a granularity of minute can be

defined as f= Hourx Minute, where Hour = {0, ... , 23} and Minute = {0, ... , 59}. A tuple such as

<12, 35> represents 12:35 in the afternoon.

Example 4.3 (Gregorian Date) A Gregorian date system )D can be defined as D = Yearx Month x Day,

where Year is as specified in Example 4.1 Month = {1, ... , 12}, and Day = {1, ... , 31}. In addition,

other constraints that ensure the validity of a tuple can be provided as part of the definition, e.g.,

number of days in a month or a leap year. A example tuple <1998, 12, 31> represents the day

"December 31, 1998".

Example 4.4 (Date and time) A system DT with Gregorian date, UTC time, and a granularity of

second can be defined as DT = Year x Month x Day x Hour x Minute x Second, where Year, Month,

Day, Hour and Minutes are specified as in the previous examples, and Second = {0, ... , 60}. In

addition, other constraints that ensure the validity of a tuple can be provided as part of the definition,

e.g., number of days in a month, leap year, leap second. A tuple such as <1998, 12, 31, 23, 59, 60>

represents the last (leap) second in the year 1998.

Nogueira et al. (2004) introduce two basic binary relations between time points: equal and

before. They are defined on the premise that the temporal units in a temporal systems are ordered in

such a way that the granularity of TUi is greater than TUi+1. Each of the two relations has a weak

form and a strong form: the strong form requires the points are from the same temporal system, and

the weak form only requires that the first temporal unit of each point is of the same granularity. We

introduce the weak frm, which is more general than the strong form.

Definition 4.8 (Weak equal) Let x =< x,,.x m > and y =< y,...,y > be two time points and p =

min(m, n), i [1, p]: : = . :: x i = i'
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Definition 4.6 (Weak before) Let ix =< xi, Xm > and =< Yl, , y ,n > be two time points,

3j < min(m,n)Vi E [1, j] < <: xi =Yi A Xj <y .

Other (weak) relations can be defined using the two basic relations. An application specific time

model consists of a temporal system or multiple systems with the same highest granularity and a set

of binary temporal relations over time points in the temporal system(s). Such a model can be

straightforwardly implemented in Prolog where a tuple is represented as a list.
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"Never believe an observation until it is confirmed in theory."
- Francis Crick

Chapter 5

The Flexibility and Scalability of COIN
The problem of semantic interoperability is not new, and people have tried to achieve semantic

interoperability in the past using various approaches. These approaches have sometimes been

reasonably successful in limited applications, but have proven either very costly to use, hard to scale

to larger applications, or both. COIN is an attempt to provide an approach that reduces the cost and

complexity of achieving semantic interoperability.

In this chapter, we provide a systematic evaluation of the COIN approach in terms of its

flexibility and scalability. We first briefly discuss our evaluation framework. Then we give an

overview of the traditional and still commonly practiced approaches to dealing with semantic

interoperability. In the last section, we characterize and compare the traditional approaches with the

COIN approach. This systematic analysis allows us to formally show that the COIN approach is

flexible and scalable.

5.1 Evaluation Framework

Although there has been extensive work to develop various semantic interoperability solutions, little

has been done to systematically evaluate these solutions. Previous work on interoperability

evaluation tends to be either ad-hoc or too narrowly focused. For example, in some of the surveys

(Wasche, 2001; Kashyap and Sheth, 2000), we can only find informal evaluations using ad-hoc and

inconsistent criteria. While El-Khatib et al. (2000) and Hammer et al. (2005) develop testing cases

useful for consistent evaluation of different information integration approaches, their focus is on

testing different approaches' capability of reconciling certain kinds of heterogeneity, not on

evaluating the amount of effort required to implement the approaches.

Below, we present our preliminary task-based evaluation framework. It is motivated by

Rosenthal et al. (2001), where eight tasks of data integration are identified. In our framework, instead

of having the eight fine-grained tasks as in Rosenthal (2001), we group them into three major tasks
for achieving semantic interoperability amongst disparate systems36:

36 Recall that we use system, data source, and receiver application interchangeably.
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* Knowledge acquisition: to acquire knowledge about all systems engaging in information

exchange.

* Implementation: to encode the acquired knowledge, and implement necessary conversions as

a set of instructions on how to reconcile semantic differences between systems.

* Execution: to fulfill a given information exchange task by determining and executing all

necessary conversions to obtain data instances.

There are two kinds of knowledge. The first is about the similarity of the data elements in

different systems so that correspondences amongst them can be established. For example, "price" in

system A and "charge" in system B are similar and correspond to each other. The second is what we

call context knowledge that describes the subtle differences amongst similar data elements. For

example, "price" in system A may be in USD, not including taxes or shipping charges, while

"charge" in system B may be in thousands of South Korean Won, including taxes and shipping

charges.

The acquisition of both kinds of knowledge is a labor-intensive process. There has been

extensive research that develops automatic schema matching algorithms (Rahm and Bernstein, 2001)

to reduce the amount of human effort required for identifying correspondences, thus reducing the

effort for acquiring similarity knowledge. Several commercial tools such as Cupid from Microsoft

(Madhavan et al., 2001), Clio from IBM (Miller et al., 2001), and ProfileStage from IBM are also

available for this purpose. Even though these algorithms and tools are helpful, substantial human

involvement is still needed to verify the correspondences suggested by software. More importantly,

these algorithms and tools are only good at identifying similarities; they cannot identify the

differences amongst similar data elements, nor can they infer how the differences can be reconciled.

Thus, knowledge acquisition will continue to be a labor-intensive process. A recent survey

(Seligman et al., 2002) on time distribution among different tasks of data integration projects shows

that nearly 30% of the time is spent on knowledge acquisition.

It is even more labor-intensive to encode the acquired knowledge and implement all necessary

conversions. There are different approaches to implementing the conversion. With some of the

traditional approaches, which we will discuss latter, this process can account for up to 70% of the

costs of an integration project (Doughty, 2004).

The last task (i.e., execution) is carried out by software, which executes appropriate conversions

to convert data instances. It is desirable that the algorithm of the software is efficient in terms of its

time and space complexity (e.g., it is desirable that the algorithm always terminates in polynomial

time with a correct answer).

This task breakdown allows us to separate two aspects to consider when evaluating semantic

interoperability approaches. One concerns human efforts involved, the other concerns the

performance of the software algorithm. Intuitively, the two aspects distinguish between "how hard

humans have to work" and "how hard computers have to work" to achieve semantic interoperability.

Apparently, tradeoffs can be made between "human efforts" and "computer efforts". For example,

one alternative to achieving semantic interoperability is to develop a global standard and have all

systems implement the standard, in which case all systems are semantically interoperable by design.
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With this approach, most of the work is upfront human effort on developing and implementing the

standard.

Different criteria can be developed for evaluating approaches to fulfilling different tasks. In this

chapter, we will develop the criteria for evaluating various approaches to fulfilling the second task,

i.e., implementation.

The knowledge acquisition task generally can be decoupled from the other two tasks. The efforts

required for knowledge acquisition should not vary among interoperability approaches. However

different methodologies can be adopted for knowledge acquisition. Future research should develop

the criteria for evaluating the effectiveness of different methodologies for knowledge acquisition.

The criteria for evaluating algorithms are well established. Work has been done elsewhere to

evaluate the time complexity of algorithms useful for achieving semantic interoperability. For

example, Halevy (2001) and Lenzerini (2002) review the complexity results of query rewriting

algorithms, used by data integration approaches that rely on the view mechanism of databases. Eiter

et al. (1997) presents their complexity results of abductive reasoning, which we use in the COIN

approach.

In the next section, we describe several traditional approaches to semantic interoperability.

Following that, we present the criteria for evaluating different approaches to fulfilling the

implementation task, and use the criteria to evaluate the traditional approaches as well as the COIN

approach.

5.2 Traditional Approaches to Semantic Interoperability

We consider semantic interoperability as the capability of meaningfully exchanging information

amongst a set of sources and receivers. This can be achieved in a number of ways, e.g., by

developing and maintaining all necessary conversions for reconciling semantic differences, or by

adopting certain standards that would eliminate semantic heterogeneity in the sources all together

(assuming the standard can be enforced). In this section, we discuss three widely practiced

approaches to achieving semantic interoperability.

5.2.1 Brute-force Data Conversions (BF)

The BF approach directly implements all necessary conversions in hand-coded programs. With N

data sources and receivers, N(N- 1) such conversions need to be implemented. When N is large, these

conversions become costly to implement and very difficult to maintain. This is a labor-intensive

process; as mentioned earlier, nearly 70% of integration costs come from the implementation of

these data conversion programs (Doughty, 2004)

This approach might appear sufficiently inefficient that one might be surprised at how common

it is. The reason is that usually the conversion programs are written incrementally - each individual

conversion program is produced in response to a specific need. Writing "only one conversion

program" does not seem like a bad idea - but over time, this process continues toward the N(N-1)

conversion programs that must be maintained and updated.
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A possible variation of the approach is to group sources that share the same set of semantic

assumptions into one context. Much like the lifting axioms in McCarthy and Buva6 (1997) and Guha

(1995), conversion programs need to be implemented for each pair of the contexts. The number

conversions is n(n-1), with n being the number of contexts. The approach allows multiple sources in

the same context to share the same conversion programs, thus it has the potential of reducing the

number of conversion programs. However, it does require the overhead of establishing and

maintaining the correspondences between the sources and the contexts 37. We refer to the original

approach and this variation as BFs and BFc, respectively. These approaches and two other standard-

based approaches discussed below are illustrated

in the remainder of the section.
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Figure 5.1 Traditional approaches to Semantic Interoperability

Our illustration in Figure 5.1 uses six data sources, some of which share the same context (i.e.,

they do not have semantic differences in data). A dotted arrow represents a program that implements

all necessary conversions that convert data in the source for the receiving system to which the arrow

points.

5.2.2 Global Data Standardization (GS)

In a collaborative environment, if the parties engaging in information exchange could develop and

maintain a single data standard that defines a set of concepts and specifies the corresponding

representation, all semantic differences would disappear and there would be no need for data

conversion. Unfortunately, such standardization is usually infeasible in practice for several reasons.

Often there are legitimate needs for having different definitions for concepts, and storing and

reporting data in different formats. For example, while the metric units are used in most parts of the

37 COIN has similar requirement, but COIN provides a systematic method of describing contexts and
associating sources with contexts. Other features in COIN significantly improve context and conversions
sharing.
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world, people in the U.S. still use and find it convenient to use English units3 8 . Since most

integration and information exchange efforts involve many existing systems, agreeing to a standard

often means someone has to change his/her current implementation, which creates disincentives and

makes the standard development and enforcement extremely difficult. This difficulty is exacerbated

when the number of the data elements to be standardized is large. For example, in 1991, the

Department of Defense (DoD) initiated a data administration program that attempted to standardize

nearly one million data elements3 9; by the year 2000, it only managed to register 12,000 elements,

most of which were infrequently reused. After a decade of costly effort, the DoD realized the

infeasibility of having a single standard and switched to an alternative approach that allows different

communities of interest to develop their own standards (Rosenthal, et al., 2004).

The latter approach by the DoD manifests the reality of standard development, i.e., there are

often competing or otherwise co-existing standards. For example, there are multiple standards for

airport codes and for country codes. Different systems can potentially choose different standards to

implement. Thus, in most cases, we cannot hope that semantic differences will be standardized away;

data conversion is inevitable.

5.2.3 Interchange Data Standardization (IS)

The data exchange systems sometimes can agree on the data to be exchanged, i.e., standardizing a set

of concepts as well as their interchange formats. The underlying systems do not need to store the

data according to the standard; it suffices as long as each data sender generates the data according to

the standard. That is, this approach requires that each system have conversions between its local data

and an interchange standard used for exchanging data with other systems. Thus each system still

maintains its own autonomy. This is different from the global data standardization, where all systems

must store data. according to a global standard. With N systems exchanging information, the

Interchange Standardization approach requires 2N conversions. The IS approach is a significant

improvement over the brute-force approach that might need to implement conversions between every

pair of systems.

Similar to BFc approach, there could be an ISc approach that groups systems that share the same

context together to share conversion programs. With n unique contexts, the ISc approach requires 2n

conversions. When there are no systems sharing the same context, ISc is the same as the original IS

approach. In the ensuing discussion, we mainly focus on the original IS approach.

This approach has been used for business transactions, e.g., Electronic Data Interchange (EDI)

and various Business-to-Business (B2B) trading standards. In the military setting, the U.S. Message

Text Format (MTF) and its NATO equivalent, Allied Data Publication-3, have over 350 standard

messages that support a wide range of military operations. This standard has been used for over 50

38 Arguments for metric units can be found at http://www.metric4us.com/; the site also lists sites with

arguments against metric unit. The NIST also has a program
(http://ts.nist.gov/ts/htdocs/200/202/mpo_home.htm), promoting the adoption of metric unit in the U.S.
39 Since it was necessary to accommodate existing systems with different contexts, there were data elements
forJuel-load-in-liters and fuel-load-in-gallons, without explicit acknowledgement of the relationship between
these elements.
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years and currently an XML version is being developed (Miller et al., 2003). As a recent example,
the DoD standardized exchange format of weather related data, which consists of about 1,000

attributes40. This standard has been successfully used by several systems that exchange weather data

(Rosenthal, et al., 2004). Similarly, the XML-based Cursor-On-Target (COT) standard, which

consists of 3 entities and 13 attributes, has been used successfully by over 40 systems to exchange

targeting information (Rosenthal, et al., 2004).

Although this approach has certain advantages, e.g., local autonomy and a smaller number of

conversions required, it also has several serious limitations. First, after all parties have had a clear

understanding about the domain and decided what data elements should go into the standard (which

is part of knowledge acquisition effort), they have reach an agreement on the data definition and data

format. Reaching such an agreement can be a costly and time consuming process. It took the DoD

five years to develop the interchange standard for weather data 4l. Furthermore, in many cases it is

difficult to foresee what data needs to be exchanged or how the requirements might change over time,

which makes it inappropriate to have a fixed standard. When the information of interest is not

specified in the standard, ad-hoc conversions have to be implemented. Besides, any change to the

interchange standard affects all systems and the existing conversion programs. And lastly, the

approach can involve many unnecessary data conversions. For example, when the currency for price

of the interchange standard is US dollars, and a source and receiver use South Korean Won, price in

the source will be first converted to US dollars, then converted back to South Korean Won. Such

unnecessary conversions can be avoided in the BF approach.

5.2.4 Summary of Traditional Approaches

Each of the three traditional approaches has certain drawbacks that make them inappropriate for
integrating information from a large number of data sources. These weaknesses are summarized

below:

* Brute-force data conversions (BF): this requires a large number of hand-written conversions

that are difficult to maintain.

* Global Data Standardization (GS): it is costly and sometimes impossible to develop a global

standard. In addition to legitimate reasons of having multiple standards, there are

technological difficulties and organizational resistance to a single standard.

* Interchange Standardization (IS): the standard is static, only suitable for routine data sharing

and it still requires a large number of hand-written conversions.

In addition, these approaches lack flexibility to adapt to changes because the data semantics is

hard-coded in the conversions for BF, in the standard in GS, and in both the conversions and the

standard in the case of IS.

40 This is also known as the "communities of interests" approach, where organizations come together to
develop standards for particulars domains in which they share common interests. These standards are
equivalent to interchange standards when the organizations provide translations between the conventions in
existing systems and the standards.
41 Although now used by several DoD systems, it has not been adopted by all DoD legacy systems nor non-
DoD systems (e.g., in private sector or foreign governments) that may need to interoperate with DoD systems.
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The COIN approach overcomes these shortcomings by automating the code generation process.

In addition, as discussed in Chapter 4, the concepts in the shared ontology in COIN are high level

concepts that require minimal commitment; the parties engaging in information interchange still
have the freedom to further refine the concepts using context descriptions. As we will see next, this

approach allows for much greater flexibility and scalability.

In the preceding discussions, we have used the term conversion quite loosely. In the rest of the

discussion, we differentiate four types of conversions:

(1) a component conversion is defined for a modifier between two modifier values in the

COIN approach; it reconciles one aspect of semantic differences of a single data type

(e.g., a conversion that only reconciles differences in currency of profit);

(2) a compound conversion reconciles all aspects of semantic differences of a single data

type (e.g., a conversion that reconcile differences in all aspects of profit, e.g., definition,

scale factor, as well as currency);

(3) a composite conversion combines multiple component conversions to reconcile the

semantic differences of all data types involved in a specific user query, which may

access multiple data sources (e.g., a conversion that reconciles differences in profit, sales,

and number of employee, supposing these data types are requested in a user query); and

(4) a comprehensive conversion reconciles the semantic differences of all data types in two

systems or between a system and an interchange standard (e.g., a conversion that

reconciles the differences in all data types of two systems, which could have dozens or

even hundreds of data types).

These conversions are listed in an increasing order in terms of the amount of effort required to

develop and maintain them.

5.3 Flexibility and Scalability - Comparison of Different Approaches

In this section, we compare the traditional approaches with the COIN approach to show that the

COIN approach has greater flexibility and scalability. When there are no sources that share the same

context, then BF/C is the same as BFs; therefore, in the rest of the analysis, we will not differentiate

the two types of BF approach.

5.3.1 Flexibility Analysis

We use the term flexibility to collectively refer to two important capabilities of accommodating

changes: adaptability is the capability of accommodating changes, such as semantic changes within a

data source with minimal effort; extensibility is the capability of adding (or removing) data sources
with minimal effort.

In this Thesis, we do not develop protocols for directly quantifying the amount of effort. Instead,

we use the number of conversions that need to be developed and maintained as a proxy for this effort.

Recall that we differentiate a comprehensive conversion from a component conversion, and a

comprehensive conversion requires significantly more effort to develop and maintain than a
component conversion.
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Flexibility of Traditional Approaches

The Brute-Force (BF) data conversion approach has the least flexibility. With N sources, a change in

any source would potentially affect 2(N-1) comprehensive conversions, i.e., N-1 comprehensive

conversions converting from the changing source to the other sources and vice versa. Adding or

removing a source has similar effects.

This problem is somewhat reduced with the Interchange Standardization (IS) approach. But it

still requires re-programming to handle changes, which can be tedious and error-prone. Especially

when the interchange standard is changed, then the 2N comprehensive conversions need to be

updated to accommodate the change. Adding or removing a source requires adding or removing two

comprehensive conversions.

The Global Data Standardization (GS) approach also lacks flexibility because any change

requires agreement by all participants and this is a difficult and extremely time consuming process.

In addition, all systems need to implement the changes, which sometimes cause disruption in

operations. Only a source that implements the standard can be added to exchange information with

existing sources.

Flexibility of the COIN Approach

The COIN approach requires a shared ontology, which is expected to be easier to develop and agree

on because it is not as detailed as the agreements needed in the GS and IS approaches. More

importantly, the COIN approach does not require an agreement on detailed definitions of the

concepts in the shared ontology and their corresponding representations in sources and receivers;

disagreements are allowed and are captured as context descriptions by assigning values to modifiers

in the ontology.

This is an important distinction. As noted earlier, the knowledge acquisition task is generally the

same for all these approaches, and COIN does require that the detailed definitions of the concepts

used in the sources and receivers be captured. However, COIN captures these detailed definitions in

the (localized) context descriptions. This both eliminates the need for global agreements on these

detailed definitions, and provides a modular way of capturing the detailed knowledge required to

define the conversions between these detailed definitions. This characteristic of the COIN approach

to ontology is illustrated in Figure 5.2, using a simple ontology of company profit.

currency scaleFactor
kind 'I ,

" Pr rofitOf company
-. . -

(a) a fully specified ontology of profit (b) a COIN ontology of profit

Figure 5.2 Fully Specified Ontology v. COIN Ontology.

The fully specified ontology in Figure 5.2 contains possible variations of the concept profit,

organized in a multi-level and multi-branch hierarchy. Each leaf node represents a most specific
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profit concept. For example, the leftmost node at the bottom represents a profit that is a "net profit in

l's of USD". In contrast, the COIN ontology contains only concepts in higher levels, further

refinements of these concepts do not appear in the ontology; rather, they are specified using

modifiers.

Compared with the fully specified approach, the COIN approach has several advantages. First, a

COIN ontology is usually much simpler, thus easier to manage. Second, it facilitates consensus

development, because it is relatively easier to agree on a small set of high level concepts than to

agree on every piece of detail of a large set of fine-grained concepts. And more importantly, a COIN

ontology is much more adaptable to changes. For example, when a new concept "net profit in

billions of South Korean Won" is needed, the fully specified ontology needs to be updated with

insertions of new nodes. The update requires the approval of all parties who agreed on the initial

ontology. In contrast, the COIN approach can accommodate this new concept by adding new context

descriptions without changing the ontology.

Regardless of the approach taken for ontology development, conversions need to be specified to

convert data between variations of the same higher level concept. The approach taken, however, may

affect the provision of the conversions. For example, the fully specified approach would likely invite

a provision of pair-wise conversions amongst the leaf nodes, leading to a solution similar to the BF

approach. As defined earlier, such conversions are compound conversions, often combining several

component conversions, e.g., the conversion from the leftmost node to the rightmost node on the leaf

level would reconcile the differences in definition (i.e., net profit and gross profit), currency (i.e.,

USD and EUR), and scale factor (i.e., 1 and 1M).

In contrast, conversions in the COIN approach are much finer-grained to allow for high

reusability. They are component conversions defined for each modifier in the ontology. We will see

in the next section that the number of component conversions is not directly dependent on the

number of sources. All pair-wise comprehensive conversions needed in BF and IS approaches are

dynamically generated from these component conversions. In most cases, changes in existing source

and the addition of new sources are accommodated by updating and adding declarative rules, which

is much simpler than updating comprehensive conversions. Therefore, the COIN approach has

greater flexibility.

Specifically, changes in existing sources and addition of new sources can be accommodated by

one of the following responses in the COIN approach, listed roughly in an ascending order of effort

involved:

(1) updating or adding modifier definitions;

(2) (1) + updating or adding component conversions;

(3) (2) + adding new modifiers, their definitions, and their component conversions;

(4) (3) + adding semantic types; and

(5) redesigning the ontology.

Responses ()-(4) involve the updating of declarative rules or some programming of component

conversions implemented as callable functions. For example, the concept "net profit in billions of

South Korean Won" can be accommodated by response (1) if the existing component conversions

are parameterized (we discuss parameterized component conversions in the next section). Only when
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the changes are such that a redesign of the ontology is needed will the COIN approach require

significant effort, in which case the traditional approaches need to rewrite all comprehensive

conversions or redesign a global standard.

5.3.2 Scalability Analysis

Scalability refers to the capability of achieving and maintaining semantic interoperability with the

amount of effort not growing dramatically with the number of participating sources and receivers. As

we know from earlier discussion, most of the effort is in creating and maintaining the conversions.

Therefore, we use the number of conversions that need to be implemented and maintained over time

as a measurement of the scalability.

According to our measurement, the GS approach is scalable because it does not need any

conversion at all. But if we consider the standard development process as a semantic reconciliation

process performed by human designers, significant human efforts are involved in the process

although such efforts are difficult to quantify. In practice, it is often impossible to establish a global

standard when there are a large number sources participating in information interchange. The rest of

this analysis will focus on the other approaches.

We have informally discussed the scalability of the two other traditional approaches. We

summarize them below, followed by a detailed analysis on the scalability of the COIN approach.

Proposition 5.1 (Scalability of BF) The number of comprehensive conversions needed for achieving

semantic interoperability among N sources with the BF approach is N(N-1), which is O(N2). 

Explanation: Each source needs to perform data conversions with the other N-1 sources; there are N

sources, thus a total of N(N-1) comprehensive conversions need to be in place to ensure pair-wise

information exchange, which is O(N2). 

Proposition 5.2 (Scalability of IS) The number of comprehensive conversions needed for achieving

semantic interoperability among N sources with the IS approach is 2N, which is O(N). ·

Explanation: For each source there is a conversion to the standard and another conversion from the

standard to the source. There are N sources, so the total number of conversions is 2N = O(N). .

Proposition 5.3 (Scalability of COIN) Suppose the semantic heterogeneity of N sources can be

described using an ontology that has M modifiers with the i
t
h modifier having ni unique values,

1< i < M. The number of component conversions needed for achieving semantic interoperability
M

with the COIN approach is ni (ni -1) , which is (Mnk2) , or 0(nk2 ) if m is fixed, where
i=l

nk = max{n i<i<M} .

Explanation: As seen in Chapter 4, component conversions in COIN are defined for each modifier,

not between pair-wise sources. Thus the number of component conversions depends only on the

variety of contexts, i.e., number of modifiers in the ontology and the number of distinct values of
M

each modifier. In worst case, the number of component conversions to be specified is ni(ni -1).
i=1

This is because in worst case for each modifier, we need to write a conversion from a value to all the
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other values and vice versa, so the total number of conversions for the ith modifier is ni(ni- 1). nk is the

maximum of the number of unique values of all modifiers. When both M and nk approach infinity,
M
Zni(ni-1)=O(Mn2); for any given ontology with finite number of modifiers, the number of
i=1

component conversions is O(nk2), i.e., VM, ni(n i -1) = O(nk2). 2
i=1

Recall rom Chapter 4 that in a component conversion atom t[cvt m, t,tms,tmr,tl -- t 1 2 ],

ts and tmr are terms representing modifier m's values in the source context and the receiver context,

respectively. A term can be a constant or variable. Certain component conversions use variables for

the two terms; such component conversions can convert for all possible valid modifier values. For

example, (4.13) and (4.14) for date format and currency conversions are such conversions. We call

such component conversions parameterized component conversions. If the component conversions

of a modifier are parameterizable, we only need to specify one parameterized component conversion

for the modifier.

A collection of externally defined functions called by the component conversions can be seen as

a conversion library. The COIN approach takes the advantage of this library by automating the

selection, composition, and parameter instantiation of the functions in the library.

With the BF and IS approaches, a library with each function specializing a component

conversion often does not exist. For example, if there is a need to convert profit data from net profit

in billions of South Korea Won to gross profit in 's of USD, the chances are that this will be

implemented as one compound conversion using some program, which is rarely reused elsewhere.

The program actually implements several component conversions, e.g., a parameterized conversion

for reconciling currency differences, one for scale factor, and one or more for profit definition. These

component conversions in the COIN approach are reused to compose many other composite

conversions as needed. Even if such a library existed, the decisions on what functions should be

called with what parameters are hard coded in the BF and IS approaches as oppose to being

automatically generated in the COIN approach.

When parameterization is difficult, we can exploit certain relationships among component

conversions. In cases where a set of component conversions essentially implement a set of inter-

related equations, COIN can use symbolic equations solvers to generate conversions that are not

explicitly specified (Firat et al., 2002; Firat, 2003). For example, suppose we have three definitions

for price: (A) base price, (B) tax included price, and (C) tax and shipping & handling included price.

This can be modeled by using a price concept in the ontology, together with a modifier for price

having a distinct value for each of these definitions. With known equational relationships among the

three price definitions42, and only two conversions (1) from base_price to base_price+tax (i.e., A to

B) and (2) from baseprice+tax to baseprice + tax + shipping & handling (i.e., B to C), the COIN

mediator can generate the other four conversions automatically (A to C and the three inverses). Thus
the number of conversion definitions for a modifier can be reduced from n(n- 1) to n- 1, where n is the

42 Such relationships can be found in business rules that specify, say, how to compute taxes from a tax-included
price. The component conversions represent such business rules.
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number of unique values of the modifier. The requirement is that the component conversions for the

modifier are invertible, i.e.,

t[cvt @ m, tc,tms,tmrtl - t2] <-> t[cvt m, tc,tmrtms,t±2 --- t±ll]

The following propositions summarize above discussions:

Proposition 5.4 (Scalability of COIN, parameterization) When the component conversions for a

modifier are parameterizable, only one parameterized component conversion needs to be specified

for the modifier. If the component conversions of all M modifiers are parameterizable, the COIN

approach only needs Mparameterized component conversions.

Proposition 5.5 (Scalability of COIN, inversion) When all component conversions are invertible, the

COIN approach needs (ni -1) component conversions.
i=l

To put the results in perspective, let us consider a scenario of 200 agencies in a coalition of

countries sharing counterterrorism data. Suppose there are 50 types of data such as subject height,

arrival airport, meeting location, etc. The data is not standardized across the agencies. Assume that

each type of the data has different representations and semantic assumptions that can be represented

by a modifier with 3 unique values in the COIN approach. Each agency may obtain data from all the

other agencies to perform counterterrorism analysis. If we consider each agency as a source, this is a

problem of enabling semantic interoperability amongst 200 sources. According to the scalability

results:

* BF approach requires 39,800 comprehensive conversions

* IS approach requires 400 comprehensive conversions

* COIN approach requires 300 component conversions in the worst case, or 100 invertible

component conversions, or 10 parameterized component conversions

Clearly, the COIN approach has much greater scalability than BF and IS approaches.

5.3.3 Implication of Temporal Extensions

Recall that when a source has time-varying semantics, similar data at different time periods may be

interpreted differently. For example, in the Frankfurt stock price source, stock prices on or before

"December 31, 1998" are in DEM, and those on or after "January 1, 1999" are in EUR.

Time-varying semantics may be handled in several ways. With the BF or IS approach, one

possibility is to write code in the comprehensive conversions to determine appropriate

reconciliations corresponding to different time periods. Although the flexibility and scalability

results are the same as previously discussed, the comprehensive conversions become much more

convoluted with the extra code that deals time-varying semantics, making the conversions more

difficult to maintain.

Alternatively, a source with time-varying semantics can be partitioned a priori into multiple

sources, each having static semantics. For example, the Frankfurt stock prices source can be

partitioned into two (virtual) sources, with one having data on and before "December 31, 1998", and

the other having data on or after "January 1, 1999". While this alternative eliminates the code to
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determine different reconciliations for different time periods, it increases the number of (virtual)

sources, therefore, adversely impacts the scalability of BS and IS approaches.

The temporal extensions to the existing COIN approach overcome these problems. Time-varying

semantics in a source is described declaratively using modifiers that can have different values in

different time periods. Using these descriptions, the extended COIN reasoning mechanism can

determine the time periods during which there is no time-varying semantics, and for each such

period, a set of component conversions can be used to reconcile semantic difference. As a result, the

component conversions can be provided the same way as in the cases where no source has time-

varying semantics. In addition, the reasoning mechanism's capability of determining time periods of

static semantics eliminates the need for a priori partitioning of data sources. Thus, the overall effect

of the temporal extensions is that the flexibility and scalability results for COIN, as presented in the

previous section, remain unchanged when sources have time-varying semantics.
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"The exciting thing is serendipitous reuse of data: one person puts data up therefor one thing, and
another person uses it another way."

- Tim Berners-Lee

Chapter 6

Public Policy for Database Protection and Data
Reuse

There is an ever increasing amount of electronically accessible data, especially on the Internet and

the Web. To a certain extent, the Web has become the largest data repository consisting of sources
with semantic heterogeneity. The accessibility of the Web and a variety of technologies, including

COIN's semantic interoperability technology, allow someone to easily create new databases by

systematically extracting and combining contents of other sources. In fact, we demonstrated in Zhu

et al. (2002b) that using the Cameleon (Firat et al., 2000) data extraction technology and the COIN

mediation technology, we can create a database to provide a global price comparison service. The

extraction technology allows us to extract and reuse price data from other web sources; the COIN

mediation technology subsequently reconciles semantic difference amongst disparate sources and

diverse users.

While many technology-enabled data reuse activities create value for society, these activities

may be against the interests (e.g., financial interests) of the source owners whose data has been

reused. This conflict has infused debate about providing legal protection to non-copyrightable

database contents4 3 and regulating data reuse activities.

In formulating public policy on this issue, one should consider various stakeholders and different

factors related to the value of data and the value created from data reuse. There can be many

stakeholders, among which database creators, data reusers, and the consumers of the creator and/or

reuser database products are the primary ones. One of the important factors to consider in policy

formulation is the financial interests in database contents. For example, a creator who invested in
creating a database is interested in recouping the investment using the revenues the database helps to

generate. The revenues can be reduced when a reuser creates a competing database by extracting the

contents from the creator's database. Thus creators would like to have certain means of protecting

43 A database can contain copyrightable contents, e.g., a database containing MP3 songs. In this cause, the
reuse of the contents is regulated by copyright law. Copyright laws in different jurisdictions may differ in the
minimal requirements for database contents to copyright protection. In the U.S., data records about certain
facts, e.g., phone number listings in white pages, are not copyrightable.
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the contents in their databases. Without adequate protection, the incentives of creating database

could diminish. There may be other reasons for having restrictions on data reuse. For example, a

database creator may want to restrict reuses as a means of ensuring data quality because certain

reuses can potentially introduce inaccuracies in data. Not all reuses are for financial purposes only, in

which case, a reuser may view restrictions on reusing publicly accessible data as a violation of

"freedom of speech" right, an essential element of human rights protected by international law.

Besides, privacy concerns often arise when the data contains personal information. Furthermore,

people from different cultures and jurisdictions often hold different views, and thus attach different

values (not necessarily financial values), to these various factors.

While all factors involved are worthwhile for study, it is beyond the scope of this chapter to

provide a comprehensive analysis on all of them. Rather, we focus on the financial interests in non-

copyrightable database contents, and analyze the case where the database is publicly accessible and

no enforceable contract exists to restrict data reuse. We mainly address the issue of finding a

reasonable balance between incentive protection and value creation through data reuse, i.e.,

determining appropriate protection to database contents so that the creators still have sufficient

incentives to create databases, and at the same time, value-added data reuse activities are

accommodated. We achieve this objective by developing an economic model, using the model to

identify various conditions, and determining policy choices under these various conditions.

6.1 Introduction - Legal Challenges to Data Reuse

As mentioned earlier, technologies such as web data extraction and context mediation have made it

much easier to create new databases by reusing contents from other existing databases. New business

practices consequently emerged to take advantage of these capabilities. For example, Bidder's Edge

created a large online auction database by gathering bidding data of over five million items being

auctioned on more than 100 online auction sites, including the largest online auction site eBay.

Similarly, mySimon built an online comparison shopping database by extracting data from online

vendors. Priceman provided an improved comparison shopping service by aggregating data from

over a dozen comparison databases including mySimon. There are also account aggregators that

gather data from multiple online accounts on behalf of a user and perform useful analyses, e.g.,

MaxMiles allows one to mange various rewards program accounts and Yodlee aggregates both

financial and rewards program accounts. Common to these aggregated databases is that they add

value by providing ease of use of existing data, either publicly available or accessible on behalf of

users (e.g., through the use of their user IDs and passwords). Various types of data reuse and the

business strategies for data reuse can be found in Madnick and Siegel (2002).

Unfortunately, these value added data reusers have faced serious legal challenges for the data

they extracted. For example, EBay won a preliminary injunction against Bidder's Edge and the two

firms later settled the case. mySimon sued Priceman and the latter ceased to operate for fear of legal
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44
consequences. There have been a few other cases4 4 . The legal principles commonly used in the

plaintiff claims include copyright infringement, trespass to chattels, misappropriation, violation of

federal Computer Fraud and Abuse Act, false advertisement, and breach of contract4 5. Since none of

the cases reached a definite conclusion, it is still a question whether it is legal to reuse publicly

available or otherwise accessible factual data in value creating activities. Although the issue of

reusing facts existed long before the Web became pervasive, the difficulty in applying the laws that

predate the Web and the ease of data reuse in recent years has given the lawmakers a certain sense of

urgency to resolve the issue by creating a new database protection law.

One of the purposes of such a law is to preserve the incentives of creating databases by

providing legal protection to the investment in databases. This will inevitably run afoul of the

societal interests in advancing knowledge by allowing reuse of facts in databases (Samuelson, 1996).

To resolve this conflict, the new law has to strike the right balance between preserving the incentives

of database creation and ensuring adequate access for value creating data reuse.

Debate in the past and discussions in existing literature (Samuelson, 1996; Richman and

Samuelson, 1997; Sanks, 1998; Maurer, and Scotchmer, 1999; Reichman and Uhlir, 1999; O'Rourke,

2000; Lipton, 2003) have identified this major issue but fall short in finding this delicate balance. In

this chapter, we develop an economic model to identify various conditions for setting a reasonable

balance. Before delving into the model, we first briefly describe the landscape of legal protection for

databases. After a formal presentation of the model, we relate it with legal proposals and discuss

several useful insights developed from our analytic results.

6.2 Legal Protection for Database Contents

6.2.1 A Brief History of Database Legislation

Non-applicability of Copyright Law. The impetus for database protection started in 1991 after the

Supreme Court in the U.S. decided the Feist v. Rural46 case. In compiling its phone book covering

the service area of Rural Telephone Co., Feist Publications copied about 8,000 records of Rural's

White Pages. In the appeal case, the Supreme Court decided that Feist did not infringe Rural's

copyright in that white pages lack the minimal originality to warrant copyright protection. It is the

original selection and arrangement of data, not the investment in creating the database or the contents

in the database, that is protected by copyright in the U.S. Thus, under current case law, copyright law

has not been found to restrict the reuse of the contents in a database concerned in this Thesis.

New Database Legislation. While the database creators in the U.S. were pushing for new

database legislation, the European Union (EU) introduced the Database Directive47 in 1996 to

44 E.g., HomeStore.corn v. Bargain Network (S.D. Cal, 2002), TicketMaster v. Tickets.com (C.D. Cal., 2000),
First Union v. Secure Commerce Services, In. (W.D. N.C, 1999), etc. Numerous cases in Europe can be found
at http://www.ivir.nl/files/database/index.html and in Hugenholtz (2001).
45 A legal analysis of these claims can be found in court documents, e.g., the eBay case in 100 F. Supp. 2d
1058. ND Cal., May 24, 2000.
46 499 US 340, 1991.
47 "Directive 96/9/EC of the European Parliament and of the Council of 11 March 1996 on the legal protection
of databases", a copy of the Directive can be found at http://europa.eu.int/ISPO/infosoc/legreg/docs/969ec.html.
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provide legal protection for database contents. Under its reciprocity provision, databases from

countries that do not offer similar protection to databases created by EU nationals are not protected

by the Directive within the EU. This created a situation where U.S. database creators felt they were

neither adequately protected at home, nor abroad. In response, the database industry pushed the

Congress to create a new law to provide similar protection to database contents. Since then, the U.S.

has attempted six proposals, all of which already failed to pass into law. The recent two bills are HR

3261 and HR 3872. Figure 6.1 briefly summarizes these legislative proposals.

EU introduced Database
Directive granting database
makers sui genens right to
prevent unauthorized extraction
and reutilization of the whole, a
substantial part of, or systematic
extraction of insubstantial part of
database contents

7:

Faied
HR 2652 Collections of
Information Antipiracy Act:
criminal and civil remedies
if reuse of substantial part
of another person's
database causes or has
the potential to cause
harm \/-

rF"
HR354
Collections of
Information
Antipiracv Act
similar to HR
2652 with mor
fair use
exceptions

1

rFailed
HR 3261 Database and
Collections of Information
Misappropriation act:
disallow free riders from
creating functional
equivalent databases to
reduce revenue of the
creators

I 991 996 698 O99

I \~
Feist case: US
Supreme Court
decided that
databases lacking
minimal originality are
not copyrightable

HR 3531 Database
Investment and
Intellectual Propertv
Piracy Act: similar to
EU Directive, with no
fair use exceptions

T\
HR 1858 Consumer
and Investor Access to
Information Act:
disallow verbatim
copying of a database

603 Q04>
F6i/'\1

ru I 1
HR 3872 Consumer Access
to Information Act: prevent
free-rider from engaging in
direct competition that
threatens the existence or
the quality of creator
database

Figure 6.1 History of Database Protection Legislation.

The sui generis 4 8 right approach taken by the EU creates a new type of right in database contents;

unauthorized extraction and reutilization of the data is an infringement of this right. Lawful users are

restricted not to "perform acts which conflict with normal exploitation of the database or

unreasonably prejudice the legitimate interests of the maker of the database". Here "the legitimate

interests" can be broadly interpreted and may not be limited to commercial interests.

HR 3531 of 1996 closely followed this approach with even more stringent restrictions on data

reuse. Although the Database Directive has been adopted by the EU, HR 3531 failed to pass in the

U.S. One of the main concerns is the constitutionality of the scope and strength of the kind of

protection in the EU Database Directive (Reichman and Samuelson, 1997; Colsten, 2001). Other

issues in the EU Database Directive include the ambiguity about the minimal level of investment

required to qualify for protection (Ruse, 2001; Hugenholtz, 2003), its lack of compulsory license

provisions (Colsten, 2001), the potential of providing perpetual protection under its provision of

automatic right renewal after substantial database update, the ambiguity in what constitutes a

"substantial" update, and several other issues which we discuss in the next subsection.

All subsequent U.S. proposals took a misappropriation approach where the commercial value of

databases is explicitly considered. HR 2562 of 1998 and its successor HR 354 of 1999 penalize the

commercial reutilization of a substantial part of a database if the reutilization causes harm in the

48 In Latin, meaning "of its own kind", "unique".
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primary or any intended market of the database creator. The protection afforded by these proposals

can be expansive when "intended market" is interpreted broadly by the creator. At the other end of

the spectrum, HR 1858 of 1999 only prevents someone from duplicating a database and selling the

duplicate in competition.

The proposal HR 3261 of 2003 has provisions that lie in between the extremes of previous

proposals. It makes a data reuser liable for "making available in commerce" a substantial part of

another person's database if "(1) the database was generated, gathered, or maintained through a

substantial expenditure of financial resources or time; (2) the unauthorized making available in

commerce occurs in a time sensitive manner and inflicts injury on the database or a product or

service offering access to multiple databases; and (3) the ability of other parties to free ride on the

efforts of the plaintiff would so reduce the incentive to produce the product or service that its

existence or quality would be substantially threatened". The term "inflicts an injury" means

"serving as a functional equivalent in the same market as the database in a manner that causes the

displacement, or the disruption of the sources, of sales, licenses, advertising, or other revenue"

(emphasis added by author).

The purpose of HR 3872 is to prevent misappropriation while ensuring adequate access to

factual information. It disallows only the free-riding that endangers the existence or the quality of the

creator database. Unlike in HR 3261, injury in the form of decreased revenue alone is not an offence.

Another difference from HR 3261 is that it suggests the Federal Trade Commission be the enforcing

authority.

These legislative initiatives demonstrate the substantial difficulties in formulating a database

protection and data reuse policy that strikes the right balance, which is a prevailing issue in dealing

with other kinds of intellectual property (Besen and Raskind, 1991). An economic understanding of

the problem can help address other issues discussed in the next section.

6.2.2 Other Major Issues

Extensive legal discussions have raised many concerns about a new database law. These include but

are not limited to the issues discussed below.

Data monopoly. There are situations where data can only come from a sole source due to

economy of scale in database creation or impossibility of duplicating the event that generates the

data set. For example, no one else but eBay itself can generate the bidding data of items auctioned on

eBay. A law that prevents others from using the factual data from a sole source in effect legalizes a

data monopoly. Downstream value creating reutilizations of the data will be endangered by a legal

monopoly.

Cost distortion. Both the EU database directive and the latest U.S. proposals require substantial

expenditure in creating the database for it to be qualified for protection. Database creators thus may

over invest at an inefficient level to qualify (Samuelson, 1996).

Update distortion and eternalprotection. This is an issue in EU law, which allows for automatic

renewal of sui generis right once the database is substantially updated. Such a provision can induce

socially inefficient updates and make possible eternal right through frequent updates (Koboldt, 1997).
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Constitutionality. Although the Congress in the U.S. is empowered by the Constitution to

regulate interstate commerce under the Commerce Clause49 and the misappropriation approach often

gives a database law a commercial guise, the restrictions of the Intellectual Property Clause5 0 often

apply to any grant of exclusive rights in intangibles that diminishes access to public domain and

imposes significant costs on consumers (Heald, 2001). Most database contents are facts in the public

domain; disallowing mere extraction for value creating activities runs afoul of the very purpose of

the Intellectual Property Clause that is to "promote the progress of science and useful arts". Since

little extra value for the society as whole is being created by simply duplicating a database in its

entirety, preventing verbatim copying of a database is clearly constitutional. Extracting all contents

of a database is very much like duplicating the database. Unlike in copyright law where there is a

reasonably clear idea-expression dichotomy (i.e., copyright protects the expression, not the idea

conveyed by the expression), extraction-duplication in data reuse is much like a continuum, not a

dichotomy (Heald, 2001). Thus a constitutional database law needs to determine up to how much one

is allowed to extract database contents.

International harmonization. Given the global reach of the Web and increasing international

trade, it is desirable to have a harmonized data reuse policy across jurisdictions worldwide. The EU

and the U.S. are diverging in their approaches to formulating data reuse policies. A World

Intellectual Property Organization (WIPO) study (Tabuchi, 2002) also reveals different opinions

from other countries and regions. Enforcement will be a big problem without international

harmonization.

We believe the solution to these challenges hinges upon our capability of finding a reasonable

balance between protection of incentives and promotion of value creation through data reuse. With

this balance, value creation through data reuse is maximally allowed to the extent that the creators

still have enough incentives to create the databases. Consensus can develop for international

harmonization if we can determine the policy choices that maximize social welfare; a database

policy so formulated should survive the scrutiny of constitutionality; other inefficiencies can be

avoided or at least better understood. We will take on this challenge in the rest of the chapter by

developing an economic model for database protection and data reuse policy.

6.2.3 Policy Instruments

When database creation requires substantial expenditure and competition from free riding reusers

reduces the creator's revenue to a level that does not offset the cost, the creator would have no

incentives to create the database and the market fails. Policy should intervene to restore the database

market (assuming the database was worth creating). On the other hand, data reuse is often value

creating; from a social welfare point of view, it is not necessary to intervene if the creator can remain

profitable even though its revenue may decline because of competition. It is conceivable that there

exist different conditions under which policy choices differ.

49 Constitution 1.8.3, "To regulate Commerce with foreign Nations, and among the several States, and with the
Indian Tribes".
50 Constitution 1.8.8, "To promote the Progress of Science and useful Arts, by securing for limited Times to

Authors and Inventors the exclusive Right to their respective Writings and Discoveries".
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The recent U.S. proposal HR 3261 contains several useful aspects, underlined in the previous

section, which are often considered in policy formulation. "Substantial expenditure" corresponds to

the fixed cost in creating the database; "functional equivalent" measures the substitutability of the

reuser database for the creator database, which is determined by the degree of differentiation of the

two databases; "injury" or incentive reduction can be measured by decrease of revenue. "Time

sensitive manner" is redundant with differentiation. It is common that information goods can be

differentiated via temporal versioning (Shapiro and Varian, 1998). For example, real time stock

quotes and 20-minute delayed stock quotes are two differentiated economic goods.

Policy instruments in most proposals on database protection are simply (1) the grant of legal

protection when all criteria are met, and (2) the specification of penalties to violators. They focus on

specifying what types of reuse constitute a violation and completely ignore the concern of the creator

becoming a legal monopoly (except for HR 1858). Provisions on what the creator is supposed to do

should not be ignored, e.g., under certain conditions the creator should be asked to license its data

under reasonable terms. Such provisions are often found in other intellectual property laws, e.g.,

compulsory license provisions in patent laws in various jurisdictions. Thus, appropriate policy

instruments should be a specification of conditions and the corresponding socially beneficial actions

of the reuser as well as the creator.

6.3 Literature Review

There have been extensive legal studies on database protection policy 5' since 1996. Recently, Lipton

(2003) suggests a database registration system similar to that for trademark to allow database

creators to claim the markets within which their databases are protected from free riding. But social

welfare analysis is not performed in this study to take account of the cost of maintaining such a

system. After reviewing a number of data reuse cases in the EU and the U.S., Ruse (2001) suggests

reusers negotiate licenses from database creators and conform to the licensing terms. The paper also

criticizes the ambiguity in the Database Directive and recommends that the EU should consider the

U.S. proposals that contain more broadly defined fair uses and provisions dealing with sole source

databases. Colston (2001) provides a comparison of EU and U.S. approaches and suggests that the

EU should reconsider the compulsory license provision that was in the early draft of the Database

Directive, but removed from the final version. Hugenholtz (2003) introduces an emerging spin-off

theory for databases that are created as a by-product of other business activities, in which case the

cost of the business process should not be counted as cost of creating the database.

There has been little economics and information systems research that directly addresses the

issues of database protection policy. We are aware of only one paper by Koboldt (1997), who studies

various distortions of database update for sui generis right renewal under the EU Database Directive.

From the social welfare point of view, the provision can induce inadequate update or excessive

update of the database. He points out that the problem comes from the substantial change

requirement for an update to renew the sui generis right. He shows that setting up an upper limit for

5' See http://www.umuc.edu/distance/odell/cip/links_database.html for references to published legal reviews.
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updating cost can eliminate the distortion of excessive update; no suggestion is made for eliminating

the distortion of inadequate update.

Several possible economic theories can be applied in analyzing the issues. Cumulative

innovation theory (Scotchmer, 1991) from the patent literature has been used to informally explain

the importance of ensuring adequate access to data for knowledge and value creation (Maurer, 2001).

The notion of the tragedy of anticommons (Heller, 1998) is also useful because information

aggregators rely on the access to multiple information sources. As is shown in Buchanan and Yoon

(2000), when there exist multiple rights to exclude, a valuable resource will be underutilized due to

increased prices. Databases that hold factual information as a whole can be viewed as the

"commons", thus, providing more than necessary protection to databases is analogous to

anticommons and will lead to underutilization of protected databases.

6.4 A Model of Differentiated Data Reuse

As the legal discussions suggest, the reuser is sometimes a competitor of the creator in the database

market5 2. Arguably, the intensity of competition depends on how differentiated the reuser database is

from the creator database. The differentiation can be either horizontal or vertical53 or both. Most

aggregator databases are horizontally differentiated from the databases being extracted because they

often have different features, over which the consumers have heterogeneous preferences. For

example, while certain consumers value the extensive information about the auctioned items from

eBay's database, other consumers value the searchability and ease of comparison at Bidder's Edge.

Therefore the two databases are horizontally differentiated in product characteristics space.

As to the Priceman and mySimon databases, both provide price comparison, but the Priceman

database has a wider coverage of online vendors, which may suggest a vertical differentiation

between the two databases. But the reality can be more complicated, e.g., while mySimon is less

comprehensive, it may be more reliable and responsive than PriceMan. Consumers often have

different preferences over this set of feature. Thus the two databases are largely horizontally

differentiated.

There may be cases where a reuser creates a database that is either superior or inferior in every

feature relative to the creator database (to target a different market). However, we are interested in

cases where the creator database is better in some features, whereas the reuser database is better in

the other features. In such cases, the creator and reuser database are horizontally differentiated, with

competing products located at different locations in the characteristics space. We will base our

analysis on an extended spatial competition model, which was introduced by Hotelling (1929) and

52 There are other reasons a creator does not want his data to be reused. For example, an online store may be

afraid that a comparison aggregator can potentially have the effect of increasing price competition and
lowering profit on sales of products. Our model focuses on "information goods" only, thus it does not capture
such effect.
53 Product characteristics are horizontally differentiated when optimal choice at equal prices depends on
consumer tastes, e.g., different consumer tastes in color. Product characteristics are vertically differentiated
when at same prices all consumers agree on the preference ordering of different mixes of these characteristics,
e.g., at equal price, all prefer high quality to low quality. See Tirole (1988) for detail.
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has been widely used in competitive product selection and marketing research (Salop, 1979;
Schmalensee and Thisse, 1988).

6.4.1 Model Setup

We consider a duopoly case where there are two suppliers of database: (1) a database creator who
creates one database product, and (2) a data reuser who produces a different database by reusing a
portion of the contents from the creator's database. Both databases are for sale in the market. For
example, the database creator could be a marketing firm who compiles a database of New England
business directory that includes all business categories. A firm specializing in colleges in Greater
Boston area may compile an entertainment guide by reusing a portion of the business directory. The
two databases are different in terms of scope, organization, and purpose. In other words, they are
differentiated in the product characteristics space. We can understand the databases in eBay v.
Bidder's Edge case as well as in other data reuse cases similarly. Although most creator and reuser
databases are free to individual consumers to view and search, a consumer still pays a price in an
economic sense, e.g., time spent and certain private information revealed (e.g., search habit).

In a spatial competition model, we index database features onto a straight line of unit length,
with the creator's database at point 0 and the reuser's database at point 1; the prices they set for their
databases are p0 and pi, respectively. Consumers have heterogeneous preferences over the database
features. For simplicity, we assume a unit mass of consumers uniformly distributed along the line
[0,1]. We assume each database is worth a value v to a consumer with exact preference match. A

customer at x E [0,1] consumes either none or exactly one database. When he does consume a

database, he enjoys value v, pays a price, and also incurs a preference mismatch cost determined by
the distance and a penalty rate t. This is summarized by the following utility function:

o, if buys none;

ux = v -- p - tx = X,0 , if buys from firm ;

v-pi - t(1- x) = x,, if buys from firm 1.

We further assume that both the creator and the reuser have the same marginal cost, which is
normalized to 0. The creator's investment in creating the database is modeled as a fixed cost F. The
reuser incurs a fixed costf where F >> f, so we normalizef to 0. This assumption reflects the fact

that the innovative reuser possesses complimentary skills to efficiently create the second database
that the creator cannot preemptively develop. Firms simultaneously choose prices to maximize their
profits; consumers make purchasing decisions that maximize utility ux.

This setup reflects the uniqueness of the database and data reuse market. Many databases from
which reusers extract contents are byproducts of business processes. The eBay database is the
byproduct of its online auction business. Data in various accounts are generated by transactions of
business activities. The cost in creating and maintaining these databases is not a decision variable to
be optimized by calculating expected returns on the databases per se. MySimon itself is a reuser of
vendor data; it is also a database creator when its database contents were extracted by Priceman. The
reuse by Priceman is rather serendipitous in that mySimon made its investment decision without ever
imagining its data could have been reused by another reuser. Thus, for the purpose of data reuse
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analysis, the cost of creating the original dataset is a sunk fixed cost instead of an investment in the

sense in Research and Development literature. Similarly, the database features are often designed

without ever thinking of various possible reusers. Therefore, the database locations in the feature

space are not decision variables, either.

In this model, parameter t measures the degree of differentiation of the two databases with

respect to consumer preferences; differentiation increases with t. When t is large, the two products

are highly differentiated and the two firms can be two local monopolies. When t is small, the two

products are close substitutes and fierce competition can lower profits to a level where the creator

cannot recover its fixed cost. Our further analysis will be based on this intuition. For the purpose of

analyzing if the creator is willing to allow reuse of its data, we also analyze the monopoly case where

the creator is the only firm in the market.

In the rest of the chapter, unless otherwise noted, profit and social welfare are gross without

counting the fixed cost or transaction cost. Utilitarian social welfare is used, which is the sum of firm

profit and consumer surplus.

Lemma 6.1 In the duopoly case, the market is covered if t < v, and is not fully covered otherwise.

In the monopoly case, the market is covered by creator's database if t v/2, not fully covered

otherwise. Best price, maximum profit, and social welfare vary with the differentiation parameter t in

both cases as summarized in Table 6.1. ·

Table 6.1. Price, profit, and social welfare at different differentiation levels

T Best price Maximum profit Social welfare

Duopoly t<2v/3 Po = Pl = t zo = Y = SWd = v-

2v/3<t<v po=p =v- r* r =r SW=v-

v~tPo = Pl c = Pr = S = X SW d = 3V
V<t 0 .*0 * d YSWd 3v4 4t,P I = Y2 7r* = 7r* 7r 4t

Monopoly t<v/2 pm= V - t rm = V -t SWm =v - x2
v/2< t p o= ;rm = SW 3v2

Proof. Duopoly. little differentiation (t<2v/3). In the case of full market coverage, there exists a

location e [0, 1], such at u,0 = uy > 0. Then, the demand for database 0 is and the demand for

database 1 is (1- x). Solving profit maximization for both firms with respect to po and pl, we obtain

p = P = t and r0 = at = r d = . Positive utility constraints at x require t<2v/3. By symmetry, the

social welfare is 2 5 (v - tx)dx= v- .

Duopoly, moderate differentiation (2v/3<t<v). This is the case that requires careful examination

of corner solutions. To see that P0 = Pi = v-, is the equilibrium, we show that given p, = v -,
the profit maximizing price for the creator is also v- , and vice versa. When pl = v- , u ,l = 0.

If the creator charges same price, then each firm takes up one half of the market and makes a gross

profit of 7-4. We only need to show that any deviation by the creator yields a lower profit. For

any infinitesimal positive value a e R+, let us first suppose the creator wants to capture more than a
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half of the market by choosing a lower price Po = Pi - . With u,O = uy,l we can find the creator's

demand = (t+. Therefore, the creator's profit is = po = (p `)(t-4t. It is easily shown that
, t /2t

__~ = v _ 4 < 0 when 2/3 < t because both terms are negative. Now let us suppose that the creator
2t 4t

wants to deviates by charging a higher price Po = Pi + d; as a result, it will cover less than a half of

the market. We can derive _ = tv 2 < because tv.
06 t t

Duoploy, high differentiation (v<t). Each firm's demand is up to the location of the marginal

consumer whose utility of purchasing a database is 0. Take the creator, this marginal consumer is

located at = (v-p0 . Maximizing profit yields p = . Therefore, = (2/ = t < , and

r = 4t. By symmetry we obtain the reuser's price and profit. Social welfare is 2 ' (v - tx)dx = 3v t .

Monopoly, moderate preference heterogeneity (t<v/2). Similar to moderately differentiated

duopoly case, it is better for the monopoly to cover the entire market. Letting ul 0 = 0, we derive the

price. Demand is 1. It is straightforward to derive social welfare.

Monopoly, high preference heterogeneity (v/2<t). Similar to highly differentiated duopoly case,

it is better for the monopoly to cover a fraction of the market. Straightforward optimization yields the

results. a

We graph the result of Lemma 6.1 in Figure 6.2 to help make useful observations; values for

both axes are the factors of the product valuation v.
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Figure 6.2. Change of profit and social welfare with differentiation factor t.

Corollary 6.1 rT" > Td if t < v, and i.m = d otherwise. *

Corollary 6.1 says that when the reuser's database is not sufficiently differentiated from the

creator's, the creator makes less profit because of competition from the reuser's database. When the

two databases are highly differentiated, the creator is not harmed by the reuser. The corollary also
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implies that if the creator is the sole data source and can fully control the access to the data, it will

deny access if a reuser intends to free ride and make a database without sufficient differentiation.

Corollary 6.2 SW>SI for all t>O. x

Corollary 6.2 says that from the social welfare perspective, two differentiated databases are

better than one database. The implicit assumption for this to hold is that the creator makes a positive

net profit.

6.4.2 Necessity of Database Law

When the creator's profit is less than its fixed cost, i.e., if
m < F, the database will not be created to

begin with. For market failure analysis, we focus on the case where the creator is self sustainable, i.e.,

ifm >F .

In the presence of a free riding reuser, the creator makes a duopoly profit ,rd, which is smaller

than monopoly profit r'm when t<v. Therefore, free riding will cause market failure if rd < F < ifm

and t<v. That is, if F falls in the region above the ir
d line and below the rm line in Figure 6.2, free

riding causes market failure, in which case an intervention is necessary. This is often the argument

for having a new database law.

Without a database law, other means that database creators can use to protect their databases

seem to be ineffective in some cases. For example, a creator can use certain non-price predation

strategies, namely by raising rival's costs (Salop and Scheffman, 1987), to deter entry or at least to

soften competition from the reuser. In the past, creators attempted cost raising strategies such as

blocking the IP addresses used by reuser computers and frequently changing output format to make

data extraction more difficult. This can be modeled by letting the creator choose a technology

investment level T, with which the marginal cost of the reuser becomes Cl (T). The cost of installing

such anti-extraction technologies is often small enough to be negligible. When T is such that

O<Cl (T)<min (v - t),3t, 2v - 3t}, the creator profit becomes :rd (+3 >) t d = ,i.e., the creator2•C1(T)•min 0, r= > ete ao

profit is higher than when the technology is not used. The reuser profit is ird = (t 3 -)( - 2t1,T 2t

which could be greater or less than r d, depending on the level of C (T). The first two items in the

constraint for Cl (T) ensure that the reuser is not deterred; the third item ensures full coverage of the

market. Obviously, if Cl(T) is very high, the reuser will be deterred. However, anti-extraction

techniques were not very effective in practice5 4 ; we suspect that Cl (T) has been too small to have

substantial effect. Therefore, we will assume no anti-extraction is in place in the rest of the analysis.

Regardless of the effectiveness of anti-extraction techniques, they are socially wasteful investment

because they merely help transfer consumer surplus and reuser profit to the creator. A database law

54 eBay tried blocking the IP addresses used by Bidder's Edge, Bidder's Edge circumvented this obstacle by
using a pool of IP addresses dynamically.
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that grants the creator the right to license its data to reusers can reduce or eliminate this social

inefficiency. When database creators are also reusers, the cost-raising problem may not arise at all55.
There can be a need for a database law from the reuser's point of view. Database reusers often

face legal challenges from database creators. For example, reusers often receive legal threat notices56

and sometimes are sued by the creators. The uncertainty of various proposed database bills creates
significant legal risks for the reusers, who are often small but innovative firms. As a result, some
reusers have to exit the market, and certain value-added data reuses cannot occur. In this case, having
a database law that clearly specifies the kinds of legal reuses will help to create and sustain a market

of socially beneficial reuser databases.

6.4.3 Conditions and Choices of Data Reuse Policy

A socially beneficial data reuse policy can correct market failure by restricting certain free riding in
data reuse; the legal certainties it provides also help eliminate or reduce wasteful cost-raising
investment by incumbent database creators. This can be done either by requiring the reuser to pay the
creator for the data or by disallowing data reuse all together. The creator can ask the reuser to pay a

data reuse fee, r, which can be up to the reuser's profit 7rd; asking a fee r> grd is equivalent to

disallowing reuse because the reuser would make a negative profit. Negotiating the fee schedule r
and administrating data reuse policy often incur some cost. To model this reality, let us suppose that

when the creator asks for r, it actually gets ar , where a [0, 1] and it measures transaction

efficiency. Thus, in the duopoly case with data reuse policy in place, ( d + Z
d

) is the best the creator

can get to offset its fixed cost F if it ever allows someone to reuse its data57. Before we develop the

formal analysis, we describe the intuitions by plotting this upper bound condition along with profit

curves in Figure 6.3.

55 In the financial sector, many banks started offering account aggregation service shortly after account
aggregators emerged. That is, banks as database creators, became data reusers, so they had incentives to lower
data reuse cost. As a result, they initiated a standardization project to facilitate aggregation, see "FSTC to
Prototype Next Generation Account Aggregation Framework" at http://www.fstc.org/press/020313.cfm. In this
case, legal intervention is unnecessary.
56 For instance, a few online travel agencies recently sent warning letters to data reusers that allow consumers
to compare prices. See "Cheap-Tickets Sites Try New Tactics" by A. Johnson, Wall Street J., October 26, 2004.
57 We assume there will be no collusive joint profit maximization. A Nash bargaining outcome will be 50/50
split of the reuser profit. For purpose of market failure correction, this outcome can be simulated by setting a
to 0.5, although welfare analysis will be somewhat different.
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Figure 6.3 Change of Profits with Differentiation Factor t.

We mark five areas Al through A5 in Figure 6.3. The upper-bound ( d + ,rd) curve will lower

when a decreases, which enlarges Al and reduces A2, A3, and A4 . There are different implications

when t (the X-axis) and the fixed cost F comparing to profits (the Y-axis) are such that F falls in one

of the areas. IfF falls in Al (i.e., t is between 0 and 0.5*v, and F is below the solid line for monopoly

profit and above the dashed line for sum of duopoly profits), the upper bound (rd + ,r ) curve is

below irm curve, meaning that even if the creator can reap all the profit made by the reuser, it still

cannot cover all its fixed cost. In this case, the existence of a reuser causes an uncorrectable market

failure, so it is better to let the creator be a lawful monopoly.

For F E A2 , market failure can be corrected by asking the reuser to pay for the reuse of the data.

But the creator prefers to be a monopoly. To maximize social welfare, the policy should insist that

the creator license its data to the reuser. When F A3 , the creator can make more than it would as a

monopoly, thus it is willing to license its data.

For the database to be created to begin with, we have assumed that a monopoly profit is greater

than the required fixed cost ( m > F ). Area A 4 shows an interesting scenario. When F E A4 , a

monopolist creator cannot afford to create the database but the database and a variant of it still can be

created so long as the creator and the reuser can share the fixed cost. In this case, the reuser can be

considered as a database creator who incurs a fixed cost F1, where F 1<F. When a third party reuses

data from either or both jointly developed databases, the model can be used to analyze various

conditions between this third party (i.e. the reuser) and the creator(s).

Finally, when F A 5 , the cost of creating the database is low and free riding would not cause

market failure. It actually enhances social welfare when a < 1 because transferring r to the creator

costs the society (1- a)r.
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Next, we will formalize the above intuitive explanations. To simplify analysis, we let r = ;rd, i.e.,
we assume that the creator has the negotiation skills or legal power to ask the reuser to disgorge all

profits from reusing the data. For notational simplicity, we let f
tdl = (i + a)7d

andSWd =SWd -(l- a)7d, which respectively denote the gross profit of creator and gross social

welfare when the creator licenses its database to the reuser.

Theorem 6.0 (Minimal transaction efficiency) There exists a minimal transaction efficiency ,
below which having a monopoly is welfare enhancing compared to having a duopoly with a fee
paying reuser. = 0.5 when t< a = 3v

2
+6t

2
-8vt when 2 < t < 2/3 ; and = max{0,3 v- 4vt} when4t2 4vt-2t

2

t > 23. 

Proof. With a fee paying reuser, the social welfare is SWdl = SWd -(1- a)rd. Licensing is socially

beneficial only if SWdl > SWtm . Using the results in Lemma 6.1, we can solve the inequality and
obtain . ·

This is a refinement to Corollary 6.2. When free riding causes market failure, data reuse policy
must choose between asking the reuser to pay and disallowing data reuse all together. High
transaction costs may out weigh the welfare gain from having a reuser database. When transaction
efficiency is below this threshold, it is better that the creator not license data to the reuser; conversely,
when transaction efficiency is above this threshold, the creator should license its database to the
reuser, subject to the constraint that the creator can make a positive profit with licensing fee from the
reuser.

Theorem 6.1 (A,: Little differentiation, high cost) When t < and (+a)2 < F < v-t = ir m , legal
protection to the creator's database should be granted. The existence of a reuser database causes a
market failure even if the reuser pays a licensing fee; it is socially beneficial to let the creator be a
monopoly in the market by disallowing the creation of the reuser database. ·

Proof. In the presence of a reuser database, the creator's profit is t/2 (see Lemma 6.1) if the reuser is
a free rider, or (I+a)/2 if the reuser pays a fee equal to its profit. In both cases, the creator cannot

make a positive net profit, thus the database will not be created and social welfare is 0. Without the
reuser database, the creator earns a monopoly profit = v - t, which has been assumed to be

greater than or equal to F; net social welfare is SW'm - F = v - /2 - F > / > O . ·

Theorem 6.2 (A2: Little differentiation, moderate cost) When t < /2 and /2 <F <+a)A, legal
protection to the creator's database should be granted. The creator is not willing to license its
database to the reuser, but it is socially beneficial to require a compulsory license so long as
a > = 0.5 . If a < 0.5, it is better to let the creator be a monopoly. ·

Proof. This can be easily proved with Lemma 6.1 and Theorem 6.0. *
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Theorem 6.3 (A3: Moderate differentiation, moderate cost) When / < t < v and

rd <F < min{(l+a)7rd,v t = 7rm}, legal protection of the creator's database should be granted. The
dy

creator is willing to license its database if a ( - )/,d = d. Within the range of differentiation, a

can be less than or greater than . If a < a < a, compulsory licensing is necessary; if a < a < &,

licensing should be disallowed even though the creator prefers.

Proof. Legal protection is necessary because with free riding the creator cannot make enough profit

to cover its fixed cost. When a a, zrd + ard > fm , i.e., the creator is better off licensing its

database to the reuser. When a < a < d, it is socially beneficial to license but the creator makes less

than monopoly profit, therefore, compulsory licensing is required. When <a < the creator

prefers to license its database but it is socially wasteful, thus licensing should be disallowed. The

values of a and d are presented graphically in Figure 6.4. m

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t (* v)

Figure 6.4 Change of minimal transaction efficiency with differentiation factor t.

In Figure 6.4, we see in most cases a > , meaning that generally transaction efficiency

requirement is higher for voluntary licensing than for compulsory licensing. We label each region

with a symbol denoting the socially beneficial policy choice, i.e., C indicates the necessity of

compulsory licensing, V means voluntary licensing by the creator, M represents the case where a

monopoly is better, and S is a special case where the creator wants to license but it is socially

wasteful to license and the creator should be a monopoly.

Theorem 6.4 (A4: Moderate to high differentiation, high cost) When / < t and

v;1t = 7rm < F < (1 + a)7 rd, the creator will not create the database, not because of the threat of free
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riding, but because of the high cost. The databases can only be jointly developed by the creator and
the reuser with cost sharing agreement. ·

Proof. It is straightforward that the creator will not create the database because the development cost
is greater than monopoly profit. If the cost is below joint profit discounted with transaction cost, the
creator is willing to participate in joint development to make a positive profit. .

Theorem 6.5 (A5: Trivial databases) It is socially beneficial NOT to grant legal protection to

databases when F < d _< , and a< 1. ·

Proof. With low cost of creating the database, there is no market failure without legal protection. For
a < , SWd > SWd = SWd - (1- a)rd . Recall from corollary 6.2 that SWa>SW. Social welfare

without protection is S, it is SW' or S m with protection. Therefore, no protection is socially

beneficial. For all t, it is straightforward to show max(7d a
) = 3 using Lemma 6.1. ·

Corollary 6.3 (A5: Highly differentiated databases) When t > v and a <1, it is socially beneficial
NOT to grant legal protection to databases. ·

Proof. This is a special case of Theorem 6.5. When t > v, trd = zm, thus free riding of the reuser
has no impact to the creator. When a < 1, it is socially better not to collect a license fee to avoid
transaction cost. 

Most enacted and proposed database protection bills grant legal protection only to databases that
require substantial expenditure to create and maintain. Theorem 6.5 shows that such provisions are
necessary for enhancing social welfare. We have been using the magnitudes of fixed cost to
determine the socially beneficial policy choices. These magnitudes are not measured in absolute
dollar amount, rather, they are relative to the market value of the database as explicitly shown in
Theorem 6.5. Thus, we should not specify an absolute dollar amount threshold for a database to
qualify for legal protection.

From Theorem 6.5, it seems desirable to set a fixed cost threshold equal to duopoly profit, i.e.,

F = Jrd < . As we will see next, this can induce excessive investment when an efficient firm can

create the database at a cost slightly lower than F.

Theorem 6.6 (Over investment distortion) Suppose F = rd, when a > a and t < v, a creator with

F < F < has incentives to over invest to qualify for legal protection, where F is the cost when the

creator produces the database efficiently. The value of F depends on a and t. When t < 2 and

max(4+a--- vt,~ 0}o hnmx{22 t2vE=- maxj /2)-v, 0}, or when 2 < t ' and F =max2 2-v2 , 0, the creator aggressively

(l+a)t
over-invest 2 to become a monopoly; when < t < v or V <t < 2v, and F = (1-a), the

creator only moderately over-invest to become eligible for licensing fee; when < t < v, 3
creator only moderately over-invest ifd = Y to become eligible for licensing fee; when 2v < t v,

3
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a > (vt), and F=( 1-a) 2-, the creator only over-invest T = 2-t to qualify for receiving2vt ~ '2 44

licensing fee. 

Proof. When F < P (i.e., F is in A5 area in Figure 6.3), the reuser can legally free ride, so the

creator's net profit is 7rd -F. The creator has incentive to over-invest to a level in Al, A 2, or A3 areas

as long as it can make a higher net profit.

When t < v , the creator has an incentive to over-invest to the minimal level of legal monopoly,
-2'

a
Tdl, if the following conditions hold:

/ Km T dl > iTd -F (1)
mr - 7rd

l > Ir d' - (2)

where (1) is the condition under which being a lawful monopoly is better than having a free rider; (2)

ensures that being a lawful monopoly is better than having a fee paying reuser. Solving (1) yields

F Ž (4+a)t -v, whose right hand side can be greater than or less than 0; therefore, we have
2

= max{(4+a) - v, 0}. Solving (2) gives t < 2 With the assumption of a > & = 0.5, we know that- 2-3+''

2v < . Similarly, the incentive compatible conditions for over-investing to P to only qualify for3+2a 2 c

receiving licensing fee are:

I dl _ f> 2 rd _ F (3)
lam - Tdl < adl - P (4)

Here, (3) ensures having a fee-paying reuser is better than having a free rider; (4) ensures having a

fee paying reuser is better than being a monopoly. Solving (3) gives F > (1-a)r =F, where

I;t ;solving (4) yields t >3+2a

When < t < •, these constraints can be solved by plugging in appropriate profit functions.

When t > - the monopoly profit is only slightly higher than the duopoly profit; when a is not

too small, zdl > T'm which gives a > (-t) There is no incentive to become a lawful monopoly2vtt 2

because the creator earns a bigger profit when there is a fee paying reuser. 

Corollary 6.4 Over investment can also occur even if the creator already qualifies for protection but

is subject to compulsory licensing as specified in Theorem 6.2. Specifically, the creator over invests

at the level of (+a), when (2+a)t-v= F < F < (t+a), t < A, and a > = 0.5.

Proof. The creator over invests if rm - 7rdl > 7cd - F, which gives F > E = (2+ a)t-v . The lower

bound for a is necessary from Theorem 6.2. *

Theorem 6.6 shows that when F e A5 , the unprotected database creator wants to spend more at

F', where Fe A2 or F'6 A3 , so that the database now becomes qualified and the creator can earn a

bigger profit. The creator can more aggressively invest at F" such that F"e Al, in which case the
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creator becomes a legal monopoly. Corollary 6.4 shows that a creator with F e A2 wants to move to

Al by spending more. These distortions benefit the creators but are socially wasteful.

6.5 Discussion

6.5.1 Summary of Findings

In this spatial competition model, we consider the creator, the reuser, and the society as a whole.
Depending on the condition, the reuser can be a free-rider or a fee paying data reuser, or reuse is

disallowed. As a unique feature of the model, we explicitly consider inefficiencies of policy
administration and abstract it as the transaction efficiency parameter a . This is an improvement over
previous policy research that often ignores this factor, which in effect assumes perfect efficiency of
policy implementation and enforcement.

The model also allows us to clarify several important notions in policy design. The "substantial
expenditure" requirement is not clearly defined in the EU Database Directive and the current U.S.
proposals. We can see from this model that it should not be an absolute value; rather, it should be the

fixed cost relative to the market value of the database product. The minimal cost for qualification
also depends on the degree of differentiation of the reuser database. Another notion is the reduction
of database creation incentives by the free riding of reusers. HR 3261 regards reduced revenue as an
injury which in turn reduces the incentives of creating the database; any revenue reduction due to
competition from the reuser is an offence. Thus the purpose of the proposal is about fairness to
creators, not about social welfare maximization. In the model, the incentives of creating the database
do not completely disappear as long as the creator makes a positive profit.

With this model, we are able to specify socially beneficial policy choices under various
conditions determined by the magnitude of fixed cost of database creation (F), the degree of
differentiation between the reuser database and the creator database (t), and the transaction efficiency
(a). Roughly speaking, under the assumptions of this model, no protection should be given if the
database can be created with trivial expenditure or the reuser database is highly differentiated. When
legal protection is granted, it may take various forms, e.g., no reuse with the creator being a legal
monopoly, reuse with compulsory license, and discouragement of voluntary licensing. Reuse should
be disallowed if the reuser database is a close substitute of the creator database and the cost of
creating the database is high. In other words, a legal monopoly is socially desirable in this case. In
the other cases, the transaction efficiency plays an important role of determining if compulsory
licensing is required, or if license is beneficial to the creator but wasteful to the society, thus
voluntary licensing should be discouraged.

We also discover excessive investment distortions that come with this design of database policy.
Creators with unqualified databases have incentives to over spend in database creation to become
qualified; creators who are asked to license their databases may want to invest excessively to become
a legal monopoly. These distortions occur only when the reuser database has little or moderate
differentiation with the creator database. We are unable to find a mechanism to eliminate the
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distortions at this point. Thus the court is expected to scrutinize cases carefully to identify and

penalize those who purposefully over spend in database creation.

In this model we assume that the fixed cost incurred by the reuser is negligible compared with

that incurred by the database creator. Thus, the reuser database is a "free" product to the society and

social welfare is generally higher when there are two databases. This result is similar to those from

other intellectual property studies. For example, Yoon (2002) finds that depending on cost

distribution no copyright protection can be socially beneficial. In the presence of demand network

externalities, Takeyama (1994) finds that unauthorized reproduction of any intellectual property is

Pareto improving, i.e., both consumers and the infringed producer, thus the society as a whole,

benefit from unauthorized reproduction. We informally discussed the social welfare effect of

investment that raises the reuser cost; similarly, the expenditure on monitoring data reuse is also

wasteful. This is also true in copyright enforcement; see Chen and Png (2003) for their discussion on

the adverse effect of anti-piracy investment.

6.5.2 Implementation and Implications

The model and the results provide helpful guidelines to specifying and implementing a socially

beneficial database protection policy. This can be illustrated perhaps with critiques to the recent U.S.

proposals, particularly HR 3261.

HR 3261 of 2003 is generally in line with the results here. It takes an appropriate approach with

a focus on competition and the commercial value of databases. The scope of the proposal is confined

by the term of"functional equivalent", which means that the proposal concerns reuse that produces a

close substitute of the creator's database. Although it is a bit vague, it does intend to protect non-

trivial databases only.

However, HR 3261 is obviously crude and lacks important compulsory licensing provisions. Our

model has roughly three levels in both the degree of differentiation and the cost of database creation.

This allows for fine tuning of policy choices. HR 3261 takes a more or less binary approach. It thus

misses several opportunities of social welfare maximization. Without compulsory license, sole

source creators will become a lawful monopoly under the proposal, which is harmful to society.

These shortcomings will likely raise constitutionality concerns.

In addition, the three conditions in HR 3261 are essentially a paraphrasing of the

misappropriation doctrine established in INS v. Ap5 8 of 1918 and more recently in NBA v. Motorola 5 9

of 1997. In the former appeal case, International New Service (INS) took factual stories from the

Associated Press's (AP) bulletins and East Coast newspapers and wired them to its member

newspapers on the West Coast. In the later case, Motorola transcribed NBA playoff scores from

broadcast and sent them to its pager subscribers. Both INS and Motorola were found guilty under the

misappropriation doctrine. The practical question is if it makes sense to codify a well established

doctrine and make it into a statute to regulate data misappropriation only. With its substantial
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similarity to the misappropriation doctrine, HR 3261 would have little impact because without it any
data reuse case can be decided using the doctrine.

With HR 3872 of 2004, injury alone is not an offense that triggers government intervention,
which only comes in when the injury reaches the point where the creator would not create the
database or maintain its quality. Our model clarifies this vague criterion.

HR 1858 prevents duplication of a database, which is an extreme case where t is nearly zero.
With no differentiation, the reuser (now a duplicator) adds little value to the society, i.e.,

SWd SWm , and market failure is highly likely with even a moderate creation fixed cost, thus
database duplication should be disallowed. The proposal also clearly specifies a compulsory
licensing requirement for sole source creators. Although HR 1858 would very likely pass
constitutional scrutiny, it has certain drawbacks, e.g., its scope is deemed to be too narrow because it

only covers one extreme case of data reuse.
Overall, the results from the economic model provide useful insights for formulating database

protection policy. By revisiting the two undecided cases described in the introduction section, we can
briefly discuss the implications of a policy suggested by the model.

eBay v. Bidder's Edge. In the eBay case, the computing resource is not the subject matter of such
a policy, which concerns the data, not the resources that deliver the data. Thus trespass on the
Internet is a different issue out of the scope of this discussion. According to the model, we need to at
least examine the degree of differentiation of the database developed by the reuser Bidder's Edge. In
terms of searching of bidding data, the reuser database has a much broader coverage; thus, there is
competition from the reuser database. In terms of functionality, eBay's database allows one to buy
and sell items; the reuser database does not provide any actual auction service. Thus the two
databases exhibit significant differentiation. Searching alone does not, in general, reduce eBay's
revenue from its auction service. In addition, searching and actual auction are two different markets.
If we subscribe to the spin-off theory (Hugenholtz, 2003), the eBay database will not meet the cost
criterion. Therefore, free reuse by Bidder's Edge should be allowed under our model.

mySimon v. Priceman. In mySimon case, the reuser database is a superset of the creator's. Both
are in the searchable comparison shopping database market. Free riding by the reuser certainly
reduces creator's revenue. If the reduction reaches a level that the creator cannot make a positive
profit, which is likely in this case, then the reuser should be asked to pay a fee for using the data or it

is penalized for violating of the database protection policy.

6.5.3 Concluding Remarks

We address a pressing issue in database legislation that needs to find the right balance between
protecting incentives of database creation and preserving enough access to data for value creating
activities. With an extended spatial competition model, we are able to identify a range of conditions
and determine different policy choices under these conditions. From these results, we derive several
guidelines that are useful to law makers when they consider economic factors in database policy
formulation. A better understanding of the economic issues in database legislation provided by our
analysis will be helpful in developing consensus towards international harmonization in database
regulation.

- 135-



There are also a number of limitations in our analysis. As discussed earlier, we focus on financial

interests in database contents; other factors concerning societal values of data and data reuse are not

considered. Our economic model considers the competition between the creator and reuser databases.

The model does not capture other effects of data reuse, e.g., network effects of database products. In

addition, the model also ignores factors that are specific to the kind of data being reused, e.g.,

privacy concerns when the reused data is about personal information, and increased price

competition concerns when price data is reused.

In addition to relaxing the limitations identified above, we plan to look into a few other areas in

future research. Out current analysis is based on a horizontal differentiation model; in the future, we

plan to examine data reuse that is vertically differentiated, e.g., the reuser may produce a database of

inferior or superior quality to target a different market. We also need to look at dynamic

characteristics. As stressed in Landes and Posner (2003), intellectual property is also the input to

intellectual property creation. With strong protection for database contents, the cost of database

creation will likely rise. In addition, many online databases have characteristics of two-sided markets

(Rocket and Tirole, 2003; Parker and Van Alstyne, 2005), e.g., they target both information seekers

as well as advertisers. Therefore, the modeling techniques for two-sided markets and their interlinked

network effects are worth exploring to derive new insights for policy formulation purposes.

Nevertheless, the current model captures one of the major issues in database legislation and should

be helpful to the formulation of a socially beneficial data reuse policy.
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"The best way to predict the future is to invent it."
- Alan Kay

Chapter 7

Conclusion and Future Research

7.1 Conclusion

In this Thesis we have presented our interdisciplinary research on the effective use and reuse of
information from disparate sources. We advance the technology to enable large scale semantic
interoperability; we also analyze the data reuse policy issue that arises from systematic data reuse
activities enabled by such technology.

We developed temporal extensions to the existing COIN framework to enable semantic
interoperability when heterogeneity exists not only between sources and receivers, but also in
different time periods within a data source. In describing the existing COIN framework, we
identified and made concrete several important concepts that are missing or not well explained in
previous COIN work. For example, for the first time we provided an operational definition for
composite conversion and defined the value method based on composite conversion; the notion of
modifier orthogonality was further clarified. For the temporal extensions, we developed and
demonstrated a solution for representing and reasoning about time-varying semantics in the presence
of heterogeneous temporal entities. Previously, no data conversions were executed in the mediation
step. With time-varying semantics, conversions for ground temporal values need to be executed
during mediation so that inconsistent temporal constraints can be detected for the purposes of
semantic query optimization and of ensuring that an executable plan exists when a source has certain
capability limitations.

For the first time, we performed a systematic evaluation on the flexibility and scalability of the
COIN approach. Compared with several traditional approaches, the COIN approach has much
greater flexibility and scalability.

For data reuse policy analysis, we developed an economic model that formalizes the policy
instruments in one of the latest legislative proposals in the U.S. Our analysis indicates that depending
on the cost level of database creation, the degree of differentiation of the reuser database, and the
efficiency of policy administration, the socially beneficial policy choice can be protecting a legal

- 137-



monopoly, encouraging competition via compulsory licensing, discouraging voluntary licensing, or

even allowing free riding. The results provide useful insights for designing and implementing a

socially beneficial database protection policy.

7.2 Future Research

In the process of developing solutions for problems at hand, we identified a number of interesting

issues worth exploring in the future.

The ontology and context descriptions are key components of the COIN framework. It is

desirable to develop a systematic approach to the management and verification of large ontology and

context definitions. For example, given an ontology and a set of context descriptions, it is useful to

have a way of verifying if all necessary component conversions have been specified; or similarly,

when modifier values are changed, identifying the component conversions that need to be updated.

The query answering mechanism is a two-step linear process: the mediator generates a mediated

query that includes all conversion instructions; the query planner/optimizer/executioner (POE) takes

that mediated query as input and generates an execution plan and executes it to obtain data instances.

The conversion instructions primarily include conversions to the receiver context. For certain queries,

an optimized plan needs instructions on converting to source contexts. We developed a solution in

Chapter 4 for query optimization during the mediation step that generates conversions anticipated by

the POE. Future research should investigate a more general approach, where the POE determines

what data need to be converted to which context and then requests the mediator to generate the

necessary conversion instructions. The POE and the mediator may need to communicate back and

forth multiple times before an optimal plan is generated.

In Chapter 4, we chose to use dynamic modifiers to represent time-varying semantics. An

alternative approach is to use dynamic context association. When a data field in the source is

recycled, the same data field may map to different ontological concepts in different time periods. In

this case, dynamic elevation (i.e., data field to ontology mapping) will be useful. Thus, future

research should investigate dynamic context association as well as dynamic elevation.

Also in Chapter 4, in representing dynamic modifiers, we assumed that the semantics of

temporal entities is not time-varying. When the assumption does not hold, we propose to use

temporal entities with static semantics in the integration context to describe temporal contexts. The

proposed solution needs further investigation.

The evaluation of the COIN approach in Chapter 5 is based on an analysis that uses the number

of conversions as a proxy. In the future, it will be interesting to have empirical data on things such as

how much time and effort it takes to implement a solution using COIN. Benchmarking comparison

with other emerging solutions will be interesting as well.

For policy research, as mentioned in Chapter 6, we would like to investigate the double-sided

market modeling technique because many data creators and data reusers do have two markets that

have certain network effects.

As seen in Chapter 3, we have demonstrated the capability of the COIN technology using simple

examples in financial and geo-political domains. In addition to further testing the technology with
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problems of the size comparable to real application scenarios, it is interesting to test the technology
in other domains to identify new challenging issues. Possible domains include the integration of GIS
systems, digital libraries, and healthcare systems.
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Appendix: Source Code of the COIN Mediator

The COIN mediator is implemented using Prolog and CHR. Many people in the past contributed to

the implementation of the mediator. Goh (1997) and Firat (2003) provide brief overviews to the

implementation, but they did not include the source code in their theses.

For the convenience of future researchers who want to study the implementation, below we list

the source code of the ACLP procedure (described in Chapter 4). It comes in two files: (1)

"adbudct.pl", which is the Prolog code for the "abductive reasoning" part of ACLP; and (2)

"constraint.chr",, which is the CHR code for the "constraint handling" part of ACLP. In addition to

the rules for solving general constraints (e.g., transitivity rules for "<" constraint in domains of real

number and time), the CHR code also contains certain application/source specific rules (e.g., key

constraints and capability constraints in a data source).

There are two versions of "abduction.pl" files. We show the version used this Thesis. The other

version is from Firat (2003), which includes significant amount of extra code for dealing with

ontology and application merging. The CHR code listed here also includes the CHR rules developed

by Firat (2003) for symbolic equation solving.

In addition to the code of the ACLP procedure, the implementation also includes code that parses

a SQL query into a Datalog query, translates a naive Datalog query to a well-formed COIN query,

and constructs a mediated Datalog query from the constraint stores of the ACLP procedure. Code for

these for these features is not included here.

abduct.pl

* Abduction Engine *

* From Cheng Goh by Stephane Bressan 09/15/96 *
* Modified by Aykut FIRAT, Harry Zhu *

******************************************************************************

-moduleinterface(abduct).

-export abduct2all/4.
-export get_conflict_list2/1.

-begin module(abduct2).
l- ocal reference(conflictlist).

- local reference(module), reference(context).
-local variable(conflict list var).

abducible_relation(RName, Arity):- query_import_relation(_, RName, Arity).

query import_reLation(ISName, RName, Arity) :-
getval(module,Application),
call(rule(relation(ISName, RName,i,List, ),_),Application), length(List,

Arity).

query import_re]ation(ISName, RName, Arity) :-
getval (module,Application),
c-all(rule(relation(ISName, RName,ie,List, ), _),Application), length(List,

Arity).

compiled clause(H:-B):-
getval(module,Application),
call (rule(H, B), Application).

- 149 -



abduct2all(Query, Context, Answers, Module):-
setval(module,Module),setval(context, Context),
findall(Answer, abduct(Query, Answer), Answers).

abduct(':-'(Head, Goal), ':-'(Head,LDG)):-
abductively prove(Goal, LDG).

abduct([Headl Goal], [HeadlLDG]):-
abductively_prove(Goal, LDG).

abductively_prove(Goal, DG) :-
sub_abductively_prove(Goal), getval(module,A),post_constraint('?do'(A)),
abducted_list(DG).

% some builtins are not abducted
% and will be evaluated directly.

builtin(Lit):-
functor(Lit, P Ar),builtin(P, Ar).

builtin(atomic, 1).
builtin(number, 1).
builtin(string, 1).
builtin(=..,2).
builtin(cste,4).
builtin(ground, 1).

builtin(var,1).
builtin(fail, 0).
builtin(containObj,2). %% for temporal context
builtin(contains, 2).
builtin(begins, 2).
builtin(ends, 2).

%%%%%%
% constraints are abducted
constraint(-=, 2, neq).
constraint(is, 2, eq).
constraint(==, 2, seq).
constraint(<, 2, lss).
constraint(>, 2, grt).
constraint(=<, 2, leq).
constraint(>=, 2, geq).
constraint(<>, 2, neq).
constraint(plus, 3, sum).
constraint(minus,3, sub).
constraint(fplus,3, fsum).
constraint(fminus,3, fsub).
constraint(multiply, 3, mul).
constraint(divide, 3, div).
constraint(fmultiply, 3, fmul).
constraint(fdivide, 3, fdiv).
constraint(datecvt, 4, datecvt).

% and so are all edb predicates

abducible(Lit, LLit) :-
functor(Lit, R, A),
constraint(R,A, RR),!,
Lit =.. [RIArg],
LLit =.. [RRIArg].

abducible(Lit, '?'(Lit)) :-
functor(Lit, R, A),
abduciblerelation(R,A).

%
subabductively prove(true):-!. % success

subabductively prove((H,T)) :-!, % subgoals
sub_abductively prove(H),
sub_abductively prove(T).
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sub_abductively_prove([]):-!.

sub_abductively_prove([HIR]) :-!,
sub_abductively_prove(H),
subabductivelyprove(R).

% subgoals

sub_abductively_prove('=' (X,Y)) :-!, % equality
X = Y.

sub_abductively_pr-ove(not('='(X,Y))) :-!,
X-=Y.

% inequality 2

sub_abductively_prove(not('is'(X,Y))) :-!, % inequality 3
X-=Y.

/* predicates that need to be called directly
allmodifiers, attr, cvt, modifier, value, context,
*/
subabductively_prove(all_modifiers(X,Y)) :-!, % Prolog to value

allmodiLfiers(X,Y).
subabductively_prove(attr(X,Y,Z)) :- !, % Prolog to value

attr(X,Y,Z).
sub abductively_prove(cvt(X0,Xl,X2,X3,X4,X5,X6,X7,X8)) :- !, % Prolog to value

cvt(X0, Xl,X2,X3,X4,X5,X6,X7,X8).

subabductivelyprove(modifier(S,O,M,C,SM)) :- !,
modifier(S,O,M,C,SM).

sub abductively_prove(value(X,Y,Z)) :- !, % Prolog to value
value (X,Y,Z).

subabductivelyprove(if(X,Y,Z)) :- !, %%% HZ: for part-of problem.
(subabductivelyprove(X) ->
subabductively_prove(Y);sub_abductivelyprove(Z)).

sub abductivelyprove(context(X,Y)) :- !,
context X, Y).

% Prolog to value

%% other literals

sub abductively prove(Lit) :- % builtin
builtin(Lit), !,
call(Lit).

sub_abductively prove(Lit) :-
abducible(Lit, Ll), !,
post constraint(Ll).

% abduction in constraint store

sub_abductively prove(Lit) :- % resolution
compiled_clause(Lit :- Body),
sub_abductively_prove(Body).

sub abductivelyprove({Lit}) :-
call ((Lit)) .

%% more predicates to be directly called. For temporal
subabductively prove(containObj(X,Y)):-

containObj (X,Y)
sub abductively prove(contains(X,Y)) :-

contains (X,Y).
subabductively prove(begins(X,Y)) :-

begins(X,Y).
subabductively prove(ends(X,Y)) :-

ends(X,Y).
sub_abductively prove(sourcePos(O,P)):- sourcePos(O,P).
sub abductively prove(arg(I,T,E)):-arg(I,T,E).

/* constraint store (in module mystore) */

postconstraint(Lit) :- call(Lit, mystore). %true.

- 151 -



abductedlist([CIL]):- instore(C),
abductedlist(L),!.

abductedlist([]).

in_store(C):- call(chr get_constraint(CC), mystore), reformat(CC, C).

reformat(round(X,Y,Z), Z is round(X,Y)).
reformat('?'(Y), Y).
reformat(lss (X, Y) , X < Y).
reformat(leq(X, Y), X =< Y).
reformat(geq(X, Y), X >= Y).
reformat (grt (X, Y), X > Y).
reformat(neq(X, Y), '<>'(X, Y)).
reformat(eq(X, Y), X is Y).
reformat(seq(X,Y), '=='(X, Y)).
reformat(sum(X,Y,Z), Z is X + Y).
reformat(sub(X,Y,Z), Z is X - Y).
reformat(fsum(X,Y,Z), Z is X + Y).
reformat(fsub(X,Y,Z), Z is X - Y).
reformat(mul(X,Y,Z), Z is X *Y).
reformat(div(X,Y,Z), Z is X / Y).
reformat(fmul(X,Y,Z), Z is X * Y).
reformat(fdiv(X,Y,Z), Z is X / Y).
reformat(tle(X,Y), X =< Y).
reformat(tls(X,Y), X < Y).
reformat(datecvt(A,B,C,D),L):- B \==D, L = datecvt(A,B,C,D)

/* builtin context axioms */

cste(S, skolem(S, V, C, 1, cste(V)), C, V).
cste(_).

context(skolem( , , C, , ), C).

isa(skolem(S, _Vsrc, _Csrc, _Pos, _Tuple), S).
isa(cste(S, _,_, _), S).

allmodifiers(basic,[]).
allmodifiers(S,L) :-

subabductively prove(modifiers(S,L1)),
sub_abductively_prove(isa(S,S1)),
allmodifiers(Sl,L2), union(L2,Ll,L). % ToDo: code for ordering modifers

attr(X,Y,Z) :- compiled_clause(attr(X,Y,Z):-H), sub_abductively_prove(H).
attr(skolem(T,Vl,V2,V3,V4),M,L):- sub_abductivelyprove(isa(T,P)),
attr(skolem(P,Vl,V2,V3,V4),M,L).

cvt(XO,Xl,X2,X3,X4,X5,X6,X7,X8):-
compiled_clause(cvt(XO,Xl,X2,X3,X4,X5,X6,X7,X8):-H), sub_abductively_prove(H).

cvt(XO,Xl,X2,X3,X4,X7,X8,X5,X6):-
compiled_clause(cvt(commutative,Xl,X2,X3,X4,X5,X6,X7,X8):-H),

sub_abductively_prove(H).
cvt(XO,Xl,X2,X3,X4,X5,X6,X7,X8):-

sub_abductively_prove(is a(Xl,P)), cvt(XO,P,X2,X3,X4,X5,X6,X7,X8).

sourceCtxt(skolem(_S, Vsrc, Csrc, Pos, _Tuple), Csrc).

sourceValue(skolem(_S, Vsrc, _Csrc, _Pos, _Tuple), Vsrc)
sourceValue(cste(_S, O, _C,V),V).

sourcePos(skolem(_S, _Vsrc, _Csrc,Pos, Tuple),Pos).

value(skolem(_S, Vsrc, _Csrc, _Pos, Tuple), none, Vsrc):-!, post_constraint('?df' (none)).
%value(skolem(_S, Vsrc, Csrc, _Pos, Tuple), Csrc, Vsrc):-!.
value(cste(S, 0, C,V),Ctxt,Val):- !,cste(S, , C, V), value(O, Ctxt, Val).

value(O, Ctgt, Vtgt):-
isa(O, S),
sourceValue(O, Vsrc),
sub_abductively prove(all modifiers(S, L)),
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allcvts(S, 0, Vsrc, L, Ctgt, Vtgt).

modifier(S,O,M,C,SM) :- compiled_clause(modifier(S,O,M,C,SM):-B), subabductively_prove(B).

modifier(S,O,M,C,SM) :- sub_abductively_prove(isa(C,CP)), modifier(S,O,M,CP,SM).
modifier(S,O,M,C,SM) :- sub_abductively_prove(is_a(S,SP)), modifier(SP,O,M,C,SM).

%% buit-in temporal context axioms
containObj(Int, ) :- subabductivelyprove((

attr(O, tempAttribute, T), contains(Int,T))).
begins(T1, [T1,T2])
ends(T2, [Tl,T2]).
contains(Int, Point):-

begins(Tl,Int), ends(T2, Int),getval(context, C),
sub_abciuctively_prove((value(Tl, C, Tlv), value(T2, C, T2v),value(Point,C,Pv),

Pv =< T2v, Tlv =<Pv)).

%%%%%

allcvts(_S, _O, V, [], Ctgt, V):- !.
allcvts(S, 0, V, [MIL], Ctgt, NV):-

precvt (, , V, M, Ctgt, IV),
allcvts(S, 0, IV, L, Ctgt, NV).

precvt(S, 0, V, M, Ctgt , IV) :-
sourceCtxt(O, Csrc),
sub_abductivelyprove((modifier(S, ,M,Csrc,Ml),

modifier(S, 0,M,Ctgt,M2),
value(M1, Ctgt, MV1),
value(M2, Ctgt, MV2),'<>'(MVl,MV2))),
((var(MVl);var(MV2)) ->
subprecvt(S, 0, M, Ctgt, MV1, V, MV2, IV);
subprecvt(S, 0, M, Ctgt, MV1, V, MV2, IV)). %,!).%%

precvt(S, 0, V, M, Ctgt , V):-
sourceCtxt(O, Csrc),
subabductively_prove((modifier(S, ,M,Csrc,M1),

modifier(S, 0,M,Ctgt,M2),
value(Ml,Ctgt,MVl),ground(MV1), value(M2,Ctgt,MV1)
%)),(M==dateformat ->

(subprecvt(S,O,M,Ctgt,MVl,V,MVl,V),post_constraint('?df'(MV1)))),!.
)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MVl,V,MVl,V))),!.

precvt(S, 0, V, M, Ctgt , V):-
sourceCtxt(O, Csrc),
subabductiLvely_prove((modifier(S, ,M,Csrc,M1),

modifier(S, 0,M,Ctgt,M2),
value(M2,Ctgt,MV2),ground(MV2), value(Ml,Ctgt,MV2)
%) ),!.
)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MV2,V,MV2,V))),!.

precvt(S, 0, V, M, Ctgt , V):-
sourceCtxt (0O, Csrc),
subabductively_prove((modifier(S, ,M,Csrc,M1),

modifier(S, ,M,Ctgt,M2),
value(M2,Csrc,MV2),ground(MV2), value(Ml,Csrc,MV2)

) ),!.
%')),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MV2,V,MV2,V))),!.

precvt(S, 0, V, M, Ctgt , V):-
sourceCtxt (0O, Csrc),
sub_abductively prove((modifier(S, ,M,Csrc,M1),

modifier(S, ,M,Ctgt,M2),
vralue(Ml,Csrc,MV1), ground(MVl), value(M2,Csrc,MVl)

)),!.
%)),(M==dateformat -> (subprecvt(S,O,M,Ctgt,MVl,V,MVl,V))),!.

%%%%%%%%%%%%%%

%precvt(S, 0, V, M, C , V). %hz commented out

subprecvt(S, 0, M, Ctgt, MV1, V, MV2, IV):-
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%subabductivelyprove(('<>'(MVl,MV2),cvt(XO,S, 0, M, Ctgt, MV1, V, MV2, IV))),!,

sub_abductivelyprove(cvt(XO,S, 0, M, Ctgt, MVl, V, MV2, IV)),!,
sourceCtxt(O, Csrc),
get_tuple(O,T),
getConvFunc(M,CF),
post_constraint('$'([S,V,T,M,Csrc,MVl,Ctgt,MV2,CF])).

subprecvt(S, 0, M, Ctgt, MV1, Vs, MV2, Vt):-
getval(module,Application),
call(path(MVl, MV2, P, _D,Application,S,M), dijkstra),
serially_prove(P, S, 0, M, Vs, Vt),!,%%hz add !
sourceCtxt(O, Csrc),
get_tuple(O,T),
getConvFunc(M,CF),
post constraint('$'([S,Vs,T,M,Csrc,MVl,Ctgt,MV2,CF])).

serially_prove([XI l[]], S, 0, M, Vs, Vs).

serially_prove([MVl,MV21Rest], S, 0, M, Vs, Vt) :- subprecvt(S, 0, M, Ctgt, MV1, Vs, MV2,
IV),

serially_prove([MV21Rest], S, 0, M, IV, Vt).

get_conflictlist2([CIL]):- instore2(C),
getconflictlist2(L),!.

get_conflict_list2([]).

instore2(C):- call(chr_get_constraint(CC), mystore), reformat2(CC, C).

reformat2('$'(Y), (Y)).

getConvFunc(M, CF) :- compiledclause(cvt(_,_, , M, ,,, _):-CF),!.
getConvFunc(M,none):- writeln("none").
get tuple(skolem(_S, Vsrc, _Csrc, Pos, T),T).

contraint.chr
% Basic INEQUALITIES for abduction
% Based on MInmax from thom fruehwirth & Pascal Brisset ECRC
% compile with lib(chr)
%handler abduction.

option(already in store, on).
option(already in heads, off).
option(check_guard_bindings, off).

- import(datetime).
- local reference(dateformat).

operator(700, xfx, lss).
operator(700, xfx, grt).
operator(700, xfx, neq).
operator(700, xfx, geq).
operator(700, xfx, leq).
operator(700, xfx, eq).
operator(700, fx, '?')
operator(700, fx, '$').
operator(700, xfx, seq).

constraints (leq)/2, (lss)/2, (neq)/2, (eq)/2, (seq)/2,('$')/1, ('?')/1, (sum)/3, (sub)/3,
(bound)/1, (fsum)/3, (fsub)/3, (fdsub)/6, (fdsum)/6, (fdmul)/6, (fddiv)/6, (div)/3 , (mul)/3,
(fmul)/3, (fdiv)/3, (round)/3, (datecvt)/4, ('?df')/1, (ftemp)/4, geq/2,grt/2, '?do'/1.

X geq Y <=> Y leq X.
X grt Y <=> Y lss X.

'?df'(F) <=>setval(dateformat,F).
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/* tle <==>leq */

reflexivity @ X leq X <=> true.
antisymmetry @ X eq Y, Y leq X <=> X=Y.
transitivity @ X leq Y, Y leq Z ==> X \== Y, Y \== Z, X \== Z I X leq Z.
topaxiom @ X leq Y <=> Y==top I true.
bottomaxiom @ Y eq X <=> Y==bottom I true.

%% subsumption rules tighten the constraints
tlesubsumption @ X leq N \ X leq M <=> number(N), number(M), N<M I true.
tlesubsumption 2 @ M leq X \ N leq X <=> number(N), number(M), N<M I true.
tleconflict @ M leq X, X leq N <=> number(N), number(M), N<M fail.

tle subsumption X leq N \ X leq M <=> string(N), string(M), tr(tls2,N,M) true.
tlesubsumption_2 @ M leq X \ N leq X <=> string(N), string(M), tr(tls2,N,M) I true.
tle conflict @ M leq X, X leq N <=> string(N), string(M), tr(tls2,N,M) I fail.

tlebuiltin @ X leq Y <=> number(X),number(Y) I X =< Y.
tle builtin2 @X leq Y <=> string(X), string(Y) I tr(tle2, X,Y).

/* tls */
irreflexivity @ X lss X <=> fail.
topaxiom @ X lss Y <=> Y==top I true.
bottomaxiom @ Y lss X <=> Y==bottom I true.

transitivity @ X lss Y, Y lss Z ==> X \== Y, Y \= Z X lss Z.
transitivity @ X leq Y, Y lss Z ==> X \== Y, Y == Z I X lss Z.
transitivity @ X lss Y, Y leq Z ==> X \== Y, Y \== Z X lss Z.

subsumption @ X lss Y \ X leq Y <=> true.

subsumption @ X lss N \ X lss M <=> number(N), number(M) I N@<M.
subsumption @ M lss X \ N lss X <=> number(N), number(M) I N@<M.
tlsconflict @ M lss X, X lss N <=> number(N), number(M), N<M Ifail.

tlssubsumption @ X lss N \ X lss M <=> string(N), string(M), tr(tls2,N,M) I true.
tlssubsumption_2 @ M lss X \ N lss X <=> string(N), string(M), tr(tls2,N,M) true.
tlsconflict @ M lss X, X lss N <=> string(N), string(M), tr(tls2,N,M) I fail.

subsumption @ X leq N \ X lss M <=> number(N), number(M) N@<M.
subsumption @ M leq X \ N lss X <=> number(N), number(M) I N@<M.
subsumption @ X lss N \ X leq M <=> number(N), number(M) I N@<M.
subsumption @ M lss X \ N leq X <=> number(N), number(M) I N@<M.
subsumption @ X leq N \ X lss M <=> string(N), string(M) I tr(tls2,N,M).
subsumption @ M leq X \ N lss X <=> string(N), string(M) tr(tls2,N,M).
subsumption @ X lss N \ X leq M <=> string(N), string(M) tr(tls2,N,M).
subsumption @ M lss X \ N leq X <=> string(N), string(M) tr(tls2,N,M).

datecvt(Dl,Fl,D2,F2) <=> ground(Dl),ground(Fl),ground(F2),nonground(D2),
date_string(D,Fl,Dl),date_string(D,F2,D2), setval(dateformat, F2) true.

datecvt(Dl,Fl,D2,F2) <=> ground(D2),ground(Fl),ground(F2),nonground(D1),
date_string(D,F2,D2),date_string(D,Fl,D1), setval(dateformat, F2) true.

datecvt(Dl,Fl,D2,F2) ==>string(F2) I setval(dateformat, F2).

datecvt(Dl,Fl,D2,F2), datecvt(Dl,Fl,D,F2) ==>D2=D.
datecvt(Dl,Fl,D2,F2), datecvt(D,Fl,D2,F2) ==> D=D.

tls2(A,B) :- A < B.

teq2([HlIT1], [H21T2]) :- Hi == H2, !, teq2(Tl,T2).
teq2([],_) :-!.
teq2(_,[]).

tle2(X,Y) :- tls2(X,Y),!, teq2(X,Y).

tr(R,N,M) :- getval(dateformat, F),string(F),
datestring(DN, F, N), date_string(DM, F, M),
DN =.. [R11Dll, DM =.. [R21D2],
Re=..[R,Dl,D2],,Re.
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tr(R,N,F1, M,F2) :- string(F1), string(F2),
datestring(DN, F1, N), date_string(DM, F2, M),
DN =.. [RllDl], DM =.. [R21D2],
Re=.. [R,D1,D2],Re.

/*** end of temporal ***/

/* neq */

built in @ X neq Y <=> X -= Y I true.
% can be replaced by ground(X),ground(Y) I X \= Y.

irreflexivity@ X neq X <=> fail.

subsumption @ X neq Y \ Y neq X <=> true.
subsumption @ X lss Y \ X neq Y <=> true.
subsumption @ X lss Y \ Y neq X <=> true.

simplification @ X neq Y, X leq Y <=> X lss Y.
simplification @ Y neq X, X leq Y <=> X lss Y.

/* eq */

equations @ X eq Y <=> ground(X), var(Y) Y is X.
equations @ X eq Y <=> var(X), ground(Y) I X is Y.
equations @ X eq Y <=> var(X), var(Y) I Y = X.
equations @ X eq Y <=> ground(X), ground(Y)I ZY is Y, ZX is X, ZX = ZY.
/* new addition*/
equations @ X eq Y, Z eq Y ==> X = Z.

/* string equations */

sequations @ X seq Y <=> ground(X), ground(Y) I ZY = Y, ZX = X, ZX = ZY.

sequations @ X seq X <=> true.

simplification @ X neq Y, X leq Y <=> X lss Y.
simplification @ Y neq X, X leq Y <=> X lss Y.

sum_ground @ sum(X,Y,Z) <=> ground(X), ground(Y) I Z is X + Y, bound(Z).
sum_ground @ sum(X,Y,Z) <=> ground(X), ground(Z) I Y is Z - X, bound(Y).
sum_ground @ sum(X,Y,Z) <=> ground(Y), ground(Z) I X is Z - Y, bound(X).

sumidentity @ sum(O,Y,Z) <=> nonground(Z), nonground(Y) I Z = Y.
sumidentity @ sum(X,O,Z) <=> nonground(Z), nonground(X) Z = X.

sumequality
sum_equality
sumequality

sumequality
sum_equality
sumequality

sumbinding
sum_binding
sum_binding

sumsymbolic
sumsymbolic
sumsymbolic

@ sum(X,Y,Z), sum(X,A,Z) ==> nonground(Y), nonground(A) I Y = A.
@ sum(A,Y,Z), sum(X,Y,Z) ==> nonground(X), nonground(A) I X = A.
@ sum(X,Y,A), sum(X,Y,Z) ==> nonground(Z), nonground(A) I Z = A.

@ sum(X,Y,Z), sum(X,A,Z) ==> nonground(Y), ground(A) I Y is A.
@ sum(A,Y,Z), sum(X,Y,Z) ==> nonground(X), ground(A) I X is A.
@ sum(X,Y,A), sum(X,Y,Z) ==> nonground(Z), ground(A) Z is A.

@ sum(X,Y,Z), bound(X) ==> fdsum(X,Y,Z,X,O,O).
@ sum(X,Y,Z), bound(Y) ==> fdsum(X,Y,Z,O,Y,O).
@ sum(X,Y,Z), bound(Z) ==> fdsum(X,Y,Z,O,O,Z).

@ fdsum(X,Y,Z,X,O,O), fdsum(X,Y,Z,O,Y,O) <=> fsum(X,Y,Z), bound(Z).
@ fdsum(X,Y,Z,X,O,O), fdsum(X,Y,Z,O,O,Z) <=> fsub(Z,X,Y), bound(Y).
@ fdsum(X,Y,Z,O,Y,O), fdsum(X,Y,Z,O,O,Z) <=> fsub(Z,Y,X), bound(X).

sum elimination @ fsum(X,Y,Z), sum(X,Y,Z) <=> fsum(X,Y,Z).
sum elimination @ sum(X,Y,Z), sum(X,Y,Z) <=> sum(X,Y,Z).
sum elimination @ fsum(X,Y,Z), fsum(X,Y,Z) <=> fsum(X,Y,Z).

sum transformation @ sum(X,Y,Z), bound(Z) <=> sub(Z,Y,X), bound(Z).
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/* Subtraction Axioms*/

@ sub(X,Y,Z) <=> ground(X), ground(Y)
@ sub(X,Y,Z) <=> ground(X), ground(Z)
@ sub(X,Y,Z) <=> ground(Y), ground(Z)

I Z is X - Y, bound(Z).
I Y is Z + X, bound(Y).
I X is Z + Y, bound(X).

sub_identity
subidentity

subequality
sub equality
sub equality

sub equality
sub_equality
subequality

sub_binding @
sub_binding @
sub binding @

@ sub(X,O,Z) <=> nonground(Z), nonground(X)
@ sub(X,Y,O) <=> nonground(Y), nonground(X)

I Z = X.
I X = Y.

@ sub(X,Y,Z), sub(X,A,Z) ==> nonground(A), nonground(Y) A = Y.

@ sub(A,Y,Z), sub(X,Y,Z) ==> nonground(A), nonground(X)I A = X.
Cd sub(X,Y,A), sub(X,Y,Z) ==> nonground(A), nonground(Z) A = Z.

@ sub(X,Y,Z), sub(X,A,Z) ==> nonground(A), ground(Y)I A is Y.
@ sub(A,Y,Z), sub(X,Y,Z) ==> nonground(A), ground(X)I A is X.
@ sub(X,Y,A), sub(X,Y,Z) ==> nonground(A), ground(Z)I A is Z.

sub(X,Y,Z), bound(X) ==> fdsub(X,Y,Z,X,0,O).
sub(X,Y,Z), bound(Y) ==> fdsub(X,Y,Z,O,Y,O).
sub(X,Y,Z), bound(Z) ==> fdsub(X,Y,Z,O,O,Z).

sub elimination @ fsub(X,Y,Z), sub(X,Y,Z) <=> fsub(X,Y,Z).
sub_elimination @ sub(X,Y,Z), sub(X,Y,Z) <=> sub(X,Y,Z).
subelimination fsub(X,Y,Z), fsub(X,Y,Z) <=> fsub(X,Y,Z).

sub transformation @ sub(X,Y,Z), bound(Z) <=> sum(Y,Z,X), bound(Z).

sub_symbolic
sub symbolic
sub symbolic

@ fdsub(X,Y,Z,X,O,O), fdsub(X,Y,Z,O,Y,O) <=> fsub(X,Y,Z), bound(Z).
@ fdsub(X,Y,Z,X,O,O), fdsub(X,Y,Z,O,O,Z) <=> fsub(X,Z,Y), bound(Y).
@ fdsub(X,Y,Z,O,Y,O), fdsub(X,Y,Z,O,O,Z) <=> fsum(Z,Y,X), bound(X).

/* Multiplication Axioms */
mul ground @ mul(X,Y,Z) <=> ground(X), ground(Y) I Z is X * Y, bound(Z).
mul __ground @ mul(X,Y,Z) <=> ground(X), ground(Z), X=O I Y is Z / X, bound(Y).

mul ground @ mul(X,Y,Z) <=> ground(Y), ground(Z), Y =O I X is Z / Y, bound(X).

@ mul (X, Y, Z)
@ mul (0,Y, Z)

@ mul(X, O,Z)

<=> ground(X), ground(Y) I Z is X * Y, bound(Z).
<=> nonground(Z) I Z is 0, bound(Z).

<=> nonground(Z) I Z is 0, bound(Z).

mul identity @ ul(l,Y,Z) <=> nonground(Z), nonground(Y)
mul identity @ rnul(X,l,Z) <=> nonground(Z), nonground(X)

mul_equality
mul equality
mul_equality

mul_equality
mul equality
mul_equality

mul binding
mul binding
mulbinding

mul_symbolic
mul_symbolic
mul_symbolic

@ mul(X,Y,Z), mul(X,A,Z) ==> nonground(A), nonground(Y) I A = Y.
@ mul(A,Y,Z), mul(X,Y,Z) ==> nonground(A), nonground(X)I A = X.
@ mul(X,Y,A), mul(X,Y,Z) ==> nonground(A), nonground(Z) I A = Z.

@ mul(X,Y,Z), mul(X,A,Z) ==> nonground(A), ground(Y)I A is Y.
@ mul(A,Y,Z), mul(X,Y,Z) ==> nonground(A), ground(X)I A is X.
@ mul(X,Y,A), mul(X,Y,Z) ==> nonground(A), ground(Z)I A is Z.

@ mul (X, Y, Z),

@ mlul (X, Y, Z),
@ mul (X, Y, Z ),

bound(X) ==> fdmul(X,Y,Z,X,0,0).
bound(Y) ==> fdmul(X,Y,Z,0,Y,0).
bound(Z) ==> fdmul(X,Y,Z,0,0,Z).

@ fdmul(X,Y,Z,X,O,0),
@ fdmul(X,Y,Z,X,0,0),
@ fdmul(X,Y,Z,O,Y,O),

fdmul(X,Y,Z,0,Y,0) <=> fmul(X,Y,Z), bound(Z).
fdmul(X,Y,Z,0,0,Z) <=> fdiv(Z,X,Y), bound(Y).
fdmul(X,Y,Z,0,0,Z) <=> fdiv(Z,Y,X), bound(X).

multransformation @ mul(X,Y,Z), bound(Z) <=> div(Z,Y,X), bound(Z).

mul elimination @ ul(X,Y,Z), mul(X,Y,Z) <=> mul(X,Y,Z).
mul elimination @ fmul(X,Y,Z), fmul(X,Y,Z) <=> fmul(X,Y,Z).
mul elimination fmul(X,Y,Z), mul(X,Y,Z) <=> fmul(X,Y,Z).

/* Division
div_ground
div_ground
divground

Axioms * /
@ div(X,Y,Z) <=> ground(X), ground(Y), Y =0 I Z is X / Y.
@ div(X,Y,Z) <=> ground(X), ground(Z) I Y is Z * X.
@ div(X,Y,Z) <=> ground(Y), ground(Z) I X is Z * Y.
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sub_ground
sub_ground
subground

mul __ground
mul_ground
mul ground

I Z=Y.
I Z=X.



div_ground @ div(O,Y,Z) <=> nonground(Z) I Z is 0.

div ground @ div(X,0,Z) <=> true.

div identity @ div(X,l,Z) <=> nonground(Z) I Z=X.
div identity @ div(X,Y,1) <=> nonground(Y) I Y=X.

dividentity @ div(X,l.0,Z) <=> nonground(Z) I Z=X.
div identity @ div(X,Y,1.0) <=> nonground(Y) I Y=X.

div equality @ div(X,Y,Z), div(X,A,Z) ==> nonground(A), nonground(Y)I A = Y.

div equality @ div(A,Y,Z), div(X,Y,Z) ==> nonground(A), nonground(X) I A = X.

div equality @ div(X,Y,A), div(X,Y,Z) ==> nonground(A), nonground(Z) A = Z.

div equality @ div(X,Y,Z), div(X,A,Z) ==> nonground(A), ground(Y) I A is Y.

div equality @ div(A,Y,Z), div(X,Y,Z) ==> nonground(A), ground(X) I A is X.

div_equality @ div(X,Y,A), div(X,Y,Z) ==> nonground(A), ground(Z) A is Z.

div binding @ div(X,Y,Z), bound(X) ==> fddiv(X,Y,Z,X,0,0).
div_binding @ div(X,Y,Z), bound(Y) ==> fddiv(X,Y,Z,0,Y,0).
divbinding @ div(X,Y,Z), bound(Z) ==> fddiv(X,Y,Z,0,0,Z).

div symbolic @ fddiv(X,Y,Z,X,0,0), fddiv(X,Y,Z,0,Y,0) <=> fdiv(X,Y,Z), bound(Z).

div symbolic @ fddiv(X,Y,Z,X,0,0), fddiv(X,Y,Z,0,0,Z) <=> fdiv(X,Z,Y), bound(Y).

div symbolic @ fddiv(X,Y,Z,0,Y,0), fddiv(X,Y,Z,0,0,Z) <=> fmul(Z,Y,X), bound(X).

div transformation @ div(X,Y,Z), bound(Z) <=> mul(Y,Z,X), bound(Z).

div elimination @ div(X,Y,Z), div(X,Y,Z) <=> div(X,Y,Z).
div elimination @ fdiv(X,Y,Z), div(X,Y,Z) <=> fdiv(X,Y,Z).
div elimination @ fdiv(X,Y,Z), fdiv(X,Y,Z) <=> fdiv(X,Y,Z).

mulsubtodiv_sum @ mul(X,A,Y), sub(B,Y,X) <=> div(B,N,X), sum(l,A,N).

mulsumtodiv_sum @ mul(X,A,Y), sum(B,Y,X) <=> div(B,N,X), sub(l,A,N).

divsubtomul_sum_div @ div(X,A,Y), sub(B,Y,X) <=> mul(A,B,N1), sum(l,A,N2), div(Nl,N2,X).

divsum_tomulsubdiv @ div(X,A,Y), sum(B,Y,X) <=> mul(A,B,N1), sub(l,A,N2), div(Nl,N2,X).

%% integrity constraints for gAggregate
hzshopper icl @ '?'hzshopper(A,B1), '?'hzshopper(A,B2)

==> Bl=B2.

hzg @ '?'hzshopper(A,B) ==> bound(A), bound(B).

'?' 'YHFrankfurt'(Q,P,T,Ml,Dl,Yl,M2,D2,Y2),'?''YHFrankfurt'(Q,P2,T,Ml,Dl,Yl,M
2 ,D2 ,Y2 ) ==>

P=P2.

yl @ '?''YHFrankfurt'(Q,P,T,Ml,Dl,Yl,M2,D2,Y2) , '?do' (application501) ==>

ftemp(['YHFrankfurt',Q,P,T,M1,Dl,Yl,M2,D2,Y2],0,0,0).
y2 @ datecvt(Q,Fl,A,F2) \ ftemp(['YHFrankfurt',Q,P,T,Ml,Dl,Yl,M2,D

2 ,Y2 ],0,0,0)

<=>string(F2) I
ftemp(['YHFrankfurt',Q,P,T,Ml,Dl,Yl,M2,D

2 ,Y2 ],[Q,Fl,A,F2],1,0).

y3 @ ftemp(['YHFrankfurt',Q,P,T,Ml,Dl,Yl,M2,D2,Y
2 ],[Q,Fl,A,F

2 ],1,0) \A leq B <=> string(B)

datecvt(C,Fl,B,F2), get month(C,Fl,M2),get day(C,Fl,D2),getyear(C,Fl,Y
2 ).

%'?''YHFrankfurt'(Q,P,T,Ml,Dl,Yl,M2,D2,Y
2 ).

y4 @ ftemp(['YHFrankfurt',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],[Q,Fl,A,F
2 ],1,0) \B leq A <=> string(B)

datecvt(C,Fl,B,F2), get month(C,Fl,Ml),get day(C,Fl,Dl),getyear(C,Fl,Y1).

y5 @ ftemp(['YHFrankfurt',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],[Q,Fl,A,F
2 ],1,0) <=> A==B, string(B) I

chrget constraint('?''YHFrankfurt'(Q,P,T,Ml,Dl,Yl,M2,D2,Y2)),
datecvt(C,Fl,B,F2), get month(C,Fl,M3),get day(C,Fl,D3),getyear(C,Fl,Y3),
'?''YHFrankfurt'(Q3,P,T,M3,D3,Y3,M3,D3,Y

3 ).

'?''YHParis'(Q,P,T,Ml,Dl,Yl,M2,D2,Y2),
'?''YHParis'(Q,P2,T,Ml,Dl,Yl,M2,D2,Y2) ==> P=P2.

yl @ '?''YHParis'(Q,P,T,Ml,Dl,Yl,M2,D2,Y2) , '?do' (application501) ==>

ftemp(['YHParis',Q,P,T,M1,Dl,Yl,M2,D2,Y2],0,0,0).
y2 @ datecvt(Q,Fl,A,F2) \ ftemp(['YHParis',Q,P,T,Ml,Dl,Yl,M2,D

2,Y2],0,0,0) <=>

ftemp(['YHParis',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],[Q,Fl,A,F
2 ],1,0).

y3 @ ftemp(['YHParis',Q,P,T,M1,Dl,Yl,M2,D2,Y2],[Q,F1,A,F2],1,0) \A leq B <=> string(B) I
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datecvt(C,FI.,B,F2), getmonth(C,F1,M2),get_day(C,Fl,D2),getyear(C,F1,Y2).

y4 @ ftemp(['YHParis',Q,P,T,Ml,D1,Yl,M2,D2,Y2],[Q,F1,A,F2],1,0) \B leq A <=> string(B)
datecvt(C,F1,B,F2), getmonth(C,Fl,M1),get day(C,F1,Dl),get_year(C,Fl,Y1).

'?''YHParis'(Q,P,T,M1,Dl,Yl,M2,D2,Y2),
'?''YHParis'(Q,P2,T,Ml,Dl,Y1,M2,D2,Y2) ==> P=P2.

yl @ '?''YHNYSE' (Q,P,T,M1,Dl,Yl,M2,D2,Y2) , '?do' (application501) ==>
ftemp(['YHNYSE',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],0,0,0).

y2 @ datecvt(Q,Fl,A,F2) \ ftemp(['YHNYSE',Q,P,T,Ml,D1,Y1,M2,D2,Y2],0,0,0) <=>
ftemp(['YHNYSE',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],[Q,F1,A,F2],1,0).

y3 @ ftemp(['YHNYSE',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],[Q,Fl,A,F2],1,0) \A leq B <=> string(B) I
datecvt(C,F1,B,F2), getmonth(C,Fl,M2),getday(C,Fl,D2),getyear(C,F,Y2).

y4 @ ftemp(['YHNYSE',Q,P,T,Ml,Dl,Yl,M2,D2,Y2],[Q,Fl,A,F2],1,0) \B leq A <=> string(B) I
datecvt(C,F1,B,F2), getmonth(C,F1,M1),get day(C,Fl,Dl),get_year(C,Fl,Y1).

join @ ftemp([Rl,Ql,Pl,Tl,Mll,Dll,Yll,M12,D12,Y12],[Q,F,A,Fr],1,O),
ftemp([R2,Q2,P2,T2,M21,D21,Y21,M22,D22,Y22],[Q2,F2,B,Fr],1,0) ==>

R1 \== R2,A==B, atom_string(Rl,RlS), atomstring(R2,R2S),
joinable(RlS, R2S)I
Mll=M21,Dll=D21,Yll=Y21,M12=M22,D12=D22,Y12=Y22.

joinable(R1, R2) :-
member(R1, ["YHNYSE", "YHFrankfurt", "YHParis"]),
member(R2, ["YHNYSE", "YHFrankfurt", "YHParis"]).

- 159-


