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Abstract
This dissertation consists of three chapters on adverse-selection type insurance markets.
Chapter 1 develops a model for analyzing non-exclusive insurance markets. It establishes
that the "screening" considerations of models following Rothschild and Stiglitz (1976)-long
applied for analysis of exclusive-contract insurance markets-also apply when contracting
is non-exclusive and contracts are linearly priced. It characterizes the contracts offered in
efficient markets and shows that screening and non-exclusivity together impose significant
restrictions on the structure of insurance policies. In a two risk-type market for retirement
annuities, market efficiency requires that either all annuities purchased will provide declining
real income streams or else all will provide rising income streams.

Chapters 2 and 3 examine the consequences of regulations which restrict the use of
characteristic-based pricing in exclusive contracting insurance markets. Chapter 2 argues
that restrictions on pricing on the basis of observable characteristics such as gender, race, or
the outcomes of genetic tests are undesirable, since the distributional goals of these restric-
tions can be accomplished more efficiently by employing social insurance. In particular, it
shows that a government which can provide pooled-price social insurance can relax restric-
tions on characteristic-based pricing while implementing a "compensatory" social insurance
policy in a way that ensures no individual is harmed while some individuals gain.

Chapter 3 is collaborative work with James Poterba and Amy Finkelstein. It starts from
the observation that the "compensatory" social insurance policies identified in Chapter 2
are not typically employed in practice. When they are not, permitting characteristic-based
pricing has both efficiency and distributional consequences vis a vis banning such pricing.
We develop a methodology for empirically measuring the magnitudes of both consequences.
We apply this methodology to evaluate the hypothetical imposition of a ban on gender-based
pricing in the U.K. annuity market. We estimate that this imposition will re-distribute sig-
nificant resources from short-lived men to long-lived women. The amount of re-distribution
may be up to 50% less than would be predicted without accounting for the endogenous
market response, however.

Thesis Supervisor: Muhamet Yildiz
Title: Associate Professor of Economics
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Chapter 1

Adverse Selection, Linear Pricing and
Front-Loading in Annuity Markets

Abstract

This paper develops a new model for analyzing non-exclusive insurance mar-
kets. It establishes that the "screening" considerations of models following Roth-
schild and Stiglitz (1976), which have long been applied for analysis of exclusive-
contract insurance markets, also apply when contracting is non-exclusive and
contracts are linearly priced. It characterizes the contracts offered in efficient
markets and shows that screening, non-exclusivity, and efficiency together im-
pose significant restrictions on the structure of insurance policies. It focuses on
a two risk-type market for retirement annuities, where market efficiency requires
that either all annuities purchased will provide declining real income streams or
else all will provide rising real income streams.

1.1 Introduction and Motivation
Economists have long been interested in understanding the nature and functioning of in-
surance markets. The canonical framework for theoretical analysis of such markets was
developed in the seminal work of Rothschild and Stiglitz (1976) and Wilson (1977). More
recently, the same framework has been employed in a number of empirical applications, for
example in work on automobile insurance markets (Pueltz and Snow (1996), Chiappori and
Salanie (2000), Dionne et al. (2001)), on pension markets (Finkelstein and Poterba (2002,
2004)) and on life insurance markets (Cawley and Philipson (1999)).

The central feature of these models is a screening mechanism: insurance companies
offer a menu of contracts which differ in the quantities of insurance they offer. This menu
induces individuals to reveal their private information about their risk of an accident. Such
a menu typically consists of some policies offering comprehensive coverage at a high per-unit
price and some policies offering less comprehensive coverage at lower unit prices. It can
"screen" insurance buyers since individuals who perceive themselves to have a high accident
risk will choose the former, comprehensive policies while those who perceive themselves to
have a lower accident risk will choose the latter, cheaper policies. This notion of screening
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through quantity-price variation across policies has proven extremely useful for analyzing
a broad class of insurance markets, but it is fundamentally inapplicable in others. For
example, when individuals can hide their insurance coverage with one insurance firm from
other insurance providers, they can circumvent the quantity restrictions associated with low
price policies by simultaneously purchasing a number of such policies from different firms.
Pension annuity markets-markets for insurance against outliving one's resources-are an
example of this sort of "non-exclusive" market, since individuals can purchase multiple small
annuities simultaneously from different providers.

A typical approach to modeling equilibrium in non-exclusive insurance markets is to
assume linear pricing of contracts-i.e., a quantity independent price of a unit of coverage
(see, e.g., Pauly (1974) and Hoy and Polborn (2000)).1 Since, in the canonical two-type
Rothschild-Stiglitz framework, linear pricing expressly precludes the possibility of screening,
there is a perception that non-exclusivity cum linear pricing and screening are generally
incompatible.

The starting point of this paper is the observation that this perception is incorrect: the
preclusion of screening in the canonical model with non-exclusive contracting cum linear
pricing is purely an artifact of the model's simplistic view of "insurance" as the provision
of coverage against a single type of accident. As soon as one permits policies that simulta-
neously insure against multiple contingencies, screening and fully linear policy pricing are
compatible. Since multiple contingencies are a characteristic of most insurance markets-
health insurance simultaneously covers multiple types of illness and automobile insurance
simultaneously covers different types and magnitudes of events, for example-developing a
model of screening in non-exclusive settings is important. We develop such a model in the
particular context of the market for retirement annuities, and we argue that it also applies
more broadly.

The model we develop is important in at least two respects. First, in establishing the
compatibility of screening and non-exclusivity, it provides a formal underpinning for recent
empirical tests for screening in annuity markets (Finkelstein and Poterba (2002, 2004)).
Tests for screening have been undertaken in a number of markets, most notably in the
automobile and life insurance markets. The evidence has not been supportive of screening
in these settings, settings where exclusive contracting is either a natural assumption (auto),
or a plausible one (life). In contrast, Finkelstein and Poterba find evidence of screening in
the U.K. annuity market, a setting characterized by approximately linear prices and de-jure
non-exclusivity. Without a underpinning for screening in these markets, the recent empirical
tests of the "screening hypothesis" would paint an even more awkward picture for economists.

Second, it provides a sharp characterization of the contracts which can be expected to
emerge in a class of non-exclusive insurance markets. When there are many contingencies to
insure, the set of possible contracts is, a priori, quite large. This paper shows that there are
substantial and potentially testable restrictions on the class of contracts that can emerge if
the market is non-exclusive and functions efficiently.

These restrictions are most easily illustrated in the central example of this paper-the
market for retirement annuities. Recall that, in purchasing an annuity contract, an individual

'Intuitively, firms would like to charge higher prices for more comprehensive policies, but they are pre-
cluded from doing so by non-exclusivity; linear pricing is the best they can do.
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pays a lump sum premium, typically at retirement. In exchange, she receives a stream of
periodic payments which continues until her death. Although annuities are often conceived
as providing a constant periodic payment over the lifetime of the annuitant, this is an
unnecessarily restrictive view. For example, one can buy both annuities providing a constant
nominal income stream and annuities which are indexed for inflation. Annuities containing
an "escalation factor" whereby the nominal (or real) payment rises or falls over time at
some pre-set rate are also available, as are annuities with other features (see Finkelstein
and Poterba, 2004). In other words, many different "shapes" of annuities are available in
practice. In the model we develop, firms screen potential annuitants by designing menus of
linearly priced policies with different "shapes"-i.e., with different time profiles of annuity
payments. Our central results characterize annuities purchased from these menus in an
efficiently functioning market with non-exclusive contracting. We show, in particular, that
in such a market either all net annuities purchased will be strictly front-loaded-i.e., will
provide a declining real income stream-or else all net annuities purchased will be strictly
back-loaded, providing a rising real income stream.

This result goes part way towards explaining the overwhelming prevalence of nominal
annuities in real-world private annuity markets. In theory, inflation indexing provides two
types of benefit: protection against uncertainty in the future price level, and protection
against the predictable erosion of real consumption from a positive expected rate of inflation.
Given these benefits, economists have been puzzled by the extremely limited markets for
annuities providing inflation indexing (Brown et al. 2001a, 2002). Our model does not
explicitly consider inflation uncertainty and cannot address this first piece of the puzzle.
Our results suggest that the second piece may not be a puzzle at all, however: an absence of
products protecting against predictable declines in real consumption may reflect an efficient
market response to asymmetric information in a non-exclusive contracting environment.

This paper proceeds as follows. Section 1.2 describes the relationship between this paper
and the literature in greater detail. It provides a brief review of annuity markets and, in
particular, discusses why they are an interesting class of markets to consider. Section 1.3
presents the basic model and the central "front-loading/back-loading" results in the context
of annuity markets. It first establishes and illustrates the results in a simple two-period
annuity market model reminiscent of Rothschild and Stigltiz (1976) and Pauly (1974). It
then presents more general many-period annuity market results. The detailed proofs of these
results are provided in a technical appendix. The central results do not hinge on features
particular to annuity markets-e.g., on the monotonicity of survival probabilities with respect
to the temporal ordering of states or on the ability to unambiguously designate some types
as "higher risk" than others. In light of this, Section 1.4 discusses the extension of the formal
results to more general non-exclusive annuity markets. It also provides a brief discussion of
other extensions and potential shortcomings of the model. Section 1.5 concludes.

1.2 Modeling Approach and Related Literature
Annuity Markets Section 1.3 below considers a model of an annuity market. There are
several reasons to focus on this market. First, it is the most natural and accessible example
of a non-exclusive insurance market: annuity providers do not gather information on the
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presence of existing annuity policies or impose contractual restrictions on future purchases.
Furthermore, except for some small non-linearities for small annuity policies, posted annuity
prices in real world annuity markets are typically linear: a premium twice as high buys an
stream of payments paying twice as much in each payment period.2

Second, as discussed in the introduction, the annuity market has provided the most
direct and compelling empirical evidence for the screening hypothesis-the hypothesis that
individuals purchasing more comprehensive coverage will have higher ex-post risks of an
"accident" (a long lifespan in the annuity context). As such, a model providing formal
foundation for screening in such market is of non-trivial importance.

Third, annuity markets are quite interesting in their own right, as evidenced by the large
and growing literature on them. It has long been understood that life-annuities can greatly
enhance the ability of retirees to ensure a secure income for the length of their retirement
(Yaari (1965), Davidoff et al. (2005)). In spite of this theoretical research suggesting the
welfare benefits of annuities, however, the annuity market in the United States is currently
quite small.3 As companies move away from providing traditional pensions for their em-
ployees, however, retirees will increasingly rely on private savings-for example through tax
advantaged vehicles such as 401(k) and IRA accounts-to finance their retirement. Private
annuity markets may therefore play an increasingly important role. Relatedly, the possibil-
ity of reforming the U.S. Social Security system by introducing individual accounts provides
another reason to study annuity markets: understanding the functioning of the market for
private-sector substitutes for the current system is crucial for analyzing these reforms.

Relation to the Insurance Theory Literature This papei departs from the typical
approach to modeling insurance outcomes. A standard approach is to construct a dynamic
game that reflects the institutions underlying the market. One then analyzes the structure
of the equilibrium contracts in that game (see, e.g., Hellwig (1987)). This paper takes the
view that such an approach may be misleading, since institutions can differ substantially
across markets, and since predictions will typically depend on the particular institution
considered. Furthermore, as Gale (1991) emphasizes, even if every market can ultimately be
understood as resulting from some underlying dynamic game, the precise details of that game
are rarely directly observable. Any particular dynamic game a modeler uses will necessarily
incorporate ad hoc assumptions on these details. For this reason, the literature on exclusive-
contract insurance markets contains many competing solution concepts reflecting various
dynamic considerations-for example, the Riley (1979a,b) "reactive" equilibrium and the
Wilson (1977) "anticipatory" equilibrium-and there is no consensus about the right solution
concept or the right dynamic game.

In light of these concerns, this paper instead takes a more general approach: it makes pre-

2In the U.K., Finkelstein and Poterba (2004) find that pricing is linear up to a small administrative charge
for small policies. In the U.S., posted prices are typically linear except for a minimum purchase requirement
on the order of $10,000.

3 Brown et al. (2002) estimate that annual premiums from individuals buying income for life" annuities
using personal assets amount to approximately $2 billion. The reason for the thinness of the market has been
the subject of a large body of research and is not addressed here. For excellent discussions and summaries
of research documenting and attempting to explain this so-called "annuity puzzle," the reader is referred to
Brown (2001) and Mitchell et al. (1999).
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dictions about what kinds of contracts one can observe in any market that yields constrained
Pareto optimal allocations. It thereby makes predictions that are true for all institutions (or
games and solution concepts that reflect these institutions) that lead to constrained efficient
outcomes. This is an important class of institutions, since market designers would generally
want to implement constrained optimal allocations. Furthermore, an analysis of the contract
structure of markets with efficient outcomes may allow analysts to check whether a given
market is inefficient by looking directly at the traded contracts, without having to observe
or verify the specific assumptions needed to fully justify any particular dynamic game form.

A danger in an approach that considers the entire set of efficient outcomes is that this
set may be very large; one might worry that the approach would therefore yield little in the
way of predictive content. This turns out not to be a concern here: in spite of its generality,
this paper yields a sharp characterization of the contracts purchased in any such outcome.

This paper can be viewed as applying the "screening" insights of Rothschild and Stiglitz
(1976) to a non-exclusive insurance market with linear pricing in the spirit of Pauly (1974).
Bisin and (ottardi (1999, 2003) also consider a many-state non-exclusive market with
(nearly) linear pricing of policies; there is implicit scope for screening in their model. Their
work and this paper come at the market from different directions, however. They are inter-
ested in the existence of a quasi-Walrasian equilibrium, where the set of possible insurance
contracts is given exogenously. This paper endogenizes the set of contracts that will be
offered and focuses on efficient outcomes.

This paper is also related to work by Brunner and Pech (2005) and Boadway and Town-
ley (1988), who employ exclusive market frameworks a la Rothschild and Stiglitz (1976)
but use many-period screening mechanisms for determining equilibrium annuity contracts,
mechanisms that are similar in spirit to the screening mechanism we employ.

1.3 Main Results

This section presents the main results of the paper. Theorems 1 and 2 characterize the
shapes of annuity contracts in constrained Pareto efficient outcomes in two classes of annu-
ity markets. Because they involve substantial technical detail, the proofs of these general
theorems are relegated to the appendix. To provide the essential intuition behind the general
results (and proofs), we first consider a simpler, two-period model which is sufficiently rich
to capture and illustrate the underlying ideas behind the general results.

In both the simplified model and the general model, we assume (following the Rothschild-
Stiglitz prototype) that there are two distinct types of annuitants, called "high risk" (H) and
"low risk" (L), respectively. Note that annuitants are risky to insurance providers insofar
as they are likely to be long-lived: in annuity markets, H and L types have relatively high
and low longevity, respectively. Individual annuitants are indistinguishable from the point
of view of firms, but each annuitant is informed of her own type. 4 The fraction of H type
individuals is E (0,1).

4An alternative interpretation is that information is symmetric, so firms can distinguish different longevity
types (e.g., individuals of different races or genders), but they face legal restrictions on using that information
in selling annuities.
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Following Pauly (1974), we use linear pricing to capture the non-exclusivity of the annuity
market.5 Annuity contracts offer a future sequence of life-contingent payments in exchange
for a lump-sum up-front premium. Linear pricing in this context therefore means that each
incremental dollar of premium has the same incremental effect on the purchased annuity
payout stream. Each one-dollar premium might yield an additional seven cents of annual
income for life, for example. When there are multiple types of annuity contracts available in
the market, annuitants can choose to purchase a mixture of the available contracts-pricing
is thus fully linear, not just linear within contracts.

We assume that a large number of individuals with no bequest motives retire at the
same date, each with a stock of wealth W, which we normalize to 1.6 At retirement, they
have the opportunity to use some or all of their wealth to purchase annuities. Annuities
provide income in each of N subsequent periods, but this income stream is life-contingent:
annuity providers only pay the income due in a given period to annuitants who are still
alive. The stock of wealth W is the only source of funding for retirement, and annuities are
the only mechanism available for providing income to finance consumption in later dates of
retirement. (As discussed in below and in Section 1.4, the results are not materially affected
if individuals can also save in standard asset markets.)

Let pi denote the probability that type i (i E {H,L}) will be alive in period t, where

t E {0, 1,... ,N}. We make the (natural) assumption that < t < N, so that,
conditional on both types surviving to period t, H types have a higher probability of surviving
to period t + 1. We take preferences of individuals over (life-contingent) consumption vectors
C = (Co, C1,, cN) to be given by

N

V(C; pi) = tpiu(ct) (1.1)
t=O

where 5t captures the discounting of the future, and where u(.) is a twice differentiable
utility function with u' > 0 and u" < 0. We will impose additional restrictions on the form
of u as needed in the following analysis. (1.1) reflects our assumptions that preferences are
additively separable across periods and that individuals only enjoy consumption in periods
in which they are alive. Importantly, it also assumes that both types of individuals discount
the future at the same rate.

We assume that firms are risk neutral; the cost of providing a contract Y = (yl, , YN)
to an individual with survival probabilities P = (,', PN) is then given by

N

A(Y; P) = atptYt, (1.2)
t=O

where we have incorporated the assumption that individuals and firms discount the future
in the same way (i.e., via the rate of interest).

Note that preferences V are defined over consumption streams while actuarial costs are

5 Linear pricing is clearly compatible with non-exclusivity; we do not explore the conditions under which
non-exclusivity implies linear pricing, however. Hammond (1979) has explored this issue in a related context.

6 With homothetic preferences, the uniformity of wealth across individuals is immaterial.
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defined over income streams. When individuals can save out of their annuity income or out
of non-annuitized wealth, consumption and income may not coincide. For expositional ease,
we will proceed by analyzing the case where individuals cannot save and consumption is
identically equal to income. As we discuss more fully in Section 1.4, however, our central
results do not depend on this abstraction.

This cost structure (1.2) and the form of the preferences (1.1) imply that the cheapest
way of providing any given level of utility to a given type is via a level real (time-independent)
consumption vector. We refer to such consumption vectors as full-insurance consumption
vectors and to the set of all full-insurance consumption vectors as the full-insurance locus.
When firms and individuals discount the future at different rates, full-insurance consumption
vectors will have a "tilt." As we discuss in Section 1.4, our results extend naturally to this
case as well as to the case in which the discount rate 5 is time varying. It is important to note,
however, that our results do rely in an essential way on the assumption of equal discount
rates across the types in the economy, since it is only in this case that "full insurance" is a
property of a contract and not of who purchases it.

1.3.1 Results in a Simplified Model

The basic screening mechanism underlying our model is quite simple. Annuity contracts pro-
vide payments in many future periods. By offering a menu of annuities with different payout
profiles across those periods, firms can induce individuals to self-sort into different types of
annuity products. In particular, annuity providers can exploit the fact that individuals who
know they are likely to be short lived will prefer annuities providing a relatively front-loaded
income stream (i.e., providing relatively large payments early in retirement), and individuals
who know they are likely to be long-lived will prefer annuities providing relatively back-
loaded income streams. This section examines the implications of this mechanism for the
types of annuities provided in efficient markets.

To provide intuition for our results, we first present a simple, two-period model that
captures the basic mechanism and is easy to visualize and analyze. The standard two-
period Rothschild-Stiglitz setting, where individuals pay premiums in period 1 and receive
indemnities in period 2, is not sufficiently rich for these purposes, as we discuss in Section
1.4 below. We therefore present an enriched two-period model which can capture it.

Towards developing this model, assume that individuals are required to annuitize their
entire wealth W -1. The annuity or annuities they purchase will provide their income and
consumption in two potential periods of retirement, periods 1 and 2. Both individuals are
alive for sure in period 1,7 but face some probability 1 - 2 of death prior to period 2. All
die at the end of period 2. This is a simple model of a compulsory annuity market, where
individuals are required to purchase an annuity with their accumulated savings when they
retire.8

7This assumption is purely for simplicity.
'The U.K. compulsory annuity market, described in Finkelstein and Poterba (2002 and 2004) and in Chap-

ter 3-a market in which individuals who use tax-advantaged savings accounts face compulsory annuitization
requirements at retirement but have substantial flexibility in the type of annuity they purchase-naturally
falls under the purview of this framework. The "public pension" market in Chile, where the Social Se-
curity system is organized along the lines of defined contribution plans with mandatory annuitization or
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Cl

Figure 1-1: Abstract Rendition of an Annuity Market

As described above, there are two risk types, L and H, with pL < p H . Indifference curves
for L types are therefore everywhere more steeply sloped in the (cl, c2)-piane than the H
types' indifference curves.

Given linear pricing, we can fully describe an annuity contract Y via the (life-contingent)
payments (Y1, Y2) it specifies per unit premium. Consider any finite set Y of offered con-
tracts, for example the four element set {Y,'. ,Y 4 } depicted in Figure 1-1. Since in-
dividuals can purchase any mixture of these contracts, their choice set-the set (Y) of
income/consumption vectors they can achieve given the annuities available for purchase-is
the convex hull of the set Y? For example, Ce ({Y,. , Y41) is depicted by the shaded region
of Figure 1-1. Given a set of consumption possibilities, a type i (i E {H, L}) individual
optimally chooses some net consumption vector Ci from that set, as indicated in Figure 1-1.
Observe that the consumption vector choice of each type would be unchanged if the set of
contracts offered was instead Y' - { (cH, C), (L, c L) } -{Y 1', Y}. As depicted in Figure
1-1, when faced with the contract set Y, H types choose to spend their entire unit wealth
on the contract Y3, while L types choose a mixture of contracts Y1 and Y4. When instead
faced with contract set Y', H types spend their entire wealth on the single contract Y', while
L types spend all their wealth on the single contract Y2. Faced with either contract set, H
types purchase a net annuity CH and L types purchase a net annuity CL .

This equivalence of the large contract set Y and the two-element contract set Y' from
the point of view of the net annuity purchases of the two types is clearly quite general. In

phased-withdrawal requirements, may also be interpretable as such a market.
9Note that this implicitly rules out any "shorting" annuity contracts: pricing of each contract is linear

only for positive quantities. While we rule out negative quantities of a given type of annuity, we do permit
annuities with negative payments in one or both periods.
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any market Y, types H and L will optimally choose some consumptions CH and CL from
the frontier of the convex set (Y). They would make the same consumption choices in
the "reduced" market Y' = {CH, CL}. We will henceforth focus on these reduced markets.
When CH it- CL, the consumption possibility set each individual faces (i.e., C(Y')) is given
by the line segment CHCL-for example the dashed line segment in Figure 1-1. This line
segment must be downward sloping, with upper left and lower right endpoints CH and
CL-the optimal choices on that line segment for H and L types-respectively.

Let us now consider the set of constrained Pareto optimal (henceforth "CPO", "con-
strained efficient" or simply "efficient") markets. Constrained Pareto optimality is a prop-
erty of the market-i.e., of the entire set of annuities offered-rather than of individual
contracts per se. In particular, we will say that a set of contracts Y is efficient if, given
Y, there are optimal consumption choices for the two types, CH(y) and CL(Y), such that
there is no other contract set V with corresponding optimal consumption choices CH(y)
and CL(Y) for which: (i) both types are at least as well off; (ii) at least one type is strictly
better off; and (iii) insurance companies, in aggregate, make no lower profits. Equivalently,
a set of contracts is CPO if there is no other set of contracts that makes both types and
the insurance providers better off given optimizing behavior by the annuitants. It is this
requirement of optimizing behavior-i.e., this "self-selection" constraint-that accounts for
the term constrained.

In our "compulsory" model, each person spends W = 1 on annuities. If a type i's optimal
consumption choice is Ci, firms earn 1 - A(Ci; pi) in total profits from selling to her. Iso-
profit (equivalently, iso-cost) curves are straight lines in the c1-c2 plane, with L type iso-profit
lines strictly steeper than H-type iso-profit lines.

The full-insurance locus in this model is the 45-degree line in the cl-c2 plane. Indiffer-
ence curves are convex and are tangent to the iso-profit lines along the full-insurance locus.
Moving a type's allocation Ci along her indifference curve towards the full-insurance locus
moves her to a lower iso-cost line.

These observations will help to establish the central result of this simple model:

Basic Result: In an efficient market in which H and L types choose different
annuity streams, the consumptions CL and CH of the two types both lie strictly
on the same side of the full-insurance locus. Equivalently, in any separating
constrained Pareto optimum, either both types purchase front-loaded annuities
(annuities with cl > 2 ), or else both types purchase back-loaded annuities (an-
nuities with cl < c2 ).

We show this in two steps. First, we rule out the possibility that the two types purchase
annuities strictly on opposite sides of the 45-degree line. Then we rule out the possibility of
one of the types lying on the 45-degree line. Both steps rely on the same basic observation,
which is depicted in Figure 1-2.

Let CH and CL be the contracts purchased by H and L types in a given market. Suppose
that CH and CL are on opposite sides of the full-insurance locus, i.e., that CH is to the left
of it and CL is to the right of it. We will show that this market cannot be CPO. Draw the
indifference curves of each type through their respective consumption points, and suppose
that one of the curves intersects the full insurance locus at a higher point than the other, as
shown in Figure 1-2 for the L-type. (The argument if the H type's indifference curve has a

17



C

pL )

Cl

Figure 1-2: No Constrained Pareto Optimum Can Have CH and CL on Opposite Sides of
the 45° line

higher full-insurance locus intersection is symmetric.) As illustrated in the figure, imagine
sliding CH down along the H type indifference curve to CH, a point on the full-insurance
locus. Draw the tangent to the H type indifference curve at the point C/H, and slide CL up
along the L-type indifference curve to the point C'L where this tangent line intersects this

L type indifference curve. The new consumption pair (C 'H, C'L) makes each type as well

off as with the original pair (CH, CL), but, since both types are closer to the full insurance
locus under the new pair, it is less costly to implement. By construction, H types most
prefer C'H on the line segment C'HC ' L. That L types most prefer C'L follows from the
following three facts: CHCL is flatter than CHCL; the L-type indifference curve is steeper
at CIL than at CL; and CL is the L type's most preferred point on CHCL. Hence, (C/H, CIL)
is less costly to implement and still involves each type i optimally choosing the "correct"
point C'i from E({CH, C'L}). The original market therefore was not CPO.10 (Note that the
same basic argument applies even more easily if both indifference curves intersect the full
insurance locus at the same point.)

We have shown that no CPO market can involve CH and CL lying strictly on opposite
sides of the full insurance locus. Showing that both types must lie strictly on the same side of
the full insurance locus in any separating constrained Pareto optimum involves the same type
of construction. The idea of the preceding construction was to slide the H type's consumption
along her indifference curve towards the L type's consumption point. This movement eased
the "incentive compatibility constraint" (i.e., that H types have to be willing to choose the

10°ne can further show that the resource savings from providing C' i instead of C' can be used to make
both H and L better off.
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left endpoint of the segment CHCL). This permitted the L type to slide up to the left along
her own indifference curve. When the types are on opposite sides of the full insurance locus,
the net effect of the movement is to move both types closer to full insurance, thereby reducing
costs for both types. If (e.g.) the H-type starts on the full-insurance locus, the same sort
of construction moves the H type along her indifference curve away from full insurance and
the L type along his indifference curve towards full insurance, thereby increasing the cost
for H types and reducing it for L types. For small movements of this type, however, the
cost increase for the H type is second order in the size of the movement-the iso-cost and
indifference curves are tangent along the full insurance locus-while the cost decrease for
the L type is first order in the size of the movement. Small enough movements of this sort
therefore reduce the net costs. For this reason, no CPO market can have exactly one of the
types receiving full insurance (and if both receive full insurance, the market is not screening).

Having illustrated the basic results of our paper, we now turn to showing that they are
not particular to our illustrative two period compulsory market example.

1.3.2 General Results
Notation and Assumptions

We consider two distinct extensions of the two-period model. The first is a many-period
compulsory market: as in the two period model, individuals retire with wealth W just prior
to period 1, but they now may live for N > 2 periods thereafter. The second is a "voluntary"
annuity market: individuals retire with wealth W _ 1 in period 0, and they choose how much
to spend on period 0 consumption and how much to spend purchasing the annuities with
which they finance their consumption in periods 1,... , N."

In the tro period compulsory market analysis, we relied only on the monotonicity and
concavity of u for our proofs that annuities will be front-loaded or back-loaded in efficiently
functioning markets. Establishing analogous "front loading/back loading" results in these
many-period generalizations will require that we impose additional structure on the utility
function u. In particular, we establish Theorem 1-our central theorem for compulsory
markets-under Assumption 1, stated below. We establish Theorem 2-our central theorem
for voluntary markets-under the more restrictive assumption that u(x) = x- for some" ~~~~~~~~~~~~~~~~~1-y
y > 0, i.e., that u(x) exhibits constant relative risk aversion.12

Assumption 1

u'(xl) '(yl) > I > u'(xl) u'(cxl + (1 - a)y) V [0, 1]
u'(x 2) u'(y 2) u'(x2) - u'(Cex2 + (1 - a)y 2)

Assumption 1 states that loci of constant u(c) is weakly concave towards the 45° (full
U'(C2)

insurance) line in the l-c2 plane, as illustrated in Figure 1-3. pu'(c,) is the marginal rate
pi,u'(c,,)

"We can also allow individuals to save out of their initial wealth or annuity income without affecting the
results; see Section 1.4.

12We show in the appendix how this voluntary-market preference restriction can be relaxed when payments
are frequent.
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Figure 1-3: Assumption 1

of substitution (MRS) between periods t and t' for type i. Assumption 1 therefore says
that taking the convex combination of two consumption points with the same MRS yields a
consumption point whose MRS is closer to 1.13 The following lemma, proved in the appendix,
shows that Assumption 1 holds for broad class of utility functions.

Lemma 1 Suppose that u is three times differentiable. Then Assumption is satisfied if
and only if r-1 (z) is a weakly concave function of x, where r(x) -= ) is the coefficient
of relative risk aversion.

This implies, for example, that Assumption 1 is satisfied when individuals have constant
absolute risk aversion or have constant relative risk aversion.

Compulsory Markets

Describing the constrained Pareto optimal allocations in a many-period setting is notation-
ally harder but conceptually the same as in a two-period setting. As in the two period
setting, we remain agnostic as to the market structure per se and simply assume that a
finite number of firms offer some finite set of contracts. Individuals of both types are again
faced with a finite set of linearly priced insurance contracts Y, and individuals can choose
any consumption in the convex hull ¢(Y) of Y. We say that C is incentive compatible for
type i (given Y) if C E arg maxcEe(y) V(C'; pi).

We refer to a pair of consumption vectors (CH, CL) as an allocation. A feasible market
is a set of contracts Y and an allocation (CH, CL) such that C i is incentive compatible for

13 Assumption 1 is symmetric with respect to cl *- c2, so the diagram that results from reflecting Figure
1-3 across the 45° line is also implied by Assumption 1.
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each i (given Y) and
AA(CH; pH) + (1 - A)A(CL; pL) < 1.

Feasible markets are thus those in which firms earn non-negative profits, given optimizing
behavior by individuals from the set of contracts offered. We say that an allocation is feasible
if there is a feasible market with that allocation. When an allocation has CL = CH, we say
that the allocation is pooling; otherwise, it is separating.

As in the two period model above, feasible allocation (CH, CL) can be implemented via
the feasible market with contract set Y' {C H , CL}, with i types optimally spending all
their wealth on the contract Ci.14

The set of constrained Pareto optimal allocations is characterized in the following claim.

Claim 1 In a compulsory market, a separating allocation (H, OL) is constrained Pareto
optimal if and only if, for some VH, it solves the program:

max V(CL; PL)
C L , CH

subject to
V(CH; PH) > VH (VH) (1.3)

N ipLsu(c L)(cL- cH) > 0 (ICL)
ES=1Ps S U (Cs )( -c LC ) > O (ICH)

AA (CH; PH) + (1- A)A (CL; pL) < (BC)

There is a unique pooling constrained Pareto optimal allocation C = CL = CP, where C P

is the full insurance consumption vector for which (BC) is satisfied with equality.

In (1.3), (V1,) is a minimum utility constraint for the H types and (BC) is the aggregate
resource constraint required by feasibility. Both are standard. The incentive compatibility
constraints (ICi) in (1.3) differ from the incentive compatibility constraints which typically
appear in the contract theory literature. This difference arises from the non-exclusivity of
the contracting environment. A standard H type incentive compatibility constraint would

rea (UH ) > (CL; pH) EN~= HlUCI _ H(L)read V(CH ) > V(CL; pH) or N=1 PHS(u(cH)- u(c5L)) > O0-i.e., H types do not prefer
L's contract to their own. When contracting is non-exclusive, incentive compatibility is a
more stringent requirement. H types not only have to prefer their own contract to L types'
contract but also to every contract lying between. Since preferences are convex, checking
that H types prefer CH to every point on the line segment CHCL can be accomplished by
checking that they have no incentive to move towards CL from CH. Consequently (ICH)
in (1.3) states that the marginal utility for H-types of "moving towards" CL from CH is
strictly negative. (Algebraically, the left hand side of (ICH) is proportional to the directional
derivative VoV(CH; pH), where is the unit vector in the direction of CH _- CL; (ICH)
therefore states that H types weakly prefer to move away from CL along the line through
CH and CL.)

We now state the first of the two central results of the paper, a general theorem for
compulsory mrnarkets.

14This is essentially the revelation principle applied in a setting with convex contract sets.
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Theorem 1 In a compulsory market, suppose that u(.) satisfies Assumption 1. Then in any
separating constrained Pareto efficient allocation (CH, CL), the following are true.

1. U > e for all s < N;
,(C.,~) U,(C!~T)

2. V(CL; PL) > V(CP; pL) X C > s+, and c > c+l for all s < N;

3. V(CL; PL) < V(CP; pL) c < c+l and c: < c+l for all s < N;

where CP is the pooled actuarially fair full insurance consumption vector.

Theorem 1 states a generalized version of the two-period compulsory market results. Specif-
ically, it says: in any separating constrained Pareto optimal allocation, L types purchase
annuity streams that are front-loaded relative to the annuities purchased by H types; and
either both types purchase annuities whose payments decline in time, or else both types
purchase annuities whose payments increase over time. Whether the consumption streams
are front-loaded or back-loaded depends on whether the L or the H type is better off than
with the unique pooling constrained Pareto optimal allocation. 15

We leave the formal proof of Theorem 1 to the appendix. Instead, we sketch the central
ideas of the proof, highlighting how the many- and two-period problems differ.

Observe that the simple two-period compulsory market "proof" provided above does not
extend directly to the many-period setting. That proof relies fundamentally on the two-
dimensionality of the contract space, for it is only in two dimensions that the full insurance
locus divides the contract space into two distinct sides. Our alternative proof applies in
the two period setting as well as the many period setting and illustrates precisely why the
many-period problem, in contrast with the two-period problem, requires Assumption 1.

As suggested by Figure 1-2 and the corresponding discussion, it turns out that only one
of the (ICi) constraints will bind in any efficient separating allocation; the other will be
slack. Specifically (ICH) (respectively, (ICL)) will bind in any separating CPO wherein H
(respectively, L) types are worse off than they are under the unique pooling CPO.

To look for CPO allocations where L types are better off than under the pooling CPO
(viz 2 in Theorem 1), we therefore take VH strictly less than V(CP;PH) and consider a

15 Theorem 1 extends, with minor modifications, when firms and individuals have discount rates f and

ad # 6f, respectively. Then 2 instead reads

V(CL;PL) > V(CP;PL) X cL > CL+1 and c > LcH+j for all s < N,6d S+ b~~'d8+
and 3 reads

V(CL; PL) < V(CP; PL) X cL < 4L+ l and c < e-+l for all s < N.
-d +I d 8+1

In other words, either both are front loaded or both are back loaded relative to the full insurance consumption
pattern c = L cs+l, which has a downward (upward) tilt if firms are more (less) patient than individuals.
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solution (C*, CL*) to:

max V(CL; pL)
CL , CH

subject to
V(CH; PH) > VH(VH) (1.4)(VH)

ZN Ps pu (cH)(CH-cL) 0 (IH)
AA (CH; pH) + (1 - A)A (CL; pL) < 1 (BC)

In the central step of the proof, we show for any (CH*, CL*) solving (1.4), property 1 from
Theorem 1 holds, as does the right-side of the implication in property 2 from the theorem.
The remainder of this proof involves verifying that (ICL) is, in fact, slack at this solution
whenever VH < V(CP;pH)-so that the solutions to (1.4) and (1.3) (for the same VH)
coincide. VWe leave this part of the proof to the appendix, focusing here on the intuition
behind the central step.

For this central step of the proof, we consider a fixed t < N, and we fix cH* and cL*
for s d t, t +- 1, while taking the consumption components (cs *, c` ) and (cL*, ct;i) to be
variables. This induces preferences and actuarial costs over the two-dimensional space of
possible values (ct, ct+l) of (cH * , CH*) and (cL*,CL1). (E.g., H's induced preferences are, Ct+l t
V(ct, ct+i; PH) V(C H* , t.. . Ct+ , cH* , . H*; pH).) These induced preferences and¢(c, ctl; H) ~ ,I t-lct c~+l +l
costs have the same properties as the preferences and costs in the two period problem:
preferences are convex; iso-cost loci are lines; indifference curves and iso-cost curves for L
types are steeper than for H types; and indifference curves and iso-cost curves are tangent
along the 45° line.

To show that solutions to (1.4) are front-loaded, we suppose, by way of contradiction,
that CH* > CH*, as depicted in Figure 1-4. The constraint (ICH) must bind at the solution
to (1.4), and. we can write it as:

t+l

EpH 6 u (cH* )(csH* -c*) = M, (1.5)
s=t

where M = - S]t t+t pHSU (CH*)(CH* - CL*) is a constant. The contrast between the left
and right-hand panels of Figure 1-4 depicts the essential difference between the problems
with N = 2 and with N > 2. When N = 2, M = 0, s (1.5) states that (CL*, Ct+) must lie
on the line tangent to the H type's (induced) indifference curve at (ctH*, ct+[), shown as the
dashed line in the left hand panel of Figure 1-4. In contrast, when N > 2, M 0 in general,
and (1.5) states that (cL*, Ct +l) must lie on a line parallel to the line tangent to the H type's
(induced) indifference curve at (cH*, cH* ), for example on the dark dashed line in the right
hand panel of Figure 1-4.

The right-hand panel of Figure 1-4 also depicts a curve labeled K1, which is the locus
of points (Ct,Ct+i) with '(cI) = u('H*) Under Assumption 1, the tangent line to KI at

u'(ct~~i) -\~t+ 1 /

(cI*, cH*), labeled KIn in the figure, lies everywhere (weakly) to the left of K1. Hence,
(C*, Ct+l) must either lie above and to the left of KI or below and to the right of K I. The
key observation is that neither of these is consistent with solving (1.4). In the former case,
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Figure 1-4: Many Period Compulsory Market Proof

(C4*,cl+_1) lies at a point like (*(I), cL 1(I)) in Figure 1-4. Then, sliding (*(I),cL*(I))
down and to the right along L's indifference curve, as indicated in the figures, strictly eases
constraint (ICH) and eases constraint (BC). (This is readily apparent in the two-period left-
hand panel. The appendix shows that it is also true in the right-hand panel.) In the latter
case, (L*, ctLl) lies at a point like (L*(II), 4cl (II))). Then sliding (cH*, ct+H*) down and to
the right along H's indifference curve strictly eases constraint (ICH) and eases constraint
(BC). (This is readily apparent in the two-period left-hand panel.) Hence, neither case is

H* H*consistent with solving (1.4), and we conclude that ct* > c+ 1.
The contrast between the two panels in Figure 1-4 illustrates the need for the imposition

of Assumption 1 in the many period problem but not in the two-period problem. Without
Assumption 1, we would be concerned with (*, 4-1) lying neither to the left of K1 nor to
the right of K11. This issue does not arise in the two period version of the problem when
(CL*, C2L*) lies on the tangent line through (cH*, c4*), since K1 and KII coincide at (cH*, *),
irrespective of Assumption 1.

Voluntary Markets

The compulsory market model described above captures the essential features of some real-
world annuity markets. Participation in other annuity markets is voluntary, however: indi-
viduals are not forced to annuitize any of their assets. When markets are non-exclusive and
pricing is linear, they can choose to annuitize as much or as little as they would like. We
capture this feature with our model of voluntary annuity markets.

In this model of voluntary markets, individuals retire in period 0 with wealth W 1.
They can choose to consume some of W in period 0, and they spend the remainder on
annuities which provide their period 1,2,--... , N consumptions. (Again, allowing savings
does not materially change the conclusions.) They thus have the choice both of how to
annuitize-i.e., of what type of annuity to purchase -and also of how much to annuitize.

Claim 2 in the appendix formally characterizes the CPO set in voluntary markets. Claims
1 and 2 differ only in the presence of an additional constraint in the latter accounting for the
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extensive "how much to annuitize" margin in the voluntary setting. As in the compulsory
setting there is a unique pooling CPO. In compulsory settings the unique CPO can be
implemented via a single full insurance contract Cp, which both types consume. In voluntary
settings, the pooling CPO can also be implemented via a single contract which provides a
level consumnption stream over periods 1,... , N. However, H types and L types may choose
to purchase different amounts of this single contract and thereby obtain different consumption
streams, which we denote by CQ H and C Q 'L , respectively.

Theorem 2 is our central result for voluntary markets. A formal proof is provided in the
appendix.

Theorem 2 In a voluntary market, suppose that u(x) = x1- for some 7 > O. Then in any1--
separating constrained Pareto efficient allocation (CH , CL), the following are true:

1. u > T'() for all 0 < s < N;

2. V(CL; pL) > V(CQL; L) CL > CL1 and c > c 1 for all < s < N;

3. V(CL; pL) < V(CQL; pL) 4C <C and c < 1 for all 0 < s < N;

where CQ,L is the consumption of L types in the unique pooling constrained Pareto efficient
allocation.

Theorem 2's characterization of the CPO allocations in voluntary markets differs from The-
orem 's characterization of the CPO allocations in compulsory markets in two respects.
First, Theorem 2 is silent about period 0: it only characterizes the consumption pattern in
periods where the consumption is provided by the annuity contracts. Second, it relies on the
more restrictive assumption of constant relative risk aversion (CRRA) preferences.

It is easy to illustrate the role of the stronger preference restrictions in Theorem 2 vis a vis
Theorem 1. In a compulsory market, individuals' consumptions are provided entirely through
annuities, so adjustments to contracts are tantamount to adjustments in consumptions.
In the voluntary setting, period-0 consumption is provided by the un-annuitized portion
of retirement wealth, and individuals can choose how much to annuitize and how much
to consume immediately. Adjusting contracts in this setting therefore has two effects on
individual's consumption streams: the direct effect that would occur if individuals did not
adjust their spending on annuities, as in the compulsory setting, and the indirect effect
through adjustments to the quantity of annutization. Because of this additional effect, the
analysis used to prove Theorem 1 does not directly apply for as general a class of utility
functions. With CRRA utility, it does, however. To see why, consider the special case
of logarithmic utility u(x) = log(x). With these preferences, individuals' choices of how
much to annuitize are entirely independent of shapes and prices of available annuities.1 6 In
other words, the "indirect" effect is absent for these preferences, and the reasoning from
the compulsory market proof applies (to the annuity-provided portions of the consumption
vectors i.e., in periods 1,... , N).1 7

16This is standard: the fraction of income spent on any one good is independent of prices for Cobb-Douglass
preferences.

l70ne minor difference: the different risk types may choose to spend different amounts in the annumity
market. This difference is immaterial, however, since log utility implies homothetic preferences, and different
quantities of annuitization can be absorbed into the "effective" fraction of H types (i.e., A).
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Figure 1-5: Constrained Pareto Optimal Consumption Streams - Compulsory Markets

With other members of the CRRA family, the reasoning is similar. Lemma 5 in the
appendix establishes that CRRA preferences satisfy a similar, but weaker, form of inelasticity
of annuity demand. Specifically, the quantity of annuities demanded is a constant along
indifference curves over consumption in periods 1 through N. Since the contract adjustments
used to prove Theorem 1 were all of this sort (see Figure 1-4, e.g.), the same analysis applies
to voluntary markets with any CRRA preferences.

1.4 Interpretation and Extensions
This section serves several functions. First, it offers an illustration of the central results-
captured in Theorems 1 and 2-on the structure of annuities in efficient non-exclusive annuity
markets. Second, it argues that these results extend to non-exclusive insurance markets other
than annuity markets. Third, it argues that front-loading is theoretically and empirically
more plausible than back-loading in annuity markets. Finally, it offers an extended discussion
of the annuity market results, focusing on the importance of specific assumptions underlying
them and their relationship to results in earlier models of linearly-priced insurance markets.

Illustrating the theorems This paper starts from the observation that screening via
menus of annuity contracts is possible even with fully linear pricing, so long as different
annuity contracts can offer payments that differ over the lifetime of the annuitant. When this
screening is efficient, Theorems 1 and 2 provide substantial insight into the structure of the
payments annuitants receive. Specifically, both types in the economy purchase contracts with
the same basic shape: either they both purchase annuities with a "front-loaded" payment
profile or else they both purchase annuities with a "back-loaded" payment profile. Figures
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Figure 1-6: Shape of CPO Consumption Streams - Voluntary Markets

1-5, 1-6, and 1-7 illustrate these theorems.
Figures 1-5 and 1-6 graph the qualitative time profiles of the consumptions of both types

of annuitant for the compulsory and voluntary markets respectively. Consumption in period
t, for t = 1,.. , N, is provided by the t-period annuity payment in both figures. There is
an additional period-period O0-in Figure 1-6, when consumption is given by the portion of
retirement wealth not spent on annuities. Theorem 2 makes no statement about period 0
consumption relative to the consumption in other periods, so Figure 1-6 is merely illustrative
in this respect.

Figure 1-7 depicts the possible two-period "snapshots" of the consumptions (annuity
payments) of the two types at any two times s and s' with 0 < s < s'; it applies to both
theorems. The key features of this figure are: (i) The consumption vectors of both types are
on the same side of the 45-degree line; and (ii) the side of the 45-degree line is consistent
across all different s and s' with 0 < s < s'. In other words, the types are relatively
underinsured in the same direction.

Applications to other insurance markets Two related conceptual issues arise in ex-
tending our central results to non-exclusive markets other than the market for annuities.
First, there is a natural ordering of the payment periods in annuity markets. In other mar-
kets, such as the market for homeowner's insurance, the proper order is less clear.'8 Second,
the "high-risk" and "low-risk" types are well defined in an annuity setting. The former has
a lower mortality hazard at every given age. This is unlikely to be the case in other markets.
In homeowner's insurance markets, for example, one type may pose the greater risk for fire

18 For example, which comes "first," fire damage or a break-in?
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Figure 1-7: Two-State "Snapshot" of CPO Consumption Streams

damages and another might pose the greater risk for a break-in. 19

A careful examination of the proofs of Theorems 1 and 2-sketched above and fleshed
out in the appendix--shows that neither of these difficulties keeps our central results from

Pr pLextending to other markets. What drives the proofs is only the fact that > P- for each
Pt Pt+i

t-i.e., that the order of 4 coincides with the the timing of payments. Neither the fact
Pi

that pi is declining in time nor the fact that pt > ptL for all t plays a role in the proofs.
This implies an immediate extension to other non-exclusive insurance markets. Consider
any non-exclusive insurance market which simultaneously insures against multiple types of
accident. Arbitrarily index those accidents by k, and suppose there are two types labeled
H and L-not necessarily interpretable as "high" and "low" risks-with different patterns
of probabilities pk of experiencing those accidents. Then, reordering the states with a new

tpH
index t so that is increasing, Theorems 1 and 2 apply directly, and they say two things.

Pt
First, they say that efficient screening outcomes are characterized by both risk types

being imperfectly insured and by both types being relatively underinsured against the same
types of accidents. In homeowners insurance, this rules out one type being better insured
against fire damage than break-ins and the other type being better insured against break-ins
than fires, for example. Non-exclusivity and efficiency thus imply a substantial similarity of
contract coverage, even when risks are quite different across individuals.

Second, the theorems tell us the "proper" way to order accidents. One way we might
think to order states is by the size of the "loss," (or by the probability of a loss; or by the
expected loss). Theorems 1 and 2 say that the states are most naturally ordered by the
relative probabilities of losses for the two types. When they are ordered in this way, Figures

l9A related issue is the "bundling" of different accident risks, discussed by Fluet and Pannequin (1997) in
an exclusive contracting framework. Real-world annuity contracts involve payments in every future period
of life. In principle, one could imagine unbundling these contracts and offering instead many contracts, each
paying out in one future period of life. We do not consider why or when payments will or will not be bundled.

28

-C,I

C:' j i C,



1-5 and 1-6 capture the shape of the payout profiles.
It is well understood that adverse selection considerations can lead to pervasive under-

insurance. Taken together, the two preceding observations in the context of non-exclusive
insurance markets suggest that adverse selection and linear pricing together also imply a
systematic pattern to the types of events which will be relatively underinsured. Specifically,
the market will tend to provide particularly high or low coverage levels for events for which
there is the most variability in risks, as measured by the magnitude of the relative risk across
different types of insurance buyer in market.

Front-loading versus back-loading The results of this paper state that annuities pur-
chased in an efficient market will either be front-loaded or back-loaded. There are both
theoretical and empirical reasons to think of front-loading as the more relevant outcome.

Theorems 1 and 2 state that front-loading obtains precisely when the low longevity types
are better off than they would be in the unique efficient pooling outcome. In this pooling
outcome, low-longevity types are profitable to firms, and high-longevity types are strictly
unprofitable. In other words, the low-longevity types are the "better" annuitants from firms'
point of view; intuitively, we might therefore expect the market to yield an outcome that
favors these types.

Front loading may also be the more empirically relevant outcome. Most annuity markets
that we observe are quite small-this is the so-called annuity puzzle (e.g., Brown et. al
(2002) and Davidoff et al. (2005))-so one must be cautious in extrapolating therefrom.
Nevertheless, existing markets for individual annuities are characterized by a paucity of sales
of annuities providing inflation protection. In the U.S., Brown et al. (2001) report that, as of
the turn of the 21 t century, the U.S. had but a single instance of an inflation-indexed annuity
offered for sale in the non-group market, but that, as of the writing of their paper, not even
one such policy had been sold. Similarly, even in the larger market for compulsory annuities
in the U.K., remarkably few policies offering any inflation protection are sold: Finkelstein
and Poterba (2004) report that only about 1.3% of policies sold to annuitants by a large firm
in the compulsory annuity market were inflation indexed. The same firm offered annuities
with rising sequences of nominal payments as well, but these annuities amounted to only
3.8% of the annuities sold.20

Our results provide a novel explanation for the thinness of markets for inflation pro-
tected annuities: even when it is "first best" for individuals to receive full protection against
longevity risk, informational asymmetries can make ubiquitous underinsurance against this
risk a feature of (second-best) efficient markets.2 ' Since we do not employ a model with an
explicit role for inflation uncertainty, we cannot address why front loading would, in practice,
take the form of nominal payments instead of declining real payments. Indeed, in a world
with inflation uncertainty, annuitants presumably value insurance against inflation volatility
as well as the insurance against longevity risk on which this paper has focused. Our results

20 Brown et al. (2002) provide some evidence on the international availability of inflation indexed annuities.
They note that inflation protected annuities are available in several countries, including Australia, Israel,
and Chile, and they note that pricing appears to be less unfavorable for these products than in the United
States. They do not present evidence on the thickness of these markets, however.

21This is only one possible explanation. "Front-loading" can also obtain in a symmetric information world
with individuals who are less patient than firms.
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can therefore only go part way towards explaining the prevalence of nominal annuities.

Savings Our analysis employed on the explicit but unpalatable assumption that individ-
uals are forced to consume their entire annuity payment in each period. This "no saving"
assumption is not essential for the qualitative conclusions of Theorems 1 and 2, however. We
omit the technical details involved in establishing this, but the intuition is straightforward.
Following Yaari (1965) and Davidoff et al. (2005), note that private saving is an inefficient
mechanism for transferring income forward in time: moving income forward through life-
contingent annuities avoids "wasting" resources by dying with positive wealth. Efficient
markets, then, will not involve annuity streams which provide a residual incentive to save.
Allowing savings can therefore be formally modeled by incorporating "no incentive to save"
constraints into the CPO programs. These additional restrictions on feasible annuity streams
can have an effect on the set of constrained Pareto optima, but they do not have any ef-
fect on the proofs of the "front-loading/back-loading" results of Theorems 1 and 2. To see
why not, recall the gist of the proof of those theorems in the two-period model of Section
1.3.1. The proof considered adjustments of a given type's consumption along her indiffer-
ence curve towards the full insurance locus. Such adjustments either have no effect on or
else strictly reduce the incentive for an individual to save. Given this, the same proofs-and
results-apply.

Other sources of retirement funding A weakness of the model underlying our central
theorems is the way it treats wealth and retirement funding. Individuals in our model hold
all their wealth as liquid assets prior to annuity purchases; they then purchase annuities
which provide income for later periods. With well-functioning capital markets, this may
be a reasonable assumption in some cases: pre-existing income streams may be marketable
assets-i.e., they may be exchangeable for current wealth-and can therefore be treated as
(liquid) wealth at the time of retirement.

In other cases, for example in the presence of pre-existing annuity streams, it may be
less reasonable. It would seem particularly problematic when applying our central results
to non-exclusive insurance markets other than annuity markets, where income in different
"accident" states is unlikely to be directly marketable. These concerns are eased by the
observation that, properly interpreted, Theorem 1-our central compulsory market result-
still applies in the presence of these illiquid income streams.22 Both with and without
pre-existing income, Theorem characterizes efficient consumption streams as being "back-
loaded" or "front-loaded." It is only in the absence of pre-existing illiquid income streams
that this can be interpreted directly as a statement about the annuities purchased being
front-loaded or back-loaded, however.

Compulsory versus voluntary markets The presence of illiquid income streams poses
more difficulties for our voluntary market results. Our central result for voluntary markets-
Theorem 2-only applies when an individual's entire wealth can be take to be held in liquid
assets at the time she purchases her annuity contracts. In extending this result to other
non-exclusive insurance markets, this is a particularly unpalatable assumption: it essentially

22 It is essential that contracts be allowed to include negative "payments" for this.
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requires that individuals will have no income to consume in the event of any accident (except
through the insurance contracts). This is a shortcoming of Theorem 2 vis a vis Theorem
1, and it raises the question of when the market should be naturally considered compulsory
and when it should be naturally considered voluntary.

On the one hand, compulsory markets may seem like a particularly restrictive exam-
ple and voluntary markets the norm. On the other hand, the two markets differ only in
the presence of a period 0 "pre-contract" consumption period. Insofar as there are many
periods, each of which is small, we expect this single period to have little effect on the out-
comes, and we expect the compulsory market model-if not literally correct-to at least
be a good approximation. We formalize this intuition in the last section of the appendix,
where we show that when payments are frequent, compulsory market outcomes provide a
good approximation to voluntary market outcomes.

Dynamic considerations This paper considers a "once and for all" annuitization deci-
sion. Annuity markets in this model operate for individuals who have just retired, and never
open again. Later annuity markets may provide individuals with an additional incentive to
purchase front-loaded contracts with the intention of re-annuitizing some of their early an-
nuity income, complicating our analysis.23 A careful treatment of dynamic re-annuitization
would be an interesting future extension.

Equal discounting for individuals and firms Our "front-oading" / "back-loading" re-
sults are particular to the assumption that individuals discount the future at the rate of
interest. When individuals and firms discount the future at different rates, full-insurance an-
nuities will not be level real annuities, but rather will have a tilt. The same basic theorems
hold for this case if "front-loaded" and "back-loaded" are interpreted relative to these full
insurance annuities, however. See Footnote 15 for details.

Bequest motives and other modeling features This paper explicitly ignores bequest
motives. The importance of bequests has received much attention in the literature but
remains unresolved.24 Nevertheless, it seems likely that some sort of "bequest motive"
operates in what small annuity markets do exist. Indeed, these markets are notable for the
prevalence of various "guaranteed" or "period certain" annuities - annuity contracts that
guarantee some number of payments regardless of whether the annuitant is still alive or not.

23 The case we consider is a natural starting point, however, since we expect that there are welfare-based
reasons to make annuitization a once-and-for-all decision at the time of retirement, just as we have modeled
it here. Heuristically, if markets for re-annutization exist, rational annuity providers can anticipate the re-
annuitization decisions their purchasers will make. They can then incorporate these future decisions directly
into the original annuity contract. We should therefore be able to capture a dynamic re-contracting model
through a period 1 static contracting model with additional "no re-contracting" constraints. Insofar as this
heuristic reasoning is correct, the "no-recontracting" constraints are welfare reducing, providing a rationale
for focusing on the once-and-for all annuitization model.

24 See, e.g., Hlurd (1987, 1989) and Brown (2001) who argue on the basis of calibrated life-cycle consumer
models that the bequest motive cannot be very large, and Bernheim (1991) who argues that bequest motives
must be large on the basis of relationships between social security wealth and life-insurance and annuity
holdings.

31



Relatedly, this paper does not address the question of why annuity markets are so poorly
developed at present. Indeed, with the preferences employed herein, annuities are clearly
quite desirable for individuals. These preferences are standard for modeling annuity markets,
and it is precisely this in-theory desirability coupled with the in-practice thinness of real-
world annuity markets that is dubbed the "annuity puzzle" (see, e.g., Brown (2002)). Nor
does this paper consider the possible complications in households with married couples (see,
e.g., Brown and Poterba, (2000)).25 Further exploration and incorporation of these and other
issues may bring to light other considerations that are important for a more complete model
of annuity markets.

Generalizing Pauly (1974) - sensitivity to the number of states The standard
equilibrium concept used to model non-exclusive (cum linearly priced) insurance markets
was developed by Pauly (1974). Our results can be seen as extending Pauly's framework
from a two-period model to a many period model. It turns out that the intuition gleaned
from this extension is essentially different than the intuition gleaned from the original Pauly
model. As such, the intuitions stemming from standard two-period models of non-exclusive
insurance markets a la Pauly (1974) can be misleading.

To illustrate this point, consider the voluntary market framework above, but with N = 1.
(Note that Theorem 2 is silent here.) Since annuities only pay out in one period, there is
a unique "shape" of annuity contract that can be offered here, and shape-based screening
is impossible. A contract is fully characterized by the price q of period 1 annuity income
in terms of period 0 wealth. There is a unique constrained Pareto optimal allocation in the
two-period model: it is implemented with the single contract offering the lowest possible
ql consistent with the aggregate break-even condition for firms (given optimizing behavior
by consumers). This constrained Pareto optimum is precisely the equilibrium described by
Pauly, and it is depicted in Figure 1-8. As shown in that figure, the L type ends up with a
front-loaded consumption stream while the H type ends up with a back-loaded consumption
stream. Comparing with Figure 1-7 and Theorem 2, we see that this sort of front-loading
versus back-loading diagram is quite particular to the two-period case: "typical" snapshots
of consumption over time in a many period model will have both types on the same side of
the full insurance line.

Wrongly extrapolated, Figure 1-8 could be thought, for example, to imply that equilib-
rium annuities will involve one type purchasing a back-loaded annuity and one type pur-
chasing a front-loaded one-exactly counter to the results that emerge when we consider a
model that is sufficiently rich to actually capture the possibility for annuities with different
shapes.

2 5The market for joint and survivor annuities is characterized by variability in the ratio of annuity payments
before and after the death of one member of the couple. This variability provides an additional source of
variation in the temporal pattern of payments, and it is less clear in this context that existing annuity
markets are characterized by front-loading.
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Figure 1-8: 2 Period Voluntary Market Consumption Stream a la Pauly (1974)

1.5 Conclusions

In many settings, the characteristics of one of the parties to a bilateral contract may be
relevant to the payoffs of the other party. The first party may be privately informed about
those characteristics, or those characteristics may be illegal for use in setting prices. Since
the pioneering work of Spence (1973) and Rothschild and Stiglitz (1976), economists have
recognized that, in such situations, the uninformed party may attempt to "screen" the
informed party by offering a menu of contracts which differentially appeal to individuals
with different characteristics. Among the useful implications of this insight is that it can
help us to predict and to explain the variety of contracts that emerge in insurance markets.

A weakness of these models is that they only apply in exclusive contracting frameworks.
In many settings, the assumption of exclusive contracting may not be reasonable, and the
assumption of linear-pricing of policies may be more appropriate. To date, the models used
to capture this sort of non-exclusive contracting have failed to incorporate screening, and, as
such, have been unable to explain or predict the contract varieties that are observed or will
emerge in these settings. This paper takes a step towards filling this gap in the literature by
developing a screening model for markets with non-exclusive and linearly priced contracts. It
is the first paper to ask what screening considerations imply about contract types bought and
sold in this class of markets. At the heart of the model it develops to address this question
is the insight that, when an insurance contract covers multiple contingencies-for example,
when it pays out for several distinct types of accident-the relative indemnity payments
across those various contingencies can be used for screening individuals with different risk
profiles, even in non-exclusive contracting environments with fully linear pricing.

This paper both establishes the viability of screening mechanisms in non-exclusive con-
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tracting environments and shows that screening considerations can have non-trivial and
empirically relevant implications for the shapes of efficient equilibrium contracts. In par-
ticular, it shows that there is a natural ordering to the payout states in any non-exclusive
insurance market with two risk types: the order coinciding with the ordering of the relative
risks of those various states states obtaining for those types. Given this order, efficient mar-
kets employing screening will take one of two forms: either all net contracts purchased will
provide relatively less insurance for the "earlier" states and relatively more for the "late"
states, or the reverse.

In the context of annuity markets, this means that either all purchased annuity streams
will provide less income late in retirement than early in retirement, or else all will provide
increasing income streams. This may help to explain the marked absence of annuities provid-
ing inflation protection (or any other sort of nominal back-loading) in extant private annuity
markets, an absence which has heretofore been interpreted as a sign of inefficiency in the
market (see, e.g., Brown et al. 2001a, 2002). This paper suggests, instead, that such an
absence can be characteristic of an efficient market response to screening considerations in
the context of non-exclusive contracting.

More generally, applied work has long employed the screening insights of models of exclu-
sive insurance markets to study the efficiency of real-world markets (see, e.g., Buchmueller
and DiNardo (2002)) and the consequences of policy interventions therein (e.g., Crocker and
Snow (1986), Chapters 2 and 3). In providing a strong characterization of the efficient con-
tract sets, this paper takes a first step towards enabling similar empirical and applied work
in non-exclusive settings.

1.6 Appendix

This appendix has five sections. The first proves Theorem 1, the central result for compulsory
markets. The second describes the constrained Pareto optimal set in voluntary markets
(Claim 2) and proves Theorem 2, the central result for these markets. Section three examines
conditions under which Assumption 1 holds and the implications of that assumption. The
fourth section collects a series of auxiliary lemmas used in the proofs of the first two sections.
The final section presents results showing that voluntary markets are similar to compulsory
markets in markets with "frequent" payments.

1.6.1 Compulsory Markets

Proof of Theorem 1. We prove the theorem by establishing that any solution (CH, CL)

to (1.3) with fJH < V(CP; PH) satisfies properties 1 and 2 of Theorem 1.26 We omit the

entirely symmetric argument that any solution (CH, CL) to (1.3) with VH > V(CP; PH)

satisfies properties 1 and 3 of Theorem 1.

Step 0: Preliminaries Fix VH < V(CP; pH), let (CH*, CL*) solve (1.4), and let A* =
(p, v, n) be the vector of Lagrange multipliers associated with this solution. (, v, and r

26 Recall that C P is the pooled break-even full insurance consumption vector.
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refer to the (VH), (ICH), and (BC) constraints, respectively.)27 Let L be the Lagrangian
associated with (1.4). To fix a coordinate system, view L: (CH, CL, A) - R as a function
of three (vector-valued) variables CH, CL, and A. At an optimum, the multipliers v and i

in this Lagrangian are both strictly positive, as (BC) and (ICH) must bind.28

Fixing any t < N, we will consider the components (ct*, ct+) for H, L, holding the
other components fixed.

Define
_____ u,(CH*) 

K,- =(Ct Ct+I) C) tcU'(Ct+i)) }, * (1.6)

and define
KII- {(ct, c+l): rt(ct* - ct) = rt+l(c~ - Ct+l)}, (1.7)

where r - ( is the coefficient of absolute risk aversion. KIu is an positively sloped
line and KI is a positively sloped curve in the in the (ct, ct+l) plane. Lemma 3 below shows
that under Assumption 1, KII and KI are tangent at (ct, ct+l) = (ctH*,ct'+) and KS lies
between KII and the 45-degree line (viz Figure 1-4).

Define f(cHc s
1 pf, cf+l) = Zse{tt+l}pH6Su(cI)(I - c). (ICH) binds at (CH*,CL*),t+,Cl t Sj~t1 

so:
f(ct*, , Ct*, Ct;J) - p pe5u(c5*)(Cs * CL*). (1.8)

f{tt+1l

Define fH(ctH,ctHI) - (CHt,Ct ',L,ctL;) and fL(cL,c+) f(c H*, ct, C, cL+1 ). Let vi
denote the unit vector in the direction of (pt+u'(c* 1 ),-ptu'(ct*)). Taking the directional
derivatives of fi at (*, ct;) in the direction of vi yields:

Vf Hfk(H. t ) C tH;
-V~kt; Xf- (- (1.9)

- H* - *)),=k (rt+l (C1 - Ct;) -rt (Ct*- Cte)),

for some k > 0 and
H (CL;u'(IcL )

VODL fL = + IP-+ P' u-(c+l)Vo'. fL k' [ "'(=~) I' ' "'
Pi__ _ P +1 __ __>LL kI UI(H i- X C;) ' (1.10)

for some k' > 0. Observe that v is tangent to i's indifference curve at (ct*,ct*,), i.e.
VoiVi(Ci*;pi) = 0. Hence, the sign of VO fi says whether moving (ct,ct+1) marginally
down and to the right along i's indifference from (ct*, ct*1) eases (positive sign) or tightens
(negative sign) (ICH). Though i_ (bt, i4+1) are 2-vectors in the (t, t + 1) plane, we will
(harmlessly) abuse notation by treating them as N-vectors whose only non-zero components

2 7Note that the constraint set is non-empty. Restricting attention to (CL, CH) pairs with V(CL; pL) >
V(Cr; pL) bounds the set of (CL, CH). Hence, a solution to (1.4) exists.

28(ICH) cannot be slack, since the only solution consistent with (ICL) slack involves an L-type consump-
tion stream CL with level payments strictly higher than CP. But this requires that (ICH) be violated, a
contradiction. (BC) cannot be slack, either. Any solution must have ctL c for some t. Raising cH and
c' by an equal amount for any such t eases (ICH) and (VH) and improves the value of the program, and
would thus be feasible and preferable unless (BC) is binding.
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are in periods t and t + 1, i.e., as:= (i4,... ¢ ¢,Ovi+1 7 t+ 2 ..V =( **, tVt, Vt+l t+2 ,
= ( Ot, 0, I 0, ,0) -

Applying a similar logic to (BC), let

(, Ct+lCt ,ct+1) (pftCt +pH ijt+lcf+ 1 ) + (1-A) (p6tcL + pL t+lL)

and let gH(CtCtH.) _9(C', CtCt,c) and gL(1, , c+t ) Straight-

forward calculations establish that:

sign(Vig-) = sign(ct+1 - ct*). (1.11)

That is, moving (, c'+,) down and to the right along i's indifference from (c*,c) eases
(BC) if and only if ct*1 > ct*.

Finally, let v* be the unit vector in the direction of CL* - CH*. Then (ICH) can be
written as: V_ oV(CH*; PH) > 0 and (ICL) can be written as VV(CL*;PL) > O.

Step 1: cH * > c41 Vt < N: (We argue for the t < N fixed in Step 0.) Suppose, by way
of contradiction, that t* < cH+l. In this case, both K and K 1 lie entirely in the half of
the (ct, ct+l) plane with ct+l > c. As noted in Step 0, this implies K lies (weakly) below
K,, in this plane (i.e., towards higher c and lower ct+l, as in Figure 1-4). Therefore, either
(c L*, ctL1) lies above K, on K, or below and to the right of K,,. We now show that, in
fact, none of these three cases is possible-whereby we reach our contradiction and conclude
that c* > ctf+.

Take either of the first two cases, i.e., suppose (c L*, c- 1) lies above and to the left of K,

or on KI. Then ctl > 4* and u'(c < -(), and therefore:- u,(cf.) -'c

V( 6 ,L,)J(C H* , CL*, A*) = ,VfLgL + VVVLfL > VVVL f L > 0. (1.12)

The first inequality follows from c L > ct* and (1.11). The second follows from (1.10).
Hence, £ is not maximized at (CH*, CL*, A*), ruling out either of the first two cases.

If instead (ctL*, cL*1 ) lies to the right of Ki, then rt(c'* - ct) < rt+l(cA;1 -t+l), and:

V(-Hd6,V* = VoNgH + VofH > VVo fH > 0. (1.13)

The first inequality follows from ctt+l > cH* and (1.11) and the second follows from (1.9).
Hence, L is not maximized at (CH*, CL*, A*), ruling out the final case, establishing that
cf* < c* is impossible, and completing Step 1.

Step 2: utHI) > (CH ) L>-- t~~~~~+l(Step 2: ,( * > and c > ct t < N. From Step 1, for any t < N we have

ctH* > ctHl. Suppose by way of contradiction that (t*, ct 1 ) lies on or to the left of K,, (i.e.,
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towards lower ct+1/higher ct). Then rt(ct*-c*) rt+1 (c -t+) and therefore
__ > r' V(C+ adterfr

7V (_,H ,, ) * = KV_-Hg + Vf H > V_Hg H > 0. (1.14)

The first inequality follows from (1.9) and the second follows from cH* < H* and (1.1).q Clan (1.11).
Hence, is not maximized at (CH*,CL*,A*), and (cL*, cL*1 ) must therefore lie strictly to

u, hodt+ is(ekl)t h etothe right of KII. When Assumption 1 and cH* > ctH+ hold, lies (weakly) to the left of
KI1 by Lemma 3 below. Hence, (CtL * ctL*l) must also lie strictly to the right of Ki, yielding\t+
u'(H (H * ) cL. L*

; > - tl and cL* < ctL* directly and completing Step 2.

Step 3: Vo*v(cL*; pL) > 0, so (ICL) is slack at (CL*, CH*). Suppose, by way of
contradiction, that

VV(CL*; pL) < 0. (1.15)

Let C denote the full insurance consumption vector with Vf(O)V(CH*; pH) = 0, where
fi(C) is the unit vector in the direction of C - CH*. (One can easily establish that a unique
such C exists.) Consider the plane containing CH*, CL*, and C, as depicted in Figure 1-9.29
The H-type indifference set {CH: V(CH; pH) = V(CH*; pH)} is tangent to this plane. To
wit:

VfV(CH*; pH) = 0 = V ) V(CH*; pH),

where the first equality follows from (ICH) binding and the second is by construction. Since
v* and fi(C) span the plane, Vf,(cL)V(CH*; pH) = 0 for any CL in the plane-i.e., the H-
type's indifference set is tangent to the plane at CH*. The concavity of V(.; PH) then yields
V(cH*; PH ) > V(C; PH) for any CL 5 CH* in this plane.

Let f = f(CH, CL) denote the left hand side of (ICH) and let -. 9 = (CH, CL) denote
the left-handl side of (BC) in (1.4). Computing:

0 = V = k (Vv(CL*; pL) + vV(.0 ,)f + K,V(^*A)9)

= k pL) + IV(*) 9) (1.16)

> kV(d,f.*,d)j0

for some k 0. Intuitively, (1.16) considers the change in L when the L-type consumption
CL* is moved towards CH* (which must be zero at an optimum). To see the second line of
(1.16), note that '* =_ k*(CL*- CH*) for some k* > 0. Hence,

N
(CH*, cL*) = k* H6su(CH),* = k*Vf(CH*, CL*),

s=l

and, since (ICH) binds, f(CH*, CL*) = 0. The third line follows directly from (1.15) (the
assumption). From (1.16), then, Vvg < 0 and A(CH*; pL) > A(CL*; pL) by the linearity of
A(.; pL)

Informally, Steps 1 and 2 state that CH* is a "smoother" consumption stream than

29Similar arguments will apply if CH*, CL*, and C are collinear; we omit the details.
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C, CL.

Figure 1-9: Figure for the proof of Theorem 1

CL*. From the preceding paragraph, A(CH*; pL) > A(CL*; pL). Intuitively, a smoother
consumption stream which also provides higher (actuarial) value should be strictly preferable,
so V(CH*;PL) > V(CL*;pL). Lemma 4 below formally establishes the validity of this
intuition.

Next, we will show that V(CL*; pL) > V(C; PL): as VH < V(CP; pH), one can readily
establish that V(CH*; pH) < V(CP; PH) and V(CL*; pL) > V(CP; pL). (One simply shows
that (1.3) is continuously decreasing in the right hand side of constraint (VH) at VH =
VH(CP; pH).) Since V(C; PH) < V(CH*; PH), we have V(O; PH) < V(CP; PH), and since
H and L types have the same ordinal preferences over full insurance consumption vectors,
it follows that V(C'; pL) < V(CP; pL) < V(CL*; pL).

Consider the indifference curve of L types through CL* in the plane of Figure 1-9. From
the last two paragraphs, we see that it must intersect the line segment CCH* at some interior
point C', as shown in Figure 1-9.

To reach the contradiction and complete Step 3, consider

A £ -(C" *, C', A*) - £(CH*, CL*, A*)
= V(C; pL)- V(CL*; pL) + ii(1 - A)(A(CL*; pL) - A(C'; pL)) (1.17)

(1 -A)(A(CL*; pL)- A(C'; pL)) > 0.

The first equality follows from the facts that constraint (VH) is independent of CL and that
the H type indifference set {CH : V(CH;PH) = V(CH*;pH)} is tangent to this plane,
as shown above (whereby (ICH) is exactly satisfied at both CL* and C'). The second
equality is by construction of C'. Towards showing the final inequality, note that Steps 1

(CH,)_ UI(CL*)
and 2 imply 1 > ' > ( Assumption 1 can be used to show that, since C' 

u,%~+l ~%"1

aoCH + (1 -a)C for some ca E (0,1) and since u'(t) = u'(6t+l), 1 > u(ct) > (c for all

t < N. A(C'; PL) < A(CL*; pL) then follows from Lemma 4 below. (Intuitively, C' provides
smoother consumption and the same utility to L types, so it must be cheaper to provide.)

(1.17) is our contradiction: A > 0 implies that (CH*, CL*) cannot, in fact, be the
solution to (1.4). We conclude that (1.15) cannot hold at any solution to (1.4), establishing
Step 3.

Step 4: Theorem 1 holds: By Step 3, the solution (CH*, CL*) to (1.4) is a solution to
(1.3)-i.e., (CH*, CL*) solves the looser Program (1.4) and is feasible in (1.3). Given this,
any solution (CH, CL) to (1.3) solves (1.4). By Steps 1 and 2, (CH, CL) therefore has the
properties and 2 required by Theorem 1. 
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1.6.2 Voluntary Markets

Claim 2 Assume u satisfies limx-0 u'(x) = oo. Then a separating allocation (H, CL) is

constrained Pareto optimal in a voluntary market if and only if, for some VH, it solves the
program:

max V(CL; pL)
CL, CH

subject to
V(CH; PH) > VH (VH)

N , pSSU, (CL)(CL _ Cd ) > 0
s=OPs (ICL) (1.18)

ES=op u(C)( - c) > o (ICH)
AA (CH; pH) + (1-A)A (CL; pL) <1 (BC)

N=l PH6SuI(cH)cH = (1 - H)poHu'(coH) (OH)

s= pL3u (C L)C.,L = (1 - )pOLu(cOL) (OL)

There is a unique 'pooling" constrained Pareto optimal allocation (CQH, CQ'L).

As with Claim 1, we omit the proof of Claim 2. The two claims are identical except for the
presence of the (i) constraints in (1.18). These constraints say that i types' indifference
curves are tangent to the line segment connecting Ci to (1, 0,... , ). When lim_.0 u'(x) =

-oo, this is equivalent to Ci being optimal on the line segment from (1,0,... , 0) to i 
(,I ¢ i ' 1 C- C ), Because preferences are convex, (Oi) and (ICi) together imply that

Ci is the V(.; Pi) maximizer over ({(1, O,. , O), CH, CL}).

Proof of Theorem 2. This proof parallels the proof of Theorem 1, omitting some identical
portions.

Step 0: Fix VH < V(CQH; pH), let (CH*, CL*) solve the program that obtains when
(ICL) is dropped from (1.18), and let A* = ( , ,o,aH, L) be the associated Lagrange
multipliers, ordered via the constraint order in (1.18). We take the first three multipliers to
be non-negative and, as in the earlier proof, the multipliers v and r. on (ICH) and (BC),
respectively, are strictly positive. Let £: (CH, CL, A) -- R be the associated Lagrangian.
Fix any t with 0 < t < N. Define v* to be the unit vector in the direction of CL* - C *.

Note that with CRRA utility, we can fix attention on strictly positive consumption vectors.
The remainder of the preliminaries in Step 0 from the proof of Theorem 1 are identical.

Steps 1-2: 0 < t < N c* > cH, c* > cLL, and '( > u'(c) These are identical

to the corresponding steps in the proof of Theorem 1 except that the directional derivatives
V£* in expressions (1.12), (1.13), and (1.14) include an extra terms corresponding to the
directional derivatives of the left hand side of constraints (Oi). Lemma 5 below can be used
to establish that these additional terms are zero for CRRA utility.
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Step 3: .VV(CL*; PL) > 0, so (ICL) is satisfied at (CH*, CL*). As with Step 3 in the
proof of Theorem 1, we will establish Step 3 here by contradiction. Assume, therefore, that

V. V(CL*;PL) < 0. (1.19)

The proof will proceed by using (1.19) to construct a pair of vectors H* = (o *, , N*)
and C* = (, , Cc), and an a E (0,1) such that:

1. L* = aH* = c.

2. V(CH*; pL) > V(CL*; pL) = V(aOCH* + (1 - a)C*; pL) > V(C*; pL).

3. A(CL*; pL) > A(aCH* + (1 - ca)C*; pL)

4. V.V(CH*; pH) = 0, where VB is a unit vector in the direction of the vector CH* -
(aCH* + (1-)C).

These points are depicted in Figure 1-10, where

C - C * + (1 - )C* = (C, *, ·C ,c )

We will first show that when a OH, a C*, and an E (0,1) with properties 1-4 exists,
(CH*, CL*) cannot solve the program that obtains when (ICL) is dropped from (18). We
will then establish that whenever V.*V(CL*; pL) < 0, we can construct such a a CH, a
C*, and an E (0,1) with properties 1-4. This will establish that no solution can have
Vi V(CL*; PL) < 0 and complete Step 3.

For the first part, consider

AL £(CH*, C', A*) - L(CH*, CL*, A*)
= V(C; pL) _ V(CL*; pL) + K(1 - A)(A(CL*; pL) _ A(C'; pL))

+1 N (E -=o Cs)) + CL (O pLs (U(C))C- U(CL*)CSL*)).
= (A)(A(CL*; pL) _A(C; pL)) + (N =oPst68U(C H * -d

- A)(A(CL*; pL) _ A(C'; pL)) > 0.
(1.20)

In the first equality, we have used: the fact that (ICH) binds in C(CH*, CL*, A*); the fact
that (VH) and (OH) do not depend on CL; and the fact that c* = c, by property 1 and
the definition of C'. In the second equality, we have used property 2 to drop V(C'; pL)-
V(CL*; pL). We have also used property 2 and property 1 to apply Lemma 5 (which appears
below) to drop the last term. To see the third equality, note that, for some k E R,

N
EP 6Hpu(Cs ) (* -cs) kvVBv(c ; pH), (1.21)
s=O

which, by property 4, is 0. The final inequality in (1.20) follows from property 3 above.
Expression (1.20) is the heart of our contradiction establishing Step 3: whenever it

holds, (CH*, CL*,A*) cannot maximize . The preceding analysis shows that whenever
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(CH*, CL*, A*) is such that we can construct OH*, C* and a satisfying properties 1-4, (1.20)
holds. We will now complete Step 3 by showing that when (1.19) holds, we can construct
aH*, C* and a satisfying properties 1-4, whereby (1.20) holds and (CH*, CL*,A*) cannot
maximize £.

Let CH* be the point on the ray from (1, 0,. , 0) through CH* with co = c*. Let c*
solve EN =lpHsu(cH*)('H* - c*) = 0 and let C* = (cL*,c*, .. - ,c*). Property 1 is trivially
satisfied. To establish property 4, consider the unit vector OA in the direction of C* - CH*
Since V A V(CH*; PH) = k' '=l -Ps'du'(c4*)(s* -c*) for some k' e R, the definition of C*
immediately yields VAV(CH*; pH) = 0. Property 4 will then follow immediately from the
fact that, for any a E [0,1),

VVAV(C ; pH)) = mV_,V()V(CH*; pH) (1.22)

for some m > 0, where OB(a) is defined in property 4. The left hand panel of Figure 1-11
illustrates this fact. It shows that VA and -- B can be decomposed into components =
and -= parallel to the line through (1,0,.. ,0) and CH*, and components VA and -B

orthogonal to it, respectively. Since 0 H*, cH* and (1, 0,..., 0) are collinear, V = mOl for
some m > 0. (1.22) follows from the fact that VV V(CH*;PH ) = VpV(CH*;H) = 0, by
constraint (OH).

A similar argument using parallel and orthogonal components and constraint (OL) can
be used to show that

sign(V_-*v(CL*; pL)) = sign(VzV(CL*; pL)) (1.23)

where v is the unit vector in the direction of ,H* - L* and, as above, v* is the unit vector
in the direction of CL* - H*. This is illustrated in the right hand panel of Figure 1-11. By
(1.19) (the assumption we are trying to contradict) and (1.23), VV(CL*; pL) > 0.

To establish property 2 we will separately show that both V(CH*; pL) > V(CL*; pL) and
V(CL*; pL) > V(C*; pL) must hold. Given these, continuity will allow us to find a such
that V(cCH* + (1 - a)C*; pL) = V(CL*; pL)

To show V(CH*; pL) > V(CL*; pL) suppose that V(CH*; pL) < V(CL*; pL). Step 2 and
Lemma 4 then imply A(CH*; PH) < A(CL; PH). Let C ,H(/) _ (C, 1,... , fN*) for
/3 R and define fi(fl) to be the unit vector in the direction of OH*(,) - CL*. Note that
C'H*(1) = CH*, SO U(1) = , whereby V (1)V(CL; pL) > 0. Since V(O)V(CL*; pL) and
A(C'(,8); PL) are decreasing in /3, there is a unique 3' < 1 such that V (,3 )V(CL*; pL) = 0.
It has A(CH*( ); PH) < A(CL*; pH).30 This allows us to show that V(6,~(,),)£* > o.31

But this means that (CH*, CL*, A*) does not maximize , and we conclude, by contradiction,

3 0We implicitly use the positivity of the consumption components. This follows from CRRA utility.
3 lInformally: this adjusts CL* along L's indifference curve. The adjustment eases (BC) by

A(CH*(3,); pH) < A(CL*; pH) and the linearity of A. To see that the adjustment eases (ICH) as well,
compute

ViW3,)V(CH*; pH) k N pH6sIU(cH*)(H.(,) _ CL*)
= k EN ppH6u(c*)(H* -cL*) -k=Z pH6S u(c*)(( )c*)N a = P (. -. cL.)
< k E=o p6u(cJ*)(cH- cL*)

=kE,0psHs U(C'H*)(cH L*) = -,
Z.=op.
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Figure 1-10: Figure for the Proof of Theorem 2

that V(CH*; pL) > V(CL*; pL).
To show V(CL*; pL) > V(C*; pL), we first establish that V(CQL; pL) > V(C*; pL). By

a similar argument to that depicted in Figure 1-11,

C =a'(1,O,. ,0) + (1 - a)C* = Vc V(cH*(C ; pH) = 0 V' E [0, 1], (1.24)

where C - CH* denotes the unit vector in the direction of C-CH*. Consider the real level an-
nuity contract rCQL _ CQ,H = (0, CQ, ... , CQ) that (either) type could purchase

by spending her entire wealth on the only contract involved in the unique pooling CPO out-
come. It must be that c- < Q Otherwise, letting C'* = ( ;H. Ic*, *,
we see that V(C'*;PH) > V > V(CH*;pH), and therefore Vc, V(CH*;PH) > 0,
contradicting (1.24). Thus, V(CQ'L; pL) > V(C*; pL). V(CL*; pL) > V(C*; pL) follows
immediately from V(CL*; pL) > V(CQL; pL) (which holds since we are considering the case
with VH < V(CQH; pH)).

From the two previous paragraphs, we have V(CH*; pL) > V(CL*; pL) > V(C*; pL).
Hence, there is an a E (0,1) with V(axCH* + (1 - )C*; pL), establishing property 2.

We now show property 3. This will complete Step 3. Note from Steps 1 and 2 that

< < U (Ct1)
U'(c4) UI(c*) u,(ct*)

Using CRRA utility and the definition of C', this implies '() < , Hence '() <

(c.) Property 3 follows immediately from Lemma 4 below.

Step 4: Theorem 2 holds. Step 4 in the proof of Theorem 1 applies. 

where the last equalities follow from an argument similar to that depicted in Figure 1-11 and binding (ICH).
Finally, by Lemma 5, the adjustment leaves (OL) unchanged to first order. The adjustment has no other
effects on L.
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Figure 1-11: Directional derivatives with the same signs

1.6.3 Sufficient Conditions for Assumption 1
Here, we establish that Assumption holds for a broad class of utility functions by proving
Lemma 1 from the text; we rely on the auxiliary Lemma 2 for this proof. We then present
Lemma 3. It states the implications of Assumption 1 which are important in the proofs of
our central theorems.

Lemma 2 If u is three times differentiable, Assumption 1 holds if and only if '()) is
non-increasing in x.

Proof. For any fixed x (xl, x2), define the curve K implicitly via -q = U(z) This isU'(2) U,'(X2)'
the iso-MRS curve through x. Implicitly differentiating gives the slope Ki at x:

mK(x) = u"(xl)/u'(xi) - r(xi)

where r(x) _ -u"(x)/u'(x) is the coefficient of absolute risk aversion.
Let b be the unit vector in the direction of (1, (x)). Assumption 1 is evidently equivalent

to VfmK(xl, x2) < 0 Vx2 > x1. Computing this directional derivative completes the proof:

)2r,(XI) )2 (,,2)U,,,,) U'(I)~"'(Xl)
VOmK(XI, X2 ) < 0 X r(X2)2 r'(x) - r(x) 2 r'(X2) 0 i, U ( 2 )U"(X2) u< ) (X)u(X 1)

Proof of Lemma 1. Explicitly computing:

d (r-( )) d _ u'(x) u'(x)u"'(X) - (,(X))2 - u'(x)u'()5)
TXo~ dx\ U~~" (u"'(x))2 (U-,(X))2(

We see that d (r- (x)) is a non-increasing function of x if and only if u'()()() is a non-
increasing function of (u"()). By Lemma 2, this is equivalent to Assumption 1. increasing function of x. By Lemma 2, this is equivalent to Assumption 1. *
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t t
Figure 1-12: u' and C under the assumptions of Lemma 4

The condition that r-1 (x) is a weakly concave function of x is quite general. It holds, for
example, for constant absolute risk aversion utility functions (where r(x) = is a constant),
for constant relative risk aversion utility functions (where xr(x) = y is a constant), and for
anything in between-i.e., where xar(x) = y is a constant and a E [0,1].

Lemma 3 Suppose Assumption 1 holds. Fix t < N and Ct*+H > cH (respectively ct+ cH),~~~~~~~~~~~~ Ct*l C* <_tH
and define KI and KII via (1.6) and (1.7), respectively. Then KI is tangent to KI at
(cItH*, C1), and (ct, ct+l) E KI, (t, ct'+1 ) E KII implies ct+l < dt+1 (respectively, ct+l > t+l)

Proof. The tangency of K1 and KIH at (ctH*, c;+) is sufficient for the proof: KIH is a line,
and, under Assumption 1, KI is (weakly) concave towards the 45-degree line in the (ct, ct+l)
plane. A straightforward calculation of the slope of K1 at (ctH*, c;l) yields , where

Tt+l

rs -? is the coefficient of absolute risk aversion, yielding tangency. 

1.6.4 Auxiliary Lemmas

Lemma 4 Take any utility function u with u' > 0 and u" < 0 and any P E RN with P > O.
Take any C = ( 1 ,' ,cN) E RN and any C = (cl," ,CN) E RN such that ct+l < ct,
Et+, < t, and u<'() > u'(,) Vt < N. Define V(.; P) and A(.; P) as in (1.1) and (1.2) in

~+1 ctand u'(ctm) > V(~+1)
the text. Then:

A(C; P) > A(C; P) V(C; P) > V(C; P), (1.26)

and
V(C; P) > V(C; P) = A(C; P) > A(C; P). (1.27)

Proof (Sketch). (1.27) is an immediate corollary of (1.26), so we prove the former
only. Assume A(C; P) > A(C; P). Under the assumptions, u'(ct), u'(Et), and __ are all-- ~~~~~~~~~~~~~~~~~~~~u'(ct)ar
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Figure 1-13: Proof of Lemma 4

increasing in t. If '(-t > 1 for all t, the conclusion is obvious. Otherwise, 3t* < N suchu (c,) -
that u'(ct) > u'(Zt) Vt t* and u'(ct) u'(ct) Vt > t*. Clearly, t* > 1.

Figure 1-12 depicts this situation. The left panel shows the marginal utilities and the
right hand panel shows the consumptions. Intuitively, C has "extra consumption" and a
"consumption deficit" vis a vis C in early and late periods, respectively. Starting from
t = 1, imagine removing the excess early-period consumption from C and using it to "top
up" the late period consumption deficit (starting from period N and working backwards).
The first step of such a process might, for example, yield the new consumption vector C
in the left panel of Figure 1-13. Because this reallocation moves consumption from high-
consumption states to low-consumption states, we have V(C; P) > V(C; P). Continuing

this process up to t* yields a consumption stream C as in the right hand panel of Figure

1-13; each step in the process increases the utility of the P-agent, so V(C; P) > V(C; P).

Since A(C; P) > A(C; P), when the process is complete, C will no longer have any "excess

consumption." (A "consumption deficit" may remain, as in Figure 1-13.) Hence, V(C; P) <
V(C; P), whereby V(C; P) < V(C; P). 

Lemma 5 Take u(x) = P > 0 and any two consumption vectors C > 0 and C' >> O.
Then:

N N

V(C; P) V(C; P) 4 ZP3uI(cs)c = EpS'u1(c)C.
s=O s-O

Proof. u'(c,)c8 = (1- y)u(c8 ). Hence, E=op 8,6u'(c.)c = (1 -'y)V(C; P) from which the
result is immediate. 

45



1.6.5 Approximating Voluntary Markets with Compulsory Ones

The "voluntary" and "compulsory" market models presented in the text differ only insofar
as there is a pre-annuitization consumption period in the former. This extra period captures
individual choices about whether and how much to annuitize that is lacking in the compulsory
framework. Evidently, the voluntary market is a more realistic model of most private annuity
markets. The compulsory market results apply to a broader class of preferences, and, unlike
the voluntary market results, they directly extend in the presence of pre-existing annuities
or other illiquid income streams.32 One might therefore hope that-even if it is not a
literally correct model-the compulsory framework is nevertheless a good approximation
to the more realistic voluntary setting. Intuitively, this seems like a reasonable hope: as the
pre-annutization contracting period-the only period where the compulsory and voluntary
settings differ-becomes sufficiently short, it should play a minimal role in contracting, and
contracts in the two settings should be "close." The point of this section is to formalize this
intuition.

We first present a general continuous time annuity market model. Normalize the potential
lifetime of an individual to t E I [0,1], and interpret consumption c(t) and utility u(c(t))
as flows. Individuals of type i = H, L have continuously differentiable probabilities pi(t) of

surviving at least to t, with pi(0) = 1, and pi(t) > 0 and dpt ) < 0 for all t E (0,1). We

also assume that dt (t) < 0 for all t E (0,1). Individuals and firms discount the future

at the common rate r. Hence, individuals receive utility from consumption streams c(t)
via the functional V(c;p) = ftEIp(t)e-rtu(c(t))dt, while the cost to firms of providing the
consumption stream c(t) is given by the functional A(c;p) = ftElp(t)e-rtc(t)dt. Individuals
retire with unit wealth, which they use to purchase annuity-provided consumption streams
from firms.

The natural generalization of Claim 1 to this setting is to describe the constrained Pareto
optima as the solutions to the program:

sup V(cL; pL)
(cH, cL) E e

subject to
V(cH;pH) > VH (VH) (1.28)

fpL(t)e -tu (cL (t)) (cL(t) cH(t)) dt _> 0 (ICL)
fpH(t)e-rtu% (cH(t)) (cH(t)- cL(t)) dt > 0 (ICH)

AA (cH;pH) + (1 - A)A (cL;pL) < 1 (BC),

for varying values of f1
H . Unlike Program (1.3), however, it is not clear that a solution to

(1.28) exists (hence, we use sup instead of max). We have deliberately left the contract set
T- unspecified in (1.28). Varying ¢ will allow us to embed both the discrete-time compulsory
and voluntary market models from the text. It will also allow us to vary the frequency of
payments so that we can consider the "continuous time limit" that obtains when payments
get frequent.

We will proceed as follows. First, we will show how the compulsory market model from

32 Which implies that they extend naturally non-exclusive markets other than annuity markets as well.
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the text with N payment periods can be embedded in program (1.28) with the proper choice
of E. By considering a sequence of solutions, with increasing N, to these compulsory market
programs, we will show, in Lemma 8, that the supremum in (1.28) is obtained when = CxC,
where C is the set of continuous functions on I. Lemma 9 establishes that any solution to
the continuous time limit program (1.28) has the "front-loading"/"back-loading" structure
of the constrained optimal compulsory market contracts described in Theorem 1. We will
then show how we can embed the voluntary market program (1.18) in (1.28) with the proper
choice of C, and we will present results on the limits of these markets.

Define:

DN= {c:c(t)=c(t') Vtt'E [ k+ ), Vk = 0,... N-1 andc(1) = c((N-1)/N)}.
(1.29)

A function c E DN can be interpreted as a vector (co, cl,.. ,cN-1) E RN. Taking =
DN x DN, and defining

N f(k+l)/Npi(t)er(k/N-t)dtA =k/N
and (1.30)

6 -e- r/N

then Program (1.28) is exactly identical to Program (1.3) from the text.33

Define c to be the pooled fair level annuity:

=() (J (APH(t) + (1 - A)pL(t)) e-rtdt Vs E . (1.31) 

Fix VH, and consider a sequence of solutions (cxN, cL) to (1.28) with e: = DN x DN for
N = No, .-- , coo. We will show that there is a subsequence Nj which converges pointwise to
a bounded continuous function and that this limit is a solution to (1.28) with = C x C.
The following lemma will be central to our analysis.

Lemma 6 Define A = (Nv, a, p), with v > 0 and > 0, and p > O. Let 0(a, A) be the set
of solutions to the pair of equations:

u'(c*) _ ,(1A) = Nva, (1.32).u,(cH) uI(cH)

and
KA

u() + Nvr(cH)(cHCL) = p +Nv (1.33)

where r()= ,() is the coefficient of absolute risk aversion, and where A E (0,1). Under
Assumption 1, if 0(a, A) is non-empty, then it is single valued.

Proof. Consider (A, cA) E (aeA) and (B, cB) E (c,A). One can show, as in Lemma

3, that the sets (CB, CA) '- > u } and {(CB, CA) r(c-)(c - CA) < r(cC)(cr - C)}

330ne can use the monotonicity of to show that pH, is monotonic in k.a"ne can use the monotonicity of '-l to show that~ is monotonic in k.
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are disjoint under Assumption 1. If cAH > cB, then (1.32) implies ') > ,), and (.33)
U(cA) U'(CB) )

implies r(c )(cA - cL) < r(cf)(cf - c), a contradiction. Hence, = cB, and, by (1.32)
A ACA= CB. -

Intuitively, as N gets large, the sets DN described above get fine enough that they can
closely approximate continuous functions. This suggests that as N gets large, the value of
(1.28) with = DN x DN should approach the value of (1.28) with ¢ = C x C. The following
lemma verifies this intuition.

Lemma 7 Fix VH, and suppose u satisfies Assumption . Let (N*, cN*) be a sequence of
solutions to (1.28) with = DN x DN. Then limN-~ooV(`N*;pL) > V* where V* is the value
of (1.28) with = C x C.

Proof. If VH = V(E;pH), the conclusion is easy, since cN* = cN* = for each N, and
V* = V(e;pL). We treat only the case H < V(E;pH). (Similar reasoning can be used
if V/H > V(E;pH).) In this case, one can show V* > V(e;pL). (This can be established
by noting that the indifference curves for the two types are not tangent at and that the
iso-actuarial cost curves for each type are tangent to the indifference sets at c.)

First, note from Theorem 1 that the solutions (cN*, cL*) to the discrete time programs
have (ICL) slack, and they coincide with the solutions to the discrete time program with
(ICL) dropped. We will therefore consider (1.28) with (ICL) dropped. The value V** of
this relaxed program with = C. x C has V** > V*. We construct an "approximate"
solution (cdH, dCL) to this relaxed continuous limit program; this approximate solution will
have constraints (ICH), (BC), and (VH) strictly slack and will have V(CIL;pL) "close" to
V**. Towards constructing it, let (J*, c~*) be a pair of continuous functions which satisfy
constraints (ICH), (BC), and (VH) with V(CL*;pL) > V** - . Such a pair exists for any
E > 0. Take e small enough that V(cL*) > V**- > V(E; pL). Then cd/* 4 cL*, and there is

at' and a > 0 such that with cH (t) < cL* (t) Vt E [t' - X,t' + X].
Consider the function CIL = cL* - 77. For any > 0, (ICH) and (BC) are strictly slack

at (cH*, tL). Let (CH cL) = (cH*(t) + , c'L + ) Vt E [t' - x, t + X] and let (c' (t), cL(t)) 
(cH*(t), c'L(t)) otherwise. For any 7, we can take > 0 small enough so that (BC) is strictly
slack at (c' H, CIL). Furthermore, since u"(x) < 0, (ICH) is strictly slack at ('H, cL). Finally,
(VH) is strictly slack at (cH, CIL), since ~ > 0. We can take ~7 and ~ arbitrarily small, so for
any ( > 0 there exists a (c'H, CIL) such that constraints (ICH), (BC), and (VH) are all strictly
slack, and VL(cL;pL) > VL(c~;pL ) - ~. (Note that there are two points of discontinuity in
(CH, CL).)

Fix > 0 and take (c/H, dCL) as in the preceding construction. We will next construct
an increasing sequence (CNk?, CLk) DNk x DN, where Nk = 2 k, k = 1,.. ,oo, which
converges almost everywhere to (cH, CL). To that end, interpret CNNk as an Nk-vector with
components ci Nk, for s = . , Nk - 1. Take N = mintE[S/Nk,(8+)/NhI ci(t) for i = H, Land ~ ~,k or s=0,''' Nk--1 Tat 6H: N ,ke
and for s = O,... , Nk - 1, so that (CkA, CN) E DNk X DNk. Viewed as a function (instead
of a vector), cNk (t) is monotonically increasing in k at each t, and limkc N C (t) = ci(t)
for almost every t (the only potential problem points being where the discontinuities were
introduced). Lebesgue's Monotone Convergence Theorem thus applies. It can be used to
establish that 3k* such that all constraints-(ICH), (VH), and (BC)-are slack for all k > k*

48



(since they are slack in the limit). Furthermore, it can be used to show that

VL(cN;pL) VL(cL; pL) > V (c;pL) > V*> * -( E

Therefore limk.O VL (c L* pL) > V**-(-e. Since ( and E were arbitrary, limk.O VL(cL*; pL)>

V** > V* and the proof is complete. 
The following lemma shows that we can find sequences of constrained Pareto optimal

contracts for the compulsory market models as payments get more and more frequent that
converge to nice functions.

Lemma 8 Suppose Assumption is satisfied. Then for any N, there exists a solution
(cH, cN) to (1.28) with (E = DN x DN, and an associated set of non-negative Lagrange
multipliers A = (L, vH, X, p). Furthermore, there exists a subsequence Nk for which:

1. The pointwise limit (H*(t), CL*(t)) limk_..(C, k (t), N (t)) ests Vt E [0, 1],

2. (CH*(t), cL*(t)) is a continuous function of t, and

3. (cH (t), cL*(t)) solves (1.28) with e = C x C.

Proof. If VH = V(E; pH) then for any N the unique solution to the program is the first
best pooled actuarially fair solution (cL, C) = (, E), and the conclusions are obvious. The
remainder of the proof deals with the case VH < V(c; pH); a symmetric argument will apply
if VH > V(6;pH).

Existence of (H, cL) is straightforward. 34

We can use Theorem 1 to show that (ICL) is slack at any solution (cN, cfN) for the case
we consider. The first order necessary condition for CHk(t) is given by (1.33) and the first

order conditions for c L k(t) are given by (1.32) with ce = N.

Re-writing (1.32) gives:

u,'(c(t)) - NvNP'N(t) u'(cJN(t)) = KN(1 - A) (1.34)u'(~(t) -N~pV (t) (.4

Since N > 0 for all N and since cLN(0) > (0) for all N (by Theorem 1), we see that

NUN < X,--0 for all N. Since p4 •2 N-oo 1, we can find a sequence Nk, such that Nk, VNkl
p?," (10) P. ' 0

34 By the continuity of the program and the closedness of the constraint set, this requires only establishing
that we can confine our attention to a bounded set of potential (cH, CL) pairs. (Note that C E D means
that we can re-express the program as (1.3), so that ci E RN.) Boundedness can be established by the
following pair of observations: if there is an x such that

lim u(x) =-oo00

(e.g., x = 0 for CRRA utility with > 1) then CN is bounded from below and (BC) implies it is bounded
from above. Otherwise, we can bound cv from below by noting that for any p > 0 and for any constant K,

limx__oo pu(-x) + (1-p)u (_pK) = -oo whenever u"(x) <0 V x. (This is an upper bound on the utility
achieved when the consumption c is less than -x on the interval with weight p = piN 6 s and total resources
are bounded by K.)

49



converges to some number v* E [0, 1]. By Theorem 1, Ci(0) > (t) for all t and for
i = H, L. Bounding (0) from below uniformly for all N (e.g. by the minimum utility
criterion (VH) and V(cL;pL) > V(6;pL)), we can bound the left hand side of (1.34) from
above for all N. This means that KN is uniformly bounded from above over N. We can take
a subsequence Nk2 of Nk, for which Nk 2 converges to some n*. By Theorem 1, c (t) and

cL (t) are non-increasing for each N. One can use this to establish uniform (over N) upper
and lower bounds on c (t) for each t E (0,1). Fixing any t, there is therefore a subsequence
Nk 3 of Nk 2 for which cNk (t) converges for i = H, L. For this subsequence, PNk 3 therefore

converges to some p* by (1.33).
Notice that for each k3 and for each t, (cNHk3 (t), CNk (t)) solves:

maXCH,CLW(cH,CL, aN3,ANk 3 ) := U(CL) +pNk 3U(C") +Nk 3 VNk3 U(CH )(CH - CL) 135
kINk 3 (ACH + (1 -A)cL) ( )

for N = p'N(t) and AN-- (NvN, KN, PN). By Berge's Theorem, the solution set 0b(c, A) to

the maximization problem maxCH,cL W(cH, cL, a, A) is uhc in (, A). By Lemma 6, (ca, A)
is single valued. Hence, (ce, A) is continuous in (, A). Since (aNk 3 ,ANk) converges to

, Nk~~~~~~~~N3p(H,~ (v* c* p*)) we see that (Ck (t), Ck (t)) converges for each t E [0,1] to some (H*, cL*)

solving maXCH,CL W(cH, cL, s (v*,s*, p*)). Since is continuous in t,()is

continuous. Furthermore, (cH*, cL*) satisfies all of the constraints of (1.28) with C = C x C.
Since C (0) > (t) > C (1) VN, t and i = H, L and C' k (0) and C' (1) converge, weN N N Nk3 0 n Nk3 ()cnegw

can find a 0> 0 and a k* such that C < V k3 > k. Applying Lebesgue's Dominated

Convergence Theorem, we conclude that limk3-oo V(cNk ; pL) = V(cL*; pL). By Lemma 7,

then, V(cL*;pL) = V*, and (cH*(t), cL*(t)) solves (1.28) with = C x C. 

Lemma 9 Assume that u(.) satisfies Assumption 1. Let (cH(t), cL(t)) solve (1.28) for C =
C x C. Then the following are true:

1. U,(CH(t)) is a strictly decreasing function of t whenever cL # cH,;
I(-cL(t))

2. V(cL;pL) > V(5;pL ) 4: cL(t) and cH(t) are strictly decreasing functions of t and
(ICL) is strictly slack at (cH(t), cL(t));

3. V(cL;pL) < V(c;pL) <: cL(t) and cH(t) are strictly increasing functions of t and
(ICH) is strictly slack at (CH(t), CL(t));

4. V(cL;pL) = V(E;pL) <: cL(t) = cH(t) = c(t);

where c(t) is defined in(1.31).

Proof. The proof is essentially identical to the proof of Theorem 1, and we omit many
details. If VH = V(6;pL), then CL = = is the only solution to (1.28). If /VH < V(;pL),
drop (ICL) and examine the first order conditions:

u (cL(t)) pL(t) u(cH (t)) = (1 - A) (1.36)-L (t) ) 
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and
KA

u'(cH(t)) + vr(CHt)(cH - c )= p + i. (1.37)

Consider t > t'. Suppose (by way of contradiction) that cH(t' ) > CH(t). Then (1.36) implies
, (CL(tI)) UI (CL ()) an 13 H (Ij (CH (I\ - CL t'' (CH )(.''' t - t)
,,((t)) > ,((,)) and (1.37) implies rc(t))(c(t) c'(t')) < r(c1(t))(cr(t) CL(t)).

As in the proof of Lemma 6, this is impossible under Assumption 1. Hence, CH(t') < CH(t),
therefore, by (1.37) r(cH(t'))(cH(t')-cL(t')) > r(cH(t))(cH(t)-CL(t)). Under Assumption 1,

u(cL(t')) d UcL(t), th
this implies m,<nd() a 'CL(t") < cL(t), establishing the three properties requiredthis implies uIcH)) UI( (t)
by 1 and 2. The reasoning from Step 3 in the proof of Theorem 1 can then be used to show
that, since VH < V(; pL), (ICL) is strictly slack, and hence the solution to the programs
without (ICL) and with (ICL) coincide. 

We now consider the voluntary market setting. Defining

B = c E DN: (N- c(O)) j pi(t)e-rtu'(c(t))dt = pi(t)e-rtu'(c(t))c(t)dt (1.38)

and taking C = BN x BL, Program (1.28) is then identical to a version of Program (1.18)
with wealth N instead of unit wealth.35

We will present two theorems which capture the notion that voluntary markets "look
like" compulsory markets when the payments get frequent. The first considers the continuous
time limit program where annuity payments are continuous. The second considers limits of
voluntary markets as payments get more frequent.

Towards the first, note that in the continuous time limit, voluntary and compulsory
markets only differ in the single point in time t = 0. The natural continuous time limit of
(1.38) requires that ci(0) satisfies:

Boo = c: c(o,1] C and u'(ci(O)) = j pi(t)e-rtu'(ci(t))ci(t)dt , (1.39)
0

where c(o,l] denotes the restriction of c to the half-open interval (0,1]. For any c E C with an
integrable u'(c)c, there is a corresponding c' E B. which differs from C at the single point
t = 0. The proof of Theorem 3 essentially consists of the observation that the structure
of the optimal contracts described by Lemma 9 ensures that at any solution to (1.28) with
E = C x C, u'(ci)c i is integrable.

Theorem 3 Assume that u(.) satisfies Assumption 1. Let (cH(t),cL(t)) solve (1.28) for
= B x BL and let (cH(t), cdL(t)) be the restriction of (cH(t), cL(t)) to (0, 1]. Then the

following are true:

U. ((t)) is a strictly decreasing function of t whenever c'IL c'H;

2. V(cIL;pL) > V(6;pL) : c'L(t) and c'H(t) are strictly decreasing functions of t and
(ICL) is strictly slack at (cH(t), cL(t));

35 This technicality is due to the normalization to the unit interval I in the continuous time setting as
opposed to the N period setting of the text.
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3. V(c'L; pL) < V(; pL) X cIL(t) and c/H(t) are strictly increasing functions of t and
(ICH) is strictly slack at (H (t), cL (t));

4. V(cL; pL) = V(c;pL) X CL(t) = cH(t) = (t);

where c(t) s defined in (1.31).

Using similar reasoning to Lemma 7, one can readily show that any sequence of solutions
(cH, CN) to Program (1.28) with e: = BNH x BL which converges uniformly to a continuous
function (cH(t), cL(t)) must converge to a solution to (1.28) with = B x BL. More
interestingly, the following theorem shows that the same is true for any sequence of solutions
(Cx, cL) which converge pointwise.

Theorem 4 Suppose u satisfies Assumption 1. Consider any sequence of solutions (cNH, cN)
to Program (1.28) with = x B .H X BN If (cHsN(t),cL(t)) (c(t),cL(t)) for all t, then
(cH(t), cH(t)) is continuous and solves (1.28) with e = C x C.

Proof (sketch). To approach the voluntary market problem, re-express the maximization
problem (1.28) with e B x BNH in terms of the contract vectors IN - (0, 'N, , N),
i H, L. Note that ki 'N is the consumption stream that an individual would receive if
she spend her entire wealth on the annuity product Ei,N . The consumption achieved when
an individual of type i optimizes over the quantity of contract ai,N to purchase is given by
cH 'N = (1 - f)N + /Ni ' N , where w =- (1, 0,..., 0) E R +1 and where f3l solves:

N

NpoN u' ((1 - )N) = Epi u' (lBi 'N)'N (1.40)
s5=l

Equation (1.40) defines #v as an implicit function of ai,N.a 6 Similarly, we will find it useful to
express consumption ciN as a function ci'N(EiN, fli (aiN)). This allows us to re-write (1.28)
with = B x B as:

max V(CLN(EL, N3 (EL));PL)
(EH,aL) E 

subject to
V(CSN(ZH,/SN(EH));pH) > VH (VH) (1.41)

~N L,Ntt (EL,
_t= ptNtu (N4) (t - 2[) > 0 (ICL)

Zt-l Pt i ( ) ( t-L) > O (IH)
AA (Hs (,6fNH(H));pH) + (1 - A)A (CL'N(eL, SL(EL));pL) < 1 (BC),

Dropping (ICL) and taking first order condition with respect to L yields:

uI(cLN) -! U -I(CHN - A)-
u (C pAK\i IN(l

6L jp-I N )(CLN( LN1I)pLIN) L(1.42)N n( -OA(~ (a~;,)o~.=0.

3 6Note that ci'N = B N~ifsN for s > 0 and (1 - i)N = c , so condition 1.40 is a re-expression of the
condition in the definition of BN.
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First order condition (1.42) is much like the compulsory market first order condition (1.34).
The first three terms in (1.42) are essentially identical to the first three terms in (1.34) (up
to the factor of PN6 which comes from maximizing over EL instead of cL). These terms come
from the "direct effect" of varying on the program, ignoring the induced adjustment to
YNk. The last term comes from the indirect effect on the program of the optimal adjustment
to /NL. (Note that we have use an envelope condition to drop the indirect effect on constraint
(VH).)

Taking the first order condition with respect to H gives:

O = (PN + a.VL) - -ey-r(cN) (ZHN - LN)
1 (_ NKNA 8A(C (HNN M);P N) + -=~~~~~~~O + _J -En

ul ~ H~'.1o, -/:p NV ,N n= n n w~ -
(1.43)

Again, this condition is very similar to the compulsory market condition, except for the
presence of the two "indirect" terms which account for the optimal adjustment of O.

To evaluate the effect of these additional terms, we can explicitly compute:

OA(ciN(i, f3);piN) 1 (A(ciN;pi) _piN) (1.44)
(A ~~~~~~~~(1.44)

and

afN (N iui(CN)(N2) _ iPNnU(CiN)(iN)2) _ iN 6 s (u (CiN) + N UI(cN)),-N .c Nc ))p P3 ( C
n=l

(1.45)
Using coordinates (H, Z, A), and letting 0 be the unit vector in the direction (aHN,0,0),
we can use the first order condition VfL = 0 to yield:

N (Ev _En=l PnpU"(tH(n)cn H(Z~N _ nL H) =NN (z~§.1 ~ - ~L~H)>.. (1.46)

( + ,) pHNu(c ) + (A(cHN;pHN) -pH(1 -))

To complete the proof, one can use (1.40) to find a subsequence for which (1-,f4)N = cN
converges (whence fi - 1). Then pointwise convergence of cNi(t) and (1.45) can be used
to show that o_ 0 as . Examining the first order conditions (1.42) and (1.43), one

sees that the O(~) convergence of o to zero implies that the "indirect" terms disappear
as N - oo. In the limit, then, the first order conditions coincide with first order conditions
(1.36) and (1.37). So the limit converges to a continuous function which solves the first order
conditions to the limit program. 
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Chapter 2

The Efficiency of Categorical
Discrimination in Insurance Markets

Abstract

Regulations restricting the use of risk-related characteristics such as gender, race,
or genetic makeup are common in insurance markets. This paper argues that
such restrictions are undesirable whenever the market is characterized by adverse
selection type informational asymmetries and the provision of social insurance
is feasible. By employing social insurance, pricing restrictions can be eased in
a way that ensures that no individual is made worse off, and the welfare of
some individuals may be strictly improved. This result holds in environments
with arbitrarily many risks and risk types, and it is robust across different types
of competitive equilibrium concepts, holding so long as a minimal "contestable
markets" assumption is satisfied. It applies even if the government is substantially
less informed than the market and even if observing risk-related characteristics
is costly.

2.1 Introduction
Regulations restricting the use of characteristics such as gender, race, geographic location,
and health status in the pricing insurance policies are already quite common. With the ad-
vent of genetic testing and with continued improvement in information storage and processing
technologies, characteristic-based pricing and calls for further restrictions thereon are likely
to become increasingly common. This paper considers an adverse-selection type insurance
market environment with such regulations and explores the welfare consequences of their
removal.

There is a basic economic tradeoff involved in removing versus maintaining restrictions on
category-based pricing. On the one hand, as highlighted in Akerlof's seminal 1970 "lemons"
paper, the presence of asymmetric information can lead to market inefficiencies. Restricting
firms' ability to employ observable characteristics in setting prices effectively introduces addi-
tional asymmetric information and therefore tends to lead to insurance markets that function
less well. On the other hand, in requiring that individuals with "bad" characteristics-e.g.,
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a genetic marker for some type of cancer-be offered the same types of policies as individuals
with "good" characteristics, such restrictions may indirectly provide individuals with some
ex-ante insurance, i.e., insurance against drawing the bad characteristic.

This tradeoff suggests that easing restrictions on the use of categorical information in
pricing insurance policies will in general benefit some individuals and harm others. In this
paper, we show that there is a way to ease restrictions that circumvents this tradeoff, so
that, in fact, no one is harmed by this policy change. We do this by constructing a social
insurance policy with two features. First, the provision of this policy will make no individual
worse off if restrictions on categorical pricing are maintained. Second, when this social
insurance is provided and the restrictions are removed, the market will choose to employ the
categorizing technology only if doing so will lead to a Pareto improvement in the well-being
of insurance buyers. By implementing this social insurance policy and easing categorical
pricing restrictions, then, a government can ensure that no individual will be harmed, while
retaining the possibility that some individuals will gain. Given this, maintaining restrictions
on category-based pricing is, in general, a sub-optimal policy for any government which can
provide social insurance.

In constructing the social insurance policy underlying this result, we rely only on features
of the market that are observable in the market equilibrium that obtains prior to the policy
change. To find and to implement such a policy, a government therefore does not need to
know whether categorization is costly to employ-as might be the case with a genetic test,
for example-or how costly it is. Nor does it need to know the relationship between the
categorical affiliation of an individual-for example, whether or not she has a particular
gene-and the riskiness of that individual to insurers. As such, the government can employ
social insurance and ease categorical pricing restrictions without the risk of harming any
individual even if it is at a significant informational disadvantage vis a vis the market.

There are a number of different concepts used in the literature to model equilibrium
in insurance markets, and there is no consensus on which is the proper notion. Given
this unresolved debate among economists, it is important that our result is not sensitive
to a particular choice of equilibrium concept. In fact, our result is surprisingly robust in
this respect: the social insurance policy we construct simultaneously applies in all markets
satisfying a weak "market contestability" assumption, an assumption which is satisfied for
all of the concepts commonly employed in the literature, as well as for many others. The
same policy intervention will therefore ensure that no individual will be harmed no matter
how the market subsequently "equilibrates." As such, the government can effect a Pareto
improvement by implementing this social insurance policy and easing categorical pricing
restrictions even if it is uncertain about the precise functioning of the market.

Additionally, our result is not particular to the prototypical Rothschild and Stiglitz (1976)
two-type one-accident insurance market setting. We establish the result in a setting with
arbitrarily many types, with arbitrarily many accident risks, and with arbitrary patterns of
risks across accidents and types.

The intuition behind our "inefficiency of categorical pricing restrictions" result is quite
simple: mandatory social insurance and categorical pricing restrictions are both ways of
providing insurance against the "risk" of being a high-risk type, and the former is a more
efficient way to provide it. Since insurance markets open at the interim stage after risk types
have already been assigned by Nature, the demand for insurance arises from the desirability
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of coverage against the risk of an accident, not from the desire for coverage against the
already-realized "type" risk. Imposing legal restrictions on the use of characteristics in
pricing policies therefore distorts the demand for (and the supply of) interim insurance,
causing the market to function less well. In contrast, social insurance can be used to provide
ex-ante insurance without imposing these distortions. In short, social insurance is a better
tool for providing "type" insurance than pricing regulations are.

Jointly providing the social insurance policy we construct and removing restrictions on
categorical pricing will never harm anyone and may benefit some individuals. A government
would presumably find this policy change desirable vis a vis maintaining restrictions on
characteristic-based pricing. Insofar as real-world governments cannot, in practice, imple-
ment such policies, however, our results are silent about the (un)-desirability of such pricing
restrictions. Social insurance is a "textbook" government intervention, and it is employed by
many real-world governments in one form or another. However, there are a number of reasons
why, in practice, a government may be unable to employ the policy change we construct. For
example, political considerations may preclude the practical (or efficient) implementation of
the particular social insurance policy we construct. Or, a government may be insufficiently
informed to implement the policy; our construction does not rely on the government being
as informed as the market, but it does rely on the government having some information-for
example, information on the market equilibrium that obtains with categorical pricing re-
strictions in place, and information on the accident realizations of individuals. As such, our
result must be interpreted carefully: we do not establish that categorical pricing restrictions
are inefficient per se. Rather, we show that maintaining restrictions on characteristic based
pricing is a sub-optimal policy for a government with sufficient information and ability to
provide the social insurance policy we construct.

Using mandatory social insurance to improve the functioning of insurance markets is
a notion that dates to Wilson (1977). Wilson observed that by providing pooled price
mandatory insurance and allowing firms to offer supplemental policies, a government can
help the market to achieve a (second-best) efficient outcome. The proof of our central result
involves applying a generalized version of Wilson's observation in a setting where firms have
access to a categorizing technology.

Though our formal analysis builds most heavily on Wilson's observation, the most closely
related paper in the literature is Crocker and Snow (1986). Crocker and Snow address a simi-
lar question in a qualitatively similar but less general setting. They establish a related result:
a government with access to a limited set of policy tools can Pareto improve upon the market
outcomes which obtain when characteristic-based pricing is banned. Their work represents
a seminal contribution to our understanding of the unavoidable efficiency consequences of
categorical pricing restrictions, but it leaves open a number of concerns regarding the ro-
bustness of their conclusions. For example: they conclude that bans may not be inefficient
when the categorizing technology is costly; they do not address the important possibility
that the government may be less informed than the market-particularly with respect to
the functioning of the categorizing technology; and their two-type one-accident setting and
equilibrium-concept specific policy interventions leave open the question of whether their
conclusions are model-specific or broadly applicable. By addressing these concerns, we es-
tablish that Crocker and Snow's result is substantially stronger than their original paper
may have suggested.
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We proceeds as follows. Section 2.2 describes our basic analytical scaffolding. We present
* a formal description of: the market; the technology available for characteristic-based pricing;
and the policy tools at our notional government's disposal. We also discus our approach to
modeling market outcomes. In Section 2.3, we illustrate our central result on the inefficiency
of characteristic-based pricing restrictions in insurance markets in the familiar two-type one-
risk framework. We then turn in Section 2.4 to generalizing that result to a many-type,
many-risk setting with a general categorizing technology, and we formally establish our
central result in this environment. Section 2.5 discusses in greater detail how this paper
builds on Crocker and Snow's work. Section 2.6 provides some discussion of situations in
which our analysis does not apply and where there may be a stronger case for imposing and
maintaining restrictions on characteristic-based pricing. Section 2.7 concludes.

2.2 Setup and Relation to the Literature
This paper operates in a generalized version of the insurance market framework pioneered by
Rothschild and Stiglitz (1976). Qualitatively, insurance providers in this framework "screen"
their potential clients by designing menus of contracts. The policies in the menu differ in
their pricing and coverage and therefore differentially appeal to individuals with different
private information about their accident risks.

There is an unresolved debate in the literature about the proper equilibrium concept for
this type of insurance market.' The debate has its roots in the non-existence of a static
Nash equilibrium in Rothschild and Stiglitz's model. This non-existence result spawned a
series of papers attempting to restore existence by introducing dynamic elements to strategic
behavior in the market (see, e.g., Wilson (1977), Spence (1978), and Riley (1979a,b)). These
papers can be understood as attempts to model competition in a private information setting
where the perfectly competitive Walrasian "law of one price" paradigm is generally inap-
plicable.2 The various concepts address this by effectively replacing "perfect competition"
with a combination of product differentiation (contract menus) and market contestability,
in the spirit of monopolistic competition in product markets. The concepts differ in their
view of what the right contestability notion is-i.e., on their view of who the potential en-
trants to the market are.3 For example, the Wilson (1977) "foresight" equilibrium views
the set of potential entrants as firms who could offer contracts that will be profitable even
after other firms have responded by withdrawing existing contracts. The Riley (1979a,b)
"reactive" equilibrium, on the other hand, views the potential entrants as those firms who
can offer a single contract that will be profitable even after the entrance of new firms in re-

1Hellwig (1987) provides a good discussion of this debate. More recently, the empirical literature on
testing for adverse selection in insurance markets has emphasized the importance of testing only robust
implications of screening. This emphasis is due in large part to uncertainty about the correct equilibrium
notion (e.g., Chiappori and Salani6 (2000)).

2For a discussion of this, see Bisin and Gottardi (1999).
3More recently, there has been interest in studying "decentralized" insurance markets (e.g., Dubey and

Geanakoplos (2002) and Bisin and Gottardi (1999)). Rather than resolving the problems imposed by private
information in the Walrasian paradigm by introducing monopolistically competitive elements, these models
effectively posit exogenous restrictions on the structure of product space which allow them to retain the
flavor of Walrasian equilibrium.
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action to their entry. Both represent restrictions on the potential-entrant set in the original
Rothschild-Stiglitz model-i.e. that set of firms who can enter and make profits given the
current set of contract-offers. Indeed, Rothschild and Stigltiz's non-existence result stems
precisely from their potential-entrant set being "too large."

We take the considerable uncertainty on the part of the economics profession about the
proper conception of insurance market equilibrium as cautionary in at least two respects.
First, it requires that we ensure that our modeling approach and conclusions do not hinge on
any particular equilibrium concept. Second, it suggests that we should view the government
in our models as commensurately uncertain about the functioning of insurance markets.

As such, while we retain the market contestability flavor of the models in the Rothschild-
Stiglitz paradigm, we step back from assuming any particular equilibrium notion-or any
particular collection of particular equilibrium notions-in our analysis. Instead, we make an
assumption that markets are minimally contestable in the following sense: a market should
never be subject to entry by a firm who can profitably attract some individuals and can be
sure that it will not lose money no matter what subset of the population they sell contracts
to. This contestability notion is minimal in the sense that it requires only that the market
be robust to potential entrants who can enter completely safely, even if they happen to get
the "wrong" types buying their products.

Minimum contestability in this sense is the only restriction we impose on market out-
comes. This is a weak assumption about outcomes, one that permits any of the outcomes of
any of the standard equilibrium concepts-the Wilson (1977) equilibrium, the Riley (1979a,b)
equilibrium, the Miyazaki (1977)-Wilson (1977)-Spence (1978) equilibrium, and, when it ex-
ists, the Rothschild-Stiglitz (1976) equilibrium as well. We do not take a stand on which
minimally contestable outcome will actually obtain. Since our result relies only on a weak
assumption about market outcomes, it is a strong result: it is robust across a broad class of
markets and institutions.

An additional strength of this approach is that it applies in settings where the con-
sequences of existing equilibrium notions have not been fully explored. We will consider
settings wherein firms have access to categorizing technologies which allow them to observe
characteristics related to the riskiness of their potential customers. The applicability and
implications of commonly used equilibrium concepts have not been fully explored in such set-
tings, particularly when the categorizing technologies are potentially costly. Our "minimally
contestable markets" approach will carry over in a natural and simple way.

2.2.1 Notation and Setup

We consider a generalized version of the canonical Rothschild-Stiglitz model. Because we
will introduce this model at a high level of abstraction, readers more comfortable with
the standard two-type one-risk framework may find it useful to refer to Section 2.3, which
illustrates the application of the general model to that particular case.

There is a unit measure continuum of individuals, and there is a finite set of states
S = {1,... , s,... , S that can obtain for each individual. Each individual is one of a finite
set I = 1,... . , I} of possible types. The probability of state s obtaining for a type
i individual is p, and we denote the vector (pi,... ,p) by Pi. We make the following
assumption on pi:
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Assumption 2 {Pi}iEI is a linearly independent set, and pi > 0 for all i.

The assumption of strictly positive pi vectors is purely technical. The linear independence
rules out the possibility that some mixture of types will "look like" some other type.

Type i individuals know their type, and hence pi. They have preferences over state-
dependent consumption vectors C = (cl,... , cs) given by:

S

Vi(C) Epus(c), (2.1)
s=1

where u, : R - R is a (state specific) utility function with u' > 0 and u, < 0.
As in Hoy (1982) and Crocker and Snow (1986), each individual also belongs to one of

a finite set r of at least two categories. The joint distribution of individuals over IZ x F
is given by A E A(2 x r).4 We assume (without loss of generality) that EiEzA(i,y 7) > 0
for each E r and -YEr A(i, y) > 0 for each i I, and we define A" as the category
7-conditional distribution of types. An individual's category y is not directly informative
about that individual's riskiness P. It is indirectly informative insofar as A" 7- margzA,
where margzA denotes the marginal distribution of A over I. A special case is "perfect
categorization," where r = {1,... ,I}= I and A(i,j) = 0 for i # j, so that category is
perfectly predictive of type. It is not essential for our results, but we assume for concreteness
that each individual knows her own category 7.

Finally, each individual is endowed with a state-contingent wealth vector W = (wl, , ws)
W gives the consumption of each individual in the absence of insurance.

2.2.2 Insurance Contracts and Firms
We say that an individual is fully insured when her state contingent consumption vector
C = (cl,... ,cs) satisfies u'(c,) = u,(cs,) for all s and s'. Since the definition of "full
insurance" does not involve P/, full insurance is a property of a consumption vector C, not
of the type who consumes it. Given our assumptions on u, the full insurance consumption
vectors can be ordered: any two distinct full insurance consumption vectors C = (cl, · , cS)
and C' = (,... , cds) either have c > c for all s or else have c' > c for all s.

Individuals desire insurance insofar as W does not provide full insurance-i.e., when
u'(w8 ) # U'/,(w,) for some states s and s'.

Insurance contracts are provided by risk-neutral firms. An insurance contract Y =
(yl, , s) is a set of state contingent payments from firms to individuals. When y8 > 0,
we say that an individual receives an indemnity in state s, and when Ys < 0, we say that
an individual pays a premium in state s. An individual purchasing the contract Y achieves
the net state contingent consumption C = W + Y. We follow the literature in assuming
exclusive contracting: individuals purchase at most one contract from one firm.

Firms cannot observe or verify an individual's type. As such, they cannot offer con-
tracts directly to specific types. They may indirectly offer contracts to specific types via
a Rothschild-Stiglitz-like screening mechanism-i.e., via contract menus and self-selection.

4We use the standard AA to denote the set of probability distributions on A.
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Additionally, they may have access to a categorizing technology which allows them to observe
a category or set of categories to which an individual belongs. Firms can offer contracts con-
tingent on the buyer being a member of some category ?y in the set F c F. These contingent
contracts require that categorical membership be verified via a potentially costly test.

A firm selling a F-conditional contract Y to an individual of type i makes profits

S

nr(Y, F) - PiYs - X(), (2.2)
s=1

where X(.) is a categorization cost function mapping 2r-the subsets of Fr-to IR+ U oo},
satisfying X (F) = 0. We interpret X(f) = oo as a situation in which a test for F either does
not exist or is banned by the government.

A "non-categorizing" contract Y can be purchased by an individual in any category
E F. Selling a non-categorizing contract does not entail any categorization cost (since

X(F) = 0). A firm selling such a contract to a type i individual therefore earns profits
Hii(Y, ) = -- S ypYs. If li(Y, F) = , we say that contract Y is actuarially fair for type
i. More generally, the actuarial cost of providing a given contract Y to type i is given by
-rI(Y, F). When a contract Y requires categorization-i.e. when it is F-conditional for
some F # F---the cost of providing it will exceed the actuarial cost insofar as X(F) > O. In
this case, we will say that the contract is break even (for type i) when Ili(Y, F) = O.

We make the following assumption about insurance markets:

Assumption 3 There does not exist a full insurance consumption vector C with the property
that IT(C - W, F) = 0 for all i.

Assumption 3 rules out the un-interesting case where the full insurance actuarially fair
contract is the same for every type. When Assumption 3 is violated, there is no need to
worry about adverse selection causing underinsurance in the first place.

It will frequently be more convenient to describe contracts Y via the induced consumption
C = W + Y:; with exclusive contracting, the two approaches are essentially equivalent.

2.2.3 Market Contestability and Market Equilibrium
We now formnally state our assumptions on possible market outcomes. First, using the
notation above, we formally define an insurance market:

Definition (Insurance Markets) An insurance market (or simply market) is a list
M = {S, I, 'Pi}iE, {uS}SEs, F, A, W, X}, with {Pi}iEI satisfying Assumptions 2 and 3.

By a market outcome, we mean the assignment of contracts to individuals. When cat-
egorization is possible, the definition of a "contract" must include a description the set of
state-contingent premium and indemnity payments (equivalently, the state-contingent con-
sumptions) and also must indicate the set of categories who may purchase it. A market
outcome is thus a function C: I x - x 2, with C(i, ) = (C(i, ), (i, )) giving the
consumption C(i, ) assigned to category--y type-i individuals and the set F(i, ?y) of categories
permitted to purchase the contract yielding this consumption. Of course, not every market
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outcome is reasonable. The following definition of informational feasibility captures a mini-
mal set of restrictions on reasonable market outcomes. In this definition and in what follows,
we will (harmlessly) abuse notation and write IIi(C(i, 7) - W) instead of the more proper
IIi(C(i, y) - , r(i, y)). Similarly, we write utility as Vi(C(i, y)) instead of Vi(C(i, 7)).

Definition 2 (Informational Feasibility) A market outcome C = (C, r) is information-
ally feasible if:

1. -y E (i, y) for all (i, y).

2. V'(C(i, y)) > V(W) for all (i, y).

3. V'(C(i,y)) > V'(C(i', y')) for all (i, y) with A(i, ) > and for all (i',y') such that
E (i', y').

4. E(,-)Ezxr A(i, 7)n(C(i,7) - W) > 0.

The definition of informational feasibility captures four minimal restrictions on reasonable
market outcomes. First, no market outcome should involve an individual purchasing a con-
tract which expressly excludes purchases by his category. Second, individuals only purchase
a contract if it makes them better off than if they eschewed the insurance market and
consumed their endowment. Third, outcomes should be incentive compatible: individuals
should choose their contract optimally from the menu of contracts available to their cate-
gory. Finally, the total profits of firms should be non-negative. Informational feasibility thus
captures the basic informational, "individual rationality" and "break-even" constraints one
would expect from any market outcome whether that market is competitive, monopolistic,
or somewhere in between. We will additionally impose the following "contestable markets"
restriction on the reasonable market outcomes to capture a minimal notion of competition.

Definition 3 (Minimum Contestability) A market outcome C is minimally contestable
if there does not exist an informationally feasible C' such that:

1. Ili (C'(i, ) - W) > 0 for all (i, 7 ) E Z x r with A(i, ) > 0 and

2. Vi (C'(i, 7)) > Vi (C(i, 7)) and I' (C'(i, 7) - W) > 0 for some (i, 7 ) with A(i, 7 ) > 0.

A market fails to be minimally contestable if it produces an outcome C with the property that
a firm could enter and offer a contract menu that would earn non-negative profits no matter
who buys it and would earn strictly positive profit on some type who strictly prefers the new
menu to C. The second requirement of minimum contestability is akin to the equilibrium
condition of Rothschild and Stiglitz (1976); the addition of the first requirement expands the
set of market outcomes we view as possible vis a vis Rothschild-Stiglitz by relaxing the set of
potential entrants against which the market outcome must be robust. This relaxation of the
potential entrant set can be viewed as implicitly modeling some additional considerations
of an entrant-say concerns about the potential responses of other firms, in the spirit of
Riley (1979a,b) or Wilson (1977). In Definition 3, we do not explicitly model these concerns;
rather, the first requirement of that definition can be viewed as a minimal requirement
that will be satisfied for any reasonable concern, since a potential entrant offering a menu
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satisfying this requirement knows that it will not lose money no matter what happens-i.e.,
no matter who they ultimately sell contracts to.

Feasibility and contestability are the only assumptions we impose on market outcomes:

Assumption 4 (Potential Equilibrium Outcomes) The set of possible market "equilib-
ria" is the set of informationally feasible and minimally contestable market outcomes.

We do not present an explicit game theoretic model of equilibrium, but Assumption 4 is
consistent with all of the standard equilibrium concepts for such markets. These concepts
can be formulated as the Nash equilibria of dynamic games.5

2.2.4 The Government and Social Insurance

We will consider three possible government policy instruments: bans on categorical pric-
ing, direct social insurance provision, and indirect social insurance provision via partial
re-insurance for firms. We describe each in turn.

Categorical Bans First, the government can ban category-based pricing by imposing the
prohibitive cost function X _ oo. When categorization is banned, firms cannot legally
prevent any individual from purchasing any available contract. This means that, in any
informationa.lly feasible market outcome, any two individuals of the same type must achieve
the same utility, regardless of their categorical affiliation. It is possible that two different
individuals of the same type receive different contracts in such an outcome, but there will
always be a utility-equivalent (and informationally feasible) outcome with all categories of
each given type purchasing the same contract. Similarly, for any market outcome satisfying
Assumption 4, there will be a utility-equivalent market outcome, also satisfying Assumption
4, in which contract purchases depend only on type, and not on category. The following
lemma states these claims formally.

Lemma 10 Suppose that X - oo. Then for any informationally feasible outcome C (mar-
ket outcome C satisfying Assumption 4) there exists an informationally feasible outcome C'
(market outcome C' satisfying Assumption 4) such that Vi(C'(i, )) = Vi(C(i, Y)) for all (i, y)
and C'(i, 7y) = C'(i, y') for all i and for all y and y'.

In light of Lemma 10, when X _ X = oo, the set of market outcomes in any two
markets which differ only in their A's but share the same marginal distribution marg 1A
are essentially equivalent. Whenever X = X, we will therefore allow ourselves to abuse
notation and express a market MA using a distribution A E AlZ in place of the distribution
A E A(I x ).

5For example, in a previous version of this paper, we formulated the so-called Miyazaki (1977)-Wilson
(1977)-Spence (1978) equilibrium as the unique sequential equilibrium of a particular dynamic game, and
we used this equilibrium concept for our analysis. Also see Hellwig (1987).
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Social Insurance Second, the government can provide mandatory social insurance, so
long as it does not lose money. This involves the provision of an insurance policy yG to all
individuals, with yG satisfying

A(i, 7)li (yG, F) > 0. (2.3)
(i,y)Elxr

With social insurance only, individuals will have state-contingent consumption W + yG _
WV(YG). They will be able to purchase "supplemental" insurance policies from private firms.
In the presence of social insurance policy yG, the market will operate exactly as it would if
individuals were directly endowed with W(YG) instead of W.

Re-Insurance The social insurance policy yG is equivalent to a tax-transfer scheme on
every individual, where the tax or transfer depends (only) on the state s which obtains for
that individual. The third policy tool we consider can be thought of as a state specific
tax/transfer scheme on firms: the government can mandate a "re-insurance" scheme ZG E
RS. ZG = (, ... ,ZSG) imposes indemnities and premiums on firms on the basis of the
accident history (equivalently, s realization) of each individual who purchased a policy from
them.

Providing a social insurance policy yG and providing a re-insurance policy with the
same premium and indemnity payments are qualitatively similar. The two policies differ
only insofar as the former can change the set of informationally feasible outcomes through
the "individual rationality" requirement (i.e., requirement 2 in Definition 2), while the latter
cannot change the informationally feasible set through this channel. They have identical
effects if it is known that each individual will choose to purchase an insurance policy in the
private market after the government insurance is provided.

2.2.5 The Qualitative Problem
The analysis of the following sections considers a situation in which the government is im-
posing a ban on characteristic-based pricing and the market is characterized by some "non-
categorizing" market outcome CNC which satisfies Assumption 4.

The government is considering lifting the ban-perhaps jointly with social insurance or
re-insurance-but it may be unsure of what market outcome Cc will result when they do
so. This uncertainty comes from three potential sources. First, the government may be
uninformed about the distribution of the types across different categories-i.e., it may be
uninformed about the relationship between the categorical signals and risk types. Second,
it may be uninformed about the cost of employing the categorizing technology. Finally, it
may be unsure of exactly how the market will "equilibrate," knowing only that Cc will be
consistent with Assumption 4.

If there is some distribution of types across categories (i.e., some A), some cost structure
(i.e., some X), and some outcome Cc satisfying Assumption 4 which makes some individuals
worse off than CNC-i.e., if there is a conceivable post-legalization outcome that makes some
individual worse off-a government may be reluctant to remove the ban. The central result
of this paper will establish that a government with access to social insurance will be able
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to remove the ban in such a way that no matter what A and X are, and no matter what
market outcome Cc (satisfying Assumption 4) emerges, no individual will be worse off with
Cc than with CNC. Furthermore, there will be conceivable post-legalization outcomes that
make some individuals strictly better off for at least some possible type-distributions and
categorization costs.

Section 2.3 illustrates this result by examining the familiar two-type one-accident equi-
librium framework. Section 2.4 then formally establishes it in the many-type many-accident
framework we have just described, a framework which abstracts from equilibrium and only
imposes the weak "contestability" notion captured in Assumption 4.

2.3 Illustrative Results
To illustrate the the logic underlying our central results, we first consider the familiar two-
type one-accident framework, and we focus on a particular equilibrium model of insurance
market outcomes, as employed in Crocker and Snow (1986). The following describes how
this framework fits in the formalism of our paper:

* S = {1, 2}, with s = 1 the state "the individual did not have an accident" and s = 2
the state "the individual had an accident."

* I = {1, 2}, with 1 _ H and 2 _ L indicating the "high-risk" and "low-risk" types.

P P' (1 p1 , pL, pL), and pH > pL.

* W = (wl, wl - ), where wl is the wealth in the event of no accident, and is the
monetary loss caused by the accident.

* u1 (.) = u2(.) = u(.). Utility is state independent, so agents maximize expected utility.

· F = {A, B}, so there are two categories.

* A(H,B) = A, A(L,A) = 1 - A, and A(H,A) = A(L,B) = 0, so categorization is
"perfect." We will also consider Crocker and Snow's "imperfect categorization" case:
A(H, B) = OAB , A(L, B) = 0(1- AB), A(H, A) = (1 - )AA, A(L, A) = (1 - 0)(1- AA),
with AB > AA. Then 0 will be the fraction of individuals in the B-category, and X
will be the fraction of H types within category y.

* Social insurance is a mandated premium payment of Yl in state 1 coupled with an
indemnity of Y2 in state 2 satisfying pY2 = (1 - Pi)y, where p _ ApH + (1 - A)pL is the
population average risk.

* X(r) = x > if r = {A} or r = {B}, so there is a verification" cost x > 0 if a firm
wishes to sell a contract to a specific category.

This market is illustrated in Figure 2-1, which plots state contingent consumption vectors
(c1 , C2 ). It depicts three actuarially fair lines, one for each type and one for the population
average, and a representative indifference curve for each type. The L type indifference curves
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Figure 2-1: 2-Period Insurance Market

are everywhere steeper than the H type indifference curves, and the i type indifference curves
are tangent to the i type actuarially fair line along the full insurance (45°) line. Implementing
a social insurance policy yG = --YiY2) moves the effective endowment of individuals-
i.e., their state-contingent consumption without private insurance from W to the point
W = W + yG on the pooled actuarially fair line.

We identify a unique market outcome via a particular equilibrium notion, the so-called
Miyazaki-Wilson-Spence equilibrium (henceforth MWS equilibrium; see Spence (1978)). We
denote the "no categorization" MWS equilibrium outcome by CNC, where CNC(H, B) =
(CH*(W),F r) and CNC(L, A) = (CL*(W), r). In particular, (CH*(W), CL*(W)) is the solu-
tion to the following program:

max(CH,cL) VL(CL)
subject to:
(IC) VH(CH) > VH(CL) (2.4)
(MU) H(CH) > VH(W)
(BC) AIIH(CHW, r) + (1 - A)IIL(CL- W, r) > O.

Program (2.4) is the standard MWS equilibrium program. (IC) is an incentive compati-
bility constraint for H types. (The L-type (IC) constraint is slack in the MWS equilibrium).
(BC) is a break even constraint stating that firms must make non-negative profits on aver-
age. VH(W) is the utility H types get from their full insurance actuarially fair contract-i.e.,
from the full insurance consumption vector CH with IIH(CH, I) - IIH(W, F). Hence, (MU)
states that H types need to be at least as well off as they would be if their type was common
knowledge and they received their fair full insurance contract. The constraint (MU) may
be slack in the MWS equilibrium; this will occur precisely when there are positive cross
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subsidies from the L types to the H types in equilibrium.
Crocker and Snow (1986) heuristically describe the MWS equilibrium when categorical

pricing is permitted. 6 The following notation is helpful for presenting this equilibrium. First,
for any endowment vector W, use Ci(W) to denote the full insurance consumption vector
satisfying Ii(Ci(W), F) = IIi(W, r). Second, let x* be the unique positive number satisfying
VL (L (W- (x*, x*))) = VL(CL*(W)). Finally, note that since there are no individuals
with (i, -y) =- (L,B) or (i, y) = (H,A), we can describe the equilibrium Cc using a pair of
outcomes, CC(L,A) = (CC(L), F(L)) and CC(H,B) = (CC(H), (H)), which depend only
on type. Then Cc is given by:

MWS Equilibrium With Categorization:

* If x < x*:

- C (H)= CH (W) and 1(H)= {A,B},
- CC(L) = CL (W - (x, x)) and 1(L) = {A}.

* If x > x*:

- C(L) = CL*(W) and F(H) = {A,B},
- CC (H) = CH*(W) and F(L) = {A,B}.

In other words, for sufficiently costly categorizing technologies, CC CNC, so legalization
of categorical pricing is irrelevant. When costs are low enough, categorization is employed.
H types (B category individuals) receive their full insurance actuarially fair consumption
via a contract that does not require verification of their category, and L types receive a
contract which provides them with full insurance and breaks even, but which requires (costly)
verification of their category. Finally, the "cutoff" cost x* determining whether or not the
market will employ the categorizing technology is the cost at which L types are indifferent
between the potential categorizing outcome and the non-categorizing outcome.

The MWS equilibria CNC and Cc in the "no categorization" and "legal categorization"
policy regimes are depicted in Figure 2-2 for the case x < x*. When categorization is banned,
H and L types get the non-categorizing contracts CH* and CL*, respectively. These contracts
involve cross subsidies from the L types to the H types. When categorization is legalized,
H types get the non-categorizing contract CC(H) and L types get the (category-specific)
contract CC(L). As depicted, the removal of a ban on category-based pricing makes L types
strictly bette r off and-since they were cross subsidized prior to the legalization-makes H
types strictly worse off.

In the situation depicted in Figure 2-2, we see that removing a ban on category-based
pricing benefits L types and harms H types. Once we allow the government to employ
social insurance, however, it will be able to lift the ban in such a way that no H type will
be harmed, while L types may still benefit. To see the simple argument behind this claim,
consider Figure 2-3. It depicts the MWS equilibrium contracts CH* and CL* in a regime

6In an earlier version of this paper, we formalized their conclusions by deriving the equilibrium via an
explicit dynamic game.
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with a ban on categorization in place, as in Figure 2-2. Now consider the effects of providing
mandatory break even social insurance yG = (Yi, Y2). This moves the effective endowment
of individuals in the economy from W to a point W + yG on the pooled actuarially fair line.
For small amounts of social insurance, e.g., for the point in the figure labeled W YOG W',
this provision will have no effect on the net insurance contracts CH* and CL* received by
the two types in equilibrium, if the ban is maintained. 7

In effect, by providing social insurance Y0
G, the government "takes over" a portion of the

insurance C i* - W formerly provided by the private market: individuals now receive the
net insurance Ci* - W in two pieces, with the portion W' - W provided by the government
and the portion C i* - W' provided by the private market. The portion of the insurance
provided by the government involves positive cross subsidies from the L types to the H
types; the cross subsidy provided by the private market is correspondingly reduced. In fact,
the government can continue to provide additional social insurance without affecting the
equilibrium consumptions Ci* precisely up to the point labeled W* in Figure 2-2. W is
the point for which iii(Ci* - W*, r) = 0 for i = H, L. With this maximal social insurance
policy YG = W*- W in place, all of the cross-type cross subsidies are provided through the
government.

7This well known result dates back to an observation in Wilson (1977). (Wilson's paper predates the
formal MWS equilibrium specification, but the insight is there.) In our context, the result is most easily
seen by looking at the MWS equilibrium program, (2.4). The effect of providing social insurance Y0G on
the market equilibrium can be summarized by its effect on the effective endowment. Since changing the
endowment from W to W' does not affect (BC) (the endowments W' and W are on the same pooled-
risk actuarial cost line for break even social insurance), the only effect of social insurance is on the (MU)
constraint. When, as in Figure (2-3), the market equilibrium CNC involves strictly positive cross subsidies
from the L to the H types, (MU) is initially slack. So sufficiently small social insurance policies will have
no effect.
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Figure 2-3: Social Insurance and the Efficiency of Categorical Pricing

We now come to the crux of the argument underlying our central results. With en-
dowment W, H types are harmed when categorical pricing is legalized precisely because
legalization undoes the cross-subsidies from L types provided through insurance markets.
With endowment W*, the private market provides the same equilibrium consumptions with-
out any cross-type cross-subsidies. With no cross subsidies to be undone when categorical
pricing is legalized, H types will not harmed by the policy change. Furthermore, when cat-
egorization is not too costly, the market will employ it and make L types strictly better off.
With social insurance YG = W*- W in place, maintaining a ban on categorical pricing is
a sub-optimal policy: lifting that ban will never make anybody worse off and will, in some
circumstances, make some individuals strictly better off.

Though we have illustrated the argument in the special case where category is perfectly
indicative of type, an essentially identical argument applies when category is an imperfect
predictor of type, as in the "imperfect categorization" case employed by Crocker and Snow
(1986) and described above.8 In this case, there is a fraction 0 of B category individuals and
there are category specific H type fractions AA and AB, with AB > AA and A =_ AB+(1-0)A A .

With a ban in place, category is irrelevant, so the market looks the same in the perfect- and
imperfect-categorization cases. In particular, the government can still implement the social
insurance policy associated with W* in the imperfect categorization case. With W* in
place, neither type within the B category (the "higher risk" category since AB > AA) will
be harmed by removing the ban. Furthermore, the market will employ the categorizing
technology precisely when doing so makes both A-category types better off.

That the same argument, with the exact same social insurance policy W* - W, applies
to any imperfect-categorization case and to the perfect-categorization case is important.

8We showed this formally in an earlier version of the paper which lacked the general analysis of the
following section.
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It means that the analysis does not depend on the government being informed about the
relation between risk-type and category. Just knowing the aggregate type fraction A allows
it to compute and to implement W*. With W* in place, lifting the ban will not harm any
individual for any AA, AB, , and x, and it will benefit some individuals for some values of
AA, AB, and x.

We will now see that the same basic reasoning and conclusions apply more generally.
The intuition remains the same: the government will use social insurance to "take over" the
across type cross-subsidies of the market equilibrium under a notional status quo ban. It
can then free the market to employ the categorizing technology without concerns about any
individual being harmed as a result.

2.4 General Results
This section considers the general setting described in Section 2.2. Theorem 5 below is our
central result.9

Theorem 5 (The Inefficiency of Categorical Pricing Restrictions)
Consider the market M S = { P}iE, r, U {uS E, A, w,X} where A E .
Then for any market outcome CNC satisfying Assumption 4 in market M, there exists a
social insurance policy yG such that for all X: 2 - R+, for all A with margz1A = A,
and for all market outcomes C in the market M' {S.7, P, r, U, A, W + YG, X} satisfying
Assumption 4,

V~(C(i, a)) > Vi(CNc(i, )) V(i, y) E x r with A(i, ) > 0.

Furthermore, there exists an X, a A with margIA = A, a market outcome C(M') satisfy-
ing Assumption 4 in the market M'- {S,, : r, , A, W + yG, x}, and an (i, ) wth
A(i, y) > 0 such that

V'(C(i, )) > Vi(CNC(i, y))

Theorem 5 states a generalized version of the "inefficiency of categorical pricing restric-
tions" result presented in Section 2.3. It considers starting from any outcome CNC in any
market M with a ban in place. In that market, only the marginal distribution of A matters
(and the cost X is irrelevant). The theorem asserts the existence of single social insurance
policy yG. By jointly implementing this policy and legalizing categorization, the government
will turn the market into some new market M', which will depend on A and X. For each
possible market M' there may be many possible market outcomes C. Theorem 5 asserts that
in each of the markets, all of the reasonable C-i.e., those satisfying Assumption 4-will be
at least as good, in the Pareto sense, as the original market outcome CNC. Furthermore,
there are possible markets and reasonable outcomes C in those markets which make some
individuals strictly better off than in the original market outcome CNC.

9Recall our convention of referring to a market with banned categorization (i.e., with X = ) via the
marginal distribution of A over types I.
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Theorem 5 formalizes the claims in the introduction. First, when it is equipped with
the social insurance policy tool, a government will find maintaining a ban on categorization
a sub-optimal policy: jointly providing social insurance yG and lifting the ban is a better
policy, since nobody will be harmed thereby and some individuals may be better off. Second,
since one social insurance policy yC simultaneously applies for any A and any X, the result
does not rely on the government being informed about these market features. Finally, since
the result simultaneously applies to all "reasonable" market outcomes, it applies even if the
government has considerable uncertainty about the exact nature of market equilibrium.

The proof of Theorem 5 proceeds very much along the lines of the informal arguments
provided in the restricted setting of Section 2.3. We will present some definitions and a series
of lemmas before turning to the formal proof.

Definition 4 (Constrained Pareto Optimal) A market outcome C is constrained Pareto
optimal if it is informationally feasible and if there does not exist an informationally feasible
market outcome C' such that

1. V(C'(i, y)) > V'(C(i, y)) for all (i, y) E I x F with A(i, 7) > 0.

2. Vi(C'(i, -y)) > V'(C(i, y)) for some (i, y) E I x r with A(i, y) > 0.

The set of constrained Pareto optimal market outcomes, which we will denote by 2(M),
will play an important role in our subsequent analysis. We will also single out two other sets
for special notation. We will use : to refer to the set of informationally feasible outcomes.
Many informationally feasible outcomes involve cross subsidies across types-i.e., some in-
dividuals on whom firms earn profits and some on whom firms make losses. We will use ¢
to refer to the subset of : in which firms earn non-negative profits on every individual, so 
consists of those informationally feasible outcomes that do not require cross subsidies.

Notation: , ¢, and C*. For a fixed market M, let:

* E(M) denote the set of informationally feasible outcomes;

* (M) denote the set {C E E(M) : I(C(i, y) - W) > 0 V(i, )};

. *(M) denote the set of constrained Pareto optimal allocations.

When it will not cause confusion, we will drop the argument M. Our first lemma states
that these three sets are non-empty.

Lemma 11 In any market M4, t(M), (M), and *(M) are non-empty.

Proof. Let CW(i, y) - (wF) V(i, 7) denote the "trivial" market outcome where each
individual simply consumes her endowment. Since CW E 2(M) C (M), the first two sets
are non-empty. By informational feasibility, Vi(C(i, -y)) > Vi(W) for all C E C and V(i, y).
This can be used, together with pi > 0, to show that

{C E Rs: (C, r)= C(i, -y) for some E 2r and for some C E }
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is bounded for any (i, y) with A(i, y) > 0. Since the set t is closed and non-empty, this
implies the compactness of the set

= {(C, ) E : (C(i, Y), (i,Y)) = (W, r) if A(i, y) = 0}

of market outcomes which assign the trivial contract (W, F) to each zero-measure class of
individuals. Hence, a Pareto optimal element C* of : exists, and C* E *. ·

The set e: has more structure than the set Q. In particular, the set V* of "best" elements
in C will generally be large. Some of these "best" outcomes will make one individual well
off, while other "best" outcomes will make another individual well off-i.e., there will be
Pareto incomparable elements of *. In contrast, the following lemma shows that there is
an essentially unique "best" element in ¢, an outcome which is simultaneously best, within
C, for everybody.

Lemma 12 3C* E ¢ such that VC E ¢, Vi(C*(i, y)) > Vi(C(i, y)) for all (i, Y) with A(i, ?) >
O0-i.e., a Pareto dominant member of t.

Lemma 12 is very similar to Riley's (1979a) observation that there is a Pareto dominant
member of the "informationally consistent" (informationally feasible individually break-even)
outcomes. The formal proof of Lemma 12, which appears in the appendix, relies on one
simple observation: one can take any two members Cl and C2 of ¢ and use these to construct
a third market outcome C3 which assigns to each (i, y) the contract he prefers between C1 (i, 7)
and C2 (i, ), and C3 will also be in .

The following corollary to Lemma 12 follows from observing that any Pareto dominant
element of it satisfies Assumption 4 (viz Definition 3).

Corollary 1 For any market M, the set of market outcomes satisfying Assumption 4 is
non-empty.

Corollary 1 shows that our generalized "equilibrium" notion-Assumption 4-always
has predictive content in the sense it always yields some possible outcome (i.e., it does not
suffer from the Rothschild-Stiglitz non-existence problem). We will now characterize the
entire set of outcomes consistent with Assumption 4. Note that these outcomes may involve
cross subsidies across types and therefore will not lie in . Lemma 13 shows that there is
an essential link between and the set of possible outcomes, however: the set of outcomes
satisfying Assumption 4 is precisely the set of informationally feasible outcomes which Pareto
dominate Q.

Lemma 13 C satisfies Assumption 4 if and only if C is informationally feasible and

Vi(C(i,y)) > V(C'(i, y)) for all (i, ) with A(i, ) > 0 and for all C' E :. (2.5)

The formal proof of Lemma 13 is in the appendix. Intuitively, Assumption 4 requires mini-
mum contestability, which in turn requires that there is no contract in that can be offered
which will be strictly preferred by some individual and strictly profitable when sold to him.
So the "if" part of the lemma is trivial. The "only if" part involves establishing a continuity
property of the set : for any outcome C which makes some individual worse off than the
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Pareto dominant member of C, there is a member of t which makes the individual better
off than C and is strictly profitable when sold to that individual. Then, any such outcome
C fails to satisfy Assumption 4.

We will next identify the social insurance policy yG which will be used in establishing
Theorem 5. This will involve generalizing the result illustrated in Figure 2-3 of Section
2.3. Recall from that figure that the government "took over" the cross subsidies initially
provided by the market equilibrium C by implementing the social insurance policy W* - W,
thereby allowing the market to produce the same outcome C without any within-market cross
subsidies. The next lemma constructs an analogous social insurance policy for any market
outcome in our general setting. It can be thought of as a generalization of a result noted
in Wilson (1977): a government may be able to Pareto improve upon market outcomes by
mandating social insurance and allowing firms to provide supplemental policies. l°

Lemma 14 Fix a marketM = {S,I,C -- {P}) , ,U--{u sses, A E l, W,X}, in which
categorization is banned. Take any C E (t(M) with C(i, y) = C(i, y') for all i and for all
y and y'. Then there exists a social insurance policy yG such that C E ((M"), where
M"- {s,T,P,Tr,U,A,W+YG,X}.

The proof of Lemma 14, provided in the appendix, involves a direct application of the linear
independence of the pi.

We can now apply these lemmas to prove our main theorem.

Proof of Theorem 5. Fix CNC. Take any C* E 2*(M) with Vi(C*(i, -y)) > Vi(CNC(i, 7)).
In light of Lemma 10, we can take C*(i,7) to satisfy C*(i,7 ) = C*(i, y') for all i, -Y, and
7'. Apply Lemma 14 to construct a social insurance policy yG with C* E :(M"), where

M" = {S,I, P, ,U,A,W+YG,X}. For any X and A with margzA = A, we thus have

C* E (M'), where M' = {S,., F, , A, W + yG, X}. By Lemma 13, any outcome C
satisfying Assumption 4 in market M' has V'(C(i, -y)) > V(C*) and hence V'(C(i, -y)) >
Vi(CNC(i, 7)) for all (i, -y) with A(i, y) > 0, proving the first part of the Theorem.

To prove the second part, let Ai denote the full-insurance actuarially fair contract for
type i. By Assumption 3, there exists an i and a j such that A'i 7 Ai, so the "first best"
market outcome where C(i, 7) = (Ai, r) for all i is not informationally feasible. Hence, i**
such that Vi"*(Ai**) > Vi*(CNC(i**,?)).

Construct the market M'** = {S,I, P **, U, A, W + yG, X** by first taking X** 0.

Without loss of generality, take r = {1,... , N}, where N > 2. Construct A** as follows:

A**(i,y) _A(i**) if i = i** and = 1,
A**(i, ) -0 if i # i** and = 1 or i = i** and a 5 1, and
A**(i, ) -A**(i,, 7') Vi 4 i** and ¥7, ' > 1.

'°See, in particular, the discussion Wilson provides on pages 198-200.
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Let C'(i, ) = C*(i, ) for i 0 i** and C'(i**, 1) = (Ai 1, {1}). Then C' E A(M'**). The Pareto
dominant element C** of :(M'**) satisfies Assumption 4 in market M'**. Furthermore,

vi* (C**(i**, 1)) > Vi **(C'(i**, 1)) = Vi** (A i* *) > Vi**(CNC(i**, 1))

completing the proof. 
An analogous result applies if, instead of the social insurance policy tool of Theorem 5, the

government has access to a re-insurance policy tool. When applying the re-insurance policy
tool, we cannot directly add ZG to the endowment W of an individual (since individuals have
the option of not buying a policy, in which case ZG is irrelevant for them). For this reason,
we will consider "augmented" markets as lists M[ with one extra element corresponding to
the re-insurance policy.

Theorem 6 (The Inefficiency of Pricing Restrictions with Re-insurance)
Consider the market M = {S , P =_ {P P}iex, r, U- {U} 8 ES A, W, where A E AT.

Then for any market outcome CNC satisfying Assumption 4 in market M, there exists a
re-insurance policy ZG such that for all X 2 - R+, for all A with margzA = A,
and for all market outcomes C satisfying Assumption 4 in the augmented market M4' _
{s, ,P,IU,A,W,X,ZG},

V'(C(i, y)) > Vi(CNC(i, y)) for all (i, y) E I x r with A(i, y) > 0.

Furthermore, there exists an X, a A with margjA = A, a market outcome C(M') satisfying
Assumption 4 in the corresponding augmented market M' = {S, I, r, , A, , X,ZG}
and an (i, y) with A(i, y) > 0 such that

Vi(C(i, a)) > Vi(CNC(i, a))

We omit the proof the Theorem 6, since it is essentially identical to the proof of Theorem
5. Re-insurance and social insurance differ only in that they imply different informationally
feasible sets (by the "individual rationality" condition). But the outcomes satisfying As-
sumption 4 in any market with the social insurance yG from Theorem 5 all Pareto dominate
CNC, which in turn Pareto dominates CW. The possible outcomes with social insurance yG

in place are therefore the same as the possible outcomes when the same insurance policy is
implemented via re-insurance.

2.5 Relation to Crocker and Snow (1986)
Crocker and Snow (1986) is the paper in the literature most closely related to this work.
It analyzes the same type of market and argues a similar point using different reasoning
and different policy instruments. Specifically, it considers the imposition of contract-specific
(lump-sum) taxes and transfers to be the policy tool available to the government. When the
market outcomes differ under legal and banned categorical pricing, it asks whether this policy
instrument can be used in the legalized-categorization environment to transfer resources from
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the A-category types to the B-category types in such a way as to ensure that all individuals
are at least as well off as they would be in the banned-categorization environment. When
x = 0, it shows that this is indeed possible and, when x > 0, that it may not be. The natural
conclusion is that costless categorization should never be banned, but that bans on costly
categorization technologies may be reasonable.

Crocker and Snow's paper represents a seminal contribution to our understanding of the
unavoidable efficiency consequences of restrictions in insurance markets. It leaves open sev-
eral questions regarding the robustness of this "inefficiency" result, questions our new result
goes some way towards addressing. There are three principle ways in which we strengthen
it. First, one might have had concerns about the sensitivity of their result to the costliness
of categorization. Our result eases these concerns since it does not display this sensitivity:
although legalization may be irrelevant for costly tests, we show that there is never a positive
case for maintaining a ban on categorization.

To think about the second way in which we strengthen Crocker and Snow's result, con-
sider a world with a "benevolent dictator." This hypothetical dictator is omnipotent in the
sense that the only restrictions on the policies she can implement stem from the inherent
informational and resource constraints within the market. She is also omniscient in the
sense that she is as informed as firms in the market: though she cannot observe individual
types and she must pay x to observe an individual's category, she is fully informed about the
distribution of types and the cost x of the categorizing technology. In this world, there is no
need for markets: the dictator can simply impose a constrained efficient plan on the popula-
tion. Since many of these efficient plans will involve employing the categorizing technology,
there is a sense in which bans on the use of the technology are inefficient.

Viewed in contrast to this benevolent dictator world, where the conclusion is reasonably
obvious, Crocker and Snow's contribution can be interpreted as saying that the "inefficiency"
of bans on categorical pricing extends to cases where the government is not omnipotent but
instead has explicit restrictions on its policy tools. This is clearly an important contribution,
since real-world governments are limited in the policy tools they can effectively employ. It
leaves open the question of whether the omniscience of government is essential. This is
important: as emphasized by Hayek, a central role arguably the central role played by
markets is to aggregate and disseminate information. Abstracting to a world in which the
government is as informed as the market thus involves abstracting away from their essential
function. Our second major strengthening of Crocker and Snow's result, then, is to show that
it extends to situations where markets have a genuine role to play in information acquisition.
Indeed, starting from a situation where categorical pricing is banned, we have shown that the
government can provide social insurance and legalize categorical pricing, thereby permitting
the market to discern the relevant information. The market can determine A and x and then
"decide" whether that information can be used to achieve a Pareto improvement in welfare.

In fact, this paper dovetails nicely with Hayek's thinking. The social insurance policy tool
we consider is one that Hayek has explicitly acknowledged as a natural one for governments
to employ:

[W]here, in short, we deal with genuinely insurable risks-the case for the state's
helping to organize a comprehensive system of social insurance is very strong...
and it is possible under the name of social insurance to introduce measures which
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tend to make competition more or less ineffective. [29, page 134]

The central argument of our paper can be interpreted as setting up a contrast between two
ways of providing the insurance which Hayek identifies the government as having a potential
role in supplying: bans in categorical discrimination, and what we term "social insurance"
in this work. We conclude that the latter is the more desirable precisely because it renders
competition more effective.

The third and final way in which this paper strengthens Crocker and Snow's conclusion
is by generalizing it. Their paper only directly applies in a limited two-type one-accident
setting and with a limited set of equilibrium concepts. One might have worried that their
conclusions were particular to this restrictive environment. We have shown that the same
conclusions can be reached in quite general environments and with a significantly expansive
view of "reasonable" market outcomes.

2.6 Caveats and Other Environments
This section considers two main classes of limitations on the applicability of the preceding
analysis. First, the government may not be able to employ social insurance (or re-insurance)
in the way required for the central result of this paper to hold. Second, there are market
environments to which the preceding analysis does not directly apply.

2.6.1 Limitations on Social Insurance Provision

Informational requirements Our argument in favor of removing bans on characteristic-
based pricing relies on the ability of a government to employ social insurance in such a way as
to ensure that lifting a ban on categorization will have no adverse distributional consequences.
While the informational requirements underlying the use of this policy tool are weak relative
to previous studies of this question-and are less than "the market's" information-they are
still non-trivial. Specifically, to implement pooled fair insurance of any sort, the government
needs to observe the aggregate distribution of risk types in the economy ( in the above
notation). To implement the particular social insurance policy that will "lock in" the ex-
ante insurance provision of the ban on characteristic-based pricing, the government also
needs to "know" the market outcome CNC that would obtain in the presence of a ban. If the
market is moderately stable over time, this may be a reasonable assumption-it can use past
market outcomes as a guide to present and future market outcomes. In an unstable, highly
dynamic market (or simply in a one-shot market), the government may have considerable
uncertainty not just about the market outcome in the absence of a ban on characteristic-
based pricing but also about the market outcome in the presence of a ban. While our formal
result still holds in such a context-for any possible outcome CNC in the presence of a ban,
there is a social insurance policy that will lead to an outcome as least as good as, and possibly
better than CNC, if imposed while lifting the ban-it is less clear that it can be used to argue
against imposing or maintaining a ban on category-based pricing.

Another potential concern lies with the ability of the government to observe the various
"accidents." We have assumed that the outcome-state s which ultimately obtains for each
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individual is common knowledge. This abstracts from issues of costly state verification-
verification which may be harder for the government than for firms. This may raise par-
ticular concerns when the government provides re-insurance, as such an outcome-contingent
tax/transfer scheme may provide an opportunity for insurance companies to collude with
their policy-holders in an attempt to "game" a relatively uninformed government.

Type-space dimensionality A central assumption behind our result is that the proba-
bility vectors pi are linearly independent. While we view this as a natural extension of the
Rothschild-Stiglitz paradigm to a more general model, it does involve a substantive restric-
tion. It requires, in particular, that the number of distinct states be larger than the number
of distinct types. We view it as natural to model knowledge as being "coarser" than the
states of the world. For example, if we interpret car accidents causing different amounts
of monetary damage as distinct "states," the number of states is then limited only insofar
as money is indivisible beyond the level of the penny. On the other hand, many models of
insurance markets employed by economists violate this assumption." One must therefore
take care in applying the result to the correct type of environments.

2.6.2 Other Market Environments

Though our central result is not sensitive to assumptions on the number, structure, or dis-
tribution of types, it is specific to the type of insurance market and the type of categorizing
technology. For example, the result does not extend directly to insurance markets charac-
terized by mroral-hazard type informational asymmetries.

The result also may not apply when the categorizing technology is informative to both
parties, as nmight be the case for newly developed genetic tests. The presence or absence of
a particular gene can be thought of as an individual's "category," but this "category" may
differ from the categories 'y we consider in the main text. First, individuals may not be
informed about the outcome of the test, prior to taking it. Second, learning the outcome of
the test may be informative to individuals in the sense of causing them to update their self-
perceived riskiness. The first difference is not in itself problematic for our result, for example
if individuals already know their risk type and the test is only an indirectly informative signal
of risk to insurance providers. The second case may pose problems, as we now show.

Bilaterally Informative Tests Doherty and Thistle (1996) consider a Rothschild-Stiglitz
(1976) market with a categorical test which is potentially informative to both parties. In
their model, individuals choose whether or not to take a test (and thereby to update their
self-perceived riskiness); they can then freely reveal the test results to insurance providers.
There are several information structures which may be relevant in this basic setup: (1)
Insurance companies cannot observe whether any individual has been tested unless that
individual reveals the information; (2) Insurance companies can observe whether or not an

llSee, for example, Spence's (1978) many-type two-state model of the Miyazaki-Wilson-Spence equilibrium
or Doherty and Thistle's (1996) modeling of uninformed individuals via probability distributions over a set
of (two) underlying types.
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individual has been tested. They cannot observe the outcome of the test unless the individual
reveals that information; (3) Insurance companies can freely observe the outcome of any test.

With either of the last two information structures, analysis similar to that in Section 2.4
can be used to study the consequences of maintaining vis a vis removing a ban on such a
test. To wit: start from a situation where the test is banned (or currently unavailable) and
individuals have some heterogeneity in beliefs about their risk types. The market will yield
some outcome. The government can use social insurance to "take over" any cross subsidies
involved in this outcome without harming anyone. This will ensure that any individual
who is known not to have been tested will be unharmed by the introduction of the test.
Since individuals can verifiably signal that they have not been tested with these information
structures, allowing the test can only improve welfare. Intuitively, the fact that no individual
will be harmed by the introduction of the test stems from the fact that the contract each
individual receives in the presence of a ban breaks even once the social insurance policy has
been implemented. As such, firms can continue to safely offer the original menu of contracts
to individuals who choose not to be tested. When a government can employ social insurance,
then, banning the use of an informative tests is not an optimal policy.

For reasons explored in Hirshleifer's (1971) pioneering analysis, banning the use of the
test with the first information structure is a thornier issue. Since individuals can hide the
fact that they have been tested, individuals will always choose to be tested if the test is
sufficiently inexpensive. They will then choose to reveal any "good news" and to suppress
any "bad news." Firms will infer that an individual who does not report "good news" has, in
fact, been tested and has received "bad news." As such, even if social insurance is employed
to take over the pre-test cross subsidies, firms will not view it as safe to continue to offer
the pre-test contract menu: the types have changed, and the new types who would choose to
purchase the old contracts after the test is available will have received a bad result from a
test and will therefore be higher risk than the types who would have purchased them when
the test was unavailable. There may therefore be a stronger case for maintaining bans on
the use of a test when individuals can hide the fact that they have been tested.

2.7 Conclusions

The primary function of insurance markets is to insure individuals against the risk of a
loss. When information is asymmetric, these markets may also provide implicit insurance
against being a "bad risk." These two functions are potentially at odds when considering
the desirability of permitting or banning categorical discrimination by insurance providers.
Allowing insurance firms to observe characteristics which are related to the privately known
riskiness of a potential insurance buyer-such as race, gender, medical history, or genetic
makeup-on the one hand enhances the ability of the market to provide accident insurance
by easing the informational asymmetries and their corresponding inefficiencies. On the
other hand, it can undermine the implicit insurance against being a risky type provided by
restricting insurers' access to this information, insurance which may not otherwise exist.

While recognizing this legitimate economic tradeoff, we argue that restrictions on cate-
gorical discrimination in insurance markets are not desirable. Our argument is elementary.
Viewed as an isolated policy decision, restricting the use of categorical discrimination gen-
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erally involves a tradeoff. But a government who has the ability to impose such restrictions
will typically have other policy instruments at its disposal as well. We identify such a policy
instrument---partial social insurance provision-and argue that a government with access
thereto can remove restrictions on characteristic-based pricing without harming anybody
and potentially can make some individuals strictly better off. When the government can
employ social insurance, then, restricting firms from using characteristic-based pricing is not
an optimal policy.

Our conclusion that restrictions on categorical pricing are undesirable applies more
generally than previous research has suggested. It does not rely on particular equilib-
rium assumptions-assumptions which have been the subject of substantial debate in the
literature-but only on a weak "market contestability" assumption. It applies whether or
not firms' ability to observe characteristics involves a costly test or verification process. Fi-
nally, and importantly, it does not rely on the government being as informed as the market:
a government can still employ the social insurance policy tool sufficiently well to make le-
galization of characteristic-based pricing the strictly more desirable policy even when it is
completely uninformed about how firms in the market can and will employ characteristics
in pricing policies.

This conclusion naturally comes with several caveats. Fundamentally, our model is one of
private information about fixed objective risks. It does not directly apply in two important
classes of situations. First, it may not apply in markets with moral-hazard type informational
asymmetries. Second, it may not apply when the information-gathering technology available
to firms is also informative to individuals. When a new test becomes available for some
characteristic related to riskiness that will simultaneously inform both individuals and firms
about the probability of an accident, there may therefore be a stronger case for restricting
its use, either by banning it outright or by banning its use in pricing policies.

Finally, the central result of this paper relies fundamentally on the ability of the gov-
ernment to provide partial social insurance. This is a policy instrument used by real-world
governments, so it likely to be a reasonable assumption in many circumstances. However,
if a government is sufficiently corrupt (or inept) that limiting its power to impose any kind
of tax is desirable, then our argument will no longer apply. When the government cannot
be trusted with social-insurance type policy interventions, the case for having it impose
restrictions on characteristic-based pricing in insurance markets may therefore be stronger.

2.8 Appendix

Proof of Lemma 12. Consider any two Pareto undominated members (C, r) and (C', F')
of the set E.L2 Let A = {(i, y): Vi(C'(i, a)) > Vi(C(i, y)) and A(i,-y) > 0}. Define

(C'(i, ), F'(i, 7-y)) if (i, ) E A~(C~' (i' f(C(i, ),F(i, y)) otherwise.
12Onc can use reasoning similar to the proof of Lemma 11 to show that there are Pareto undominated

members of C.
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To show that (C", "') E e we only need to check the incentive compatibility of (C", F"),
since we know that Ii(C"(i, y),F(i, 7)) > 0 (i, 7). Consider any (i, y) and (i', -y') and
the two associated incentive compatibility constraints. If (i, y) A and (i', y') E A or
(i, y) 0 A and (i', 7') V A, these are obviously satisfied. If (i, y) E A and (i', y') 0 A consider
the (i, y) type compatibility constraint (the argument for (i', 7') is essentially identical). If
y r(i', y') = r"(i', y'), then this constraint is trivially satisfied. Otherwise,

Vi(C"(i, 7)) = Vi(C'(i, y)) > Vi(C(i, y)) > Vi(C(i', y')) = Vi(C"(i', Y')),

where the first inequality follows from (i, y) E A and the second follows from the informa-
tional feasibility of (C, F). By construction, (C", F"') is at least as good for each (i, y) as both
(C, r) and (C', '). Since since the latter are, by assumption, undominated in , it must be
that they are both Pareto equivalent to (C", F") and, therefore, to each other. Hence, all
undominated elements of CE are Pareto equivalent, and therefore Pareto dominant. 
Proof of Lemma 13. The "if" part is trivial: an informationally feasible C satisfying
(2.5) satisfies Assumption 4. To show the only if part, let C* be a Pareto dominant element
of Q: (which exists by Lemma 12) and take any informationally feasible C and (i, -y) with

Vi(C*(i, y)) > Vi(C(i, y)) and A(i, 7) > 0. We now construct a C' E e with i(C'(i, a)) > 0
and V'(C'(i, P)) > Vi(C(i, a)), whereby C is not minimally contestable, completing the proof.

To that end, let A = {(j, r): A(j, r) > 0}. Consider the value V(k) of the program:

max(c, ) i(C(i, a))
subject to:
(IC)Uj,),U,r)EA (VJ(C(j, r)) - V (C(j', rT)))1(,T)() _ 0 (2.6)
(BC)(i,y)$(0,r)EA lJ(C(j, r) - W, (j, r)) > 0
(BC)(i,) fP(C(i, ) - Wr(i, r)) > k,

where 1B(.) denotes the indicator function for set B. Note that C* solves (2.6) for k = 0.
Hence,

Vi(0) > Vi(C(i, )). (2.7)

We will now show that Vi(k) is continuous in k. 3 Since us(x) is invertible we can re-express
the program in utility space. This yields the following program with the same value Vi(k):

max(u,p) Pi. Ui,?
subject to:
(IC)U,r),U',,)EA (Pj .Uj - Pj . Uj'")I~(jT,)(T) > 0 (2.8)
(BC)(i,)#0U,r)EA 3(Uj, I (j, A)) > 0

(BC)(i,7 ) IIi(Ui7, f(i, y)) > k,

where Uj,r (v'1, ... ,v) E Rs, U = {,Ujr},T)EIxr,

riV ((vi.. , vs)I) _ -Pi * (uL'(vi) -w1,.** , Us'(Vs) -WS) x(r),

"3We cannot directly apply the Theorem of the Maximum for this, since the (IC) constraints are not
concave and the constraint set may not be lower hemicontinuous in k.
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and denotes the standard dot-product. Let (U*, f*) solve (2.8) for k = 0, so that Vi(0) =
pi * U*i,. Let UE = {U *j' - E}(j,r)e1xr, where = (,... , ) Rs . Since the (IC)
constraints are linear in U, they are satisfied at (U', 1*) for any . The left hand side of
each (BC) constraint, evaluated at (Uj', F*(j, T)), is strictly and continuously decreasing
in . So for any E > 0, there is a k > 0 such that (U, 7*) satisfies the (BC) constraints for
all k < k. Hence, Vi(k) > pi (U*i,. - = Vi(0) - 6 Es = PS for all k < k, establishing the
continuity of V i(k).

By continuity and (2.7), 3 k > 0 such that Vi(k*) > Vi(C(i, 7)). Consider any solution
C' to (2.6) with this k*. Clearly, C' E t. Furthermore, we have Hi(C'(i, )) > k* > 0 and
Vi(C') = Vi(k*) > V'(C(i, y)). So C is not minimally feasible, completing the proof. 
Proof of Lemma 14. Since {Pi}ieI are linearly independent, there is a solution yG to

[(yG)]lsi =

r -Q

-P. (C(, )- W)
p2 . (C(2, y) - W)

pi ((i, ) - W)

PI. (C(I, )- W) -
where vT denotes the transpose of a vector v.

Since Hit(C; F) _= Pi . C for any consumption vector C, the ith row of (2.9) states:

Pi(yG F) r= i(C(i,y)- w). (2.10)

Hence, by the informational feasibility of C,

E A(iv)ri(yG r) = E A(i, y7)1(C(i, )- W) > 0,
(i,Y)E(1xr) (i,-)e(Ixr)

and yG is an implementable social insurance policy (vis (2.3)). Equation (2.10) also implies
that, for all i, (C(i,7) - (W + yG)) = 0. Since C is clearly informationally feasible,
C E (M"). 
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Chapter 3

Redistribution by Insurance Market
Regulation: Analyzing a Ban on
Gender-Based Retirement Annuities

By: Amy Finkelstein, James Poterba, and Casey Rothschild

Abstract

This paper shows how models of insurance markets with asymmetric information
can be calibrated and solved to yield quantitative estimates of the consequences
of government regulation. We estimate the impact of restricting gender-based
pricing in the United Kingdom retirement annuity market, a market in which
individuals are required to annuitize tax-preferred retirement savings but are
allowed considerable choice over the annuity contract they purchase. After cal-
ibrating a lifecycle utility model and estimating a model of annuitant mortality
that allows for unobserved heterogeneity, we solve for the range of equilibrium
contract structures with and without gender-based pricing. Eliminating gender-
based pricing is generally thought to redistribute resources from men to women,
since women have longer life expectancies. We find that allowing insurers to
offer a menu of contracts may reduce the amount of redistribution from men to
women associated with gender-blind pricing requirements to half the level that
would occur if insurers were required to sell a single pre-specified policy. The
latter one policy scenario corresponds loosely to settings in which governments
provide compulsory annuities as part of their Social Security program. Our find-
ings suggest that recognizing the endogenous structure of insurance contracts
is important for analyzing the economic effects of insurance market regulations.
More generally, our results suggest that theoretical models of insurance market
equilibrium can be used for quantitative policy analysis, not simply to derive
qualitative findings.

83



3.1 Introduction

Restrictions on the use of characteristics such as race or gender in pricing are ubiquitous in
private insurance markets. These restrictions are likely to become even more important as
the advent of genetic tests enriches the information set that insurers might use to price life
and health insurance policies. Several theoretical studies, including Hoy (1982) and
Crocker and Snow (1986), have analyzed this form of regulation and shown qualitatively
that they have unavoidable negative efficiency consequences. Empirical work such as
Buchmueller and DiNardo (2002) and Simon (forthcoming) has confirmed the existence of
such efficiency costs by documenting declines in insurance coverage when characteristic-
based pricing is banned in health insurance markets. However, there have been few if any
attempts to develop quantitative estimates of the efficiency costs or the distributional
impacts of restrictions on characteristic-based pricing. One of the few studies in this vein
is Blackmon and Zeckhauser's (1991) analysis of automobile insurance regulation. It
frames questions similar to the ones we study but does not analyze how the structure of
insurance contracts may respond to regulatory restrictions or how this affects distributional
or efficiency effects.

In this paper, we take a first step toward developing quantitative estimates of the
effects of endogenous contract responses to insurance market regulation. We extend
existing theoretical models and adapt them to provide quantitative estimates of both the
efficiency and redistributive effects of a unisex pricing requirement for pension annuities.
Restrictions on characteristic-based pricing are usually thought to transfer resources from
individuals in lower-risk categories to those with greater risks. Women are longer-lived
than men, so unisex pricing restrictions in the pension marketplace redistribute from men
to women. Some might argue for such policies on redistributive grounds, since elderly
women have higher poverty rates than elderly men. Viewed from the ex-interim
perspective once individual characteristics are known, the transfers from men to women
generate redistribution akin to the redistribution associated with uniform pricing
regulations in industries such as telephone and electricity distribution, where individuals
have different costs of service. Posner (1971) labeled such redistribution "taxation by
regulation." Alternatively, from an ex-ante perspective before individual characteristics
are known, the redistribution may be viewed as a form of insurance against drawing a
high-cost characteristic, in this case being female, as in Hirshleifer (1971).

In addition to providing a tractable setting for illustrating our techniques, the pension
annuity market is an interesting setting in its own right because of its size, its importance
for retiree welfare, and the salience of unisex pricing regulations in this market. Private
annuity arrangements, typically the payouts from defined benefit pension plans, represent
an important source of retirement income for many elderly households. Employers in the
United States were once free to offer different pension annuity payouts to men and women,
but litigation in the 1970s and early 1980s eliminated this practice. The European Union is
currently debating regulatory reforms that may eliminate gender-based pricing in insurance
markets, including pension annuity markets. Our analysis may also have broader
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implications for the design and regulation of annuitized payout structures associated with
defined contribution Social Security systems.

We are not aware of any previous attempts to calibrate and solve stylized theoretical
models of insurance market equilibria. Doing so requires adapting these models to account
for a number of features that are observed in actual insurance markets. One that has
quantitatively important implications is our relaxation of the assumption that individuals
have no recourse to an informal, if inefficient, substitute for insurance. Our analysis
recognizes that individuals may save against the contingency of a long life, and that
insurance companies many not observe savings by their policyholders. If we do not allow
for unobservable savings, the informational asymmetries created by a ban on gender
categorization may have neither efficiency nor distributional effects.

We focus on the retirement annuity market in the United Kingdom, where we have
obtained a rich micro-data set that facilitates our calibration. A critical feature of this
market is that workers who have accumulated tax-preferred retirement savings must
purchase an annuity. They cannot choose whether or not to participate in the annuity
market, which eliminates one margin on which unisex pricing regulations could potentially
affect individual behavior. Participants do have substantial flexibility with regard to
contract choice. Empirical evidence, such as that presented in Finkelstein and Poterba
(2004), suggests that this choice is affected by private information about risk type.

Our main finding is that recognizing the endogenous response in the structure of
insurance contracts when regulations change may reduce by as much as fifty percent the
amount of redistribution away from men and toward women that would be associated with
a ban on gender-based annuity pricing in a fully compulsory annuity market with no scope
for this response; this latter setting in which insurers are required to sell a single pre-
specified policy loosely corresponds to settings in which governments provide compulsory
annuities as part of their Social Security program. Our findings highlight the importance
of recognizing the endogenous structure of insurance contracts when analyzing the
economic effects of insurance market regulation, and they indicate that theoretical models
of insurance market equilibrium can be adapted to offer quantitative predictions on
regulatory issues. Even accounting for the endogenous contract response, however, we find
that a ban on gender-based pricing in the U.K. retirement annuity market would have
substantial distributional consequences, in most cases redistributing at least three percent
of retirement wealth from men to women. We also estimate that the efficiency costs
associated with this redistribution would be very small. However, since individuals do not
have a choice of whether or not to participate in this market, our estimates of the efficiency
costs of unisex pricing restrictions are likely to substantially underestimate the cost of such
restrictions in voluntary annuity markets.

Our analysis is divided into six sections. The first briefly reviews the qualitative impact
of uniform pricing requirements in insurance markets with asymmetric information. Based
on the assumption that annuity markets operate in a constrained-efficient manner, section
two develops a model of the range of possible contracts offered and purchased in
equilibrium. It also describes results concerning equilibrium contract structure and our
algorithm for solving for these contracts. It is supplemented by a technical appendix. In
the third section we calibrate the model and describe our estimates of a two-type mixture
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model for mortality rates. Section four describes the measures that we use for evaluating
the efficiency and distributional effects of policy interventions in insurance markets. The
fifth section presents our quantitative results. We describe the range of possible
distributional and efficiency effects of restrictions on gender based pricing under different
assumptions concerning the constraints on consumers and producers. A brief conclusion
discusses how our results bear on a number of ongoing policy debates and describes
possible generalizations of our approach to other insurance markets.

3.2 A Framework for Analyzing Regulation in
Insurance Markets

This section reviews the qualitative efficiency and distributional effects of a ban on
categorization in a standard two-state, two-type model of competitive insurance markets
with asymmetric information. This framework considers two distinct types of individuals
who are indistinguishable to an insurance company but who face different risks of a loss.
Individuals can insure themselves against loss by purchasing a single insurance contract
from firms in a competitive market.

3.2.1 Qualitative Analysis: "Perfect Categorization"

There is little consensus concerning the proper equilibrium concept for insurance
markets with asymmetric information, as Hellwig (1987) explains. We therefore follow the
approach taken by Crocker and Snow (1986) in their analysis of the efficiency impacts of
bans on categorization and focus on constrained efficient outcomes. In focusing on these
outcomes, we implicitly assume that the private market achieves efficient outcomes, within
the scope of their ability to do so, without explicitly modeling equilibrium behavior. We
note, however, that the so-called Miyazaki (1977)-Wilson (1977)-Spence (1978) (hereafter
MWS) equilibrium provides an example of a model of equilibrium behavior that results in
a constrained efficient outcome. We will describe this MWS outcome in more detail after
characterizing the entire efficient frontier, as it will play an important role in our analysis.

To characterize the frontier, denote the high risk and low risk types by H and L,
respectively. Let V'(A) denote the indirect utility achieved by type i when she has

purchased insurance contract A, and let n'(A) denote the expected profits a firm earns by
selling contract A to type i. With this notation, points on the Pareto frontier solve the
following program, where 2 is the proportion of H types:
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max VL(A )

subject to

(I. H H > V"H (A L )(ICH) VH(AH) VH(AL) (3.1)

(ICL) VL(AL) VL(AH)

(MU) v (A) V

(BC) (1 - )rl (A4L) + IH (AH ) > 0,

where (ICi) is the incentive compatibility constraint stating that i types must be willing to
choose the contract designed for them, (BC) is a budget constraint that requires that on
average policies break even, and (MU) is a minimum utility constraint for the H types.

Crocker and Snow (1985) characterize this constrained Pareto frontier in the standard
two period (one-accident) setting by varying the Lagrange multiplier on constraint (MU) in
(3.1). In Figure 3-1, we characterize the frontier in the same two-period setting by varying
the value of VH. Insurance contracts can be written as state-contingent consumption
vectors A = (a0 , a,), where the subscript 0 refers to the "no accident" state and the subscript

1 refers to the "accident" state. Insurance providers supply these consumption promises
A in exchange for a buyer's state-contingent endowment wealth vector W = (w0, w0 - X).

H types have a higher probability of experiencing state 1 and the types are otherwise
identical expected utility maximizers with a strictly concave utility function.

For low values of VH (MU) may be slack. For example, if VH = max VH (A) so
' nH (A)=O}

that (MU) says that H types have to be at least as well off as they would be with their full
insurance actuarially fair consumption point, then (MU) will be slack precisely when the
Rothschild and Stiglitz (1976) equilibrium either fails to exist or exists but fails to be
constrained efficient. Such a situation is depicted at point M in Figure 3-1. At point M, L
types consume the constrained efficient allocation that is best for them; this corresponds to
the MWS equilibrium. Figure 3-1 shows that even this best-for-L allocation can involve
positive cross subsidies from the L types to the H types.
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The dark curve connecting points M and F in Figure I depicts a portion of the locus of
the L type consumption points that correspond to constrained Pareto optimal outcomes.
The point labeled F is the unique "pooling" outcome on the frontier - i.e., the unique
constrained efficient outcome withAL = AH. It is on the 45-degree line and therefore
provides full insurance. Point F involves substantially larger cross subsidies from L types
to H types than does M. There are additional constrained efficient outcomes not depicted
in Figure 3-1 which involve even larger cross subsidies from L type to H types than those
at point F. Such outcomes involve the L types being fully insured and the H types being
overinsured, which Crocker and Snow (1985) note is a feature absent from standard
models of equilibrium in insurance markets. As a result, we do not consider this portion of
the frontier. The set of outcomes we consider is thus captured in the region of the frontier
bounded by F- and M; we do not try to select any particular constrained efficient outcome
from this set.

Because (3.1) permits - and, as in the case of Figure 3-1, may even require - the
market to implement a contract pair involving cross subsidies across types, bans in
characteristic-based pricing can have both distributional and efficiency consequences.
This is illustrated in Figure 3-2, which depicts a constrained efficient pair of contracts.
When type is observable and can be used in pricing, the competitive equilibrium will
provide each type with her actuarially fair full insurance contract. In Figure 3-2, A and
AL* depict the full insurance actuarially fair contracts that we assume emerge when type is
observable and can be contracted upon. Consumption for each type is independent of the
realized state of nature.

When type-based pricing is banned, our assumption is that the market implements a
pair of contracts, labeled AH and AL, which is constrained efficient given the
informational restrictions of the ban. Note that as depicted this contract pair involves
positive cross subsidies between types. As a result, H types are better off when
categorization is banned, and L types are worse off. This illustrates how a ban on
categorical-based pricing may have distributional consequences. The ban is efficiency
reducing in this example as well. Since type is, in fact, observable, it is in principle
possible to make L types as well off as with AL via contract A' L, which is also actuarially
cheaper to provide to the L types.
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3.2.2 Residual Private Information

The foregoing discussion assumes that type is observable. A ban on characteristic-
based pricing therefore moves the economy from perfect information to imperfect
information. In practice, information such as gender or the outcome of a genetic test may
be related to risk type, but even conditional on this information, insurers are unlikely to be
able to completely determine the risk of potential policy buyers. The relevant comparison
is therefore between imperfect information and more imperfect information.

Our study builds on previous analyses of bans on characteristic-based pricing, such as
Hoy (1982) and Crocker and Snow (1986), which use the most parsimonious model that
can capture the presence of residual uncertainty. There are still two risk types, but risk
type is not directly observable. Instead, insurers only observe a signal that is correlated
with risk type. There are two possible signals, X and Y. We henceforth refer to individuals
as falling in category X or category Y. A fraction 2

k of category k individuals are high
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risk types, with 0 < x < ry < 1. Thus, category Y is the high-risk category, but there are
still low-risk types within that category. We denote by the fraction of category Y
individuals in the population.

For our analysis, we continue to assume that markets will operate in a constrained
efficient manner given the information which is both available and legal for use in pricing.
When characteristic-based pricing is permitted, we further assume that the market will not
implement contracts involving cross-subsidies across observable categories, just as we did
in Figure 3-2 by assuming that the contracts AH* and AL* emerge when type-based pricing
was allowed. A ban on categorical pricing in this imperfect-information setting will have
the same qualitative effects as it does in the perfect information setting described above.

3.3 Modeling Restrictions on Gender-Based Pricing in
the U..K. Pension Annuity Market

The preceding discussion illustrates the qualitative impact of a ban on categorization on
efficiency and redistribution. To develop quantitative estimates, we consider a particular
ban on categorization in a particular market, namely the imposition of unisex pricing
requirements in the U.K. annuity market. Individuals in the United Kingdom with defined
contribution private pension plans that have benefited from tax deferral on investment
income-the analogues of IRAs and 401(k)'s in the United States-face compulsory
annuitization requirements for a substantial share of the balance accumulated by
retirement. In 1998, data from the Association of British Insurers (1999) suggest that
annual annuity payments in this market totaled £5.4 billion.

Although annuitization is compulsory, annuitants in the U.K. retirement annuity market
have some scope for self-selection across contract choice. Finkelstein and Poterba (2004,
2006) find that such self-selection appears to reflect private information about mortality
risk. Note that, from the perspective of an insurance company, high-risk annuitants are
those who are likely to live longer than the characteristics used in pricing, such as age and
gender, would suggest. There are currently no regulations in the U.K. annuity market
limiting the characteristics used in pricing annuities. In practice, annuities are priced
almost exclusively on age at purchase and gender. Several small firms entered the annuity
market after the end of our sample with discounted annuities for heavy smokers, but those
products were not available during the period that we study.

While the two-state model discussed above suffices for the understanding the
qualitative impacts of interventions that ban categorical pricing, it is too stylized to
plausibly measure the quantitative impact of regulatory interventions. Since an individual
can live for many years after the purchase of their annuity, we extend the analysis to 35
periods. Boacdway and Townley (1988) is the only other contract theoretic model we have
found that includes more than three periods in an analysis of an annuity market with
asymmetric information, but the contracts under consideration have a particular and
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restrictive form that we relax. This extension to many periods is essential for a plausible
calibration.

Our baseline model also allows for unobservable savings. Eichenbaum and Peled
(1987), Brunner and Pech (2005), and others note that allowing annuitants to engage in
unobservable saving limits the ability of insurers to screen different types of
observationally equivalent annuity buyers. In our context, we show that when insurance
companies can observe savings, the informational asymmetries created by a ban on gender
categorization can have neither efficiency nor distributional consequences. The process of
deriving and solving the model, which we discuss below, provides insight into why
accounting for unobservable savings is critical for any plausible calibration. It also
demonstrates why this extension makes the model substantially more difficult to solve. We
show that it is nevertheless possible to solve for the contracts on the constrained Pareto
frontier, and we sketch our computational algorithm.

3.3.1 Defining Annuity Market Outcomes

Our model applies to any number of periods t = 0,A ,N, where we interpret t as the
number of years after retirement, which we take to be at age R=65. In practice, we take
N=35, thereby assuming individuals do not live past age 100. To capture the compulsory
purchase requirement, we assume that individuals must use their retirement wealth W to
purchase an annuity. They exponentially discount the future at rate = Y+r per year,

where r is the interest rate, and by their (cumulative) probability S, of living to a given age

R+t. The two risk types, H and L, differ only in their survival probabilities. There is a

continuum of individuals, with a fraction of H types. We assume ; > S',+IL for each

t; in other words, the ratio of the cumulative survival probabilities of the two types must be
monotone in age. This is satisfied if the higher longevity type has a lower mortality hazard
at every age.

The direct utility of a consumption stream IF = (c0 ,A, CN) for type ar is given by:

N N 1

U' (co,A ,cN) = , 5'SUu(c,) = F 5'S' I (3.2)
,=o ,=o 1 -Y

where is the risk-aversion parameter. Annuity streams, which are denoted by A, specify

a life-contingent payment a, in each of the N +1 periods. In our baseline model, we

impose no structure on the annuity payments a,; we later restrict the time profile of

possible annuity payments.
Individual savings earn an interest rate r. Individuals have no bequest motive, and they

cannot borrow against their annuity. This means that individuals with an annuity stream A
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can obtain any consumption with EF(A){rec <E a5 Vt}. This induces00
indirect utility functions and type-specific actuarial cost functions

V (A) = max U (F), (3.3)
reF(A)

and
N

C (A) -E "Sa, . (3.4)
0

Because individuals discount the future at the rate of interest, "full insurance" annuities
have level real payouts. Let V(X) denote the utility that type a gets by consuming the

full insurance annuity A with CG(A) = X. Let A A denote the pooled-fair full insurance

annuity i.e., the one satisfying ACE (AA) + (1- L)CL (A ) = W. In a constrained efficient

market, the two risk types purchase a pair of annuities AH and AL that solve:

max VL(AL)
AL ,AH

subject to

(ICH) VH (AH) V (AL)

(ICL) VL(AL) VL(A)

(MU) V (A ) V7

(BC) (1- 2)CL(AL) + CH (AH) < W

for some V". We further assume that A(W)<V <V"(A), where

V (X) Max V" (A). Then H types are at least as well off as they would be if they
{A:Cu (A)gX}

revealed their type, and are no better off than they would be under a pooled-fair full
insurance outcome. This range corresponds with the portion of the efficient frontier in
Figure 3-1. Solving (3.5) is non-trivial: it involves solving for the N +1 year-specific
annuity payments for each of the two types. Furthermore, the functions V(A) are
themselves implicitly defined via (3.3), which is an optimization problem over N +1
variables. Nevertheless, (3.5) is computationally tractable.

Several factors help us solve (3.5). First, the assumption that VH < VH (Aa) implies
that the L type incentive compatibility constraint will be slack at the solution. We
therefore drop this constraint while we are solving (3.5), and later verify that it is indeed
satisfied. Likewise, the budget constraint (BC) trivially binds at the optimum. Second,
once the type-L (IC) constraint is dropped, it is easy to see that A will be a full insurance
annuity. Any allocation with an AH that does not offer full insurance can improved upon
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by replacing AH with the full insurance bundle A" for which V (H) = VH(AH), as this

replacement affects (3.5) (sans (ICL)) only by making (BC) slack. Since A" is a full

insurance annuity, we can parameterize it by T W-CL(AL), the size of the cross-

subsidy from L types to H types expressed in per L type terms. For a given T,

VH (AH) = V7H (W + i ), which means that the solution to (3.5) must have T > T, where

T solves V" = VH (W + -AT). This permits us to write (3.5) in the simpler form:

max VL(AL)
AL ,T

subject to

(IC') V (AL) < VH (W + T) (3.6)

(MU') T >T
(BC') CL (A L) < W-T

In practice, we solve this program for a given T and then perform a search over different
values of T to find the optimum. In discussing (3.6), we therefore treat T as given.

Third, we observe that neither type chooses to save at an efficient contract pair. This is

obvious for H types since AH is a full insurance annuity. The L types have no incentive to
save in a constrained efficient market because saving is an inherently inefficient
mechanism for transferring income forward in time when there is no bequest motive. It is
more efficient to use life-contingent payments so that resources are not "wasted" at death.

If an L type receives an annuity ALthat induces her to save at some age, then her

consumption stream, say AL, would differ from the annuity stream. That same
consumption stream could be achieved directly via an annuity at a lower actuarial cost to
the annuity provider. There is therefore some surplus to be created by reducing the
annuity's payouts in its early years and raising its payouts in later years. Insurers in an
efficient market will take advantage of such opportunities to repackage the timing of cash
flows until the surplus is eliminated and L types no longer wish to save from the annuity.

Formally, consider replacing AL with AL in (3.6). L types would be exactly as well off as

before, but when AL A L the budget constraint would be made strictly looser.
Furthermore, the incentive compatibility constraint will be no tighter, and possibly strictly

looser, as a result of the replacement. Therefore, AL can only solve (3.6) when AL = A .
The observation that neither type chooses to save means that, in equilibrium,

VL(AL) = UL(AL) and VH(AH) = UH (AH), so both can be computed directly instead of
by solving the non-trivial (3.3). The only part of (3.6) that is difficult to compute is

VH(AL), the utility that H types get if they deviate to purchasing the L type annuity and

saving optimally. The structure of (3.6) in fact allows us to evaluate VH (AL) in solving for

equilibrium without explicitly solving (3.3). In particular, with the parametric forms we

assume on the survival probabilities and preferences, VH (AL)=V H(AL;n ) at any

solution to (3.6) for some n*, where
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N
V7n (AL;n*) = I S. u(t,) (3.7)

/=0

and where:

CH
C, =

if t < n

SI" N .9aL (3.8)

'. ),. 5if t >n*

( Zi T

Equations (3.7) and (3.8) describe the utility achieved by an H type with an annuity
stream AL when she consumes the payments before period n*, and thereafter follows the
consumption pattern she would follow if the remaining annuity stream (aL. ,A aL) were a

bond against which she could save and borrow at the constant rate r. Hence, saying that
VH(AL) = VH(AL;n*) for some at a solution to (3.6) is tantamount to saying that that

the optimal consumption pattern of H types who deviate and buy annuity stream AL is of
this form. Note that for their utility to be given by a consumption pattern of this form, the
stream AL must be such that this consumption pattern of deviating H types does not
involve borrowing. The formal proof that annuity stream AL has the property that deviating
H types will optimally consume in accord with (3.8) is shown in the appendix. The
intuition is relatively straightforward, however, and it offers insights into the critical
importance of saving in determining the optimum annuity streams.

Suppose that annuitants could not save. Then we could find the solution to (3.6) by
simply replacing VH (AL) with UH (AL). This modified program could be solved using
first order conditions. To illustrate such a solution, Figure 3-3 plots the annuity streams
AL and AH for a special case of the general problem, corresponding to the T = 0 extreme
(i.e. the MWS equilibrium) and to the male population in the baseline parameterization of
our model, as developed below. The special case also assumes = 3 and r = .03.

Figure 3-3 shows that AH is a full insurance annuity, and AL is an annuity which is almost
a full insurance annuity with significantly higher annuity payments. The payments
provided by AL decline with time, but this decline is only significant at late ages - indeed,
the decrease is negligible until age 97. The payments fall off sharply thereafter, but the AL
annuity payment only falls below the AH annuity payment at age 100 - the oldest age
considered. Between ages 99 and 100, however, the payment falls off so sharply that the
incentive compatibility constraint is nevertheless satisfied. Qualitatively similar plots
would hold for less extreme values of T.The reason the annuity stream AL falls off so
steeply and at such an advanced age is because this is when S's, is smallest. Low annuity
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payments translate directly into low consumption when savings is impossible; this hurts H
types much more than L types at old ages, since H types are relatively much more likely to
still be alive. In other words, the best way from the perspective of L types to satisfy
incentive compatibility for H types involves providing a downward tilt at extreme old ages,
when the relative probability of L types being alive, compared to H types, is lowest.

Figure 3-3: MWS Equilibrium Annuities if Savings is Impossible
(Male population, y = 3)
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Savings is Possible (Male population, = 3 )

When savings is possible, such a steep drop-off is far less useful as a self-selection
device because it can always be undone - albeit inefficiently - by saving. Indeed, Figure 3
also shows the optimal consumption pattern ZH and bond-wealth holding of H types who

receive annuity AL but who can also save. These H types optimally choose to consume
the annuity payments until age 96, after which they use their savings to smooth out the
sharp drop-off in the annuity stream. Because such saving reduces the power of
downward-sloping payout schedules as a selection device, when savings is possible, the
extremely sharp fall-off of payments L will no longer be optimal. However, the
incentive for positive saving by deviating H types will still be as in (3.8).
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3.3.2 Optimal Structure of Contracts

A central contribution of our modeling is finding the optimal structure of annuity
contracts when annuitants can save. This involves solving (3.6). We cannot offer general
analytic solutions, so our findings necessarily require assumptions about the underlying
functional forms of the utility function, the mortality rates, and other parameters. Using the

same baseline parameters that we used in Figure 3-3, and the same assumption that T = 0,
Figure 3-4 plots the solution to (3.6) and shows the actuarially fair full insurance annuities
for both H type and L type individuals, as well as the optimal consumption stream of an H

type who deviates and purchases annuity AL. Again, qualitatively similar graphs would

obtain for other values of T.
Several features of Figure 3-4 are worthy of note. First, the solution involves

substantial cross-subsidies. This is clear from the comparison of the level of the H type

fair level annuity and the H type optimum annuity AH, as AH offers strictly higher payouts.

Second, while AL provides a downward sloping annuity stream, it declines much more
gradually than the annuity stream shown in Figure 3-3, which corresponded to the case in
which'annuitants could not save. Third, comparison of the optimal consumption stream of

an H type deviating toAL reveals that the deviating H type who purchases AL will

immediately begin to save. In the notation above, this means n = 0 in (3.7) and (3.8).
Comparison of Figures 3-3 and 3-4 shows the important effect of allowing for

unobservable saving on the structure of the optimal annuity streams. Though it is more
difficult to find the optimal annuities with unobservable saving than without, the evident
realism that allowing for such saving provides leads us to choose this as our benchmark
case. Indeed, the results in Figure 3-3 suggest that if unobservable saving is not possible,
asymmetric information is essentially irrelevant because the optimal annuity streams are
virtually identical to the annuity streams that would obtain with symmetric information.
The findings more generally suggest caution in using applied contract theoretic models for
quantitative purposes when there are inefficient and unobservable behaviors the insured
can undertake as a substitute for formal insurance.

3.3.3 Discussion of Key Assumptions

The importance of unobservable savings highlights one of several extensions we have
made to the standard stylized model of insurance markets with asymmetric information.
These extensions provide a more realistic framework for analyzing the impact of a ban on
gender-based pricing. Nonetheless, the model that we develop in (3.5) and (3.6), and then
solve, makes a number of assumptions for tractability. Some - such as the use of constant
relative risk aversion utility or the assumption that individuals discount the future at the
rate of interest - are standard. It is worth, however, briefly commenting on several that are
more specific to this application.

First, we have not incorporated bequest motives into our model. The importance of
bequests in explaining saving behavior has been widely debated, for example by Kotlikoff
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and Summers (1981), Hurd (1987, 1989), Bernheim (1991), and Brown (2001), but no
consensus has emerged. Conceptually, the presence of bequest motives can easily be
incorporated into our framework. We would simply add utility from consumption in states
when the consumer is dead. Since our solution algorithm relies heavily on the shape of
preferences, however, this extension can pose practical issues of computational tractability.
In part for this reason, we have addressed the analytically more convenient setting without
bequests, while recognizing that this limits the applicability of our findings if actual
consumption decisions are substantially affected by bequest motives.

Second, we have followed previous theoretical models, notably Hoy (1982) and
Crocker and Snow (1986), in modeling mortality heterogeneity via two risk types. The
computational challenge of finding optimal contracts is much more difficult in a many-type
setting, although similar solution algorithms to the ones we developed here would, in
principle, also apply. We show below that our data cannot reject this parsimonious model
in favor of one which allows the underlying types to differ by gender.

Finally, we emphasize more generally that while our model incorporates some
important features of the U.K. annuity market, it does not capture many others. For
example, we focus on single life annuities, and we ignore individuals' option to purchase
limited term guarantees of their contracts. We also ignore the presence of wealth outside
the retirement accounts. We abstract from the possible presence of risks other than
longevity risk, such as liquidity risks or health shocks; Crocker and Snow (2005) discuss
how the existence of such "background risks" can affect the insurance market equilibrium.
Finally, our model does not allow for the possibility of individuals learning over time
about their risk type; Polborn et al. (2004) show that allowing for such dynamic
considerations in a model in which individuals have flexibility in the timing of their
insurance purchases can have important qualitative effects for the impact of restrictions on
characteristic-based pricing. In part because of these and other abstractions, the optimal
annuity contracts we compute do not match the actual contracts observed in the data; we
discuss this in more detail below.

3.4 Model Calibration

Calibrating our model to yield quantitative estimates of the efficiency and
distributional consequences of mandating unisex prices requires the constant relative risk
aversion parameter y; the real interest rate r; the fraction of high risk individuals among
men ( M ) and among women (F); the fraction of women in the relevant population;
and the survival curves for each risk type (SH and SL). We present results for risk

aversion coefficients of 1, 3 and 5. We assume the interest rate r is equal to 0.03 and set
the discount rate a = i+r. We set 0 = 0.5 in our baseline case, but we also report results
for other values.

We jointly estimate the remainder of the parameters using micro-data on a sample of
compulsory annuitants who bought annuities from a large U.K. life insurance company
between 1981 and 1998. We have information on their survival experience through the

99



end of 1998. These data, which are described in more detail in Finkelstein and Poterba
(2004), appear to be reasonably representative of the U.K. annuity market. We restrict our
attention to annuities that insure a single life, as opposed to joint life annuities that
continue to pay out as long as one of several annuitants remains alive. In addition, we
focus on individuals who purchased annuities at the modal age for men (age 65). We
exclude annuitants who died before their 6 6th birthday and consider only mortality after age
66, so that we have a uniform entry age. Our final sample consists of 12,160 annuitants of
whom 1,216 are women; this represents about a third of the single-life sample of all ages
analyzed in Finkelstein and Poterba (2004).

We estimate the survival curves for two underlying, unobserved risk types H and L.
Our approach, in the spirit of Heckman and Singer (1984), is to assume a parametric form
for the baseline mortality hazard, and to jointly estimate the parameters of the baseline and
the two multiplicative parameters that capture the unobserved heterogeneity. We follow the
actuarial literature on mortality modeling, such as Horiuchi and Coale (1982), and assume
a Gompertz functional form for the baseline hazard. This is particularly well suited to our
context because our data are sparse in the tails of the survival distribution. Formally, for a
given risk type oA-, the mortality hazard at age x, is given by:

Au(x, j) = a,-exp(,8(x, - b)), (3.9)

where b is the base age, 65 in our case. We assume that the growth parameter is
common to both risk types and to both genders. This means that,/ determines the shape

of the mortality curves for both types, which differ only in the values of a, . Using the

notation t = xi - b, this form of the hazard implies risk-type-specific survival function of

the form:

S(tIa) = exp{ (1- exp(/J. t,))}. (3.10)

When the two underlying risk types are the same for males and females, so that only the
mix of these two risk types is allowed to differ across genders, our stochastic model
depends on a parameter vector e = { aL , aH , /, Af ,m }). The likelihood function in this

case will be:

L( ) El m (1 + ( Am)L )+ 1' (Afl H )+ 1 A ) )
i

where (3.11)

a =$S(t, |a.,/~)(d. + (1-d, )lu(t, |,/), a=c{HL}
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In (3.11), the variable d is an indicator for whether the individual observation is
censored and 1m and If are indicator variables for whether an individual is male or female
respectively. An individual's contribution to the likelihood function is a weighted average
of the likelihood function of a high risk and low risk type, with the weights equal to the
gender-specific fraction of high and low risk individuals. Eighty-one percent of the
observations in our sample are censored because the annuitant is still alive at the end of the
sample period, December 31, 1998.

Table 3-1 presents our estimates of the mortality model in (3.10) and (3.11). Our
estimates yield aggregate mortality statistics that are similar to those published by the
Institute of Actuaries (1999) for all 65 year-old U.K. pensioners in 1998. For example, the
life expectancies implied by our model differ from those in the aggregate tables by only
0.26 years for women and 0.45 years for men. The estimates of the mortality rates for the
high risk and the low risk types are quite far apart, implying large differences in life
expectancies. For example, the estimates in Table 1 imply that life expectancy at 65 is only
8.8 years for low risk types, compared to 23.2 for high risk types. Column 5 indicates that
over 80 percent of women are classified in the high risk (long-lived) group, compared to
only about 60 percent of men (column 4). As a result, the estimates imply a 3-year
difference in life expectancy at 65 for men compared to women.

Table 3-1: Estimates of Two-Type Gompertz Mortality Hazard Model, Same Types for Both
Genders

Sample Multi- Multi- Common Fraction Fraction log(L) X2(3)
plicative plicative growth of high- of high- (P-val)
factor on factor on factor in risk men risk
hazard for hazard for hazard (AM) women
high risk low risk model (3) (2 F)
(aH) (aL)

65 Year 0.0031 0.0405 0.1485 0.6051 0.8192 -10347.45 1.94
Olds (0.0003) (0.0013) (0.0056) (0.0096) (0.0231) (0.59)
(N=12160)

Notes: Results are based on estimating equation (3.11) using micro-data on annuitant mortality patterns.
Standard errors are in parentheses. Column 6 contains the total log likelihood. Column 7 reports the x2 (3)

statistic (P-value) for the Likelihood Ratio test of this restriction relative to the more flexible specification in
Table 3-2.

Survival differences this substantial imply the potential for unisex pricing restrictions
to accomplish considerable redistribution toward the longer-lived women.

We investigated whether the five-parameter model that we estimate is unnecessarily
restrictive by estimating a more flexible eight parameter model that allows for the types to
differ across gender. Here, in addition to having a gender specific fraction of high risk
types, , the parameters aL, aH, and f, are also permitted to be gender specific. Table 3-
2 shows the results. For men, the estimates of the mortality parameters look qualitatively
quite similar to the estimates in Table 3-1. This is not surprising, since most of the sample
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is male. The estimates for women indicate a single underling type for women is the best fit
for the data. In this case, however, the likelihood function for women varies very little as
the model parameters are changed. This explains why we cannot reject the validity of the
implicit parameter restrictions involved in using the 5-parameter instead of the 8-parameter
model, as indicated by the a likelihood ratio test shown in Table 3-1, column 7 (p=.59). In
light of these results, we use the parameter estimates from our more parsimonious model.

Table 3-2: Estimates of Two-Type Gender-Specific Gompertz Mortality Model
Sample Multiplica Multiplicati Common High-risk log(L), log(L)

tive factor ve factor on growth fraction by gender
on hazard hazard for factor in (A, /4)
for high low risk hazard
risk (alH,m/ (a4,,,/af) model (m /
aH.f) ) .

65 Year Old 0.0030 0.0423 0.1566 0.6305 -9568.59
Males (m) (0.0003) (0.0014) (0.0058) (0.0091)
(N=10944) -10346.5
65 Year Old 0.0111 NA 0.0882 NA -777.89
Females (t) (0.0009) (0.0228)
(N=1216)
Notes: Results are based on estimating equation (3.11) separately for each gender using the same data as in
Table 3-1. Standard errors are in parentheses. The estimation for females led to a single type model. The

final column reports the total log likelihood.

3.5 Measuring the Efficiency and Distributional Effects
of Banning Gender-Based Pricing

This section briefly describes the measures that we use to quantify the efficiency and
distributional effects of a ban on gender-based pricing in the model described above.
Standard measures of the distributional effects of and the efficiency costs of regulatory
policies, such as compensating variation, equivalent variation, and their corresponding
measures of deadweight burden, do not naturally extend to settings with asymmetric
information. It is not clear what it means to estimate the transfer that a consumer of a
given type requires to be as well off after a policy intervention as beforehand when it is not
possible for the government to identify this consumer and carry out the transfer. With this
consideration in mind, we develop a measure of inefficiency that is in the spirit of Debreu
(1951, 1954). It is also the natural quantification of the efficiency notion used by Crocker
and Snow (1986) when they demonstrate that restrictions on categorical pricing in
insurance markets are efficiency reducing.

To construct our efficiency and' distribution measures, we use the "actuarial cost
function"C'(A) from (3.4), which gives the expected cost to an insurance company of
honoring contract A when it is owned by an individual of risk type or. The actuarial cost
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of honoring a vector Ai'. of contracts for each type i {X, Y} and category -cr E {H, L} is
given by the total actuarial cost function:

TC(A4. ) _ 9(TC Y(A Y)) +( - )(T'C x(A X))L (31
-_(YCH(,YH) +(I_ )CL(AY.L))+(1_O)(2xCH (AXH)+(1_A X)CL(AXL) (3.12)

where the total cost functions for each category, TCX and TCY, are defined implicitly, and
AY" and AX" denote category-specific vectors of contracts. The minimum expenditure
function is defined by:

Min TC(Ai"U)

E(A)_ Subjectto (IC): V (A ,S ) > V(Ai S,) Vi {X,Y} and Va, o'e-e {HL} (3.13)
and (MU) V (i., Sa)> Vi(Ai",S)ViE{X,Y}andVcye{H,L}

The minimum expenditure function maps a proposed allocation A of contracts to each
type within each category into the minimum total actuarial cost of ensuring that each type
within each category is at least as well off as with A, while respecting the inherent
informational constraints in the economy. These inherent constraints are captured by (IC)
in (3.13), which requires that within each category, individuals need to be willing to
choose the contract A designed for them. Because category is observable, however,
incentive compatibility does not have to be satisfied across categories.

An efficient allocation A solves (3.13). Any other informationally feasible contract
set A that makes each individual as well off as A has at least as high a total actuarial
cost. Other allocations are inefficient, and a measure of the inefficiency is
TC(A' ) - E(Ai") . If A"' and A denote any two vectors of contracts, the efficiency

cost of moving from former to the latter, EC(A', Af ) is given by

EC(Ai,,A2)) (TC(A) - E(A2))-(TC(A;') - E(A,')) (3.14)

For our analysis of the policy of banning the use of categorical pricing, this expression
simplifies because, by assumption, the market outcome prior to the ban is efficient. Hence,
the efficiency cost of a ban is exactly the inefficiency of the equilibrium contract set that
obtains after the ban.

Both TC(.) and E(.) decompose by category, so the efficiency cost of a ban on
characteristic-based pricing can be decomposed into category-specific efficiency costs.
That is, we can write TC'(A i'") = E' (A ' ) + Inefficiency'(A".). This decomposes the
actuarial cost, or the resource use, of a given category into two components: the minimum
resources needed to make the types that well off, and the resources that are wasted because
of an inefficient allocation. We interpret the former as a money-metric measure of the well
being of the category, since the wasted resources do not contribute to well being. We can
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therefore quantify redistribution at the category level from a policy that changes the
contract set from A' to A' as the increase in this money metric measure. Redistribution

towards category Y is therefore given by R r (A',A"')- (EA r(Ar ') - E i (A')). There is
a similar expression for the redistribution towards category X.

When a policy change has efficiency consequences, the weighted sum across categories
of the redistributions will not be zero, even when the policy change leaves the total
actuarial cost unchanged. This is because some of the redistribution away from category X
can be dissipated via an increase in the inefficiency of the allocations and might never
reach category Y. It is perhaps more appealing to have a redistribution measure in which
the entire amount redistributed away from one group is, in fact, redistributed to the other
group. We therefore focus on the re-centered measure:

R Y A )-RY (A:,a,A' a)-(ORY (Al , a,.a )+ (1 - 6)Rx (Ala As¢)). (3.15)

This measure expresses the re-centered redistribution per member of category Y.
Figure 3-2 can be used to qualitatively illustrate the efficiency and distributional

measures when category is perfectly predictive of type (i.e., Ax= = -Ay). In this
setting, the efficiency metric boils down to summing the certainty equivalent consumptions
across types. Prior to the ban, the competitive market gives actuarially fair full insurance
contracts AL* and AH* to the two types; this allocation, which entails state-independent
consumption, is efficient. When categorical pricing is banned, the market implements a
pair of contracts labeled AL and AH which is as efficient as it can be, given the
government imposed pricing constraints. This set of allocations is nevertheless inefficient
because AL could, in principle, be replaced by the state independent (full insurance)
consumption contract A 'L which makes L types equally well off, while saving resources.
The efficiency cost of the ban is precisely the difference in the actuarial costs of AL and
AtL, scaled by the number of L types in the market.

The policy also re-distributes resources from L types to H types. The amount
redistributed to each of the H types, computed without re-centering, is the actuarial
difference between AH and AH* computed using mortality risks for H types. We measure
the amount redistributed away from each of the L types via the actuarial difference
between A and A, in this case computed using the mortality rates for type L. The
change in actual resource use or in the actuarial cost of the L types' contract is measured
by the actuarial difference between AL' and AL, again using L type mortality rates.

When categorization is imperfect, the same sort of analysis applies, but summing
certainty equivalents across individuals is no longer a valid measure of efficiency.
Because contract outcomes are constrained efficient when categorical pricing is allowed
(by assumption), we need only consider the inefficiency of the post-ban equilibrium.
Figure 3-5 illustrates this. The post-ban allocation is given by the contract pair
AXH = AY ' - AH and AX 'L = AY '- A . This allocation is inefficient because of the
inefficient allocation within the X category. Having fewer H types within that category
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Figure 3-5: The Inefficiency of Bans in Categorical Pricing

means that additional (break even) cross subsidies from L types to H types within that
category can make both X category types better off. Hence, both X category types could
be made at least as well off with fewer resources, for example via the pair of contracts
indicated in Figure 3-5. On the other hand, because the Y category has a greater fraction
of H types, additional cross subsidies within that category do not yield Pareto
improvements - the original contracts are, in fact, the efficient way for Y category types to
achieve their original level of well being. The efficiency cost of the ban is measured by the
difference in the actuarial costs of the market allocations and the associated efficient
allocations.

Because we consider the set of constrained Pareto efficient market outcomes, there is a
range of possible market allocations both prior to and subsequent to a ban in gender-based
pricing. As a result, there is a range of possible estimates of the consequences of a ban.
The efficiency and distributional measures developed above have the nice property that we
can summarize all possible efficiency and distributional effects of a ban via a single-
parameter family of consequences. This family ranges from a "high efficiency cost, low
redistribution" end-member to a "low efficiency cost, high redistribution" end-member.
To see this, note that prior to a ban in gender based pricing, the market is, by assumption,
efficient. The efficiency cost of a ban is therefore equal to the inefficiency of the post-ban
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allocation. Moreover, because the market does not implement across gender cross-
subsidies in the absence of a ban, the total "welfare" (viz (3.13)) of each gender prior to the
ban is equal to W. The distributional consequences can be measured via the "welfare" of
each gender in the allocation which obtains when a ban is implemented, regardless of the
specifics of the market allocation in the absence of a ban.

The range of possible efficiency and distributional consequences of a ban in gender-
based can therefore be computed from the range of possible market outcomes when a ban
is in place - i.e., by the solutions to (3.5) as VH varies from the utility VH (W) they get

from their full insurance actuarially fair contract to the utility VH (A) they get from a
pooled (across gender and type) fair full-insurance contract. Furthermore, one can show
that the redistribution towards women is monotone increasing in V and that the efficiency
cost is strictly decreasing in VH until the efficiency cost reaches zero and remains there.
Hence, bounding the possible efficiency and distributional consequences of a ban amounts
to computing the solution to (3.5) at the two endpoints, where the lower end of this range
corresponds precisely with the MWS equilibrium, and the upper end corresponds with the
pooled-fair full-insurance outcome. While this leaves a potentially large range of
consequences, it has the advantage of characterizing the full set of feasible constrained-
efficient outcomes. Readers who are willing to choose a particular equilibrium concept -
such as the MWS equilibrium - can narrow the range of possible consequences to a single
point.

3.6 Estimates of the Efficiency and Distributional
Consequences of Banning Gender-Based Pricing

We begin by reporting findings for our baseline model, in which firms have full
flexibility in designing the payment profile of the annuities they offer, individuals can save
out of their annuity income, and insurance companies cannot observe saving. After
presenting these baseline results, we consider results in several restricted models and then
evaluate the sensitivity of our findings to changing several key parameters in our analysis.

3.6.1 Baseline Model Results

To characterize the entire range of possible consequences of a ban in gender based
pricing, we need only to compute two possible post-ban allocations: the MWS equilibrium
and the pooled-fair full insurance outcome. Without loss of generality, we normalize
retirement wealth to W = 1 for these calculations.

Table 3-3 summarizes the results associated with both the MWS and the pooled-fair
outcome, with the latter labeled SS. The first six columns of Table 3-3 present the
minimum expenditure functions for women, men, and the total population at each of the
two extreme contracts which may obtain when categorization is banned. These are
EF,EM, and E, in the notation used above (see (3.13)). They denote the minimum per
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person resources needed to ensure that each type is at least as well off as in the equilibrium
while respecting the inherent informational constraints of the model. Since each person in
endowed with one unit of resources, the difference between the fifth and sixth columns and
1.0 gives the efficiency cost of the ban when the post-ban contracts are given by the MWS
and are given by the pooled fair outcomes, respectively. This difference is reported, in
percentage terms, in the seventh and eight columns. For a risk aversion coefficient of 1, the
high-end (MWS-end) efficiency cost is 0.04 percent of retirement wealth W. For risk
aversion coefficients of 3 and 5, the comparable costs are about 0.02 percent. If,
subsequent to a ban, the market implements the pooled fair endpoint outcome, then there
are no associated efficiency costs. It is important to recognize that the small upper bound
on the efficiency costs is largely due to our focus on a compulsory annuity market, and that
the efficiency costs of eliminating characteristic-based pricing in voluntary insurance
markets could be many times greater than our estimates suggest.

The eleventh and twelfth columns of Table 3-3 report our summary statistics for
redistribution from men to women. This is the re-centered redistribution per woman
defined in (3.15). For a risk aversion of 1, we estimate that 2.1 percent of the endowment
is redistributed when the market implements the MWS endpoint outcome subsequent to a
ban in gender-based pricing. For risk aversion coefficients of 3 and 5, the comparable
numbers are 3.4 percent and 4.1 percent, respectively. The last column of Table 3-3
reports the efficiency costs as a percentage of the amount of redistribution for the high-end
MWS case. This ratio varies from 3.6 percent for a risk aversion of 1 to under 1 percent
for a risk aversion of 5.

When the market implements the pooled-fair outcome instead, it redistributes a total of
7.14% of resources towards women. This is between 1.8 and 3.4 times more redistribution
than the low-end redistribution estimates of Table 3-3. In addition to providing an endpoint
for the possible consequences of a ban in gender-based pricing in our setting, the 7.14
percent redistribution and zero-efficiency cost endpoint is also interpretable as the effect of
banning gender-based pricing in a compulsory full-insurance setting such as the U.S. Social
Security system. In such a setting individuals are, in effect, required to purchase level
inflation-protected annuities with their retirement accumulations W. If categorization by
gender is allowed and pricing is actuarially fair, men get larger per-period annuity payouts
than women for a given initial premium. If categorization is not allowed, all buyers receive
the same full insurance annuity with an intermediate payout level. Because there is no scope
for insurers to adjust the menu of policies that they offer in response to the ban, such a ban
would not have any efficiency costs. The consequences in such a setting are thus identical to
the high-distribution endpoint calculations in Table 3-3.
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Table 3-3: Range of Efficiency and Distributional Consequences of Unisex Pricing
Risk Required Per-Person Endowment Needed to Achieve Utility Level Redistribution Effcy
Aver from Non-Categorizing Equilibrium When Categorization is Allowed to Women Cost Per
s-ion Women $E Res-ion women(EW) Men (EM) Total Eff'cy Cost (R), Per $Re-

Pop'n(E) as % of Total Woman (%Of dist'n
Endowment Endowment) (%)

MWS SS MWS SS MWS SS MW SS MWS SS MWS

y=1 1.0205 1.0714 0.9788 0.9286 0.9996 1 0.0381 0 2.084 7.14 3.66

y=3 1.0336 1.0714 0.9659 0.9286 0.9998 1 0.0246 0 3.387 7.14 1.45

y=5 1.0404 1.0714 0.9593 0.9286 0.9998 1 0.0180 0 4.055 7.14 0.89

Notes: Estimates are based on the model and algorithm described in the text. Columns labeled MWS refer to
the high efficiency cost/low redistribution end of the range of possible consequences which obtains when the

market implements the Miyazaki-Wilson-Spence equilibrium when gender-based pricing is banned.
Columns labeled SS refer to the zero efficiency cost/high redistribution end of the range which obtains when

the market implements a pooled-fair full insurance "Social Security-like" outcome when gender based
pricing is banned. The MWS contracts are computed using Equation (3.5) and the risk type-distributions
estimated in Table 3-1, pooled across genders. Columns (1)-(6) are computed using Equation (3.14) and

columns (9)-(10) are computed using Equation (3.15).

The smaller redistributive effect of eliminating gender-based pricing in the MWS-
endpoints in Table 3-3, relative to the "Social Security" setting, is a result of the
endogenous adjustment of optimal annuity profiles, not of reduced demand for annuities by
men, since annuitization is mandatory even in our benchmark setting. The reduction in
redistribution results from the fact that firms can sell annuity contracts that vary in the time
profile of their payout stream and that, by using these profiles for screening purposes, they
can partially undo the transfers that take place as a result of the ban on gender-based
pricing. This highlights how recognition of the endogenous structure of insurance
contracts to government regulation can have important effects on analyses of the regulatory
policy.

3.6.2 Results in Restricted Models

We compare the results from our baseline model with those from two alternative
models. The first restricts the behavior of annuity buyers by disallowing saving, and the
second restricts the behavior of annuity providers by limiting the space of contracts they
can offer. These exercises serve two related purposes. First, they help to expand our
understanding of how various provisions in our model affect our results. Second, they
illustrate the importance of extending the basic model to account for such real-world
features as access to savings or limits on the set of contracts insurers can offer. In both
cases, we focus exclusively on the high-efficiency cost low-redistribution endpoint, since
the other endpoint is unaffected by these changes.
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Table 3-4: Efficiency and Distributional Effects of Ban on Gender Based Pricing in Restricted
Models

Redistribution to Women (Rw) Efficiency Cost as % of
Per Woman (as % of Endowment) Endowment

MWS SS MWS SS

Unrestricted (Baseline) Model 2.0838 7.14 0.0381 0
No Savings Model 0 7.14 0 0
Restricted Contracts Model 1.3326 7.14 0.1000 0

7=-3
Unrestricted (Baseline) Model 3.3874 7.14 0.0246 0
No Savings Model 0 7.14 0 0
Restricted Contracts Model 2.2504 7.14 0.1358 0

Unrestricted (Baseline) Model 4.0549 7.14 0.0180 0
No Savings Model 0 7.14 0 0
Restricted Contracts Model 2.8690 7.14 0.1352 0

Notes: Unrestricted (Baseline) Model calculations are as in Table 3-3. The Restricted Contracts Model
calculations are described in Section 3.6.2: in this model, firms can only offer contracts with constant
escalation or declination rates. In the No Savings Model, individuals are assumed to have no access to

savings technology, as described in Section 3.6.2.

Table 3-4 summarizes the results of with each of these generalizations. We explained
earlier that if annuitants cannot save, or if their saving can be observed and contracted
upon by insurance companies, then the MWS equilibrium annuities of short-lived types are
characterized by contracts that are level until very old ages, at which point payments fall
off quite rapidly. Because long-lived types have a substantial chance of being alive at
those old ages, relative to the short-lived types, this shape enforces self-selection at very
little cost to the short-lived types. In practice, this means that the MWS equilibrium
contracts offered to each sub-population, whether males alone, females alone, or the
pooled population, involve zero cross-subsidies from the short-lived to the long-lived
types, and the MWS equilibrium coincides with the Rothschild-Stiglitz (1976) equilibrium.
Bans in categorization have neither efficiency nor distributional consequences in this
setting.

In contrast, restricting the set of contracts that insurers can offer can increase the
efficiency costs of a ban on gender-based pricing while reducing the amount of
redistribution. This restriction is imposed to more closely accord with the payment profiles
of policies actually observed in the U.K. annuity market. While annuity companies appear
to use the time-profile of annuity payments to screen individuals according to their risk
type in the United Kingdom, Finkelstein and Poterba (2002, 2004) report that insurers offer
only a limited number of simple alternative payment profiles. Most policies involve level
nominal payments; the majority of the remainder involve nominal payments that escalate at
a constant rate over time. The declining annuities generated by our baseline model do not
have this feature. It is possible that a richer and more realistic model might yield annuities
with a structure that more closely accords with observed policies. Another possibility is
that there are some implicit restrictions on the form of annuities that can be offered by
insurance firms. Such limitations might arise, for example, if there are fixed costs of
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offering different insurance products, explicit or implicit regulations on legal pension
payment profiles, or costs to either the consumer or producer from product complexity.

The particular restriction we consider limits firms to offering only policies which
provide benefits that rise or fall at a constant real rate: a, = a, for some constant 77 and

for all t. Subject to this additional requirement, market outcomes are still characterized by
(3.5). As in the unrestricted program, the long-lived types purchase a full-insurance
annuity, and short lived types purchase a declining annuity. For the baseline parameters
and a risk aversion of 3, the MWS equilibrium rate of decline is 12.1 percent per annum
when gender-based pricing is banned, and is 9.5 percent and 13.3 percent for short-lived
males and females, respectively, when gender-based pricing is allowed. Table 3-4
indicates that for a risk aversion of 3, a ban in gender-based pricing in this redistricted
contract model redistributes approximately 2.25 percent of retirement wealth towards
women, at an efficiency cost of 0.136 percent of retirement wealth. Compared with the
results in the baseline model without contract restrictions the maximum amount of
redistribution achievable by a ban on gender-based pricing falls by about one-third in a
model with contract restrictions; the efficiency costs, while still modest on an absolute
scale, rise by an order of magnitude. These findings highlight how the nature of the
contracting environment and the potential endogenous response to regulation can have
substantial effects on the consequences of regulation.

These results also provide insight into why the efficiency costs are so small in the
baseline model. There are two mechanisms for satisfying self-selection constraints in an
MWS equilibrium. First, the short-lived (L) types can be offered a highly distorted
contract, such as a contract with front loading. This distortion makes the L type contract
less attractive to both types, but it is a distortion which is differentially more unattractive
for the H types. Second, there can be cross-subsidies from the L types' contracts to the H
types' contracts. These help satisfy self-selection by making the H type annuity contracts
more desirable and the L type annuity contracts less desirable. The efficiency costs will
tend to be large when a change in the mix x of H and L types has substantial effects on the
optimal amount of distortion in the contract space.

When savings is impossible to, there is essentially no tradeoff between efficiency and
redistribution. Distortions can be used to enforce self selection at virtually no costs, so the
equilibrium never relies on cross-subsidies. This in turn means that there is no change in
the distortion when a ban is put in place, and therefore no efficiency cost. More generally,
whenever the marginal costs of distortion are very small for low distortions, and very high
at high distortions - with a sharp transition between these two regions - the efficiency
costs of a ban will tend to be low; the optimal distortion/cross-subsidization mix will take
place near the transition, irrespective of the relative fraction of low and high-risks.

Restricting the contract space raises the efficiency cost of a ban on gender-based
pricing because the transition is not as sharp in the restricted contracts case. With an
unrestricted contract space, it is possible to target an optimal distortion, for example, by
making the L type annuity more downward sloping at old ages than at young ages. This
flexibility means that the first bit of distortion is the most useful, and additional distortions
quickly become less and less useful. In contrast, with the restricted contract spaces we
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consider, the distortion cannot be targeted: the size of the distortion is fully captured by the
downward tilt of the L type annuity. Relative to the unrestricted space, the tradeoff
between distortion and cross-subsidy is therefore flatter, making the efficiency cost of
banning category-based pricing higher.

3.6.3 Comparative Statics
To provide some insight into the sensitivity of our results to various parameters, we

computed the amount of redistribution and the efficiency cost of banning categorization
under three alternative sets of parameter vectors. Table 3-5 reports the results. First, we
vary the fraction 0 of women in the population. Our base case in Table 3-3 assumed a 50-
50 gender split. Decreasing , to reflect the fact that most participants in the compulsory
U.K. annuity market are male, increases the per-woman distributional effects of banning
categorization. When there are relatively more men, women gain more by being pooled
with the men.

Table 3-5: Sensitivity Analysis for Redistribution and Efficiency Cost Calculations, ( = 3)
Parameter Being Varied and Redistribution to Efficiency Cost as % Efficiency Cost Per
New Value Women (R), Per of Endowment Dollar of DistributionWomen (Kw), Per o nomn

Woman (as % of
Endowment)

MWS SS MWS SS MWS SS

0 (fraction women)
0.1 6.37% 13.63% 0.00% 0% 0.32% 0%

0.3 4.84 10.30 0.01 0 0.89 0

0.5 3.39 7.14 0.02 0 1.45 0
0.7 2.00 4.17 0.03 0 1.97 0
0.9 0.66 1.35 0.01 0 2.40 0

Caf, ~L = Mortality hazard at age 65 for low-risk and high-risk type

.001, .046 4.72% 8.63% 0.02% 0% 0.91% 0%

.002, .043 3.98 7.85 0.02 0 1.18 0
.0031,.0411 3.39 7.14 0.02 0 1.45 0
.005,.0361 2.62 6.01 0.03 0 1.97 0
.008, .0281 1.65 4.16 0.03 0 3.27 0

(caH, CL ),( m.f ): Age 65 mortality hazards and type fractions

(0.0021,0.2492),(0.6445,0.7798) 4.69% 7.89% 0.01% 0% 0.38% 0%
(0.0026,0.0793),(0.6275,0.7968) 3.82 7.45 0.02 0 0.82 0
(0.0031,0.0405),(0.6051,0.8192) 3.39 7.14 0.02 0 1.45 0
(0.0036,0.0248),(0.5738,0.8505) 3.09 6.92 0.04 0 2.58 0
(0.0041,0.0169),(0.5268,0.8976) 2.86 6.78 0.07 0 4.90 0
(0.0046,0.0122),(0.4477,0.9770) 2.64 6.62 0.14 0 10.72 0
Note: Same calculations as in Table 3-3 with varying parameters. Results for baseline parameters from Table
3-3 appear in bold. The mortality hazards for high and low risk types at age 65 are varied while keeping the
aggregate mortality rate at age 65 constant. The mortality hazards and type fractions in the bottom panel are

varied to keep aggregate type fractions and gender-specific life expectancies constant.
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The efficiency cost of a ban, however, is non-monotonic in 9. A'change in a has two
offsetting effects on efficiency. First, the efficiency costs mechanically fall as the relative
size of the male population decreases, since the efficiency costs of a ban in categorization
in the MWS framework are entirely due to the inefficiency of the post-ban allocation
amongst the low risk category, which in this case is men. Second, as the number of
women increases, the non-categorizing equilibrium payout moves away from the men's
categorizing payout and toward the women's. This raises the efficiency cost per male, and
thus creates an effect that operates against the mechanical first effect. Finkelstein and
Poterba (2004, 2006) suggest that about 70 percent of U.K. annuitants are male. The
results in Table 5 suggest that this raises the amount of redistribution to women and
decreases the efficiency cost per dollar of redistribution by about 40 percent compared to
our baseline estimates based on the 50-50 gender split.

The second comparative static we consider involves varying the pair aH and aL, the
mortality hazard at retirement for the two different risk types. We vary these two in a way
that keeps the population average mortality hazard approximately constant at retirement
age. The gap between the two risks types in our baseline parameterization may be too
large, since, at best, our estimates describe the differences in actual risks across types, as
opposed to the private information individuals have when they make annuity purchases. As
the hazard rates move closer together, the amount of redistribution that takes place as a
result of the ban decreases. The total efficiency cost, however, appears to be robust to the
gap in the mortality rates. As a result, the efficiency cost per dollar of redistribution rises as
the relative hazard declines.

The final variation we consider is jointly varying a H and a L - the age 65 mortality

hazards for the two types - and the gender-specific fractions of each risk type, 2M and 2F,
in such a way that life expectancies of the two genders remains constant and the aggregate
fraction of high risk and low risk types remains unchanged. This is accomplished by first
varying aH and a L so as to keep aggregate life expectancy constant, and then by adjusting
the gender-specific type fractions to keep the life expectancy of each gender unchanged.
Thus, like the previous variation, the thought experiment implicit in this variation is to
change the mortality gap; this way of doing so may be more reasonable than the one above.
Like the previous variation, this has small but non-zero effects on our estimates of the'
distributional consequences. With a smaller gap, the distributional consequences are
smaller. In contrast with the previous type of mortality gap variation, however, we see that
the efficiency consequences can be substantially increased by a lowering of the mortality
gap. Indeed, for the smallest gap considered, the efficiency consequences are
approximately six times larger than in the baselinecase.
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3.7 Conclusions

This paper investigates the economic effects of restricting the set of individual
characteristics that can be used in pricing insurance contracts. It moves beyond the
qualitative observation that such regulations may entail efficiency costs to explore
quantitatively both the distributional and efficiency effects of such a policy. To do so, we
develop, calibrate, and solve an equilibrium contracting model for the compulsory
retirement annuity market in the United Kingdom.

Our findings underscore the importance of considering the endogenous response of
insurance contracts to regulatory restrictions when assessing the impact of regulation. Our
central estimate suggests that allowing for such endogenous response may reduce estimates
of the amount of redistribution from men to women under a ban on gender-based pricing
by as much as fifty percent. This estimate contrasts the endogenous response case with an
alternative in which the menu of policies is fixed, as it is when governments provide
compulsory annuities with fixed payout structures in Social Security programs.

The redistribution associated with a unisex pricing requirement, even accounting for
the endogenous contract response, remains substantial. Our baseline estimates suggest that
at least 3.4 percent of retirement wealth is redistributed from men to women. We also
estimate that in the compulsory annuity setting, unisex pricing rules would impose only a
modest efficiency cost, approximately 0.02 percent of retirement wealth. Recall, however,
that our analysis focuses only on the set of individuals who are already covered by
retirement plans that require annuitization of account balances at some point, so non-
participation in the annuity market is not an option for them. Our efficiency estimates
almost certainly understate the efficiency costs of unisex pricing in voluntary annuity
markets, since they do not consider consumer decisions about whether or not to participate
in the market.

Our estimates also fail to capture the potential long-run behavioral responses to unisex
pricing regulations. For example, a change in annuity pricing could affect the savings and
labor supply decisions of those who will subsequently face compulsory annuitization
requirements. Annuity companies might also respond to unisex pricing requirements by
conditioning annuity prices on other observables that are not currently used in pricing
policies, such as occupation or location of residence. Discussions of gender-neutral pricing
in insurance markets also raise interesting questions that range far beyond our study, such
as why a society might wish to carry out transfers between men and women, the extent to
which gender-based transfers in the marketplace are simply undone within the household,
and why insurance markets rather than, say, the tax system, are a natural locus for such
transfers. These are all interesting avenues to explore in future work.

Restrictions on the use of gender in pricing retirement annuities are just one of many
examples of regulatory constraints on characteristic-based pricing in private insurance
markets. Many states in the United States, for example, restrict insurers' use of
information on the individual's gender, race, residential location, or past driving history, in
setting automobile insurance rates. Similar restrictions apply in homeowner's insurance
markets and in many small-group and non-group health insurance markets. Moreover, the
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growing field of medical and genetic testing promises to create new tensions between
insurers and regulators, as medical science provides new information that insurers could
potentially use to predict the future morbidity and mortality of potential clients for life and
health insurance policies.

The framework we have developed provides a natural starting point for evaluating the
efficiency and distributional consequences of current or potential future restrictions on
characteristic based pricing in these other markets. Such evaluations also raise several new
issues which we did not have to confront in the case of unisex pricing requirements for
annuities. In the setting we analyze there is scope for choice and self-selection on some of
the dimensions of the annuity contract but not on the extensive margin of whether or not to
annuitize at all. In addition, while moral hazard is likely to be relatively unimportant in the
annuity market, the moral hazard effects of automobile or health insurance may be more
pronounced, and will need to be considered in analyzing the efficiency consequences of
regulatory restrictions. Finally, gender is an immutable characteristic, unlike geographic
location or past driving records, and will therefore not change endogenously in response to
the pricing regime. The endogenous adjustment of characteristics to the pricing regime is
another interesting issue that future work should consider.
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3.8 Appendix: Solution Algorithm for Program (3.6)

This appendix describes and proves the validity of our procedure for solving Program (3.6).
The difficult part of solving (3.6) stems from the need to compute VH(AL), the utility H
types achieve when they purchase the annuity contract designed for the L types and save
optimally. We deal with this difficulty by identifying the structure of the optimal saving
pattern of deviating H types at the solution to (3.6).

There are two key features to this structure. First, deviating H types have an incentive
to save only at old ages. There is some period n* before which deviating H types consume
the annuity stream. We can therefore solve for VH(AL) by examining the savings behavior in
periods n > n* only. Second, deviating H types will optimally carry strictly positive wealth
forward at every date n > n*. Intuitively, absent savings the (IC') constraint in (3.6) could
be satisfied with an annuity stream AL which drops off very steeply at very old ages. Such
an annuity would provide H types with an incentive to save at old ages, undermining the
effectiveness and desirability of the steep drop off. The ability of H types to save therefore
pushes the "drop off" in the annuity AL to earlier dates than would otherwise be optimal.
For this reason, deviating H types never have incentive to borrow at the optimal AL: if they
did, AL could be improved by pushing the "drop off" back towards later ages.

The first feature is important for us: at the heart of our solution procedure is an algo-
rithm to find the n* after which the deviating H type's begin to do something other than
just consume the annuity stream. The second feature is important because it makes (3.6)
analytically tractable. To see why, contrast the indirect utility of deviating H types in two
situations. In both, take their behavior before n to involve the direct consumption of the
annuity stream AL prior to n. The two situations only differ in the potential behavior after
n.

In the first situation, we know nothing about the post-n savings behavior of H types, so
we must solve:

max UHr
r r-{cO, . ,cN} 1

VH(A; n) subject to (3.16)
(it) ct at Vt < n
(i) Et=,, J" (c - a,) < Vt > n

to find their utility from a given annuity stream. In the second situation, we know that H
types will always choose to carry positive wealth after n. This means that we can instead
solve:

m ax U (co,... ,CN)(~,'" ,~,)1
VH(A; n) subject to . (3.17)

(it) ct at et < n
(it) Z_-,, A (c - a,,) < 

Programs (3.16) and (3.17) differ in the constraints (iit) and (it). The former involves one
"no borrowing" constraint for each period t > n: the total resources consumed through
period t cannot exceed the total resources received up to that point. In contrast, the latter
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only has a single "lifetime" resource constraint. When we know that H types will always
choose to carry positive wealth after n, we know that the no borrowing constraints are slack,
and we can drop all of them except the whole-life no borrowing constraint.

Program (3.17) is easily solved using first order methods. With constant relative risk
aversion utility, this solution yields a closed-form expression for VH(A; n) and its derivatives.
This allows us to solve (3.6) using first order methods once we have identified the cutoff value
n*. We will present our algorithm for constructing n* below.

Before presenting our algorithm, let us formalize the preceding intuition. Suppose we
knew that deviating H types would consume the entire annuity payment in each period
prior to n. Fix a Lagrange multiplier v on constraint (IC') in (3.6), fix a T for which
constraint (MU') binds, let V = VH(W + I-AT), and let W = W- T. Then solving (3.6)
for this fixed v and T would be equivalent to solving the program

AL { VL(AL)- v (VH (AL; n)V) }AL ;n
(Pn) subject to

(BC') CL(AL) < W

Solving (3.6) is always equivalent to solving (P0) for the proper value of v and T. When
we know that deviating H types will consume the entire annuity payment in each period
prior to n, solving (P,) is equivalent to solving (P0) as well. If we additionally knew that H
types would carry strictly positive wealth in every period after n, solving (Pn) would also be
equivalent to solving the program:

ma { VL (AL)-V (fjH (AL; n)-V) }
(P"~ ) ~ subject to

(BC') CL(AL) < 

When we know the two features of deviating H type's consumption patterns are satisfied and
we know the cutoff n*, solving (P,.) will therefore also solve (3.6). This is important, because
the closed, tractable form of VH(A; n) allows us to solve (n) using first order methods.

We will now present Algorithm 1, which we use to construct n*. The remainder of the
appendix will be devoted to showing that the solutions to (P0) and (P/) coincide for this n*.
This is formally stated in Proposition 1 below, but we will need to establish several lemmas
before we can prove it. Once we have proved it, we will know that applying Algorithm 1 to
find n* and then solving (Pn) will solve (3.6) for the given v, and we will be done.

First we define a parameter n~= which will play an important role in Algorithm 1. To
motivate it, imagine solving (PN) for AL* = (aL*,... , aL*). If it happens that

S (a.) _> S.+1 (a+L1) for n = 0 ,N-1, (3.18)

then H types will have no incentive to save when given annuity AL*. Hence, AL* will also
solve the tighter program (Po). To see when (3.18) is possible, consider the first order
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conditions for a* and a 1 . These imply

(a *)7 - S) > (anI) S )* (3.19)

Combining (3.18) and (3.19) yields

/ 1 ' 1

V < Sn (3.20)

Therefore, (3.18) will only be possible-and AL* can only solve (P)-when is sufficiently

low. For higher v, there will be some t for which v > + , and we will need to solve
Sn+l W

(Po) using some other method. This motivates the following definition:

n*- min {N}U nE{0, * -N-1}:v> S+ SY (3.21)Si 1 Sn~

so that n* =N if and only if (3.18) is possible. If n*ax < N, then we need some other
method for solving (P0). This is is purpose of Algorithm 1.

Algorithm 1

1. Start with n = nmax

2. If n = 0 or if S 1 (_)- > S (n), stop, n* = n. Otherwise, take n = n - 1 and
repeat step 2.

Algorithm 1 starts with n = noax and solves (Pna..) for Annex. It checks if H types have
a (weak) incentive to save at nma - 1 given their optimal consumption pattern when given
A.n I'-i.e., the consumption vector F solving (3.16) defining VH(An**; ma.x). If not, stop.
If so, decrement n and repeat using n instead of n&, continuing to decrement n until either
there is no incentive to save at n - 1, or until n = 0.

Our first lemma shows that the date n*a is the cutoff n between > { .'h and
max J

(~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~S+ 
S I

V < (ji4). This plays a key role in assuring that the algorithm works correctly.
n+l n/

(1 1

Lemma 15 For the Gompertz mortality curves we consider, s - is declining in n.

Lemma 15 is easily verified by numerical computations for our particular parametrization
of the Gompertz mortality curves. A formal proof of the lemma for any pair of Gompertz
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mortality curves involves tedious algebra and a limiting argument. It is omitted here but is
available upon request from the authors.

Our second lemma characterizes the consumption patterns rn = (,. · , c) which solve
(3.16) for a given solution An = (ao... , a') to (Pn). Note that, by assumption, any such
consumption pattern has c = a' for t < to.

Lemma 16 If A n = (an,... , a ) solves (Pn), and n = (cN,.. Cv) solves the program
defining VH(An; n), then 3 an integer k > 0 and a set T = {to,'" tk, tk+} of integers ti,
with to - n - 1, t < ti+l, and tk+1 = N, such that:

* For to < t < t': StH (cn)- > Stq (ct,)- , with equality iff 3i such that t < t and
t' < ti+1 ; and

* For each i < k,

E6 ( -at) < ,
t=ti+l

for each t + 1 < t < ti+l, with equality if t = ti+.

Lemma 16 states that the dates after n -1 can be broken up, by some set of cutoff values T,
into a series of intervals [ti + 1,.. , ti+1l]. Within each interval, H types consume in such a
way that they have no incentive to save or borrow. At the upper end t of an interval, the H
type's consumption is such that they have a strict incentive to shift consumption from t + 1
back to ti; they cannot do so, because they cannot borrow and they do not carry positive
wealth between t and t + 1. The "proof" involves simply looking at C" and An and defining
the appropriate set T.

Lemmas 17, through 20 below characterize the cutoff values T for solutions to (Pn).
Specifically, Lemma 17 presents some first order necessary conditions for solving (Pn).
Lemma 18 uses these first order conditions to establish some properties of the annuity and
consumption streams associated with the solution to (Pn), taking the set of cutoffs T as given.
Lemma 19 establishes that when the solution to (n) involves the cutoffs T = n- 1, N}, it
is also a solution to (Pn). Lemma 20 then uses the properties of Lemmas 17 and 18 to show
that the only set T consistent with solving (Pn) when n* < n < n*az is the (minimal) set
in-1, N}. Together, these will tell us that the solutions to (Pn.) and (Pn*) coincide, which
enables us to prove Proposition 1.

Lemma 17 Let An (a~,... ,an) solve (Pn), let rn = (c,... ,cN) solve the program
defining Vt(An,n), and let T = {to,... ,tk, tk+l} be the associated set of integers from
Lemma 16. Let t be the Lagrange multiplier associated with the constraint (BC'). Then the
following must hold:

= (a) -S (c) v 's , Vt E {O. , N}, (3.22)

at = ct, Vt < N, (3.23)
St ( n) ~=Wfn- tf{i1 t~

St (c Sty (Ct) , Vt, t E {t + 1, .. ,t+ } Vi E {O0,. , k}, (3.24)

Etti+l lt(c - at) = , Vi E {O,. , k}. (3.25)
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Proof. Since oaVH(Afn) = SH (Ctn), (3.22) is the first order necessary condition for a in80' t
(Pn). Conditions (3.23)-(3.25) characterize necessary conditions for F" to solve the program
defining VH(An; n). Condition (3.23) follows from the definition of that program. Both
(3.24) and (3.25) follow from Lemma 16: (3.24) states that H type's consumption is such
that they have no incentive to borrow or save within an interval and (3.25) states that
individuals do not carry positive wealth from one interval to the next. 

By Lemma 17, conditions (3.22)-(3.25) are necessary for a solution to (Pn). Lemma 18
shows that for any fixed set of cutoffs T, these four conditions are satisfied only for a unique
annuity and consumption pair. The lemma further examines how this unique pair varies
with the Lagrange multiplier pI: since p can be interpreted as a marginal utility of resources

1

and u'(x) = x-7, the pair varies with pI as pI -.

Lemma 18 Fix > 0 and T. Then there is a unique annuity and consumption pair,
(a,... ,ain ) - A'' and (cn,... ,c') = P' , that solves (3.22) through (3.25). Viewed a a

0~~~~~~~~~~ 1

function of i, ai(p) = a "(1)/l- and ctn(L) = ctn(1)ti-

Proof. Fix a t. Condition (3.24) determines ~ for any t, t' in the interval [ti + 1,*, ti+1].

(ct,+l ... ,ct,+) is therefore determined up to a scalar multiple. To pin down this scalar
multiple, fix a Wi E R and generate the unique vector (+, ' , ctn+1 ) consistent with (3.24)

and with i = ti+y, Jtctn. Next, define the function M1 : R -- Rti+ - ti by Ml(an+l) _---t--ti+l l 
(ti+... , ), where l' is defined implicitly via

sH ___
-() (tn) = - (ct+) Stt tiiSP S~~~~~~~~t +1

as required by (3.22). Similarly, define the function M2 : Rti+l - ti - Rvia M 2 (at+l,. an )t) ti-{1)
ti+I tad,. Then M2(M1(t,+ 1)) is strictly increasing in at,+x; hence there is a unique at,+1t-ti 

such that M2(Ml(at,+l)) = Wi. Therefore, for any Wi, there is a unique pair of vectors
(a +i ) a+(Wi)) and (ctn+(W ),... ,c+(W)) consistent with, i, atn +Ai

ti+1 ti+l

= S 6ta' (W) = E 3ten(Wi)

t=ti+l t=ti+l

and with

in Ov St- n -n7Z ~ (at ( -ct (Wi)) v SP = (ati+1 (W) -- t - s L

for all t E {ti + 1,.* , ti+1}.

Clearly, if (a (Wi)) , (cn(Wi)) } is the unique pair consistent in this sense

with , then {(an(W)) (nt=t(Wi)) } is uniquely consistent in this sense+
with W2i, then (Pat ( i +l · iI) t 1is uniquely consistent in this sense
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with l3Wi for any B > 0. Via p, (3.22) then pins down a unique Wi and corresponding

(t+ (W),*, a (Wi)) and (c'+ (Wi),.. , c.l (1i))consistent with (3.22), (3.24) and
-1

(3.25) for the interval i, and shows that ctn and at vary with p as in this interval.
This argument holds for each ti, and hence for each t > n. For t < n, a similar argument

using (3.23) instead of (3.24) establishes the same uniqueness result, completing the proof.
*

Lemma 18 shows that there is a unique pair A n and rn that satisfies the necessary
conditions for a given fixed I'. That is, for any T there is a unique "candidate" for solving
(Pn). We will now establish two lemmas about this candidate solution. First, Lemma 19
shows that if the candidate associated with cutoffs T = {n - 1, N} is indeed a solution to
(Pn), then it is also a solution to (Pn). Second, Lemma 20 shows that, when n* < n < n*maz,
the candidate for any other T = {n- 1, N} cannot solve (n) for T = {n-1, N}. Together,
they imply that the solution to (Pn*) solves (n.) as well.

Lemma 19 Consider a solution A" to (Pn) and the corresponding r" solving (3.16) defining
VH(An; n). If the cutoff values T given by Lemma 16 at this solution are given by T-
{n - 1, N}, then An solves (n).

Proof. When T = n - 1, N}, Lemma 16 implies that rn also satisfies the first order con-
ditions associated with the program defining VH(An; n), and therefore solves that program.
An is therefore feasible in (Pn). (Pn) is a tighter program than (Pn), so An solves (P). 

Lemma 20 Assume n* < n < n . Let A' = (an,... , an) and rI"n = (C,... ,c) solve
(Pn) and the program defining VH(A'n; n), respectively, and let T be the associated cutoffs
from Lemma 16. Then T = {n - 1, N}.

Proof. If T # {n- 1, N}, take the largest tk E T less than N. For A' and rn to solve (Pn)
with cutoffs T and the program defining VH(An; n), respectively, Lemma 16 requires:

,n < tnat k tk

and (3.26)
m > c+

atk+l tk+l

First suppose, by way of contradiction, that tk > nm*az, where n*az is defined in Algorithm
1. Then combining (3.26) with the necessary condition (3.22), we observe:

( StHz ( ___

(Ctk~%t)(l 5)<C+) S +1 (3.27)

Lemma 16 also requires:
.kt. yCk > St'+l(c +l) ' (3.28)

Combining (3.27) and (3.28) yields:

s& 1 1 - ) < _1-~-r- or < IA
SZ St: StL1- + 1 ~~~~~L~c1 e _
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This contradicts Lemma 15 when tk > n* by Lemma 15.
When T = {n - 1, N} at the solution to (Pn), the solutions to (n) and (Pn) coincide by

Lemma 19. Having ruled out tk > nm x, we conclude that (Pn*,,) is uniquely solved with
cutoffs Tn = {n*a - 1, N} and that the solutions to (Pna) and (Pn~_) coincide.

Proceeding by induction, suppose that for some fi > n*, (Pn) is uniquely solved with
cutoffs Tn = {n -1, N} for each n > h + 1. By Lemma 19, the solutions to (n) and (Pn)
must then coincide for n > fi + 1. We will prove that Tf = {f - 1, N} by contradiction:
suppose there is a solution to (Pa) involving cutoffs = {- 1, .. tk, N} {i - 1, N}.
From above, tk < na must hold.

Fix / = 1 (without loss of generality by Lemma 18), and take r a and A'n as in Lemma
18 for n = h and cutoffs T. Take r"tk+l and Antk+l as in Lemma 18 for n = tk + 1 and
cutoffs {tk, N}; then rFtk+l = rtk+l = ftk+l and A/tk+l = Atk + = Aitk+l by the inductive
hypothesis. By the argument in the proof of Lemma 18, ct = ck+l for t = tk + 1,.. , N:
having fixed A, there is a unique solution within each interval, and the top intervals for the
two problems coincide.

By Lemma 16, c > a', whereby (3.22) yields ,-l1 > (atN) (1- vk). Similarly,

l ck Itk+w onks~Hsince atk+ = we conclude that 1 = (atk+1) (i - v Therefore ak+l atk tk S.?L ~~~~~~~~~~~~~~~~ctk - at k

a tntk + 1 c.nand '4, - t'
To complete the proof, note that if A'n solves (n) then Lemma 16 requires StH(cf)-i >

St' -, -al C _t~ f '.H kt+l .Cta+1.qSt1(ct+r)~ 7- Since cndk c =and Ct' --C+, this implies S(ctk )-7 >S+(c 7tk -- tik Ctk+l etl .kt > t~ktk+1 
Noting that l

"tk+ l = r
tk+l = ftk+,l Algorithm 1 implies n* > tk + -1, since Algorithm 1 would

have stopped at tk + 1, if not before. Since ii > n* and i < tk, we have reached our contra-
diction, completing the proof. 

We are now ready to state and prove Proposition 1. Proposition states that the solution
to (n*) solves (Po). This means that (n*) can be used to solve (3.6)-all that is additionally
required is a search for the proper value of the multiplier . Since (n) is easily solved, we
will be done once we have proved Proposition 1.

Proposition 1 If An' solves (Pn.), then An solves (Po) and (Pn*) where n* is the outcome
of Algorithm 1.

Proof. A solution An* = (an*,.. , an) to (Pn*) must exist, since the set of A satisfying the
constraints is compact and the objective function is continuous. Lemmas 18 and 20 together
imply that this solution is unique and involves the cutoff values T = {n - 1, N}. By Lemma
19, this solution also solves (n*). Examination of the first order conditions shows that this
solution to (n*) is unique.

Since VH(A; n) < VH(A; 0) for every A, the value of Program (Pn*) is at least as large
as the value of Program (P0). It therefore suffices to show that VH(An*; n*) = VH(An';0).
Let rn * = (cf, .. , cRv) solve the program defining VH(An' ;n*). rn ' must also solve the
program (3.17) defining VH(An* ;n*), or else An' couldn't solve both (Pn) and (Pn). We
need only to check that rn* also solves the program (3.16) defining VH(An*, 0). Since (3.16)
is a globally concave program and Fn* satisfies all of the constraints, it suffices to show that
StH (c *)- > StH1 (ctn+) ' for each t, with equality for any t at which Et=o 5(cn -an) < 0.-- t ~ ~ ~ ~ ~ l Z :o < o.~~~~~5 
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For t > n*, StH (*) = StH (ctnjl) . This is a necessary condition for r n' to solve
the program defining VH(An; n*). If n* = 0, we are done. Otherwise, for t < n*, we havet~~~~~~~~~~~~~~ n'c~ = an*, so Es=0 (c* -a') = 0, and we need only verify that S(H (c* ) 7 > S tI1 (ct+l) 
By Algorithm 1, Sf 1 (n: 1) 7 > SH (cn. ) 7. We are therefore done if n* = 1.

If n* > 1, suppose, by way of contradiction, that

StH (cn') < StH (c';) (3.29)

for some t < n*- 1. Since ct* = at' for t < n*,

S
H

~~n ( St+'(an) (- ) = (at+) -) (330)

by Lemma 17. (3.29) and (3.30) can be used to show that v > I I . But since
\ t+1 t /

t < n* < nf, this is impossible given Algorithm 1 and Lemma 15. This contradiction
shows that StH (c*) 7 > StH1 for each t < n - 1, which completes our proof. 
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